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Abstract

The order of a hidden Markov model cannot be estimated using a classical

maximum likelihood method, since increasing the size parameter will increase

the likelihood.

In this thesis, & maximum compensated log-likelihood method is proposed for
estimating the order of general hidden Markov models. This method is based
on the compensation of the log-likelihood function. A compensator, which
is decreasing in size parameter K, is added to the maximum log-likelihood,
and the resulting compensated log-likelihood is maximized with respect to K.
The problem is then to find a proper compensator, which allows the strongly

consistent estimation of the order.

Following the ‘method of Baras and Finesso {3], sufficient conditions for compen-
sators avoiding under estimation and compensators avoiding over estimation

are obtained.

Sufficient condition on the compensator avoiding under estimation requires
consistent estimation of parameters of general hidden Markov models which is

obtained by generalizing [34].

Sufficient conditions on the compensator avoiding over estimation require pre-

cise information on the rate of growth of the maximized log-likelihood ratio

w



and the upper bound to the rate. The rate and the upper bound are obtained

using Csiszar lemma [13], from information theory.

To conclude the thesis, an example of a compensator which generate a strongly

consistent estimator of the order is given.
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Chapter 1

Introduction

A hidden Markov model (HMM) is a discrete time stochastic process {(X,Y}) :
t € N} such that {X;} is a finite state Markov chain, and given {X,}, {¥:}
is a sequence of conditionally independent random w}ariables, with the condi-
tional distribution of Y, depends on {X;} only through X,,. The name hidden
Markov model comes from the assumption that the Markov chain {X;} is not

observable, that is, hidden in the observations of {Y¥;}.

The states of a hidden Markov model could be associated with regimes. In
econometrics and finance, hidden Markov models are also known as Markov

switching models or regime switching models.

Hidden Markov models have during the last decade become widespread for
modelling sequences of dependent random variables with application in areas,
such as: speech processing [40], [41], [42], [43]; biology [35]; finance [19]; and
econometrics [26], [27], [28], [29], [30].

Theoretical work on hidden Markov models was initially started in 1950s. The



first contribution was made by Blackwell and Kopman [12] who studied a spe-
cial class of hidden Markov models, when the observed process takes values in a
finite set. This class is referred to as a probabilistic function of a Markov chain.
Since then, a long line of research has been undertaken which has enriched the

theory of hidden Markov models.

Inference for hidden Markov model was first considered by Baum and Petrie
[6] who also treated the case when the observed process {Y;} takes values in
a finite set. In [5), results on consistency and asymptotic normality of the
maximum likelihood estimate are given. Petrie [38] weakened the conditions
for consistency in [5]. In [38], the identifiability problem is also discussed:
under what conditions are ;;here no other parameters that induce the same
law for the observed process {Y;} as the true parameter, with exception for

permutation of states.

For general hidden Markov models with Y, conditioned on X,, having density
f(+,6x,), Leroux [34] proved the consistency of the maximum likelihood esti-
mate under mild conditions. An interesting fact to be noticed in [34], is that
the consistency of the maximum likelihood estimate does not depend on the
initial probability distributions. Assymptotic normality of the maximum like-
lihood estimator for general hidden Markov models has been proved by Bickel
et. al. [10].

Estimation of the parameters of a hidden Markov model has most often been
performed using maximum likelihood estimation. Baum and Eagon [4] gave
an algorithm for locating a local maximum of the likelihood function for a
probabilistic function of a Markov chain. In 1970, Baum et. al. [6] developed
the expectation mazimization (EM) algorithm and applied it to general hidden
Markov models. Dempster, Laird and Rubin [14] further developed the EM

algorithm and made it popular for applications. Examples of the application



of the EM algorithm to speech processing can be found in [40] and [41].

Recent work on parameter estimation of hidden Markov models includes those
of Ryden [47] and Elliott et.al. [18]. Ryden in [47] considered a recursive
estimator for general hidden Markov models based on the m-dimensional dis-
tribution of the observation process and proved that this estimator converges
to the set of stationary points of the corresponding Kullback-Leibler informa-
tion. Reference [18] contains extensive work in estimation and control for a
wide range of hidden Markov models. In [18], the reference probability method
which involves a probability measure change and the expectation maximization
algorithm was used to produce recursive estimator for parameter of hidden

Markov models. This reference also includes an extensive bibliography.

Although much work has been dedicated to parameter estimation for hidden
Markov models, only recently has the order estimation problem received some
attention. To estimate the order of a hidden Markov model, the classical
maximum likelihood cannot be used, since increasing the size parameter will
automatically increase the likelihood. This is the typical behaviour of the
likelihood function when the parameter is structural, that is, the parameter

(usually integer valued) indexes the complexity of the model.

So far, the only technique that has been used to estimate the order of hidden
Markov models is the compensated likelihood estimation. This technique is
based on a compensation of the likelihood function. A compensator, decreasing
in size parameter K, is added to the maximum likelihood and the resulting
compensated likelihood is maximized with respect to K. Proper choice of the

compensator allows the strongly consistent estimation of the order.

The first contribution to the order estimation along these lines was made in

1991 by Baras and Finesso [3]. Using the compensated likelihood technique,



they proved the consistent estimation of the order for hidden Markov models

in which the observation process takes values on a finite set.

The second and also the last contribution was given by Ryden [46] in 1995. In
[46], the compensated likelihood was also used to estimate the order of general
hidden Markov models. Ryden proved that in the limit, the estimator which

is based on m-dimensional distribution does not under estimate the order.

Inspiring by the work of Finesso and Baras, this thesis is dedicated to solve the
problem of order estimation for general hidden Markov models by adapting the
procedure and techniques used in (3] and [34]. Under weaker conditions than
in [46], we will show that in the limit the estimator does not under estimate,

but also does not over estimate the order.

We conclude the introduction with a brief summary of the thesis. Chapter
1 contains literature research, the aim and a brief summary of the thesis.
Chapter 2 presents definitions, notations and basic results concerning general
hidden Markov models. In Chapter 3, the identifiability of general hidden
Markov models is derived from the identifiability of finite mixtures. Chapter
4 proves the consistent estimation of parameters of general hidden Markov
models, which generalizes the result of Leroux [34]. Finally, in Chapter 5,
using the compensated likelihood, we prove the consistent estimation of the
order for general hidden Markov models. The results of this chapter can be
seen as the extension of the results of Baras and Finesso [3], which hold for
hidden Markov models in which the observed process takes values in a finite

set, to general hidden Markov models.



Chapter 2

Hidden Markov Model

Fundamentals

The purpose of this chapter is to introduce hidden Markov models and to

present some definitions and basic results that will be used in the sequel.

In the first section, some definitions and standard properties of Markov chains
are presented. Even though, most of these definitions can be found in many
places, such as [25], [32] and [8], this section is necessary for completeness and

to make the thesis self-contained.

A hidden Markov model is formally defined in section 2.2 and an example 1s
given. In section 2.3, the nature of dependencies between the random variables
in a hidden Markov model is discussed. Using the results of section 2.3, the
finite dimensional joint distributions of the observed process are derived. So
the parameters which characterize a hidden Markov model can be analysed
in section 2.4. Such parameters will be referred to as a representation of the

model. Based on the laws of the observation processes, an equivalence relation



for representations of hidden Markov models is defined in section 2.5. For a
hidden Markov model, our main interest is to identify the simplest representa-
tion which is equivalent to the model’s representation. Such representation will
be called a true parameter of the hidden Markov model. Section 2.6 presents

the characteristics of this true parameter.

In the last section, a (strictly) stationary hidden Markov model is discussed.
Here, we build a past history and give sufficient conditions for the ergodicity

of the observed process.

2.1 Markov Chains

Let {X; : t € N} be a sequence of random variables defined on a probability
space (2, F, P), taking values in a finite set § = {1,..., K}. {X.} is said to

be a Markov chain if it satisfies
P(Xai1 = tnp1| X1 = 41,0, Xy = 1) = P(Xp41 = ng1|Xn = in), (2.1)
for all 4;,...,4n41 € § and n € N. Property (2.1) is called the Markov

property.

Let m < n, then by (2.1),

PXnpi=tn|Xi=11,..., Xon = i)
K K
ES z Z P(Xm+1 =im+1,...,Xn+1=in+1|X1:'i1,...,Xm=im)
Imp1=1 in=1
K K
Z "'Z{P(Xm+1=im+1|X1=7:1,...,Xm=im)

':m+l=1 in=1

l

XP(Xm+2 = im+2lX1 e il, .. ,Xm+1 . im+1)

X oo X P(Xpg1 = dnga| X =g, .., X = i) }

K K
= Y > {P(Xm+1 =t 1| Xm = 1) P(Xmi2 = tmt2) Xm1 = tmpa)

im-l-l =1 ‘l‘.n =1



Xee X P(Xn+1 = in—{—lan = Zn)}
K K
= Z Z P(Xm+1=im+la-"1Xn+l:'iﬂ-i-lle:i‘m)

im+1 =1 in=1

— P(Xn+1 - i’n+l|X‘m - 7’m)- (2.2)

So the Markov property (2.1) is equivalent with (2.2).

Assume that P(X,1 = j|X,, = 1) depends only on (4, j) and not on n. Let
a,-,-:P(X,H_l =]IX,,=Z), i,j=1,2,...,K, (23)

then q; are called the transition probabilities from state i to state j and the
K x K matrix A defined by

A = (o), (2.4)
is called the transition probability matriz of the Markov chain {X,}. Notice

that A satisfies
OSQ,'J'S]., ‘L,]Il,,K

Ef:laij=1, i=1,...,K.

Thus A is a stochastic matriz.

Let
= P(X; =1), i=1,....K (2.5)

and

T = (7(',;). (26)

The 1 x K-matrix 7 is called the initial probability distribution of the Markov
chain {X;}. Notice that = satisfies

K
0<m<1, i=1...,K and Y m=1.
=1

By (2.1), (2.3), (2.4), (2.5) and (2.6),

P(Xl‘—':il,...,Xn:in) = P(X1 =11)P(X2212|X1:ZI)



X“'XP(X”-”—"I:,;IX _1'—'1:"_1)

= Ty - (S ZRR LN ¢ 7SN S (27)

Then by (2.7),

K K
P(Xn’:’L) =S Z"‘.Z P(Xl:il,...,Xn_l'———in_l,X":’in)

‘i]_:l ln_l‘:l
K K
= Z e Z ﬂ-il * ail)'.z ne .aiﬂ—lyi
=1 in-1=1
—1
= wA" €, (28)

where A™ = AA---A and ¢; = (0,...,0,1,0,...,0)T. Hence, it can be con-
cluded that the probability distribution of the Markov chain { X,} is completely

determined by the initial probability 7 and the transition probability matrix
A.

If the initial probability distribution 7 satisfies
TA =, (2.9)

then 7 is called a stationary probability distribution with respect to A. By (2.8)
and (2.9), for every n € IN,
P(X,=1i) = mA" g

= TE€;

implying
P(Xm+1 =11,..- 7Xm+n = Zn) e P(Xm+l . Z1) : P(Xm+2 = i2IXm+1 = 7‘1)
XX P(Xm+n = inIXm-i-n.—l = in-l)

=My Oy Ry iy,

= P(Xi=i1,...,Xn=1in),



for m € N and 4,,...,i, € §. So in this case, the Markov chain {X.} is
(strictly) stationary.

To classify the states of the Markov chain {X,}, define a communication re-
lation ”+” as follows. A state 7 is said to be accessible or reachable from a
state i, denoted as ¢ — j, if there is an integer n, 0 < n < K, such that the
(,7) entry of A" is positive. If i — j and § — 4, then ¢ and j are said to

communicate with each other, denoted as ¢ < j.

For each state ¢, define a communicating class
C(t)={j€8 :ie j}.

Since relation <> is an equivalence relation, then the communicating classes
satisfy :

(a). For every state ¢, i € C(7).

(b). If j € C(4), then i € C(j).

(c). For any state ¢ and j, either C(1) = C(5) ot C(:)NC(5) =0

Thus the state space S can be partitioned into these classes.

A Markov chain is said to be irreducible, if all states communicate with each

other. So in this case, the Markov chain has only one communicating class.

A communicating class C is called ergodic if

Naj=1, VieC. (2.10)

jeC

The individual states in an ergodic class are also called ergodic.

A communicating class C is called transient, if there is : € C, such that

S a< L. (2.11)

jEC

The individual states in a transient class are also called transient.



To identify the transition probability matrix within a communicating class, the
irreducibility of square matrix is introduced. An n x n-matrix B = (0;;) is said
to be irreducible, if there is a permutation of indices o, such that the matrix

B= (Bij)a with Bij = Ba(i),e(j), has form

~ Cc 0
B
D FE

where C and FE are [ x [ and m X m matrices respectively, and [ + m = n.

Let C, be an ergodic class and n, be the number of ergodic states in C,. Let
A, be the n, x n. transition probability matrix within C,. Then by (2.10) A.
is a stochastic matrix. Moreover, A, is irreducible, since if A, is reducible, then
by some permutation o, A. can be reduced to the form

~ B, 0

A, , (2.12)
Ce D.

where B, and D, are k. x k. and [, x [, matrices respectively, with k. + . = n..

But from (2.12), it can be seen that every state in {o(1),...,0(k.)} does not
communicate with every state in {o (k. +1),...,0(n.)}, contradicting with the

fact that C. is a communicating class. Therefore, A, must not be reducible.

Let C, be a transient class and n; be the number of transient states in C;. Let
A; be the n; x n, transition probability matrix within C;. Then by (2.11), A,

is a substochastic matrix, that is, its individual row sums are < 1.

The next lemma shows the relation between irreducible Markov chains and

irreducible transition probability matrices.

Lemma 2.1.1 Let {X;} be a Markov chain with a K x K transition probability
matriz A. Then {X,} is irreducible if and only if A is irreducible.

10 -



Proof :

Let {X,} be a Markov chain with a K x K transition probability matrix A,
If {X,} is irreducible, then it consists of a single communicating class C' and
the transition probablity matrix within C is A. Since A is a stochastic matrix,
then C is an ergodic class. From the ergodicity of C, the irreducibility of A

follows.

On the otherhand, if A is irreducible, then from [24], page 63, for every
1 < i,j < K, there is an integer n, 0 < n < K, such that the (7,7) entry
of A™ is positive. This means that every state communicates with each other.

So the chain {X,} is irreducible. ]

Let {X,} be a Markov chain with a K x K transition probability matrix A. Let
K. and K, be the number of ergodic states and transient states respectively.
In general, after a suitable permutation of indices, the transition probability

matrix A can be written in the block form as

- B 0
A
C D

|

where B is a K, x K,-stochastic matrix and D is a K; x K;-substochastic

matrix.

The block D describes the transient — transient movements in the chain. For

each class of transient states, at least one row in D will have sum < 1.

The K; x K.-block C describes the transient — ergodic movements in the chain.
For each class of transient states, at least one row in C' will have a non-zero

entry.

Finally, The K. x K.-block B describes the movements within each ergodic

class in the chain. Suppose that the chain has e ergodic classes. Since it is

11 =



impossible to leave an ergodic class, B has the form,

B, 0 0
0 B, 0
0 O B,

where B; is the transition matrix within the i-th ergodic class. For each i, B;

is an irreducible stochastic matrix.

The following lemma shows the relation between the communicating classes

and the stationary probability distributions.

Lemma 2.1.2 Let {X;} be a Markov chain with a K x K transition probability
matriz A. Let

K
S = {r=(m) : m>0,i=1,...,K, Y m=1 nA=m}
i=1

St = {nmeS :m>0,i=1,...,K}
s° = S-S5t

(a). If {X.} is irreducible, then S = ST and S° = 0.

(b). If {X;} has e communicating classes, with 2 < e < K which all are
ergodic, then ST # 0 and S° # 0.

(c). If {X;} has k communicating classes, with 2 < k < K, where e of them

are ergodic, 1 < e < k, and t of them are transient, e +t = k, then

S =38°and ST =0.

Proof :
To prove (a), let {X,} be an irreducible Markov chain. Suppose thereis 7 € S°.



Let k be the number of non-zero m;. Without loss of generality, suppose that

m > 0, for i=1,...,k
m; =0, for i=k+1,...,K.

As mA = 7, then

a;; =0, for i=1,...

B 0
A= :

where B is a k x k-matrix and D is a (K — k) x (K — k)-matrix. So A is

Thus A has form

reducible, contradicting with the fact that A is irreducible by Lemma 2.1.1.
Therefore, it must be $° = @ and hence S = S*.

To prove (b), let {X;} be a Markov chain having e communicating classes with

2 < e < K, which all are ergodic. Then without loss of generality, A is of the

form
B, 0 --- 0
0 B, --- 0
A: - .2 . )
0 0 --- B,

where B; is the transition matrix within the i-th ergodic class and it is an

irreducible stochastic matrix.

Let 7* be an 1 X e;-matrix, where e; is the number of ergodic states in B;, such

that fori =1,...,¢,

and



Let

3
Il
~~
3

”
o
=
:—/

then

= («4,0,...,0)
= 7.

So # € S° and hence S° # 0.

Let a;,7 =1,...,e be any real numbers such that

a; >0, 1=1,...,e and Za,-zl.

i=1
Let
P 1 2 e
= (a1m, 0,7, ..., a.7°),
then
m > 0, for :=1,...,K
and
K e € i
~ g
o= D
i=1 i=1j=1
e
- Y
i=1
= 1.
Moreover,
FA = (a17'By,a;mBy,...,a.n°B,)
1 2 €
= (a7, ay7", ..., q.7°)
= 7'?,

14



then # € S* and hence St # (.

To prove (c), let {X;} be a Markov chain having k£ communicating classes,
2 < k < K, where e of them are ergodic, 1 < e < k, and ¢ of them are
transient, e + t = k. Let K. and K; be the number of ergodic states and
transient states of {X;} respectively. Without loss of generality, assume that

the matrix transition A is of the form

B 0
A= ,
C D
where B is a K, x K, stochastic matrix, D is a K; x K; substochastic matrix
and C is a K, x K, matrix, C # 0.
Let 7 = (m1,...,mk) € S, since

TA =m,

then

or
BT - IK; CT 1T1 0
- , (2.13)
0 DT - IK, 71'2 0
where m' = (my,...,7g.) and 72 = (7k,41,-..,7k)- By (2.13), 7' and =
satisfy
(BT — I )n* + CTx* = 0 (2.14)
(DT — Ix,)7* = 0. (2.15)

By [32], page 44, DT — I, is invertible, so the only solution for (2.15) is 7 = 0.
So m must have form m = (#*,0), where n! satisfy (2.14). This means that

7 € S°. Therefore S C S°, implying S = S° and ST = 0. m

15 -



2.2 Hidden Markov Models

Let {X; : t € N} be a finite state Markov chain defined on a probability space
(Q,F, P). Suppose that {X;} is not observed directly, but rather there is an
observation process {Y; : t € N} defined on (Q, F, P). Then consequently, the
Markov chain is said to be hidden in the observations. A pair of stochastic
processes {(X;,Y;) : t € N} is called a hidden Markov model. Precisely,
according to [47], a hidden Markov model is formally defined as follows.

Definition 2.2.1 A pair of discrete time stochastic processes {(X,Y:) : t €
N} defined on a probability space (U, F, P) and taking values in a set S x Y,
is said to be a hidden Markov model (HMM), if it satisfies the following

conditions:

(a). {X:} is a finite state Markov chain.

(b). Given {X,}, {Y:} is a sequence of conditionally independent random vari-

ables.
(c). The conditional distribution of Y, depends on {X.,} only through X,.

Assume that the Markov chain {X,} is not observable. The cardinality K
of S, will be called the size of the hidden Markov model.

The following is an example of a hidden Markov model which is adapted from

[18].

Example 2.2.2 Let {X;} be a Markov chain defined on a probability space
(Q, F, P) and taking values on S = {1,..., K}. The observed process {Y;} is
defined by

Y: = o(Xy) + o (Xp)wy, te N, (2.16)

16 -



where ¢ and o are real valued functions and positive real valued function on
S respectively, and {w;} is a sequence of N(0,1) independent, identically dis-

tributed (i.i.d.) random variables.

Since {w;} is a sequence of N(0,1) i.i.d. random variables, then given {X,},
{Y3} is a sequence of independent random variables. From (2.16), it is clear
that Y; is a function of X, only, then by Definition 2.2.1, {(X}, Y:)} is a hidden

Markov model.

Notice that fory € Y and i € S,

PY;<y|Xi=1i) = Pci+ow <y)
= Plow, <y—¢)

- f_ ‘: $i(2) dz, (2.17)

where ¢; = ¢(%), 0; = (i) and

1 v ik ’
¢i(z) = - (2) . (2.18)

From (2.17) and (2.18), the conditional density of Y; given X; =4 is ¢;(- — c;),
which does not depend on t.

2.3 Dependencies between Random Variables

This section shows the nature of dependencies between the random variables

in a hidden Markov model.

Let {(X:Y:)} be a hidden Markov model defined on a probability space
(Q, F, P), where the Markov chain {X,} taking values in a set § = {1,..., K}
and the observed process {Y;} taking values on ). Throughout this thesis,

17 -



we will assume that Y; is scalar valued and without loss of generality, we will

suppose that ) = R. The generalization to vector case is straight forward.

Assume that the conditional density of Y; given X; = ¢, for all t € N and
t=1,...,K do not depend on ¢, and are dominated by a o-finite measure p.
The conditional density of Y; given X, = i, with respect to p, will be denoted
by p(-|¢). This means that for allt € N andi=1,...,K,

P <ylXe=i)= [ plali)du(z).

Notation 2.3.1 Here and in the sequel, p will be used as a generic symbol for
a probability density function. If there is no confusion, for random variables
U and V defined on (2, F, P), the joint density function of U and V, py v (-, -)
will be denoted by p(-,-) and the conditional density function of U given V,
puv(:|-) will simply be denoted by p(-|-).

Let U and V be any random variables defined on (£}, F, P). Notice that the
joint density function of U and V and the conditional density function of U

given V can be expressed as

p(u,2) = p(U(w),V(w))
= p(U,V)(w)

pup) = p(UW)V(w))

p(UV)(w),

where U(w) = u and V(w) = v, for some w € Q.

First we prove some general rules for conditional densities.

Lemma 2.3.2 Let U, V and W be any random variables defined on a proba-
bility space (2, F, P), then



p(UIV) - p(W|U,V)

(a). p(U|V,W) = oWV
_pU,viw)
(b). p(UIV,W) = V)

(¢) p(U,VIW) = p(VIW) - p(U|V, W).

Proof :
The conditional probability density function of U given V is defined by

P(u,v)
uly) = P%Y) 2.19
p(ulv) = =03 (2.19)
for all u and for all v such that p(v) > 0. By equation (2.19), we have
p(U, V)
Ulv) = 3 2.20
) = 20X (220
Analog with (2.20),
p(U,V, W)
pwiv,v) = BHLY) 9.21
p(U,V, W)
Ulv,w) = . 9.22

By equations (2.20), (2.21) and (2.22),

p(U,V) p(U,V,W)
pUlV)-p(WIU,V) _ p(V)  p(U,V)
p(W|V) p(V,W)
p(V)
p(U,V,W)
p(V,W)
= p(U|V, W),

p(U,V,W)

pUVIW) _  p(W)
p(VIW) p(V, W)
p(W)
p(U,V,W)
p(V, W)
= p(UlV,W),




and

p(V, W) . p(U,V,W)
p(W)  p(V,W)
p(U,V,W)
p(W)

p(VIW)-p(UlV,W) =

So the lemma is proved.

Using the general rules from Lemma 2.3.2, we prove the following lemmas which

describe the nature of dependencies between random variables in the hidden

Markov model.

Notation 2.3.3 For convenience, sometimes X,,,..., X, and its realizations

Tm,---,T, Will be abbreviated X} and 2], respectively. Similar notations are

also applied for the {Y;} process and its realizations.

Lemma 2.3.4 Let 1 <m <t<n.
(a). P(Xt+1,Yt+llX:erf.) = p(Xev1, Yera| Xe)-
(b) p(Xh }/tIth—Ha ]/t:-l) == p(Xt’ KIXH—I)'

Proof :
By the third part of Lemma 2.3.2,

P(Xer1, Yeru| X, Vo) = (X1 | X0, Vo) - p(Yea | X0, V).

m) m ml - m m I m

By the first part of Lemma 2.3.2 and the Markov property,

X1 XY p(YE|X1EH
p(Xom Xt v2) = PXenlXm) P [X07)

p(YLIXE)
P(Xt+1|Xt) : P(Y,ﬁlxﬁl)
p(YiIXE) '

20

(2.23)

(2.24)



Also by the first part of Lemma 2.3.2 and condition (c) of Definition 2.2.1,

p(Yera | X5) - p(YEIXE, Yea)
p(YLIXE)
p(Yera| Xepa) - p(XGH, Y
p(YEIXER) - p(XE1, Yiia)
(Ve[ Xeqa) - p(YH XER)
p(YEIXER) - p(Yeua | XEHY)
p(Yer1| Xeqa) - (VR XEH)
p(YEIXE) - p(Yigr| Xev1)
p(yt+1|Xt+l)
p(YEIXEY)

From (2.23), (2.24), (2.25) and conditions (b) and (¢) of Definition 2.2.1,

P(XerslX) - (YA | X
p(YEIXE)
= p(Xt+1lXt) 'P(Yt+1 ,Xt+1)

. P(Xt+1, Yt+1|Xt)-

p(Yen| X7, Y) =

m

(2.25)

P(Xey1, Yeur| X5, YY) =

The proof for (b) is similar using the first part of Lemma 2.3.2, the Markov
property and conditions (b) and (c) of Definition 2.2.1. ]

Corollary 2.3.5 Let1 <m <t < n.
(a). p(Xer1| X5, Y,n) = p(Xera| Xe).
(b)- p(Yt+1|X,t,.,Y,f.) = P(Yt+1|Xt)-
(c). p(XelXPi1, Vi) = P(Xe) Xita)-
(). p(Yel X741, Vi) = p(Ye| Xera)-

Proof :
For (a), using the first part of Lemma 2.3.4,

p(zeri|zh, vt) = / P(Tet1, Yer1|Th,, Yh) Ait(Yer1)

—00

. / oop(fbtﬂ, yt+1|$t) dﬂ(ytﬂ)

= p(zeralz), (2.26)
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which gives

P(Xt+1|Xlt Yt) = p(Xt+1|Xt)'

m? T m

The proofs for (b), (c¢) and (d) are similar using Lemma 2.3.4. |

Lemma 2.3.6 Let 1 <m<t<n.
(a). p(Xt+11Yt+1|X1tn7Y1f1+l) = p(Xt41, Vi1 | Xe).
(b)' p(Xt,K|X{'+1,Y;1;1) = p(Xt,YtIXt+1)-

Proof :

For (a), by the first part of Lemma 2.3.2, Lemma 2.3.4 and the third part of
Corollary 2.3.5,

P(Xer1, Yerr| X0 Y1) = P(Xew, Yer1| Xom, Xpni1, Yooi1)
p(Xi+17 }/H-l |X:n+17 Y1fz+1) : p(Xle:n+-l}17 Yf:lj-l'll)
P X | X1, Vig)
P( X1, Yo [ Xe) - p(Xom| Xemta)
P(Xm|Ximt1)
= p(Xe+1, Yer1|Xs)-

The proof for (b) is similar using the first part of Lemma 2.3.2, Lemma 2.3.4
and Corollary 2.3.5. |

Lemma 2.3.7 Let1 <m <t<n.
(a), P(th+1a K’lllemY,f,) e P(Xt"+1an.11'Xt)-
(b} p(Xrth::Ith-h},t:—l) &= p(an,YyilXt+1)

Proof :
For (a), using the third part of Lemma 2.3.2 and the first parts of Lemma 2.3.4
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and Lemma 2.3.6,

P(X0, il X, Vi)

m? - m

= p(Kern, Yena | XE, YA)p (Ko, Yeral XEH, VP - -p(Xo, Val X0, YY)
= P(Xt+1aYt+l|Xt)P(Xt+2aYt+2|Xt+1) . -p(Xn,Yan —1)
= p(Xer1, Yerr | Xe)p(Xewa, Yego| XiH, Yey) - - p( X, Ya | X771, YT

= P(th+1: }/t’—{l-l |Xt)

The proof for (b) is similar using the third part of Lemma 2.3.2 and the second
parts of Lemma 2.3.4 and Lemma 2.3.6. [ |

Lemma 2.3.8 Let 1 < k,l <t <m,n.
(a). p(Xrl-l)Y;:—llet)}/lt) = p(Xzil—l’}/tg—ll‘Xt)'
(b)- P(Xlt) Ylt|Xt'$1aYt11) = P(Xltchzt|Xt+1)-

Proof :
For (a), let 1 < k,I,< t < m,n and suppose that k < ! and m < n, then by
the first part of Lemma 2.3.7

P(E 1, Y |0, U1)
- p(xia 1:;'_:_1, ylt7 y?+1)

p(mi,ylt)
X e S S S PR s Yo Y ) AR (Yn) - - A1)
- p(z%, 91)
Vet Lanmt Lo L o0 P(€R1s YR 1K YR)P(h, YE)dp(yr) - -dis(yi—1)
- p(zh, yi)
. me“:l' . 'Ef;:l T e p(‘c?.q.uy&.]l"’t)p(xia Yi)dp(yr): - -dp(yi—1)
B p(zk, yi)
. p(mﬂl,y?+1|mt)p(mi,yf)
B p(zi, 9f)
= P(wﬁvy&ﬂ“’t)- (2-27)



The proofs for the other possibilities of k and ! are similar. So from (2.27), (a)

follows.

The proof for (b) is similar using the second part of Lemma 2.3.7. O

Corollary 2.3.9 Let 1 <k, <t<m,n.
(a). p(XT1XE, YY) = p(X334 | Xe).

(6). p(Yi41l X5, ¥)') = p(Y34 | Xe).

(c). p(XE| X1, Vi) = p(Xi|Xita)-

(d). p(Y/ | X311, Vi) = p(Y | Xera).

Proof :
This lemma is a direct consequence of Lemma 2.3.8 which is obtained by inte-

grating part (a) and (b) of Lemma 2.3.8 with respect to « and y. ]

Corollary 2.3.10 Let 1 < k < t, then

p(Ye| X, i) = p(Yal X).

Proof :
By the first part of Lemma 2.3.2 and the third part of Corollary 2.3.9,

p(Ye|Xy) - p(Yi )IXe, Ye)
(Y Xe)
p(YalXy) - (Y )1 Xe)
p(Ye X0
p(Yel Xe).

p(Yt‘Xt1Yz_l) =
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Lemma 2.3.11
(a). If1 <k <l<t<m,n, then p(X7'|X;, Y1) = p(XM X, Yity)-

(b). If 1 <1<t <m< ng,ny, then p(XHX™,Y™) = p(XHXm, Y™ 1).

Proof :

For(a), by the first part of Lemma 2.3.8, the second parts of Corollary 2.3.9
and Lemma 2.3.2,

mid oy _ P(Eher, Y1)
p(zf |y, 1) T,
p(:n;ﬂm;n)y’l’yl?{-l)
p(xk, ¥, 95 )
£+1=1‘ : 'Eg_lﬂ P(wia Zry1, yi’ szfH)
P}, Y1, UPy 1)
=t T = P(ET, Uik, 1)
P(Yfleh, v1)
f,+1=1‘ : 'Zf,-(,_1=1 P(‘Eﬁlayﬁﬂxl)
P(yln+1|xl)
p(zzn’ylffl-l'xl)
P(yln+1|“"l)
= p(a} |25 Y)-

Thus (a) follows.

- The proof for (b) is similar, using the second part of Lemma 2.3.8, the last
part of Corollary 2.3.9 and the second part of Lemma 2.3.2. |

2.4 Representations of Hidden Markov Models

The aim of this section is to find parameters which determine the characteristics

of a hidden Markov model.



Since the Markov chain {X;} in a hidden Markov model {(X;,Y:)} is not ob-
servable, then inference concerning the hidden Markov model has to be based
on the information of {Y;} alone. By knowing the finite dimensional joint dis-
tributions of {Y;}, parameters which characterize the hidden Markov model

can then be analysed.

Let {(Xt,Y:)} be a hidden Markov model defined on the probability space
(Q, F, P), taking values on § x ), where § = {1,...,K} and Y = R. Let
A = (oyj) be the transition probability matrix and m = (m;) be the initial
probability distribution of the Markov chain {X;}. Assume for i =,..., K,
the conditional densities of Y; given X; = ¢ with respect to the measure g,
p(-|7), belong to the same family F, where F = {f(-|f) : 0 € O} is a family
of densities on a Euclidean space with respect to the measure y, indexed by

0 € @. This means that foreach i =1,... K,
p(+|s) = £(-, 6:),

for some 6; € ©.

Forye Y andi,j=1,...,K, define

m,;j(y) =04 - f(y70j)‘

For every y € Y, let M(y) be the K x K-matrix defined by

M(y) = (my;(y))-

Then
M(y)=A-B(y), ye€D, (2.28)
where
f(y’ 91) 0 0 --- 0
0 ,6,) 0 --. 0
B(y) _ ] f(y- 2) - ‘
0 0 0 --- f(y,0k)



Observe that

[ M@ anw) = ([ ms@)duw)
(/_0; @i f(y,9;) d#(y))
= (o)
= A. (2.29)

|

Lemma 2.4.1 For each n € N, the n-dimensional joint density fuction of
Y1,Ys,...,Y, s

p(Y1,Ys,...,Ya) =7B(Y1)M(Y3) - - - M(Yn)e, (2.30)

where e = (1,1,1,...,1)T.

Proof :
By Lemma 2.3.2, Corollary 2.3.5, Lemma 2.3.6 and Lemma 2.3.7, the joint

density function of Y1,Y5,...,Y, can be expressed as,
K K
p(y17y21 S ,yn,) = Z tet Z p(mlath%y% E 7$n1yn)
z1=1 zn=1
K K
= Y3 {p(@1) - p(yal=a)
z1=1 zn=1
x p(ez|es, v1) - p(y2|27, y1)
XX p(@alet ™, u1 ") - plyalel, i)}
K K

= Y. {p(ml) - p(yalz1)

21=1 z5=1
X p(za|z1) - p(y2lz2)
XX p(mnlxn——l) N p(ynlq’.”)}
K K
e (PO = e )
21=1 zn=1
X P(X2 = $2|X1 = :Bl) : f(y%ecz)

Koo X P(X‘n = .’L'n'X 1= xﬂ—l) . f(ynaazn)}
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K

K n
= ZZ ey 'f(ylio’-\'—l)Hazt—hzz'f(yhezz)
t=2

z1=1 zp=1

= wB(y1)M(ys) - - - M(y,)e,

so the conclusion of the lemma follows. =

Corollary 2.4.2 If {X,} is a stationary Markov chain, then for eachn € N,

the n-dimensional joint density function of Y1,Y,,...,Y, 1s

p(Y1,Ye,... :Yﬂ) = WM(}/I)M(E) o M(ya)e.

