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PONTEM PERPETUI MANSURUM IN SAECULA

Gaius Julius Lacer, 98 AD

'6I have left a bridge that shall remain forever"

This is an inscription on a bridge over the river Tagus in spain.

The bridge, consisting of six arches, is still in use,

and canies 183 m of roadway 53 m above the river.
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Abstract

ABSTRACT
Most composite steel-concrete bridges are designed using full-interaction which

assumes that the shear connection is infinitely stiff. The purpose of this research

was to determine the effect of partial-interaction and interfacial friction on the

fatigue behaviour of composite bridge beams. This has led to the development of

a set of design rules for the assessment of the residual strength and performance of

composite bridge beams.

A finite element computer model has been developed that allows for

partial-interaction by incorporating the complex load-slip characteristics of the

stud shear connectors and the frictional resistance along the interface under

reverse-cyclic loading. Parametric studies showed that partial-interaction reduces

the shear flow such that the connectors have a fatigue life longer than originally

anticipated, however, the flexural stresses increase which has an adverse effect on

the endurances of the steel and concrete components. Analyses also showed that

friction affected the shear flow over the entire length of the beams even though the

frictional forces are concentrated locally around the load points and supports.

Previous research has shown that partial-interaction theory is very

complicated and is not suitable for direct application in design. Hence, simple

mathematical models have been developed to predict the partial-interaction shear

flow and partial-interaction flexural stresses directly from full-interaction

analyses. These models can be used to give accurate predictions of the fatigue

endurance and strength from standard full-interaction analyses.

A new type of push test for reverse-cycle fatigue loads has been developed

from which the fatigue load-slip characteristics of shear connectors can be

predicted for use in computer simulations. The experimental investigation has

shown that for a given range of load, connectors subjected to reverse-cyclic loads

last longer than connectors subjected to uni-directional cyclic loads, and has

proven that current design techniques are safe as the design life is longer than

anticipated. These tests also showed that the increase in slip per cycle is constant

over about 3/4 of the design life after which the slip increases rapidly and, if

monitored, can be used to directly predict the end of the life of a structure'
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XVNotation

NOTATION

The following notation is used in this thesis. Generally, only one meaning is

assigned to each symbol however, when more than one definition is possible, the

correct one will be evident from the context in which it is used.

{} = vector

= matrixtl

A = cross-sectional area of the component; residual strength constant;

regression coefficient

Asrr = shank cross-sectional area of a stud shear connector

B - probability of occunence for each type of fatigue vehicle; regression

coefficient; strain matrix

b = width

bf = bottom flange when used as a subscript

C = constant in endurance equation; function of the composite cross-

sectional stiffness and geometry (Newmark, Siess and Viest 1951);

integration constant

c = concrete component or constant when used as a subscript

D = material stiffness matrix

d. = distance between the centroids of the steel and concrete components

d.r, = diameter of the shank of a stud shear connector

ds/dN = rate of change in slip per cycle

ds/dx = slip strain

E = modulus of elasticity; endurance

Eo = asymptotic endurance

(Eou)oue= averageuni-directional asymptotic endurance

Efn"* = mean endurance

Esp = longitudinal shear spring stiffness

e = eccentricity

FIA = Full-interaction AnalYsis



Notation xvl

Fc = compressive force

Fr = force constant

Fr = tensile force

Fr, = frictional resistance

f = frequency of a range in a shear flow influence line diagram; frictional

force required for equilibrium

f" = concrete cylinder compressive strength

fi = full-interaction when used as a subscript

fp = focal point when used as a subscript

t = concrete tensile strength

fo = tensile strength of a stud shear connector

g - gradual when used as a subscriPt

h = depth of the component

[ = moment of inertia

In" = moment of inertia of the transformed concrete section

K = integration constants; global stiffness matrix

t(cy = cyclic stiffness of stud shear connectors

Kr = secant stiffness due to friction alone

K."" = secant stiffness of a stud shear connector alone

Kr, = initial static stiffness of stud shear connectors

K = total horizontal connection stiffness

k = connector shear stiffness

lçr = four-noded element stiffness matrix

ksp = spring element stiffness matrix

kr = foundation modulus (Adekola 1968)

L = length of a simply supported beam

LVDT = Linear Variable Displacement Transducer

14 = load constant

I-.p = length of a shear sPan

| = distance of the concentrated load from the left support; length of shear

span

l. = distance from support where RFp becomes constant



Notation xvu

- bending moment

= curvature multiplication factor

= exponent in endurance equation; mid-span when used as a subscript

= number of cycles; axial force; nonnal force across the interface

= number of cycles prior to overload

= number of cycles to cause fatigue failure experimentally

= number of cycles when slip begins to increase rapidly

= modular ratio; number of connectors to fail as a group

= concentrated load; peak uni-directional shear flow force

= Partial-interaction Analysis

= Partial-interaction Focal Point

= peak applied load

= residual strength of a stud shear connector

= initial static strength of a stud shear connector

= connector spacing

= partial-interaction when used as a subscript

= total longitudinal shear force

= static shear flow strength required

= shear flow strength at the start of the fatigue life

= residual strength of the shear connection in an existing structure

= shear flow strength at the start of the fatigue life

= total longitudinal shear force per unit length; quarter-span when used as

a subscript

= longitudinal shea¡ force per unit length resisted by shear connectors

= shear force per unit length to the left of the concentrated load

(Newmark, Siess and Viest 1951)

= shear flow force

= total range of cyclic load resisted by the shear connectors; global load

vector

reduction factor for the peak uni-directional shear flow force

reduction factor for the total range

magnitude of the range in the positive branch of a cycle

vertical force across the interface; rapid when used as a subscript

M

MF,

m

N

N

Nexp

N,

n

P

PIA

PIFP

P,n*

P.

P.,

p

pi

a
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= STTESS

= Standard Fatigue Vehicle

= stress range

- slip; steel component or support when used as a subscript

= slip used to define [ds/dN]t

= initial slip

- slip where slip begins to increase rapidly

= ultimate slip at static failure

= number of vehicles traversing a bridge; tensile force acting across the

interface (Adekola 1968); transpose of a matrix

= thickness

= top flange when used as a subscriPt

= distance to the load from the left support (Newmark, Siess and Viest

1951); local nodal displacement in global x-direction

= vertical shear force

= vertical shear force acting at x

= local nodal displacement in global y-direction

= weight of a fatigue vehicle as a proportion of the SFV

- width; web when used as a subscriPt

= a parameter in the endurance equation

= distance of the cross-section from the left support

= distance between the centroids of the concrete component and the

transformed concrete section of the composite beam; vertical deflection

(Adekola 1968); distance measured from steel-concrete interface

= centroid of component with respect to the steel-concrete interface

= centroid of the transformed concrete section with respect to the steel-

concrete interface

= number of cyclic range magnitudes; distance between the centroids of

the steel and concrete components (Newmark, Siess and Viest 1951)
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= factor grouping together geometry, material properties, and connectionc[
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B

ô

ôQ

= factor grouping together geometry, material properties, and connection

stiffness

= displacement

= resultant bearing force acting on a stud shear connector

= normal strain

= curvature

= shear strain

= coefficient of friction

= normal stress

= shear stress

= Poisson's ratio

e

0

T

tr

o

Í

1)



Ghapter 1

lntroduction

1.1 EARLY HISTORY OF COMPOSITE STEEL.CONCRETE BEAMS

Probably the first time the term composite beam was recorded was in a report by

the Dominion Bridge Company of Canada in 1922 that presented the results of

tests on two floor panels, each of which contained two steel l-sections encased in

concrete. The excerpt, which is taken from a paper written by Viest on a review

of research on composite steel-concrete beams (Viest 1960), is as follows:

"...'While such beams have hitherto been designed on the assumption that

the entire load ... is carried by the steel, it was thought that the steel and

concrete might really act together so as to form a composite beam '.."

At about the same time, similar tests were being undertaken in the United States

and the United Kingdom, and tests on composite steel-concrete beams have been

carried out ever since.

The early tests were all on steel sections encased in concrete such that the

entire interaction was a result of the bond between the steel and concrete. In the

1930s, researchers were beginning to realize that unless the steel sections were

fully encased in concrete and there was no fluctuation in load, bond alone could

not be relied upon to provide the interaction required and, hence, the first forms of

mechanical shear connectors were used.

The first tests in Switzerland in 1933 used spiral connectors made by

forming round bars into a helix and used what are now commonly referred to as

push-out specimens. European researchers then moved from spirals to hooks or

I



Introduction

loops in the early 1940s that were made by bending reinforcing bars. While

European practice tended towards using stiff connectors, American researchers

preferred using more flexible connectors requiring less fabrication.

The first extensive tests undertaken in the United States, commencing in

l94Z at the University of Illinois and Lehigh University, used flexible angle and

channel connectors, which showed that flexible connectors are also suitable to

provide adequate shea¡ connection. The first test using stud shear connectors,

which are the common form of shear connection today, took place in 1954.

As the experimental tests showed that slip is inherent in composite steel-

concrete beams, several theories considering slip on stresses and deflections were

being developed. The first theory was developed in 1951 by Newmark, Siess and

Viest and remains the basis for most partial-interaction theory today.

1.2 PURPOSE OF THE RESEARCH

The cross-section of a typical composite steel-concrete bridge beam is shown in

Fig. 1.1 where a series of parallel, longitudinal, steel l-sections, support a concrete

deck, which acts as the running surface. The two components are mechanically

fastened together along the steel-concrete interface with a distribution of stud

shear connectors that are welded to the top of the steel flange and embedded in the

concrete. The shear connection makes the steel and concrete components act as

one improving the efficiency of the cross-section. These types of bridges are

commonly used today as they are a competitive design option for both simply

suppofed and continuous spans ranging from 20 to 100 meters (Hayward 1987).

Concrete Deck

Stud Shear
Connectors

Steel-Concrete
lnterface

2

L
o
C)o

U)

õo
U)

VV

\ \ \'*4 { 'o4\V

\ \ 4V
È'*4 {

Figure 1.1: Typical composite steel-concrete bridge beam cross-section.



Introduction

The aim of this research project was to investigate the partial-interaction

behavior of composite steel-concrete bridge beams subjected to fatigue loading so

that the remaining strength and remaining endurance of these structures can be

more accurately predicted. Current design/assessment procedures assume that the

shea¡ connection is infinitely stiff so that there is no relative displacement of the

components along the interface that is slip. This results in a continuous strain

distribution throughout the depth of the section, as shown in Fig. 1.2a, which

simplifies the design/assessment procedure. However, the connectors are not

infinitely stiff and slip along the interface occurs as vertical vehicle loads are

applied, which is known as partial-interaction. Consequently, the strain

distribution at a section is discontinuous at the interface level as shown in Fig.

1.2b, where the magnitude of the discontinuity is a measure of the slip, known as

the slip strain.

N.A. of trans.
section

comp.

J

Cross-section Longitudinal section

a) Full-interaction

Strain distribution

steel-concrete
interface

lTTT
-t

comp.

Cross-section Longitudinal section Strain distribution

b) PartiaÞinteraction

Figure 1.2: Full- and partial-interaction strain distributions.

Hence, partial-interaction affects all aspects of composite steel-concrete

bridge beams and the following two points were focused on in this research:

TTTT

tens.

tens.
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1) the reduction in the longitudinal shear force along the steel-concrete

interface, which influences the fatigue life of the shear connection; and

2) the increase in the flexural stresses in the steel and concrete components

that are required in order to maintain equilibrium.

In addition to the two points listed above, the complex interaction between

friction along the steel-concrete interface and the nonlinear load-slip behavior of

the stud shear connectors was also investigated. Finally, an experimental

programme was undertaken to investigate the fatigue behavior of stud shea¡

connectors subjected to reverse-cyclic loading. As it will be shown in Chapter 2,

very little work has been done in this area, even though the shear connection is

subjected to reverse loading in most regions of the span.

The need for improved and reliable assessment techniques becomes clear

when one realizes that in the United States, for example, there are approximately

600,000 bridges, and on average, 12,000 of them reach their 50 year design life

every year (Yazdani and Albrecht 1987). Furthermore, it has long been stated that

general replacement of bridges after a life of about 100 years is impractical and

that complete replacement could not be achieved in less than a century (Ogle

1931). The need for reliable assessment techniques in composite steel-concrete

bridges is even more critical as the condition of the shear connection can, in

general, not be visually inspected.

1.3 DISPOSITION OF THESIS

The thesis is divided in to 6 chapters and the contents of each chapter are

summarized in the following section. It is noted that the models developed pertain

to simply supported composite beams assuming unpropped construction. The

implication of this being that the composite beam resists the live load due to

traversal of vehicles, while the steel section on its own resists the dead load of the

concrete component.

Chapter 2 is the literature review and contains all of the information that

the remainder of the thesis references.

The third chapter develops the linear partial-interaction models, where

qlqple techniques based on common full-interaction analysis are derived to
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predict the partial-interaction range resisted by the shear connection and the

partial-interaction flexural stresses. An example is solved to show the use of the

techniques developed by solving an illustrative problem'

Chapter 4 deals with the non-linear behavior of the shear connection when

the complex interaction between friction along the interface and the non-linea¡

load-slip behavior of the stud shear connectors are considered. A finite element

procedure is developed that can model the non-linear behavior and a comparison

is made between the results of the computer Simulations and a simple hand

analysis technique.

Chapter 5 deals with the experimental programme that was undertaken as

part of this research project. The details of the specimens are given as well as the

experimental data and an analysis of the results is made.

Finally, Chapter 6 summarizes the conclusions that have been drawn from

this research and suggestions are given for future research in the area, which have

been identified but time has restricted from pursuing'



Chapter 2

Literature Review

2.1 INTRODUCTION

This chapter presents all of the information that is referenced in the remainder of

the thesis. The classical partial-interaction theory is discussed first, as it forms the

basis for this research. The current analysis and assessment techniques are then

described, followed by a review of research directions, primarily pertaining to

experimental investigations. Finally, details of the core finite element program

that was used to perform the computer simulations are given'

2.2 CLASSICAL PARTIAL.¡NTERACTION THEORY

The first partial-interaction theory, or incomplete-interaction as it was then called,

was developed in 1943by Newmark, Siess and Viest (1951) after carrying out a

series of tests on small-scale composite T-beams at the University of lllinois.

Channel connectors were used at the time, and it was stated that no rational means

of predicting the stiffness of the connectors exists, hence, the stiffness was

determined experimentally by measuring the slip. Since then, however,

relationships have been developed, as discussed in Section2.5, that can predict the

stiffness of the most common form of shear connection that is stud shear

connectors. Slip measurements on large-scale composite T-beams showed that for

simply supported beams with a uniform distribution of shear connectors, the slip

near a concentrated load is very nearly zero and increases towards the support. It

was suggested that the low values of slip near the loads are, in part, a result of the

increased friction along the steel-concrete interface. Consequently, Newmark,

Siess and Viest were the first to acknowledge the presence of friction, however,

6
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results of this research (Chapter 4) suggest that although the frictional forces are

high in the vicinity of concentrated loads, the effect on the horizontal shear is

distributed over the full length of the beam'

The classical theory that was developed, which remains the foundation for

most of the partial-interaction theory used today, is based on the following four

assumptions.

1. The shear connection is continuous and uniform along the length of the

beam, which is a reasonable assumption to make particularly when dealing

with simplY suPPorted beams.

2. The slip is directly proportional to the shear load, which simply means that

the connector stiffness is constant. This was a valid assumption to make as

it was demonstrated that for the loads used in the tests, the load-slip

relationship was linear.

3. The distribution of strain is linear throughout the depth of each component

of the section, which is consistent with beam theory where it is stated that

plane sections remain Plane.

4. The concrete slab and steel beam deflect the same amount at all points along

the beam at all times, which implies that the curvature in both components is

the same. This is a valid assumption as long as there is no separation of the

components along the steel-concrete interface. As stud shear connectors

have heads that are designed to resist uplift forces, it is reasonable to assume

that there is no separation along the interface, especially under serviceability

fatigue loading.

The theory was developed for a simply supported beam with a single

concentrated load acting anywhere along the beam, and relationships were

explicitly derived to predict the following properties at any section: axial force

acting on the steel and concrete components; horizontal shear force acting along

the steel-concrete interface; slip, which is the horizontal shear force multiplied by

the stiffness of the shear connection; strain distribution in the steel and concrete;

and deflection. The derivation of the equations as given by Newmark, Siess and

Viest will not be reproduced here. Instead, the derivation presented by Johnson
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(Johnson lgg4), which is also based on the work by Newmark et al and was used

in the development of this research, is summarized in Section 2'2'I' However' for

comparison with the model developed as part of this research in chapter 3, the

expression given by Newmark et al to predict the horizontal shear force for the

portion of the beam to the left of the concentrated load is

?,('î)] (2.r)
q

EAz

EI
P ,rrh(+L\

\^lC r IL

where q¿ is the shear force per unit length along the interface to the left of the

concentrated load, the parametersTA, EI and C are functions of the composite

cross-sectional stiffness and geometry of the beam, z is the distance between the

centroids of the steel and concrete components, P is the concentrated load' ø is the

distance to the load from the left support, ^L is the length of the simply supported

beam and x is the distance of the cross-section from the left support'

As a result of the investigation carried out by Newmark et al, it was

concluded that the slip is negligible for a properly designed composite beam and'

hence, assuming full-interaction is satisfactory. Based on this conclusion and the

obvious complexity of the partial-interaction equations (F;q. 2'l for example),

partial-interaction theory was nevel embraced in the design of new or the

assessment of existing composite beams. It is noted, however, that the

significance of the range of load on the fatigue life of shear connectors was not

realizedat the time when partial-interaction theory was first being developed. Up

until the mid 1950s, when the first cyclic tests were carried out (Sinclair 1956),

only static tests were performed and, hence, it was not determined that even a

small change in the longitudinal shear force due to slip would have a significant

effect on the fatigue life of the shear connection as is shown in Chapter 3'
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2.2.1 Development of linear'elastic partial'interaction theory

As it is crucial to the understanding of the models developed in this research

project, the linea¡-elastic partial-interaction theory that was presented by Johnson

(Johnson 1994) is reworked in detail in this section.

