
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

Dissertations & Theses in Natural Resources Natural Resources, School of

5-2017

Integration of Hydrogeophysical Datasets for
Improved Water Resource Management in
Irrigated Systems
Catherine E. Finkenbiner
University of Nebraska-Lincoln, c.finkenbiner@gmail.com

Follow this and additional works at: http://digitalcommons.unl.edu/natresdiss

Part of the Agriculture Commons, Hydrology Commons, Natural Resources and Conservation
Commons, Natural Resources Management and Policy Commons, Other Environmental Sciences
Commons, and the Water Resource Management Commons

This Article is brought to you for free and open access by the Natural Resources, School of at DigitalCommons@University of Nebraska - Lincoln. It
has been accepted for inclusion in Dissertations & Theses in Natural Resources by an authorized administrator of DigitalCommons@University of
Nebraska - Lincoln.

Finkenbiner, Catherine E., "Integration of Hydrogeophysical Datasets for Improved Water Resource Management in Irrigated Systems"
(2017). Dissertations & Theses in Natural Resources. 145.
http://digitalcommons.unl.edu/natresdiss/145

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fnatresdiss%2F145&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/natresdiss?utm_source=digitalcommons.unl.edu%2Fnatresdiss%2F145&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/natres?utm_source=digitalcommons.unl.edu%2Fnatresdiss%2F145&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/natresdiss?utm_source=digitalcommons.unl.edu%2Fnatresdiss%2F145&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1076?utm_source=digitalcommons.unl.edu%2Fnatresdiss%2F145&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1054?utm_source=digitalcommons.unl.edu%2Fnatresdiss%2F145&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/168?utm_source=digitalcommons.unl.edu%2Fnatresdiss%2F145&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/168?utm_source=digitalcommons.unl.edu%2Fnatresdiss%2F145&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/170?utm_source=digitalcommons.unl.edu%2Fnatresdiss%2F145&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/173?utm_source=digitalcommons.unl.edu%2Fnatresdiss%2F145&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/173?utm_source=digitalcommons.unl.edu%2Fnatresdiss%2F145&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1057?utm_source=digitalcommons.unl.edu%2Fnatresdiss%2F145&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/natresdiss/145?utm_source=digitalcommons.unl.edu%2Fnatresdiss%2F145&utm_medium=PDF&utm_campaign=PDFCoverPages


Integration of Hydrogeophysical Datasets for Improved Water 

Resource Management in Irrigated Systems 

 

by 

 

Catherine E. Finkenbiner 

 

A THESIS 

 

 

 

 

 

Presented to the Faculty of 

The Graduate College at the University of Nebraska 

In Partial Fulfillment of Requirements 

For the Degree of Master of Science 

Major:  Natural Resource Sciences 

Under the Supervision of Professor Trenton E. Franz 

Lincoln, Nebraska 

 

 

May 2017 

 

 

 

 



Integration of Hydrogeophysical Datasets for Improved Water 

Resource Management in Irrigated Systems 

 

Catherine E. Finkenbiner, M.S. 

University of Nebraska, 2017 

Advisor:  Trenton Franz 

Water scarcity is predicted to be the major limitation to increasing agronomic 

outputs to meet future food and fiber demands. With the agricultural sector accounting 

for 80 – 90% of all consumptive water use and an average water use efficiency (WUE) of 

less than 45%, major advances must be made in irrigation water management. Precision 

agriculture, specifically variable-rate irrigation (VRI) and variable-speed irrigation (VSI) 

systems, offers the technologies to address and manage for infield variability and 

incorporate that into management decisions. The major limitation to implementing this 

technology often lies in the management of spatial datasets and the development of 

irrigation prescription maps that address variables impacting yield and soil moisture. 

While certain datasets and mapping technologies exist in practice, this study explored the 

utility of the recently developed cosmic-ray neutron probe (CRNP) which measures soil 

water content (SWC) in the top ~30cm of the soil profile. The key advantages of CRNP 

are that the sensor is passive, non-invasive, mobile and soil temperature-invariant, 

making data collection more compatible with existing farm operations and extending the 

mapping period. The objectives of this study were to: 1) improve the delineation of 



management zones within a field and 2) estimate spatial soil hydraulic properties (i.e. 

field capacity and wilting point) to make effective irrigation prescription maps. To 

accomplish this, a series of CRNP SWC surveys were collected in a 53-ha field near 

Sutherland, Nebraska. The SWC surveys were analyzed using Empirical Orthogonal 

Functions (EOF) to isolate the underlying spatial structure. Results indicated the 

measured SWC at field capacity and wilting point were better correlated to CRNP EOF 

as compared to other commonly used datasets. Based on this work, a soil sampling 

strategy and CRNP EOF analysis was proposed for better quantifying soil hydraulic 

properties. While the proposed strategy will increase overall effort as compared to 

traditional techniques, rising scrutiny for agricultural water-use may increase the 

adoption of this technology.
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Chapter 1: Foreword 

According to a 2007 U.S. Department of Agriculture (USDA) Census of 

Agriculture report, Nebraska ranks first nationally in irrigated area with approximately 

3.4 million irrigated hectares. Nebraska has about 100,000 registered irrigation wells and 

16,000 registered water wells (USDA 2007). A majority of irrigators pump groundwater 

from the critical and depleting High Plains Aquifer to irrigate their crops. Natural 

Resource Distracts (NRD) and policy makers allocate water polices in the state in an 

effort to manage groundwater depletion and recharge rates. Many NRDs in Nebraska 

enforce stringent pumping restrictions.  

Center-pivot irrigation accounts for approximately 72% of the irrigated area in 

Nebraska (USDA 2007). Conventional center pivot systems manage a field as a uniform 

unit, thus ignoring the heterogeneity across the field. Therefore, management decisions 

are typically based on average field conditions (McCarthy et al. 2014). Consequently, 

regions of a field will vary in yield due to variations in soil moisture and physical 

properties. Technological advances in site-specific crop management have the potential 

to greatly improve water use efficiency (WUE). Precision agriculture, specifically 

variable-rate irrigation (VRI) and variable-speed irrigation (VSI) systems, can vary 

irrigation application depth in relation to the spatial variability of soil properties 

(Hezarjaribi and Sourell 2007). The major limitation in implementing this technology 

often lies in the management of spatial datasets and the development of irrigation 

prescription maps that address variables impacting yield and soil moisture (Evans et al. 

1996). This requires efficient and accurate methods for measuring the spatial variability 

of soil properties including porosity, saturated hydraulic conductivity, unsaturated 
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hydraulic conductivity, texture and depth (Hezarjaribi and Sourell 2007; Ranney et al. 