Proof :
Since {X,} is a stationary Markov chain, then the initial probability distribu-

tion 7 satisfies

TA = A. (2.31)

By Lemma 2.4.1 and equation (2.31), for any n € IN, the n-dimensional joint
density function of Y;,Y3,...,Y, is

(N1, Ye, ..., Ya) = nB()M(Y2)--- M(Ya)e
= wAB(Y1)M(Ya)---M(Y,)e
= AMY)M(Y) - M(Yae.

Since fori1=1,..., K,
P(Xn=’l;)=1l’,' Vne N,

when {X,} is a stationary Markov chain, then using a similar proof as in
the proofs of Lemma 2.4.1 and Corollary 2.4.2, for any m,n € N, the n-

dimensional joint density function of Y,,,, Y t1, .-+, Ymmin—1 has the form

p(Ym, Ym+1, cey Ym+n—l) = WM(Ym)M(Ym+1) s M(Ym+n_1)e. (232)
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Equation (2.32) shows that the observation process {Y;} is a (strictly) station-
ary process. This implies the pair of stochastic processes {(X:,Y;)} is also

(strictly) stationary. So we have the following corollary.

Corollary 2.4.3 If {X,} is a stationary Markov chain, then the hidden Mar-
kov model {(X;,Y:)} is also stationary.

Lemma 2.4.4 For eachn € N, the conditional density function of Y1,Y,, ...,
Y, given X, =1, fori=1,...,K, is

p(Yh}/Za e aY'nIXl = 7') = GTB(Y]_)M(Yz) Tt M(Yn)ea

where eF = (0,...,0,1,0,...,0).

Proof :
Let n € N and i € {1,..., K}, then by Lemma 2.3.2, Corollary 2.3.5, Lemma
2.3.6 and Lemma 2.3.7, the conditional density function of Y3,Y3,...,Y, given

XlziiS

PR

)=
M=

p(y17$2,y27 T 7$nayn|i)
1

p(Y1, Y2, .-, Ynlt) =

&
9

1

et

Tn

I
™=

2% {p(ylli)P(-’ﬂzﬁ,yl)P('yzli,fz,%)

za=1 zn=1
X+ -x p(ali, 230, Y1 )P (Ynlir 25,477 }
K K
= 3 X {p@wli)p(zali)p(yalzs)
x9=1 zn=1

X+ X P(Zn|Tn-1)P(YnlTa)}
K

= i T Z {f(yl,H.-)P(Xz = 23| X1 = 1) f(y2,0a,)

z3=1 zn=1
XX P(Xn = xnIX -1 = xn—l)f(yﬂ’ 033")}
K K n
= Z T Z f('!/l) 0i)ai,a:z f(y2v0=2) H a“"t—l"‘f(yt’oz‘)

z2=1 Tn=1 t=3

= € B(y))M(y2) - -- M(yn)e.
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So the conclusion of the lemma follows. ]

From Lemma 2.4.1, it can be seen that the law of the hidden Markov model
{(X,Yy)} is completely specified by :

(a). The size K.

(b). The transition probability matrix A = (o;), satisfying

K
a;,-ZO, Zai_j——-l, 2,J‘—_1,,K
i=1
(c). The initial probability distribution 7 = (), satisfying
K
71','20, ’l:=1,...,K, Zﬂ’i:l'
i=1

(d). The vector § = (6;)7,0; € ©,7=1,..., K, which describes the conditional
densities of Y; given X; =¢,1=1,..., K.

Definition 2.4.5 Let
¢ = (K, A,7r,0).

The parameter ¢ is called a representation of the hidden Markov model

{(X:, Ye)}-

Thus, the hidden Markov model {(X;,Y;)} can be represented by a represen-
tation ¢ = (K, A, n,0).

On the otherhand, we can also generate a hidden Markov model {(X;,Y;)}
from a representation ¢ = (K, A, 7, 6), by choosing a Markov chain {X,} which
takes values on {1,..., K} and its law is determined by the K x K-transition
probability matrix A and the initial probability 7, and an observation process
{Y;} taking values on Y, where the density functions of Y; given X, = 1, for
1=1,..., K are determined by 6.



2.5 Equivalent Representations

Let ¢ = (K, A, n,0) and ¢ = (ff\, A, 7?,5) be two representations which respec-
tively generate hidden Markov models {(X,,Y;)} and {(X;,Y;)}. The {(X;,Y:)}
takes values on {1,...,K} x Y and {(X,Y:)} takes values on {1,..., K} x Y.
For any n € N, let py(-,---,-) and p;;(-, -+ -,-) be the n-dimensional joint den-
sity function of Yi,...Y, with respect to ¢ and ¢. Suppose that for every
neN,

po(Yer- -, Ya) = 5V, Vo).

Then {Y;} has the same law under ¢ and $. Since in hidden Markov models
{(X,,Y,)} and {(X,Y;)}, the Markov chains {X,} and {X;} are not observable
and we only observed the values of {Y;}, then theoretically, the hidden Markov
models {(X,Y;)} and {(X,,Y;)} are indistinguishable. In this case, it is said
that {(X,,Y:)} and {(X,Y:)} are equivalent. The representations ¢ and ¢ are

also said to be equivalent, and will be denoted as ¢ ~ $

For each K € N, define

Py = { ¢ : ¢=(K,A,n,0), where A, m and 0 satisfy :

1S
A=(C¥.'j), a,-ij, ZO[,‘jZI, ’i,j=1,...,K
j=1

K
7l'=(’ll','), 71','20, i=1,...,K, Zﬂ',‘z].

i=1

0= (6:)7, 6;,¢€0, i:l,...,K} (2.33)
and
= |J o« (2.34)
kKeIN -

The relation ~ is now defined on @ as follows.
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Definition 2.5.1 Let ¢,¢ € . Representations ¢ and ¢ are said to be equiv-

alent, denoted as

o~

¢~ ¢

if and only if for everyn € N,

pqﬁ(YVhY'Z, SRR )Yn) e pa(}fl,}/% S ’Yn)'
Remarks 2.5.2 It is clear that relation ~ forms an equivalence relation on ®.

Let ¢ = (K, A, m,0) € @k, then under ¢, Y1, ...,Y,, for any n, has joint density

function

K K n
p¢(y17 e 7yn) . Z ce Z Wzlf(yl')ozl) : H az:—l,ztf(yt)om)‘ (235)
t=2

z1=1 zn=1

Let o be any permutation of {1,2,..., K}. Define

o(4) = (t)ei)
o(m) = (7o)
a(8) = (6.9)"-

Let
0'((]5) . (K,U(A),O’(?F),O’(O)),

then o(¢) € Pk and easy to see from (2.35) that

Po(¥1s- -3 Yn) = Po@) W15 - - - Yn)-

implying ¢ ~ o(¢). So we have the following lemma.

Lemma 2.5.3 Let ¢ € Sy, then for every permutation o of {1,2,...,K},

o(¢) ~ ¢.



Lemma 2.5.4 Let ¢ = (K,A,m,0) € . If 0, =~,i=1,...,K, for some
v € O, then
¢ ~ (),

where ¢(v) = (1, A, %,6) € &y, with A= (1), 7 = (1) and 8 = (7).

Proof :
For anyn € N,
K K n
p¢(y17 e 7yn) = Z o Z 7r:e1f(yl,’Y) H a:u—l.z:f(yta 7)
z3=1 zn=1 t=1
= [ f(y")
=1
= pd’(“/)(yl) R ,yn)v
hence ¢ ~ ¢(7). l

Lemma 2.5.5 Let ¢ = (K, A,m,0) € Pk, where 7 is a stationary probability
distribution of A. Let N be the number of non-zero m;. Then there is ¢ =

(N,A,%,8) € ®y, such that :
(a). 7 >0, fori=1,...,N.
(b). ® is a stationary probability distribution of A.

(c) ¢~ .

Proof :
Let ¢ = (K, A,m,0) € $x, where m is a stationary probability distribution of
A. Let N be the number of non-zero m;. Without lost of generality, suppose

that
m; >0, fort=1,...,N

m =0, fori=N+1,...,K.



Since 7 satisfies

TA =7,

then
oy; =0, for 1=1,...,N and j=N+1,... K.

Thus A has form

f i v ax 0 a0 )
anNi1 - QNN 0 0
A=
ON+1,1 "t ON4I, N ON4IN+1 *°° ONt1LK
\ @x1 - QKN  OKNy1 Ok K )
Set
az] = az_71 l,] e 17 )N
7?1: = T, ?’:11 1N
0; = 6, 1=1,...,N
Let

A= (&), #=m@), 06=@)"

and 1 x K-matrix

Then it is clear that
7 > 0, for t=1...,N

and
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Let

fly,6) 0 - 0
~ 0 02) - 0
B(y) = . f(y: 2) . . , Tad
0 0 - f(y,0n)

and
M(y) = AB(y).
Take ¢ = (N, A, 7, 8), then ¢ € ¥ and it is clear that
Pg(Y1:--->Yn) = TM(y)M(y2)- - M(yn)e
= AM(y1)M(ys)--- M(yn)e
= pa(¥1,-- -, 4n),

implying ¢ ~ $ [ |

Next lemma gives sufficient conditions for representations to be equivalent.

The idea of this lemma comes from [22].

Lemma 2.5.6 Let ¢ = (K,A,7,0) € Pk and ¢ = (K, A, 7,0) € &5. If there
are K x K-matriz X and K x K-matriz Y, such that

o~

A = YAX (2.36)
XBly) = B@)X, W€y (2.37)
T = X
€ = Ye
XY = I,
then ¢ ~ .
Proof :

From (2.36) and (2.37), for every y € Y,

M(y) = AB(y)
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For any n € N,

p$(y11 e ’yn) =

Hence ¢ ~ $

= YAXB(y)
= YAB(y)X
= YM(y)X.

#B(y1) M (ys) - - M(yn)e
rXB(y))YM(y2)X -- Y M(y,)XYe
7B(y)) XY M(y)X --- Y M(y,)XYe
TB(y1) [ M (y2) - - - I M (yn) Ixce
#B(y1) M (yz) - -- M(yn)e

p¢(y1v RN 1yn)-

Lemma 2.5.7 Let ¢ = (K, A, ,0) € 8k and ¢ = (K, A, #,0) € ®p, where w

and T are stationary probability distributions of A and A respectively. If there

are K x K -matriz X and K x K-matriz Y, such that

M(y)
7

g
Xy

then ¢ ~ é.

= YM(y)X, Vye)y
= aX
= Ye

= Ig,

Remarks 2.5.8 Equation (2.38) implies A = Y AX.

Proof :
For any n € N,

p;;(yl, v ,yn) = ;’\rﬂ(yl)ﬁ(yZ) ‘v H(yn)g

36
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= TXYM(y))XYM(y2)X ---YM(ya)XYe
= mlgM(y ) IxM(ya)Ix - - IxM(yn)Ixe
= TM(y)M(y2)--- M(yn)e

= ps(¥1,---1Yn)-

Thus ¢ ~ ¢. m

Based on Lemma 2.5.6 and Lemma 2.5.7, we derive the following lemmas.

Lemma 2.5.9 For any K € N and ¢ € D, there is $ € Py, such that
¢~

Proof :
Let ¢ = (K, A,7,0) € Pg. Define a K x (K + 1)-matrix X and a (K +1) x K-

matrix Y respectively as follow

Ik 1 Oxk-11
T Ox_ '
X=( K—1 K1,2)1 - 1 (2.39)

Oik-1 a b

where a and b are any real numbers, such that a,b > 0 and a + b = 1. Notice
that
XY = Iy

and

é=Ye.

Let A = (&;;) be a (K + 1) x (K + 1)-matrix defined by

A = YAX
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( 1,1 T x1,K-1 a-aLK b- a1,k k

= @g-11 "' QK-_1Kk-1 O Qg 1K b- XK _1,K s (2-40)
g1 " K K- a- oK K b- UK K
\ @k1  Q@kk-1 G Oagk  b-agk )

It is clear that

a; >0, ij=1,... K+1
K+1

y a; =1, i=1,...,K+1.
Jj=1
Let @ = (#;) be a 1 x (K + 1)-matrix which is defined by
T = nX
= (7r1,...,7rK_1,a-7rK,b-7rK), (241)

then it is obvious that

7w >0, t=1,...,K+1 and Z*’fr,—zl.

=1

Let § = (8;) be a (K + 1) x 1-matrix which is defined by

-~

6 = Y6
- (917"',0K—1,0Ka0K)T (242)

and for y € Y, B(y) be a (K +1) x (K + 1)-diagonal matrix defined by

[ f(y,6) 0 - 0 0 )
0  f(y,6;) -~ 0O 0
B(y) = : : - : : (2.43)
0 0 - f(y,0x) O
Lo 0 - 0 f(y,6%) |

Notice that



XB(y)=B¥)X, Vyel.

Let ¢ = (K + 1,A,%, 67), then $ € ®x.1 and by Lemma 2.5.6, ¢ ~ ¢. i

From the proof of Lemma 2.5.9, for ¢ € @, there are infinitely many ¢ € & K41
depending on how a and b were chosen, such that ¢ ~ $ So we have the

following corollary.

Corollary 2.5.10 For ¢ € Pk, there are infinitely many $ € Py 1 such that
6~

Lemma 2.5.11 For any K € N and ¢ = (K,A,m,0) € Pk, where 7w is
a stationary probability distribution of A, then there is ¢ = (K + 1, A, #,0)
€ Dk such that :

(a). % is a stationary probability distribution of A.

(b). $ ~ ¢.

Proof :
Let ¢ = (K, A, m,0) € $, where 7 is a stationary probability distribution of
A. Let (Z = (K + 1,2, 7T, 5) € Pk, as in the proof of Lemma 2.5.9, hence
¢ ~ $ Since 7 is a stationary probability distribution of A, then

TA =,
implying

#A = TXYAX

== WIKAX

= wAX

= aX

Il
2



So 7 is a stationary probability distribution of A. [ |

Remarks 2.5.12 In Lemma 2.5.11, if m; > 0, fori =1,..., K, then by choos-

ing a,b > 0 in matrix X, we have #; > 0, fori =1,... K + 1.

Let ¢ = (K,A,7,0) € Pk, then by Lemma 2.4.4, the conditional density

function of Y1,...,Y,, given X; = 4, under ¢ is,
Pe(Y1,..., Yol X1 = 1) = ] BY1)M(Y2) - - M(Yy)e.
Define,

g6(Y1,...,Yn) = max py(Ys,...,Ya|X: =1).

1<i<K

Lemma 2.5.13 For any K € N and ¢ € Pk, there is $ € Pk .1, such that :
(a) 6~ 3.

(b). q¢(Y1,...,Yn)=q$(Y1,...,Yn), for every ne N.

Proof :
Let ¢ = (K,A,m,0) € k. Let ¢ = (K +1,A,#,0) € x4, as in the proof of
Lemma 2.5.9, then qg ~ ¢. Notice that from definition of X in (2.39),

e =elX, for i=1,... K—1. (2.44)
Therefore by (2.44) and Lemma 2.4.4, fori=1,..., K — 1,
pp(Ys,... Yol X1 =1) = &B(V)M(Y)-- M(Y,)e
= el XB(Y)YM(Yz)X -- - YM(Y,)XYe
= e, BY)XYM(Yo)X ---YM(Y,)XYe
= e BVi)IxgM(Yo)Ig-- - IxM(Y,)Ixe
= & BY))M(Y3)--- M(Y,)e
= pe(Ys,-.., Y| Xy =1) (2.45)

40



Since by (2.40), the K-th and K + 1-th rows of A are the same and 8y = 011,
then by Lemma 2.4.4,

p3(%s,..., Yal X1 = K)
K+1 K+1

= (Yl,gK) Z Z OéKz, (Yz, z,,)HOlzt 1Tt (Yt, a:',)

23—1 2n=1
K+1 K41

b f()/l’aK‘Fl) Z Z aK+1$2f(Y27 z2 Hazt 1,3¢f()/t’ 3:)

23-—1 2,.—1

= p3(Yy,... . YalXi = K +1). (2.46)
Also notice that for a,0 > 0anda+b=1,
aek + be%,, = ek X, (2.47)
then by (2.47) and Lemma 2.4.4,

apz(Y, ..., Yol X1 = K) + bp(Ya, ..., Yal X, = K + 1)
= @ B)M(Ys)--- M(Y,)e + bel B(Y)) M(Y) - - M(Y,)e
= (€% + %) B(Y)M(Y) - - - M(Y,)e
= R XB)YM(Y2)X ---YM(Y,)XYe
= exB(Y1)XYM(Y3)X ---YM(Y,)XYe
= exBW)IxM(Y2)Ig - - IxM(Y,)Ige
= exBY1)M(Y;)---M(Ya)e
= pp(Y1,..., Yul X1 = K). (2.48)

Since a,b > 0 and a + b = 1, then from (2.46) and (2.48),
2V Yal Xy = 1) = pp(Ys, .. YalXs = K),  fori=K,K +1. (2.49)

From (2.45) and (2.49),

96(Y1,-.., Ya) = 1122};{1’4’()/1, Yo Xy =1)
N 1<‘<K+1p¢(YI’ o Yo Xy =)
= q¢(YI, . 7Yn)
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By Lemma 2.5.9, we can define an order < in {$}.

Definition 2.5.14 Define an order < on {$x} by
Pk < 95, K,Le N,

if and only if for every ¢ € P, there is $ € @ such that ¢ ~ g;’;
As a consequence of Lemma 2.5.9, Lemma 2.5.15 follows.

Lemma 2.5.15 For every K € N,

QSK =< ¢K+1-

From Lemma 2.5.15, the families of hidden Markov models represented by

{®k} are nested families as shown in Figure 1.

451{3 P2

Figure 1.

2.6 A True Parameter

From section 2.5, it is known that representation, which generates the observed

process of a hidden Markov model, is not unique. Our main interest is to find
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the simplest one, that is, the one with minimum size. Such representation will
be called a true parameter. One of our task is to identify a true parameter and
its size. Therefore, the main aim of this section is to collect facts regarding the

true parameter for our purpose.

We begin this section with a formal definition of a true parameter.

Definition 2.6.1 Let {(X;,Y:)} be a hidden Markov model with representation
¢ €. Let ¢° = (K°,A° n°,0°) € b. The hidden Markov model {(X;,Y;)} is

called to have a true parameter ¢° and an order K°, if and only if

(a). ¢° ~ ¢.
(b). K° is minimum, that is, there is no ¢ € Ox, with K < K°, such that

¢~ ¢

A true parameter of a hidden Markov model {(X,Y¥;)} is not unique. By

Lemma 2.5.3, for every permutation o of {1,..., K°},
o(¢°) ~ ¢°.

So o(¢°) is also a true parameter of the hidden Markov model {(X;,Y;)}.

As a straight consequence of Definition 2.6.1, we have the following lemma.

Lemma 2.6.2 Let ¢° = (K°, A°,7°,0°) be a true parameter of a hidden Mar-
kov model {(X:,Y:)}. Then there is no ¢ € Pk, with K < K° such that

¢~ ¢°.

The next two lemmas show some properties of true parameter which generates

a stationary hidden Markov model.

43



Lemma 2.6.3 Let ¢° = (K°, A°,n°,0°) be a true parameter of a hidden Mar-
kov model {(X,,Y:)}. If n° is a stationary probability distribution of A°, then

m >0, fori=1,... K°.

1

Proof :

Let N° be the number of non-zero 77, then 1 < N° < K. If N° < K°, then by
Lemma 2.5.5, there is ¢ = (N°, A, 7,8) € @y, such that ¢ ~ ¢°, contradicting
with Lemma 2.6.2. Thus, it must be N° = K°. .

Lemma 2.6.4 Let ¢° = (K°, A%, 7°,0°) be a true parameter of a hidden Mar-
kov model {(X,,Y;)}, where #° is a stationary probability distribution of A°.
Let ¢ = (K, A,m,0) € $k, where ¢ ~ ¢° and N be the number of non-zero ;.

(a). If K = K°, then N = K°.

(b). If K > K°, then N > K®.

Proof :
Let ¢ = (K, A, m,0) € $k, where ¢ ~ ¢°. By Lemma 2.6.2,

K> K°.
_Let N be the number of non-zero =;, then
1< N<K.

Suppose that N < K°, since ¢ ~ ¢°, then = is a stationary probability distri-
bution of A. By Lemma 2.5.5, there is ¢ = (N, A,#,0) € ®y, such that ¢ ~ @,
implying é ~ ¢°, contradicting with Lemma 2.6.2. Thus, it must be

K°<N<K. (2.50)

If K = K°, then by (2.50), N = K°. If K > K°, then N > K. n
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Corollary 2.8.5 let ¢° = (K°, A°,7°,6°) be a true parameter of a hidden Mar-
kov model {(X,,Y;)}, where n° is a stationary probability distribution of A°.
Let ¢ = (K°, A, m,0) € ®yo. If ¢ ~ ¢°, then

m; > 0, for 1=1,... K°.

Proof :
This is part (a) of Lemma 2.6.4.

2.7 Stationary Hidden Markov Models

From Corollary 2.4.3, if the Markov chain of a hidden Markov model is station-
ary, then the observed process is also stationary. As a stationary process, the
observed process has several properties, the most important is ergodicity . The
ergodicity is essential for limit theorems which will be used later in Chapter
4. Therefore, finding sufficient conditions for the ergodicity of the observed

process will be the focus of this section.

Let {(X:Y:)} be a hidden Markov model defined on a probability space
(Q, F, P), taking values on 8§ x ), where § = {1,...,K} and ) = R.

Let A be the set of all realizations {(z¢,y:)} of the hidden Markov model
{(Xe,Y3)}. Let B, be the Borel o-field of A. For each t € IV, define mappings

—

XtZA—)S,
by

Xi(A) = 2
and

ﬁ:A—)y,
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by
?t(A) = U,

for X = {(2;,4:)} € A. For t € N, X,, Y, are coordinate projections on A.

The next lemma shows that there is a probability measure P defined on B, such
that the hidden Markov model {(X;,Y:)} and the pair of processes {(X;,¥;)}

have the same law.

Lemma 2.7.1 There exists a probability measure P defined on By such that
the pair of coordinate projections {(X:t,i}t)} and the hidden Markov model
{(Xt, Y1)} have the same law.

Proof :
The idea of the proof comes from [11], page 511.

The hidden Markov model {(X,,Y;)} is defined on the probability space
(Q,F, P). For each w € 1, let

Xt(w) = Iy teN
K(W) = Y, t € N'

For each k € N and distinct ¢,,...,t € N, let v, be the joint distribution
of Xyyyoo o, Xy Yoy - -+, Yy,

Vy,ti(A X B) = P{(Xy,, ..., Xy) € A, (Y, ..., Yy,) € B}, (2.51)

for A € S and B € By, where S;, and By, are the Borel o-field of §* and Y*

respectively.

Define a mapping
(:Q oA,
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by the requirement

X((W) = Xuw) = =

V(@) = Y(w) = u,

for w € 2 and t € N. Clearly,

Cre s (Xu()r - X)) € 4, TV, Y (V) € B}
= {we: Xu(l@)r - Xullw) € 4, (T (W), Fu C(@))) € B}
= {v €9 (Xu (@) X)) € A, (¥, (), , Ye, () € B)

€ F, (2.52)

if A € S, and B € Bg. Thus ( is measurable.

Define probability measure P = P¢~! on By, then from (2.51) and (2.52),

P{reA: (X (V)Xo (V) € 4, (Vo (V). -, ¥, (V) € B}
= PCH{AeA: (KW Xu(N) € A, (Ve (V). Ve (V) € B}
= Pl{w € Q: (Xy W), Xy () € 4, (Yy, (W), -, Ve, (w)) € B}

= Vi,.ts (A X B). (2.53)

The equation (2.53) shows that {(X,Y;)}, defined on (A, Bs, P) also has finite
dimensional distribution v, 4, . Thus {(X;,Y;)} and {(3(;, 17})} have the same

law. ]

Remarks 2.7.2 By Lemma 2.7.1, from now on, the hidden Markov model
{(X},Y;)} may be considered as the pair of coordinate projection processes

{(X;,Y:)}, defined on (A, By, P). For convenience, we will drop the tilde.

Suppose that the Markov chain {X,} is stationary, then by Corollary 2.4.3, the
hidden Markov model {(X;,Y;)} is also stationary. We want to build a past for
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the hidden Markov model {(X,,Y;) : t € N} without loosing its stationarity.
The problem is to find a pair of stochastic processes {(X,,Y:) : t € Z} such
that {(X;,Y;) :t € N} and {(X,,Y;) : t € N} have the same law.

Lemma 2.7.3 There is o stationary process {(X;,Y;)} indezed byt € Z, such
that {(X,Y;) :t € N} and {(X;,Y:) : t € N} have the same law.

Proof :
The proof follows from [2], page 21.

Let I = {ti,tz,...,te} € Z. For all r large enough, the integers I, =
{r +ti,r +t2,...,7 + t,} C N and the joint law of {Xe,Yy) : t € L} is
independent of r, since {(X,,Y;)} is stationary. Let II; be this law. The fam-
ily II; is consistent. Kolmogorov consistency theorem ([2], page 6) grants the
existence of the process {(X;,Y;)} indexed by Z, such that for all I as above,
II; is the joint law of {(X,,Y;) : t € I}. Clearly {(X,,¥;) : t € N} and
{(X¢,Y;) : t € N} have the same law. n

Remarks 2.7.4 Without loss of generality, by Lemma 2.7.3, now we have the
stationary hidden Markov model {(X,,Y;) : t € Z}, defined on the probability
space (A, By, P), where A is the set of realizations A = {(z¢,%:)}, By is the

Borel o-field of A and X}, Y; are coordinate projections defined on A.

If z = {2} is a real sequence, let Tz denote the shifted sequence {z,1}.
T is called the shift operator. A set A of real sequences is called shift invariant,
when Tz € A if and only if z € A. A stationary process Z = {Z,} is said to
be ergodic if

P(ZeAy=0 or 1,

whenever A is shift invariant.
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From [53], page 33, a stationary and irreducible Markov chain is ergodic. Based

on this, Leroux [34] derived the ergodicity of the observed process {Y;}.

Lemma 2.7.5 (Leroux [34]) If the Markov chain {X,} is stationary and

irreducible, then the observed process {Y:} is stationary and ergodic.

Proof :
Let A be a shift invariant set of sequences y = {y;} of possible realizations of

Y = {Y;}. It will be proved that

PYeA)=0 or 1

By the approximation theorem ([11], page 167), there is a subsequence {k'}

and cylinder set Ay having form
.Akl = {A c i & (Y_kI(A), N ,nI(A)) € szl}
. {)‘ €A: (y—k’a e 7yk’) € B2k’}a
where Baw € Baw, that is the Borel o-field of Y?*', such that Vk € N,

PY e AN Aw) <275 (2.54)

Since Y is stationary and A is invariant,
PY e AAAw) = P(T*Y e AA Ay)
= P(Y € AAT ™ A)
= P(Y € AAAy), (2.55)
where
A = Vi A
= {DeA:(¥u(N),...,Ya(N) € B}
= {)\ €EA: (yk:,... ,ygk:) € ng:}.

49 -



Let

then

AN A

and

AN A°

Hence,

AAA =

“n(nys)
QU UNG)

lim sup A°() Age

k! o0

AN (,ggc ,zj,)c
AN (kgl ,-Dk . ;1;,)
,g{ Qk (_A(—\ A

lim inf A AL .

(ANA)U (AN A)

= (ipiatan 4) U (imow 40 4

k'—eo

C (lim sup A[) .;1.'2,) U (lim sup A°() ﬁk.)
k'—co

= limsup ((.An -/Ii') U ('Ac n ‘Z"'))

k!—o0
= limsup (A A jk,) 3
k'—o00
From (2.54) and (2.55)
YPYeAAA) = Y P(Y e AA A
k=1 k=1
< Y2t
k=1
= 1,
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so by Borrel Cantelli’s Lemma,
0<P(Y e AAA) < P(Y €limsup AA Ay) =0,

implying
P(Y e AA A) =0. (2.57)

Since (2.57) holds, showing P(Y € A) =0 or 1, is equivalent with proving
that
P(Y € A) =0 or 1.

By definition, A = Mksj Ujsk Ajr, s0 A is in the tail o-field, that is, A is
contained in the o-field Fi = o(Y%, Yit1,...), for all k. Since Y; are condition-
ally independent given a realization z = {z,} of the underlying Markov chain

X = {X:}, then the zero-one law implies

P(Y € Alz)=0 or L.

Let
B={z:P(Y € Alz) =1},
80
P(Yy e A) = E[l,g]
= E[E{ly zle]]
= E[P(Y € Alz)]
= 0+1-P(X €B)
= P(XeB). (2.58)
But, B is invariant, as
P(Y € Alz) = P(TY € A|Tz)
= P(Y € A|Tz).
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Since the Markov chain {X,} is stationary and irreducible, then { X,} is ergodic,
implying
P(X€B)=0 or LI

Hence, by (2.58),
P(YecA)=0 or L
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Chapter 3

Identifiability

This chapter concentrates on studying the identifiability problem for hidden
Markov models. The aim of this chapter is to find conditions on parameters
A, m and 0 of a representation ¢ = (K, A,n,0), which is equivalent to the
true parameter ¢° = (K°, A°,7°,6°), such that parameters A, 7 and 6 can be

identified with parameters A°, 7° and 6°.

For convenience, this chapter will be divided into three sections. The first
section, section 3.1, explains the identifiability problem for hidden Markov
modlels and shows that this problem is similar to the identifiability problem
for finite mixtures. In section 3.2, we collect results regarding the identifiability
of finite mixtures. Finally, in the last section, using a slight modification, we
derive the identifiability of hidden Markov models from the identifiability of
finite mixtures. In this section, we also give the characteristics of the true

parameter and parameters which are equivalent to it.

53



3.1 The Identifiability problem

Let ¢° = (K°,A° 7°6°) be a true parameter of a hidden Markov model
{(X,,Y;)}. By Lemma 2.6.2, if ¢ € ®x and ¢ ~ ¢°, then K > K°. More-
over, by Lemma 2.5.9 and Lemma 2.5.3, there are infinitely many ¢ € &g,
with K > K, and at least finitely many ¢ € &k, with K = K°, such that

¢~ ¢°.

Let
T={¢e U & : 6~¢}

K>Ko°
For parameter estimation purposes, every ¢ € T must be identifiable. This

means that all parameters of ¢ can be identified with parameters of ¢°.

Let ¢ = (K°, A, m,0) € T. Since ¢ ~ ¢°, then by definition, for any n € N,
the n-dimensional joint density functions of Y3,...,Y, under ¢ and ¢° are the
same, that is,

Pee(Y1, - > Yn) = Po(¥15- -+ Un), 3.1)

for every (y1,.-.,Yn) € Y*. Consider a special case of (3.1), when n =1,

pge(y1) = po(¥1)
K° K°
Z 7 f(y,07) = E m:f (Y1, 0;). (3.2)
i=1 i=1
* From (3.2), we must be able to identify each (=;,6;), with (n2,67). In other

words, we must be able to show that for every ¢ = 1,...,K?, there is j,

1 < j < K°, such that

— 9 4 ]
=T and 0,-—0j,

which can be written in the implication form,

K° K° Vizl,.--Ko7 3]7IS]SK0
Yo mif(yn,6:) =D 77 f(31,67) =
=1 =1

such that m; = 7 and 6; = 65.
(3.3)



Consider the following example.

Example 3.1.1 Suppose that from the observation, Y; has a density function
as in Figure 2. Since we only observe the values of {Y;}, then there is no way

we can tell if the observation comes from

P(yl) = %U(_l’ 1) + %U(—373)
or

p(y1) = 3U(=3,1) + 3U(~1,3),

where U(a,b) is a uniform distribution with range (a,b).

ps(y1)

2
8

1
L 8 o——o0

Figure 2.

The Example 3.1.1 above, shows that not every family of densities satisfies
(3.3). Therefore, we have to find conditions on the family of densities F =
{f(-,6) : 8 € O}, so that (3.3) holds.

Later, it can be shown, when m; and #{ are positive for all i =1,..., K°, (3.3)
is a special case of identifiability criteria for finite mixtures. Using a slight
modification, we can apply identifiability criteria for finite mixtures, which
have already been established, to hidden Markov models, so it can be used to

identify the true parameter ¢°.
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3.2 Identifiability of Finite Mixtures

The purposes of this subsection are to collect results concerning identifiability
of finite mixtures which are scattered in several journals and books, and to

present them as coherent as possible for our use.

A good review of this subject can be found in [52], [20] and [37]. In particular,

[62] provides extensive references.

This section begins with a formal definition of mixture distributions which is

cited from [50].

Definition 3.2.1 Let F = {F(-,0) : 0 € B} be a family of one dimensional
distribution functions, taking values on Y, indexed by a point 8 in a Borel subset
B of Euclidean m-space R™, such that F(-,-) is measurable in Y x B. Let G
be any distribution function such that the measure ug induced by G assigns

measure 1 to B. Then

H(y) = [ F(4,0)duc(0) = [ F(y,0)dG6), yey  (39)

1s called a mizture distribution and G is called the mizing distribution.
Reference [20] gives a corresponding definition for a mixture density,

Definition 3.2.2 Let F = {f(-,6) : 0 € B} be a family of one dimensional
density functions, indezed by a point 0 in a Borel subset B of Euclidean m-
space R™, such that f(-,-) is measurable in Y x B. Let G be any distribution

function such that the measure pg induced by G assigns measure 1 to B. Then

hy) = [ F@,0)dua(0) = [ f(u,0)dG(6), veY  (35)

is called a mizture density and G is called the mizing distribution.
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Example 3.2.3 Let F be the family of uniform distribution functions U (a,b)
with range (a,b), where a < b. Let

G(a,b) = 3021 + 3812, a,b€R, a<b

)

where d(,4) is Dirac distribution of a point mass at (a,b). Then,

H(y) = [

Ula,b =1p(=- 1rr(_
{(a,b):a,beR ,a<b} (a, )dG(a’ b) 2U( 2’ 1) i 2U( 17 2)’ Yy € R

1s a mixture distribution.