2.2.1.1 Parameters

Figures 2.I and2.2 define the basic variables used in the derivation of the model.

The location of the concentrated load P and the design point are given by I and -r

respectively in Fig. 2.1 where the origin is defined at the left support. The total

length of the beam is given by L and p is the connector spacing. As shown in Fig.

2.2, the depths of the steel and concrete components are given by l¿' and h,

respectively, and d" is the distance between the centroid of the steel component

and the centroid of the concrete component.

P p design point

L

Figure 2.1: Longitudinal section of theoretical composite beam.

concrete centroid .l

i

steel
centroid

9

x

T T T T I T T I Ï LT T T ÏTTT

steel-concrete interfac e

Figure 2.2: Cross-section of theoretical composite beam'
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Figure 2.3 shows the forces acting on a small length of the beam dxloca¡ed

at a design point x from the left support. The steel and concrete components are

separated to show the forces acting along the steel-concrete interface, and the

deformation is greatly exaggerated for clarity. The stress resultants M, F and V

represent the moment, axial and shear force respectively acting on the

components, where the subscripts s and c are used to define the steel and concrete

components respectively. The superscript + is used to denote forces on the right

hand side of the element.

concrete centroid
vr*

M,
Fc F"*

Mr*

t-
(

s

dx tr dxq

, ldsl..ç'=.s+l-lcþc
\dx )

vr*
Mr*

F +
s

x

Figure 2.3: Forces acting on element dx

The slip s in Fig. 2.3 increases to s* along dx and is defined by the

following equation

(2.2)

where ds/dx is known as the slip strain. Using the same superscript notation *, the

following terms are defined

j

steel centroid --

D

dx

M! =r,.(#)* (2.3)
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and

MT = M,+ (2.4)

The longitudinal shear flow force, or longitudinal shear force per unit length, is

defined as ø so that qdx is the longitudinal shear force acting on each component.

The vertical force across the interface is given by rdx and the force acting on each

connector is equal to pq and can be defined as

PQ=ks (2.s)

where k is the connector stiffness, assumed to be constant.

From vertical equilibrium of the element in Fig. 2.3

v! =v, + rdx (2.6)

V! =v" - rdx (2.7)

and from longitudinal equilibrium

F:Fr=F, (2.8)

2.2.1.2 Equilibrium

To eliminate F, the summation of moments about the centroid of the steel

component at x from the left support can be made, resulting in the following

equation

and

ùc

2
rr" - M! +v:dx-nd.+-rdx (2.e)
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As the last term of the right hand side of Eq. 2.9 is of second order, it can be

ignored. Substituting Eqs 2.3 and 2.6 into Eq. 2.9 and rearranging yields the

following expression

#.v,+rdx=In,

#.v"-rdx=lrno"

Similarly for the concrete component

(2.t0)

(2.tt)

(2.r2)V, +V, = l/*

By defining the vertical shear at t as l, the following equation is defined

and by substituting Eqs 2.10 and2.l1 into Eq.2.l2,the following is obtained

nt(r,+h,)-#-ofr' =r.

!L*ry+v* =qd,dx ùc

(2.13)

As dr=l/)(h,+h,) for symmetrical sections, Eq. 2.13 can be simplified and

rearranged to give

(2.14)

2.2.1.3 ElasticitY

As any uplift forces are small within the elastic range, and the commonly used

stud shear connectors are designed to resist tensile forces across the interface, it

can be assumed that there is no separation of the steel and concrete components

along the interface, so that the curvatures / in both components are the same. The

modular ratio n is defined as

t
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and, hence, the curvature is given bY

ø
M" nM"

=-=-
E,I , E,I,

(2.16)

The longitudinal strain on the concrete side of the interface along A-B in

Fig.2.3 is given by the following expression where positive is taken as tension

F
tL 

- E"

Etn=lr"r-#

êco =-lr,r.#

ds I- nF I, F

---j¡ 
O--¡-tì^O

dx 2 c¡ E,A" 2 E,A,

(2.ts)

(2.r7)

(2.18)

where the first term of the right hand side represents the portion of the strain

resulting from the bending of the component and the second term represents the

strain due to the axial compressive force acting on the component. Similarly, the

expression for the longitudinal strain along the interface C-D in Fig. 2.3 is defined

as follows

2.2.1.4 CompatibilitY

The difference between the longitudinal strain along A-B and C-D in Fig.2.3,

given by Eqs 2.17 and 2.18 respectively, is called the slip strain ds/dx which can

now be defined as

(2.re)

Simplifyin gF;q. 2.19 and using the definition of d,= I/2(h,+h,), the expression for

the slip strain becomes
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I
A,

ds

ùc

I 
"\dQ; )d,

+- (2.2o)

(2.21)

(2.22)

(2.23)

2.2.1.5 The differential equation

Equation 2.16 canbe differentiated with respect to x to give

dM" E,I, dø

-=
ùendx

dø

dx
I,E,

dM,

dx

and

that can be substituted into Eq.2.l4 to eliminate M, and M,, giving the following

expresslon

E- /, + +V* = qd,

By defining

I,=1.+L
n

(2.24)

and substituting Eqs 2.5 and 2.24 into Eq. 2.23, the following expression is

obtained after simplification

4! =(ktl 
pY, - v. (2.2s)

dx ErI o

Differentiating Eq. 2.2O with respect to x gives
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d2s dó. dFI(n /l

- 

= 
-ar^ -T- 

|d)c' dx ' dx E" [.A, A, )

(nt.+)-*

(2.26)

where by defining

lnI
-=-+-Ao A" A,

(2.27)

F¡q.2.26 can be simplified by substituting Eqs 2.25 and2.27, and dF/dx=-q=-lcs/P

to give

d2 s /<s d"

E,I.
(2.28)

dx2 pE,I o

and by defining

I
drt

A,

F;q.2.28 becomes

dzs ks
v*dx2 pE,I oA'

Finally, by defining the following parameters

+
Io

An
(2.2e)

(2.3o)

(2.31)k
at

PE,I oA'

and

d"PA'
þ=

k
(2.32)
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Equation 2.30 can be expressed as the following differential equation

# azs =v.a'þ (2.33)

A solution to the differential equation given by Eq. 2.33 is

s = Kt sính(u,)+ Krcosh(ü)+ pV. (2.34)

where Kl and Kz are integration constants, and a and B are functions of the cross-

section of the composite beam and the stiffness of the shear connection as given

by Eqs 2.31 and2.32 respectivelY.

As Eq. 2.34 is a function of the shea¡ force in the shear span l, the

distribution of slip along the entire span must be defined using two equations as I

is different in each shear span. Consequently, four boundary conditions must be

defined in order to solve for the four integration constants. As this part of the

development is the start of the original component of this research project, the

derivation of the mathematical model is continued in Chapter 3.

2.3 OTHER LINEAR-ELASTIC PARTIAL-INTERACTION THEORIES

Not long after the presentation of Newmark, Siess and Viest's theory in 1951,

other researchers began developing various partial-interaction theories based on

slightly differing assumptions. The most interesting variation did not assume that

the curvature in the steel and concrete components is the same (Adekola 1968),

hence, separation between the components along the interface is permitted by

modeling the axial stiffness, or foundation modulus þ, of the shear connection.

An additional assumption that was made, however, is that the uplift force is

directly proportional to the differential deflection, which means that the axial

stiffness remains linear-elastic. The difficulty with this theory arises from the

necessity of two foundation moduli depending on the orientation of the uplift

force. The foundation modulus for positive uplift, in regions where separation

occurs, can be readily obtained from pull-out tests of shear connectors. However,

in regions of negative uplift, where the concrete bears against the steel along the
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interface, no experimental values exist and furthermore, it is not initially known

over what regions of the beam negative uplift exists.

The fundamental difference between this theory and that developed by

Newma¡k et al can be illustrated by refening to Fig.2.3 where a tensile force T,

given by the following equation,

T=k,(y,-y") (2.3s)

must be added to the steel and concrete components along the interface where the

term (y,-l) is the differential deflection, or separation, of the components along

the interface. The derivation leads to two differential equations; one fourth order

differential equation relating to the uplift force, and one second order differential

equation relating to the axial force acting on the components. In regions of

negative uplift, not all of the axial force from the steel component is transferred to

the concrete component as the resulting frictional force F¡r, acting along the

interface, will resist some of the load acting on the shear connection.

Consequently, the differential equation relating to the axial force has an additional

term, in regions of negative uplift, which accounts for friction and is given by the

following expression

(2.36)

where ¡z is the coefficient of friction and dT/dx is the magnitude of the negative

uplift force per unit length.

The solution to the two differential equations is not simple and is treated as

a two-point boundary value problem that is solved using finite differences. The

solution is further complicated by the fact that it is not initially known where

negative uplift occurs, hence, an iterative procedure was adopted. The initial

assumption was that the coefficient of friction is zero to indicate regions of

negative uplift. Subsequent iterations incorporated a suitable coefficient of

friction in the negative uplift regions until convergence was achieved. Singleton

carried out a series of tests in 1985 to determine the coefficient of friction between

dT
Fu = lt-T'dx
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steel and concrete under cyclic loading, which is briefly summa¡ized in Section

2.4.

a simply supported composite beam with a single

concentrated load and in which it was assumed that the coefficient of friction was

zero, hence, the effect of friction was not being considered. A comparison

between the partial-interaction stresses of the bottom flange of the steel

component and the full-interaction stresses of the bottom flange was made. It was

found that even for high degrees of interaction, in fact, higher than that expected

in practice, the partial-interaction bottom flange stresses were at least 20Vo higher

than the full-interaction stresses. The implication of this being that current full-

interaction analyses are significantly overestimating the fatigue life of the steel

component.

More recently, another research grouP (Robinson and Naraine 1987)

solved the theoretical model developed by Adekola for the case of a simply

supported beam with a single concentrated load and performed additional

analyses. Included in the paper, however, was an interesting comparison with the

theory developed by Newmark et al where it was assumed that there is no

separation of the components. The conclusion that was made was that the

difference in the shear force distribution along the interface is negligible

regardless of which theory is used. It could be said, therefore, that it would be

wiser to adopt the theory developed by Newmark et al, which is simpler because it

assumes equal curvature and the resulting loss of accuracy is negligible. A

significant observation was made, however, which could not have been predicted

by a theory assuming equal curvatures. It was found that the moment induced in

the slab in the vicinity of a concentrated load is considerably larger than that

predicted by the equal curvature theory due to the high negative uplift forces in the

area. The high negative uplift forces induce large vertical shear forces in the

concrete slab. It was stated that the concrete deck resists approximately 77Vo of

the vertical shear under a concentrated load. Such a high proportion of shear and

correspondingly targe moment in the concrete deck may result in tensile stresses

near the bottom of the deck that may not have been accounted for in the design

and, hence, could result in premature cracking of the concrete.
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2.4 Cyclic coeff¡c¡ent of friction

Singletoù)investigated the variation of the coefficient of friction between steel and

concrete under cyclic loading experimentally at the National University of heland

(Singleton 1985). The tests consisted of applying up to 4 million cyclic

displacements to a steel plate sandwiched between two blocks of concrete. The

normal compressive force was applied through large springs.

It was found that the coefficient of friction fluctuated during the tests,

consisting of a repetitive series of peaks and troughs ranging from 0.70 to 0.95.

An initial increase was due to the wearing away of the weaker surface of the

concrete block exposing the coarse, harder concrete. Additional cycles gradually

wears away and polishes the surface causing a reduction in the coefficient of

friction, until the coarse aggregate is once again exposed resulting in another

increase in the coefficient of friction.

2.5 FATIGUE BEHAVIOR OF COMPOSITE BEAMS WITH STUD

SHEAR CONNECTORS

The fatigue behavior of composite beams with stud shear connectors is unusual

because the mechanical properties of the connectors are continually changing

under the application of cyclic loads. This section describes the changes in the

properties of stud shear connectors that occur due to cyclic loading and presents

mathematical models that have been developed to predict the remaining strength

and endurance of composite beams.

2.5.1 Fatigue behavior of stud shear connectors

¡1incÈd carried out one of the earliest fatigue tests performed on stud shear

connectors at the University of Illinois (Sinclair 1956). The tests consisted of a3Á

inch (19 mm) stud, welded onto a steel plate, which was cyclically loaded to

failure under varying stress ranges so that an S-N curve could be produced. The

studs were loaded directly, as they were not encased in concrete, which is not a

realistic approximation as the interaction between the stud and surrounding

concrete is not present. Subsequent fatigue tests used more realistic and complex

specimens where the studs were encased in concrete so that they were loaded

indirectly, examples of which are shown in Section 2.6.

t
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A typical example of the fatigue failure of a stud shear connector is shown

in Fig. 2.4 where the crack front is the horizontal straight line within the shank of

the stud and located axially at the interface between the shank and the weld collar.

The crack front started at the lower end of the shank immediately cyclic loads

were applied and gradually progressed up the shank at a fairly uniform rate as

shown by the light zone within the area of the shank (Oehlers and Bradford 1995).

The crack continued to propagate until the remaining or residual strength was

equal to the peak uni-directional load after which fracture occurred as can be seen

by the da¡ker area within the shank above the crack front. The residual strength

just prior to fracture, as a proportion of the initial static strength, is roughly equal

to the area of the dark fracture zone, as a proportion of the area of the shank of the

stud shear connector.

Figure 2.4: Fatigue failure of a stud shear connector.

An oblique view of a stud shear connector after fatigue failure is shown in

Fig. 2.5. kr this case, crack propagation can be seen to have occurred at the

flange/weld-collar interface, that has the same effect as at the weld-colla¡/shank

interface in Fig. 2.4, and also the crack propagation has occurred well above the

weld collar (Oehlers and Bradford 1995). The latter fatigue failure zone that

commonly occurs in practice is extremely important because it allows the stud

shear connector to fail in a ductile manner once fracture occurs (Oehlers 1990a).
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Figure 2.5: Fatigue deformation of a stud shear connector.

2.5.2 Cyclic load-slip characteristics of stud shear connectors

Tests have shown (Oehlers and Coughlan 1986) that the cyclic behavior of stud

shear connectors can be represented by the load-slip characteristics shown in Fig.

2.6. The general shape of the load-slip curve, however, was already determined

experimentally by 1959 from tests ca:ried out at Lehigh University (Thurlimann

lg5g), however, no attempt to quantify the curve was made for some time. The

following sections quantify the load-slip curve shown inFig- 2.6.
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Figure 2.6: Cyclic load-slip behavior of stud shear connectors.
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On the initial application up to the peak of the cyclic load, the connector

follows the path O-A of initial static stiffness K"r given by the following equation

(Oehlers and Bradford 1995)

(2.37)

where Prr is the static strength prior to cyclic loading, d"¿ is the diameter of the

shank of the stud, /, is the concrete cylinder compressive strength, and the units

a¡e in N and mm. The first group to truly identify the parameters governing the

static strength of stud shear connectors in standard push-out specimens (Ollgaard,

Slutter and Fisher l97I) suggested the following equation

(4,)o^o =o.5A,.JE (2.38)

where Ar¿ is the cross-sectional area of the shank of the stud shear connector, E is

the stiffness of the concrete and the units are again in N and mm. However, as the

studs used by Ollgaard et al all had the same tensile strength fu, and it was

assumed that the stiffness of the steel E, was constant, these parameters were not

included in their equation (Eq. 2.3S). Statistical analyses (Oehlers and Johnson

lg87), however, modified Eq. 2.38 to include fu and E" to give the following

relationship

5.3-
1.3

(P,, )0,"0 = J;
(2.3e)f:"

where r? represents the number of studs that are expected to fail as a group. If the

mean static strength is required, n should be taken ¿Ìs oo. As it was suggested

(Oehlers and Bradford 1995) that the compressive force induced across the steel-

concrete interface of push-out specimens increased the apparent strength of the

stud shear connectors relative to those in a composite beam by about 207o, the
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following equation was given to predict the static strength of the shear connection

in a composite beam.

(P,,)o"o^= J;
1.1

4.3 (2.4o)

If the load is then removed, path A-B of cyclic stiffness Kry = 2.8K'r

(Oehlers and Coughlan 1986) will be followed in Fig. 2.6, at a perrnanent set O-B.

If a reverse cyclic load is being applied, the connector will follow the path B-O-C-

D-O. On further loading, the connector follows the path O-E-F where the cyclic

load has induced a further increase of B-E in the permanent set which will be

referred to as the incremental set. If an overload is now applied that is sufficient

to fracture the connector, the connector will follow the path F-G-H-I where failure

will occur at the residual strength P,, which is less than the static strength of the

shear connection prior to cyclic loads P,¡, and ultimate slip (Oehlers and Coughlan

1936) given by the following equation

s, = (0.48- o.oo42Í,þ,h (2.4r)

where the units are N and mm.

2.5.2.1 Permanent set

Because the shea¡ connectors in a composite beam are loaded indirectly (Toprac

1965), that is the shear force on the connector depends on its stiffness, the shea¡

force on a connector in a composite beam depends on the permanent set. For

example, it has been shown that: overloads that are applied to the beam reduce the

cyclic range and, hence, increase the residual endurance and residual strength

(Slutter and Fisher 1966); that the permanent set induces a fatigue limit in the

beam below which fatigue damage does not occur (Oehlers and Singleton 1986);

and that composite beams made using propped construction have a smaller

endurance than those made using unpropped construction (Oehlers and Bradford

1995, Slutter and Fisher 1966, and Oehlers and Singleton 1986).
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2.5.2.2 lncremental set

The incremental set in Fig. 2.6 is a loss of energy per cycle due to crack

propagation within the stud and powdering of the concrete bearing against the stud

(Oehlers and Foley 1985). This loss of energy has been found to occur as soon as

cyclic loads a¡e applied to stud shear connections as w¿ìs first shown by

Thurlimann in plots of number of cycles N against slip s (Thurlimann 1959)

although no attempts were made to quantify this observation. Experimental data

from other researchers also showed the existence of incremental and permanent

set (Toprac 1965 and Roderick and Ansourian 1976), however, it was not until

Hallam that one of the first attempts to quantify incremental set was made (Hallam

1976). Hallam first determined the slope of the s-N plot, which is referred to as

ds/dN, that was found to be constant for most of the fatigue life. Hallam then

plotted the load range as a percent of the static strength against ds/dN on a semi-

logarithmic scale to give the following expression

øn(L"[dN = -10.00+0.1 Åx1oo
P.,

(2.42)

(2.43)

where R is the range of load defined as the difference between the maximum and

minimum load of acycle and the slip is measured in mm.