2015). Managing irrigation rates and times based on hydraulic properties allows for 

irrigators to prescribe application depths based on the soil water content (SWC) below 

field capacity and above maximum allowable depletion (MAD), or the maximum amount 

of plant available water allowed to be removed from the soil before precipitation or 

irrigation refill occurs. Furthermore, identifying in-field variability and irrigation 

management zones (IMZs) is vital for minimizing runoff and deep percolation, especially 

in drought years. 

The goal of this research was to increase our understanding of soil hydrologic 

fluxes for field-scale management. The study objectives were to 1) improve the 

delineation of IMZs within a field and 2) estimate the relevant spatially-distributed soil 

hydraulic properties (i.e. field capacity and wilting point) to inform irrigation 

prescriptions. Traditional IMZ delineation techniques (i.e. soil spatial datasets, electrical 

conductivity (EC) maps) and the cosmic-ray neutron probe (CRNP) rover were used to 

characterize the spatial variability of soil properties for a popcorn field irrigated with a 

VRI pivot near Sutherland, NE. Laboratory measured soil hydraulic properties from 

thirty-one undisturbed soil cores were compared to the soil spatial datasets, EC map, and 

CRNP analysis. Chapter 2 of this thesis has been submitted for publication in the 

Precision Agriculture journal.  
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Chapter 2: Integration of Hydrogeophysical Datasets for 

Improved Water Resource Management in Irrigated Systems 

 

2.1 Introduction 

Water scarcity is predicted to be the major limitation to increasing agronomic 

outputs to meet future food and fiber demands (UNDP 2007). With the agricultural sector 

accounting for 80 – 90% of all consumptive water use and an average water use 

efficiency (WUE) of less than 45% (Hezarjaribi and Sourell 2007; Molden 2007), major 

advances must be made in irrigation water management. Currently, irrigation is a key 

component of global food security, accounting for ~40% of global food production and 

~20% of all arable land (Molden 2007; Schultz et al. 2005). Precision agriculture offers 

the technologies to address and manage for infield variability and incorporate that 

variability into management decisions (Howell et al. 2012).  

 According to a 2007 U.S. Department of Agriculture (USDA) Census of 

Agriculture report, Nebraska ranks first nationally in irrigated area approximately 3.4 

million irrigated hectares, and about 72% of that area has center pivot irrigation (USDA 

2007). Conventional center pivot systems manage a field as a uniform unit, thus ignoring 

the heterogeneity across the field, and often management decisions are based on average 

field conditions (McCarthy et al. 2014). Consequently, expected crop yield may differ in 

sub-regions of a field due to variations in soil moisture and physical properties. Variable-

rate irrigation (VRI) and variable-speed irrigation (VSI) systems can vary application 

depth in relation to the spatial variability of soil properties (Hezarjaribi and Sourell 
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2007). VSI varies the speed of the pivot to adjust application depth in sectors, and VRI 

uses nozzle control to vary application depth in irregularly shaped management zones. 

Additionally, fertigation inputs can also be managed for site-specific field conditions and 

soil properties to ensure minimal chemical loss in the runoff (Hedley 2015). Due to the 

high temporal variability in soil moisture, the incorporation of VRI has the potential to 

increase crop WUE and yield (Haghverdi et al. 2015b). The major limitation to 

implementing this technology often lies in the management of spatial datasets and the 

writing of irrigation prescription maps that address variables impacting yield and soil 

moisture (Evans et al. 1996; Howell et al. 2012). This requires efficient and accurate 

methods for measuring the field scale spatial variability of soil properties including 

porosity, saturated hydraulic conductivity, unsaturated hydraulic conductivity, available 

water, texture and depth (Hezarjaribi and Sourell 2007; Pan et al. 2013; Ranney et al. 

2015). Managing irrigation rates and times based on hydraulic properties allows for 

irrigators to prescribe application depths based on the soil water content (SWC) below 

field capacity and above maximum allowable depletion.  

  Land managers use several methods to address and manage for in-field variability 

and to delineate irrigation management zones (IMZs) including available soil spatial 

datasets, electrical resistivity/conductivity (EC) surveys, and commercially available 

instruments. Unfortunately, soil spatial datasets are often not at resolutions appropriate 

for field-scale management (Bobryk et al. 2016). One strategy which land managers will 

use is delineating IMZs within a field based on EC surveys. High resolution 

spatiotemporal modeling using EC surveys has been used to characterize dynamic soil 

moisture patterns in relation to crop needs (Hedley et al. 2013). Unfortunately, EC is 
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sensitive to temperature, SWC, texture, clay content and salinity (Haghverdi et al. 2015a; 

Rodriguez-Perez et al. 2011). While changes in SWC do account for over 50% of 

variability in soil EC readings (Brevik et al. 2006), the dynamic nature of SWC causes 

EC and clay measurements to vary temporally (McCutcheon et al. 2006) making the use 

of a single EC survey problematic. One commercially available EC instrument, the 

Trimble Soil Information System (SIS) (Trimble Inc., Sunnyvale, CA), measures soil 

physical and chemical variability and is used within agricultural management to optimize 

the use of water, fertilizer and amendment application. SIS offers 3D soil models of root 

zone depth, soil texture, water holding capacity, compaction characteristics, nutrient 

levels, and salt and toxicity concentrations. However, these spatial products are subject to 

the field conditions at the time of EC sampling. 

 Beyond EC surveys, other hydrogeophysical instruments (Binley et al. 2015) offer 

promising opportunities in precision agriculture. One such instrument to be explored in 

this work is the cosmic-ray neutron probe (CRNP), which has been used within 

agricultural systems to approximate SWC at the field- to small-watershed-scale (Franz et 

al. 2015). For this study, the CRNP was used to measure SWC at high spatial and 

temporal resolutions to characterize its dynamic nature over the growing season. One key 

advantage to using the passive, non-invasive, and soil-temperature-invariant CRNP 

method is that SWC data can be collected using a wide variety of commercially available 

vehicles from harvest until the following season when the crop too tall for the vehicle 

(~0.20 m for this work). While not performed here, surveys with taller crop heights can 

easily be collected from taller-bodied farm equipment (i.e. tractor, sprayer, etc.). Most EC 

systems are used to delineate management zones only after harvest and before planting in 
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nonfrozen soils, thus limiting mapping opportunities in cold climates. Also in this work, a 

standard multivariate analysis, empirical orthogonal functions (EOF, (Perry and Niemann 

2006)), was used to characterize the spatial variability of SWC across the study site using 

CRNP surveys collected between 2015-2016. EOF analyses have been proven to be an 

accurate method for large sample sizes or more than five days of SWC monitoring 

(Werbylo and Niemann 2014). Within intensely monitored agricultural systems, EOF 

analysis has also been used to identify dominant parameters controlling spatial and 

temporal patterns of surface SWC without being affected by a single random process 

(Korres et al. 2010). Furthermore, EOF analysis provides a framework to estimate 

underlying SWC variations constructed using historical SWC observations to forecast 

SWC patterns for unobserved times.  