Example 3.2.4 Let F be the family of Poisson density function f(-,6), where

e 99y
f(y,0) = s y=0,1,... and 6 € (0, 00).

Let
G(8) =€, 6 € (0, 00).

Then from the simple recurrence h(y) = 3h(y — 1), with ~(0) = 1,

oo _Bay
h(y):/ ey' -6_0d9=2_(3/+1)’ y:O,l,...
0 i

is a mixture density

From Definitions 3.2.1 and 3.2.2, it can be seen that a mixture distribution
and a mixture density can be derived from one another. Hence, it is enough
to consider mixture distributions only. However, the results that we have for

mixture distributions will also apply for mixture densities.

Let G denote the class of all such m-dimensional distribution functions G and
7 the induced class of mixtures H on F. Teicher [50] defined the identifiability
of H as follows.
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Definition 3.2.5 A cluss of mizture distributions H is said to be identifiable

if and only if the equality of two representations

[ Fw.0)dG(6) = [ F(y,0)d6(0), Vye

implies G = G.

Definition 3.2.1 given above is the general one, but most of our applications
are concerned with a special type of mixture. This type is generated by the
special case when G is discrete and assigns positive probability to only finite

number of points, as in the Example 3.2.3.

Definition 3.2.6 H is called a finite mizture if its mizing distribution G
or rather the corresponding measure g is discrete and assigns positive mass

to only a finite number of points in B. Thus the class H of finite miztures on
F is defined by
- N N
7{ = {H() M H(-) = ZC,'F(',Q;), C; > O,ZC; = 1, F(,H,) € f,N c N}
i=1 i=1

that is, H is the convez hull of F.

Remarks 3.2.7 In every expression of finite mixture
N
H(') = Z c':F('76l')1
i=1
01,...,0x are assumed to be distinct members of @. Thec;and 6;, 1 =1,...,N

will be called respectively the coeffients and support points of the finite mixture.

Applying Definition 3.2.5 to the class of finite mixtures, we have the identifi-
ability criteria for finite mixtures. The following formal definition states that
the class of finite mixtures # is identifiable if and only if all members of

are distinct.
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Definition 3.2.8 Let H be the class of finite miztures on F. H is tdentifi-
able if and only if

N N R
2 aF(0) =3 &F(.8)
i=1 i=1

implies N = N and for eachi=1,... N, there is 5,1 < j < N, such that

Ci = Ej and 0" = 03

Definition 3.2.8 can be stated in different way using Dirac distributions. To

show this, the following lemma is needed.

Lemma 3.2.9 Suppose that

N N
> cido, = ) &d;, (3.6)
=1 i=1

N
C,'ZO, izl,...,N, ZC,"—"].
i=1

N
¢ >0, i=1,...,N, Yea=1
=1

:;,0;,€0, ,i=1,...,N, j=1,....N

where 8¢ denotes the Dirac distribution of a point mass at 0.

(a). Suppose there arei,j, where1 <i < N and1 < j < N, such that 6; = [9;-.

Let D = {k : 6, = 6;} andﬁ:{k:@ezgj}, then chz Zﬁk.
keD keﬁ

(b). If ¢; > 0, for some i, 1 <i < N, then there is j, 1 < j < N, such that
6: = 0;.

(c). If c; > 0 and 6; are distinct, fori=1,...,N, then N > N and for every
t=1,...N, thereis j, 1 <j < N such that 6; =§j.

(d). If ¢; > 0 and 6; are distinct fori = 1,... N and N = N, then there

is a permautation o on {1,...,N} such that ¢; = Co(i) and 0; = 6,(,-), for

i=1,...,N.
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Proof :
To prove (a), suppose that there are 7,7, where 1 <4 < N and 1 < j < N,
such that 6; = ;. Let D = {k : 6 = 6;} and D = {k : 6), = 8,}. Let ( bea
smooth real function defined on @ such that :
1, if 6=,
¢(0) = _ = " (3.7)
0, if 6€({6y,...,08}U{Bs,...,05}) \ {6:}.
By (3.6) and (3.7),

N N
Y [ac@®) = 3 [[ac@)6,0)

N N "

Yoal(6e) = S @l

k=1 k=1
Sa = L& (38)
keD keD

For (b), let ¢; > 0, for some ¢, 1 < 1 < N. Suppose that 6; # [9}, for every
j=1,...,N, then by (3.8)

ch =O,

keD
implying ¢, = 0 for all £ € D. Since ¢ € D, then ¢; = 0, contradicting with

¢; > 0. Thus, there must be j, 1 < 5 < Jv, such that 6; = é;

For (c) and (d), suppose that ¢; > 0 and 6; are distinct, for i = 1,...,N. By
part (b), for every 1 =1,..., N, thereis j, 1 < j < N, such that

0; = 0;. (3.9)

Since 6; are all distinct for s = 1,..., N, then it must be N > N. If N = TV\,

the mapping 7 — j is bijective. Let o be the mapping and by (3.9),

0; = 0,(;), for i=1,...,N. (3.10)
By (3.8) and (3.10),

Ci = Co(i), for 1=1,...,N.

So the lemma is proved. [ |
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Lemma 3.2.10 Let H be the class of finite miztures on F. H is 1dentifiable
if and only if

N N R N N
ZC,’F(-,O,-) = Z’c]F(,B,) - N = N, Zci(gg‘ = ZE,(%\
i=1 i=1 i=1 =1

Proof :

To prove the lemma is enough to show that the necessary and sufficient condi-

tion for
N N
Z C.'(Yg'. = ZE,(S@:
i—=1 i—=1
where:
N N
¢, ¢; > 0, t=1,...,N, chzl, Z&-:l
i=1 i=1
0; are distinct for ¢=1,...,N
0; are distinct for = 1,... ,ﬁ,

is foreach i = 1,..., N, there is j, 1 < j < N such that ¢; = & and §; = éj_
The sufficient condition is obvious and the necessity follows from part (d) of

Lemma 3.2.9. -

The following theorem is the first result concerning the sufficient conditions of

the identifiability of finite mixtures.

-Theorem 3.2.11 (Teicher [50]) Let F = {F(-,0) : 6 € B} be a family of
one dimensional distribution functions, indezed by a point 6 in a Borel subset
B of Euclidean m-space R™ such that F(-,-) is measurable in R x B. Suppose

there exists a transform

M:Fw 6,

where ¢ is a real valued function defined on some Sy, such that M is linear and

injective. If there is a total ordering (<) of F such that F; < F, implies

(a‘)' S‘I’l C Sd’z;
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(b). The existence of some t; € Sy, (t; being independent of ¢;) such that :

. $a(t)
tllfﬁ ¢1(t)

then the class H of all finite miztures on JF is identifiable.

=0,

Proof :
Suppose there are two finite sets of elements of F, say F; = {F(-,6) : i =
1,...,N} and Fp = {F(-,8;) : j =1,..., N} such that

N N
> aF(y,6;) =) ¢F(y,6;), VyeR, (3.11)
=1

=1
where

N
0<e<l, i=1,..,N, Sea=1
i=1

Y
0<&<1, i=1,...,N, Yg=1.

i=1
Without loss of generality, index F; and F; such that for i < 7,
F(-,0;) < F(-,6;) and  F(.8) < F(-,8)).
If F'(-,6,) # F(-,8,), suppose without loss of generality that
F(-,0:) < F(-,6y),

then
F(.,6;) < F(-,8;), for j=1,...,N.

Apply the transform to (3.11). Then for t € T) = Sy, N {t : ¢1(t) # 0},

;Cﬁf’i(t) = ;AjAa(t)
Yot & &)
Cl+§c'¢1(t) B ,Ez:l T (t)
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Letting ¢ — t;, through values in T}, we have c¢; = 0, contradicting with the
fact that ¢; > 0. Thus

F(-,01) = F(-,6,)

and for any ¢ € Ty,

~

& 6i(t)
i _Cl)+2 ¢1(t) Jg Thi(t)

Again, letting ¢ — t;, through values in T}, we have ¢; = ;.

So now,

Zc,F(y,H)—Zc,F(y,O) Vy € R.

i=2

Repeating the same argument min(N, N ) times, we have
F(,6)=F(,6;) and =g,

fori=1,2,... ,min(N,JV).

If N £ N , without loss of generality assume N > N. Then

N
E C"F(y, 6,) = 0, Vy €ER.
i=N+1

Letting y — oo in the above equation, implies ¢; = 0, for i = N + 1,...,N,in

contradiction to the fact that ¢; > 0, for ¢ = N+ 1,...,N. Therefore

—

N=N, =& and F(-6)=F(,0),

fori=1,2,...,N. But F(-,6;) = F(-,8;) imply 6; = ;, for all i =1,2,...,N.
Then by definition # is identifiable. [ |

An important application of Theorem 3.2.11 is the identifiability of the class of
finite mixtures of one-dimensional normal distributions, the class of finite mix-
tures of one-dimensional gamma distributions and the class of finite mixtures

of one-dimensional Poisson distributions.
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Lemma 3.2.12 (Teicher [50]) The class of all finite miztures of one dimen-

sional normal distributions is identifiable.

Proof :
Let N' = {N(-,0,0%) : 0 € R, o > 0} be a family of normal distributions,

where N(-,6,0?) denotes a normal distribution with mean 6 and variance o?.

Let N(-,0,0%) € N and define its (Laplace) transform by

#(t,0,0%) = /oo N(y,0,0%) e dy

= _1(u=p)?

- / e 105 ety
—oo V2

= 3ot bt

’

where t € S, = (—o00, 00).

Order NV by
N1 = N(',GI,O?) < N(',Hz,ﬂg) = N2

if o0y>0 orif oy=0,; but 6; <6,

Let Ny = N(-,61,0%) and N, = N(-,05,02) in N such that N; < N, and
let ¢1(-,61,07) and (-, 602,0%) be their transforms respectively. Sy, = S,, =
(—o0,00). Take t; = oco. If 07 > 03, then

a(t)

(az —zrz)t2
{_2_21__(02 —01)t}

lim = lim e =0
t—o0 ¢1 (t) t—oo ’
since
{ (trzz —4712)1z }
lime ? =0
t—oo

If 0y = 03 and 6, < 6,, then

lim 920) _ jim et-2-000 _ g
t—oo ¢1 (t) t—o0

Then the identifiability of the class of finite mixtures of N follows from Theo-

rem 3.2.11. [ |
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Lemma 3.2.13 (Teicher [50]) The class of all finite miztures of gamma dis-

tributions is identifiable

Proof :
Let F = {F(-,0,a): 6 > 0,a > 0} be a family of gamma distrsibutions, where

. [V
F(y,0,a) = % A e gy a >0, 6>0.

For F(-,0,a) € F, define its (Laplace) transform as follows.

¢(t’ 0, a) = / FG(Z) ma—le—ﬂze—tz dr
0

— 0 | Tl
Pla) (6+1)=
= (1 + 5)—0 ; for t> —0.

Order F by
Py = F("glaal) < F(',027a2) = F

if <6, or 6, =60, but o> a,.

Let Fy = F(-,61,01) and F, = F(-,0,,a3) be any elements of A, such that
Fy < F, and let ¢,(-,61,01) and ¢,(-, 62, a2) be their transforms respectively.
Then S¢1 = (—01, OO) C Sd,2 = (—02, OO) If 01 < 02, then

1+ 4) 7
lim $2(t, 0z, 02) lim ( 9,)

= =0,
t—)-—O]_ ¢1(t1 eljal) t—-)—01 (1 + %)—al

since lim (1 + é) = oo, If 0, = 02, but ay > a3, then

t——6;

G B (o B s _
th_rél ¢>j(t, Gj,ai) - tkr—%l (1 4 :Ll)—al - tHr—%l (1 + é) ' =0,

since a; — ay > 0. Then by Theorem 3.2.11, the class of all finite mixtures of

gamma distributions is identifiable. [
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Corollary 3.2.14 The class of all finite miztures of negative ezponential dis-

tribution is identifiable

Proof:
Let F = {F(-,0) : 6 > 0} be the family of exponential distributions, where

F(y,06) :/Oyee*"* dz,  6>0.

It can be seen that F is a special case of the family of gamma distributions in

Lemma 3.2.13 with @ = 1, then the result follows. |

Lemma 3.2.15 The class of all finite miztures of Poisson distributions is

tdentifiable.

Proof :
Let F = {f(-,6) : @ > 0} be the family of Poisson distribution with mean #,
where
e %9y
f(y,0) = — y=0,1,2,... and 6 > 0.
y!

For f(-,0) € F, define its transform as follows

oo E-—Gay
¢(t,0) = Zety'T

y=0

e’ — e
;.?:% y!

_o [ (e0)

E= eo(e“—l) y tE R

Order F by

fi=f(,0,) < f(,02) = fa if 6, > 0,.
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Let fi = f(-,61) and f; = f(-,02) be in F, such that f; < f; and let ¢,(-,6;)
and ¢,(-,0;) be their transforms respectively. Then Sy, = S,, = (—00,00) and

5 ¢2(t) _ l eoz(et_l)
oo gi(t) | toeo hile—D)
— lim eag(e'—l)-—ﬂ(e'—l)
t—o0
= lim e@%)(-1)
t— o0
=0,
since §; — 0; < 0. Then the result follows from Theorem 3.2.11. [ ]

Yakowitz and Spragins [54] extended Teicher’s results of identifiability to in-

clude multidimensional distribution functions. Let
F.={F(-,0):0 € B}

be a family of n-dimensional distribution functions taking values in R" indexed
by a point 8 in a borel subset B of Euclidean m-space R™, such that F(,-) is

measurable in R" x B.

Let ’Ttn be the class of all finite mixtures on J,, defined as in Definition 3.2.6,
that is,

H.= {H(-) : H(-):ic;F(-,H,-),c,- > 0, ic,—:l,F(-,O,-) € F.,Nec N}.

i=1 i=1

As in one dimensional case, for every finite mixture

H()= ;ciF(ufh),

0,1, ...,0y are assumed to be distinct.

Theorem 3.2.16 (Yakowitz and Spragins [54]) A necessary and suffici-
ent condition that the class H., of all finite miztures on F, be identifiable is

that F, be a linearly independent set over the field of real numbers.
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Proof :
Necessity :

Suppose F, is not a linearly independent set over the field of real numbers.

Let
N
Z aiF(y79i) - 0’ Vy € Rna
=1

where a; € R, =1,2,..., N, be a linear relation in F,,.

Assume the a;’s are subscripted so that

a; <0 = 1< M.

Then
M N
Z ]ailF(y,G,-) = Z ]aiIF(y, 0,‘), Vy € Rn . (312)
i=1 i=M+1
By letting y — oo in (3.12), where oo = (0,00, ..., 00),
M N
dolal= 37 lail. (3.13)
=1 i=M-+1
Let
u ||
b=>Y"|ai and 6= i=1,...,N. (3.14)
i=1

By (3.13) and (3.14),

b>0
M
¢ >0, i=1,..., M, Yoa=1
=1 N
C,;ZO, 1=M+1,,N, Z C,;:]..
i=M+1
Then
M N
ZC,'F(’,G,‘): Z c,-F(-,H,-)
i—=1 i=M+1

—~—

are two distinct representations of the same finite mixture and _therefore H.,

can not be identifiable.

Sufficiency :
Let (F,) be the span of F,,. If F,, is linearly independent, then it is a bases for
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(F,). Two distinct representations of the same mixture implied by the non-
identifiability of H, C (F.) would contradict the uniqueness of representation

of bases. |

From the properties of isomorphisms, F, is linearly independent if and only if
the image of the isomorphism is linearly independent in the image space, the

corollary below follows.

Corollary 3.2.17 The class H, of dll finite miztures of the family F, is
identifiable if and only if the image F, under any vector isomorphism of (F,)

be linearly independent in the image space.

The most important result of the application of Theorem 3.2.16 is the identifia-

bility of the family of finite mixtures of multidimensional normal distributions.

Lemma 3.2.18 (Yakowitz and Spragins [54]) The family of n dimensi-

onal normal distribution functions generates identifiable finite miztures.

Proof :
Let

N ={N(-,0,A) : 6 € R" and A is an n x n positive definite matrix }

be a family of n-dimensional normal distribution with mean vector 6 and co-

variance matrix A.

For N(-,8,A) € N, let M(-,0,A) be its moment generating function defined
by

M(t,0,A) = /R" exp{—tTy}N(y,6,A) dy
= exp{6Tt+ LTAt}, teR"
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Note that 6,¢t and y are n-dimensional column vectors. It is clear that the

mapping N +— M is an isomorphism.
Suppose that A does not generate identifiable finite mixtures. Then by Corol-
lziry 3.2.17, the set

M ={M(-,0,A):6 € R" and A is an n x n positive definite matrix }

is a linearly dependent set over R. There are M > 1, d; € R, d; # 0, 1 =
1,..., M and distinct pairs (0;,A;), s =1,..., M such that

M
> d;exp {G?t + %tTA;t} =0, te R". (3.15)
i=1

Consider a special case of (3.15), when t = as, for a fixed vector s and @ € R.

Then (3.15) becomes

M
Y diexp {a(éﬁrs) + 2a?(sTA; s)} =0, a€R. (3.16)
i=1
Ifall §;, i =1,..., M are identical, then all A;, 2 =1,..., M are distinct. For
i#5,1 <i,j <M,

sTA;s=sTAjs < s€ {z 2T (A — Aj)z = 0} .

So if
s¢ U {z:zT(A,-——A,-)z=O},

i#i
1<E,j<M

then sTA;s, for i = 1,..., M, are all distinct positive real numbers, implying

the pairs of real numbers (67 s, s'A; s), for i = 1,..., M, are distinct.

Otherwise, Suppose without loss of generality that 6;,...,6, for some &,
k < M, are the only distinct vectors among 6y,...,0y. Then for i # j,
1<4,j <k,

0fs=0{s <= sE{z:(O?—@f)z:O}.
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So if
s¢ U {z:(6F -6D)z=0},

then the real numbers 67s, for s = 1,. .., k, are distinct. Since the (6;,A;), i =
1,..., M are all distinct, then the A;, i = k+1,..., M with the same 8;, are
different. So if
s¢ U {z 12T (A — Aj)z = 0} ,
i#i
k+1<5 <M

then the real numbers sTA; s, for i = k+1,..., M, are distinct. Consequently,
for

s¢ U {z:(OT—H'f)z:O} U 9 {z:zT(A,-—A,-)zz()},

i£) i#3
1<4,5<k k+1<i, <M

the pairs of real numbers (6Fs, sTA;s), for i =1,..., M, are distinct.

Therefore, for such a choice of s, the equation (3.16) asserts that there is

M>1,d;eR,d;#0, :=1,...,M and distinct pairs (pi,0?), where

pi = 0Ts and o = sTA;s, for i=1,..., M,

T 1

such that
M
> diexp {u,-a + %aizaz} =0, a€R.

i=1

Corollary 3.2.17 implies that the class of finite mixtures of one dimensional

normal distributions is not identifiable, contrary to Lemma 3.2.12. [ ]

Teicher’s result which is concerned with mixtures of product measures will be
presented next. Teicher [51] stated that the identifiability of mixture distribu-

tions can be carried over to mixtures of product distributions.

Recall that for any k € IN, we have defined

sz{F(-,a):aEB},
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as a family of k-dimensional distribution functions indexed by a point « in a
Borel subset B of Euclidean m-space R™, such that F'(-,-) is measurable in

R* x B.

Define for every k,n € IN,

"Fl:,n = {F*(',a) :F*' (-, 0) = ﬂF(’1ai), F(,o) € Fy, i = 1,...,n}.
- (3.17)
Notice that in (3.17), F(:,-) is defined on R* x B and F*(:,-) is defined on
R*" x B".

Theorem 3.2.19 (Teicher [51]) If the class of all miztures on F; is iden-
tifiable, then for every n > 1, the class of mistures on F, is identifiable.
Conversely, if for some n > 1, the class of all miztures on F7 , is identifiable,

then the class of miztures on F, is tdentifiable.

Proof :
To prove the second part, suppose that the class of all mixtures on F7 ,, is

identifiable for some n > 1. Let F(:,a) € F;. If

[, Flg,0)dG(e) = [ Fy,0)dG(e),

n—1
then multiplying both sides by H F(yi, ), a, € B, necessarily,

i=1

Iaox---xIanG=Iaox---xIaox@,

where I, is a characteristic function X{q,,00)- Hence by the hypothesis G=3G.
To prove the first part of the theorem, the mathematical induction will be used.
Suppose the class of mixtures on F; is identifiable and also suppose the class

of mixtures on F7} , is identifiable, for fixed but arbitrary n. It will be shown

that the class of mixtures on F7j (,,y) is also identifiable.
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Suppose that for F* € F,, and F € F,,

[ F(e,0)F(y,6) dG(e,0) = [ F*(z,0)F(y, 0)dC(e,f).  (3.18)

Let Go(B) and G»(B) denote the marginal distribution of 8 corresponding to
G and G. Let G(a|f), G’(a|,8) denote versions of the conditional probabilities,
such that, for each 8, G(a|B8) and G(a|B) are distribution functions in the
variable a, and for each a, G(a|B) and G(«|B) are equal almost every where

to measurable functions of 8. Then (3.18) may be rewritten as,

[ Fs.9)H(=.0)dGx(B) = [ Fly,H)H(z,0)dCa(8),  (319)

where

H(z,) = [F'(z,0)diG(alp) (3.20)
H(z,p) = / F*(z, @) daG(alB). (3.21)

In turn, (3.19) may be expressed as

[ Fw.p)d8) = [ F(u.8)dT.(P), (3:22)
where
B
LB = [ H(7)d6i() < Ga(p) (323)
56) = [ T dan) < Gals), (329

as H(z,7) <1 and H(z,~) < 1. Dominated convergence applied to (3.22), to
ensure that

Jo(00) = Jo(0),

since this common value is finite by (3.23) and (3.24). Thus from (3.22) and
since the class of mixture on JF; is identifiable by the hypothesis, then

J, = J..
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Or equivalently from (3.23) and (3.24),

a8 1 B s
[ H@ G = [ H)dGa). (3.25)

On the other hand, letting £ — oo in (3.19) and since

Jim H(z,5) = zl_l_)r& F*(z,a)d,G(alf) =1 (3.26)
lim H(z,8) = lim [ F'(z,0)daG(a]B) =1 (3.27)

by monotone convergence theorem, then (3.19) gives

[ Fw.8)dG(8) = [ F(y.B)dGa(B). (3.28)

By the hypothesis,
Ga(8) = Ga(B). (3.29)

However, (3.29) in conjunction with (3.25) necessitates
H(z,B) = H(z, ), (3.30)
for almost all 8. Equation (3.30) together with (3.20) and (3.21), gives
[ F(@,0)duG(alB) = [ F*(z,0) daC(elB). (3:31)

By the induction hypothesis, that is, the class of mixtures on F7 ,, is identifi-
able, and (3.31) imply

G(alB) = G(olp) (3.32)
Finally, combining (3.29) and (3.32) we have

G(a, B) = G(c|B) G(B) = G(lP) G(B) = G(, B).

So that the class of mixtures on F7 (,q) is identifiable. n

Since Theorem 3.2.20 applies for general mixtures, then we have the following

theorem for finite mixtures.
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Theorem 3.2.20 If the class of all finite miztures on F, s identifiable, then
for everyn > 1, the class of finite miztures on F1 , is identifiable. Conversely,
if for some n > 1, the class of all finite miztures on F7 , is identifiable, then

the class of finite miztures on JFy is identifiable.

Analogous result hold, with F; and F7, is replaced by Fy and Fy ,,, where
k> 1.

3.3 Identifiability of Hidden Markov Models

Let {(X;,Y;)} be a hidden Markov model with representation ¢ = (K, A,, )

€ ®x. From section 2.5, the parameters A, m and 0 satisfy :
A = (o), a;; > 0, Y =1, i,j=1,...,K
K
T = (m), m > 0, i=1,...,K, Yom=1
i=1

0=(0)", 6€0, i=1,.. K

Notice that 8,,6,,...,0k need not all to be distinct.

Under ¢, for any n € N, the joint density function of Y3,...,Y, is

K K n
p¢(y11 gle = ayn) = Z e Z Tz f(yl, 021) H azg—l,nf(yh 9:,)- (333)
t=2

z1=1 z2n=1
Let
K K n
Q¢ e Z o Z ey H an_l,z:(s(azl....,e,,‘), (334)
t=2

@1=1 zn=1

then (3.33) can be written as

P¢(y1,92; nE ,yn) = L" f(yla Cl)' . 'f(yna C‘n)Qtﬁ(dCl) o 1d<-n)' (335)
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Equations (3.33), (3.34) and (3.35) assert that, for n = 1, py is a finite mizture
with non-negative coefficients my, . .., mx and may not be distinct support points
6,,...,0k. For n > 2, pg is a finite mizture of product measures with non-
negative coefficients (11’aBl ﬁa,t_l’,t) and may not be distinct support points

=2

t=
(0, .-,0:,), for z1,...,z, € {1,...,K}.

In order to apply the identifiability of finite mixtures to hidden Markov models,

Definition 3.2.8 has to be relaxed to allow the above possibilities.

Definition 3.3.1 Let F = {F(-,6) : 6 € @} be a family of one dimensional
distribution functions, defined on ), indexed by 6 € ©. Let

’th{H(-) " H(~)=§QF(-,&-), ¢ >0, écizﬂ,

0,€0,i=12,... K, KeN}. (3.36)

7 is said to be identifiable if and only if

K K R K K
Z C,‘F(-, 0‘) = Z 8¢F(', 0.) - Z C,‘(Sg‘. = Z 6,5@: (337)

=1 i=1 =1 =1

where 85 denotes the Dirac distribution of a point mass at 6.

Remarks 3.3.2 In every expression of

H(') = fC,;F(', 9,) € ;,"2,

i=1

the parameters 0y,...,0x need not all to be distinct.
Next lemma shows the relation between Definition 3.2.8 and Definition 3.3.1.

Lemma 3.3.3 H is identifiable according to Definition 3.3.1 if and only if"?-vl
is identifiable according to Definition 3.2.8.
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Proof :
Necessity :

Assume that 7{ is identifiable according to Definition 3.3.1. We will prove that

% is identifiable according to Definition 3.2.8. Suppose

where :

K K R
ZC,-F(-,H;) = Z&F(-,@;),
i=1

i=1

K
c; > 0, i=1,...,K, Sea=1
=1
- K
&>0, i=1...,K Ya&a=1
i=1
0; aredistinctfor 1=1,..., K
0; are distinct for i=1,...j('\.

By Definition 3.3.1, equation (3.38) implies

K K
Ec,-dg’. = 26‘65:
=1

i=1

(3.38)

(3.39)

Since ¢; > 0 and 6; are distinct for i = 1,..., K, then by part (c) of Lemma
3.2.9, K > K. On the otherhand, since & > 0 and 8; are distinct for ¢ =
1,... ,f{\, then by part (c) of Lemma 3.2.9, we also have K > K. Hence, we
have K = K and by (3.39),

By Lemma 3.2.10, # is identifiable according to Definition 3.2.8.

Sufficiency :

K K
Z C,‘(Sg‘- = Z 6‘.53‘
i=1 i=1

Assume that % is identifiable according to Definition 3.2.8. We will prove that

# is identifiable according to Definition 3.3.1. Suppose

K K ~
ZciF('70i) == ZEiF('79i))

i=1 i=1

7

(3.40)



where :
K

¢ >0, i=1,...,K, Yoea=1
i=1
. B

& >0, i=1,..,K, & =1
=1

0; need not all to be distinct, for 71 =1,2,..., K
K.

0; need not all to be distinct, for i=1,.
Let
Fo={i :¢>0,i=1,...,K}
Fo={i :&>0,i=1,...,K}.
Let r be the number of distinct 6;, ¢ € F,, and ¥ be the number of distinct
0;, i € F,. Without loss of generality, suppose that 8, ...,8, are distinct and
also 0y,...,0~ Let

R;={j : j€Fy, 0; =6}, = L, el
RBi={j:jeF, 0;=8)}, i=1,...,

3

Equation (3.40) then can be written as

i}a.-F(-,o.-) = iﬁiF(-,@-), (3.41)

i=1 _
where
a; = Z Cj and a; = Z Cj-
jER: P
Since a; > 0 and 6; are distinct for . = 1,...,r, and @; > 0 and 8; are distinct

for i =1,...,7, then by Definition 3.2.8, equation (3.41) implies » = ¥ and

Z a,'é‘o'- = E ’0.\153‘ (342)
i=1

=1

But this is equivalent with

PIDILZIEID IS D=L

i=1 jER; i=1 jec R;
Z Ci(so'. = z ’c‘,&a (343)
i€EF; ieﬁ.}
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Since ¢; =0, for i ¢ F, and also & =0, for i ¢ F,, then by (3.43)
Z 6.69 = Z C,
i=1 1

Hence, H is identifiable according to Definition 3.3.1. u

Remarks 3.3.4 As a consequence of Lemma 3.3.3, all the results of identifi-
ability in section 3.2 are now applicable for hidden Markov models. So from

now on, when we say # is identifiable, we mean it in the sense of Definition

3.3.1.

The following lemma gives a necessary and sufficient condition for two repre-

sentations of a hidden Markov model to be equivalent.

Lemma 3.3.5 Suppose that H s identifiable. Let ¢,$ € &, where ¢ =
(K,=,A,0) and ¢ = (K, A,7,0). Then ¢ ~ é if and only if for every n € N,

K K L
Z - Z ey H a,,,_h,,,&(o,l yeeesBzp )

®1=1 zn=1 =2

K K n
Z > Z 31 H :I:g 1,%¢ (ezl, 79=:n) (3.44)
=1 en—1 t=2

Proof :
The sufficient is obvious. We will prove the necessity. Suppose that ¢ ~ $,
then for any n € N, the n- dimensional joint density functions of Y3,...,Y;

under ¢ and @ are the same, that is

p¢(y1’ ey yn) = pa(ylv .- ,yn),

which can be written as

Z Z "le(yli 021) H Gg,_ 1,zgf(yt702¢)

z1=1 zn=1

E K 0
Z T Z 7?2:1 f(yh 0::1) H azt-nztf(yf) 0":)' (345)
zy1=1 zn=1

t=2
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Since H is identifiable, by Theorem 3.2.20, equation (3.45) implies (3.44). =

In particular, Lemma 3.3.5 gives necessary and sufficient condition for repre-

sentations to be equivalent with the true parameter.

Corollary 3.3.6 Let ¢° = (K°, A°,n°,0°) be a true parameter of a hidden
Markov model {(X;,Y:)}. Let ¢ = (K, A,7,0) € Pk, then ¢ ~ ¢°, if and only
if for everyn € N,

K° Ke° n
o o]
Z T Z ﬂ.ﬁl II O‘z:_l,zgé(ﬁ:l 1---a0§")

z1=1 zn=1 t=2

K K

n
— Z cee Z Mey H azg_l,iu(s(ozl yeeibzn )
t=2

z21=1 zn=1

Next lemma gives an example of such parameter that can be a true parameter

of a hidden Markov model.

Lemma 3.3.7 Assume that H is identifiable. Let ¢ = (K,A,m0) € Pk
satisfying :

(a). m; >0, fori=1,... K

(b). 0; are distinct fori=1,..., K,

then the size K is minimum, that is, no ¢ € D, with K<K , such that ¢ ~ ¢.

Proof :
Suppose the size K is not minimum, then there is $ e (ff , ]f,?r,é) € &z, with
K < K, such that ¢ ~ ¢. Since # ~ ¢, by Lemma 3.3.5,

K K
Yo mibe, = Wby (3.46)
i=1

i=1
Since 7; > 0 and 6; are distinct for ¢ = 1,..., K, then by part (c) of Lemma
3.2.9, K > K, contradicting with the fact that K < K. Hence, the size K

must be minimum. |
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The following three lemmas give characteristics of representations which equiv-

alent with the true parameter.

Lemma 3.3.8 Assume that H is identifiable. Let ¢° = (K°, A°,n°,0°) € Do
be a true parameter of a hidden Markov model {(X:,Y;)} satisfying :

(e). 13 >0, fori=1,...,K°

(b). 67 are distinct fori=1,...,K°.

Let ¢ = (K°,A,#,0) € ®xo, then é ~ ¢° if and only if @ = o(¢°), for some
permutation o of {1,...,K°}.

Proof :
Let ¢ = (K°, A,#,0) € $go. If § = 0(¢°), by Lemma 2.5.3, it is clear that
¢ ~ ¢°.

Now suppose that é ~ ¢°. By Corollary 3.3.6,

K° K°

o _ ~ 8
Sty = 5t
i=1 =1

Since ¢ > 0 and 6? are distinct for i = 1,..., K°, then by part (d) of Lemma
3.2.9, there is a permutation ¢ of {1,..., K°} such that

0;=02, i=1,...,K° (3.47)
and
7’1\’,-=7r3(‘-), 1:=]..,...,Ko- (3.48)
Also by Corollary 3.3.6,
K° K° K° K°
Z Z Wfafjé(gg,g;) = Z Z ﬁia;jé@@). (3.49)
i=1j5=1 =1 3=1

Since ¢ are distinct for i = 1,..., K°, then by part (a) of Lemma 3.2.9 and
(3.47), we have from (3.49),

?riaij = z(i)aﬂ(i)’a(j), 1,,] = 1, ceey Ko. (3.50)
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As7? >0, fori=1,...,K°, then by (3.48) and (3.50)

aij = aﬁ(i),o’(]‘)’ Z,J = 1, - E ,Ko. (3.51)
Hence from (3.47), (3.48) and (3.51), ¢ = o(8). |

Lemma 3.3.9 Assume that H is identifiable. Let ¢° = (K°, A°,7°,6°) € $xo
be a true parameter of a hidden Markov model {(X;,Y:)} satisfying :

(a). ¢ >0, fori=1,...,K°

(b). 07 are distinct fori=1,...,K°.