Subsequent research carried out by Oehlers and Foley, using an energy

release per cycle approach developed another relationship for incremental set

(Oehlers and Foley 1985), which is similar in form to that proposed by Hallam,

and is given by the following equation

dt 
-1.7x10-5

dN

where the units are again in N and mm.

As a consequence, the residual strength of stud shear connectors after

cyclic loading P,' is always less than their static strength P,¡ prior to cyclic loading

(Oehlers 1990c). Furthermore, this incremental set allows the connectors to fail as
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group as it allows the stronger connectors to attract more load than the weaker

connectors (Toprac 1965, and Mainstone and Menzies 1967), hence, design or

assessment can be based on the characteristic strength or endurance of the mean of

a group as opposed to the characteristic property of an individual connector

(Oehlers and Johnson 1987).

2.5.3 General forms for represent¡ng the fatigue damage

It was shown in the previous section that the loss of energy associated with the

incremental set represents a loss of strength of the stud shear connection. Tests

have shown (Oehlers 1990c, and Oehlers and Foley 1985) that this loss of strength

can be assumed to be linear as shown by line A in Fig. 2.7 which is referred to as

the crack propagation approach (Oehlers and Bradford 1995, and Johnson and

Oehlers 1996) where N is the number of cycles of a load that have been applied

and E is the endurance. However, current design techniques assume that there is

no reduction in strength whilst N < E as shown by line B in Fig. 2.7 and this

technique will be referred to as the standard approach.

B
Pst

standard
approach

P I

A

I

T

oN/E1

Figure 2.7: Yariation of the residual strength.

2.5.3.1 Crack propagation approach

The variation in the residual strength P,for the crack propagation approach in Fig.

2.7 is given by the following accumulated damage law (Oehlers and Bradford

1995, and Johnson and Oehlers 1996)

crack propagation
approach
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k=z Nt'rP,
Ek Pn

(2.M)
k=1

where there are z magnitudes of the cyclic ranges R.

2.5.3.1 .1 Asymptotic endurances

As the number of cycles increase, the strength of the shear connection reduces as

defined by the failure envelope (Oehlers and Bradford 1995) shown in Fig. 2.8 for

a given range R. Failure will occur when either the peak load of a cycle P^n is

equal to the residual strength after N cycles, or when an overload occurs at N*

cycles and the overload exceeds the residual strength.

P

Overload
Shear

P max

load

R

N' Nrro

No. of cycles

E.

Figure 2.8: Residual strength failure envelope.

So, it becomes evident that the experimentally determined number of

cycles to cause failure Nrrn, for a given range, is inherently related to the

magnitude of the peak load. To eliminate this effect, the asymptotic endurance

can be calculated from the following equation (Oehlers and Bradford 1995) that

was derived from a statistical analysis of fatigue data

I
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Eo=lo(
3.1

(2.4s)

where E, is the asymptotic endurance of a group of n connectors at two standard

deviations.

2.5.3.2 Standard approach

The standard approach endurance is often assumed to depend on R/Ps ot on R/Arn.

Due to variations between the restraints on push specimens and the parameters

assumed to affect the fatigue endurance, several endurance equations have been

proposed (Oehlers 1990b), such as the following mean endurance equation

(Slutter and Fisher 1966)

E^"o, =s.oaxro,r[*)t' (2.46)

where Ernonis the mean endurance and the units a¡e in N and mm.

However, it has long been suggested (Hallam 1976), and statistical

analyses (Oehlers 1990b) have confirmed, that the R/Pr¡ parameter gives the least

scatter of results, and from these statistical analyses it was found that the

characteristic endurance can be given by

E"n ,o("*i)[*)"' (2.47)

where the units are in N and mm, or more appropriately by

E"n

(t.rr-Y
10\ 4n )( (2.48)

The standard approach accumulated damage law is given by
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k=z Nk
E¡

<1 (2.4e)
k=1

which is essentially Miner's cumulative damage rule (Miner 1945) that was first

verified in 1976 as a suitable method of predicting the fatigue life of stud shear

connectors under variable amplitude repeated loading (Hallam 1976).

2.5.4 Fatigue equat¡ons for design and assessment

General fatigue equations have been developed (Oehlers and Bradford 1995, and

Oehlers, Gosh and Watrab 1995) for both the standard approach and for the crack

propagation approach of the general forms of the fatigue damage described

previously.

2.5.4.1 Generic fatigue equation

The fatigue material properties of Eqs. 2.44 to 2.49 can be represented by

the following generic forms

N _^
E

where A is the residual strength constant and

(2.s0)

E = c(!\^\X/
(2.st)

where C is a constant, m is the exponent in the residual strength equation and X

can be any parameter such as P.r,.

The types of vehicles that traverse a bridge throughout its life are

numerous, and it is necessary to calculate the magnitude and frequency of the

range of cyclic forces applied to the shear connection in order to determine the

fatigue damage caused by each vehicle. In practice, a Standard Fatigue Vehicle

(SFV) is used as it is not feasible to determine the stress range caused by each

vehicle expected to traverse a bridge. A typical fatigue vehicle is shown in Fig.
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2.9 (855400 1930) and the variation in the fatigue vehicle weights is represented

as a proportion of the weight of the SFV, W, as shown in the second column of

Table 2.1 known as the load spectrum. The probability of occurrence of each

fatigue vehicle, B, is also given in Table 2.1 where the summation of the

probabilities must equal unitY.

80 kN 80 kN 80 kN

1800 6000 mm 1800

Figure 2.9: Standard Fatigue Vehicle (855400 1980).

Table 2.I: I-oad spectrum

Fatigue

Vehicle

B'W*

I BrVy't'

2 BzWz'

Brwr'

I+= XBW'

The distribution of force in a shear flow influence line diagram, at a given

design point along the steel-concrete interface, for the traversal of a particular

fatigue vehicle must be converted to a set of equivalent cyclic forces that produce

the same fatigue damage. One method of doing this is known as the reservoir

method of cyclic counting (855400 1980), which assumes that the influence line

diagram is the cross-section of a reservoir that is to be emptied from the lowest

point.

The cross-section of the reservoir is obtained by drawing two shea¡ flow

influence line diagrams adjacent to each other as shown in Fig 2.10, where the

distance from the top of the reservoir to the lowest point, denoted by Rr, is one

equivalent cyclic range. Any other remaining pockets must be drained from their

lowest points until there are no more pockets remaining. Each of the remaining

Y

Probability

(B)

Weight

(w)

Wr Br

'Wz Bz

By'wy

I= 1.0
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pockets that are drained represents an additional equivalent cyclic range. For the

example shown in Fig. 2.10, there is only one more cyclic range, R2.

First Occurrence Second Occurrence

Ê
CË
Lr
Þo
(Ë

o

q)
C)

c)

(Ê{

o)o
ti

.P

Èo

H
c)

V)

------->1
tl

R2

Figure 2.10: Reservoir method.

The equivalent cyclic forces are recorded in tabular form, known as the

force spectrum shown in Table 2.2. The frequency I is the number of times the

range R appears in the influence line diagram for the design point.

Table 2.2: Force spectrum.

fR*Range

number

1 frRl'

fzRz-2

Y frRr'

Fr= IfR'

The magnitude of the range for a given fatigue vehicle is therefore equal to

I4lrR¿ where substitution into Eq. 2.51 gives

Range

(R)

Frequency

(Ð

frRr

fzRz

Ry fy
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(2.s2)

and the number of times the range will occur during the life of the bridge is

Y\ r) fi, A¡'c''nv tULo-

-/v\
No= BoTofo Q'53)

where Tr is the total number of fatigue vehicle traversals. SubstitutingBqs 2-52

and2.53 into Eq. 2.50 andreaffanging gives the following expression

È=y

\(nororoXw-n- )'
-lcx^

Defining the following two terms

tr='(ry\

t=)'

(r,)o=Znrw{ c
k=l

(2.s4)

(2.ss)

where ,L¡ is called the load factor and is given by the sum of the last column in the

load spectrum (Table 2.1), and

("r)- = roRi (2.s6)

where F¡ is called the force factor and is given by the sum of the last column in the

force spectrum (Table 2.2). Equations 2.55 and 2.56 can be substituted into Eq.

2.54 andrearranged to give the following generic fatigue equation (Oehlers 1992

and Oehlers and Bradford 1995)

k=yI
k=l

7@r,t)r
k=l

AC-mx (2.s7)
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where there are y fatigue zones and a fatigue zone is defined as a period of f)

fatigue vehicle traversals where both F¡ and Ia are constant.

2.5.4.2 Crack propagation design equation for stud shear connectors

Using the crack propagation fatigue material properties in Eqs. 2-M and2.45,the

generic fatigue equation (Eq. 2.57) can be written in the following form (Oehlers

and Bradford 1995)

131 1

(2.s8)
tT,

5l
Q.

Q"¡
Q'¡ +Tl r Í *7, r

where Q,,5_t-hestatic shearflow strength required, such as the strength required to

resist the maximum overload and Q,¡is the shear flow strength when the structure

is first built.

The application of the crack propagation approach to design is illustrated

in Fig. 2.11 where 0,, is the known static strength requirement and Q,o¡ can be

derived from Eq. 2.58 and is a function of Q,,. The increase in strength at a design

point in the beam (Q,,¡ - Q") is the additional static strength required to cope with

the reduction in strength due to fatigue damage and occurs along the length of the

beam.

Qot

Qf

Qo

Figure 2.lI Fatigue analysis procedures.
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The standard approach is also illustrated in Fig. 2.1 1 where separate calculations

are used to derive the static requirement Q,, and the endurance requirement QÍ

from which the upper bound of the two separate approaches are used in the design'

It can be seen that the crack propagation approach is a fundamentally new

approach in design'

2.5.4.9 crack propagation asses sment equation for stud shear

connectors

Equation 2.58 can be written in the following form for the assessment of the

residual strength of the stud shear connectors Qr", of an existing Structure

Q;,' @r,
k=)

k=l

L,)o

Q,,, = Q* 1- (2.se)
1318

where Q.,¡ is the shear flow strength of the stud shear connectors prior to fatigue

loading. Equation 2.59 can be rearranged in the following form in order to

determine the residual endurance Z,, when a residual strength Q,rris required.

1318Qi;r
k=-t'-1,

}Ve' )
Qn (2.60)

Lr

2.5.5 Fatigue behavior of composite beams

Computer simulations of composite beams that incorporate the stud shear

connector load-slip characteristics in Fig. 2.6 have been used to illustrate the

general fatigue behavior of composite beams.

2.5.5.1 Longitudinally stationary loads

The results (Oehlers and Singleton 1986) from a computer simulation of a simply

supported composite beam with a uniform distribution of stud shear connectors

that is subjected to cyclic loads at the mid-span are shown in Fig' 2'12' The line

Lr
k=l

T)
!

t
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marked A is the distribution of the shear flow forces along the beam when the

beam is first loaded so that the connectors are still following the linear partial-

interaction path such as O-A-G in Fig. 2.6. The line marked B is the distribution

just prior to fatigue failure where the connectors are following path O-B-A in Fig.

2.6 and the difference between lines A and B in Fig. 2.t2 is caused by the gradual

reduction in stiffness due to the incremental set. It can be seen that the

incremental set has the beneficial effects of both reducing the shear flow forces, so

that both the residual strength and endurance will be greater than originally

anticipated, and in redistributing them more uniformly, so that the connectors can

fail as a group close to their mean properties.

A
linear partial
interaction

B

maximum
shear flow

force
just prior to fatigue
failure

support mid-sPan

Figure 2.12: Redistribution of shear flow through incremental set.

2.5.5.2 Longitudinally moving loads

The effect of longitudinally moving loads (Oehlers and Carroll 1987) on the

fatigue behavior of a composite beam is illustrated in Fig. 2.13 where 4x is the

shear flow force. The envelope marked A was derived from a full-interaction

analysis and would be used in most standard procedures for fatigue design and,

hence, will be used as the benchmark. The envelope marked B was derived from

a linear partial-interaction analysis. It can be seen that partial-interaction can

considerably reduce the shear flow forces and, hence, considerably increase the

residual endurance and the residual strength. However, the reduction in the shear

flow due to partial-interaction depends on the span of the beam; the reduction

decreases as the span increases. The envelope marked C is a partial-interaction

analysis that allows for incremental set and it can be seen that the incremental set
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redistributes the shear load. It is also worth noting that partial-interaction reduces

the region of the beam that is subjected to reverse cyclic loading so that there is a

tendency for the connectors to be loaded uni-directionally.

full-interaction

incrementalset

q

0 B- 0.5 L L

linear partial \c
interaction

*

A

A

Figure 2.13: Shear flow envelopes induced by longitudinally moving loads

2.5.6 Beneficial effects of interface friction

The beneficial effect of interface friction is illustrated in Fig. 2.14 for the case of a

single point load moving across a composite beam (Oehlers and Bradford 1995,

and Oehlers and Bradford 1999). The shear flow force envelope is marked A.

The shear flow frictional resistance is marked B and tends to infinity at the

supports. The hatched region is the shear flow force resisted by the stud shear

connectors. It can be seen that friction reduces both the range and peak of the

shear flow force resisted by the stud shear connectors and, hence, both increases

the residual endurance and residual strength above that anticipated in the original

design. Furthermore, the beneficial effect of friction is greatest at the supports.

Procedures for incorporating the beneficial effect of friction into

assessment equations such as Eqs 2.59 and 2.60 have been determined (Oehlers

and Bradford 1995) and have the following form

:vA,Y -vPI

B

t/

q
nc L,,

(2.6t)



Literature Review 36

where VA"ylln" is the well known equation for the shear flow force, and the term

Vlt/Lrp is the shear flow force resisted by friction in which V is the shear force

acting at the design point, L.,n is the length of the shear span that includes the

design point, ¡z is the coefficient of friction at the interface between the concrete

slab and steel beam of the composite beam, A, is the cross-sectional area of the

concrete element, y is the distance between the centroid of the concrete element

and the centroid of the transformed concrete section of the composite beam and In

is the second moment of area of the transformed concrete section.

a) longitudinally moving point load

b) shear flow enveloPes

B
shear flow force on stud

shear connectors

A

A

shear flow force

shear flow frictional resistance B

Figure 2.14: Beneficial effect of friction

2.6 REVERSE.CYCLIC TESTS ON STUD SHEAR CONNECTORS

Numerous tests by researchers worldwide have investigated the fatigue behavior

of stud shear connectors experimentally (Slutter and Fisher 1966, Mainstone and

Menzies 1967, Oehlers and Foley 1985, and Gattesco and Giuriani 1996). The

vast majority of the classical push-out tests subjected the specimens to either

monotonically increasing static loads or uni-directional fatigue loads.

*q

0
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It is known, however, that the shear connection in composite beams is

subjected to reverse-cycle loading for at least part of the fatigue life, if not all of it,

as can be seen in Fig. 2.13. Even though the total range tends towards a uni-

directional one in simply supported composite beams due to incremental set

(Oehlers and Bradford 1995), the connectors within the mid-span region of the

beam are subjected to reverse-cyclic loads over a large portion of their fatigue

lives. Unfortunately, very little reverse-cycle fatigue tests on stud shear

connectors have been undertaken, furthermore, little analysis of the results was

made.

2.6.1 Early reverse'cycle tests

The initial reverse-cycle tests (Slutter and Fisher 1966, and Mainstone and

Menzies 1967) formed only a small part of extensive experimental programmes.

The specimens used in the reverse-cycle tests were essentially the same as those of

the uni-directional tests with slight variations to permit application of the load in

the reverse, or opposite, direction. Details of these early reverse-cycle tests are

given in the following two sections.

2.6.1.1 Slutter and Fisher

The experimental investigation was to determine the fatigue strength of stud shear

connectors and channel connectors in order to optimize their use in composite

highway bridges. The tests were performed at læhigh University, Pennsylvania,

where 35 fatigue tests were carried out on specimens containing 3/¿ inch (19 mm)

stud shear connectors, nine of which were reverse-cycle, and 9 fatigue tests used

7/8 inch (22 mm) stud shear connectors, three of which were reverse-cycle.

Each of the specimens had four studs welded onto the top flange of a

standard l-section and embedded in reinforced concrete as shown in Fig. 2.15.

These tests were unusual in the sense that the load was applied through the edge of

the concrete slab, where traditional push-out tests were loaded through the steel

section. The load was simply applied to both sides of the concrete slab for the

reverse-cycle tests and load cycles were applied at a frequency of 4Hz.
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4

\

concrete
component stud shear

connectors
PL

€
PR

steel component

Figure 2.15: Experimental set-up (Slutter and Fisher 1966)

The results for the relevant tests are summarized in Table 2.3 where the

maximum load is the peak load of the load cycle, and the range is the difference

between the maximum and minimum loads of the cycle.

Table 2.3: S of results lutter and Fisher I

Specimen No. of cycles
to failure

1

alA 1587.4

blA t975.2

clA 2557.5

a2A t04.6

b2A 104.8

c2A 17l.l
a3B 139.4

b3B 114.7

c3B t99.5

a4B 4t.5

b48 50.7

c4B 58.7

e1G 1056.4

eZG 2t8.6

e3H 112.5

e4H 33.0

I U - uni-directional cyclic loading
R - reverse-cyclic loading

All of the specimens failed in fatigue where cracking initiated at the weld

and propagated through the flange of the steel section. However, in cases where

the weld penetration was not complete, the fatigue crack propagated through the

Range

IKN]
Stud

Diameter
lmml

Maximum
Load
tkNl

Load
typ.t

t25.878.8R t9
125.8R 19 78.8

78.8 t25.8R l9
t57.4R 19 110.4

110.4 t57.4R t9
157.4l9 110.4R

r4t.5 t25.8U t9
125.819 t4r.5U

r41.5 r25.8U 19
157.419 173.1U

t73.1 t57.4U t9
151.4t9 173.1U
170.922 106.8R

150.0 214.0R 22
t70.922 t92.2U

235.4 2t4.0U 22
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weld. The results were plotted on an S,-N curve and expressed by the following

mathematical model

(2.62)

where A and B are regression coefficients and S, is the stress range. However, as

it was realized that for the same total range, the fatigue life of a shear connection

subjected to reverse-cyclic loading was longer than the fatigue life of a connection

under uni-directional loading, the reverse-cycle tests were not included in the

analysis. Furthermore, as the fatigue life prediction for reverse-cycle loading

would be conservative when using the relationships from uni-directional tests, no

further investigations or analyses were canied out on reverse-cycle tests.