The objectives of this study were to: 1) improve the delineation of management 

zones within a field and 2) estimate the relevant spatially-distributed soil hydraulic 

properties (i.e. field capacity and wilting point) to inform irrigation prescriptions. 

Measured hydraulic parameters were compared to values from the USDA soil survey 

dataset, an EC map and the CRNP-derived EOF surface to investigate which dataset 

correlated best. The CRNP surveys, when combined with the EOF analysis, were 

hypothesized to be the best predictor of laboratory-measured soil hydraulic property 

spatial variability compared to traditional and widely-used methods. It was also 

hypothesized that the EOF surface would be a good candidate for more accurately 

delineating IMZs. To illustrate the potential reduction in pumping versus effort (i.e. time, 

energy, and cost) of the various strategies discussed, Figure 2.1 presents a conceptual 

diagram with a nonlinear curve and a set of existing technologies/methodologies. The 
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figure serves as a guide to the reader and will be further discussed later in this paper with 

respect to the specific findings from this field site. 

 

 

Figure 2.1: Conceptual diagram of potential reductions in pumping versus effort for 

various soil hydraulic datasets/techniques. 
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2.2 Materials and Methods 

2.2.1 Study Site  

 

Figure 2.2: Field site located near Sutherland, NE (field center: 41.065393°, -

101.102663°), illustrating latitude, longitude, soil core sampling locations (black dots), 

1m elevation contours and the calculated topographic wetness index (TWI).  

 

The selected study site is a 53-hectare field irrigated with a VRI pivot near Sutherland, 

NE (41.065393°, -101.102663°) (Fig. 2). The field contains significant topo-edaphic 
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gradients making it an ideal candidate for VRI. Fig. 2 also illustrates the elevation 

(provided by a local crop consultant using a RTK GPS) and topographic wetness index 

(TWI; Sorensen et. al. 2006) of the study site. The field was planted with soybean 

(glycine max) in 2014 and popcorn maize (zea mays everta) from 2015-2016. The 

soybean yield averaged ~4.3 t/ha and the popcorn yields averaged ~5.8 t/ha. Using data 

from an Automated Weather Data Network (AWDN) site located near North Platte, NE 

(~40 km from study site), the authors estimated annual temperature highs to be around 

18°C and lows to be about 2°C (http://www.hprcc.unl.edu/awdn.php, Accessed 25 

January 2017). The authors used the AWDN dataset to estimate decadal annual average 

precipitation at 445 mmyr-1 with 325 mm falling between May and September. 

Additionally, the authors estimated potential annual evapotranspiration to be at 1475 

mmyr-1 with 925 mm occurring between May and September. According to the local 

producer, applied irrigation varies between 150 to 300 mmyr-1 depending on the year. 

Soil classifications from the available USDA SSURGO (Soil Survey Staff, 2016) spatial 

and tabular dataset were used to estimate texture and soil hydraulic properties at the study 

site. SWC at field capacity (cm3cm-3), correlating to a soil water pressure of -33 kPa, and 

wilting point (cm3cm-3), correlating to a soil water pressure of -1500 kPa, were averaged 

for each of the map units from 0 - 0.3m (Fig. 3). The USDA SSURGO database 

delineated contiguous areas with similar soils as a single map unit. In general, the eastern 

region of the field has sandier soils and the western region is a mixture of sandy and silt 

loams. The field has a wide gradient in field capacity and wilting point values depending 

on soil classification. The TWI product (Fig. 2) correlates well with the classifications 

from the SSURGO dataset with wetter regions of the field relating to finer soil textures.  

http://www.hprcc.unl.edu/awdn.php
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Figure 2.3: The USDA SSURGO soil descriptions and their respective SWC at field 

capacity and wilting point. 

 

 

 

 

 

1899

90052594

2676

8867 9002

MUSYM Soil Description

SWC (cm3cm-3)

at -33kPa

SWC (cm3cm-3) 

at -1500kPa

1899 Valent sand, rolling 0.090 0.027

2594 Hersh and Valentine (fine sand) soils, 6-11% slopes 0.168 0.068

2601 Hersh soils (well drained sandy loam), 3-6% slopes 0.193 0.100

2676

Holdrege silt loam, 3-7% slopes, eroded, plains and 

breaks 0.307 0.164

8867 Hord fine sandy loam, 1-3% slopes 0.225 0.125

9002 Anselmo fine sandy loam, 1-3% slopes 0.204 0.112

9005 Anselmo fine sandy loam, 6-9% slopes 0.206 0.112
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2.2.2 Hydrogeophysical datasets 

An apparent EC (ECa) map was collected on 24 February 2016 using a 

DUALEM-21S sensor (DUALEM, Milton, Canada). The DUALEM sensor has dual-

geometry receivers at separations of 1- and 2-m from the transmitter, which provided four 

simultaneous depth estimates of bulk ECa (mSm-1) every second (Dualem Inc. 2013). 

The DUALEM was towed behind an all-terrain vehicle (ATV) on a plastic sled at speeds 

of 8-15 kmhr-1 with ~7 – 9 m spacing, taking about 75 minutes to complete the survey. A 

Hemisphere GPS XF101 DGPS (Juniper Systems, Inc., Logan, UT) unit recorded the 

location of each measurement. Following basic quality assurance and quality control of 

the raw ECa data (Franz et al. 2011), a spatial map with 5 by 5 m resolution was created 

using an inverse-distance weighting procedure. Note that the 2 m horizontal co-planar 

signal was used for ECa in subsequent analyses. 

 Ten mobile CRNP surveys to estimate SWC were completed at the site from 

March 2015 - June 2016 using an ATV driven in a similar pattern and rate as the 

previously described EC survey. The mobile CRNP records epithermal neutron intensity 

integrated over one minute counting intervals. The change in epithermal neutron intensity 

is inversely correlated to the mass of hydrogen in the measurement volume (Zreda et al. 

2012). SWC changes are by far the largest change in hydrogen mass (McJannet et al. 

2014). Numerous validation studies across the globe (see Franz et al. 2011; Bogena et al. 