Let $ = (K°+1, AR, @ € Pyoy1, where $ ~ ¢°. Then after suitable permuta-
tion of indices, parameters of $ have one of the following forms :

(a). (

2] o (o]
Qyy T Q3 Ko—1 Q) ke 0 \
o o o
Oy b ® Qg Ko} Ay Ko 0
A =
(e} (o] (a]
Qpo_31 "' Oko_jKo1 go_ 1 Ko 0
0 o o
aKo‘I s aKo,Ko_l aKo,Ko 0
\ Ogoy11 **° OQKetyKe—1 EKeyl Ke Koq1 Ko+l )
o o o ]
mo= (7‘-1’ . ’7TK°—1’7TK<HO)
a e 00 .. 00 00 )T
= ( 10" Vgo_1: Vg, Y
where :

K°+1
aK"—Q—l,i >0, 1= 1,"'7K0+1a Z aK°+1,i=1
i=1

NEO, N#£62,  i=1,... K°
(). /

afy e 0§ goy QKo Oy ko1 \
o . ~ ~
2251 e o9 go—1 az,Ke a2 ,Ko+1
A =
Qo 1,1 *** Oko_yKgo_1 QKo—1,Kk° OKo-1,Ko41
Qfoy 0 Qo ko1 QKo Ke UKo Ko+1
0 0 = oy
\ Ao q v X o Fro—1 Koyl Ke Koyl Kot1 /
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—~ (o] o (v} (o]
To= (7!'1, tr 9 Mgo_1) @MKo, b7rK°)
2 o o o o \T
6 = (01""191{0——1’ Ko K")
where :
& ko + Qi Kot1 = Of ko, i=1,...,K°
&xoy1,K° + OKot1,Ko+1 = Qo Ko
a,b>0, a+b=1
ali; ko1 7# b0 ko, for somei, 1 <1< K°—1.
(c). / \
o 0 o o
Qi Qpgey acy ko bas ke
0 0 (o] o]
(0571 e az‘Ko_l a/az,Ko ba2’K°
A =
o 4] (2] s
Ogo_31 **° Qgoe_ygo—1 A®goe_y Ko bao_y ko
a‘}{o_l ¢ 530 a‘}(o,Ko_l QKo Ko QKo Kot1
\ Okoq * Qkokey OKoyrke QKet1Ko+1 )
a0 0o o o o
T o= (3, Mo 1,07, bk0)
a o o o o \T
6 = (01, T ’0K°—1’0K°’ K°)
where :
a,b>0, a+b=1
&i,Ko+6¢,-‘Ko+1=a‘I’{.,’Ko, i=K°,K°+1
a(aal{o’xo+1 + baKa+1,Ko+1) 7‘—' b(aaxo’}(o + baKo_‘_l,Ko)
(d). \
o 7] 0 o
( ay, e Qg Ko—1 aQy xo bal,k°
o] (/] 0 o
Q1 vt Oy ke a3 go bag ko
A =
0 0 o o
Qo311 **° Ofo_1K0-1 GQKo_1 Ko boko_1,Ko
aKo,l i O o Ko—1 QKo Ko &KD,KO_H
\ QKot1,1 "' OKgey1Ko—1 OKoyiKe QKoil Koyl )
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-~ o o ] o

™ = (7r11"'17rK°—17a7rK°1 K°)

o o o o o \T

6 (017"'10K°—1’6K°1 K°)
where :

a,b>0, a+b=1
G&Koa‘—l"ba]{o_*_l']' :a?{o,j, J= 1,...,K0'— 1
a&Ko,Ko + b&KoHIKo = aa‘}{o’K‘,
a ba = b
Qo got1 + 0OKo 41, Kot1 = DQko go-

-~

Remarks 3.3.10 Notice that the representation ¢ = (K°+1,A,7%,0) €Proyy,

where
o] Q o 0
( 25T} O Ko—1 a0 o bo‘l,ko \
O (7] (4] 1]
a1 IR W RS | A ko bag ko
A =
o (s} 0 (e}
Qgo_331 " Ogo_ 1Ko 1 O&Ko_y Ke baK°—1,K°
o Le] (e}
Okoy "'  Oo goy Qg0 Ko bagco ko
0 (4] O e ]
\ ko1 v Okoko_y  0Q%o ke  bO%o ko )
~  __ o o o o
= (W], Tio_1,0Mgo, ko)
a7 o o o o \T
6 = (017"" Ke—1» K°10K°)

as in the proof of Lemma 2.5.9 can be clasified having (d)-form.

Proof :
Let ¢ = (K°+ 1,A %, 5) € dyoyq and ¢ ~ ¢°. As ¢ ~ ¢°, by Corollary 3.3.6,

K° K°+1
Y b = D Tib- (3.52)
i=1 i=1

Since 7¢ > 0 and 62 are distinct for ¢ = 1,..., K°, then by part (c) of Lemma
3.2.9, for each 1 = 1,...,K°, thereis j, 1 < 7 < K° + 1, such that 9} = 65.
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Without loss of generality, suppose that
0; =62, for i=1,...,K°.

There are two possibilities for Oxo41, it may be equal to ~, for some v € O,
where v #£ 67,1 = 1,...,K°, or it is equal to one of the 8. Without loss of

generality, suppose we have two possibilities

9K°+1 = or 6Ko+1 = 9}’(0.

If
6; =62, for i=1,...,K° and Oxos1 =, (3.53)

then by (3.52) and part (a) and (b) of Lemma 3.2.9,

i = My, for 1=1,...

JK°  and  Tgey =0. (3.54)

If
0;=62, for i=1,...,K° and Ogos =6%., (3.55)

then by (3.52) and part (a) of Lemma 3.2.9,
for i=1,...,K°—1 and #go =ank., Fkot1 = brf., (3.56)

forsome a,b€ R, a,b6>0, a+b=1.

Consider the first case. By (3.53) and (3.54), parameters of  are of the form :

= (7,..., To_y, Ty, 0) (3.57)
= (65, ... ,0%0_1,0%,7)".

To identify A, consider the following equation implied by Corollary 3.3.6,

K° K° Ko41 K°+1
> Z 302,63 = Z Z Rili56, (6:,8;) (3.58)
i=1 j3=1 i=
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But by (3.57), the RHS of (3.58) can be written as,

K°+1 K°+1 K° K° K°

E Z ;50 #:,8;) Z E” @ij6(ee, 62) + Z T8, Ko 41062 )

i=1 j=1 =1 j=1

Since 77 > 0 and 67 are distinctfor¢ =1,...,K°and vy # 6¢,fori =1, ..

then by Lemma 3.2.9, we have from (3.58) and (3.59)

~ — o
qi; = of, ,7=1,...,K
ai’Ko+1=0, i=1,...,KO.
So in this case, A is of the form
0 o (o]
( 0.’11 Gt al,K"——l al,K" O \
0o 0 o
Qay e O o1 Q3 Ko 0
A=
o O o
Ugo 11 " Ugo_jKge—1 ko 1Ko 0
(o] o o
Ogoq *° Qo go g Qo Ko 0
\ @Kot11 *** Ggoyi,ko—1 Qxoyrke OKoipKet1 )
where
K°+1
~ . (] = —
Agoy1i 2 0, i=1,...,K°+1, Y Ggerri=1.
i=1

So (a) follows.

(3.59)

o
- K?,

Now consider the second case. From (3.55), parameters of ¢ have forms :

A= (aia)
T= (7"1', -y Tio_1, Ao, br%o)
§= (6:(1)1 - EERy 0?{0—116?{0’ 0}){°)T’

where a,b € R, a,b>0,a+b=1.

(3.60)

To identify A, consider the following equation implied by Coroliary 3.3.6,

K° K° K°+1 K°+1
> E T ag0(0g,60) = ) Z @6 6:.83)"
i=1j= i=1 j=1
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By (3.60), (3.61) can be rewritten as

K°—1 K°—1 K°-1
o _ 0 aQ_ o0
D D mogdepen + Y malkediere.)
=1 j=1 i=1
K°-1
o o 0 o
+ Z TrK"aK",jJ(o}o,o;) +7rK°aK°,K°6(9‘}(a,o}o)
=1
K°—1 K°-1 K°—1 K°+1
_ o~ °%.:
- Do D mabegen + Y D M i00z.05.)
i=1 j=1 i=1 j=Ko°
K"-i—] K°—1 K°+1 K°+1
+ ), D WBibeg.ept D D Tiliideg.eg.)-  (362)
i=K° j=1 i=K° j=Kv°

Since 67 are distinct and @ > 0, for ¢ = 1,...,K° and fg. = ang., Tgo g =

bm%., then by Lemma 3.2.9, from (3.62), it can be derived that

& =of,  ij=1,...,K°—1 (3.63)
Gigo+Bigosr = o,  i=1,... K" —1 (3.64)
0o+ bAgop1y = 0%os,  G=1,.., KO —1 (3.65)
a(8xo,xo + Bxo kot1) + b(AKot1,k0 + BKot1,Kot1) = Ao go- (3.66)

So from (3.63), (3.64), (3.65) and (3.66), A can be identified having form

[ a‘i'l §iaE a‘l"Ko_l o Ko aq kot \
a3t O3 ge @z, Ko Oz, Ko41
A=
o ~ N
o1y """ Ogo_ygo_y OKo-1K° CKo—1Ko+1
Ggoq - Qgogo.1  8goge  8goKgoi

\ Bxot11 - Axgoprke—1 Gkornke GkoiiKoti )

To identify A further, let us consider another equation implied by Corollary
3.3.6, that is

K° K° K° Ko+1 K°+1 K°+1 ‘
PIDID I 0i7;05,0(02 02,09) = >y Z Wiaijajk(s(ai AL (3.67)
i=1 j=1k=1 =1 j=1 k=1
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By (3.60), (3.63), (3.64) and (3.65), (3.67) can be rewritten as

K°—~1K°—-1K°—1 K°—1K°—1
0.0 0
Z oL Z Ty g0k 062 02,0) + MY T 050, 100(02,602 050
=1 j=1 =1 j=1
K°—1K°— K°-1
o_ 0 (ed
Sir Z Z ot 0‘. KoOKo k5(0,, 0%,0.63) + Z ™ ai,K°aK°,K°6(9?,9;(o,9‘}(o)
t-—l i=1
IKO KO_
o o o
+ Z Z ToOko,j05k0(030,02.07) + %, Mo ko 05 100 0(05.,.02,0%,,)
Jj= J=1
K°-1
+ D oo goOFo k0(62,,070.09) + ThoOko froQico go0(62 4,05 , .62
= KeQKoe ke Ko 10(0%0,0%0:97) Ko Ko gkoQ o go0(6%5,0%0,0%0)
K°—-1K°—-1 K°— K°—1K°—1 K°+1
- o
= > E Z ™ O 0(07 02,67) T 22 Z 5 058, k0 0(02 02 ,0%.)
=1 j=1 t=1 j=1 k=K°
K°—1K°+1K°-1 K°—1 K°+1 K°+1
o~ o~
DD IR AL SR DD DD B LR
i=1 j=K° k=1 i=1 j=K°k=K°
K°+1 K°—-1 K°-1 K°+1 K°—-1 K°+1
+ Z E Z 7r’at'J Jk(s(oxt” 67) + Z Z Z W‘a'JaJka(exon J, Ko)
i=K° j=1 k=1 i=K° j=1 k=Ke°
K°+1 K°+1 K°— K°+1 K°+1 K°+1
+ Z Z Z W‘a'JaJk(s(oxoi Kovoz) +Z z Z 'ﬂ','a,'jaj’ké(g;(mo;(mg}’co)
i=K° j=K° k=1 i=K° j=K° k=K°
K°—-1 K°—1K°-1 —1 K°—
= Vin s Z 7 00500 00,09) + Z E 70500 kob(ag 62,09,
i=1 j=1 i=1 3j=1
K°—1K°+1 K°-1 K°—-1K°+1 K°+1
2 X 3 mestlenae T 2, 2, 2, W&iGinder e o)
i=1 j=Ke° k=1 =1 j=K°k=K°
Ke—-1K°—1 K°-1
o _o0 o o _o o
-+ Z Z WKoaKo'jaij(o‘ko,O;,az) -+ Z 7rK°aK°,jaj,K°6(9}0’0}?’9}0)
K°+1 K°+1 K°—1 K°+1 K°+1 K°+1
=t z Z Z ﬂ-‘a"JaJk(s(oKo- 0%co:0 )+Z E Z ﬂ-'a‘:’a?rké(oxo’ 0%os KO)
i=K° j=K° k=1 i=K° j=K° k=K°
(3.68)
By Lemma 3.2.9, (3.68) implies
-~ o~ ~ o~ — o o
Q5 goKo k + O Ko410Ko4 1,k — a,-'KoaK,,'k (369)

fori,k=1,...,K°—1,

o~ ~ o~ o~ o~ -~ o o
Q; Ko (aK°,K° + aKo,K°+1) + Q4 ko1 (aK°+1,K° + aK°+1,K°+1) = @ o Qg o

(3.70)
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fori=1,...,K°—1,

~ o~ - -~ —~ Pyl o (o]
(aaKo,Ko + bOlK°+1,K°)0tK°,k + (aaK°.K°+1 il aK°+1,K°+l)aK°+l,k = 0o golgo |

(3.71)
fork=1,...,K°—1 and
(aaKo’Ko -+ baK0+1|Ko) (aKo’Ko + aKo,Ko_Fl)
+(aaK°,K°+1 + baK°+1,K°+l) (aK°+1,K° + aK°+1,K°+1) = a‘;(o’Koa‘}{o,Ko.
(3.72)
By (3.69), (3.64) and (3.65), fori,k=1,...,K° —1,
Qi koo + Q; kot 18K 41k = (ai,K" + ai,K°+1) (aaxo,k + baK°+1,k)
= a&,-,KoaKo,k + b&,-,Ko&K.,H’k
+adi; gor10 Kok + bO; gor18Ko11,k
which gives
b&; goligo i + A&; got10Kot1k = b0 KoOKoy1k + 08 Ko 10K k
or
(a&,-,KoH ot béZ,-,Ko) (&Koﬂ,k = aKo,k) =0
implying
a&,-,KoH = ba,"]{o or &Ko+11k = &Ka‘k (373)

From (3.70), (3.64) and (3.66), for i =1,..., K° — 1,

&.-,Ko (&KD,KO + &KO,K.,H) + a,',Ko+1 (&Ko+1,Ko + aKa_H,KoH)
= (&i,Ko + a,',Ko+1) {a(&Ko,Ko + aKo,Ko+1) + b(&KoH,Ko + aKo+1,Ka+1)}
—~ ~ Pa) -~ P o~
= aa"’Ko (aKo,Ko + aKo’Ko+1) + ba",Ko (aKo_.l_l,Ko + aKo+1,Ko+l)

+ad; ko1 (aK",K" + aK°,K°+1) + b&; ko1 (aK°+1,K° + aK°+1,K°+1)
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which gives

b&i; ko (aK°,K° + aK°,K°+1) + adli ot (aK°+1,K° + aK°+1,K°+1)

= bl o (aK°+1,K° + aK°+1,K°+1) + ad; kot1 (aK",K" + aKO,K°+1)
or
(aai,K°+1 = bai,K") { (aK°+1,K° + &K°+1,K°+1) - (axv,m + aK°,K°+1)} =0
implying

aa."Ko+1 = bai’Ka or aKa+1'Ko + aKo+1‘Ko+]_ . aKo’Ko + aKc'Ko+1. (3‘74)

From (3.71), (3.66) and (3.65), for k =1,...,K° -1,

(aaK0|Ko + baKo+1,Ko)&Ka,k + (aaKo|Ko+1 + baKo+1‘Ko+l)aKo+l’k
. {(aaKo‘Ko + baKo+1'Ko) + (a&Ko'KoH + b&Ko_,_l,KoH)}

X (a&K",k + b&K.,H',,)

I

aaKo,k (aaKo,Ko + baKo+1‘Ko) =+ b&KD+1’k (aaKo,Ko -+ baKo_‘,_l,Ko) +

aaxo’k (aaKo’Ka+1 + baKo+1'Ko+1) + baKo_'_l,k (aaKo’Ko+1 -+ baKo_,.l’Ko_Hl)

which gives

baKo’k (aaKc'Ko 4+ baKo+1,Ko) -+ aa]{o.*_l’k (aaKo’Ko_',_l + baKo+1’Ko+1)

= baKo+1,k (a&Ko,Ko + baKo+1,Ko) + a,&Ko,k (a&Ko,KoH + baKo+1,Ko+1)
or
(aKo+1,k han a]{o,k) {a (a&Ko_KoH -+ baKo+1,Ko+1) - b(a&Ko,Ko -+ bc’iKoH’Ko)} =0
implying

Ogop1k = Ogok
or (3.75)

a(a&Ko,KoH + baKoH,KoH) = b(a&Ko,Ko + baKo+1’Ko).
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From (3.72) and (3.66),

(aaxo,m + baK°+1,K°> (axo,Ko + aK°,K°+1)

+ (a@ko Kot1 + baK°+1,K°+1) (aK°+1,K° + aK°+1,K°+1)

H

{(aaKo,Ko -+ baKo_*_l’Ko) + (aaKo,Ko.i_l -+ baKo+1’Ko+1)}
{ (aKo,Ko + &Ko,Ko+1) + b(aKo+1’Ko + aK0+1’Ko+i)}
a

a
(a&Ko,Ko + b&Ko_I_l’Ko) (aKo’Ko + aKo,Ko_H)
+ b(ac’ixo’;{o + baK°+1,K°) (aK°+1,K° + aK°+1,K°+1)
a(aaK°,K°+1 + baK°+1,K°+1) (aK°,K° + aK°,K°+1)
b(aaK",K°+1 + baK°+l,K°+1) (aK°+1,K° + aK°+1,K°+1)

which gives

b(aaKo,Ka + baKo+1’Ko) (aKn,Ko + aKo,Ko+1)
+ a(a&Ko,KoH + baKo+1’Ko+1) (aKo_l_l'Ko + aKo+1,Ko+1)
= b(aaKo,Ko_’_l + baKo_'_l,Ko) (aKo+l,Ka + aKo+11Ko+1)

+ a(aaKo’Ka+1 + baK0+1,K0+1) (&KD'K., + aKo'Ko+1)

or
{a(aaKo,Ko_‘_l + baKo_‘_l,Ko_{_l) — b(a&Ko'Ko =+ baKo+1’Ko)}
X { (aKo+1’Ko + aKo+1,Ko+1) e (aKo‘Ko + aK°,K°+]) } = 0,
implying
Ggot1, ke + Qgop1,kop1 = QKo o+ QKo Koq1
or (3.76)
a(aaKo'Ko+1 + baKo+1‘Ko+1) = b(aaKo'Ko + baKo+1,Ko).

From (3.73) and (3.74), we can consider two subcases.

Subcase (1): Suppose thereis i, 1 <4 < K°— 1, such that

a&,-,KoH # bai,Ko.
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Then by (3.73) and (3.74),
aKo+1'k = aKo‘k fOI‘ k == 1, e ,KO - 1 (3.77)
aK°+1,K° + aKo+l’Ko+1 = aKo,Ko + aKo,Ko_}_l . (3.78)
By (3.77), (3.78), (3.65) and (3.66),
aKo,k = aKo+1’k = a‘;(.,7k k = 1, o ,KO - 1 (379)
&KO,KD - &KO,K.,H s aKo+1,Ko + aKo+1,K0+1 = a‘}{o,Ko : (380)

Notice that (3.77) and (3.78) also imply (3.75) and (3.76). Hence by (3.79)
and (3.80), in this subcase, the matrix A is of the form

( 01‘1’1 ‘e a?,K"—l alJ{o a]_,Ko+1 \
a;l i) a;,K"—l a2’Ko az'Ko+1
A=
Ofo 31 **° Oko_3go_1 OGKo-1Ke QKo 1Kot1
a?{",l il ao}(o’}(o_.l QKo Ko Cpo Koyl
o o ~ -~
\ OéK,,’l “ee aKO,K°—1 aKo_'_l'Ko aKo+l’Ko+1
where :
i o + By og1 = OF i=1,...,K°
Q4 Ko Qi Koy1 = i, Ko = Ly.. 4,

Qxoy1,K0 + OKot1,Ko41 = Oo Ko
a,b>0, a+b=1
adl; goy1 F b8 ko, forsomei, 1<:i< K°-—1.

So (b) follows.

Subcase (2): Suppose that
adl; ko1 = b ko fori=1,...,K°—1, (3.81)
then by (3.64), (3.81) implies

ai’Ko = aa?,K" ai|Ko+1 = ba:-”K.,, fOI’ 1, = 1, . ,Ko _— 1 (382)
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Consider two sub-subcases.

Sub-subcase (2.1): If

a(ac’iKu,KoH + baKo+1’Ko+1) ;é b(a&Ko,Ko + baKo_H,Ko)
then by (3.75) and (3.76)

aKa+1’k=aKo,k, fOI‘ k= 1,...,K0—1
aKo+1,Ko + aK°+1,K°+1 = aKo,Ko + aKo’Ko+1 5

Thus, as in the subcase (1), (3.79) and (3.80) holds. Hence by (3.79), (3.80)

and (3.82), in this sub-subcase, the matrix A takes form

o] o (o] o
( agy T ay Ko ac ko bal,k° \
0 o] Lo}
20| et O Ko A ko bo§ ko
A=
o e o (o]
Qgo_11 " Ofgo 1 Ko1 Q0po_j Ko baK°—1,K°
Qfoq ***  Oo go_y Qigco, Ko Qo Kot1
\ a‘}{m i a?{o’Ko__l aKo+1'Ko aKo+1,Ko+1 )
where :
ai’Ko +ai,Ko+1 =a‘;{.,,Ko, 7:=KO,KO+1

a(aaKOIKoH + ba{Ko+1,Ka+1) 7é b(a&Ko,Ko -+ baKo_*_l’Ko).

So (c) follows.

Sub-subcase(2ii): If
a(aaKo‘Ko_*_] + baK0+1'Ko+1> = b(aaKo’Ko + b&Ko+1,Ko), (383)
then (3.75) and (3.76) hold. Also by (3.66), (3.83) implies

a&Ko,Ko + baKo+1’Ko = aaKa,Ko (384)

aaKo_Ko+1 + baKo+1,Ko+1 = bc’iKo,Ko . (385)
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Thus by (3.82), (3.84) and (3.85), A is of the form

( aj; v O ke aay yo bas jo \
oz, et O ey a0y ko basj o
2 =
0“}{0—1,1 "t oy Koy A0%o_y Ko ba?(o-l,K?
&Ko,l v c’iKo,Ka_l &KO'K., &KO,KOH
\ Qgot11 '+ Qgoyrko—1 Qgoyike Ogot1Ket1 )

where :

a&Ko'j+b&Ka+1,j =O[‘I){0,j, ] = 1,...,K0‘— 1
aaKo,Ka + baK0+1,Ko == aa?{o,Ko

a&Ko,KoH -+ b&K°+1,K°+1 = ba‘}(o,,@ .

So (d) follows.

Lemma 3.3.11 Assume H is identifiable. Let ¢° = (K°, A%, n°,0°) € Py be
a true parameter of a hidden Markov model {(X;,Y:)}, such that n¢ > 0, for
i=1,...,K° Let $=(K° A,%,0) € Byo and ¢ ~ ¢°. Then

{62:i=1,..., K°}={6;:i=1,...,K°}.

Proof :
Let ¢ = (K",ff,if,a) € ®x. and ¢ ~ ¢°. Consider the following equation
implied by Corollary 3.3.6,

KO KO
Z W?(Sog = Z 7?,5@“ 5 (386)
=1 =1

Since #¢ > 0, for i = 1,..., K°, then by Lemma 3.2.9, part (b), for every
t=1,...,K° thereis j, 1 < 7 < K°, such that 67 = §j_ So

{6::i=1,...,K}yCc{fi:i=1,..,K} (3.87)

Suppose there is j, 1 < 7 < K°, such that

0,¢{62:i=1,...,K°.
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Without loss of generality, suppose that
6:e{67:i=1,...,K°}, fori=1,...,K, (3.88)
0; ¢ {6°:i=1,...,K°}, fori=K,+1,...,K°, (3.89)

for some K; € N, with 1 < K; < K°. Lemma 3.2.9, (3.86), (3.88) and (3.89)
imply that

~

# =0  fori=K;+1,... K°. (3.90)

Also by Corollary 3.3.6 and (3.90), we have

K° K° K> K°
> D megbeeey = DD Mdids
i=1 j=1 =1 j=1
Ky, K°
_ z;z :8:;0 @id - (3.91)
=1=

Since 8; ¢ {67 :i=1,...,K°}, fori=K; +1,...,K°, then (3.91) implies

Rd; =0, for i=1,...,K;, j=K+1,...,K° (3.92)

Consider two cases.

Case (1): If #; > 0, for : = 1,..., K;, then by (3.92)
&,—_.i:O, for 1:=1,...,K1, j=K1+1,...,K°. (393)
By (3.90) and (3.93), in this case, parameters of ¢ are of the forms :
BKllKl 0K1)L1
Dy, .k, Ep,,1,
® = (R1,--.,7K,0,...,0)

. S
@y, ..., 0k, 0k, 41,- -, 0x)T,

)

)
l

where L; = K° — K;. Let

A' = B
77'1 = (7’1\'1,...,7?}(1)

gt = (By,...,0k,)"
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and
(;1 = (Kla ;{17 7?11 51)’
then 4~51 € Pk, and $1 ~ $ Since $ ~ ¢°, thus $1 ~ ¢°, contradicting with the

fact that K° is minimum.

Case (2): Suppose there exist 7, 1 < i < K, such that #; = 0. Without loss of
generality, suppose that

7 > 0, fori=1,...,K, (3.94)
7; =0, fore=K,+1,..., K, (3.95)
for some K, 1 < K, < K;. By (3.92), (3.94) and (3.95), we have
@&;; =0, for i=1,...,K,, i=Ki+1,...,K°. (3.96)
By (3.90), (3.94), (3.95) and (3.96), parameters of é take forms

1 2
BKz,Kz BK:.Ln OK"LI

A = B%z,Kz B%Q,Lz CLZ)LI (3'97)
DLl,Kl E'Ll.Ll

7 = (F1,...,7x5,0,...,0) (3.98)

6 = (511"'7§K37§K3+1a"' 7§K°)T7 (399)

where K2 + L2 = Kl and Kz + L2 + Ll = K°.

To identify A further, let us consider another equation implied by Corollary

3.3.6, that is
K° K° K° K° K° K°
2.2 Y megohdeeeey = D2, Y MbiGndE s g
i=1j=1k=1 i=1 j=1 k=1
Ky Ky K°
= Y3 Y wdaulgg,  (3100)
=1 j=1 k=1

Equation (3.100) follows from equations (3.97), (3.98) and (3.99). Since §; ¢
{6:i=1,...,K°}, fori = K;+1,...,K° then (3.99) and (3.96) imply

ﬁi&,-,-c’ijkzo, fOI‘i-:].,...,Kg,j=K2+1,...,K1, k:K1+1,...,K0.
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But #; >0, for 2 =1,..., K,, then

&ij&jk=0, fOI"l:=1,...,K2,j=K2+1,...,K1, k=K1+1,...,KO.
(3.101)

So from (3.97) and (3.101), our focus will be matrices By, ;. and Cp, 1,.

Based on the value of L, = K; — K, we divide case (2) into two subcases.

Subcase (2i): Suppose that L, = K; — K, = 1, then equation (3.101) can be

written as

Gl =0, fori=1,... ,Ki—1, k=K +1,....,K°.  (3.102)

If there exist ¢, 1 <i < Ky — 1, such that & x, > 0, then by (3.102)
athZO, for k=K +1,...,K°
giving
Crr, = 0,1, (3.103)

Thus by (3.97), (3.98), (3.99) and (3.103), parameters of ¢ take forms

1 2
BKl—l,K]_—l BK]_—I,I OKl—lel

A = 3 4
A = Bl,K1—1 Bl,l 01,141
DLl,Kl EL1.L1
# = (Ryy...,®x,-1,0,...,0)
6 = (B0 1,0, B0)T
= (1,..., Ki~150K,-.-,UKo )" .
Let
1 2
A'z . BK;-—],Ifl—l B.Kl—"l,]
3 4
BI,K;-—I Bl,l
~9 ~ ~
T = (71‘1,...,‘?1',!(‘_1,0)
= —~ -~ ~ 7
7 = (B, 0-1,0x,)
and

by = (K1, A, 72, 67)
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then $2 € bk, and %2 ~ $ ~ ¢°, contradicting with the fact that K° is

minimuin.

If
ok, =0, fori=1,...,K; -1,
then
B, 11 =0k, —1,1. (3.104)
Hence by (3.97), (3.98), (3.99) and (3.104), parameters of ¢, in this case have

forms :

1
BKl——l,Kl—l 0K1—1,L1 OKI_I)LI

1 = 3 4
A = BI,K1—1 Bl,l Clth
DL1,K1 EL1,L1
T = (7?1,... ,’?l'Kl_l,O,... ,0)
0 = (Buree Ok 1,0k0r . BT
= 1. yUK 1,0, ..y OKo ).
Let
13 __ 1
A — BK1—1,K1—1
~3 ~ ~
™ = (71'1,...,71'[(1_1)
~a -~ ~ T
0 = (01,...,91{1__1)
and

$3 = (KI - 1’237;7?3’53)

then ¢; € Pk, 1 and B3 ~ ¢ ~ ¢°, contradicting with the fact that K° is

minimum.

Subcase (2.ii): Suppose that Ly = Ky — K; > 1.
If forevery j = Ko +1,...,Kyand it =1,..., K;, &; =0, then

B, 1, = 0k, Ls- (3.105)
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Hence by (3.97), (3.98), (3.99) and (3.105), parameters of ¢ take forms :

1 2
Bioky k1, Vot

A = B}k, Bi, ., ClL.L
Dy, k, Ep, 1,
7 = (R1,-..,%K;,0,...,0)
g = (6y,...,0k,,...,0k)".
Let
A* = B g
7 = (F1,...,7%k,)
gt = (6,...,0,)"
and

54 = (KZ,E“)”TA’a‘l)
then @, € Pk, and bs ~ $ ~ ¢° contradicting with the fact that K° is

minimum.

If for every j = Ky +1,..., K, there is i, 1 < i < K, such that &;; > 0, then
by (3.101),

ajx =0, for j=Ky+1,...,K,, k=K, +1,...,K° (3.106)
that is
Cr,1, =05,,1,- (3.107)

Thus by (3.97), (3.98), (3.99) and (3.107), parameters of ¢ have forms

1 2
BKz,Kz BKz,Lz OK”Ll

A — 3 4

A BL21K2 BL:.Lz OL”LI
Dy, x, Ey, 1,

& = (fuy...,%x,,0,...,0)

= = = =

§ = (By,...,0k,,...,0%)T.
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Let

1 2
A"s _ (BKZ.Kz BKz,Lz)
3 4
BLz,Kz BImLz
7 = (R1,...,TKp--,0)

O = (§17---a§K27"'7§Kl)T

and
(‘55 — (KI’A'5’7T.5, 55)

then $5 € Pk, and $5 ~ $ ~ ¢°, contradicting with the fact that K° is

minimum.

Suppose without loss of generality, there is K3 € N with K, < Ky < K,
satisfying :

(a). for every j = Ky +1,..., K3, there is 7, 1 < i < Kj, such that &; > 0,

(b). for every j =K;3+1,...,K;andi=1,..., Ky, &; =0.

By (3.101) and (a),
& =0, for j=K;+1,...,Ks, k=K +1,...,K° (3.108)

So in this case, by (3.108), (3.97), (3.98) and (3.99), parameters of ¢ are of the

forms :

B}(z,Kz B?(lz,Ls 0K2|L4 OKZ’Li
A = Bii,Kz B;,};,La B%:,I“ OLa’Ll (3109)
Bgi.Kz B%ivLS B}livL4 C}’i'Ll
\ DL1,K1 ELIyLl)
# = (R1,...,%x,,0,...,0) (3.110)
§ = (6y,...,0k,,...,0k)7, (3.111)
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\x

gl

where Kz +L3 = K3, K2+L3+L4 = Kl and K2+L3+L4+L1 = K°. Notice
that by (a)

Kz Ls # 0K21L8

To identify A further, consider the following equation implied by Corollary
3.3.6,

K° K° K° K° K° K° K° K°
_Z Z > > magefoqde, orone) = D, E %0 88885, 5 5. 5)
1=1j=1k=1I=1 i=1j3=1k=1I=1

Ky, Kz Ki K°

= Z Z Z Z ”ﬂavazko‘kl‘s(o.,o, Br.61)"

i=1j=1k=11=1

(3.112)
Equation (3.112) follows from equations (3.109), (3.110) and (3.111). Since
0: ¢ {62:i=1,...,K°}, fori = Ky +1,...,K°, then (3.109), (3.110), (3.111),
(3.112) implies

QA0 = 0,

fori=1,...,Ky j=Kptl,... Ks k=Ks+l,..., K and | = Ky+1,... K°.
As7; >0, fori = 1,..., K,, then we have

Qij0x0 = 0, (3.113)

fori=1,..., Ky, 7= Ky+1,..., K3,k = K3+1,...,Kyand | = K +1,..., K°.
By (3.113) and (3.109), our focus will be matrices BY, ; , Bf2 ;, and C}! | .
However from (a), for every j = K, +1,...,Kj, there is i, 1 < i < K, such
that &;; > 0. So BE, ;. # Ox,,1,- As a result, we only have to focus ourself to

matrices Bf? ; and Cf} | .

If Ky — K3 = 1, then we have a case similar to subcase (2.i). If K; — K3 > 1,
then we have a case similar to subcase (2.ii). We must consider the equation
in Corollary 3.3.6, for n = 5. Since K° is finite, then maximum number of

procedure that we have to follow is (K7 — K3)/2.
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Since the assumption : "there is j, 1 < j < K°, such that §; ¢ {6° : i =
1,...,K°}”" lead to contradiction, then it must be, for every j = 1,... K°
;e{62:i=1,...,K°}. Thus

)

{Bi:i=1,... K} {62:i=1,...,K°). (3.114)

By (3.84) and (3.114), the conclusion of the lemma follows. N
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Chapter 4

Maximum Likelihood
Estimation for Hidden Markov
Models

Numerous concrete phenomena provide numerical sequences of observations,
for instance, in econometrics: stock prices, interest rates, exchange rates, etc;
or in meteorology: daily temperatures, weekly rain levels, etc. In general, these
sequences have two characteristics :

(a). The graph of the observations is irregular and complex which is impossible

to model by a simple curve depending on a small number of parameters.

(b). It is impossible to have the sequence again in identical conditions.

Suppose a series of observations {yi,...,¥yn} is given to be modelled for some
specific reason. In view of (a) and (b), it is convenient to model the sequence
{¥1,...,yn} as observations of some unknown stochastic process {Y; : t € N}.
The observed data sample {y;,...,yn} is now interpreted as the initial segment

of the realization {Y;}.