2.6.1.2 Mainstone and Menzies

A series of 83 push-out tests were ca¡ried out at the Building Research Station

(Mainstone and Menzieslg6T) in parallel with the drafting of the then new British

Code (CPl l7:PartZ 1967) in order to provide additional data with regards to the

design of stud shear connectors. The tests were carried out on 3/q tnch (19 mm)

stud shear connectors, channel connectors and hoop connectors, and the loading

rate va¡ied from 0.25 Hz to 4 Hz depending on the anticipated length of the

fatigue life.

Eleven of the specimens containing the stud shear connectors, each of

which contained four studs, were tested statically, and of the 23 fatigue tests,

seven of them were reverse-cycle tests. A traditional type of push-out specimen

was used in these tests where the load was applied through the steel section as

shown in Fig. 2.16. A set of four springs, where one end of the spring was

fastened to the steel section and the other end to the concrete block, were

tensioned prior to the reverse-cycle tests in order to induce the force in the

opposite direction.

r
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pre-tensioned
springs

Figure 2.16 Experimental set-up (Mainstone and Menzies 1967).

Based on the results of nine static tests, the average static strength of the

specimens was found to be 427 kN. The results of the relevant fatigue tests a^re

given inTable2.4.

Table2.4: of results and Menzies I

Specimen No. of cycles to
failure

s10 1700.0

s12 679.0

sl3 630.0

s14 200.0

sl5 481.0

s17 2200.o

s18 101.0

s20 669.0
21.0

s23 651.0

s24 9.2

s25 13.3

s27 8.97

s28 6.0

s30 13.1

s31 8.6

s32 165.0

s33 106.0

s34
I U - uni-directional cyclic loading

R - reverse-cyclic loading

I

S2 1

Maximum
Load lkNl

Range

IKNI
Load
typel

267.2 r33.6U
r49.6U 298.8

79.6 159.6R
r99.2R 99.6

49.6 t59.6R
r39.6R 69.6

109.6 2t9.2R
165.6U 328.8

139.6 278.8R
84.8U 338.8

348.8 87.2U
92.0U 368.8

348.8 r74.4U
t74_4U 348.8

348.8 t74.4U
169.2U 338.8

368.8 92.0U
89.6U 394.8

t29.6 243.6R

t

16.5
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The goal of the tests was to establish relationships between the maximum

load and the fatigue life of the shear connection at different minimum to

maximum load ratios. Although it was again evident that the fatigue life of stud

shear connectors with the same total range is longer under reverse-cyclic loading

compared to the fatigue life of connectors under uni-directional loading, no

additional comparison or analysis was suggested.

An additional feature that was monitored in this investigation was the slip,

and it was plotted against the number of cycles elapsed as a percent of the

estimated fatigue life of the connectors. It was shown that for the uni-directional

specimens, the rate of increase in slip per cycle, ds/dN, remains constant until

approximately 2O7o of the fatigue life remains at which time it increases rapidly.

A similar observation was made for the reverse-cycle specimens. This is

significant as it indicates that if the slip was monitored on an existing bridge, the

remaining life of the shear connection could be predicted.

2.6.2 Recent reverse-cycle tests

Up until recently, there appears to have been little, if any, research carried out on

the reverse-cycle behavior of stud shear connectors. This is most probably

because it is felt that it is not necessary to refine the understanding of reverse-

cycle loading as the results are conservative when compared to uni-directional

cyclic loading with the same total range.

It was realized, however, that detailed experimental results are required to

more accurately carry out numerical analyses and refine computer simulations of

composite beams subjected to cyclic loading (Gattesco and Giuriani 1996). In

addition, it was also stated (Gattesco, Giuriani and Gubana 1997) that for long

span composite beams, if the connection is not stiff enough, the slip may be in

excess of approximately 1 mm which would load the shear connectors beyond the

linear-elastic range while the rest of the structure remains linea¡-elastic. As a

result, a force in the opposite di¡ection occurs as the loads are removed and the

beam returns to its original configuration due to the inelastic unloading

deformations of the connectors.

A test specimen was designed, which is suitable for static, uni-directional

cyclic and reverse-cyclic loading. The specimen is considerably more
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sophisticated than the classical push-test specimen as it was designed to more

accurately simulate the stress conditions surrounding a stud shear connector in a

composite beam. A pilot investigation consisting of four tests; two static tests and

two cyclic tests (Gattesco and Giuriani 1996), was performed where the viability

of the specimen was confirmed. The cyclic tests were of the high-amplitude, low-

cycle type such that failure occurs after a relatively small number of cycles. The

cyclic load was applied in blocks of increasing total range by both increasing

maximum load and decreasing the minimum load, where a new block was applied

after the incremental set of the previous block settled to a constant rate. As a

result of the large total range and high peak load, failure occurred after only 1223

and 625 cycles in the two cyclic tests'

Due to the small number of tests, the conclusions (Gattesco and Giuriani

1996) could only be qualitative, however, an interesting observation was made in

that the increment of slip becomes very nearly constant after the first few initial

cycles which implies that there is a progressive accumulation of damage and no

shakedown. The fact that the damage is progressive is a key point which was first

noted in the 1960s (Toprac 1965), however, it is still generally assumed that there

is no reduction in strength and stiffness of the shear connection until failure, as

shown previouslY inFig.2-7 .

A further eight tests were performed (Gattesco, Giuriani and Gubana 1997)

which, in addition to reversal of the shear load, looked into the reduction in the

range as the number of cycles increases due to the redistribution of the

longitudinal shear forces along the length of the beam. The research methodology

adopted was a unique one in that a strain-life approach was used, where the

maximum slip is kept constant, opposed to the load-life approach typically used

where the range is kept constant. This approach was taken because the slip of the

shear connection in a structure is governed by the global behavior and, hence,

tends to remain constant and the range reduces as a result of the redistribution of

the shear load. The maximum slip was varied in all of the tests and it was

determined that for slips of 1 mm, which can occur in long composite beams, the

fatigue life can be less than ten thousand cycles'

Further experimental work is needed using the strain-life approach as the

.-outcome would be useful by improving future computer simulations which may
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lead to simplified mathematical models that can account fo¡ this type of inelastic

behavior.

2.7 FINITE ELEMENT FOMULATION

This section briefly describes the details of the finite element program (Cheung

and yeo lg75) adopted for the computer simulations forming part of this research

work.

2.7.1 Finite element selection

The program uses standard four-noded isoparametric plane stress elements to

model tire steel and concrete components of the composite beam, which means

that the same shape functions are used to define both the geometry and

displacement of the elements. There are two orthogonal translational degrees of

freedom per node as shown in Fig. 2.I7a. An orthogonal set of springs, shown in

Fig.2.I7b, is used to model the stiffness of the shear connection along the steel-

concrete interface.

v3

u u

u3

a) four-noded element b) orthogonal spring element

Figure 2.17: Finite elements.

The springs are connected to each corresponding concrete element node

and steel element node across the interface as shown in Fig. 2.18, which illustrates

a portion of a typical finite element mesh used in the simulations. The vertical

spring models the stiffness of the connectors in the di¡ection normal to the

interface, while the horizontal spring models the longitudinal shear stiffness of the

connectors. As the model of the non-linear behavior of the connection stiffness
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forms an original development of this research project, the details are given in

Chapter 4.

Concrete Deck

Interface

Figure 2.18: Typical finite element mesh.

Proof that the developed finite element program gives realistic results is

shown in Chapter 3. Computer simulations are compared with theoretical partial-

interaction analyses and very good correlation is obtained.

2.7.2 Component stiffnesses

As it is assumed that the steel and concrete components remain linear-elastic when

subjected to fatigue loading, the stiffness of the steel and concrete remains

constant throughout the analysis procedure. The stiffness of the steel E" is user

defined and is typically equal to 200000 MPa. The stiffness of the concrete is

calculated from the following equation

E, =Sooot[f" (2.63)

wheref,.is defined by the user in MPa.

The longitudinal shear stiffness of the connectors is calculated using Eq.

2.37 where the parameters required are input by the user. The iterative secant

stiffness approach adopted when the non-linear behavior of the shear connection is

modeled is discussed in ChaPter 4.

CÚ
a)

Êa

a)
o)

CN\
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2.7.3 Stresses and stra¡ns

The following vector defines the three independent strains

{t}={t, €, yrI (2.64)

where the strains are found from displacements t â) by

{'}= IBHó]
(2.6s)

where tBl is the strain matrix, which is simply the partial derivatives of the shape

functions.

The following vector defines the stresses

{o}= þ, o, 
",,Y

(2.66)

where stresses are determined from the strains by the following expression

{o}= [PH']
(2.67)

where tDl is the material stiffness matrix, which for plane stress elements is

defined as

1 U

1

0

0

0
l-ulol=* u (2.68)

0
2

where u is Poisson's ratio, which is user defined but is usually taken as 0.15 for

concrete and 0.3 for steel.

2].4 Element stiffness matr¡x

The element stiffness matrix for the spring elements is defined as
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krp =

Ern o

0 1x10ro

_Esp o

0 -1x10to

_Erp 0

0 -1x10'o
Ern o

0 1x10to

(2.6e)

'where E, is the horizontal shear stiffness, which is initially equal to K', given by

Eq. 2.37 but varies when a non-linear analysis is performed as, described in

Chapter 4. The vertical stiffness is assumed to constant as well and is fixed at the

relative large value of I x 1010 in order to conform with the linear-elastic partial-

interaction assumption that there is no separation between the steel and concrete

components.

The element stiffness matrix for the four-noded element is derived from

the following integration over the area of the element

k,, = tJ [¡]' [¿lla] d(are a) (2.7o)

where r is the thickness of the element that is user defined and is obtained from the

cross-sectional geometry of the composite beam.

As each of the four-noded and spring element stiffness matrices are

determined, they are assembled into the global stiffness matrix [Kl.

2.7.5 Loading

The current program permits only concentrated loads, which are used to represent

the vehicle axle loads traversing the beam longitudinally. As these loads may only

be applied at nodal points, they are assembled directly into the global load vector

{R} and are used to calculate the displacements {ô} given by the following

relationship

{n}= [rH¿ ] (2.7r)

Axle loads are applied to any number of the top low of nodes along the

concrete component and can simulate a moving vehicle by moving the loads to the

adjacent node (on the right) after each analysis is completed. Dead loads a¡e
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calculated by the user prior to the simulation and are applied to the top node of

each set of spring elements along the length of the beam.

2.7.6 Solution Algorithm

A Bandsolver approach is used to solve the system of finite element equations and

integration over the area of the four-noded element is performed by the use of the

2 x 2 gaussian quadrature rule. As in all finite element programs, the user must

ensure that the structure is adequately restrained to ensure that rigid body motion

is prevented.



Ghapter 3

Linear'elastic partial'interaction

theory

3.1 INTRODUCTION

slip occurs because the connectors have a finite stiffness, hence, the connectors

must deform before they can begin to carry load, this is known as partial-

interaction. As a result, the total range of load resisted by the shea¡ connectors Rpi

must be less than that predicted from a full-interaction analysis R¡. ft will also be

shown that computer simulations performing partial-interaction analyses also

indicate that R¡ is reduced significantly. As the endurance, or fatigue life, of the

stud connectors is highly dependent on the total range (Eq- 2-45), even a small

reduction in R¡ results in a large increase in the fatigue life. This implies that the

current design procedure is conservative with respect to the distribution of shea¡

connectors, however, there is a trade-off. The smaller longitudinal shea¡ force

acting along the steel-concrete interface implies that the adjacent steel and

concrete components are subjected to greater flexural loads than what is currently

predicted in order to maintain equilibrium. The greater than anticipated flexural

stresses in the steel and concrete can reduce the fatigue life of the components and

may potentially result in effects occurring that have not been accounted for in the

initial design.

It is, therefore, the purpose of this chapter to present the development of

simple relationships that can model the partial-interaction behavior of composite

beams, so that the reduction of the longitudinal shear flow resisted by the shear

48
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conneçtors, edower, and the change in the steel and cgncrete Stresses can be

predicted.

3.2 PART¡AL.INTERACTION SHEAR FLOW

The effect slip has on the shear flow along the steel-concrete interface of a

composite bridge beam is discussed in this section. A 50.4 m long simply

supported composite beam is used in the analyses, where the cross-section is

shown in Fig. 3.1. There is a single row of stud shear connectors uniformly

distributed along the length of the beam where dsn = 19 rrrtr¡, fu = 450 MPa, f, - 35

Mpa and E, = ZO0O00 MPa. Two connector distributions were used in the

simulations. One is for a more realistic shear connection with one stud located

every 100 mm, and the other is for a relatively flexible shear connection where the

stiffness is equivalent to placing one stud every 600 mm'

3000 mm

-To
Ilr)

ac\r

"tl
Os

o
rf)(o

10

-l

..ol
l-l
_t
_T

700

Figure 3.1: Cross-section of 50.4 m long simply supported composite beam'

9.2.1 Shear flow force distribution

Figure 3.2 shows the shear flow force distribution along the steel-concreto

interface when a 320 kN concentrated load is applied at the mid-span' The

theoretical full-interaction analysis (FIA) distribution is determined from the well

known linear-elastic equation given by the first term on the right hand side of Eq

r
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2.6I, where, from the cross-sectional geometry of the 50.4 m long composite

beam Aù/In" = 0.504 X 10-3 mm-I. The computer simulation assuming full-

interaction, which is accomplished by increasing the connector stiffness to

minimize interfacial slip, predicts the shear flow force distribution very well. The

discrepancy in the vicinity of the supports and the concentrated load is because a

two-dimensional finite element program cannot instantly model a jump in the

shear forces - the stresses must build up'

100

x
x

xXX
x 1 stud @ 100 mm c/c

320 kN

30 35 40 45 50

x [m]

80

60

Ê
E40
z
;20o
oo
I
-9 -20

8 -40

|t,
-60

x

-80

-100

- theoretical

------ FIA - computer simulation

x PlA - computer simulation

Figure 3.2: Shear flow force distribution for concentrated load at mid-span'

The results of two partial-interaction computer simulations are also shown

in Fig. 3.2. As expected, the results are symmetrical, as both the beam and the

loading are symmetrical about the center-line. The important observation to make

here is that the shear flow force distribution is reduced along the length of the

beam when a partial-interaction analysis (PIA) is performed, and that the

reduction increases as the stiffness of the shear connection decreases. Reducing

the stiffness of the shear connection results in an increase in the interfacial slip.

Similar distributions a¡e obtained for any position of the concentrated load

along a simply supported composite beam. Figure 3.3 shows the distribution

when the 320 kN concentrated load is located at the quarter-span of the 50'4 m

long composite beam. The full-interaction computer simulation distribution again

5101520

1 stud @ 600 mm c/c

x
x

x
xX¡¡

x
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models the theoretical linear-elastic shear flow distribution very well. A reduction

in the shear flow force distribution is again observed when a partial-interaction

computer simulation is performed, and the reduction increases as the stiffness of

tho shear connection reduces. As the loading is no longer symmetrically situated

on the structure, the location where the shear flow force changes direction, called

the transition point, is shifted towards the mid-span of the beam from the loading

point as the connection stiffness reduces.

1 stud @ 600 mm c/c

320 kN 1 stud @ 100 mm c/c

xx 45 50

x [m]
Í5 20 25 30 35 40

transition point

60

40

20

E
Éo
z
; -20
o
g -40

=o -60

E -Bo
E
tt

x

-1 00

-120

-140

- 
FIA - theoretical

----- FIA - computer simulation

x PIA - comPuter simulation

Figure 3.3: Shear flow force distribution for concentrated load at quarter-span.

It was established in Chapter 2 that the fatigue life of stud shear connectors

in composite beams is highly dependent on the total range of force applied to the

connectors. Hence, it follows that the effect of slip on the total range of load must

be investigated in order to determine the impact on the fatigue life of the shea¡

connectors.

Although the reduction of the shear flow force does not appear to be

significant, as seen in Figs 3.2 and 3.3, the reduction of the range of load is

significant, as described in the following section'

5 10

x

x
x

x

x
x

x
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3.2.1.1 Total range resisted by connectors

The peak shear flow force envelope shown in Fig. 3.4 is produced by recording

the peak positive (global maximum) and peak negative (global minimum) shear

flow force along the simply supported composite beam for each design point, as

the concentrated load is moved across the span. The total range at a design point x

is then defined as the difference between the maximum and minimum shear flow

force.

As observed in Fig. 3.4, the maximum total range R¡ for the case of a

single point load traversing a simply supported beam is constant throughout for a

full-interaction analysis using linear-elastic theory. Partial-interaction analyses

using computer simulations also indicate a constant but reduced maximum total

range Rni along the length of the beam, where the reduction is due to the reduction

in the shear flow distribution due to partial-interaction described in the previous

section. It is also noted that for any location along the beam, the peak

unidirectional shear flow force P¡ is also reduced to Ppi as a result of partial-

interaction.

The reduction in both rR¡ and P¡ when partial-interaction analyses are

performed has a tremendous impact on the predicted fatigue life of stud shear

connectors potentially extending the design life of the bridge.

1 stud @ 600 mm c/c

150

200
X

otf
fL

E 100
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=sooo
On

=orÞ -S0
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ã -roo

50

-1 50
1 stud @ 100 mm c/c
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- 
FIA - theoretical

--- PIA - computer simulation

d 'õ.
fL

-4510 15 20 30

-200

Figure 3.4: Shear flow force envelope.
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3.3 SHEAR FLOW REDUCTION

The development of the linear-elastic partial-interaction theory that was started in

Section 2.2.1 is now continued where the generic equations for slip and, hence,

shear flow are developed in a form suitable for deriving the simplified approach in

the next section.