2013; Hawdon et al. 2014; Franz et al. 2016) have shown the CRNP to have area-average 

measurement accuracies of less than 0.03 cm3cm-3 against a variety of industry standard 

SWC point scale probes. The measurement volume is roughly a disk, with a ~250 m 

radius circle and penetration depth of 0.15 to 0.40 m (Köhli et al. 2015) depending on 
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local conditions. For simplicity, a constant penetration depth of 0.3 m was assumed for 

all surveys. In order to provide a SWC map, first a spatial map of neutron intensity was 

estimated, then a calibration function was applied following details in Franz et al. (2015) 

for agricultural fields. The neutron intensity map is created in two steps. First, a drop-in-

the-bucket preprocessing step is applied, where a dense grid is generated (here 20 by 20 

m) and all raw data points are found within a certain radius (here 50 m). Then, the 

average of all raw data found within the search radius is assigned it to the grid center. 

This oversampling approach is necessary for sharpening the image quality and is a 

common strategy used in remote sensing analyses (see Chan et al. 2014) when 

overlapping area average observations are collected, like the CRNP in this study. Next, 

an inverse-distance-weighted approach is used on the resampled 20 m grid to provide the 

5-m neutron intensity estimate. Finally, the neutron intensity gridded estimate is 

converted to SWC following Franz et al. (2015). The authors refer the reader to the 

rapidly growing CRNP literature (see Zreda et al. 2012) instead of providing full details 

of the methodology here.  

 In order to illuminate the underlying spatial variability of the SWC maps, an EOF 

analysis was used on the ten CRNP SWC maps. Full details on the multivariate statistical 

EOF analysis are provided elsewhere (Korres et al. 2010; Perry and Niemann 2006) and 

only a brief summary is provided here. The EOF analysis decomposes the observed SWC 

variability measured by the CRNP surveys into a set of orthogonal spatial patterns 

(EOFs), which are invariant in time, and a set of time series called expansion coefficients, 

which are invariant in space (Perry and Niemann 2006). Multiplication of the EOFs and 

expansion coefficients will exactly reconstruct the original pattern. Often the number of 
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needed coefficients (i.e. eigenvectors) to reconstruct most of the data is less than the 

original dataset (i.e. determined by the ranked eigenvalues), thus the procedure can be 

used as a way to reduce the dimensionality of the dataset while preserving the key 

information. The authors note that EOF is nearly identical to Principal Component 

Analysis, save the splitting of axis of variation into spatial and temporal coefficients 

instead of arbitrary linear combinations. 

 

2.2.3 Soil sampling and laboratory analysis 

Thirty-one sample locations (Figure 2.2) were chosen based on the SSURGO 

database soil classifications, EC map and EOF analysis in a stratified random sampling 

scheme. Undisturbed soil cores (250 cm3) were collected inside stainless steel cylinders 

at ~0.2 m depth at each sample location. The soil cores were placed in a cooler and 

transported back to the laboratory where they were stored in a 4°C refrigerator for storage 

until analyzed. Soil water retention curves were estimated for each of the soil cores using 

a Decagon HYPROP (Decagon Devices, Pullman, WA, USA). Saturated soil samples 

were exposed to evaporation in the laboratory and weighed throughout the experiment. 

Evaporation methods are proven to be a fast and reliable method for determining soil 

hydraulic properties within the saturated to moderate SWC range (Peters and Durner 

2008; Schindler et al. 2010). The matric head was continuously monitored by two 

tensiometers inserted at the base of the soil cores at two different lengths within the core. 

The tensiometers and instrument bases were degassed using a vacuum pump. The 

HYPROP software (Decagon Devices, Pullman, WA, USA) calculated data points along 

the retention curve and unsaturated hydraulic conductivity curve. An average measured 
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bulk density of 1.62 gcm-3 and porosity of 38.9% were assigned for each of the 

undisturbed samples to generate soil water retention curves. Following the HYPROP 

analysis, a WP4C Dewpoint PotentiaMeter (Decagon Devices, Pullman, WA, USA) was 

used to approximate tension for the moderate to dry SWC ranges. The soil cores were 

dried at 105°C for 24 hours before collecting 1 - 9 sub-samples per sample. Varying 

volumes of water were added to the sub-samples to obtain SWC near wilting point and to 

further characterize the soil water retention curves. The sub-samples were sealed for 24 

hours after water was added to allow for the water to disperse evenly throughout the sub-

sample. Inside the measurement chamber of the WP4C, the dew point temperature of the 

moist air was measured by a chilled mirror and the sample temperature was measured by 

an infrared thermometer. Those two values were then used to calculate relative humidity 

and thus, potential of the soil water. The WP4C has an accuracy of +/- 0.05 MPa from 0 

to -5 MPa and 1% from -5 to -300 MPa (Decagon Devices, Inc. 2015).  

 

2.3 Results and Discussion 

2.3.1 Hydrogeophysical mapping and EOF analysis 

The ECa map for the field is illustrated in Figure 2.4 and provides additional 

spatial information on soil texture variability as compared to the USDA SSURGO map. 

This type of information has been used for the delineation of IMZs (Pan et al. 2013).  As 

noted previously, the ECa map is subject to field conditions at the time of the sampling. 

Therefore, areas of high EC measurements in the southwest quadrant of the field may be 

due to increased soil cations, SWC, and/or temperature anomalies at the time of 

sampling. At a first look, the delineated soil boundaries by the USDA SSURGO database 
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display some spatial correlation to the ECa map. However, there is high variability of 

ECa values within each USDA SSURGO soil classification, which has been observed in 

other research (Brevik et al. 2006). Thus, the soil classification from the SSURGO 

dataset may or may not be the appropriate boundaries for IMZs within the field. This 

uncertainty of exact IMZ boundaries and questionable repeatability of ECa makes this 

method problematic, particularly given the high initial capital for precision agricultural 

equipment. The result here suggests the use of soil survey datasets and ECa be used in 

tandem to delineate IMZs for precision agriculture, which is supported by the results of 

Brevik et al. (2006). 

 

Figure 2.4: Apparent electrical conductivity map (ECa) collected on 24 February 2016 

using a Dualem-21S sensor. 

 

Apparent 

ECa (mSs-1)
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Figure 2.5 illustrates the large spatiotemporal variation in SWC over the ten dates 

observed using the CRNP rover. The regions of the field with finer soil textures and 

higher ECa generally have a higher SWC in each of the soil moisture maps. The ten 

CRNP rover surveys were used to perform EOF analysis. Here the first EOF coefficients 

explained 79.6% of the spatial SWC variability followed by 5.6% explained by the 

second EOF. Therefore, only the first EOF was considered in the subsequent analyses. 