103



Based on prior information, insight and mathematical tractability, we suppose
{Y:} is equivalent with the observation process of a hidden Markov model,
which is generated by an unknown true parameter ¢° = (K°, A°, n°,6°), in a
sense that, {Y;} and the observation process have the same finite dimensional
jloint density functions. {Y;} is defined as the coordinate projection process
on (Y*, B, P4), where Y™ is the set of all realizations y = {y} and B is the
Borel o-field of Y*, that is, for y = {y;} € Y,

Yi(y) = w, te N.

Under ¢°, for any n € IN, the n-dimensional joint density function of Y3,...,Y,
is
K° K° n
p¢°(y17 . Jyﬂ) = Z = Z 7Ir:I-f(y170:1) H a:g_l,x;f(yh 6:1)'
z3=1 zn=1 t=2
The modelling problem is now reduced to an estimation problem. To estimate
the true parameter ¢°, we have to select a class of hidden Markov models and
define a likelihood function on it. The true parameter ¢° is then estimated by

parameters in the class which maximize the likelihood function.
Consider two approaches for estimating ¢°.

The first approach :
This approach is based on the assumption that the selected class of hidden
Markov models is the one that consists of all models having size K°, same as

the order of the true parameter ¢°. So in this approach,

Dgo = {¢ : ¢ =(K° A, 0), where A, m and 6 satisfy :

Ko
A= (), ;20, Y oy=1, i,5=1,...,K°
j=1
KD

T=(m), >0, i=1,...,K° > m=1

=1

0=(6,), 6,€0, é:l,...,K"}
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will be this class

Fori,j =1,..., K°, define coordinate projections a;(-), m;(-) and 6;(-) on P

by
a;;(4) = ayj, mi(4) = m, 6:(¢) = 6;,
for ¢ = (K°, A, m,0) € Pgo.

Under ¢ € Pgo, {Y;} is defined as the coordinate projection process on
(Y*,B, Py) and for any n € N, Y3,...,Y, has the n-dimensional joint density

function

pd’(yl’ ree 7yn) = Z e Z 1r,,1(¢)f(y1, 021 (¢))t_ﬁ2am-—1-m(¢)f(yt1 02t(¢))

z1=1 Tn=1

Define the log-likelihood function on ®g. by

1
Ln(¢,y) = ;logm(yl, e Yn) n € N, (4.1)

for y = {y:} € Y, and the mazimum likelihood estimator {$, : n € N} such
that

$a(y) = {$ : La(6,y) = S Ln(dJ,y)} , meN, (4.2)

Since a true parameter for a hidden Markov model is not unique, let
To={¢€Pxo: 6~ ).

The maximum likelihood estimator {,} is then judged to be good, if it is

strongly consistent, that is
$,,(y) — 77, for almost all y under ¢°,
when n — 00, or in another words:

bn — T, with probability one under ¢°, (4.3)
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when n — oo.
The second approach : (which we prefer)

Since the order K° is unknown, let
by = {¢ : ¢ =(K,A,m0), where A, 7 and 6 satisfy :
K
A= (o), 0520, Y oy=1 4i,j=1,....,K
i=1
71'“—"(7(’,'), 7(','_>_0, i=1,...,K, 27&'21
6= (6:,), 6,€0, i:l,...,K}

be the selected class of hidden Markov models, for a fired K € N.

For 4,7 = 1,..., K, define coordinate projections a;;(-), m;(-) and 6;(-) on &k
by

aij(¢) =ay, (@) =m,  O(¢)=06,
for ¢ = (K, A,r,0) € Pg.

Under ¢ € Pk, {(Y:)} is defined as the coordinate projection process on
(¥Y>,B, P;) and for any n € N, Yy, ...,Y, has the n-dimensional joint density
function

K K n
qu(yh - a- ,yn) = Z cec Z UEN (¢)f(y11 9::1 (¢)) H aE:—l,Z:(¢)f(yt1 ozt((ﬁ))

z1=1 zn=1 =2

Notice that a true parameter ¢° may not be in @x. A true parameter estimation
is then transformed into one of best approzimation. A distance between ¢ € dx
and ¢° is introduced and a quasi true parameter is defined as parameter which

minimizes distance to ¢°.
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Define a distance between ¢° and ¢ in ®x as Kullback-Leibler divergence

. 1 p¢0(Y1,...,Yn)
K(¢°,¢) = lim —E4 |lo ;
(9:9) = Jig, 3 B |8 oy, o)

where Eyo is the expectation with respect to ¢°. As a distance, we will prove

later in section 4.3, that K(¢°,¢) > 0, for every ¢ € P.

(4.4)

Define the quasi true parameter set as
N = {q's L K(¢°,8) = inf K(¢°, ¢)}. (4.5)
PPy
Later in section 4.8, it will be shown that if K > K°, then

N={pedx:¢~¢°}. (4.6)

Now define the log-likelihood function on @ by

1
La(¢,y) = ;logpqs(yl, ey Yn)s n€eN, (4.7)

for y = {y:} € Y. The mazimum likelihood estimator {¢, : n € N } is defined
by
$n(y) = {$: Lo(d,y) = sup Lu(p,y)}, neN.
PPk

The estimator {dAJ,,} is then judged to be good, if it is strongly consistent, that
is
bu — N, with probability one under ¢°, (4.8)

when n — oo.

Since for K = K°, N' = T° by (4.6), then by comparing (4.3) and (4.8), it can

be concluded that the first approach is a special case of the second.

The consistency of the maximum likelihood estimator in the sense of the first

approach has been established by Leroux in [34]. In this chapter we will prove
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the consistency of the maximum likelihood estimator using the second ap-

proach. So our result will be a generalization of [34].

This chapter begins by giving some topology to the hidden Markov model space
&y in section 4.1. This section also gives some regularity conditions for @
and the true parameter ¢°. In section 4.2, some properties of the log-likelihood
function are presented. In section 4.3, the Kullback-Leibler divergence is dis-

cussed, starting from general to hidden Markov case.

The focus of section 4.4 is to find the relation between the Kullback-Leibler
divergence and the log-likelihood process. The result of this section shows
that the Kullback-Leibler divergence does not depend on the initial probality
distribution, which gives the idea for simplify the hidden Markov model space

@ in section 4.5.

Section 4.6 studies the relation between the Kullback-Leibler divergence and
parameters which are equivalent to the true parameter. In section 4.7, uniform
convergence of the likelihood process is derived. Based on the results of section
4.6 and section 4.7, the quasi true parameter set can then be analysed in section
4.8. Consistency of the maximum likelihood estimator, which is the main result

of this chapter, is presented in section 4.9.

4.1 Parameter Restriction

Let
Oy = {¢ : ¢ =(K,A,n0), where A, w and 0 satisfy :

K
A=(a,-_.,-), a,-,-ZO, Za.-j=1, i,j=1,...,K
=1

108



7l'=(7l','), 77,;20, 1:=1,...,K, ZF"ZI
6=(6)", 60, i=1,...,1{} (4.9)

be the hidden Markov model parameter space for a fizted K € N. Since
all hidden Markov models in @, have the same size K, then for each ¢ =

(K,A,m,0) € &k, we may consider it as

¢ = (A,m,0).

For estimation purposes, we need to compactify ®x. Let
Uy = {(A, 7) : where A and 7 satisfy :

K
A= (ay5), i >0, Zaijzl, i,7=1,...,K

j=1

K
71'=(7l','), 71','20, ’i=1,...,K, Z?‘l’i-——l}. (410)

i=1
Py is a compact subset of RX*+X with respect to the Euclidean norm II-1l- By
(4.9) and (4.10),
Dy = Vg x OF, (4.11)

Suppose that @ C R", for some n € IN. From examples, @ is usually locally
compact and not compact. Hence by (4.11), to compactify #x, we need to

compactify 6.

Let @° be the one-point compactification of @ (see for example [17], page 321).
©° is obtained by attaching a point infinity, denoted by oo, to ©. Extend
f(y,-) to ©° by defining f(y,00) = 0.

Suppose @ = R", then @° = R" U {oc0}. From [17], page 196, R" U {oo}
is homeomorphic to S, = { € R"*! : ||z|| = 1} by homeomorphism f :
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R" U {00} 2 S, which is defined by

2 lelf? — 1
z) = ———(T1,...,Tp,0) + 71—
@) = EEa™ )+ JelF+1

f(e0) = (0,...,0,1),

(0,...,0,1)

for ¢ = (21,...,2,) € R". Define norm || - ||oo on R" J{oo} by

lzlleo = 11 (2)1]-

Let &5 be the compactification space of @g. Thus
K
&5 =Tk x (0°)".

Notice that @ is dense on $%. Define norm || - ||x in % by

el = 11(A, =) + ; [16:lloo

for ¢ = (K, A, m,0) € 5.

(4.12)

(4.13)

For each 7,7 = 1,..., K, define the coordinate projections a;(-), 7:(-) and 6;(-)

on ¢ by
;i (@) = ayj, mi(p) = m, 6;(¢) = 6;,
for ¢ = (K, A,n,0) € D%

Based on the results of Chapter 2 and Chapter 3, and to simplify theoretical

considerations, our model parameters will be restricted to a certain class which

satisfy the following conditions.

A1l. The transition probability matrix A° is irreducible.
A2. 7° is a stationary probability distribution of A°.

A3. The family of finite mixtures on {f(-,0) : 6 € @} is identifiable

A4. f(-,-) > 0 and continuous on Y x 6. For each y, f(y, ‘) vanishes at infinity.
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AB5. Foreach 4,5 =1,2,..., K, m(-), &;;(-) and 6;(-) are continuous functions

on 9%
A6. Ey [I logf(Yl,Of)” <oo, fori=1,...,K°.

AT. For every 6 € @, Eg [(Iog f(Yl,F)))“L] < 00, where zt = max{z, 0}.

Remarks 4.1.1
(a). By conditions Al and A2, n¢ >0, fori=1,..., K°.

(b). Conditions Al and A2 guarantee that the observed process {Y;} is sta-

tionary and ergodic under ¢° and under all ¢ which are equivalent to
¢°.

(c). From Chapter 3, condition A3 is needed for parameter identification pur-

poses.

(d). Conditions A4 and A5 together imply that the likelihood function
L.(.,y), for each n € N and y € Y*, is continuous on compact space

P%. This guarantees the existence of maximum likelihood estimator.

(e). Conditions A6 and A7 are uniform integrability conditions, which are

essential for the Kullback-Leibler divergence.

Next, some examples of distribution families which satisfy conditions A3, A4,

A6 and A7 are given. For these, the following lemma is needed.

Lemma 4.1.2 (Farrel and Ross [21]) Let a,b,c € R. If b,c > 0, and
a > —1, then

/ tre™ dt =
0
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Proof :

1
Let z = bt°, then t = % and dz = cbt* ! dt. Therefore

be
* a_—bte ooz% — "B%—l
/ te ™ dt = — € dx
0 0 bc COc
1 /°° atl
—x —1
= z < dx
1
cba_ﬂcL Q
a1
_ I(*E)
B -cbm
[

Using Lemma 4.1.2, conditions A3, A4, A6 and A7 hold for three important

families of distributions.

1. The family of Poisson distributions.

—a

o f00)=

yey={0,1,2,...},

6 €O =(0,0).

o {f(-,0) : 0 € O} is identifiable (see section 3.2).

e f(-,-) is continuous on Y x @ and for each y € ¥, f(y,-) vanishes at

infinity.
e Let 6 € 6.

Ege[|log £(¥3,6)]]

Ke° oo

>

11=0

2.7

=1

A

e 5 (02)¥

i pge(y1)| log f(y1,6)|

=0
oo K¢
2. 275 f (1, 85) log £ (y1,6)]
y1—0:i 1
o0 '“90( 0)91
5 S ——3— {0+ 1| 1og 0] + log (1))}
yl—UJ-l
—"3’ 62)n
Zr Z %)—{9+y1|10g0|+10g(y1!)}
j=1 n=0 -

(4.14)

=71
7!

112



= e o RN
—-—y logd] = 6°|logf|e% ——
= yl 1' I 3 I g | y;l (y] _ 1)'

= 62|log6le%e%

e 0;? | log 6] (4.15)
(00 % oo o~ (goyun
5 0 gy = 3G o)
1 =0 n=1 Yt
oo e I7(goyn
< ) (I") y1logyy
n=2

IA
NgE

=
1l
[ ]
' Q @
H_

2,0 07)
= (e Z((.«/,—2)'

— (0;;)2 0;’60;’

= @ (4.16)

where the first and the second inequalities come respectively from y,! <

(y1)** and logy; < y1 — 1 (see [1], page 68).

From (4.14), (4.15) and (4.16), then

Eg|llog f(Y1,0)]] < 6>+Z1 m2{02 |log 0] + (65}
< oo

Hence condition A6 and A7 hold.

2. The family of negative exponential distributions.

o f(y,0)=0e%, 6 €O =(0,00), y €Y =(0,00).

o {f(-,6) : 6 € O} is identifiable (see section 3.2).
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e f(-,-) is continuous on Y x @ and for each y € Y, f(y,-) vanishes at
infinity.

e Let @ € O.
Ege[l1og f(11,0)] = [ pr(y) | 10g £ (31, 6)| dyn

~ K°
I 32 72151, 05) Vo £(31,0) dys
j=1

Il

K° Le0
= % [ w05 (10g0 — byl dy,
i=1"0

KD (o o]
< XY {l log 6| +/ 65 e mgy, dyl}
=1 0
(4.17)
and
/oo 63 e nyg ndy, = é% ” ue " du
0 5 Jo
~ A1)
= 2 (4.18)

where the second equality comes from Lemma 4.1.2.

From (4.17) and (4.18), then for every 6 € ©

Ee[llog f(v1,0)]] < o3 {llogol + &

=1
= |logb|+ & < 0.
3

Therefore, conditions A6 and A7 hold.

3. The family of Normal distributions with fixed (known) variance.

° f(y,0) =

constant (known).

e\ ) yelYy=R 6€OB=R, andoc >0

1
oV2r
o {f(-,0) : 0 € O} is identifiable (see section 3.2).
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e f(-,-) is continuous on Y x O and for each y € Y, f(y,-) vanishes at
infinity.

o Let 6 € O.
By (|10 f(%1,0)] = [ ponlws) log £(31,6)] dys

oo K°
- f_w Y m3f(y1,62) [log f(y1,6)] dys

j=1
K° . 1 y1_99 2
— Z ,n,o 1 _; o
- J o2n N
j=1 =77
2
X ’—10g0\/27r -3 (91‘7——9)

KO
> wg { | log o/ 2|
J=1

}dyl

IN

(4.19)
(5 - (s
n—02\?2 008\ [91—02 o0\ 2
= (=5%) 2(%) (=9) + (%)
(4.20)
©0 y1—02 & !lt:a‘? ’ * —1,2
[ a3 (359) 0w = & [Cweam
- 1 . MG)
T Vam 2
_ 1
= 75;'71“/87’
= 3 (4.21)
where the second equality comes from Lemma 4.1.2.
R T 3
[ (50 (259) 05wy,
A= (57) S ue i du
= 0 (4.22)
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. 1.2 . .
since g(u) = ue™ 2" is an odd function.

From (4.19), (4.20), (4.21) and (4.22), for every 6 € O,

K° o
Eye[log f(¥3,0)]] < g_;w;{uog(m/m +143(% ”)2}
= Jlog(ovER)+3+1 3w (%)’
< 0. ”

Hence conditions A6 and A7 hold.

4.2 The Log-likelihood Function

For y = {y:} € Y and n € N, the log-likelihood function L,(-,y) is defined
on Px by

1
L.(¢,y) = - log po(Y1,- - 2 Yn)

%log Z ot E Tz, (¢)f(y1a 021 (¢)) tlj‘___[zah-l,zt((p)f(yh 021 (¢))

z1=1 2n=1

(4.23)
Condition A4 ensures that for each y;, f(y,-) vanishes at infinity. By defining
f(yh 00) = 91_1_{2) f(yt; 0) = 01 (424)

the log-likelihood function L,(-,y) in (4.23) can then be extended to &5.

Since for each 7,j = 1,..., K, the coordinate projections m;(-), o;;(-) and 6;(+)
are continuous on $$, by A5, and f(-,-) continuous on Y x ©°¢ by A4 and (4.24),

the log-likelihood function L,(-,y) is continuous on &%.

The next lemma shows that {L,(-,y) : n € N} is an equicontinuous sequence

C
on 9%.
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Lemma 4.2.1 Assume conditions A4 and A5 hold. Then for each y € ),

{L,(-,y) : n € N} is an equicontinuous sequence on $%.

Proof :
Let y = {y¢} € Y. Since @ is dense in Y%, it is enough to show that {L,.(-,7)}

is an equicontinuous sequence on Pg.

Given € > 0. We will prove that there exists §(¢) > 0 such that for every n,

|La(6,9) — La(By)| <€ if§, €0k, |6l <.

For each t € N, let s; = (z¢,y:), where z; € {1,..., K} and

Pol(s1- - 82) = ml(qs)f(yl,oz,(sb))g Car2re0( ) (02 (8)).

Then

Py(s1, .-+, 8n) = Ta, () (H II f (yt,oe(fﬁ))) <H1 aij(¢)N"') (4.25)

t=1tcT; i,7=

where
T;={1<t<n : 6 =6}, i=1,...,K

Ni,j . Z 1{X¢_1:i,X:=j} ) 2,] = Lyu g K.
t=2

For each n € N, define

Lo(6, ) = %log P51, 1 5n). (4.26)

By (4.25) and (4.26), for ¢, € P,
La(8,5) ~ La(B,5)| < [logme,(4) — logme,(B)

K -~
F1 33 [iog £ 6:(9)) — log £(41,0:(3))|
i=1teT;
1 K K
P 2.2 Ny

i=1j=1

log o, (¢) — log o ($)| - (4:27)
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Since K is finite, then by A5, there is §; > 0, such that forevery i = 1,..., K,

logmi(¢) — logm()| < 5, ifp,dedk, |6—Bllx<di.  (4.28)
3

Also by A4, there is 6, > 0, such that, for every ¢ = 1,..., K and for every
teT,

[log (41, 6:(8)) — log £ (s, 6:(8))| < 3., (4.29)
if
(e, 8:(8)) = (we, (BN = ll9e = well +116:(8) — 6:(®) oo
= [16:(¢) — 6:(d)llw
< 6. (4.30)
However, by A5, there is §3 > 0, such that for every i =1,..., K,
16:(8) — 0i(P)lloo < 82 if B, € Bx, I6— Pllx <. (4.31)

Moreover, by A5, there is 44 > 0, such that for every 7,7 =1,..., K,

logosj(¢) ~loges(B) < 5, 4,8 €Pu, lp—Blx<bs (432)

Let 0 < 6 < min{dy,d3,d4}. Then by (4.27), (4.28), (4.29), (4.30), (4.31) and
(4.32), if ¢, ¢ € Pk and l¢ — @llx < 8, then for every n € N,

€ 1 € 1 €
e e+ -1}~
+n n +n (n )3

|a(,5) ~ La(@,9)] -

H o4 =
373

1
n
€ €
3
€ (4.33)

The equation (4.33) can be written as

llogp“'(sl""’s“)

< e.
n 7 Pyt Sa)
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Therefore,

p¢($1, So) sn) < exp(ne)pg(sl, RS Sn)a

implying
K
p¢(y1""$yn) = Z - Z p(ﬁ(xl’yla---,mn,yn)
z1=1 zn=1
K K
= Z Z Po(S1,- - ,58n)
z21=1 2n=1
K K
< D)o > exp(ne)p;;(sb ceeySn)
z1=1 Zn=1

K K
= exp(ne) Y --- Y P3(Z1, Y15+, Tns Yn)

z1=1 Tn=1

= exp(ne)pa_;(yl, S 7yﬂ)'

Similarly by exchanging the roles of ¢ and $, we have for every n € N,

3 1. Ps(y1,-- - Un)
L (¢,y) — La(¢,y)| = |~ log =="2200 ] < ¢,
‘ ( y) (¢ y)’ n gp$(y1a'--7yn)
if ¢, € Bk, and ||¢ — ||k < 6. m
Let Y = {Y;}. For each ¢ € &%, define
1
La($,Y) = ~logpy(Y,...,Ya), n€N. (4.34)

Notice that {L,(¢,Y) : n € N} is a stochastic process defined on (Y, B, Py.).
Such process will be called the likelihood-process.

As a consequence of Lemma 4.2.1, if conditions A4 and A5 hold, then we have

that for every € > 0, there is d(¢,y) > 0, such that for every n,

La(6, Y 0)) — La(8, Y ())| <€ if$, 8 € Pk, |¢— llx <5

So the corollary below follows.

Corollary 4.2.2 Assume conditions A4 and A5 hold, then {L,(-,Y) :n € N}

s an equicontinuous sequence on 5.

119



4.3 Kullback- Leibler Divergence

This section is divided into two subsections. The first subsection discusses
Kullback-Leibler divergence in general. Here, definitions and characteristics
of Kullback-Leibler divergence are given. Using definition in subsection 4.3.1,
the Kullback-Leibler divergence for hidden Markov models is then derived in

subsection 4.3.2.

4.3.1 General case

This subsection begins by defining absolute continuity between two measures.

Definition 4.3.1 Let A an v be two measures defined on a measurable space
(Q,F). A measure v is said to be absolutely continuous with respect to the
measure A, if for each A € F, A\(A) = 0 implies v(A) = 0. The relation is
indicated by v K A. If v K A, it is said that v is dominated by ).

The Radon-Nikodym theorem (e.g. [44], page 276) states that if (2, F, ) is a
o-finite measure space and v is a measure defined on F such that v < A, then

there is a non-negative measurable function g, such that for each set A € F,

v(A) = fA gdx.

The function g is unique in the sense that, if h is any measurable function

with this property, then A = g A-almost sure. The function g is called the
dv

Radon-Nikodym derivative of v with respect to A and denoted by e

Now we are ready to define Kullback-Leibler divergence. According to [2], the
Kullback-Leibler divergence is defined as follows.
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Definition 4.3.2 Let P and Q be two probability measures defined on the mea-
surable space (R",R") dominated by a measure v. Let

dP _dQ
P=— and g=—"

Suppose that q is v-almost sure strictly positive. The Kullback-Leibler di-
vergence of QQ with respect to P is defined by

[rroeiar L iP<Q

400 , otherwise.

K(P,Q)= (4.35)

From (4.35), the Kullback-Leibler divergence of @ with respect to P can be

expressed as

Ep llogg] fP<Q

K(P,Q) = (4.36)

400 , otherwise

dP
where Ep is the expectation with respect to P. Notice that P a0’ so (4.36)
q

can also be written as

dP
Ep [log T
K(P,Q)= aQ

+00 , otherwise.

] P KL Q (437)

Lemma 4.3.3 Let P and Q be two probability measures defined on the mea-
surable space (R",R") dominated by a measure v. Let
J— d_‘P_ and _ @
P=4 L

Suppose that q is v-almost sure strictly positive. Then

K(P,Q)>0 and K(P,Q)=0 ifandonlyif P=Q.

Proof :
Assume without loss of generality that P < Q. Let

g(z) =zlogz +1 — =z, z > 0.
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Since

g'(z) =logz, z >0,

then g(z) is always positive and zero only for z = 1. Notice that

/(’ilog’—’ﬂ—’—’) dQ = /(310g33+1—’—’> qdv
q q q q q q

_ P

= /(ploga--f-q—p) dv

= /ploggdu—l—/qdu——/pdu
q

= K(P,Q)+ [dQ- [ ap
_ K(P,Q)+1-1
K(P,Q). (4.38)

By (4.38) and the characteristics of g, we have K(P,Q) >0 and K(P,Q) =0
if and only if P_ 1, Q-almost sure, which implies P = Q. [ |
q

Remarks 4.3.4 Notice that in general the Kullback-Leibler divergence K(-,-)

is not symmetric, so it is not a metric.

Definition 4.3.2 can be extended for probability measures defined on (R*,R).
Using projections, the Kullback-Leibler divergence of probability measures on

(R, R>) can be defined in the following way.

Let P be a probability measures defined on (R*,’R*). For each n € IV, let
P, be a probability measure on (R",R"™) which is defined by

P,,{(yl,...,y,,) eER": (y1,.---,Yn) € A} = P{{yt} €ER*:(y1,---,Yn) € A}.

The probability measures P,, n € N, are called the projections of P on
(R*,R™).
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Definition 4.3.5 Let P and Q be two probability measures defined on the
measurable space (R®,R*), with projections P, and Q, on (R",R"). The
Kullback-Leibler divergence of Q with respect to P is defined by

K(P,Q) = Jim ~K(P.,Qu), (4.39)

if this limat exists.

Lemma 4.3.6 Let P and Q be two probability measures defined on the mea-
surable space (R®,R*), then K(P,Q) > 0. If P = Q, then K(P,Q) =0

Proof :

For each n € N, let P, and Q, be the projections of P and Q on (R",R").
By Lemma 4.3.3,

K(Py,Qn) > 0, n € N,
implying
.1

If P =Q, it is clear that P, = Q,, n € N, implying K(P,,Q,) =0,n € N,
thus K(P,Q) = 0. [}

4.3.2 Hidden Markov case

The idea of using Kullback-Leibler divergence to measure a distance between
¢ € % and the true parameter ¢° comes from [22], who used it for a hidden

Markov model, in which the observation process takes values on a finite set.

Recall that under the true parameter ¢° = (K°, A°,7°,6°),Y = {1} is defined

as a coordinate projection process on (Y, B, P4.) having n-dimensional joint
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density function
K° K° n
p¢o(y1) e ayn) == Z - Z ﬂ':lf(yla 0:1) H agg_]_,ng(yti 0::), (4'40)
;=1 en=1 t=2
with respect to the measure p. Also under each ¢ € P%, Y is defined as

a coordinate projection process on (Y*°, B, Ps), having n-dimensional density

function

p¢(y1, ey yn) . z—:l U Z—l ey (¢)f(yl’0=1 (¢))t_ﬁ2am_1.z:(¢)f(ytv 0tt(¢))7
A B (4.41)

with respect to the measure pu.

Define a distance between ¢° and ¢ € &5, as the Kullback-Leibler divergence
of Py with respect to Pyo, that is by (4.35), (4.36), (4.40) and (4.41),

. 1 p¢°(y1""’yn)
K(¢°,¢) = hm—f (W1, -y} L0 gl - il
(¢°,¢) = lim — [ Pge(y1,---,n)log Po(tr, - 0) p(y1) - - - dps(yn)
(4.42)
: ]. p¢o(Y]_,...,Yﬂ)
= lim —Eg |lo , 443

if this limits exist.

By Lemma 4.3.6, it is clear that K(¢°,¢) > 0, for every ¢ € %.

4.4 Relation between the Kullback-Leibler

Divergence and the Log-likelihood Process

The main issue of this section is to find relation between the log-likelihood

process

1
Ln(¢,Y) = ” log py(Y1,...,Ya), neN (4.44)
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and the Kullback-Leibler divergence

0 BRRT l png(Y],...,Yn)
K9 =l e []"g Pe(Yiy - ,Yn)] : (4.45)

for ¢ € P%.

In this section we will adapt the work of Leroux [34] to our case. From (4.45),
the Kullback-Leibler divergence of ¢ € @5 with respect to ¢° can be expressed

as

o ! o1
K(¢°,¢) = lim ~Ey [logpge(V3,- .-, Ya)] = lim —Ego [logps(Ys, ..., Ya)l,
(4.46)
provided the two limits in the right hand side exist. So the main interest now

is to investigate the characteristics of these limits.

By condition Al and A2, {Y;}, under the true parameter ¢° is stationary and
ergodic. As in section 2.7, we can give a past to {Y;} without destroying its
stationarity. So, without lost of generality, we may consider {Y;} as a stationary

and ergodic process indexed by t € Z.

Define the entropy of {Y;} as follows.

Definition 4.4.1 The entropy of the stationary process {Y;} under the true
parameter ¢° is defined by

H(¢°) = — Ego [ log pge (Y[Yo, Yor, - )| (4.47)

In order for this definition to have meaning, we must show the existence of the

conditional density pgo(Y1|Yo,Y_1,...).

From sections 2.3 and 2.4,

KO
Pe(YilYo, ..., Yon) = 3 Poo( Xy = i[Yo, ..., You) F(Y2, 6). (4.48)

=1
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Lévy martingale convergence theorem ([48], page 478) states that if Z is an

integrable random variable and {F;} is an increasing sequence of o-fields, then
nlglolo E[Z|\F,) = E[Z|Fu),

with probability one, where F, is the o-field generated by U Fi. Applying the
t
theorem for
Z = I{Xlzi} and fn e 0‘(}/0, SO ,Y_n)
gives
nlgrgo Pgo(X1 =i|Yo,..., Y ) = Pgo( X1 = i|Y5,Y_4,.. ), (4.49)

with probability one under ¢°. Define
Pge(Y1]Y0,Y1,...) = §P¢0(X1 =Y, Y_1,.. ) f(Y1,67). (4.50)
Then by (4.48), (4.49) and (4.50),
lim pyo(Y[Yo, ..., Yon) = pge(Y1|Y0, Y04, .. ), (4.51)

with probability one under ¢°.

The characteristics of the first limit of (4.46) are given by the following theorem.

Theorem 4.4.2 (Leroux [34]) If conditions A1, A2 and A6 hold, then
(a). H(¢°) = —Eygo [logpqso(YllYo,Y_l, .. )] is finite.
1 .
(b)- lim ;E¢o[1ogp¢o(1q,...,yn)] = —H(¢°).

(c). nllrr& % log pge (Y1, - - -, Yn) = —H(¢°) with probability one under ¢°.

Proof :
To prove (a), from (4.48), forn =0,1,...,
KO
p¢°(Y1|YI)’ s ’Y—ﬂ) = Z Pd"’(Xl = iIYO, e ’Y—ﬂ)f(Yl’G?),
=1
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implying

min f(Ylaaf) S p¢°(}/1|YE)) JC 1Y—n) < max f(Yivaf)

1<i<Ke = 1<i<Ke
Since

Ey|llog f(Y1,65)]] <00,  fori=1,2,...,K°,

by A6, then {log pg(Y1|Ys,..., Y. ) : n=0,1,...} is uniformly integrable un-
der ¢°. Also from (4.51),

log pge (Y11Y0, . .-, Y_n) — log pge(Yi|Yo, Y 4, .. .), (4.52)

with probability one under ¢°, when t — oo, implying log pge(Y1|Yo,Y_1,...)
is integrable and (4.52) also holds in L', that is,

lim Bpe [logpps (VilYo,., Yon)] = Ego [,11390 1ogp¢o(1qm,...,y_,,)]
= Eg|logpg(V1|¥s, Yo1,...)]
— _H(), (4.53)

which is finite.

To prove (b), using Cesaro convergence theorem ([16], page 83), stationarity

of {Y:} and (4.53),

.1 .1 e
nllbr{olo ﬁE,»o [10gp¢o (Y'l, . ,Yn)] = nll}ngb ;Eqso [log Hp¢o (}/tl)/t——la e ,Yl)]

t=1

.1 &
= lim _E¢o [Z 10gp¢o (KIYt-—I) e ,1/1)]

n—oo n, =1

.1 &
= lim —EE¢0[logp¢a(K[K_1,...,Yl)]

n—oo n, =1
= lim By [logpge (YalVees, -, V1))
= lim Bp[logpy (Yo, .., Y=1))

= —H(§).

To prove (c), consider

127



1
lim — log pg(Y1,...,Ys)

n—oo 7,

. |

= lim -1 (YelYie, ..., Y5
Jim ~ ogt:Hlm( i|Yie1,. .-, Y1)
n—o0

-l
= lim EZlogp(bo(YHYt_l,...,Yl)
=1 )

) 1
= lim {E Zlogp(#o(YdYt_l,Yt_g, )+

n
n—oo
t=1

n

1
- Z (logp¢o (YelYiz1,- .-, Y1) — log pge (YelYi—1,Yis, - )) }.(4.54)

t=1

Since {Y;} is stationary and ergodic under ¢°, by Al and A2, then {log pgo(Y¢|
Y: 1,Yi2,...) : t € N} is also stationary and ergodic under ¢°, which by
ergodic theorem ([31], page 488) implies

il E
Jim — 3 logpge (el Vi1, Yes,--) = Ego[log pge (Ya|Y0, Y1, - )]
t=1
= —H(¢°), (4.55)

with probability one under ¢°.

Following [31], page 502, we will prove that

1 E
Jim - Yy, (logpqg.,(Yt|Yt_1, .., Y)) — log pge (Ye|Yio1,Yia, .. )) =0. (4.56)

Let N be any positive integer. Set
xv(Y1,Y,...)= sup |log pgo(Y1|Yo, - - -, Y_i) — log pygo (Y1|Yo,Y_yq,.. . )|. (4.57)

Let
ZtN:)‘N(),t,Y;.—h"')» te Z.

Since {Y;} is stationary and ergodic under ¢°, then the process {ZY : t € Z}

is also stationary and ergodic under ¢°. Moreover,

By [Z)] = Eyp [gggnlogp¢o(n|n,...,y_t) ~ 1ogp¢o(mm,y_1,...)|]

< oo,
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log pge(Y1|Yo, - - -, Y_i) — log pge(Y1|Y0,Y 4, .. ), (4.58)

with probability one under ¢° and in L', when t — co. The ergodic theorem

then implies

and hence
lim sup |~ Z(logpd,o (YifYomn, .- ,Yl)—logp.,ao(nm_l,m_z,...))‘
n oo 1

< limsup— Z[logp¢o()’;|}’} 15--+,Y1) — log pge (YelYs—1,Ye 2, .. .)]

n—o0 —1

< limsup— Z zZN
n—roo —1

= By [sz] _ (4.59)

for any positive integer N.

However, by definition of Z}' and by (4.58),

Zy 0,

with probability one under ¢°, when N — oco. By monotone convergence
theorem,
dim B (28] = B | 21
= E¢o[0]
= 0. (4.60)

Hence by (4.59) and (4.60), (4.56) follows.