3.3.1 Generic equat¡ons

As the slip, s, in Eq. 2.34 is a function of. f , the distribution of s along the entire

length of the composite beam must be defined by two equations, one for each

shear span. As shown in Fig. 3.5,1 and v define the length of the shear span and

the vertical shear force in the shear span respectivel], where the subscripts / and 2

refer to the left and right shear spans respectively'

T

shea¡ span 1 shear span 2

v2

vl L

Figure 3.5: Definition of shear spans'

Four integration constants are required, two for each shear span; K¿ and Ka

for shear span 1, and Kç and Ko for shear span 2. Similarly, the following four

boundary conditions are necessary to solve for the four integration constants

(3.1)

ds,

dx
=0,@ x=L

(3.3)

P

x

=0,@x=0
dt,

dx

@ x=Itds, _ds,
ùc drc

(3.2)

's1 = s2, @ x=lt (3.4)
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where the slip strain ds/dx is derived by differentiating F.;q.2.34 with respect to -r

to give the following

(3.s)

Solving the resulting system of equations simultaneously gives the

following four integration constants

þ = aK rcosh(arr) + qK 2sinh(aø)

K¡=O

K 
" 

= þPlcostr(a{ )- sinh(a{ )coth(at)]

K, = þPsintr(a4)

K o = - þP sinh(al, )coth(al)

Substituting the four integration constants into Eq. 2'34 gives the two

equations required to model the distribution of slip along the length of a simply

supported composite beam for a given concentrated load located a distance /l from

the left support

s, = fP[cosh(a{ )- coth(al)sintr(a/' )]cosh(ar)- þv,

(3.6)

(3.7)

(3.8)

(3.e)

(3.10)

and

s, = þPþinh (ar) - coth (ar)cosh (ax)] sinh (a{ ) + þv' (3.11)

where sr and s2 are the distributions of slip within shear spans 1 and 2

respectively, and P,Vt andVz are all taken as positive'

The distribution of longitudinal shear flow force is obtained simply by

substituting F,q.2.5 into Eqs 3.10 and 3.11 to give the following

I
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(qr"*r), = Lçr¡"ostr(øJ, )- coth(ou,)sinh(øJ, )]costr(olr)- Év, )
p

(q 
o 
"* ^), 

= f, {n br"h (ar ) - c oth (øL ) co s h (ol' )l s inh (a{ ) * N,}

(3.r2)

and

(3.13)

Figure 3.6 compares the shear flow force distribution predicted by the

computer simulation, for the case where the 320 kN concentrated load is located at

the quarter-span of the 50.4 m long composite beam, with the theoretical shea¡

flow force distribution given by Eqs 3.12 and 3.13. The stiffness of the shear

connection used in the analysis is such that k = 54720 Nmrrrr and p = 600 mm'

As the force P = 320 kN is located at the quarter-span: l¡ = 12'6 m; y1 = 240 kN;

and Vz = 80 kl.{ as L = 50.4 m. The remaining parameters, ø and B, are equal to

0.183x10-3 mrn r and 5.53x10-6 mmN-r respectively'
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k -60
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Figure 3.6: Comparison of shear flow force distributions'

Figure 3.6 shows that the agreement between the theoretical and computed

partial-interaction shear flow force distributions are very good. It follows then

510
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that the next stage in the development is to quantify the reduction in the partial-

interaction shear flow force distribution with respect to the full-interaction

distribution.

g.g.2 euantifying the reduct¡on in the shear flow force distribution

It is important to be able to quantify the reduction in R¡ and P¡ due to partial-

interaction so that a better estimate of the fatigue life of the shear connectors can

be made. The expression for the reduction factor RFn for R¡ is developed next,

which is then followed by the development for the reduction factor RFpfor P¡.

3.3.2.1 Reduction oÍ the total range

The two locations of the traversing concentrated load that results in the maximum

and minimum Ppi for a design point x is determined by differentiating Eqs 3-12

and 3.13 with respect to It and equating to zero. The equations modeling the

distribution of slip (Eqs 3. 10 and 3. I 1 ) can be used instead of the equations for the

distribution of the shear flow force because they only differ by the constant factor

ldp andthe resulting derivatives are equated to zero'

Two cases, as shown in Fig. 3.7, must be considered depending on which

side of the concentrated load the design point is located. The term (Iìz in Fig.

3.7a defines the location of P, where the subscript 2 refers to the design point

being in shear span 2 to obtain the maximum positive slip (s),,*,, hence, the

maximum shear flow force at x. Similarly,0t)t in Fig. 3.7b defines the location of

p, where the subscript / outside the brackets refers to the design point being in

shear span 1 , to give the maximum negative slip (s 1),,*, at x'
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design point

L

(1,),

span P

x

x

shear an2
(sr)*

(V')'

(Vr),

(V,),

(v,),

/

(a) CASE 1

(1,) ,

shear span 1

design point
P

shear an2

L

) o,us

L

(b) cAsE 2

Figure 3.7. Two cases required to develop Rpi

The location (tùz is found by substituting

Q),p(v, ),=
(3.r4)

(3.rs)

L

obtained from equilibrium in Fig. 3.7a,into Eq' 3'11 giving

s, = BP [sinh (o*) - coth (ør)cosh (o* )] s inn [ø(, ), ]+

and differentiating Eq. 3.15 with respectto (I¡)2 to give

h,=aþPbinn(m)-cotn(at)cosh(or)lcosn[ø(1,),].1
(3.16)
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Then, equating Eq. 3.16 to zero and solving for (Iìz gives the following

expression for the location of the concentrated load that results in the maximum

positive slip (sz),,,u

1
(/, )

--lcosh'
1

)cosh

(3.17)

(3.18)

a )-coth

where 0<(l')r.*.

Similarly, (h)t ls found by substituting

(v') = r- L

obtained from equilibrium in Fig. 3.7b, into Eq' 3'10 giving

s, = BP{cos nlo|,} ]- cottr (ør)sinn [ø({ ) þosh (oø )- *l 1-
L

(3.1e)

and differentiating Eq. 3.19 with respectto (lìt to give

h = q PP ßiru¡[ø (1, ) ] - 
" 

oth (oL ) c o s h fo (t,),þ o't' (or ) + ll (3.20)

where the term (lt)t cannotbe isolated when Eq. 3.20 is equated to zero because of

the coth(qL) term. However, if we assume that coth(aL) is equal to unity, which

will be justified subsequently, the following expression for (I)t is found which

locates the position of the concentrated load to give the maximum negative slip

(s t ),,no

(r, ) -1=-
1

aLcosh(m)d
(3.21)
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where ,<(1,),<L.

The validity of the assumption that coth(qL) = I is shown in Table 3'1

where the magnitude of coth(qL) fot a number of beams and connector

distributions is given. As qL increases, coth(qL) approaches 1 and the error

resulting from the assumption made to develop Eq.3.2l diminishes. It can be

deduced that the longer the beam and/or the stiffer the shear connection, the more

accurate the estimate of (lilt will be.

Table 3.1: Magnitude of coth(ql|

L

Im]

coth(oL)

6 1.003

6 1.0002

20 1.00000003

20 1.0

50.4 1.00000002

50.4 1.0

Now that (Iìz and (t1)1 are known, the maximum range Rpi at a design

point x can be determined using the following relationship

R ri = (Q n*",), - (q u,*",),
(3.22)

where (Q¿o*"ùzis given byEq 3.13 with 11 = Q)2,and(qao*,ù.¡ is given byF,q'3'12

with /r = (It)t.

As the stiffness of the connection approaches infinity, Eq. 3.22 approaches

R¡ where the assumption is that there is no slip along the interface, so that the

reduction factor RFn at a design point x can be derived from the following

qLø (xl0-3)

[mtn-t]

connector

distribution

3.222o.531I @ 500mm

4.554o.7591 @ 250mm

9.r010.4553 @ 240mm

12.880.6443 @ 120mm

9.2230.1831 @ 600mm

22.630.4491@ 100mm

(3.23)
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where the numerator is obtained from Eq. 3.22 wing the realistic connector

stiffness k, and the denominator is also derived from Eq. 3.22by taking the limit

as k + oo. As k approach es æ, r¡inBq.2.3I also approaches -, and both (I)z and

(l)1 approach x. When there is full-interaction, the maximum shear flow at a

design point.x occurs when the load is applied at the design point so that taking

the limit of Eq. 3.22 as ¡, a' *yields the following

(nn, L ". p
(3.24)

substituting Eqs 3.22 and3.24 intoqq.3.23 gives the following expression for the

reduction factor after simplification

R4 = lsint (a") - coth (al)cosh (ax )]sinh [o (¿' ), ]-

{c o sn [ø(| ), ] - cottr (ør)sinn [ø({ ) þo str (or) + Q),-(/,) , ,

-Tl

(3.2s)

L

where (Iìt is given by Eq. 3.21 and (Uzby Eq' 3'17 '

The distribution of RFn from the mathematical model of Eq' 3'25 is shown

in Fig. 3.8 for two distributions of shear connectors along the 50'4 m long

composite beam. The reduction in R¡ from computer simulations is also shown in

order to validate the mathematical model. The agreement is very good and the

mathematical model is slightly conservative throughout'
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Figure 3.8: Distribution of RFn.

g.g.2.2 Reduction of the peak unidirectional shear flow force

As the maximum unidirectional shear flow force is also required to assess fatigue

damage (Eq. 2.60), the reduction of P¡ due to partial-interaction must also be

considered. As before, the two cases in Fig. 3.7 must be accounted for depending

on the direction of the shear flow.

Considering Case 1 first in Fig. 3.Ta,thereduction factor can be defined as

(qr',,,)r.o (3.26)(nr") =

where (Q¿n 
"ùzis 

given by Eq. 3.13 with l¡ = (11)2. The numerator of Eq. 3.26 is

obtained by using the realistic connector stiffness k, and the denominator is

determined by taking the limit of Eq. 3.13 as k approaches ""' As before, when k

approaches æ, aiÍtEq.2.3I also approaches -, and (It)z approaches x for a design

point at x, so that taking the limit of Eq. 3.13 as k -+ * yields the following

xP
(qu,*,,)r,-

L
(3.27)
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Substituting Eqs 3.13 and 3.27 intoBq.3.26 gives the following expression for the

reduction factor after simplification

(nr" ) = * it 
inn t*)- coth (øL)cosh (aø)lsinn [ø(1, t f . 9] (3.28)

Similarly for Case 2 in Fig. 3.7b,the reduction factor is defined as

(nr") =
(3.2e)

where (k¿o*"ùt is given by Eq. 3.12 with I¡ = (I)1. The numerator of Eq. 3.29 is

obtained by using the realistic connector stiffness k, and the denominator is found

by taking the limit of Eq. 3.12 as k approaches oo. As before, a in FJq. 2'3I

approaches oo and (Iìt aPPtoaches .r for a design point at x so that when taking the

limit of Eq. 3.12 as k + "", the following relationship is found

(qu,*,,),,* * (3.30)

Substituting Eqs 3.12 and 3.30 into Eq. 3.29 gives the following expression for

( RF r) t after simPlification

(nr" ) = j¡{l.rsn [ø(1, ) ]- cottr (oz)sinrr [ø(1, ) ]cosh (orr)-t . 9] (3.31)

Figure 3.9 shows the distributions of (RFÐz artd (RFp)t along the 50.4 m

long composite beam resulting from the traversal of a 320 kN concentrated load.

The reduction of P¡ from a computer simulation is also shown' The agreement

between the mathematical models of Eqs 3.28 and 3.31 and the computer

simulation is again very good. It is important to note that for fatigue the

(qr,*",)r,o

ffi

-r*IlL;
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governing peak shear flow force at a design point is the one that results in the

larger Ppt.

1
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Figure 3.9: Distribution of ßFp)t and (RFp)z'

The distribution of RFn in Fig. 3.8 is also superimposed on Fig. 3.9 where

it can be seen that the reduction factors for P¡ and ^R¡ intersect at the supports and

at the mid-span. This is expected because when the design point is at the support

Ro; is equal to Ppi, as shown in Fig. 3.4, which results in the same reduction factors

at the supports. When the design point is at the mid-span, the absolute value of

the positive and negative Ppi are equal, again seen in Fig.3.4, which also results in

the same reduction factor as for Rpi at the mid-span.

3.4 SIMPLIFICATION OF THE REDUCTION FACTORS

The mathematical models developed to determine the distribution of Rpi and Ppi

are too involved to be used in everyday design or assessment situations. The

following section proposes a set of simplified equations that have been developed

by making some simplifying assumptions without significantly reducing the

accuracy of the predictions.

- 
çe¡puter simulation

---- mathematical model

(RFp)t
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3.4.1 Simplification of the total range reduction factor

The distribution of RFn in Fig. 3.8 is symmetrical about the mid-span of the

simply supported composite beam such that it is a maximum at the supports from

where it gradually reduces until a relatively constant reduction is maintained over

the mid-span of the beam. The idealization proposed determines the reduction

factor at the supports lRFd" and the location along the beam /. where the

reduction factor becomes constant at (RFn)r' Straight line segments, as shown in

Fig. 3.10, connect these Points.

The simplified relationship for the peak RF¡ at the left support is given by

the following expression obtained by substituting x = 0 and (It)z = 0 into Eq' 3'25

(nr* I =F+-{costr[ø(1, ) ]- cotn(oz)sintr[ø(1, ) ] (3.32)

(3.33)

(3.34)

where by substituting x = 0 into F,q.3.21, (l¡)1 is given by the following

1

qL
(¿, ),

-1
d

If the assumption that coth(ql) = 1 is again used, the last term of Eq' 3'32

can be simplified, and by substituting Eq.3.33 into Eq. 3.32, the following simple

expression can be used to estimate RFn at the supports

(nr^) =t
1+-qL

2

(atf +r

which is now only a function of the parameter a (F,q.2.31) and the total length of

the beam L.

As the distribution of RFn is constant when (lt)z is greater the zero, the

point l. in Fig. 3.10 defines the location where RFn first becomes constant so that

substituting (lt)z = 0 and x = I, into Eq. 3.17 yields the following equality
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r-l
cosn

1

sinh coth(dL
=Q (3.3s)

(3.37)

(3.3e)

c

As cosh-l(@ = 0 when 0 = I, and again using the assumption that coth(Ul) = l, L

in Eq. 3.35 can be isolated giving the following expression

(3.36)

The constant magnitude of RFn that is (RFÐ, in Fig. 3.10 is also found by

substituting x = l, and (It)z = 0 into Eq' 3'25 giving

',=j"(#

(nr^ ) r -9 -{cosrr [ø(1, ) ]- cottr (azþinn [ø(1, ), þostr (ø' )

I

where after substituting x = I, into Eq. 3.21, (lt)t is given by the following

Il
(3.38)

By substituting Eqs 3.36 and 3.38 into Eq. 3.37 and by making use of the

assumption that coth(aL) = 1, Eg. 3.37 can be simplified to yield the following

simplified expression for the constant RFp at Iç

1

I q

(nr^)=r.j{r"t#l 1

which is also only a function of cr (Eq. 2.3I) and L'

The various approaches are compared in Fig. 3.10 where is can be seen

that the loss of accuracy, when using the simplified model, is minimal and any

differences are conservative, which is acceptable from the point of view of the

fatigue life of the shear connectors.
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Figure 3.10: Example of simplified model of RFn

g.4.2 Simplification of the peak unidirectional shear flow force

reduct¡on factor

As previously illustrated in Fig. 3.9, the distribution of RFr coincides with the

distribution of .RFn at the supports and at the mid-span. Therefore, the proposed

simplified model of .RF¡" uses lRFn)., at the supports (Eq. 3.3a) and lRFn)" at the

mid-span (Eq. 3.39) connected by straight line segments as shown in Fig' 3'11'

Figure 3.11 shows the distribution of .RFr from Fig. 3.9 and superimposes the

distribution of the proposed simplified model, where the critical reduction factors,

at the supports and the mid-span, are determined using (RFn)' and lRFn)"

respectivelY.

The reduction of P¡ due to partial-interaction is overestimated along some

portions of the beam, such as within A-A and B-B in Fig. 3.11, resulting in a

slightly unconservative estimate of Ppi. The effect on the fatigue life of the

connectors is minimal, as will be shown in the example given in Section 3'9'
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Figure 3.11: Example of simplified model of RFp'

3.4.3 Validation of the simplified model

The preceding comparisons were limited to the 50.4 m long composite beam with

a uniform distribution of connectors. The simplified model using Eqs 3.34,3'36

and 3.39 is also compared to computer simulations for a 20 m and 6 m long

simply supported comPosite beam.

The details of the cross-section of the 20 m long beam is shown in Fig'

3.i2 where the connector distribution and the cross-sectional geometry is such that

a = 0.644x1 0-3 mm-l .

3000 mm
-To
IR

oo
@

19

I,l'405

Figure 3.12: Cross-section of 20 m long simply supported composite beam'
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The cross-section of the 6 m long simply supported composite beam is

shown in Fig. 3.13 where the connector distribution and the cross-sectional

geometry is such that ü=0.759x10-3 mm-l.

1500

7

[-]
_T

170

Figure 3.13: Cross-section of 6 m long simply supported composite beam'

Figure 3.14 compares the distribution of RFn using the simplified model

with that of the computer simulations and the mathematical model for the 20 m

beam. As was the case with the 50.4 m beam (Fig. 3.10) the agreement between

the computer simulation and the mathematical model is very good, the simplified

model being conservative over the length of the beam'

J
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+ simplified model

0246810121416 18 20
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Figure 3.14: Comparison of RFr for the 20 m beam'

¡
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Figure 3.15 compares the distribution of RFn using the simplified model

with that of the computer simulations and the mathematical model for the 6 m

beam. The mathematical model again agrees very well with the results of the

computer simulation, as does the simplified model. However, the discrepancy

between the simplified model and the mathematical model is slightly greater for

this beam, the reason being that the error resulting from the assumption that

coth(ql) = 1 is greatest for this reiatively short beam as can be seen in Table 3.1.