Figure 2.6 illustrates the first EOF coefficients at the study site. Statistical bootstrapping 

of the SWC also indicated that five CRNP surveys at different SWC conditions were 

sufficient to estimate the first EOF coefficients to within 5% of the values using data 

from all ten surveys. This reduction in required number of CRNP surveys is critical for 

economic considerations beyond a research study. The first EOF map provides detailed 

information for the delineation of IMZs. Given the removal of the time-varying 

component of the signal the authors argue that the map is a superior method to delineate 

IMZs as compared to the USDA SSURGO dataset and ECa mapping. The first EOF map 

is a continuous surface; thus, it can be applied at a variety of spatial scales and used 

within existing agricultural management software (such as a shapefile input). The 

remaining questions whether it really is a better predictor of soil hydraulic properties and 

whether the improvement is economical for a producer to undertake in practice.  
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Figure 2.5: Ten CRNP rover SWC surveys collected between March 2015 and June 

2016. 

 

 

Figure 2.6: The first EOF surface depicting the underlying dominant spatial structure 

created from the ten CRNP rover SWC surveys in Figure 2.5.  

 

2.3.2 Soil sampling and laboratory analysis 

Using each of the thirty-one undisturbed soil cores, soil hydraulic properties were 

estimated from soil water retention curves generated using the Hyprop software. To 

illustrate the type of data generated, three of the soil cores and their respective field 

capacity and wilting point values are shown in Figure 2.7. Table 2.1 summarizes the 

SWC at field capacity (-33kPa), SWC at wilting point (-1500kPa) and calculated AWC 

for each of the thirty-one soil cores. In general, areas of the field with lower EOF values 

also have lower SWC at field capacity and wilting point. Additionally, SWC at field 

EOF Surface
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capacity and wilting point is higher for finer soils and lower in coarser texture classes. 

AWC is higher for areas of the field with finer textured soils. 

 

Figure 2.7: Soil water retention functions from three undisturbed soil cores. Values 

before pF (log of tension, (MPa)) of 3 were recorded using the Decagon Hyprop and 

values after a pF of 3 were recorded using a WP4C Dewpoint PotentiaMeter. 
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Table 2.1: Summary of undisturbed soil core locations and associated values. 

 

SSURGO Database Measured SWC (cm3cm-3 ) at

Sample 

Number

Latitude 

(°)

Longitude 

(°)

Elevation 

(m)

TWI MUKEY SWC 

(cm3cm-3) 

at 33 kPa

SWC 

(cm3cm-3) 

at 1500 kPa

Apparent 

ECa (mSm-1)
CRNP Rover 

EOF

6 kPa 33 kPa 1500 kPa AWC 

(cm3cm-3)

1 41.068212 -101.100420 958.74 12.73 1899 0.090 0.027 41.20 -0.1787 0.286 0.096 0.080 0.016

2 41.067437 -101.099080 961.77 10.49 1899 0.090 0.027 33.36 -0.1992 0.259 0.092 0.069 0.023

3 41.066830 -101.100055 962.92 10.09 1899 0.090 0.027 31.73 -0.1382 0.305 0.112 0.063 0.049

4 41.065587 -101.099942 964.36 11.78 1899 0.090 0.027 31.12 -0.1814 0.338 0.225 0.068 0.157

5 41.066027 -101.098348 960.95 13.59 1899 0.090 0.027 36.07 -0.1623 0.342 0.152 0.069 0.083

6 41.065164 -101.103077 954.22 9.00 1899 0.090 0.027 33.49 -0.0894 0.296 0.104 0.055 0.049

7 41.066556 -101.101864 954.87 12.84 1899 0.090 0.027 37.28 -0.0858 0.302 0.111 0.049 0.062

8 41.066830 -101.104101 954.17 10.30 1899 0.090 0.027 36.22 -0.0727 0.245 0.080 0.073 0.007

9 41.067846 -101.102910 957.59 9.70 1899 0.090 0.027 38.11 -0.0599 0.304 0.050 0.043 0.007

10 41.068960 -101.103054 954.23 9.23 1899 0.090 0.027 36.75 -0.0823 0.285 0.078 0.051 0.027

11 41.068603 -101.104315 953.95 10.17 1899 0.090 0.027 39.07 -0.0579 0.211 0.083 0.065 0.018

12 41.067984 -101.105326 956.52 9.27 1899 0.090 0.027 37.89 0.0113 0.270 0.096 0.057 0.039

13 41.064118 -101.099389 964.24 10.82 1899 0.090 0.027 29.98 -0.0667 0.302 0.071 0.062 0.009

14 41.064344 -101.101150 960.25 10.61 1899 0.090 0.027 33.20 -0.0605 0.315 0.090 0.063 0.027

15 41.062904 -101.100508 961.18 8.56 1899 0.090 0.027 31.68 -0.1141 0.264 0.076 0.042 0.034

16 41.068032 -101.106028 955.85 12.16 1899 0.090 0.027 36.13 0.0007 0.326 0.142 0.048 0.094

17 41.067044 -101.106099 954.74 11.33 1899 0.090 0.027 43.32 0.0208 0.262 0.109 0.058 0.051

18 41.067116 -101.106920 955.13 10.41 2601 0.193 0.100 43.84 0.2084 0.347 0.217 0.062 0.155

19 41.065569 -101.106111 952.97 9.06 2601 0.193 0.100 47.80 0.1812 0.311 0.206 0.090 0.116

20 41.064355 -101.104755 953.11 8.69 2601 0.193 0.100 36.45 0.1285 0.348 0.175 0.056 0.119

21 41.065819 -101.104869 953.08 15.14 2601 0.193 0.100 43.80 0.0456 0.322 0.203 0.052 0.151

22 41.063784 -101.103113 954.26 10.35 9005 0.206 0.112 37.11 0.0877 0.337 0.222 0.084 0.138

23 41.062190 -101.103018 949.28 12.75 9002 0.206 0.112 47.89 0.1577 0.341 0.149 0.053 0.096

24 41.062758 -101.102466 952.23 11.45 9005 0.206 0.112 38.00 0.0651 0.321 0.113 0.044 0.069

25 41.062345 -101.103958 948.56 11.33 8867 0.225 0.125 45.50 0.2822 0.350 0.230 0.070 0.160

26 41.062963 -101.104660 948.52 11.81 8867 0.225 0.125 64.64 0.2607 0.345 0.223 0.054 0.169

27 41.062488 -101.105314 948.14 13.02 8867 0.225 0.125 56.64 0.2843 0.370 0.315 0.078 0.237