Combining (4.54), (4.55) and (4.56), we have
.1 o
Jim ;;logpqso(Yl,---,Yn) = —H(¢°),

with probability one under ¢°. n

The next theorem shows the characteristics of the second limit of (4.46)
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Theorem 4.4.3 Assume conditions A1, A2, A4, A5 and A7 hold. Let ¢ €
&5, with mi(¢) >0, fori=1,...,K. Then for ¢, there is a constant H(¢°,¢),
such that :

(a). —o0 < H(¢°,¢) < o0
(b). lim %E¢o[logp¢(Y1,...,Yn)] = H(¢° @)

1
(c). I_i+m —logpy(Ya,-- ., Ya) = H(¢°, ¢) with probability one under ¢°.
11— 00 n

Proof :
Since @k dense in 5, then to prove the theorem, it is sufficient to prove only
for ¢ € B, with m;(¢) > 0,fori =1,..., K. Here we use the proof of Theorem
2 in [34].

Let ¢ € & with (@) > 0, fori=1,...,K. Let

m(¢) =m,  oy(d) =iy,  0(P) =6

fori,j=1,...,K.

Fori=1,...,K, m,n € Z, with m < n and any realization {(z:,y:)}, define

K K
Q'tﬁ(ym-l—lv tee ynl”) = f(ym+1a gl) Z ot Z ai,zm+gf(ym+2, 0m+2)

Zmya=1 2n=1

X ﬁ aa’t—l.mf(yt?gm)- (4.61)

t=m+3

Notice that fori=1,...,K andn € N,

QqS(yl, Jor 7yn|i) = p¢(y1, R 1yn|i)’ (4-62)

that is, the conditional density of Yi,...,Y, given X; = ¢, under ¢. Hence

from (4.62), the joint density function of Y1,...,Y, under ¢ can be expressed
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as

K
p¢(y1, —es ,yn) = Zﬂ'ipqﬁ(yl, s ’ynli)-
=1

K
— Zﬂ'i qr.b(yh 7yn|7‘) (463)
=1
Define for m,n € N and m < n,
96(Ym1 -+ > Yn) = MX Go(Ymt1,- - Ynld)- (4.64)
Then from (4.63) and (4.64),
K
Po(y1, - ym) < Yo (lrgyg(q.ﬁ(y:, x ,ynli))

i=1

K
= Q¢(y1) R ayn) Zﬂ'i
i=1
= qa(¥1y- -+ Yn)- (4.65)

and

K
Po(Uty - Yn) 2> Z(lrg}ig}(m) qo(Y1s - - - > Ynlt)
i=1 V==

K
IISEISI}{ Wi) z qd:(yl’ EER yﬂlz)

i=1

> (mm 7r,-) (1%?%{%(%"“’%'1))

1<i<K

= (min ™) guvss- - Un). (4.66)

1<i<K

Therefore from (4.65) and (4.66), for each n € N and any realization {y:},

(122}(7&) 96(¥1,- -, Yn) < Po(¥1, .- > ¥n) < @(¥1,- -, Yn),

implying

( min 'n',-) 06(Ya, -, Yn) < ps(Y1,...,Ya) < gg(Yr,...,Ya).

1<i<K
Thus for each n € N,

1 1 1
N in )+~ LY < “logpe(Ys,..., Y
nlog (lgysr}{m)+nlogq¢(Y1, , g = - og pe(Y: )

< l log q¢(Yl7 el as ¢Yn) (467)
n
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and

1 . 1 1
- log ( min 7r,;) + EEd’o [log gs(Y1, ... ,Y,,)] < ;Ew[logpq{,(Yl, ... ,Y,,)]

1<<K

1
< ;E¢o[logq¢(Y1,...,Yn)].
(4.68)
As m; are fixed, for i =1,..., K and
1 .
lim — log ( min 71',-) =08
n—oo N, 15;51{
then taking n — oo on (4.67) and (4.68) gives
.1 N |
Jim - logps(Yi,...,Yn) = lim s log go(Y1,-.-,Ys) (4.69)

and

.1 .1
Tim =B [logpo(Y,., Ya)| = lim By [loggs(Vs,..,Ya)],  (470)
provided the separate limits exist. Therefore, the conclusions of the theorem

will follow from the corresponding conclusions applied to gg.

Let I,m,n € Z, where m <l < n, thenfori=1,..., K,

K K
q¢(yﬂl+17 LPUe )yﬂli) = f(ym-{—l) 01) Z S 'Z ai,zm+2 f(ym+2, 0¢m+2)

Zm+z=1 .’I:n‘-:l

X [1 @seef(yt:0e)

t=m+3
K K
= f(ym+17 6-) Z = Z Otz ya f(ym+21 02m+z)
Em42=1 z;=1
l
X H Ogy_yze f(yta 02:1)
t=m+3

K K K
DD DI > i f (U141, 03) Qoo f (Y1425 Giy)

j=1zi42 =1 Tpn=1

LS H azs—lvhf(yuoz,)
=143
K

K
= f(ym+l7 01) Z S Z a",zm.{.z f(ym+2) 03m+2)

Zm4a=1 z;=1
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1 K
x H a:l:g_l,xtf(yti 02;) Z a:e;,j q¢(yl+17 =t ynl])

t=m-3 j:l
K K
S f(ym+1, 0!) Z e Z ai,zm+z f(ym+2, 03m+2)
Tm42=1 z;=1
l K
X H att—hz:f(yt; On) q¢(yl+1: LR 7yn) (Z az;,j)
t=m+3 1=1

= Q¢(ym+17 v ayllz) . q¢(yl+17 s 7yn)

< (Ymery -5 1) - @o(Yir1s - -2 Yn)- (4.71)
Since (4.71) holds for every 1 =1,..., K, then
86 (Um+1, -1 Un) < @p(Ymi1s -+, Y1) - 9 (Yrt1s- - -, Yn)- (4.72)
Equation (4.72) holds for any {y:}, implying
36(Ymt1,---» Yn) < @p(Ymi1s -, Y1) - @(Yiga, - -, ¥a), (4.73)
form <1l < n.
Now define a doubly indexed sequence of random variables W = {W,; : s,t
€ Z,s <t} on (Y*,B, FP3) by
W,: = log g(Yet1,-- -, Y2), for s < t. (4.74)
From (4.73), for m <1 < n,

Wm,n IOg q¢(Ym+11 . ,}/1,}/[4_1, o m ,Yn)

< log q¢(Ym+1a RN YI) o 10g q¢(}fl+la o 7Yn)
= Wpng+ Win. (4.75)

i

Since {Y;} is stationary and ergodic under ¢° by Al and A2; and {W,;} are
functions of {Y;}, then {W, .} is also stationary and ergodic under ¢°, relative

to the shift transformation

{wae} = {Werr41}- (4.76)
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Moreover,

Ep [Wih] = B [(logas(11))7]

_ &, [{log (max f(Yl,o,-))}+]

< 0o0.

by condition A7.

Kingman ([33], theorem 1.5 and theorem 1.8) proved that a process {W, :
s,t € Z,s < t} defined on a probability space (2, F, P) and satisfying :

(@) Won <Woi+Win ,for m<li<n
(b). {W.,.} is stationary relative to the shift transformation (4.76)
(c). E [W(;l,-l] < o0,

also satisfies the conclusions of the ergodic theorem, namely,

1
(a). lim —W;, = W exists, with probability one, where —oco < W < oo.

n—oo N,
.1
(b). EW] = Jim —E[Wo,]

(c). W is degenerate (constant), if the process {W,,} is ergodic: that is, the
o-field of events invariant under the shift transformation in (4.76) is triv-

ial.

An application of Kingman ergodic theorem to
Won =logge(Ys,...,Ya), n€ N,
gives the existence of H(¢°, ¢), such that —oo < H(¢°, ¢) < oo and

lim lQ‘ﬁ(le') b 7Yn) = H(¢07 ¢)1 (477)

n—oo N,
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with probability one under ¢°. Since {W,;} is ergodic under ¢°, then H(¢°, ¢)

is constant and

lim L5, [loggy(¥s,.. . Ya)] = B[, 8)] = H@,8). (479

By (4.69), (4.70), (4.77) and (4.78), the conclusions of the theorem follows. m

Remarks 4.4.4 The proof of Theorem 4.4.3 shows that the value of H(¢°, ¢),
for ¢ € 5, with m;(¢) >0, for i =1,..., K, depends on the value of

Q¢(}/1a v ’Ynli) . f(nael(qb)) Z el Z ai‘z,(¢)f(}/2,0z2(¢))

xra=1 zn=1

X tl:]:; Qg )2 (¢)f(1/t7 02: (¢))’

fori=1,...,K and n € N, which does not depend on the value of the initial
distribution 7(¢@).

As a direct consequence of Theorem 4.4.2 and Theorem 4.4.3, we have the
following corollary which shows the relation between the Kullback-Leibler di-

vergence and the log-likelihood brocess.

Corollary 4.4.5 Assume conditions A1, A2, A4, A5, A6 and A7 hold. Then
for ¢ € ¥, with m;(¢) >0, fori=1,..., K,

K@) = Jim La(4°Y) - lim La(4,Y)
= —H(¢") ~ H(#"9).

Remarks 4.4.6 If K > K°, then for ¢ ~ ¢°, H(¢°) = —H(¢4°, ¢)-
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4.5 Simplified Parameter Space for Hidden
Markov Models

Let ¢ = (K, A, m,0) € ®%, with m; > 0, for i =1,..., K. From Theorem 4.4.3,
for ¢, there is a constant H(¢°, ¢), such that :

(a). —oo < H(¢°,¢) < o0
o Ul o
1
(c). Jim ” logpy(Y3,...,Ya) = H(¢°, ¢) with probability one under ¢°.

The proof of Theorem 4.4.3 shows that the value of H(¢°, ¢) depends only on

the values of A and 6, and does not depend on the value of m. This means that
H(¢°,¢) = H(¢°, ), (4.79)
forall ¢ € S(K, A,0), where

S(K,A,0)={ e : $=(K,AR,0,), ®>0, i=1.. K}

By Corollary 4.4.5 and (4.79)

K(¢°,4) = K(¢°,9),

for all ¢ € S(K, A,0), which implies that all parameters in the set S(K, A, 6)
are indistinguishable in term of Kullback-Leibler divergence. This suggests that

the set S(K, A,0) can be simply represented by a single parameter
$ = (K7 A, aK, 0),

where X is an arbitrary initial probability distribution with of > 0, for

i=1,...,K and of is independent of A and 0.
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Let ¢ = (K, A, ,0) € Pk, with m; = 0, for some ¢, 1 < i < K. As K° is
minimum, if K < K°, then ¢ 4 ¢°. If K = K°, then by Corollary 2.6.5,
¢ A ¢°. If K > K° and ¢ ~ ¢°, then by Lemma 2.6.4, the number of
non-zero m;, that is N, satisfies K° < N < K. By Lemma 2.5.5, there is
$=(N,A\,?r,é) € &%, with 7; > 0, for i =1,..., N such that b~ G~ ¢°.

Two facts above suggest that we may ignore every parameter in $% which has

zero elements in its initial probability distribution and simplify every set
S(K,A,0)

by a single parameter

¢ = (K, A, o, 0).

So &%, can be simplified by
& = {5 . ¢=(K,A,aX,0), where A and 0 satisfy :
K
A“—"(CY,'J'), a,—,-ZO, Za,-jzl, ’L,j=].,,K
=1
0 = (6;)", 6;€0°, i=1,...,K}. (4.80)

Since a¥ is arbitrary but fixed for all (A4, 8), then for convenience, we will write

(4.80) as
&S, = {5 . §= (K, A,0), where A and 0 satisfy :
K
A=(a,:,-), C!,'J'ZO, Za,-j=1, Z,]=1,,K
j=1
6=(6:)", 6;€0° i=1,... ,K}. (4.81)

Notation 4.5.1 For convenience, we will use tilde for every parameter in S,

and without tilde for every parameter in &%, for example, ‘2; € 53( and ¢ € 9%.
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To extend the idea of the equivalence relation ~ defined on

o= | o%
keN
to the new parameter space
P° = U %,
kelN

define a new relation ~ on @ as follows.

Definition 4.5.2 Let ¢; = (K;,A1,61) and bs = (K2, Az, 02) be two elements
of 8. Define

if and only if

(a). K(¢°,¢1) = K(¢°,¢2)

(b). there are initial probability distributions m, and g, such that

¢1 it ¢27

where ¢; = (K1, A1,71,61) and ¢3 = (Ka, Az, 72, 02).

It is clear that ~ is an equivalence relation on o°.

From Definition 4.5.2, if ¢; ~ @, where ¢, = (K1, Ay, 0;) and ¢, = (Ka, Az, 6,),
then there are initial probability distributions m; and 7, such that ¢; ~ ¢,
where ¢ = (K, Ay, m,0:) and ¢ = (K2, Ag, m2,02), but in general the con-

verse is not true. The following example shows this case.

Example 4.5.3 Let ¢1 = (2,A1,7T1,01) c dsg, with

(o)
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)

01 e (al 3 Qg )T7

[T
[T

7T1=(a

where a; # a; and ¢, = (3, Az, M, 62) € 9§, with

1
g 3 O
Ay = 1 00
i1 1
3 3 3
m = (%7%)0)
01 = (ala Q2,3 )T’

where a3 # a; and az # ay. Let ¢ = (2,A;,60;,) and b2 = (3, Az, 62).

It is clear that ¢; ~ ¢, but since oy, as,as are distinct, then K (¢°,$l) #
K(¢°,82). So 61 % ¢a.

Then next lemma gives a sufficient condition for the converse to hold.

Lemma 4.5.4 Let ¢1 = (KI,AI,W1,01) € ¢§(1 and ¢2 = (Kg,Az,ﬂ'z,02)
€ %, with m; > 0, for i = 1,...,K; and m; > 0, fori =1,...,K,.
Let ¢, = (K1, A;,61) and ¢2 = (Ko, Az,02). If 1 ~ ¢a, then b1~ o

Proof :

Since my; >0, fori =1,..., Ky, ¢~ ¢ and mp; > 0, for . =1,..., Ky, then

- . 1
H(¢% ¢1) = lim —logpy (Y1,---,Ya)
.1
= }Lr{.lo;logp¢,(Yl,...,Yn)
. H(¢oa$2))
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implying
K(¢°,¢1) = K(¢°, $2)-

So ¢~>1 =~ $2- =

Corollary 4.5.5 Assume conditions Al and A2 hold. If ¢ = (K° A,~x,0)
€ Byo and ¢ ~ ¢°, then ¢ ~ ¢°, where ¢ = (K°, A,0) and ¢° = (K°, A°,0°).

Proof :
By Al and A2, ¢ > 0, for i = 1,...,K° and by Corollary 2.6.5, m; > 0, for

t=1,...,K° By Lemma 4.5.4, the conclusion of the corollary follows. [ ]

As direct consequences of Lemma 2.5.13 and Corollary 2.5.10, we have the

following lemmas.

Lemma 4.5.6 For any K € N and = 53{, there s q~52 € 5‘}{“ such that
$1 = $2-

Lemma 4.5.7 For 51 € 5‘;0 there are infinitely many $s € 5’;'( +1 such that
51 = 52-

Corollary 4.5.8 Assume that conditions A1, A2 and A3 hold. Let ¢ =
(K°, A°,6°).

(a). If K < K°, then there is no é € 9% such that ¢~ ¢°.

(b). If K = K°, then there are at least finitely many = &5 such that b~ ¢°.

(c). If K > K°, then there are infinitely many $e 5‘1}( such that ¢ ~ ¢°.
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Proof :
Since K° is minimum, then (a) follows. (b) holds since o(¢°) ~ ¢°, for every

permutation o of {1,..., K°} and (c) follows directly from Lemma 4.5.7. =

By Lemma 4.5.6, we now can define an order < on {®%}.

Definition 4.5.9 Define an order < on {®%} by
&, < 9, K,Le N

if and only if for every 51 € 5%, there is czz € 5% such that 51 ~ .
By Lemma 4.5.6, we have:

Lemma 4.5.10 For every K € N,

% < Pk 1.

From Lemma 4.5.10, the new families of parameter for hidden Markov models

are nested families.

Let (25}, for some arbitrary but fixed K € N, be the parameter space for hidden
Markov models. For 7,5 = 1,..., K, let a;;(-) and 6;(:) be the coordinate

projections on &<, which is defined by
a,-j(q~5) = a,-j and 0,($) = 0,;,

for ¢ = (K, A,0) € . Then for n € N and y = {y:} € J, the log-likelihood
function L,(-,y) is defined on &5 by

Ln($7 y) = %logpg(yla s ’yn)
K K - n ~ A
%k)g Z e Z af; (y11 031 (¢)) t=H2a3:—1,=t (¢)f(yt’ 0¢t(¢))

zy=1 z,=1

Suppose that a similar condition to A5 hold, that is,
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Ab5*. For each i,j =1,...,K, a;;(:) and 6;(-) are continuous on &, .

Then A5* together with A4 imply the continuity of L,(-,y) on 5%, for every
n € N and y € Y. Furthermore, from the proof of Lemma 4.2.1, it can be seen
that for each y € Y, {L,(-,y) : n € N} is an equicontinuous sequence on Pe..

4.6 Kullback-Leibler Divergence
and Parameters which are Equivalent

with the True Parameter

Let 5‘;'{ be the selected parameter space for hidden Markov models, for some

K e N. If K > K°, then by Corollary 4.5.8,
{$e§‘;{:$g$"};&0.

Recall that ¢° = (K°, A°,7°,6°) and ¢° = (K°, A°,6°).

Let 5 € 5‘}{ If § ~ q~$°, then by definition of ~, it is clear that K (¢°,$) =0.
On the otherhand, if K(¢°,¢) =0, is é ~ ¢°? This whole section is dedicated

to the answer to this question.

In this section, we will adapt the work of [34] to our case. The adaptation is

possible due to the existence of parameter ¢° € $§ which satisfies :

(a). m(p°) >0, fori=1,...,K

(b). m(¢°) = (mi(¢°)) is a stationary probability distribution of the transition
probability matrix (a4;(¢°))

(c). ¢°~¢°
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(). Ege[llog f(Y1,0:(¢%))] <00, fori=1,...,K.

From the proof of Lemma 2.5.9 and under conditions Al, A2 and A6, the

existence of such ¢° is guaranteed. By (a), (c) and Lemma 4.5.4, @° ~ ¢°,
where @° = (K, A(¢°), 0(¢°)).

Since (a), (c) and (d) hold, by Theorem 4.4.2 and Lemma 4.5.4,

H(¢°) = H(y%)
H(¢°,4) = H(¢°,$), Ve

Then to prove K(¢°, ¢) = 0 implies ¢ ~ ¢° is equivalent showing K (¢°, $)=0
implies ¢ ~ @°. Thus throughout this section, the role of ¢° will be replaced
by ¢°.

First, as in [34], the Fustenberg and Kesten [23] approach will be used to
define a new probability space in which the process {Y;} and {P,(X: = 1
[Y;—1,Yi-2,...) 12 =1,..., K, t € N} are stationary.

The Fustenberg and Kesten approach requires a careful accounting of the prob-
ability spaces and measures involved. We begin with the process {Y;} which
is defined on the probability space (Y*°, B, P, ), where J* is the set of all
realizations y = {y;} and B is the Borel g-algebra of Y*. Let T be the shift

operator on Y* which is defined by

T{yt} = {yt+1}'

Since ¢° ~ ¢°, then by condition A2, {Y;} is stationary under ¢°, with respect
to ¢°, that is,
Pw”(T_l(A)) . P¢°(A)v A€ B,

where

T-1(A) = {y € ¥° : Ty € A}.
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Furthermore, by condition Al, {Y;} is also ergodic under ¢°.

Let Q be the set of sequences w = {(y;, u®,v®)}, where {y;} is a realization

of {Y;}, u® and v® are K-dimensional vectors satisfying :

WD P >0 0 j=1,...,K, t=12...

7 7]

lu® =0, or 1, t=1,2,...
lo®) =0, or 1, t=1,2,...

with
K
lall =3 ladl, for a=(a4,...,ak).
i=1
Now define ¥;, U®, V® as the coordinate functions on (2, that is,
Yi(w) = o, UD(w) =4, VO(w) = v,

for w = {(w,u®,v®)} € Q.

For ¢ € &S, with K > K°, let 2° be the subset of {2 on which

o) = o) = m(e?), for j=1,...,K (4.82)
K
S u £ w2, 05(6")) (")
W = = v ., for k=1,...,K, t=12,...
S ul £(9,6;(¢))
=1
(4.83)
S TN T
Z'vj f(ye,0;(9))ojn(d)
o) = J=1K - , for k=1,....K, t=1,2,....
> ol £y, 05(8))
i=1
(4.84)

K

1 > ul f(y,6;(¢%)) = 0, define u{™ = 0, for k = 1,...,K. Also if
)=1

KJ e t+1

vg-t)f(yt,Oj(qS)) = 0, define v,(e+ ) = 0,for k=1,...,K.

1

j=
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Rémarks 4.6.1

(a). ug-l) = vﬁ-n =mj(¢°) >0, for j=1,...,K.

K
] = o] = 3 mi(°) = 1.
7j=1

K
(b). Fort=1,2,...,if Zug-t)f(yt,ﬂj(w")) =0, then
7=1

ugﬂ):O, for k=1,...,K

and

K
[u® D) = S ul ™ =0,
k=1

K
if ) ug-t)f(yt,O_.,-(goo)) # 0, then
=1

K
”u(t+1)” — Zu£t+l)
k=1

LK ul £y, 0;(9°))ain(¢°)
SE L ul? f(u,6i(¢°))
) el uﬁ-"f(ye, 0;(¢°))
5w (e, 05(#°))

= 1,

K
as Za_.,-k(cp"):l, forj=1,...,K.

k=1

(c). Similarly,

vit! >0, for k=1,....,K, t=1,2,...
oV =0 or 1, for t=1,2,...

(d). So by (a), (b) and (c), 2° C Q.

Notice that on €2°, each w = {(ys, u®,v®)} is uniquely defined by y = {y:}
€ Y. Hence (° may be taken as the sample space for the {¥;}. Define a

function r : Q° — Y* by

r{(yhu(t)7v(t))} = {yt}7
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then r is a 1-1 correspondence.

Let
Bgo = {r"'(4) C Q°: A € B}.

Bqo is a o-algebra. Also let
Ba={ACQ:ANQ° € Ba.},
then Bq is a o-algebra and Bg. C Bq.
The goal is to define a probability measure on Bg, under which {(Y;,U ®,

V®)} is a stationary sequence, while {¥;} has the same distribution as it does

under Po.

Since r : Q° — Y® is a 1-1 correspondence, then we can carry over the measure

P,. to Bg. and trivially extend it to a measure P;o 3 on Bq. Define P’ g on

Bg as follows :

P!, H(4) = Pp(r(ANQ)), A€ Ba.

Observe that
Pwo'g(A) e Pw,g(A no°), A€ Bq

and

PLH®) = Po(r(@)
= P.()™)
= 1. (4.85)

By (4.82), (4.83), (4.84) and (4.85), on the support of P;o 3

v = v = m(p?), for j=1,...,K (4.86)
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K
U ATCHIIACY
U,£t+1) = =1 = . for k:]_,__,,K, t=1,2,...
S UDF(Ye, 0;(¢%)
j=1

(4.87)
K - —
3 VO (Y, 65(8))eun($)
A = . for k=1,...,K, t=1,2,
> VOf(Ye65(4))
j=1
(4.88)

Lemma 4.6.2 The process {Y;} has the same distribution under P’ 5 a8 un-

®°,
der Ppo.

Proof :
Let A € R", where R" is a Borel o-algebra of R", then

P {w e (Yi(w),. ... Yaw)) € A}

Pl {5, u®, 0} € 0% (v, m) € A}
= Po{{)} €Y : (s, 3a) € A}

= Po{ye¥>:(i(y),..-,Ya(y) € A}

i

Let Ty, be the shift operator defined on 2 by

To{(ye, u®,v®)} = {(¥er1, ulttY )

Lemma 4.6.3 Assume condition A2 holds, then {Y;} is a stationary process

with respect to T under P;o e
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Proof :
Let A€ R"™ and

B

It

{w € Q: (Yi(w),...,Yn(w)) € A}

{(u®,v)} € 9+ (1, .--,9a) € A},

then
To'(B) = {weQ:Ta(w)€ B}
= {{(mu®,v9)} € Q: {(yorr,ul™,0¢)} € B}
= {{(y,u®,v™)} €Q: (¥, -, ¥n11) € A}.
P;o’;(TEI(B)) = P, ={{(s,u®,v")} € 9°: (32, ,¥nr1) € A}

= Pof{()} € Y™ : (32, ¥nra) € A}
= Po{{w)} €Y= : (41,-..,9m) € A} (4.89)
. P;o'g{{(ytau(t)av(t))} €Q°: (y1,---,¥n) € A}
= P;o;(B nQ°)
= P +(B),

where (4.89) follows from the stationarity of {Y;} with respect to T under P,..

Notice that

_f: ul) f(y1, 0;(9°)) e (¢°)

u}f’ = &= , for k=1,...,K

K
3 ul® £(y1,6,(¢°))
j=1

K - i~
3o £ (31, 05(9)in(9)
v = — ; for k=1,...,K

K —~—
S o £ (31, 6;(8))
j=1
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need not equal 7 (¢°), when uscl) = vg) = me(¢°), then in general the {(U®),

V®)} process is not stationary under P;o 7 However, based on P’ 3 We can
, ¥

construct a probability measure, say IB‘P., ~ on Bq such that :
(a). {(Y;,U®,V®)} is a stationary process under 13900 3

(b). The process {Y;} has the same distribution under P 5 as under Pyo

as follows.

For each k = 1,2,..., define a measure quoo $T5k+1 on Bp by
P Ta* ' (A) =P, {w € Q: Ty (w) € A},

for A € Bq.

Lemma 4.6.4 For eachn=1,2,..., let

Z P! T—k+1

"k1

then there exists a subsequence {n;} and a probability measure IBW ~ on Bg such

that :

(a). 13::% converges weakly to P«p" 3 in the sense that the finite dimensional
joint distribution functions of the variables Y;,U ®) VO with respect to
13::% converge to the corresponding joint distribution functions of the

Y;, U® V® with respect to 13¢0 3 at each continuity point of the latter
(b). {(Y:,U®,V®)} is a stationary process under Plpo,fﬁ

(c). The process {Y;} has the same distribution under P ~ as under P,o

Proof :
The idea of the proof comes from Lemma 1 of [23].
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For each m,n = 1,2,..., let F{") be the joint distribution function of Y, ...,
You; UM, ... U™ VD | V™ with respect to ﬁg,)g To show the existence
of the subsequence {n;} and the probability measure P , 7 and to prove (a)
it will suffice to show that for each m, there exists a subsequence {n;} and a

distribution function F,, such that
: (ne) —
khm Fi'(z) = Fiu(z),

for each continuity point z of Fy,. Using diagonal procedure the required

subsequence {n;} is obtained and we have
_l_i+m F™)(z) = Fp(z), Vm=12,...

for each continuity point x of F,,. Thus, the probability measure 13990;; now

can be defined on Bp by assigning F), as the joint distribution function of

Yiyeoo, Y3 UD, U VO, V™ under P, -

By Helly selection theorem, for sequence of distribution functions {F™}, there
exists a subsequence {n;} and a function F,, such that :

e 0K<F,<1

o F,, is non-decreasing in each variable

® Do DapgesymbriymEm > 0, for (2K + 1)m-bounded rectangle
(a,b], where :
(‘%b] = (al,bl] X oo X (a(2K+1)m,b(2K+1)m]
Aa.-,b; = Fm(mla ey Li—1, Qi Tit1y--+ w(2K+1)m)

. m(a"l) ooy i1, biy Titly---y $(2K+l)m)
e F,, is continuous from above

e For each continuity point z of F,,

lim F{¥(z) = Fn (o). (4.90)
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We will prove that F, is a distribution function. We need to show that
Fu( o0) =1, oo = (00,...,00) (4.91)

and

Fo(z) =0, if at least one coordinate of z is —oo. (4.92)

We will prove that (4.91) holds and the proof for (4.92) can be verified similarly.
Let a = (ay,...,0m) € R™ and b = D, ...,6tM) c = (W,...,c™) € RE™,
Let

Aspe = {w €N : Yi(w) <ay, U}i)(w) < bﬁ-‘), V;_(")(w) < C.(‘ii)’

i=1,...,m, j=1,... K}

({0 10)) €0+ 3 < ap, o <80, o) <,

i=1,...,m, j=1,...,K},

A, = {w € Q:Yi(w) <aq,...,Yn(w) < am}
= {{(yt,u(t),'v(t))} eQ:y1<ag,. -, Ym < am}
and
B, = {ye¥>:Yi(¥) < a1, Yuly) < am}
= {{(yt)} eV¥:ypi<ar,..,ym < am}.

Notice that
(A, NQ°) = B,.

Since fort =1,2,...

us-t),v;-t)ZO, j=1,..., K

lu®|| =0, or 1
||v(‘)||=0, or 1,

then 0 < ug-t),v;-t) < 1 and hence

Agpe = Aa (4.93)
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for b and ¢ with b, ¢ >1,i=1,...,m,j=1,...,K. Let G,, be the joint

3153
distribution functions of Yj,...,Y,, under P,., then
Gum(a) = Pyo(B,) (4.94)
n _ pln)
FiP(a,b,c) = PV Aape) (4.95)

By (4.90), (4.95), (4.93), stationarity of {¥;} under P:oo ¢ and (4.94),

Fr(00,00,00) > Fp(o0,1,1)
= lim Fn(e,1,1)
= lim lim F™)(q,1,1)

a—o0 k—yoo

= lim lim P("“)(Aa,m)

6500 koo P9

s . . ~("'~k)
= Jin i P54
nE

= lim lim LZPLDJ(Tg*“A,,)

a—o0 k—oo nk =1

P R
= lim lim _ZP;o,J,'(Aa)

000 ko0 Mg 4=y
= Jim P 5(4e)
= Jim Pe(r(4e )
= lim Pyo(B,)
= Jim Gn(a)
= Gpm(o0)
= 1. (4.96)

Since 0 < F,, < 1 and by (4.96), then Fy,,(c0,00,00) = 1. So (a) is proved.

To prove (b), let A € REE+)™ 16 a continuity set of the joint distribution of
Vi, Y UO U™ VO V™ ynder 13‘00 3~ Then by Theorem 29.1
of [11], page 390,

ﬁ‘po'g{(}/l, = ’Ym; U(1)7 sery U(T’l); V(1)7 [N )V(m)) S A}
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= lim PO, .. Y UM, U Y@ v € A}
i—oo ¥°
_ I & o e (m+k). 1 (k) (m-+k)
- =1-1+I§10E,§:P {(}’,,,...,Y,,,+k,U L U Ry )eA}
ni+1
= tlggo; 3 Po¢{(n, Y UW O @y mky e gl
t k=2
1
+ lim —P!, {(Yl,...,Ym;U(l),...,U('");V(l),...,V("‘)) € A}
i—o0 T
o il—igcla ;z:P;o}{ (Yni+1’ aYn.+fn+11 U(n'+1) -5 U(ni+m+1);
yir) | ylmtmily e 4}

1 ni+1

lim — > P, {(Yk

1—oo n‘ k—2

Ym+k; U(k)a Jo

U(m+k); V(k), ey V(m+k)) € A}

+0—-0
- ll,m P“(o -){(Yz, Ym-l-l;U(z),_..,U(m+l);V(2),_“,V(m+l)) = A}
= P(Va... Y UD, ... .UV O, VD) € A}

Hence {(Y%,

U®, V®)} is stationary under IBPO 5

To prove (c), let B € R™ be a continuity set of the joint distribution of

Y1,..., Y, under P 0.3
arity of {¥;} under P;o 3
P, .¥n) € B} =

The equation (4.97) follows since

as under P,.

then by Theorem 29.1 of [11], page 390 and by station-

P06 - o) € )

lim E.,?: P A%y Yois) € B}
grg—ikzlp' {(Yl,...,Ym) € B}

lim P, A, Yn) € B}
Pl o) € B
Ppo{(%4,...,Yn) € B} (4.97)

{Y;} has the same distribution under P;o Y
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Remarks 4.6.5 Lemma 4.6.4 is similar to Lemma 4 of [34].

The next goal is to interpret the process {U®} under P:o 03

Recall that on the support of P;o 7
UM = v = m(e?), for j=1,....K (4.98)

and
)
S U7 f(Ye, 0;(9°))asn(¢°)
U(t+1) =1
k

$UY £(¥a05(¢)

=1

(4.99)
S VO £(:,0;(6))ain(9)

Vk(t+1) _ j=1

K

Z V;'(t)f(},t’ 0]((;))

1

(4.100)

fort=1,2,...and k=1,...,K.

Lemma 4.6.6 On the support of P;o e
U = Ppo(Xy = j|Ye1,.- -, Y1)

forj=1,...,K andt=1,2,....

Proof :

For the proof we use mathematical induction. From (4.98), for j=1,..., K,
U = mi(¢°) = Por(Xs = ).
Assume that for some ¢,

U® = Ppo(X, = klYs-1,.., Y1),  k=1,...,K. (4.101)
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We will prove that

Ulgt+1)=P¢0(Xt+1=k|Yt,---,Y1), k=1,...,K.

By (4.99) and (4.101),

g = S U0 )onls?)
KLU0 (Y, 05(9°))
Ef:; Ppo(Xt = j|Yt—1, s ,Yl)PgoO(Ytlxt = j)P<p°(Xt+1 = k|Xt . j)
Y351 Poo(Xi = §|Yion, - ., Y1)Pgo (Yel Xe = 5)

S peo(Xe = 5, Ya, X1 = k|Yey, .., Y1)

YK P (X = 3, Vel Verrs -, Y1)
Pee(Ye, Xey1 = klYe1,-.-,Y1)

P (YilYi s, .., Y1)
= Puo(Xpy1 = k|Ys, ..., Y1), (4.102)

where (4.102) follows from Lemma 2.3.2. |

So under P<'p°$’
U-,’(t) = P¢°(Xt = jl}/t—la .. Jle)

forj=1,...,K and t=1,2,... . The operation of shifting the time scale and
taking limit to obtain IB‘PO’;; has the effect of converting U}l) into a conditional
probability depending on infinitely many past value of {Y:}. Precisely, U}l)
represents

Poo(Xy = j|Ya,Yo1,-- ). (4.103)

Therefore, the entropy

H(¢°) = H(¢°)

K
= By |:_ logzpw"(Xl = j|¥o, Y4, . ')-f(Ylvej(‘po))}

=1

is seen to be equal to

K
E¢°,$ —log E UJ(I)f(Ylv aj(‘Po))] ’
7j=1
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which is true and proved in Lemma 4.6.8.

Before proving Lemma 4.6.8, we will need the following lemma.