1.1

1

0.9

0.8

o.7

x full interaction

- 
computer simulation

. " "' mathematical model

model

++***a 0.6lrÉ' 0.5
+++++

***
++

+

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

+++
0.4

0.3

0.2

0.1

0
5.5 6

x [ml

Figure 3.15: Comparison of RFn for the 6 m beam'

Similarly, Fig. 3.16 compares the distribution of ^RFp using the simplified

model with that of the computer simulations and the mathematical model for the

20 m beam. The agreement between the mathematical model and the computer

simulation is again very good. As was the case with the 50.4 m beam (Fig. 3.11),

the simplified model is also slightly unconservative over two areas of the beam

within A-A and B-B in Fig. 3.16. As before, however, the relatively small

discrepancy will have a minimal effect on the change in the fatigue life of the

connectors.

Finally, Fig. 3.17 compares the distribution of RFp using the simplified

model with that of the computer simulations and the mathematical model for the 6

m beam. The agreement between the mathematical model and the computer
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simulation is again very good. The simplified model is also acceptable, again

slightly overestimating the reduction of P¡ within points A-A and B-B in Fig.

3.17. The error between the simplified model and the mathematical model is

greatü than that observed for the 20 m beam (Fig. 3.16) resulting from the greater

deviation from the assumption that coth(aL) = 1' agun due to the relatively short

span length of this beam.
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Figure 3.16: Comparison of RFp for the 20 m beam'
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Figure 3.17: Comparison of RFp for the 6 m beam'



Linear-elastic partial-interaction theory 7l

3.5 STRAIN DISTRIBUTION BOUNDS

As the effect of partial-interaction on the shear flow forces has been quantified,

the remainder of this chapter concentrates on the effect of partial-interaction on

the flexural stresses by first investigating the change in the strain distribution at a

point along the beam under a given load condition'

Two extremes or bounds exist with regards to the strain distributions at a

section: one bound occurs when the connector stiffness is infinite, known as full-

interaction; and the other bound results from an analysis where the connector

stiffness is zero, known as no-interaction. The assumption that there is no

separation between the steel and concrete components is made in both the full-

interaction and no-interaction analyses, hence, the steel and concrete curvatures at

a section are assumed to be the same. It follows then that the partial-interaction

strain distribution, where the shear connectors have a finite stiffness, must lie

between these two boundaries depending on the magnitude of the connection

stiffness.

The linear-elastic strain distribution at any point along a beam can be

defined by determining the curvature and the location of the centroid. The

curvature Q canbefound by using the following well known relationship

þ,
(3.40)

where the subscript I refers to the location of the section along the beam, and E/ is

the flexural stiffness.

As we are dealing with composite steel and concrete beams, the flexural

stiffness is dependent on the properties ofboth the steel and concrete such that for

full-interaction EI¡ = E,In,, and for no-interaction EIn¡ - @I), + (EI)' (Oehlers and

Bradford 1995) where the subscripts c and s refer to the concrete and steel

components resPectivelY.

The 50.4 m simply supported composite beam with a uniform distribution

of connectors (Fig. 3.1) is again used to illustrate the various strain distributions

discussed. A single concentrated load of 320 kN is located at the mid-span, and

the strain distributions shown are for a section located 24 m from the support such

Mi
EI
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that the bending moment M = 3840 kNm. The material properties and cross-

sectional geometry of the section are such that EI¡ = 26'4x10rs Nmm' and EIn¡ -

7.60x1015 Nmm2, and substitution into Eq. 3.40 yields the following curvatures at

the design point; h = 0.146x10-6 mm-t and þn¡ = 0.505x10-6 mm-t' The centroid

of the transformed concrete section for the full-interaction distribution y". is

located in the steel component 474 mm below the steel-concrete interface. The

no-interaction distribution passes through the centroid of each component, where

lc= lZ5 mm and 7s= 1290 mm, both with respect to the location of the steel-

concrete interface. Having defined the curvatures and centroids for the two

boundary conditions, the strain distributions can be determined as shown in Fig'

3.18 where negative is taken as compression. Figure 3.18 also shows the strain

distribution obtained from a partial-interaction computer simulation for a uniform

longitudinal connector distribution equivalent to I connector every 600 mm'

The two points where the boundary strain distributions intersect in Fig'

3.1g are of special interest as every strain distribution must theoretically pass

through these points regardless of the connector stiffness. The points are defined

as Partial-Interaction Focal Points and are labeled PIFP. and PIFP., where the

subscripts s and c refer to the focal point in the steel and concrete components

respectively. It will be shown that it is these focal points that allow the increase in

the flexural stresses due to partial-interaction to be quantified.

2250 top of concrete
componentPIFP

steel-concrete interface

E
E

E)
o
.c

ds/dx

partial
interaction

no interaction

full interaction

PIFPS

/Qf

no interact¡on

--- full interaction

-.-- no interaction

- 
Pl - computer simulation

750

-0.4 -O.2 0

strain [mm/mm] x103

Figure 3. 18: Strain distributions.

1 sob

-0.8 -0.6 o.2 o.4
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It is evident from the partial-interaction results in Fig. 3.18 that the steel

and concrete stresses are greateÍ than the full-interaction stresses currently being

used. It follows then that a theoretical model must be developed to quantify the

partial-interaction stresses that occur. A model is first developed in the following

section to predict the partial-interaction curvature at any section along the beam.

A method is presented that defines the location of the strain distribution at a

section from which the corresponding flexural stresses can be calculated.

3.6 PARTIAL-INTERACTION CURVATURE

In order to develop a relationship for the curvature anywhere along a beam

due to partial-interaction, Flq. 2.25 must be integrated with respect to x, the

distance from the left support to the design point. By substituting Eq. 3.10 and I

= -Vr into Eq. 2.25 and then integrating with respect to f, the following

mathematical expression is obtain for the curvature distribution in shea¡ span 1

Q'

Q,

{f f 
"rn 

t, )- coth (al)sinh (d, )l'i't' (4")- v,'} V,x+:+
E,I 

N

ct (3.4r)

(3.42)

where the integration constant Ct - 0, as the boundary condition is Ø - 0 at x =

0.

Similarly, by substituting Eq. 3.11 and f =Vz into Eq. 2.25 and integrating

with respect to x, the following mathematical expression is obtained for the

curvature distribution in shear span 2

{å 
t"rn,* ) - cotn(ar)sinh (a* )l sinh (ør, i. u,'} + V + c,

where the integration constant Cz is given by the following term using the

boundarY condition h = o at x = L

,,=-#f ¡""rr',{oa)-coth(al)sintr(on)lsinh(at,)*v,r\.H (3.43)
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Figure 3.19 shows the variation of curvature along the length of the 50.4 m

simply supported composite beam when the concentrated load of 320 kN is

located at the quarter-span. The no-interaction and full-interaction conditions

given by lines A and B respectively again define the bounds to the curvatures.

Also shown is a partial-interaction curvature distribution for a constant connection

stiffness under the same loading condition using both the results of a computer

simulation and the theoretical model given by Eqs 3.41 and 3.42. The partial-

interaction distribution lies between the two boundary conditions, as expected, and

the theoretical model (line c), when compared to the predictions of the computer

simulation (line D), is conservative over the length of the beam especially in the

vicinity of the applied load. The discrepancy between the theoretical model and

the computer simulation can be attributed to the effect of the disturbed region near

the loading point on the finite element analyses'

Equation 3.4! can also be used to predict the variation of curvature in

shear span 2, therefore ,8q.3.4I is used to model the curvature along the length of

the beam as it is simpler thanBq- 3'42'
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Figure 3.19: Variation of curvature.
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3.6.1 Quantifying the increase in curvature

For a single concentrated load acting on a simply supported span, the maximum

moment, hence curvature, at a design point occurs when the load is situated at the

design point. As the maximum full-interaction curvature is readily calculable

using Eq. 3.40, this section develops a multiplication factor MF, that can be

applied to the full-interaction curvature h in order to determine the partial-

interaction curvature /pi.

The multiplication factor is defined as

(3.M)MF,

where the numerator represents the partial-interaction curvature obtained from Eq.

3.41 when using the realistic connector stiffness k, and the denominator is the full-

interaction curvature also obtained from Eq. 3.41 as the connector stiffness k

approaches oo. Hence, the full-interaction curvature is given by

(-a"'e'*t) (3.4s)

As the maximum curvature occurs when lr = x, the shear force in the shea¡

span is given by

(3.46)

Qo

a-

V.x
Î æ 

E,I n

2

{'

vl
L

and by substituting Eqs 3.41, 3.45 and 3.46 into F,q.3.44, the expression for the

multiplication factor becomes

MFo =Ç a"'t *tl' ,
'lh(cosh(arr)-coth(øL)sintr(aø)þintr(arrr-t].tÌA

t

(3.47)
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Figure 3.20 shows the distribution of M{ using F;q.3.47 and the results of

the computer simulation for the 50.4 m composite beam where the distribution of

connectors and cross-sectional geometry are such that A = 0'183X10-3 mm'l, d, =

1410 mm and (I/A) = 2.80x106 mm2. The agreement is very good, and the

discrepancy is again due to the disturbed effect at concentrated loads'
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Figure 3.20: Distribution of MF,

The relatively large multiplication factor near the supports is somewhat

deceiving in that the moment, hence curvature, approaches zefo at the supports

resulting in only a small increase from the full-interaction curvature. The

magnitude of the multiplication factor is much more significant in the middle

portion of the beam where the curvatures are greatest'

9.6.2 Simplification of the multiplication factor

The mathematical model developed in Eq. 3.47 is too computationally intensive to

be accepted and used in everyday design or assessment situations. Therefore, a

proposed set of simplified equations is developed by making some simplifying

assumptions that do not significantly reduce the accuracy of the mathematical

model.
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The simplified model involves estimating MFrat the supports, the quarter-

span and the mid-span, and joining these points by straight line segments' As the

distribution of MFois symmetrical about the mid-span of the beam under this load

condition, the multiplication factor at the support (MFr)' is used at both the left

and right support, and the multiplication factor at the quarter-span (MF )s is also

used at the three-quarter-sPan.

As x approaches Z (the right support) the term within the square brackets

in the right hand side of Flq. 3.47 approaches zero resulting in the following

simplified expression for the magnitude of the multiplication factor at the supports

(*pr), -(- d,'t' +t| (3.48)

The multiplication factor at the mid-span can be obtained by making the following

assumption for the hyperbolic terms in Eq. 3.47 thatis subsequently justified

(cosh (arr)- coth (øL)sinh (oø))sintr (arr) = I
2

(3.4e)

Hence, the expression for the magnitude of the multiplication factor at the mid-

span becomes

(3.s0)

Similarly at the quarter-span, the assumption stated in Eq. 3.49 is also made when

x = IJ4 and substitution into F¡q.3.47 yields the following magnification factor at

the quarter-sPan

(* p r), = (- d.,' A' +r I' 
[a"' 

a'[ *- t). t)

(,ørr), =(- d""'A' +r¡'lo"'o'(#,- t). t] (3.s1)
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Figure 3.21 shows the distribution of MFrftomFig.3.2O for the 50.4 m composite

beam and superimposes the distribution using the proposed simplified method

where the magnification factors (MFr), in Eq. 3.48' (MF). in Eq' 3'50 and (MFl,t

in Eq. 3.51 are connected with straight line segments'
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Figure 3.21 Example of simplified model of MF,

The accuracy of the proposed simplified model compaled with the

mathematical model is conservative over the entire span and is a good

representation of the distribution, indicating that the assumptions made while

developing the simplified approach are reasonable. The agreement is

exceptionally good near the mid-span where the significance of the multiplication

factor is greatest as previously noted. Table 3.2 shows the actual value of Eq. 3'49

for a range of composite beams, validating the assumptions made.

Table 3.2: Yalidation of assumptions.

F,q.3.49

x=U4

6 0.448269

20 0.499202

L

lml

E,q.3.49

x=U2
dLúu (x10-3)

[m*t]
0.4895854.5540.759

0.49999712.880.644

0.49990r9.2230.18350 0.495031
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3.6.3 Validation of the simplified model

The preceding comparisons were limited to the 50.4 m composite beam' The

simplified model of Eqs 3.48, 3.50 and 3.51 and mathematical model of Eq.3-47

developed are now compared to computer simulations for the 20 m (Fig. 3-12) and

6 m long (Fig. 3.13) simply supported composite beams'

Figtre 3.22 shows the results for the 20 m beam with a uniform

distribution of connectors and cross-section such that A = O.6MX\$3 mm-t, d" =

560 mm and (I/A) = 0.564x106 mm2. The mathematical model is again slightly

greater than that predicted by the computer simulation due to the disturbed effect

under the point load in the finite element analysis. The simplified model is

conservative along the entire span, with very good agreement being achieved over

the mid-span portion of the beam where the change in the curvature, hence

flexural stresses, is most critical.
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Figure 3.22: Comparison of MFrfor the 20 m long beam

Figure 3.23 shows the results for the 6 m beam with a uniform distribution

of connectors and cross-section such that q = 0.759X10-3 mm-I, d, = 227 mm and

(1/A) = 82.0x10' m-'. The comparison given in Fig. 3.23 shows that the

predictions are acceptable and that the simplified model is conservative over the
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entire span, however, the differences are greater for this relatively short 6 m beam

compared to the results of the 20 m beam in Fig. 3.22 and the 50.4 m beam in Fig.

3.21,. The greater discrepancy between the computer simulation and the

mathematical model in Fig. 3.23 is due to the disturbed region affecting a larger

proportion of the span; the discrepancy between the simplified and the

mathematical model is due to the deviation from the assumption given by Eq. 3.49

that was made while developing the simplified relationships. The smaller ø

and/or L, the greater the error will be as Seen in Table 3.2, however, the proposed

simplified model is still useable as the error results in conservative predictions.
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Figure 3.23: Comparison of MFrfor the 6 m long beam.

3.7 PARTIAL.INTERACTION FOCAL POINTS

The previous section developed a procedure for predicting the partial-interaction

curvature from the full-interaction curvature. However, in order to determine the

partial-interaction strain distribution, so that the corresponding flexural stresses

can be calculated, the position of the strain profile at the known curvature must be

determined. This section develops a means of locating the partial-interaction

strain distribution by quantifying the focal points already described.

It was shown in Fig. 3.18 that the two bounds to the strain distributions,

resulting from a full-interaction and no-interaction approach, intersect at the
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locations that have been referred to as the focal points, PIFP" and PIFPs. It is

significant to note that the point does not necessarily lie within the corresponding

component, as is the case with PIFP" in Fig. 3.18. As the boundary distributions

intersect at these points, it is logical to question whether any strain distribution at

that section must also pass through the same two points, thereby defining the

additional points necessary to locate the partial-interaction curvatures and, hence,

strain distributions.

The following analyses show that two focal points exist, that all partial-

interaction strain distributions pass through these points, and that the location of

the focal points are independent of the connector stiffness. Simple expressions are

then developed to locate the focal points. The first step is to prove that only one

strain distribution can exist that results in equilibrium at a section. This is

accomplished by investigating the strain distributions at a section of a composite

beam that is made up of two components of equal size and stiffness, as shown in

Fig.3.24, where the magnitude of the externally applied axial load N is equal to

zeÍo

A full-interaction analysis yields the strain distribution given by line A in

Fig. 3.24 where the centroid of the composite section is at mid-height of the

composite section. The no-interaction analysis distribution is given by line B

where the centroid of each component is located at mid-height of the component.

The question that is posed is: "Given a partial-interaction strain distribution, line

C, which passes through the focal points, is there another distribution that can be

defined with the same curvature but offset from the focal points by an amount Âe,

line D, such that equilibrium is maintained?"

By defining the strain at the top of component ,l as -€, the strain at the

bottom of component 2 must be e by symmetry, where negative is taken as

compression. The partial-interaction curvature /pi is the same in both components

assuming that there is no separation at the interface. It needs to be shown that the

shift Ae must maintain zero total axial load, N = 0, in the composite member.

Simplifying the calculations somewhat by assuming that the width b, depth h, and

stiffness E are equal to unity, the net axial force in component 1 at the shift Àe is

given by
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and the net axial force in component 2 is

N,

N2

_b_r_^,
2

--Q," +e-Le
2

(3.s2)

(3.53)

(3.s4)

Summing Eqs 3.52 and 3.53, and equating the result to zelo to enforce the

equilibrium condition of zeto total axial load, it is found that

Â¿=0

proving that only one partial-interaction strain distribution exists at a section for a

given moment.

-t
tension

D
interface

c!
-c

g --,/'-"-

Ae,
--1

C\¡

.C

b

centroid,

compression 0 Ae

Figure 3.24: Simple partial-interaction distribution
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,¿- A
centroid.' l .ç

Qpi

B
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It is now shown that the partial-interaction focal points exist for a general

composite section, and that the partial-interaction strain distribution must pass

through the focal points, so that these two points can be used to locate the

distribution.

A general composite bridge beam cross-section is defined in Fig. 3.25'

where the variable h is used to define the depth, r the thickness and w the width of

the various elements; the subscripts c and s represent the concrete and steel

components respectively, f the top flange, bf the bottom flange and w the web'

Therefore, the area of concrete A" = hcwc, the area of the top flange A,¡ = w'tttand

similarly, the area of the bottom flange Au = wø¡tq' The variables ¡ and y' are

distances to points within the steel and concrete components respectively

measured from the steel-concrete interface, where positive is taken as the direction

shown inFig.3.25.