28 41.063059 -101.106123 949.00 12.00 2676 0.307 0.164 49.04 0.3139 0.347 0.241 0.087 0.154

29 41.063915 -101.106087 951.10 8.67 2594 0.168 0.068 42.25 0.2304 0.353 0.255 0.091 0.164

30 41.064106 -101.106992 951.25 11.34 2594 0.168 0.068 45.06 0.2350 0.368 0.302 0.114 0.188

31 41.065790 -101.107226 954.50 4.01 2601 0.193 0.100 42.86 0.2284 0.350 0.251 0.081 0.170



21 
 

2.3.3 Comparison of landscape position and hydrogeophysical datasets with laboratory 

analysis 

Figure 2.8 illustrates scatterplots of AWC, elevation, TWI, ECa and EOF datasets 

with the measured field capacity and wilting point values measured from the soil water 

retention curves generated using the Hyprop and WP4C instruments. The first EOF 

coefficients have the largest linear correlation coefficient (r2) with calculated AWC (r2 = 

0.613, Root mean squared error (RMSE) = 0.042 cm3cm-3), measured SWC at field 

capacity (r2 = 0.603, RMSE = 0.048 cm3cm-3) and measured SWC at wilting point (r2 = 

0.166, RMSE = 0.015 cm3cm-3) (Table 2). Compared to ECa, the CRNP and EOF 

analysis increased the linear correlation r2 by 0.218 and reduced the RMSE by 0.012 

cm3cm-3 for measured SWC at field capacity. Table 2.2 also illustrates the weak 

relationship between measured SWC at field capacity and elevation (r2 = 0.297, RMSE = 

0.064 cm3cm-3), measured SWC at wilting point and elevation (r2 = 0.047, RMSE = 0.016 

cm3cm-3), calculated AWC and elevation (r2 = 0.321, RMSE = 0.055 cm3cm-3), measured 

SWC at field capacity and TWI (r2 = 0.005, RMSE = 0.076 cm3cm-3), measured SWC at 

wilting point and TWI (r2 = 0.011, RMSE = 0.017 cm3cm-3), and calculated AWC and 

TWI (r2 = 0.012, RMSE = 0.067 cm3cm-3). Therefore, the hypothesis that the first EOF 

provides superior spatial information correlating to the accurate prediction of three key 

soil hydraulic parameters is justified for this field. 
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Figure 2.8: Laboratory measured SWC at field capacity (FC) and wilting point (WP) 

compared to AWC, elevation, TWI, measured ECa, and the first EOF surface from the 

CRNP rover SWC surveys. 
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Table 2.2: Linear regression r2 and RMSE for measured SWC at field capacity, measured 

SWC at wilting point and calculated AWC versus elevation, TWI, ECa map and EOF 

surface. 

 

In addition to providing more accurate soil hydraulic property spatial datasets, 

EOFs can be used to generate new data products for use with VRI, VSI and other 

commercial field equipment. As an illustration here, new field capacity, wilting point and 

AWC products were generated for this field using the relationship between EOF and our 

observed hydraulic parameters (Figure 2.9). A second order polynomial was used to 

characterize the relationship between the measured SWC at field capacity (r2 = 0.697, 

RMSE = 0.043 cm3cm-3), measured SWC at wilting point (r2 = 0.321, RMSE = 0.014 

cm3cm-3) and calculated AWC (r2 = 0.677, RMSE = 0.039 cm3cm-3) with the first EOF 

surface. The authors note that additional single or multivariate linear/nonlinear functions 

could be explored to better characterize the observed trends in the data. These new data 

products could be used within current irrigation management practice to improve WUE 

by providing soil spatial datasets for the management of irrigation rates and times in 

relation to depletion below field capacity and above wilting point. Having an accurate 

Elevation (m) TWI ECa (mS/m) EOF

SWC at Field 

Capacity 

(cm3/cm3)

r2 = 0.297, 

RMSE = 0.064 

r2 = 0.005, 

RMSE = 0.076

r2 = 0.385,

RMSE = 0.060 

r2 = 0.603, 

RMSE = 0.048 

SWC at Wilting 

Point (cm3/cm3)

r2 = 0.047, 

RMSE = 0.016 

r2 = 0.011, 

RMSE = 0.017 

r2 = 0.070, 

RMSE = 0.016 

r2 = 0.166, 

RMSE = 0.015 

AWC (cm3/cm3)
r2 = 0.321

RMSE = 0.055

r2 = 0.012

RMSE = 0.067

r2 = 0.411

RMSE = 0.051

r2 = 0.613

RMSE = 0.042
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quantification of field capacity and wilting point is especially important when volumetric 

SWC sensors are used for irrigation management.  

 

 

 

a) SWC (cm3cm-3) 

at FC

R2 = 0.697

RMSE: 0.043

b) SWC (cm3cm-3) 

at WP

R2 = 0.321 

RMSE: 0.014 
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Figure 2.9: Resulting spatial estimates of a) SWC at field capacity, b) SWC at wilting 

point and c) AWC using derived relationship between laboratory measured soil hydraulic 

parameters and the first EOF surface. 

 

 

2.3.4 Recommendations for future soil hydraulic property sampling 

Given the results of this work the authors propose a sampling strategy for better 

quantifying soil hydraulic properties that can be implemented in practice. 1) Complete a 

minimum of 5 CRNP rover surveys for the area of interest, with survey datasets selected 

to capture a range of SWC, to accurately estimate spatial SWC using the first one or two 

sets of EOF coefficients. As previously stated, the presented work found five CRNP 

surveys at different SWC conditions were sufficient to estimate the first EOF coefficients 

to within 5% of the values using data from all ten surveys. A service provider could 

invest in CRNP technology and cooperate with multiple producers to perform the rover 

surveys. Additionally, the surveys could be completed simultaneously with other field 

operations (i.e. ATV, tractor, sprayer) and over several growing seasons. 2) Using the 

c) AWC (cm3cm-3) 

R2 = 0.677 

RMSE: 0.039 
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EOF coefficients from the CRNP SWC maps, 7 – 8 soil sample locations should be 

selected across a range of EOF values. The collection and analysis of soil cores to 

determine their soil retention curves and hydraulic parameters can be time consuming, 

laborious and expensive. Therefore, using the EOF surface to minimize the number of 

and placement of extracted soil cores is critical. Here the authors suggest 7 – 8 soil 

sample cores based on the results that indicate a 2nd order polynomial relationship 

described the relationship best between the first EOF surface and measured SWC at field 

capacity (r2 = 0.697, RMSE = 0.043 cm3cm-3) and wilting point (r2 = 0.321, RMSE = 

0.014 cm3cm-3). Based on additional data (Franz unpublished) from fields across the 

Midwest, the authors expect similar relationships and recommendations for the required 

minimal number of samples. 3) Next, measure the soil hydraulic properties of interest 

(i.e. field capacity, wilting point, AWC) for the collected soil samples. Soil samples can 

be sent to a soil laboratory or generated in one’s lab using the Hyprop/WP4C 

combination for this work. 4) New data products can be generated using the relationship 

between EOF and the observed hydraulic parameters from the soil cores. These new data 

products can be generated at a variety of scales and file types to operate within existing 

agricultural software and machinery. 5) In addition, the EOF surface can be used to 

delineate management zones. This should be done in conjunction with the USDA 

SSURGO data to better refine key boundaries. IMZs can be based on the EOF surface, 

the field capacity surface or the AWC surface. 