Lemma 4.6.7 Forn=1,2,...,

n K
(o). - log (E U}"fm,o,-(w))) ~ log (

J:

(b). ilog (EKZ V,-“’f(n,aj(%))) = log (‘f Vilpg(Ya, . Yol X = i)) :

=1 j=1

K

Z U}l)psp"(yl’ s Yol Xy = .7))
1

Proof :
Here we will only prove (a), the proof for (b) is similar. First, using mathe-

matical induction, we prove that for t =1,2,....

S 00 13, 0,9)) = r 0 PV YilXa =)
=1 ’ Y EfﬁlU}I)pP"(sfh-'-aK—l‘Xl=j)

(4.104)

For t = 2, by definition,

YK SK UP £(Y1,0;(9°))am(9°) f (Va, O (¢7))
K U f(¥1,6,(¢°))
KL UD £, 0;(¢°) TE.; 0u(9°) f(Ya, 0x(¢°))
K UPF(Y2,0;(9°))
K UPpee (11, Ya) Xa = 5)
K UPpe(ViiXa=5)

K
S UP f(Ya, 00(¢%)) =
k=1

Assume that for some ¢,

i U f(Ya,05(9%) = SE U P (V- -, Yl Xa = 5)
=7 ’ K U (Y, ..., Yool X1 = 5)

then
& ®
YUY F(Ye, 0k (9°))
k=1

SE L SE L USY f(Vi, 05(0°))in(9°) £ (Yo, 81(#))
KUY f(Yie1,05(9°))
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SE L YK UNpge(V, ..., Yaout | Xa = §)oin(9°) f (Y, Ok(#°))
K UVpge(Ws,..., Y| X1 = j)
S UM pge (Y, .., Yorr| Xa = 5) SE, ae(9°) (Ve 6k(°))
y U,(‘UPW(YL Yl Xy =)
f:l U;}.l)pso"(yl’ - - 7Y;‘.|X1 . .7)
f:l U_‘El)ptp"(}/la e ,Yt—1|X1 = j) ‘

Thus (4.104) is proved.

By (4.104),

n K (t)

Y log Y U;” f(¥i,05(¢°))
t=1 J=1

= log {Z UD £(¥1,05(¢°) x DU f(¥2,05(¢%))

7=1 j=1
o (n)
X oo X ZUJ f(Yn,aj((,Do))}
=1
- = p ° 9 ]
] log {E U_:El)pwo(YiIXl =J) X 2 I]-( 2 (lr ( 1 2[ 1 ])
i =1 Uj Pee(Y1|Xa = 7)

SK Uppe(Ya, ..., Yal X1 = §) }
K UMpe(Yy,..., Yo 1| X1 =)

K
— logz U}l)pwo(yrlj--.,Yanl :j)7
i—1

J

thus (a) follows. =

Lemma 4.6.8 Assume conditions A1, A2, A4, A5* and A6 hold. Then

K
H(¢?) = B, 7 |-log > UV f(¥,6;(¢7))]| -

=1

Proof :

Since

K
in_log f(¥1,65(¢7)) < log ]_2_; U £(¥1,05(¢°)) < Jmax log f(¥1,6;(¢°))
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and
B[ 10g £(%1,0;(@°))I] = By [|log £ (¥, 05(#)] < o0,
for every j = 1,...,K and i = 1,2,..., then the sequence of laws of log
X UJ(I) f(Y1,8;(¢°)) with respect to ﬁi:'% is uniformly integrable. Also, the
joint distribution of (¥;3,U®M) under f’::% converges weakly to the correspond-
ing distribution under P, 5, then by Theorem 25.12 of [11], page 348,

E("l)

logZU( )f Y1,6;(¢° ))] —)E

j=1

K
mzw%mwwﬂ
=1

as 1 — 00, implying

_ K
B3 [log > U, 01(30"))}

= lim B logzU‘ )£(11,05(¢° ))]
N hm*ZE' logZU“f(Yt,H (%))
i200 71; = =
g Lo () o
= lim E_E,po,; EIOgEU f(Ye,0;(¢ ))]
.1 )
= lim EE;",&T 1ogj§1 UMpo(Ya, ..., Yur| X = J)] (4.105)
1 [ X ,
= Jim -Ey. |log X m(e)pe (V- YalXa =5 (410)

= lim 1 E [lngpv(l/l, FRERE 7Y'"-i)]

i—o0 N,
== 11—1}1{010 ;';E‘po [log p‘Po (Yl’ - ,Yn‘-)]
= —H(()Oo)v

where (4.105) follows from Lemma 4.6.7 and (4.106) holds since UJ(I) = m;(¢°),

under P’ . u
9o,

The result of Lemma 4.6.8 can be extended for H(¢°, $) shown by the following

lemma.
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Lemma 4.6.9 Assume conditions A1, A2, A4, A5* and A7 hold. Then for
every $ € 5%, with K > K°,

~ — K —~
H(e", ) =E,, 5 [og > V" (¥1,6;(9))| -
=1

Proof :
The proof follows the proof of Lemma 5 of [34].

By the ergodic theorem, there exists a random variable Z such that

j=1

B ,¢{,!g§° ZlogZV“’f(n,e(cb))— }—

and

EZ)=E,  |log Z v (¥4, (¢))]

i=1

First, we will show that E“po g[Z] < H(¢° ¢). By part (b) of Lemma 4.6.7,

E,42] = E,z|}lm— ZlogZV“’f(Yt,o (¢))]

Ln—)oo =1

= E‘Po’qb lim —logZV( )p¢(Y1,--- , Yo | Xa =j)]

n—oo n,
B 3=1

1 .
hm —log ( rsnjas.)%pg(ﬁ,---,ynlx1 o J))]

¢01¢ Ln—-)oo n

= F ~|lim — log q;g(Yl, - ’Y”)]

%@ |n—oo 1

= Eq,o [1}1{{.10 1% log q;(Y'la ey Yﬂ)]
_ E(PO [H(¢o,$)] (4107)
== H(‘Po’ (;)7

where (4.107) follows from the proof of Theorem 4.4.3.

Next, we will show that Ev" ;;[Z] > H (tp",(z). Without loss of generality,
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assume that H(¢°, @) > —oo. Let
K N
A= {w €Q : log ) V" (w)f(Mi(w),0(#)) < o} :
=1
Since the joint distribution of (Y;, V() under P( 5 converges weakly to the

corresponding distribution under P then by Theorem 25.11 of [11], page

o¢1
347,
- g =
[ log 3V £(v3,0,(8)| 4P, 5
=1
- M pir)
< timinf [ 1ogj§_jv 1(¥1,0;(8))| 4B
implying
) o o7
[ 108>V 1(%1,6,(8) dP,. g
j=1
> limsup / logZV(l) F(%3,0,(9))dPTL. (4.108)
i—oo
Also, since

J_

{lg}isnKlogf(Yl,e,-(éﬁ?))}+ < {1ogZV“’fm,0(¢>)}
< { max 1w 1(%,0,)}
and by condition A6,
50 [{10g 11, 0:@)} | = Br {108 £, 5@} | < o0,

~ + R
for any n;, then the sequence of laws of {log Zle VJ-(I) f (Y1,0j(¢))} with re-
spect to Isi:"% is uniformly integrable, then by Theorem 25.12 of [11], page
348,

lim [ log }: VIV F(Y1,6,(8)) dP(

i—oo JO\A =i

- /n g z v f(13,6,(8)) dP,, (4.109)

j=1
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Hence by (4.108), (4.109), Lemma 4.6.7 and Theorem 4.4.3

Eﬂoo)g[z]

Equation (4.110) and (4.111) follow since Vj(l) =mj(¢°) >0, for j =1,...,

v

—~— K —
E.; log_zlvj‘”fm,a,-(eb))
J:

K
/A log V,-(I)f(Yl, 0;(9)) dﬁgpo,g

=1

’ K o -
+/;]\A log;Vj f(Y1,0;(8))dP . 5

K
lim sup /A log V,-(l)f (Y1,0;(¢)) dP :,:%
=1 ’

1—00

K
] €Y N 7 D)
+ llﬂillp = logjz_: ViV f(Y1,05(¢)) dpq,o,g

mZWWMﬁmﬂ

lim sup E( z)

t—oo

lim sup E E' N [log Z Vj(t)f(Yt, 03(‘75))]

t—oo 1 t—1
1
limsup —E, > Z log Z v £(Y.,6; (qb))]
i—00 i ! j=1
1
limsup —E _ = |log Z V8V, Yo Xa = j)}
idoo T '¢ i j=1
1 K
lim sup ;E’ 4, log Z ﬁj((po)ptﬁ(yvh gl a 7Yn.' IXl = .7) (4110)
t—oco 4 ’ i j=1

lim sup ;E‘Po [log p;’;(Yl, AU Y,,'.)]

i—00

H(¢% ).

under P; o3 So the conclusion of the lemma follows.

Based on Lemma 4.6.8 and Lemma 4.6.9, we can answer the main question of

this section.

Lemma 4.6.10 Assume conditions A1, A2, A3, A}, A5*, A6 and A7 hold. If

é € &, with K > K° and K(¢°,¢) =0, then ¢ ~ &°.
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Proof :
The proof follows the proof of Lemma 6 of {34]

Let ¢ € 5%, with K > K° and n € N. Let Q be the distribution of U under

1‘5@0 3 If B is a continuity set of @ and A € R", then

1‘5¢,,,~{(Y1, ., Y.) € A, UM € B}

= lim —ZP’ {(Yt,...,YHn) c AU ¢ B}

t—roo 'n,’ =

= lim —Z/ / Zu( )pg, (Yer - - - > Yeanld) dpp(ye) - - d,u(yHn)th(u())

i—=00 N =

- fm [/, _Z uPpge (s, - Ynld) duln) -~ du(yn)dQ (u)

1—>00
= [/ S U e (31 Vald) i) - dia(ym)AQY), (4112)
J—l
where @, are the distributions of U () under P:oo 3 and Q™) are the distributions
of UM under 13;:% . The second equality follows, since U}t) = Pp(X¢ =7
|Yi_1,...,Y1) under P:,., 3 From (4.112), the conditional density of Y3,...,Y,
given U!) under 1.5‘?, 7 is

K
Zugl)pwo(yl,...,ynU). (4.113)
Jj=1

By Lemma 4.6.8, stationarity of {(¥;, U®,V®)} under f)qo" 3 Lemma 4.6.7 and
(4.113)

—nH(y°)

K
Bz 1°g§UF’f(Yl,o,-(so°»]

+- E

logZU( f(1,0;(¢° ))}

3 |log 2 UF’f(Yl,o,-(so"))]

_ K
—+ Epa'g |:10g Ez:l U_.,(n)f(Yn7 01.((‘00))]
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n K
= E,; ZlogZU}"fm,o,-(w))}
t=1 j=1

:

K
= Bz logZ:U}l)pw(Yl,...,Yn[Xl=j)}

j=1

K K
= //Eugl)p‘po(yl,...,ynU) X logzugl)pvo(yl,...,yn]j)
7=1 j=1

du(y) -+~ du(ya)dQ(®) . (4.114)

Similarly, by Lemma 4.6.9, stationarity of {(¥;, U®,V®)} under IB‘P,, 3> Lemma
4.6.7 and (4.113),

nH(y°, ‘z) = E

v°.d

K
log 3 VIV pz(Y3,. .., Yald)
=1

J=

K K
g 1 .
f//ZU§-l)p¢o(y1,---,yn|J)xlogzvﬁ- 231, > ¥ld)
Jj=1 j=1

dpys) -~ dp(ya)d@(u,v) , (4.115)

where Q is the distribution of (U™, V() under 13«,0 7

Since the marginal distribution of Q corresponding to the first coordinate is Q,

then by (4.114) and (4.115)

K(¢°,¢) = —H(¢")— H(¢°,9)
= %/[f;uﬁ”w(yl,---,ynlj)

Ef—_—l u;1)p¢° (yh ) yn‘j)

kK (1)

~ dp(y1) - - - dpa(yn)dQ(u,v) -
=1 v; pg(yla e 7ynl.7)

(4.116)

x log

The inner integral of (4.116), that is,

L

K .
5 j= p °(y1a"'7y‘n|.7)

/E Ug'l)Pso" (yla s ,ynl]) X log JKI J(l} ¢ R d,u(:lh) M -d,u(yn)
i=1 Yie1 vy pg(y, -5 Uald)

(4.117)
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for fixed u, v, is the Kullback-Leibler divergence between two mixtures of
product densities. Hence K (<p°,$) > 0 as (4.117) is non-negative by Lemma
4.3.3.

If K(¢°, $) = 0, then (4.117) is zero for Q-almost every pair u, v, implying

K K
3wl pe(yr, - Ynld) = 2051, -5 ynld) (4.118)
j=1 j=1

by Lemma 4.3.3. Equation (4.118) can be written in another form,

K K n i
Z v Z 'u,g:ll) t_l—Iza‘”—l’z’(soo) ]_:Il f(yt, 02:(900))

€1=1 Tn=1

2 IDIERDY vi?:Hzaz._l.z.@)ﬂf(yt,Gz,(é)) (4.119)

z1=1 ep=1

for Q-almost every pair u, v.

However, by condition A3 and Theorem 3.2.20, mixtures of product densities

from family {f(.,0) : § € ©} are identifiable. Therefore, (4.119) implies

K K n
Z T Z ug:ll) IIZ A1,z (‘PO)J(OzI (#°)y--1020 (¥°))
t=

z1=1 =1

K K n
) y
= 3 - 2 v Tl oen el B, @)@ - (4120)

z1=1 z2n=1 t=2

for Q-almost every pair u, v.

Moreover, since under ISW 3
UJ(I) = Ppo(X1 = j|Yo,Y_1,..-),

then

E

v°b [Uf('l)] - E¢o,$[P¢°(X1 = j|Yo, Yoy, )]

= FEg [E‘Po [I{Xlzj}IYO,Y—l, .. ]]
== E‘P" [I{Xlzj}]
= P¢0(X1 = ])

= m(e°). (4.121)
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Thus from (4.120) and (4.121)

K K n
Do > e (0°) T dae 2 (9°7)0662, (0°),-020 (6°))
t=2

z1=1 Tn=1

K K n
e = 1 . _ _
_ 21'°',2::1E‘°°'$[v£1)]Haﬂ_“m(qs)é"’l( B0 Gy (4122)

t=2

which holds for any n. By Corollary 3.3.6, ¢~ 7°. E]

Corollary 4.6.11 Assume conditions A1, A2, A3, A}, A5*, A6 and A7 hold.
If ¢ € 9%, with K > K°, then K(¢°,$) =0 if and only if ¢ ~ &°.

Corollary 4.6.12 Assume conditions A1, A2, A3, A4, A5*, A6 and A7 hold.
Let $ € &, for any K € N. If ¢ % ¢°, then K(¢°,4) > 0.

Proof :
If § € &5, with K > K°, and ¢ # ¢°, then by Corollary 4.6.11, K(¢°,$) =
K(‘Po,ﬁz) > 0

If ¢ € &% with K < K°, then by Corollary 4.5.8, ¢ # #°. Also by Lemma
4.5.6, there is $1 € 5‘;{, such that {51 ~ g‘g Since ¢ o4 (Z", then ¢, ~ #° and by
Corollary 4.6.11 K(¢°,¢1) = K(¢°, $1) > 0, implying K(¢°, $) >0 as ¢y ~ ¢.

|

4.7 TUniform Convergence of the Likelihood

Process

The likelihood process for Y= 5% is defined as

165



L.($,Y) = % log p3(Ya, - - -, Ya)
K K . m - _
= Llog 30 3 @l (¥, 00, (D) TL a0 (P 01,00, ()

z1=1 an=1 t=2

where n € N. By Theorem 4.4.3,
lim L,($,Y) = H(¢°,9),

with probability one under ¢° and pointwise in $ € 5} In this section, we

will show that this convergence is uniform on &5,

Lemma 4.7.1 Assume conditions A1, A2, Aj, A5* and A7 hold. Then
. 7 — (e T
nll’r{.lo Ln(¢1y) - H(¢ ’ ¢)7

with probability one under ¢° and uniformly on 52{

Proof :

From Corollary 4.2.2, {L,(-,Y)} is an equicontinuous sequence on 5‘}{ Since
p<_ is compact and L.($,Y) converges to H(¢°, #) pointwise in ¢ € &%, then
by Lemma 39 of [44], page 168, L.($,Y) converges to H (¢°,#) uniformly on

&5 &

Corollary 4.7.2 Assume conditions Al, A2, A4, A5 and A7 hold. Then

H(¢°,-) is continuous on &e,.

Proof :
Since L,(-,Y) is continuous on &5, by A4 and A5* and L,(-,Y) converges to
H(¢°,-) uniformly on @5, then from [44], page 49, H(4°,-) is continuous on

&5 -
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Corollary 4.7.3 Assume conditions A1, A2, A4, A5*, A6 and A7 hold. Then
the Kullback-Leibler divergence K(¢°,-) is continuous on 5‘}(

Proof :
This is a direct consequence of Corollary 4.7.2 and Corollary 4.4.5. [ |

Corollary 4.7.4 Assume conditions A1, A2, A4, A5" and A7 hold. Let B a
subset of 5‘}(, then

nlg{.lo {EUP Ln({{;,Y)} = sup H(¢o’ 5)’

¢€B ¢€B

with probability one under ¢°.

Proof :
Since B is a subset of 5%, then by Lemma 4.7.1

lim La(¢,Y) = H(¢°, ¢),

with probability one under ¢° and uniformly in $ € B. Then for given € > 0,
there exists N, € N, such that

|L,,($,Y)—H(¢°,$)}<e, Van>N, and Ve B,

implying
iuan($,Y)—§upH(¢°,$)] < sup|La(,Y) - H(¢°,9)|
¢cB ¢eB $cB
< e Yn > N,,

which means that

Jim {-gup Ln($,Y)} = sup H(¢", §),
$eB

¢EB

with probability one under ¢°. [ |
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4.8 The Quasi True Parameter Set

The quasi true parameter set N is defined as a set of parameter in &5 which

minimize the Kullback-Leibler divergence with respect to the true parameter

¢°, that is
N = {{51 : K(¢°,¢1) = inf K(¢°, $)} ; (4.123)
deds,
Since K(¢°,-) is continuous on @5, by Corollary 4.7.3 and @S, is compact, then

the infimum of K(¢°,-) over 5} is attained by $1 € 5} Thus the infimum

sign in (4.123) may be replaced by minimum.

Based on the results of sections 4.6 and 4.7, the quasi true parameter set N/

can be identified as follows.

Lemma 4.8.1 Assume conditions A1, A2, A3. A}, A5*, A6 and A7 hold.
(a). If K < K° and ¢ €N, then K(¢°,$) > 0.

(b). If K> K° and § € N, then K(¢°,¢) =0 and N = {¢ € B : ¢ ~ ¢°}.

Remarks 4.8.2 From part (a) of Lemma 4.8.1, if K < K°, then (4.123)
asserts that the quasi true parameter set A is the set of parameters in 5}}

which are closest to ¢°.

Proof :

If K < K°, then by Corollary 4.5.8, 5 e [50, for every $ € 5‘}( Let {5 e N,
since ¢ € Sﬁﬁ{, then ¢ e 4 #°, implying K (qﬁ",(Z) > 0 by Corollary 4.6.12. Thus
(a) follows.
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For (b), since K(¢°, $) = 0, if and only if ¢ ~ ¢°, when K > K°, by Corollary
4.6.11, then we have
N ={¢ecd: ¢4}

4.9 Consistency of the Maximum Likelihood

Estimator

This section presents the main result of this chapter, which is to prove that

the maximum likelihood estimator

$aly) = {551 t Ln($1,9) = sup La(4, y)}

PS5

is convergent with probability one under ¢° to the quasi true parameter set

A= {asl K@ F) = int K(& &)} |
deds,

Theorem 4.9.1 Assume conditions A1, A2, A3, A4, A5*, A6 and A7 hold.
Then

dizg 6 =N,

with probability one under ¢°.

Proof :
Here we adapt the proof of Theorem 2.2.1 of [22], page 23.

We will prove that for every € > 0 and Pgo-almost all y, there exists N(e,y) €
N, such that
$nly) C N, forn > N(e,y),
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where
M={$€5§{:d($,ﬁf) <e}

and d(¢, N) is the distance from é to the set AV, defined by

d($,N) = gilgvlﬁ — ¢1llx-

From corollary 4.4.5, the quasi true parameter set V' can be expressed as
N = {& € &% : K(¢°,1) = _inf K(¢°,€5)}
peds,
= {&Fl € & : K(¢°,¢1) = inf —H(¢") - H(¢°,d3)}
deds,

- {551 € &, : H(¢°,81) = sup H(¢°, q;)} , (4.124)

P,

Given € > 0. Then A, is an open subset of . Let N be the complement
of N, with respect to 5. N is closed and since &5, is compact, then N is

compact.

For every ¢ € N*, choose Az > 0, such that
B(¢,23) C N, (4.125)

where B (&5, )\;) is an open Euclidean ball centered at & and of radius ’\IE' Since
N? is compact, then there exists {1,-..,éu} such that

M
N € U B(8i,23)- (4.126)
=1
By (4.125) and (4.126),
M _ M
N2 c U B($:,25) € U B(di Ag) C MY, (4.127)
=1 i=1

where B(¢, Az,) is a closure B (¢, Ag.)-
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Let
H = sup H(¢° ¢).

deds,
Let y € ) such that by Corollary 4.7.4,
_sup  La(dy) — _sup H(4",4), (4.128)
¢€B(¢;,Aa) ¢€B(¢iv'\;‘)
fori=1,...,M. By (4.127), there exists o; > 0, for : = 1,..., M, such that
sup H(¢°,¢) = H — ;. (4.129)
$€B(¢i,>‘;i)
Therefore by (4.128) and (4.129), for every i = 1,..., M, there exists N; € N
such that

sup  Ln(d,y) < H — %, Vn > N, (4.130)
$eB(ixg)
Let
a= min o; and N, = max N;,
1<i<M 1<i<M

then by (4.130), for n > N,,

sup Ln(¢,y) < sup L.(¢,y) < H—- %. (4.131)
FeN: selUil, B@Ag)

On the otherhand, Corollary 4.7.4 and (4.124) also implies that

sup La(,y) — _sup H(¢%¢)=H.
PEN. PENON

Hence, there exists N° € N, such that
o
9

sup Ln(¢y) > H — 3

PEN,

Vn> N° (4.132)

Let N = max{N,, N°}, then (4.131) and (4.132) implies

sup Ln($,y) < H— < < sup Lu($,y), Yn>N.
gENe* 2 JEM

This means that
$n(y) C N, Vne N.

So the theorem is proved. [ |
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Chapter 5

Estimation of the Order for
Hidden Markov Models

The aim of this chapter is to study the problem of order estimation for hidden
Markov models. To estimate the order, we adopt the compensated log-likelihood
technique. The idea of using this technique comes from [22]. In [22], the
technique is used to estimate the order of a hidden Markov model in which
the observed process takes only finitely many values. The same technique has
also been used in [2] for the estimation of the structural parameters of ARMA

processes.

The compensated log-likelihood technique is based on the compensation of
the log-likelihood function. A compensator, decreasing in K (size parameter),
is added to the maximum log-likelihood, and the resulting compensated log-
likelihood is maximized with respect to K. The problem is then to find a proper

compensator which allows the strongly consistent estimation of the order.

In this chapter, the problem will be divided into two cases, finding compen-
sators avoiding under estimation and compensators avoiding over estimation.

Then by combining these cases, the strongly consistent estimator for the order
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is obtained.

This chapter begins by introducing the compensated log-likelihood in section
5.1. In section 5.2, the sufficient condition for compensators avoiding under
estimation is given. Section 5.3 concentrates on finding sufficient conditions
for compensators avoiding over estimation. Finally, in section 5.4, we give
an example of a compensator which allows the estimator of the order to be

strongly consistent.

5.1 Compensated Log-likelihood

Suppose we are given a sequence of observations {yi,... ,Yn} to be modelled.
As in Chapter 4, assume that the data sample {y1,...,¥yn} is the initial seg-
ment of a realization {y.}, generated by a process {Y;}, which is equivalent
to the observation process of a hidden Markov model, with the unknown true

parameter ¢° = (K°, A°,7°,6°). Our task now is to estimate the order K°.

As the parametric models, we will use

&= | 9%,
KkelN

where
&S = {$ : ¢ =(K,A,0), where A and 6 satisfy :
K
A= (), @;>20, Y a;=1, i,5=1,..,K
j=1
6=(6)", 6,€0° i= 1,...,K},
Recall that under ¢ € éﬁ(, Yi,...,Y, has the joint density function

p;(yla C ayn) = i o i afl f(ylaezn ($)) gazt—1,¢t($)f(yta03:(&5)%

z3=1 zp=1
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where aX = (af) is the initial probability vector, with a¥ > 0, for i =

1,...,K, a;(:) and 6;(-) are the coordinate projections on &5, for i,j =

1,...,K.

Let ¢° = (K°, A°,6°). From Corollary 4.5.8, &%, contains no parameter equiv-
alent to 5", if K < K°, and at least finitely many parameters equivalent to q~5°,
if K = K°. If K > K°, there are infinitely many parameters in 5‘}{ equivalent
to 5".

Throughout this section we will assume that the following conditions hold.

A1l. The transition probability matrix A° is irreducible.

A2. 7° is a stationary probability distribution of A°.

A3. The family of finite mixtures on {f(-,0) : 0 € O} is identifiable

A4. f(-,-) > 0 and continuous on Y x ©. For each y, f(y,-) vanishes at infinity.

A5'. For each K € N and i, = 1,...,K, oy(-) and 6;(-) are continuous

functions on %
AS. Eg||log F(¥1,09)] < o0, fori=1,...,K".

A'7. For every 6 € ©, Ey [(log f(Yl,O))+] < 00.

As in Chapter 4, for y = {y:}, define the log-likelihood functions L k(- y) on
&% by

Lin®,9) = S logpz(w-- %), mEN.
For K,n € N, let

Licn(y) = sup Lxa($,9)-
Feds,
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Suppose we attempt to use the classical mazimum likelihood technique to esti-
mate the order. Then we estimate the order K° by random variable K, such

that 1 < K,g B and

K. (y) =min{K : L} (y) = linKaicBL},n(y)},

where B is a positive integer imposed by concrete computing limitation. How-
ever, according to [2], for large n, the estimator K, is always equal to B and
if we do not impose any bound B, the situation is worse, since the estimator

K, tends to oo, as n — oo. Hence, K, is not consistent.

Therefore, to the log-likelihood should be added a compensator, which will de-
crease the likelihood, when the size increases. This will discourage the selection

of model with an ezxcessive size.

Definition 5.1.1 A compensator is any deterministic sequence of functions
6, : N — R, such that 6,(K) < Jn(f), if K < K. A compensated
log-likelihood is defined by

Cim(y) = Licn(y) — u(K)

fory € Y* and K,n € N. The estimator of the order K, is then defined
by
Ka.(y) =min{K : Cg (y) = max Crna()}, (5.1)

1<K<B

where B is a positive integer imposed by concrete computing limitation.

The problem is now to find a proper compensator which allows K, to be

strongly consistent, that is,
K, — K°, with probability one under ¢°,

as 1 —r O0.
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5.2 Compensators Avoiding under Estimation

Based on the results of Chapter 4, we obtain the sufficient condition for com-
pensators to avoid under estimation in the following theorem. The idea of
the theorem and its proof comes from [22]. The same sufficient condition
for the same type of hidden Markov model with ours, is also obtained by
[46]. However, [46] used stronger assumptions and different approach in cal-
culating the Kullback-Leibler divergence, which is based on the information
of m-dimensional joint distribution of the observed process , for some integer

m > 2K°.

Theorem 5.2.1 (Compensators avoiding under estimation)  Assume

conditions A1, A2, A3, Af, A5, A6 and A7 hold. If

1;152; 6.(K) =0, for every K € N,

then
liminf K, > K°,
n—eo
with probability one under ¢°.
Proof :
Suppose that for every K € N,
1}—l—)r§o 5.(K)=0. (56.2)

Let K be any positive integer such that K < K°. By (5.2)
lim { — Cica(y) + Cicon(y) }
= lim { - Licp(®) + Lo () + 82(K) = 6(K*) ()}
= lim {- Lialy) + Li on®)}
= lim { - Lica(y) + Licon(#,9) = Lico.n(9°y) + L @)}, (53)
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provides the limit at the right hand side exists.

By Corollary 4.7.4, Corollary 4.4.5 and part (a) of Lemma 4.8.1,

Jim { — Lica(®) + Lron(@9)} = lim { = sup Lica(6,9) + Lron(4°,0)]
deds,

= lim { _nf Lgon(#,9) — Lra($,9)}

n—oo ¢€45§{

= inf {nlg{.lo LK°,n($o)y) - LK,n(‘Z, y)}

PP,

= _inf K(¢°9)

P

= y(K)>0, (5.4)

with probability one under ¢°.

Similarly, by Corollary 4.7.4, Corollary 4.4.5 and part (b) of Lemma 4.8.1,

nll’l{.lo {on,n(ao,y) - L}{",n(y)} . '}1_)1{.10 {LK°.n($o’y) - __Slip LK."(‘;) y)}

PP o
= lim { inf Lkon(¢°y) — Lken(d,
m{kg}o Kom(#59) — Lo n($,9) }
= lllf lim L omn $o,y - LKo’n $7y
i {Jim L@~ Lieal0)
= _inf K(¢°¢)
IS
= 0, (5.5)
with probability one under ¢°.
From (5.3), (5.4) and (5.5), for K < K*
Jim { = Cia() + Crcon(®)} = 1K) >0, (5.6)
with probability one under ¢°.
Suppose there is a subsequence K., (y) such that
K..(y) — L, as ¢ — 00, (5.7)
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where 1 < L < K°. Since f{\m(y) € N, for every n, then from (5.7), there is
M € N, such that
K.(y)=L, VYi>M,

implying

lim sup { — CR, (o) (¥) + Crom; (v)} = lim sup{ — Cpn,(y) + Creomi(y) }
i—0o0 . =10

b 7(L) > Oa (58)

by (5.6).

However, by definition of K,,
{ - Cl?n(y),n(y) + CK",'n.(y)} <0, for every n € N,

implying
fimsup { ~ Cg, 0, (4) + Crem(®)} <0,

which contradicts to (5.8)

Therefore, every convergent subsequence of fn(y) must converge to a limit,

which is greater or equal to K°. Hence we have
lim inf K.(y) > K°,

with probability one under ¢°. [ |

5.3 Compensators Avoiding over Estimation

This section aims to find sufficient conditions for the compensators to avoid
over estimation. The crucial problem in finding these sufficient conditions is to

determine the almost sure rate of growth of the mazimized log-likelihood ratio

log pMLK(yI""iy‘n) (5-9)
p¢°(y17 o )yn)
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for every K > K°, where

PMLg(Y1s-- - Yn) = SUP P31, -, Un)-
bED,

The almost sure rate, denoted by O, , , is defined as follows.

Definition 5.3.1 Let {Z, : t € N} be a sequence of random variables and
{ay} a sequence of positive real numbers. We say that that Z; = O,..(04) if

there ezists a positive random variable C almost surely finite such that

|Z:] € Cau, Vte N.

Using Csiszar lemma as a basic tool, we obtain that for any K € IV,

log pMLK(yla X )yn) -0
p¢°(y1v ‘e 7yn)

a.0.(log ). (5.10)

Based on this, the compensators avoiding over estimation can then be con-

structed.

For convenience, this section will be divided into four subsections. In the
first subsection we introduce Csiszar lemma. This lemma initially holds for
processes taking values on a finite set. However, in subsection 5.3.2, it can be
shown that the conclusion of the lemma also holds for some processes which
takes values on an infinite set. In subsection 5.3.3, we apply the results of
subsections 5.3.1 and 5.3.2 to hidden Markov model. From subsection 5.3.3,
we then obtain the rate of growth of the maximized log-likelihood ratio, which
is presented in subsection 5.3.4. Finally, in subsection 5.3.5, the sufficient

conditions for compensators avoiding over estimation are given.
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5.3.1 Csiszar lemma

This subsection studies the Csiszar lemma, which will be a very useful tool for

determining the rate of growth of the maximized log-likelihood ratio.

In order to prove Csiszar lemma, the following integral will be needed.

Lemma 5.3.2 Let

K
VZ{PZ(PI,---,PK)GRK P >0, i=1,...,K, Zpi=1}

and

o; > —1, for i=1,...,K.
Then ¥

: ¥ (o +1

[ o dp= Tt

Vizi F( izla,-+K)
Proof :
The proof is based on the fact that for z,y > 0,

o - I'(z)I(y)
=11 - )Nt = =, 5.11
[e-rm =T o2

see for example, [21], page 49.
Let a; > —1, for i = 1,..., K, then by (5.11),
K ) 1 1-py I—Ef(::s Pi I—E;.Kz—l_z Pi o o o - .
pr‘f‘dp ./ / / ,/ Ppy - P2 PRt
Vi=a g
(1 - Z P.) dpk_1dpk—2 - -dp2dp
=1

w1 1- E- L ot B
- / / /0 B / Py PR PRy
K-2 o 1
( p‘) —1tax+ taK_1(1 _ t)OtK dt de_2 AN dp2 dpl

Il
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(5.12)

il

1-p 1-K P
/ f / Py P - P

(1 _ Z p.)aK 1tag+1 de - dp2 dp1

i=1

X [ gox-1(1 — £)°% gt
0
- 1- E,—K;4h -5 2 o o
= / f / ' fo Prpy - Pr3Pr—2
(24 1+a +1
(1 - ZP;) KT dpg_a dpr_s -+ - dpa dpy

XF(aK—l + l)F(OtK + 1)
F(OtK_l + ag +2) ’

(5.13)

The equation (5.12) is obtained by letting
K—2
pr1=1- Z pi.
i=1

Using the same technique, calculate the integral in (5.13) with respect to

Pr—2,PK—3, - - - , 1 Tespectively, then we have

/ﬁp.dp _ D+ DI(E K oa+K-1) I‘(a2+1)F(EK1a,+K—2)

rk 1oz,+K) rCE a+K-1)
T(ag_2+1)(ag_1+ax +2) T(axa+ DM ag +1)
B T(ax_z+ ax—1 +ag +3) " T(ok-1 +ak +2)
;——1 [ +1)
¥ e+ K)’
m

Now consider an independent identically distributed process {Z; : t € N},
with values in {1,..., K} and distribution P. Let

P(Z, =1) = p;, i=1,...,K,

then the joint density function of Zy,..., Z,,

P(zyy...,2,) = HP(Zt =2z)= HP

i=1
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where n; is the number of times i occurs in zj,...,2,. This probability is a

maximum if
74 .
pt=—"r;’ 1,:1,...7K.