Y.

wc

-I--
.l
I

Wtt

Y.

wur

Figure 3.25: Definition of variables

An arbitrary yet compatible partial-interaction strain distribution is defined

in Fig. 3.26 where the vertical dimension is exaggerated for clarity' The

distribution is defined by the strain at the top of the steel component (e)¡oo, the

t*

¡
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partial-intelaction curvature Qpi (El. 3.41) and the slip strain given by the

following expression obtained by substituting Eqs 3.6 and 3.7 into Eq. 3.5 to give

(3.s5)

The magnitude of the reference strain (e,)u,p is then determined by ensuring that

the equilibrium condition of no axial force is satisfied by first calculating the net

axial force in the concrete

fr = a prlco s h (ø/, ) - s in tr (a'[ ) c oth (øL ) s inh (o* )

N"=nl"lw ry)-n,t]

and the net axial force in the steel component

(3.56)

(3.s7)
N. = E,G,),,n1- L, *Qo +thÍ -h,)r*- er]+

ir,r ,b, q * (-, n' * hr' - 2h 
"t u, + r r'), * * þn - -' o,þ0,]

By summing Eqs 3.56 and 3.57, equating to zero and solving for the strain at the

top of the steel component, the following expression is obtained

A" ds h"Qr,
(A,h,)^,r

(e,),o, =
(3.s8)

-4" -A"

where

(¡,4 L,, = t r * (-, n' * h.2 - zh.t o, *' or)' * * þn. -' rrþu, (3.se)

For the case when the steel component is doubly symmetrical, Eq' 3'58 can

be simplified to the following

2n dx

Qr¡

2

n
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A" ds _h"Qp¡ Qo¡ (+¿.)
ùc 2 (3.60)(e,),,, =

-4" - A"

Having defined (eJu,p,the following equations can be used to calculate the

strain at any depth along the cross-section

2n

n

(t,)0, = Qo,!,-(r)*o
(3.61)

and

(e 
") r, 

= -Q pit, - (r,),,, * #
(3.62)

where (e)r¡ and, (e)r¡ are the partial-interaction strains in the steel and concrete

respectively.

-(e,),"¡ds/dx-

-( *ds/dx

l--- ¿rl¿*

-(€r),oo*h.Qo¡-to,0oi

-(e.) ,op+h.Qo,

0)
c)
.t)

compressron tensron
0

steel-concrete interface
-(t,),on

-;

Qo,

-(e,),"'+çQ¡

top flange

bottom flange

partial interaction
strain distribution

Fi gure 3 .26 General partial-interaction strain distribution.
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If the assumption that the partial-interaction strain distribution passes

through the two partial-interaction focal points is true, the strain at the focal points

for a given moment at a section must be constant regardless of the stiffness of the

connection. Similarly, the distance of the focal points from the steel-concrete

interface must also be constant and independent of the connection stiffness. It

must therefore be shown that

d(t)0,
-0 (3.63)

dk

at the focal point in the steel component and that (lr)¡p, which is the distance of the

focal point in the steel component measured from the interface, is not a function

of ft. similarly for the concrete strains, it must be shown that

(3.64)
dk

at the focal point in the concrete component and that (!r)¡p, which is the distance

of the focal point in the concrete component measured from the interface, is also

not a function of k.

Differentiating Eq' 3.61 with respect to k, where !, = (l')¡ and Qr; is a

function of k, and solving for the location of PIFP, results in the following

expression

A,(;l (3.6s)(r.)r =
-4" -A"

where the 4'h, term is replaced by (A,hJø, in Eq. 3.59 if a non-symmetrical steel

component is used. Similarly, Eq- 3.62 is differentiated with respect to k, where y.

= (yr)Íp, and þpi and ds/dx are a function of k, in order to solve for the location of

PIFP" giving

n
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*.^(h(t)r=
A,

(3.66)

+.A.
n

where again the Arh, term is replaced with lA.,/¿.,)ø, in Eq. 3.59 if a non-

symmetrical steel component is used'

It has, therefore, been proved that any strain distribution at a section must

pass through the partial-interaction focal points regardless of the connection

stiffness, as Eqs 3.65 and 3.66 which define the location of the focal points, are

not a function of the connector stiffness. The next section develops a simple

procedure whereby the partial-interaction strain distribution can be located making

use of the partial-interaction focal points'

3.8 PARTIAL-INTERACTION STRAIN DISTRIBUTION

As all strain distributions at a section pass through the two focal points regardless

of the connection stiffness, it follows then that the points where the full-

interaction and no-interaction strain distributions intersect can be used to define

the position of the focal Points.

Dealing with the focal point in the steel component first, the strain

distribution in the steel under full-interaction and no-interaction can be defined

using the following equations respectively

(e"),, = {*rr.-t^)
(3.67)

and

(t,)' =7a (3.68)

where by equating Eqs 3.67 and 3.68, (lJ¡n can be found and which is given by the

following simple equation

(v, - v,)
M
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- 
E"I n"

ln" ).'

(r"), =
EI (3.6e)

and the cofïesponding strain at PIFPS can be found by substituting Eq. 3.69 for ¡

in Eq. 3.67 to give

(3.70)

Similarly for the focal point in the concrete component, the strain

distribution in the concrete under full- and no-interaction can be defined using the

following equations respectively

(r,), ={r{rr,)r- t,")

(')n =þ-e v,- v^')
(3.7r)

and

(e"),, =
Znt

(3.72)

where by equating Eqs 3.7I and, 3.72, (yr)p can be found from the following

simple expression

(v" (3.13)

(-v.*¿)M

v..
I
EI

E
,n, +

)h

where (y)n may be located outside of the concrete component, and the

corresponding strain at PIFP" can be found by substituting Eq' 3'73 for y' in Eq'

3.71 to give
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(r,)r=hÇ(t)r- t^") (3.74)

3.8.1 Proposed Procedure

The following summarizes the proposed procedure for determining the partial-

interaction strain distribution so that the corresponding flexural stresses can be

found using the relationships developed in this chapter:

1. Calculate the full-interaction curvature þ¡. at a design point using Eq'

3.40:'

2. Determine multiplication factor MF, using either the mathematical

model of Eq. 3.47 or the simplified model of Eqs 3.48, 3.50 and 3'51;

3. Find the partial-interaction curvature QribY multiplying fuwith MFr;

4. Define rhe location of PIFP, by determining (y,)¡ from Eq. 3.69 and

(e)¡fromBq.3.70;

5. Repeat step 4 for PIFP. using (l)¡ fromBq. 3.73 and (e)¡ from Eq.

3.74;

6. The partial-interaction strain distribution is determined by passing a

line with slope /pi through both PIFP. and PIFP.; and

7. Calculate corresponding flexural stresses as required'

3.9 ILLUSTRAT¡VE EXAMPLE

The following example is used to illustrate the beneficial effect of partial-

interaction on the endurance of the shear connectors and the detrimental effect of

partial-interaction on the flexural stresses. The decrease in the shear flow due to

partial-interaction is determined by applying the reduction factors to the full-

interaction shear flows. The increase in the flexural Stresses due to partial-

interaction are determined using both the increase in the full-interaction curvature

as derived from the multiplication factors and the focal points'

Suppose that the 50.4 m long simply supported composite beam (Fig. 3.1)

has been designed using a full-interaction analysis procedure and for a fatigue life

of 100 years or 200x106 fatigue vehicle traversals. The cross-sectional geometry

Í
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ofthebeamissuchthatl,,=3.80x10l0mmoand(1/A)=2'8)xl06mm2'andthe

standard fatigue vehicle loading was such that R¡ = 161 N/mm and P¡ = 80'7

N/mm for the design point at the mid-span' The beam 'was designed for a

maximum design overload Q"' = gxPrt = 726 N/mm and the shear flow strength

required at rhe start of the design life was Qrt = 1845 N/mm. A uniform

distribution of connectors was used consisting of 2 rows of studs at 100 mm

centers which resulted in a =0.635x10-3 mm-I. In this example, ¡t = (1'0)(161)5't

= 1.82x10rt 1N/mm¡s'r and Iawill be taken as unity'

The condition of the shear connectors after the original design life of 200

million fatigue vehicle traversals can now be assessed. By substituting AL = 32'0

into the relevant expression for the reduction factor of R¡ (EC. 3'39) gives (RFn)"

= o.77 so that Rp¡ = (0.77X161) = 124 N/mm. As the design point under

consideration is at the mid-span, the same reduction factor is applied to P¡ so that

Ppi = (0.77X80.7) = 62.1N/mm. The force factor must also be revised to F¡ -

(1.0X124)5'r = 4.75x10r0 N/mm, and the maximum design overload becomes Q"'

= 9x62.I = 559 N/mm. Substituting these new values for F¡ and Q,"' into the

fatigue damage equation in assessment mode (Eq. 2.60) gives the following

expression

ßrs(a+s)' , 559

1845
- 2oox 106 (+.zs x ro'' þ.0)

(3.7s)
T2

4.75x10'

where the last term in the numerator of the right hand side represents the fatigue

damage that has occurred, and the denominator is the fatigue damage that can still

occur. Solving for the remaining endurance gives T2 = 677XI06, that is, 677

million fatigue vehicles. Assuming thatZ million fatigue vehicles occur annually'

as used in the initial design, the remaining life of the shear connectors is another

338 years. It is wonh noting that the remaining endurance of 677xIO6 vehicles is

reduced to 563x106 vehicles when the reduction in the peak shear load P¡ due to

partial-interaction is ignored. Therefore, the reduction in R¡ alone accounted for

83Vo ofthe increase in the remaining life of the shear connection'

(r o)
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The changes in the flexural stresses due to partial-interaction at mid-span

are investigated next. The full-interaction strain distribution is shown inFig.3-27

where the centroid of the full-interaction transformed concrete section fn" it

located 474 mm below the steel-concrete interface in the steel component. The

full-interaction curvature is fo = 0.159x10-6 mm-t where M = 4032 kNm and E/¡

= 2.64xI016 Nmm'.

The first step in the analysis is to calculate the multiplication factor for the

full-interaction curvature at the mid-span which is given by Eq' 3'50, where the

cross-sectional geometry of the beam is such that d, = 1410 mm, to give (MF )^ =

1.15 so that Qpi = (1.15X0.159x10-6) = 0.183x10-6 -rn-t. Knowing that the no-

interaction flexural stiffness EIn¡ = 7.60x101s Nmm2, and f, = l29O mm and !,

= 125 mm, which are both measured from the steel-concrete interface, the location

of the partial-interaction focal points may be calculated using Eqs 3.69 and 3.73 to

give (y)¡n = 1620 mm and (y)n = 368 mm respectively, again measured from the

steel-concrete interface. The corresponding strains at the PIFP's are now

calculated using Eqs 3'70 and3'74 to give (e')¡p = 0'182x10-3 mm/mm and (e')p =

-0.134x10-3 mm/mm respectively. The partial-interaction strain distribution at the

mid-span is shown inFig.3.27 .

2500
PIFPc

--- full interaction

-partial 
interaction

top of concrete component

steel-concrete interface

centroid of transformed section
1 000

PIFPs

E
E

ct)'õ

500

-0.05 o 0.0s 0.1 0.15

strain [mm/mm] x10-3

Figure 3.27: Strain distributions at mid-span
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Several conclusions can be drawn from Fig- 3.27. Perhaps the most

significant observation is that the partial-interaction focal points are located on the

extreme fiber side of the centroids of the corresponding component, therefore,

amplifying the effect on the strains and stresses adjacent to the steel-concrete

interface. Hence, there is little change in the compressive stress at the top of the

concrete component and only a slight increase in the tensile stresses at the bottom

of the steel component. The increase in the tensile stress range in the steel

component is about ZVo. Ir the fatigue endurance exponent for the steel is taken as

3 then this 2vo increase in the stress will reduce the endurance of the component

by a factor of (1.02)-3 = 0.94. Adjacent to the steel-concrete interface, the

compressive stress at the top of the steel flange is increased significantly by 527o,

which may need to be allowed for in the design for buckling of the flange'

Furthermore, the concrete compressive stress adjacent to the interface is reduced

by 10Vo which in this application is beneficial' however, it is noted that if the

reduction is great enough tensile stresses may result in the concrete for which

account must be taken.
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Non-linear partial-interaction

4.1 INTRODUCTION

The dead load of the concrete structure above the longitudinal steel beams and the

downward acting vehicle loads result in a compressive distribution of forces

acting normal to the steel-concrete interface. As the coefficient of friction

between steel and concrete under cyclic loading varies between 0-70 < p < 0.95

(Section 2.4), frictional forces acting along the steel-concrete interface influence

the longitudinal shear forces resisted by the stud shear connectors.

The effect of the frictional resistance and the non-linear load-slip

relationship of the stud shea¡ connectors are combined in an iterative nonlinear

secant stiffness procedure so that the understanding of the behavior of simply

supported composite bridge beams can be increased. The physical behavior of the

longitudinal shear forces that act along the steel-concrete interface are described

first which is then followed by the resulting finite element model used to simulate

the behavior. Typical results are presented to qualitatively illustrate the effect of

friction on the behavior of composite bridge beams, and finally, a comparison is

made with the mathematical model given byBq.2.6l.

4.2 PHYS¡CAL BEHAVIOR

The model shown in Fig. 4.1 was developed to determine the magnitude and

direction of the forces acting along the steel-concrete interface at a stud. The total

longitudinal shea¡ force Q must be resisted by the connectors and, if present,

friction / The change in the longitudinal slip s is a function of the force that is

resisted by the connectors Qdower. The force edrwer is related to s by the stiffness of

93
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the spring k, which represents the stiffness of the connectors, by the following

equation

Q¿o*"t = ks (4.1)

The change in qd,,,"¡ depends on the magnitude of the frictional resistance

available F,., with respect to the other forces as described in subsequent sections

4.2.1 and 4.2.2. The magnitude of F¡,is a function of the magnitude of the normal

force N acting across the interface as given by the following expression

(4.2)

when there is negative uplift, hence, the normal force is orientated such that it is

compressive across the steel-concrete interface as shown in Fig. 4. 1. In areas of

the span where there is positive uplift, and the tendency is for the steel and

concrete components to sepalate, F,a is taken as zero.

N

o

9¿owet

S

f<Fu

Figure 4.1: Model of the forces acting along the steel-concrete interface.

It is the change in F¡ and Q at a specific point, as the applied load is

moved across the beam, that is important as the change is what determines the

magnitude and direction of s, hence, edowet. This is described in more detail in the

following two sections; the first one illustrates the behavior when Q remains uni-

directional, and the second section deals with the case when Q reverses direction.

^
;ï-
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4.2.1 Uni-directional case

This section illustrates possible changes in slip, at a point, as the load is moved a

distance dx alongthe beam, from location i to i+-1, when the direction of the total

longitudinal shear force does not change. The following terms are defined as they

are required in the exPlanation

LQ =1Q,., - Q,l

LF, =l(+)., - ("")l

Âs=ls,*,-s,l

LQ ¿on, t = l(Q u 
" 
* r), *, - (q 

^* 
),1

Q= f * Qdon,t

(4.3)

(4.4)

(4.s)

(4.6)

where the prefix / represents the change in the magnitude of the variable. The

discussion also makes use of the following equality, required for horizontal

equilibrium, as shown in Fig' 4.1

(4.7)

In order to determine possible load-slip paths, two general categories have

been identified; the first category is when Q¡*t > Q¡, arld the second is when the

opposite occurs and Q¡*t < Q¡. F;ach of the categories are in turn subdivided into a

number of sub-categories depending on the relative magnitudes of F¡ and Q'

Numerous scenarios exist for each of the sub-categories, the qualitative

examples that follow are used to give a feel for the possible load-slip paths' All of

the examples presented are valid when (Ffli = Qi. Figure 4.2 illustrates three

general load-slip paths for a point along the steel-concrete interface, which are

possible when Q,i*t is greater than Q¡, where the vertical axis is the total

longitudinal shear force, the horizontal axis is the slip and the solid ¿urow

indicates how the slip will change as p increases. Figure 4.2a illustrates the case

when F¡ has increased and the increase in the total longitudinal shear force is less

than the increase in the maximum frictional resistance. As not all of AF¡, is

utilized while maintaining equilibrium, there is no change ifi Qù,wet, hence, s' This
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case illustrates the point that / is not necessarily equal to F¡, however, it is

necessary that F¡rbe exceeded before there is a change in Qa,,,et.

Q*t Q*l

Qi

s¡*t = s¡

a) (Fu),*, > (ñ),and ÂQ . ÅF,,

^QÂFu

Q¡ -

Âs

s¡ s¡*t

b) (F,J*, t (Fu),and AQ > AF,,

0AQoo*"

Q,*,
AQ

AQoo*"rQ¡-

^Fr,
Âs

si s¡*t

c) (Fo)u, . (Fu)'

Figure 4.2: Possible load-slip diagrams when Q¡a1> Q¡-

Figure 4.2b illustrates the scenario when F¡ again increases, hor'vever, the

increase in the total longitudinal shear flow is greater than the increase in the

maximum frictional resistance. In this case, all of the F¡ is utilized and, hence,

7dowe! must increase in order to maintain horizontal equilibrium (Fig. a.1). The

increase in the longitudinal shear force resisted by the connectols, Aq¿,,r"¡, must be

equal to (AQ - AF¡,), which results in the increase in slip /s.

The load-slip path when the maximum frictional resistance reduces and the

total longitudinal shear force increases is shown in Fig. 4.2c. Aga;n, all of the F¡,

is utilized and there must be an increase in edowet in order to maintain equilibrium.

Under these conditions, however, AQdowet must equal (AQ+AF¡) resulting in a

conesponding increase in sliP, /s.

l
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The second category that can occur is when there is a decrease in the total

longitudinal shear force at a point, defined by the inequality Qn 1Q¡, when the

load is moved along the beam. Two general load-slip paths are presented in Fig.

4.3 that are used to explain various scenarios.

AQ
AFu

Q*,
Â9oo*"r

si*t = si s¡ Si*t

a) (Fu)ut > (Fr,)¡ or b) (Fu)u' . (Fu),and AQ < 
^Fr,(F,)u, < (Fo),and ÂQ > AF,,

Figure 4.3: Possible load-slip diagrams when Q¡*t < Q¡'

The scenario illustrated in Fig. 4.3a, which shows that there is no change

in the slip at a point even though the total longitudinal shear force has reduced,

occurs under two different conditions. The first condition is when the maximum

frictional resistance increases as the total longitudinal shear force decreases. In

this situation, the frictional force required to maintain horizontal equilibrium/is

less than F¡r atnd, hence, there can be no change iî eaowet and therefote, As = 0.