This research is of increasing importance for agricultural regions with ever-

increasing water restrictions where small changes in water allocation rates and times may 

greatly impact crop yields. For example, at the current depletion rate, 35% of the 
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Southern High Plains Aquifer is expected to be unable to support irrigation in the next 30 

years (Scanlon et al. 2012). Consequently, there will be an increased effort to accurately 

map soil hydraulic properties and delineate high spatial and temporal irrigation 

prescription maps. Referring to Figure 2.1, the feasibility of the CRNP and EOF analyses 

for management practice may soon be economically viable for many regions where 

maximizing water use for obtaining higher yields is paramount. The authors have shown 

the strong correlation with observed soil hydraulic parameters to the first EOF surface 

provides additional spatial variability information compared to EC mapping alone. If a 

land manager only used an EC map for estimating soil hydraulic properties, areas of a 

field may be biased depending on conditions at the time of sampling. In order to 

minimize error and improve IMZs, CRNP and EOF analysis should be used to increase 

the correlation between soil hydraulic properties and irrigation application rates (Figure 

2.8, Table 2.2), which will subsequently improve irrigation prescription maps. CRNP and 

EOF analysis also provides irrigators with datasets they can use to generate dynamic 

prescription irrigation maps. Future research could investigate how increases in r2 and 

reductions is RMSE using the CRNP and EOF analysis could translate into reduced 

pumping with precision agricultural technologies. Additionally, studies could investigate 

whether high spatial resolution datasets of soil hydraulic properties increase WUE while 

maintaining or increasing crop yields. 

 

2.4 Summary and Conclusion 

Irrigation constitutes the largest component in global water use, yet within 

agricultural systems there is low WUE. Therefore, improvements can be made in how 
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irrigation application rates and times are managed. Traditional methods include the use 

available soil property datasets, EC mapping or commercially available instruments to 

delineate irrigation and land management zones. This research explored the utility of 

relatively new hydrogeophysical sensor, called the CRNP, which measures near-surface 

SWC (top ~30 cm). In addition, when combining the CRNP SWC maps with the 

multivariate EOF analysis the authors found a better covariate for laboratory measured 

soil hydraulic properties for a field in west-central Nebraska, USA. The measured soil 

hydraulic properties were also compared to other readily available landscape and 

geophysical datasets including elevation, TWI and ECa maps. Based on these findings a 

future sampling strategy was proposed to better understand spatially varying hydraulic 

properties within a field, as well as delineation of IMZs. The authors do note that the 

strategy presented here constitutes a significant increase in effort as compared to more 

traditional and widely used techniques. However, as irrigation allocations become more 

stringent, there will likely be an increased rate of adoption of precision techniques that 

require more accurate mapping of soil hydraulic properties. The technology and 

framework presented here provides one potential strategy to better utilize precision 

agricultural technologies to increase WUE while maintaining crop yields in varying topo-

edaphic landscapes.  
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Chapter 3: Conclusions & Future Directions 

The major limitation to increasing agronomic outputs to meet future food and 

fiber demands is water scarcity. Consequently, global water security is dependent upon 

irrigation management. Precision agricultural technologies allow for land managers to 

vary irrigation rates and times within a field depending on soil physical properties. USDA 

soil datasets and EC mapping are traditional methods used for defining management 

zones. However, these datasets are not always an accurate representation of a field’s soil 

spatial properties. The results presented in this thesis support the implementation of 

CRNP EOF analysis into agricultural practice because it more accurately delineates soil 

spatial structure for the writing of IMZs and irrigation prescription maps. Thus, CRNP 

EOF analysis has the potential to improve WUE.  

Based on the results in Chapter 2, the following sampling strategy was 

recommended for better quantifying soil hydraulic properties that can be implemented in 

practice. 1) Complete a minimum of 5 CRNP rover surveys for the area of interest, with 

survey datasets selected to capture a range of SWC, to accurately estimate spatial SWC 

using the first one or two sets of EOF coefficients. The USDA offers guidelines one 

could follow to estimate a range of SWC based on a soil’s feel and appearance. 

Alternatively, the dates for CRNP surveys could also be determined based on in-situ 

SWC sensors. 2) Using the EOF coefficients from the CRNP SWC maps, 7 – 8 soil 

sample locations should be selected across a range of EOF values. The locations could be 

chosen at equal intervals across the range of EOF values or in areas of the field with high 

spatial variability.  3) Next, measure the soil hydraulic properties of interest (i.e. field 

capacity, wilting point, AWC) for the collected soil samples. Soil samples can be sent to 



30 
 

a soil laboratory or generated in one’s lab using the Hyprop/WP4C combination for this 

work. 4) New data products can be generated using the relationship between EOF and the 

observed hydraulic parameters from the soil cores. These new data products can be 

generated at a variety of scales and file types to operate within existing agricultural 

software and machinery. 5) The EOF surface can be used to delineate management zones. 

This should be done in conjunction with the USDA SSURGO data to better refine key 

boundaries. IMZs can be based on the EOF surface, the field capacity surface or the 

AWC surface. 