Hence the maximum likelihood estimate is given by

K paym
Pyi(z1,---,2) =[] (;)
=1

Define a mixture distribution @ such that

Qery-woyz) = [, (II#F) - v(w)dp

where
(it k)
l:l F(a’: + 1) =1 ‘h

v(p) =
with

a; > -1, fori=1,...,K.

Sincep; > 0,fori=1,...,K and ¥ p; =1, then by lemma 5.3.2

/;/ v(p)dp = F(E }1(3: : 3 / H idp = 1.

Also by lemma 5.3.2,

NEE a+ K LI
Qay--r2) = (:;,E(Z..H))/VHP*E”
r(TK, o +K)

_ ni+o;
T T T(e+ D) /Hp dp

(EK a,+K) . NE T(ni + i +1)

ME, T(e@+1) (L n+o+K)

— F( {ila"+K) ﬁr‘(n;+a,~+1) (5.14)
= F(Efi1’ni+ai+K)i=1 T(a; +1) }
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Lemma 5.3.3 (Csiszar [13]) IfQ is defined by (5.14), witho; = ——%, fori=
1,...,K, then

Pus(21y. -, 7n) Pr+5)T()
Qo) ( 1) I1(%)
i K
< 5 logn—log F(é)) + €n,

where lim ¢, = 0.
n—roo

Proof :
Let o; = —1, for i =1,..., K, then by (5.14)
__I(§) p#T(mt3)
Q(zl,...,zn)—F(THL%)E_:Hl O (5.15)
To prove the first inequality, it must be shown that
T'(n+%).T(2
PML(zh- .- ,Zn) < Q(zl’--- 7Zn) ) FETL+ g))r((ég »
that is by (5.15)
(" < SO () oD
HE) < ey W ) e 1)
15, (o~ )~ 2)
= (5.16)
(n-D)(r-5)
However for any m € N,
1 3 1 2m — 1\ /2m —3 1
== = CFHEY-
_ @m-1)(2m-3)---1
= -
_ @m-1)@2m-=3)---1 2m@2m—2)---2
- m “2m(2m —2)---2
_ (2m)! 1
= Tom 2(m)-2(m—1)---2-1
_ (2m)! 1

gm  9m .|
2m(2m — 1) ---(m + 1)
22m )
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So (5.16) can be expressed as

ﬁ (E)”' 2 ﬁ 2n;(2n; — 1)---(n; + 1) 2"
= \n B 22n 2n(2n—1)---(n+1)

&, 2ni(2n; — 1) -+ - (ny + 1)
2n(2n — 1)(n+ 1) ’

or in a long form

n; terms ng terms ng terms
Ty ~ ny TzA ng m
EDED-E-D
n tgrms
N4, terms Nk tfrms

(2 (2n — 1) -~ (na + 1)} - Png(@ng — 1) - - (ng + 1)}
- ?n(2n— DN@2n—-2)---(n+ 12 = . (5.17)

n terms

So (5.17) will be proved if we can show that it is possible to assign to each

I=1,...,n,in a one to one manner, a pair (,5), 1 <1 < K, 1< j < ny, such
that
n; nit+jJ
— . 5.18
n ~ n+l (5.18)

For any given [ and z, (5.18) holds if and only if

n.
> -——n;
iz (n+l)-—-n

l
= Nn;- .
n
Hence the number of j that satisfy (5.18) is greater than n; —n;} and the total
number of pairs (4,7), 1 <7 < K, 1 < j < n; satisfying (5.18) is greater than
=4 l

Z(ni—ni-—)zn—l.

1 n

It follows that, if we assign to [ = n, any (4, 7) satisfying (5.18), that is, 7 may be
chosen arbitrary and j = n;, then recursively assign toeach I =n—1,n—2,...,

etc, a pair (4, 7) satisfying (5.18) that were not assign previously. We never get
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stuck, at each step, there will be at least one free pair (4, j), because the total
number of pairs (4, j) satisfying (5.18) is greater than (n—[), that is the number

of pairs already assigned. So the first inequality is proved.

The proof for the second inequality, use the Stirling’s formula for I'-function,
that is,

1

I'(z) = V2me 2" 73, (5.19)

forze W(8)={2€C:2#0,—n+6 < Argz < m— 3}, where 0 < § < = (see
for example, Stromberg, K.R., [49], page 468).

By (5.19),
log M ~ log \/ﬁ;e*"‘§ (n + %)"4'%—%
F(n + %) \/ﬂe_"—%(n + %)n

- {9 () e D)

= —(K—;—l—) + nlog (21%) + K-l log (n+ E)
2

2 2
(5.20)

Expand log (n + %) using Taylor’s formula,

1og(n+-1-(—)=1ogn+£-3—i-(5)2-i+12(3) (5.21)

2 2 n 21 \2 n? ’
where
1 (K\3 2
R(3)=§(?) e forn<¢(<n+ %

Let

K
2

(e {E LBy (D) ) () +miog (2E1). 622

2

Then it is clear that

lim ¢, = 0.
n—oo
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Thus by (5.20), (5.21) and (5.22),
I(n+%)-1(3) I(n+%) Ogr(g)
I‘(n+%) I‘(%) I‘(n+%) I‘(%)
K-1 K-1
-5+

2 2

log

log

r(
r(

Sl

)
)

Q

)logn-}—e,, — log

D=

IA

K
(K—z_i) logn — log F—(z—) + €p.

r(z)

5.3.2 Extension of Csiszar lemma

In this subsection we try to extend the Csiszar lemma to processes which take

values on an infinite set.

Let {Z; : t € N} be an independent identically distributed random process.
Let f(-,6) be the density function of Z, under the probability measure Py, for
@ € ©¢. Then the joint density function of Zy,...,Z,
po(21,---,20) = H f(2:,0).
=1
Suppose that 6* is a maximum likelihood estimator, then the maximum likeli-

hood estimate is given by

pML(zlv - ,zﬂ) = f[ f(zi,a*)'
=1

Next two lemmas give the examples of distribution functions having similar

property as in Csiszar lemma.

Lemma 5.3.4 If {Z, : t € N} is an independent identically distributed Pois-

son process, then there exists a probability measure Q with the corresponding
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density function q such that

P )
q(z1,- -+, 2n)

<logn—C+ €y,

where C s a constant and lim €, = 0.
n—oeo

Proof :
Let
6—002:
f(z,6) = pre z€{0,1,2,...}, 6 € (0, 00).
Then the joint density function of Zy,...,Z, is
n 6—00.:.-
po(z1,-.r2zm) = []——
i—1 Zge
e_noa( 2?:1 z")
— m. (5-23)
Equation (5.23) is maximum if
0 . E?:l 2§
==

Hence the maximum likelihood estimate is given by

(T (3, 2 () -(S %)

PALZIEREE A

pML(Zly e ,Zn) =

Define probability measure @ through its joint density function g, which is
defined by

q(21,---,2n)=f0 pe(21,--.,2a) v(0)d6,

where

v(0) =e".

It is clear that

fowu(o)dezfowe—"do=1.
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Then by lemma 4.1.2,

e ?do

co _"'00(2?:1 z‘)
q(zli"'7zn) S /0 e—'_—

z1lzp! -+ 2!

oo o—(n+18g( 0, %)
- / € e
0

z1lzgt - - 2!

T(Xr, 2 + D+ 1)~ (T =+)

21lzpl - 2!

Using Stirling’s formula ([1], page 257),

pmr(z1,-- -5 20) e_( Yt ‘-‘)( >, z'.)(z?:x zi)n—(ELl z)
(21, - 2n) T(S, 2 + 1)(n+ 1)~ (X st)
e 85 Z-')( o zi)(ELl z) (0, =)
(S 2)! (4 1)~ (i w+)
—(Th, z-‘)( T, z.')( Y w) (0, =)
V2 (L, ze)( Siax) N7 (X =)
1
g (n+ 1)‘( Z?ﬂ("‘)(n +) 1)-1
1 n \ 2=
(71

n+1

V2r

(n+1).

Hence

q(z1,- -, 2n) pas n+l

log P2E(Z1 5 20) —(iz,-) log (—i—-) _ log V77 +log(n +1). (5.24)

Expand log(n + 1) using Taylor’s expansion,

1 1
log(n + 1) =logn + v R(3), (5.25)
where
2 1
R(3)=§—8, wheren < (<n+1.
Let

en=—(z"jzi) log (n" )+%—$+R(3), (5.26)



then it is obvious that
L e =1

Thus by (5.24), (5.25) and (5.26),

logpML(zlv' o ,Z")

<logn —logV2m +e,.
q(z1,---,2n)

Lemma 5.3.5 If{Z, :t € N} is an independent identically distributed normal
with fized (known) variance process, then there exists a probability measure Q)

with the corresponding density q such that

lo pa;(l'z(jl.’.'.';;nz)") < %logn - C+en,
where C 1s a constant and 1}3{.10 €, = 0.
Proof :
Let
f(z,0) = L e_§(';o)z, 6cR, zc€ R and o > 0known.

oV 2w
Then the joint density fuction of Z;,...,Z, 1s

I O ¥ A
po(21,. .-y 2n) = H e 3 =)

i=1 Um

_ (ov/ER) (S eor)

= (0'\/2_7|')_" e_'z%f{( i z.?)—zo( Z?:l z.-)+1|03}

= (ovam) e (Eh) G (ELis)-3m  (5.07)

The equation (5.27) is maximum if

1"
0=— 24
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hence the maximum likelihood estimate is given by

n o m n 2
pML(Z].) . ,Zn) = (0 V 271-)—"' e_#( =1 ' en,Z(Z;_l ) T 2no? (EiZI z.-)

~ (ov32m)™" i (T 22) ot (T, =)

Define probability measure Q through its joint density function ¢ as follows,

q(z1y -+ 2n) =/_ pe(21, ..., 2n) a(8)d0,

where

| Y
a(@) = _ﬁ € 0 =
From [39], page 344, for

oo 2
/ e e gy = ‘/—iexp (g}—)) , Rep > 0.
— 00 p

—o0 ‘J—" — Q0 ’

By (5.28)

q(zl, ceny Zn) = /oo (0"\/27‘-)_"6_;}7( E?:]_ z?)e:—z( E?:l Zi)e— #02 \/_e—o""

(5.28)

do

= %@m)—ne—#(z:ﬁzz) [ HEL - g

= \/_(a\/—) ne—r(ZL ) = +1 exp (;14:1(2%__'_ 1)) )

= f(dr)—nme 202 (Z.—l = ev3(2n+4a7)(2 )

Thus,

n P 1 n i 2
pML(Zl,...,Zn) _ (o\f271')_"3—277(2-':12-')8?;2‘(2.-:1 z,)

Q(Zla B ,Zn) %(0 /2,"_)_" /"2:;:2 e——;&,—(E?:l z?)em-lmr)( Z;=1 zi)
n+ 202 1 1 2
- T (s ) )
i=1

202 2no?  o?(2n+ 40?)
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and

pML(zl,...,z“) 1 2 1 2
1 = =1 — = log(2
og e ) 5 og(n + 20°) 5 og(20%)
1 1 " 2
+(2n02 T o2(n+ 402))(;zi) - (5:29)
By Taylor’s expansion,
202 4 o*
I %) = _—— = .
og(n + 20%) = logn + TR + R(3), (5.30)
where
855 2 .
R(3)=-§!—-E§, with n < { < n+ 202
Let
1,202 4 o | 1 no\2
T E(T T2l p2 + R(3)) + (2n02  2no? + 404)(‘.2:;2‘) - (5:81)
then it is clear that
lim ¢, = 0.
n—oo
By (5.29), (5.30) and (5.31)
pML(zl,---)zn) 1 1 9
1 < =1 — —log(2 .
o o) 53 ogn — 5 og(20%) + ¢
So the proof is complete. [l

5.3.3 Application to

hidden Markov models

Recall that under ¢ € {5‘}{, the Markov chain Xj,..., X, has the joint density

function

Pg(Xl =21,...,Xn=2Cn) = Pg(zl, coze) =al [1 O ze(P)  (5.32)

t=2
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Since the initial probability distribution a¥ = (af) is fized for every ¢ € ¥,
then for optimization purpose, this probability can be ignored and hence (5.32)

can be rewritten in the form

Py, 2a) = H H(% )", (5.33)

=1 j=

where n;; is the number of times the pair (i,7) occurs in adjacent places in
Zi,...,Tn. Let n; be the number of the occurences of 2in zy,...,Ty_;. Notice

that probability in (5.33) is maximized when
a,;j(a):——.';, 2,]=1,,K

Hence the maximum likelihood estimate in &% is given by

PMLK(IBl, . ;cn) — H H (na])"u

i=1j=1 4

A consequence of Csiszar lemma (Lemma 5.3.3) is the following lemma.

Lemma 5.3.6 There exists a probability measure Q@ such that

PMLK(IL'I,...,.’E") < K(K—
Q(xla"'axn) -

where C is a constant.

log D) logn+ KC,

Proof :
Define a mixture density @ such that
ntj Nij
Q) = 11 / II (2)™ v(ne) dm,
i=1
where

) F(K) iy}
) = e LG
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Then by Csiszar lemma,

K K (R \nij
lOg PMLK(J:I:---’“:R) — Zlog KHJ-;;‘I(:‘.)
Q(z1,---%n) i—1 fle-..—.l (;‘L) Tv(n;.) dn
X (K -1
< Y { log n; + C;}
i=1
< = logn + KC,
where C; are constants and C = max C;. ]
1<i<K

By definition of hidden Markov models, given a realization {z.} of the Markov
chain {X,}, the process {Y;} is a sequence of conditionally independent random
variables. Recall that under ¢ € 5‘}(, Y, given z; has the conditional density
f(., 0z, (55)) Hence the conditional density of Yi,...,Y, given z,,...,z, can

be expressed as

:Hlpg(ytlmt)
= r_[ £ (4 62.(3))

pz(yla' S 7y‘n.|$17 s 7$n)

K o~
= I1 II /(3 6:(9)),
i=1teN;
where
N,:={1St§n:Xt=i}, = lyune, K

In this case, we would like the family of densities F = {f(-,0) : 6 € ©°}
having the Csiszar property, that is, there exists a probability measure Q with

the corresponding density function q such that

log suPgeo- iy ij (yta 0)
q(yh R ’yn)

< log n + Constant.

Lemma 5.3.4 and Lemma 5.3.5 shows that the family of Normal distributions

with fixed and known variance, and Poisson distributions have this property.
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Let,

pMLK(yla fe 7yn|1:l, v azn) e fu_P pg(yla cee aynlmla s 13"1:)»
de®s,

then we have next lemma which is similar to Lemma 5.3.6.

Lemma 5.3.7 If the family of densities F = {f(-,0) : 0 € ©°} has the Csiszar
property, then there ezists a probability measure Q with the corresponding den-

sity function q such that

logpMLK(yla"'7yn‘$17"',xn) S KlOgﬂ+KC,
q(y17"'7yn|z1:"'7$n)

where C is a constant.

Proof :
Suppose that the family of densities F = {f(-,0) : @ € ©°} has the Csiszar
property, then for every i = 1,..., K, there is a probability density ¢; such

that b
log supgege Leen, f(49:(9)) < logn; + C; (5-34)
%(v1, - - - ’y") - ' ) |

where C;, i = 1,..., K are constants. Define a probability measure Q through

its density function g such that

K
g1, - ynlr, - 2a) = [[@ys, - 9m)-
i=1
Then by (5.34),

10 pMI,K(yl,...,ynh:l,...,:z:n) _ logsupgesﬁ( Hfi] HtGN;f(ytaei(qs))
q(yh"')ynkcl,-"axn) Hf:lqi(ylr-‘-ryn)

K | sup;;eg% HteN; f('!/t, 0,((3))
0
= & qi(yla . 7yﬂ)

K

E log n; + C;
i=1

Klogn+ KC,

IA

IA

IN
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where C = max C;. Hence, the theorem is proved. ]
1<G<K

Using Lemma 5.3.6 and Lemma 5.3.7 we prove a similar result for the observed

process {Y;}.

Lemma 5.3.8 Assume that the family of densities F = {f(-,0) : 6 € ©°} has
the Csiszar property. Then there exists a probability measure Q with corre-
sponding density function g such that

logprfc(yla--- 1yn) < K(K+ 1)
q(y1,- -+ Yn) 2

logn + KC

where
pMLK(yla - ayn) S §u~p p;(yh o 1yﬂ.)
peds,
and C 1s a constant.

Proof :

pMLK(yla L ’yn)

= sup p3(¥1,---,Yn)-
PP, '

K K
= sup Y, - > Pg(:z:l,...,:c,,)-pg(yl,...,y,,|m1,...,m,,)
$€5‘;(a:1=1 z2n=1

K K
Z Z sup Pg(zh..-,:l:n) - sup pg(yl,...,yn|x1,__,,zn)

<
#1i=1  oa—1gcds PeBs,
K K
— Z S Z PMLK(:BI)"-axn)'pMLK(yla"'1ynlw11"'7$ﬂ)' (5'35)
z1=1 z2n=1

By lemma 5.3.6, there exists a probability measure @ such that

_MeKcl
3

K
Puig(z1,.. ., %) < Qi(21,...,Ta)n ? (5.36)

where C, is a constant. Also from lemma 5.3.7, there exists a probability

measure (), with corresponding density ¢; such that

PmLg(Y1,-- - UnlT1,- - ,Tn) < q2(y1, - - - s YnlT1, - ,a:n)nKeKC’, (5.37)
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where C; is a constant.

Define a probability measure @ through its density function §, where

K K
q'(yl,...,yﬂ) = Z e Z Ql(arl,...,:cn) °Q2(y1,...,y.,l':l:l,...,:l,'n). (538)

z1=1 zn=1

Then by (5.35), (5.36), (5.37) and (5.38),

K K
iUty Un) < D 0 D Q(z1y- 1 Tn) - @Y1y - -y YnlTr, -, Tn)

z1=1 zp=1
K(K+1
x n 5L GK(C14Ca)

= a(:.ul, *Bc *H) yn) nﬂlg_+1—)-eK(Cl+Cz).

Thus
pMLx(yls"‘vyn) < K(K+1)
q‘(yl'l"“}yﬂ) - 2

log logn + K(Cy + C»).

5.3.4 Rate of growth of the maximized log-likelihood

ratio

Based on the results of subsection 5.3.3, we obtain the rate of growth of the
maximized log-likelihood ratio, in the following lemma. The idea of the proof

of this lemma comes from [22].

Lemma 5.3.9 Assume that the family of densities F = {f(-,0) : 0 € ©°} has
the Csiszar property, then for any K € N,

ey Yn K(K+1
B sup (10g n)_l 10g PMLxk (yh ' Y ) S ( + ) + 9
n—oo Pye (yl, o ’yn) 2

Pyo-almost sure.
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Proof :
By Lemma 5.3.8, there exists a probability measure @, with corresponding

density function ¢ such that,

logpMLK(yh-'-ayn) = K(K +1) log

. < n+ KC,
q(y1,---1Yn) 2

where C is a constant. Hence

. B . K(K +1)
lim sup (log n)~! log 2MLx (¥1,--+>9n) < : 5.39
""°°p( 8 ) & q(ylv"'ayu) - 2 ( )
For every n € N, let
A = {{yt} € ¥ (log ) log Lv o) 2}
Pgo(Y1,-- -+ Yn)
= {{yt} € yoo : 6(y1, = [N 7yn) > n2p¢°(y1, O ayn)} )
then
Py(A) = /A Par (s -+ Un) Ay - -~ dn
1
=iy ) dys -+ - dyn
< /Aﬂnzq(yl, +Yn) dY1 - - - dy
< 1
= n?
Thus,
o o] o0 1
J(A)< S = :
nz::lp,i, (A)_nglnz < 00
and hence by Borel-Cantelli lemma,
Py. (lim supA.n) =0
n—o00
implying
lim sup (logn) ™" log 41> Yn) <2, (5.40)

n—»00 Dge (y11 S ayn) -

P4o-almost sure.
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By (5.39) and (5.40),

lim sup (log n) " log PMLx(Y15--->Yn)
n—o0 p¢o (yl: Do o ,yn)

pMLK(yl, ooo 1yn)

< limsup (logn) " log

n—oo q(yl,...,yn)

. e @,y Yn)

+ lim sup (logn 1 log
n—roo ( ) Dge (y17 s ,yn)

K

o K&+D
2
Pgo-almost sure. [ |

As a direct consequence of Lemma 5.3.9, we have the next corollary.

Corollary 5.3.10 Assume that the family of densities F = {f(-,0) : 0 € ©°}
has Csiszar property, then for any K € N,

logpMLx(yli' .- ;yn) =0
P¢°(y1, .. 7yn)

as.(logn).

The following lemma is very simple, but later it will play an important role in

the proof of Theorem 5.3.12.

Lemma 5.3.11 For K > K°,

pMLK(yla---ayn) >0
— ?

lim inf (logn) "} lo
TES500 ( = ) g p¢°(y11"'7yn)

with probability one under ¢°.

Proof :
From Corollary 4.5.8, for every K > K°, there exists ée 5‘}(, such that ¢ ~ é°.
Since {Y;} has the same law under ¢° and ¢° and

PMLg(Y1,- -+ Yn) = SUP P3(Y1,--->Yn),
Fes,
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then it is clear that

PMIx(Y1s- - Yn) 2 Poo(Y1s- -1 ¥n), (5.41)

for any n € N. Then the conclusion of the lemma follows trivially. [ |

5.3.5 Compensators avoiding over estimation

In this subsection, the sufficient conditions for the compensators avoiding over
estimation are given. These conditions are similar to [22], which hold for hidden

Markov model, in which the observed process takes values on a finite set.

Theorem 5.3.12 Suppose that conditions A1, A2, A3, A}, A5, A6 and A7
hold and the family of densities F = {f(-,6) : € O°} has Csiszar property.

If the compensator is of the form

6a(K) = p(n)h(K) (5.42)
where @ satisfies .
lim inf (bin) o(n) > 1 (5.43)
and h satisfies
hK) — h(K) > KX +1) +2, forK>K>1, (5.44)

2

then
lim sup f(\(n) < K,,

n—oo

with probability one under ¢°.

Proof :
Suppose the compensator &, (K) satisfies the hypotheses of the lemma. Let K
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be any positive integer such that K > K,, then by Lemma 5.3.9 and Lemma
5.3.11,
logn ™ (1 U
limsup( Ogn) (_ log pMLx(yh ' Y ) )
n

n—oo n PMLgo (Y1, - -- »Yn)

og
P¢°(y17---,yn) p¢°(y11'-'1yn)

PMLyx (yla ) yn)

= limsup (logn)™ (log Patsg (Y1, 29n) _ log PMLxe (s, - ’y"))
n—oo

< limsup (logn) ' log

n—oo Dge (y17 RS} yﬂ)
—liminf (logn) " log PMLgo(Y1:-- -+ Yn)
o ( g ) p¢°(y17---ayn)
K 1
< (_(j%) - 2) +0
K(K
_(2_+1_) L. (5.45)

By hypothesis (5.44) and (5.43),
lim sup (?)_ @(n) (h(K") - h(K))

n—roo
-1
K(K+1
< limsup — (lorgln) o(n) <(—2u + 2)

n—00

_ (5(5"'_1)_ i 2) lim inf (lorgln)~1 o(n)

2

- (———K(K2+ DN 2) : (5.46)

Hence by hypothesis (5.42), (5.45) and (5.46),

lim sup (bi ") K (Crm(y) — Cron(v))

n—oo

= timoup (") (L) ~ GIA(K) = Boals) + ()

n—oo

= limsup (I"i”) B (1 log PMEx( -5 ¥m) oy (h(K°) - h(K)))

n—oo n pMLKo(yla"'1y'n)

logn ™" (1 e\ Yn
< 1imsup(oin) (_logpmx(yl, ,y))

n—oo n pMLKa(yla-",yn)

+ lim sup (li’-?gl—")‘ o(n) (h(K®) - h(K))

n—oo
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(K(K+1) ) B (K(K2+1) +2)
0.

So we have

1 -1
lim sup ( "i ") (Ckm(y) ~ Crom(y)) <0,  for K>Ke.  (547)

n—oo

Suppose for y € Y, there is a subsequence f{\n‘.(y) such that
K,.(y) — L, as i — 00, (5.48)

where L > K°. Since Fn(y) € N, for every n, then from (5.48), there is
M € N, such that
K..(y) =L, Vi> M,

implying

lim sup (l°g"‘) (C.. (s ®) — Crom(®))

1—00 ng

") (Cumlt) = Cren)
< 0, (5.49)

log n;

= limsup (

i—>00
by (5.47).

However, by definition of fn,
Cl?n(y),n(y) - CKo,n(y) >0, for every n € N,

implying
log n;

—q
) (Cf?ni(y),n.' (y) - CK"’:"--‘ (y)) Z 0
which contradicts with (5.49).

lim sup (

i—00 ol

Therefore, every convergent subsequence of f{\n(y) must converge to a limit

which is less or equal to K°. Hence, it follows
lim sup f{\n(y) < K°,
n—roo

with probability one under ¢°. |

201



5.4 Consistent Estimation of the Order

Finally, in this section, an example of a compensator which avoids both under

estimation and over estimation are given. The idea of this compensator comes

from [22].

Theorem 5.4.1 Suppose that conditions A1, A2, A3, A4, A§, A6 and A7
hold and the family of densities F = {f(-,0) : 6 € ©°} has Csiszar property.
Then the compensator

n(K) = (n)h(K),

where
logn

p(n) =2—

and

MK)=K*(K +1)?

produces a strongly consistent estimator K, of K°.

Proof :
It is clear that, for each n € N,

6n(K) < 6,(K), for K <K

and for every K € N,

1
lim 6,(K) = lim 2K*(K + 1) (—05—”)
n—oo n—oo n
1
= KK + 1) (1im —)
n—roo n
= 0.
So by Theorem 5.2.1,
liminf K, > K°, (5.50)
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with probability one under ¢°.

It is obvious that

-1 -1
lim inf (l°g") o(n) = liminf (1"%”) 9 (l"ﬁ)
n—o0 n n—oo n n

= 2> 1

Now we only have to show that for K>K>1,

or

f{‘(f+1)+2

h(K) - h(K) > ——

KX (K +1)? - 2K K+ 1) - K(E+1)> 4.

Let K = K + k, for some k > 1, then

2K¥(K +1) — 2K} (K +1)2 - K(K + 1)

v

2

UK + k) (K +k+1) —2K*(K+1)* — (K+ k) (K +k+1)
(K? + 2kK + K){(K +1)* + 2k(K +1) + k*}
—2K*(K+ 1)~ (K +k)(K+k+1)

2K*(K + 1)? + 2K*{2k(K +1) + ¥}

+22kK + K)(K + 1) + 2(2kK + k) {2k(K + 1) + k*}
—2K*(K+1)? — (K + k)(K + k+1)

AK*k(K + 1) + 2K°K°

+2K + k){2h(K + 1) + 4K*(K + 1) + 2k}
—(K+k)(K+k+1)

4K k(K + 1) + 2K°K?

4.

So by Theorem 5.3.12,

lim sup K, < K°, (5.51)

n—o0

with probability one under ¢°.
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From (5.50) and (5.51),

liminf K, = limsup K, = K°,
n—oo n—oo

with probability one under ¢°, implying nlg{.lo K, exists and
lim K, = K°,
n—roo

with probability one under ¢°.
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Errata

Explanation: p/n means page p, line n from top . The first word/phrase is to be replaced by the
second following the colon (:) but sometimes a simple addition is indicated. Mathematical typos
are in bold face. The errors were mainly of a grammatical nature which was due in part to the
fact that English was the second language of the author. This list has been presented in a compact
form and lists the errors pointed out by one of the examiners.

vii/13 patient : patience 1/5 with : where 1/8 hidden : it is hidden 1/12 widespread : widely used
2/6 model : models 2/16 fact to be :fact, noticed in.. 3/21 in size : in the size 4/2 on : in 4/3
and also the last : (omit) 4/7 inspiring : inspired 4/7 is dedicated to solve : investigates 4/10 in
[46], we will: those of [46], we shall 4/13 contains .. aim : reviews literature and gives the aims
5/8 for completeness and : (omit) 5/13 So the : The 5/14 can be : are 6/3 Such : Such a 6/4 a
true: the true 6/5 this true parameter : these true parameters 7/4 with (2.2) : to (2.2) 7/7 then
«;; : Then the a;; 7/14 Thus A : That is, A 11/14 the block : block 16/5 A pair : The pair 18/1
we will : we shall 18/15 expressed as : written 20/9 sometimes : sometimes the sequences 26/2
then : (omit) 26/3 By knowing : Knowing 26/4 parameters: the parameters 26/5 then: (omit)
26/9i=71,..:1=1,..27/2-5 E[M(y)] = A 28/10 TA=A : mA=m 35/10 Next Lemma : The
next Lemma 35/13 are : are a 35/13 and : and a 36/14 (see 35/13) 42/12 that : that the 431
such: such a 43/2 parameter : parameter set 43/5 parameter : parameter set 43/8 parameter :
parameter set 43/12 parameter : parameter set 43/16 As a straight : As a 43/20 true : a true 43/20
parameter : parameter set 44/1 parameter : parameter set 44/7 contradicting with : contradictiltjg
44/8 parameter : parameter set 44/18 since : .Since 44/20 contradicting with : contradicting 44/20
it must be : (omit) 45/1 parameter : parameter set 45/10 important being ergodicity. Ergodicity iis
essential for the limit 48/11 The Kolmogorov consistency theorem .. gives the existence 48/15 now
we have : we have 49/9 This is the Borel ..51/5 equivalent with : equivalent to 54/2 parameter :
parameter set 54/22 in the implication form : (omit) 58/15 of a finite mixture 60/14 contradicting
with : contradicting 60/19 N. Then N > N. 61/5 To prove the Lemma it is sufficient to show 61/19
such that : such that each 64/6 define it Laplace transform 67/8 results of : results on 67/17 in onél_:
in the one 68/23 bases : basis 69/3 of bases : in a basis 69/5 space.The 69/9 is linearly independent
70/6 There exists 70/19 Otherwise, suppose 72/19 theorem, mathematical 72/21 for some n.72/22
that then the class 73/17 The dominated convergence theorem applied to (3.22), ensures 74/6 by
the monotone convergence theorem, (3.19) then 74/10 (3.25) implies 74/14 hypothesis, the calss of
74/15 implies 74/19 Therefore, the class 74/20 mixtures, we have 75/5 results hold, when .. are
replaced by... 76/7 omit: to allow the above possibilities 76/15 In the expression 77/2 We shall |
77/14 then by part : by part 77/19 We shall 78/14 written as : written 78/21 This is equivalent
with 79/1 then by : by 79/15 The sufficiency is obvious. We shall 80/3 parameter : parameter set
80/4 parameter : parameter set 80/5 Then 80/9The next lemma an example of such a parameter
set that can be a true parameter set 80/15 Then the size .. that is, there is no 80/21 contradicting
the fact 81/1 which are equivalent to the true parameter set. 81/4 parameter : parameter set
81/21 Since the 82/5 parameter : parameter set 82/9 the parameters 85/16 the parameters 86/1
However, by 86/7 In the case 86/12 the parameters 87/12 identified as having the form 91/10
This gives 96/3 contradicting the 97/1 However, for ¢ = 1,..., Ky, #; > 0, so 97/3 From (3.97)
97/8 If there exists an 98/1 contradicting the fact .. is minimal 99/1 the parameters .. take the
forms: 99/18 the parameters .. take the forms: 100/7 The ... contradicting the fact 100/15 the
parameters 101/13 then we have: we have 101/17 focus on the 102/2 contradiction, we must have
for 103/9 and is impossible 103/11 to obtain 103/12 is to be modelled 103/14 some stochastic
104/19 same as : equal to 104/20 So in this : In this 105/1 and ®; will be this class 107/1 the
Kullback- 107/3 we shall 107/7 In section 107/17 the comparing 107/20 we shall 108/2 Therefore,
our 108/3 giving a topology on the 108/4 We also give some 108/7 from the general to the hidden

1



110/6 compactification of 110/8 dense in .. Define the norm 117/6 We shall 118/1 then by: by
118/19 The equation : Equation 119/9 Similarly, exchanging 119/15 Such a process 119/19 So
the: The 119/20 hold,then: hold. Then 120/18 almost surely 121/4 almost surely 121/16 almost
surely 123/21 having an 124/4 having an 126/1 The Levy 126/5 theorem for : theorem 127/14
the Caesaro .. the stationary 128/7 by the 128/12 we shall 129/12 by the definition 129/14 By
the 134/17 Kingman’s 135/9 which : This 136/15 which : This 137/15 we shall 141/11 parameters
142/15 we shall 143/3 such a 143/11 space on 150/7 using a 150/13 By the Helly .. for the sequence
151/1 We shall 151/5 We shall 155/1 We shall 155/10 Therefore, under 155/13 taking the limit
155/14 values of 155/20 to equal 156/1 This is proved in 156/2 we shall 156/7 we shall 158/20
as is shown in the following lemma. 159/10 we shall 159/19 we shall 168/2 parameters 168/7
attained for 169/17 we shall 170/9 Given : Give 170/10 compact, then : compact, 170/19 is the
closure of 171/22 The theorem 173/9 to be modelled :(omit) 173/13 task now is : task is 173/14
As parametric .., we shall 173/20 have joint 175/11 models 176/2 obtain sufficient 179/8 Using the
179/13 introduce the 181/9 calculating 181/10 respectively, we have 184/19 assigned previously.
The recursive step is always possible. There will be at least..185/4 For proof of .., we use Stirling’s
186/5 Extension of the 186/6 we extend 186/10 density function of .. is 187/10 is a maximum
188/13 Expanding 189/6 variance ptocess : varaiance 189/6 and corresponding density 189/18 is a
maximum 192/7 that the probability 192/11 of the Csiszar 193/1 by the 193/6 By the 193/19 show
194/11 property. Then 196/15 propert. Then 196/17 almost surely 197/18 This implies 197/20
almost surely 198/6 almost surely 198/9 has the Csiszar property. Then 199/6 for a hidden 199/9
has the Csiszar 201/15 by the definition 202/3 estimation is given 202/6 has the Csiszar 205/21
Variables