Next, I will address a few limitations and potential solutions to the adoption of the 

CRNP EOF analysis into current irrigation management practice. 1) The upfront cost of a 

CRNP rover. As stated previously in Chapter 2, a service provider could invest in CRNP 

technology and cooperate with multiple producers to perform the rover surveys. By 

providing CRNP surveys as part of their services, the upfront cost of the CRNP sensor 

could be offset by prospective profits. The surveys could also be completed 

simultaneously with other field operations because the instrument can be mounted on 

most equipment used in field management. Additionally, multiple growing seasons could 

be used to complete the CRNP surveys for the EOF analysis. 2) Performing the CRNP 

EOF analysis. To address this, a simple MatLab code can be written. The program would 

allow the user to select the CRNP rover surveys they wished to include in the EOF 

analysis. The user would then run the code and the output file would be an EOF surface 

saved as a text or shapefile. 3) The effort required to implement the proposed sampling 

strategy above. A land manger may be okay with decreased accuracy in soil spatial 

variance determined by EOF values if the number of CRNP surveys needed could be 
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reduced. Future research could investigate the correlation between the number of CRNP 

surveys and variance in EOF values or delineated IMZs across multiple study sites. 4) 

Availability of commercial laboratories for analyzing the collected soil cores for soil 

hydraulic properties. Not every soils laboratory offers services for measuring soil 

hydraulic traits. Therefore, texture of the soil samples could be determined at a soils 

laboratory. Then, pedotransfer functions (PTF) could be used to approximate for desired 

parameters along the soil water characteristics curve. This approach may be a more cost-

effective solution for some land managers. 

Future directions for this work include the generation of VRI prescription 

irrigation maps for use in practice. Studies could investigate whether high spatial 

resolution datasets of soil hydraulic properties do increase WUE while maintaining or 

increasing crop yields. Irrigators can compare historical datasets with irrigation rates and 

crop yield using CRNP EOF IMZs. The additional effort required to implement this 

method may be deemed necessary as water resources undergo increasing regulation in the 

future. Implementing this method into current agricultural practice is the next step for 

increasing WUE in irrigated systems.  
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Appendix 

Please note, all digital files can be requested from me (c.finkenbiner@gmail.com) 

or Dr. Franz (tfranz2@unl.edu). Below are soil water retention functions for each of the 

undisturbed soil samples and the MatLab code that can be adapted to create these figures. 

 

Figure S2.1: Soil water retention functions for undisturbed soil core samples 1, 2, 3 and 

4. Values before pF (log of tension, (MPa)) of 2.8 were recorded using the Decagon 

Hyprop and values after a pF of 2.8 were recorded using a WP4C Dewpoint 

PotentiaMeter. 
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Figure S2.2: Soil water retention functions for undisturbed soil core samples 5, 6, 7 and 

8. Values before pF (log of tension, (MPa)) of 3 were recorded using the Decagon 

Hyprop and values after a pF of 3 were recorded using a WP4C Dewpoint PotentiaMeter. 
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Figure S2.3: Soil water retention functions for undisturbed soil core samples 9, 10, 11 

and 12. Values before pF (log of tension, (MPa)) of 3 were recorded using the Decagon 

Hyprop and values after a pF of 3 were recorded using a WP4C Dewpoint PotentiaMeter. 
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Figure S2.4: Soil water retention functions for undisturbed soil core samples 13, 14, 15 

and 16. Values before pF (log of tension, (MPa)) of 3 were recorded using the Decagon 

Hyprop and values after a pF of 3 were recorded using a WP4C Dewpoint PotentiaMeter. 
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Figure S2.5: Soil water retention functions for undisturbed soil core samples 17, 18, 19 

and 20. Values before pF (log of tension, (MPa)) of 3 were recorded using the Decagon 

Hyprop and values after a pF of 3 were recorded using a WP4C Dewpoint PotentiaMeter. 
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Figure S2.6: Soil water retention functions for undisturbed soil core samples 21, 22, 23 

and 24. Values before pF (log of tension, (MPa)) of 3 were recorded using the Decagon 

Hyprop and values after a pF of 3 were recorded using a WP4C Dewpoint PotentiaMeter. 
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Figure S2.7: Soil water retention functions for undisturbed soil core samples 25, 26, 27 

and 28. Values before pF (log of tension, (MPa)) of 3 were recorded using the Decagon 

Hyprop and values after a pF of 3 were recorded using a WP4C Dewpoint PotentiaMeter. 
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Figure S2.8: Soil water retention functions for undisturbed soil core samples 29, 20, and 

31. Values before pF (log of tension, (MPa)) of 3 were recorded using the Decagon 

Hyprop and values after a pF of 3 were recorded using a WP4C Dewpoint PotentiaMeter. 
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% Code will read text files of Hyprop & WP4C Curves 

% Last Updated 03/13/2017 

  

clc; 

close all; 

clear all; 

  

% This program is intended for MS Thesis. 

% Documents/Precicion_Ag_Manuscript/Hyprop Data/DataTextFiles 

  

% Headers for the text files are labeled so: S1pF1, S1WC1, S1pF2, S1WC2 

% S1pF1 = pF for Hyprop & WP4C data for sample 1 % S1 = sample 1 

% S1WC1 = water content (cm3/cm3) for Hyprop & WP4C data for sample 1 

% S2pF2 = pF for Hyprop & WP4C fitted curve for sample 1 

% S2WC2 = water content (cm3/cm3) for Hyprop & WP4C fitted curve for sample 1 

  

% T = tdfread('S1_retentioncurves.txt',','); 

  

F = dir('*.txt'); 

for ii = 1:length(F) 

   fid = fopen(F(ii).name); 

   tdfread(F(ii).name); 

end 

  

% Code to create figures from imported data above 

% To change graphed samples, just change variable numbers with corresponding sample 

% number 

  

figure; 

hold on; 

set(gcf,'color','w'); 

axis([0,7,0,0.45]); 

  

% Sample 2 Valent Sand 1899 

f1 = scatter(S2pF1,S2WC1,'o','k','sizedata',85);  

f2 = plot(S2pF2,S2WC2,'k','linewidth',1.5); 

% Sample 16 Sandy Loam 8867 

f3 = scatter(S16pF1,S16WC1,'d','r','sizedata',85); 

f4 = plot(S16pF2,S16WC2,'r','linewidth',1.5); 

% Sample 28 Silt Loam 2676 

f5 = scatter(S28pF1,S28WC1,'x','b','sizedata',85); 

f6 = plot(S28pF2,S28WC2,'b','linewidth',1.5); 

legend([f1 f3 f5],'Sample 2','Sample 16','Sample 28'); 

  

%title('Soil Water Characteristics Curves'); 

set(gca,'fontsize',20,'fontweight','bold','fontname','Times New Roman'); 

set(gca,'linewidth',1.2) 

yL = get(gca,'YLim'); 

line([2.5 2.5],yL,'Color','k','linewidth',1.5); 

line([4.2 4.2],yL,'Color','k','linewidth',1.5); 

xlabel('pF(-)'); 

ylabel('Water Content (\theta) (cm^3/cm^3)'); 

box on; 

grid on; 

grid minor; 

 

Figure S2.9: MatLab (.m) script used to generated soil retention function figures for the 

undisturbed soil cores.  
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