The second condition Fig. 4.3a rcpresents is when the maximum frictional

resistance reduces, but to a lesser extent than the reduction in the total longitudinal

shear force. Again F¡r remains larger than that required for equilibrium such that

(F¡)i*t ) f¡+t = Q¡*, - (Q¿o*"t)r and so, þaurrpAs=O'

When the maximum frictionai resistance at a point is reduced more than

the total longitudinal shea¡ force, the load-slip path shown in Fig. 4.3b occurs. In

this case, all of maximum frictionai resistance is required such thatJ'*1 = (F¡)int

and, hence, in order to maintain horizontal equilibrium, Qdowet must increase by

Aed.wet= AF¡r- AQ. It can be seen, therefore, that it is also possible for the slip to

increase even though the total longitudinal shear force has decreased and that the

o

0

o

Q*l

AQ

ÂQoo*"r :Âsi
<--------->i
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influence of friction along the steel-concrete interface contributes significantly to

the load-slip behavior of the shear connection.

4.2.2 Reverse case

The situation will arise when the total longitudinal shear force at a point changes

direction as the load is moved along the beam. A general load-slip path is

presented in Fig. 4.4, which also includes a simple numerical example down the

right side of the figure to aid in the discussion. The initial conditions are given by

point A in Fig. 4.4 where the slip is s¡ and the total longitudinal shear force is Q¡ =

10. It is assumed that all of the maximum frictional resistance is utilized at point

A so that ¡,= (F¡)i, which in this example is equal to 5, therefore, for horizontal

equilibrium , (ea,,*"t)i = Q¡ - (F¡)¡ = 5 and is in the same direction as the frictional

force. The final condition at G in Fig.4.4, after the load has moved, is that Q¡+t =

9 and in the opposite direction of Q¡ and that (F¡)i*t = 8, which of course can act

in any direction as required. Using this simple numerical example, the remainder

of this section describes the load slip path taken as the total longitudinal shear

force changes from Q¡to Q¡*t.

As the total longitudinal shear force reduces from Q¡ (point A in Fig. 4.4),

the frictional force required for equilibrium / reduces proportionately from (.F¡')¡

until point B is reached. At point B, the total longitudinal shear force has reduced

to (eao,,ù¡ hence, the frictional force / required to maintain equilibrium is zero.

Further reduction of Q results in an increase inj in the direction opposite that at

point A, to maintain equilibrium such that/= (Q¿,,*,t)¡- Q. AT point C, Q=O andf

= (Qao*"t)¡, which has yet to exceed (F¡)i*t and require a change in Qd,,wet, which is

why the slip has not changed from s¡. Beyond point C, the total longitudinal shear

force begins to increase in magnitude in the opposite direction of Q¡,f continues to

increase and is equal to (e¿o*"ù¡ + Q until point D is reached. At D, the frictional

force required for equilibrium is equal to (F¡)i*t. As/can not exceed (F¡)¡¡¡ an!

further increase in p must be equilibrated by a change ifl eduweh which will result

in a change in the slip as can be seen by the load path beyond point D in Fig. 4.4.

In fact, the unloading path D-E-F-G in Fig. 4.4 is the same as A-B-O-C in Fig. 2.6.

After point D is reachad, e,tur"t reduces in order to maintain equilibrium and is

e_qgal to (F¡)¡¡¡ - Q, until point E is reached where Q= (Fr,)¡*t and therefoÍê Qd.wet
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= 0 and all of the slip is recovered at point F. Finally, as Q continues to increase

to Q¡*t, ettowet increases in the opposite direction of (q¿,,,e¿)¡ until point G is

reached where (e¿orrt)¡+t = Q¡*t - (F¡)i*t and the slip increases proportionately in

the opposite direction to the final value of s;..¡.

+
A

Q¡=10<-Q¡

total
shear
force

/
/

-.->

slip

Âs

K.t __t
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Figure 4.4: General load-slip path when Q reverses direction
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Load-slip paths other than that shown in Fig 4.4 are of course possible.

Potential differences include the location of point D along the unloading path,

where (F¡,)i*t is first exceeded (if friction is at all present) and q¿,,*,¡ begins to

unload and eventually reverse direction (assuming Q,¡*t is large enough).

4.3 FTNITE ELEMENT MODEL

The linear-elastic finite element formulation was discussed in Section 2.7. This

section deals with the non-linear secant stiffness approach that was developed in

order to model effects of friction along with the load-slip characteristics of stud

shear connectors. This is accomplished by modeling the shear connection along

the steel-concrete interface with a set of three spring elements, which are

described in the following section.

4.9.1 Non-tinear finite element model of the shear connect¡on

The distribution of stud shear connectors is modeled using a set of three

independent spring elements, as shown in Fig. 4.5, connecting each corresponding

steel and concrete node along the interface.

axialstiffness

connector stiffness

frictional stiffness

Figure 4.5: Non-linear spring element configuration.

As was the case with the linear finite element formulation (Section 2.7) a

single vertical spring is used to represent the axial stiffness of the connectors and

the surrounding concrete. The stiffness is assumed to remain constant and is made

relatively large as the shear connectors are designed to resist axial loads and

prevent separation of the steel and concrete components along the interface.
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The two horizontal springs shown in Fig. 4.5 are used to model rïA

combined effect of friction and the non-linear load-slip relationship of the

connectors. The effects have been separated in order to avoid the possibility of a

negative secant stiffness as the load-slip path can pass through the second

quadrant (Fig. a.a) when the total longitudinal shear force reverses. The method

of determining the stiffness of the two horizontal spring elements is described in

the following two sections.

4.3.1.1 Sfiffness of stud shear connectors

One of the horizontal springs is used to model the shear stiffness of the stud shear

connectors where the theoretical load-slip model adopted is that given inFig- 2.6,

ignoring incremental set. The tri-linear finite element model of the load-slip

behavior of stud shear connectors used in the computer program is shown in Fig.

4.6. The most significant difference between the finite element model and the

theoretical one (Fig. 2.6) is the slope of the unloading portion within the

permanent set zone. As preliminary simulations found that a slope of zero caused

numerical instabilities in the finite element analysis, subsequent simulations were

carried out varying the slope until it was determined that the minimum slope

possible is 0.25K'¡.

A secant stiffness approach is used in the analysis where the secant

stiffness of the connector Kr." must be within the bounds Kr, 2 Krr'. 2 0'25Krt,

which requires an iterative approach. If the previous peak load applied to a stud is

(P^^)t as shown in Fig. 4.6, the cyclic curve A-B-O would be defined.

Subsequently, if the load acting on the connector is Q¡ < (P^o)t, the secant

stiffness of the connector would be defined by the line passing through O-G where

G is the point along A-B-O that corresponds to load 0;. Alternatively, if a load

(P,r,^)z> (P*^)t is applied, Kr", = Kr¡ and a new cyclic curve is defined as given

by C-D-O in Fig.4.6.

As it is assumed that the behavior of stud shear connectors is the same

when the load is reversed, the load-slip curve is also extended into the third

quadrant, as shown in Fig. 4.6. Tf the peak load in the reverse direction is given as

(P,*)s,the cyclic curve in the reverse direction will be defined as E-F-O.
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Figure 4.6: Finite element load-slip model of a stud shear connector.

4.3.1.2 Frictional stiffness model

The second horizontal spring is used to represent the effect of friction along the

steel-concrete interface. The theoretical friction model is shown in Fig. 4.7a

where slip can not occur until the shear force exceeds F¡r, aftet which, slip is

permitted and there can not be any increase in the frictional resistance.

The infinitely stiff spring that would be required to prevent slip along the

interface, within regions of the beam where Q < F¡'. would have caused numerical

instabilities in the finite element simulation. Hence, trial simulations were

undertaken to determine the maximum frictional stiffness K¡ possible. It was

determined that a maximum stiffness of 3Kr¡, as shown in Fig. 4'7b, which is the

model used in the finite element formulation, was suitable to make the slip

sufficiently small. Conversely , if Q is greater than F¡,, slip would occur and K¡

would be determined by the slope of the line defined by O-B in Fig. 4.7b, where

point B is dependent on the magnitude of the slip at the connector.

o

oF
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silp

b) finite element
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slip

a) theoretical

Figure 4.7: Friction model.
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force 3('
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If the normal force across the interface at a pair of nodes is such that

positive uplift is induced, F¡, = 0 and, hence , Kt = 0 so that the horizontal stiffness

of the connection at the nodes is based solely on the stiffness of the connector as

defined in the previous section'

4.9.2 Convergence of the non'linear analys¡s procedure

As was the case with the linear analysis approach described in Section 2.7, afinite

element analysis is performed each time the applied load is moved along the

length of the beam from the initial node to the adjacent one, known as a load

stage, simulating the traversal of a vehicle. V/ith the linear analysis approach, the

solution is obtained after the first iteration as the stiffnesses of all the components

are assumed to be constant. However, with the non-linear analysis approach

presented in this chapter, several iterations are generally required to produce

converged results. This is because the stiffness of the shear connection is

dependent on the magnitude and orientation of the forces at the interface, all of

which are not known at the start of each load stage. Consequently, a method is

required to determine when the results have converged so that the iterative

procedure may be stopped and the next load stage commenced. The convergence

criteria used is based on the total stiffness K, of each set of horizontal springs

located at each node along the interface, where K, is the sum of the connector

stiffness K,," (Section 4.3.1.1) and the frictional stiffness K¡(Section 4.3.1.2). The

criteria is in the form of a ratio, which compares Kr of the current iteration i with
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Kt of the previous iteration i-l for the same set of springs, as given by the

following equation

(K, -(x, (4.8)convergenceratio=l+
K,),

The convergence ratio for each set of springs at every node along the

interface is then compared with a convergence limit that is input by the user.

'When each convergence ratio is less than the prescribed limit, all of the stiffnesses

are deemed to have converged and the next load stage can commence. Trial

simulations have shown that a convergence limit of 1.001 yields adequately

converged results, typically in less than 30 iterations.

4.4 RESULTS OF COMPUTER SIMULATIONS

This section presents a qualitative description of the effect of friction on the range

of load resisted by the stud shear connectors using the non-linear finite element

procedure. developed in this chapter. The results of a finite element simulation are

also compared with the simple mathematical model given by Eq. 2.61 that takes

into account the effect offriction.

Figure 4.8 shows two distributions of normal force across the interface for

a single concentrated load o1320 kN acting at the quarter-span of the 50.4 m long

simply supported composite beam (Fig. 3.1). Consistent with the convention

adopted, a positive normal force indicates a tensile force across the interface. The

broken line represents the distribution resulting from the concentrated load alone,

while the solid line is the distribution obtained when the dead load of the concrete

is also taken into consideration.

As one might expect, there are large compressive forces in the vicinity of

the concentrated load and the supports whether or not the dead load is considered.

If, however, the dead load of the slab is ignored (broken line in Fig. 4.8)' the

normal force across most of the span is negligible, and is in fact tensile in the

regions adjacent to the large compressive forces. This suggests that the frictional

forces act only locally around load points. When the concrete dead load is taken
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into account (solid line in Fig. 4.8), the entire distribution becomes compressive

and, hence, frictional forces act over the entire span.

without concrete dead load

P=320kN

x [m]

including concrete
dead load

-150

-200

Figure 4.8: Normal force distribution along the steel-concrete interface'

Figure 4.9 shows various shear flow distributions obtained from both

linear and non-linear computer simulations of the 50.4 m beam with a

concentrated load of 320 kN acting at the quarter-span. The results of the non-

linear analyses also take into account the dead load of the concrete component.

Considering the total longitudinal shea¡ flow force distribution from the nonlinear

analysis e, it canbe seen in Fig. 4.9 that the distribution increases locally near the

supports and under the load location. In fact, these local increases coincide with

the high compressive normal forces shown in Fig. 4.8. As the maximum frictional

resistance is large in areas of high normal compression, the frictional stiffness is

expected to be very large (Fig. 4.7b). Therefore, it can be concluded that the large

shear stiffnesses along the interface, in the areas of high normal compression,

attract a groater portion of the total longitudinal shear force. The longitudinal

shear force distribution that is resisted by the connectors based on a non-linear

analysis eaowetis also shown in Fig.4.9. The difference between the distributions

of e and Qd,,wer is in fact the frictional force distribution f that is required to

maintain horizontal equilibrium along the interface as given by Eq' 4'7 ' The
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distribution of edor"t is smooth and continuous throughout the length of the beam

except in the vicinity of the concentrated load (Fig. a.9) where it is equal to zero.

As the longitudinal shear force is typically small and the maximum frictional

resistance very high near a load point, it may well have been expected that Qdowet =

0 in the vicinity of a concentrated load.

f - frictional force

Qdowel
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Figure 4.9: Shear flow force distribution along the steel-concrete interface.

Superimposed on the nonlinear analysis distributions of Q and Qdt,wet irt

Fig.4.9 is the result of a linear analysis q, which is the same distribution shown in

Fig. 3.6. The comparison to be made is between the distributions given by q and

edtnet, as they predict the magnitude of the shear force acting on the connectors

themselves based on the two different analysis âpproaches. It can be seen that the

difference between the 4 and e&nerdistributions is relatively constant over most of

the beam. It can therefore be concluded that although the frictional forces are

highly concentrated in the vicinity of concentrated loads, the effect on the

longitudinal shear force is distributed over the entire span.

To investigate the effect of the non-linear model on the total range, the

shear flow force envelope is constructed using the same technique presented in

Section 3.2.1.1. Figure 4.10 shows the shear fo¡ce envelopes for a number of

analysis techniques, where the distributions shown for the full-interaction and the

s 10
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linear partial-interaction analyses are the same as those shown in Fig. 3.4. The

difference between the full-interaction and linear partial-interaction envelopes

shown in Fig.4.10 has already been quantified in Chapter 3 and consequently, will

not be discussed further in this chapter. The primary concern in Fig. 4.10 is the

additional reduction in the partial-interaction envelope when the non-linear

analysis is performed.

non-l inear partial-interaction
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Figure 4.10: Shear flow force envelopes.

Figure 4.10 shows that allowing for the non-linear behavior of the shear

connection slightly increases the length of the span subjected to uni-directional

ranges. If incremental set were included in the non-linear analysis procedure

(Section 2.5.2.2), further redistribution would take place as the number of cycles

increases until almost all of the connectors would be subjected to uni-directional

ranges as shown in Fig. 2.13. Although the difference between the two sets of

partial-interaction envelopes appears to be small, the change in R is actually

substantial.

Figure 4.11 shows the distribution of R resisted by the connectors for

various analysis approaches. As was the case in Fig 4.10, the distribution for the

full-interaction and linear partial-interaction analyses were previously determined

and quantified in Section 3.3.2.L The difference to note in Fig.4.11 is the
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substantial reduction in R from the linear analysis when the nonlinear analysis is

performed. It is again seen that the difference between the linear and non-linear

partial-interaction analysis distributions is almost constant along the span,

signifying once again that the effect of friction is global. Although the reduction

is not formally quantified, it is worthwhile noting that in this example, the l9%o

reduction of the non-linear distribution of R, with respect to the linear partial-

interaction distribution, increases the fatigue life of the connectors by a factor of

approximately (1.0 - 0.19¡-s'r = 3.
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Figure 4.1 1: Distribution of range.
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4.4.1 Comparison w¡th the mathematical model

The following section compares the result of the computer simulations shown in

Fig. 4.11 with that of the simple mathematical model given by Eq.2.6L In the

comparison the coefficient of friction is taken as 0.70, which is the minimum of

the range given in Section 2.4 and, hence, will result in conservative predictions

with respect to the magnitude of R. Furthermore, to simplify the calculations of

the mathematical model, the effect of the dead load of the concrete component

was ignored

Figure 4.12 superimposes the predictions of the mathematical model (Eq.

2.61) with the results of the computer simulations given in Fig.4.11. The
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distribution given by the mathematical model is considerably different to that

given by the computer simulations because the former is a full-interaction analysis

and the latter are partial-interaction analyses. The mathematical model is

conservative over the full lenglh of the beam. The decrease in the range using the

mathematical model, with respect to the full-interaction results, is greatest near the

supports, which is expected based on the formulation of the model. As the normal

forces across the interface are highest and the shear span lengths the shortest when

the load is near the supports, the frictional resistance is assumed to be very large

resulting in the significant reduction in the range resisted by the connectors.
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Figure 4.12: Reduction in R using the mathematical model.

50

To summarizethe results of Chapters 3 and 4, there are now four analysis

options available for use when predicting the remaining strength and/or endurance

of a composite bridge beam, each with a varying degree of complexity and

accuracy. Initially, a full-interaction analysis could be preformed, the simplest

type of analysis, which would give a safe endurance with respect to the fatigue life

of the shear connection. lncreasing the level of accuracy somewhat, a full-

interaction analysis could be performed taking into account the effect of friction,

with little increase in the amount of work required. If a more refined and accurate

analysis is required, a linear-elastic partial-interaction analysis could be

non-linear analysis
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performed, which would give a much more realistic representation of the

distribution of R along the length of the beam. Finally, a non-linear partial-

interaction analysis could be performed taking into account friction. This analysis

approach could be used to consider the influence of the dead load of the concrete

deck, and the weight of the vehicles on the distribution of R resisted by the shear

connection.

t
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Experi mental lnvestigation

5.1 INTRODUCT¡ON

An experimental programme was developed to further investigate the behavior of

stud shea¡ connectors subjected to reverse-cycle fatigue loading. In the current

investigation, a simple specimen was desired so the manufacturing cost could be

kept low and, hence, twenty specimens were cast and tested so that a wide range

of load conditions could be applied. It was also decided to subject the specimens

to a large number of cycles and, hence, low load ranges, as the shear connection in

composite bridges are typically subjected to millions of cycles over the life of the

structure.

5.2 EXPERIMENTAL SET.UP

As it is very difficult to simulate the load conditions surrounding the shear

connectors in a composite beam using push-out specimens, a simple specimen was

designed to allow for a relatively large number of tests so that a reasonable

comparison could be made. The variation between various push-out tests,

however, can be allowed for by using the ratio HPr,, as suggested in Section

2.5.3.2. Therefore, to apply the results of push-out tests to beams, all what is

required is P,, for the beam as given byF,q-2.40.

A top view of the experimental set-up, and a longitudinal section, is shown

in Fig. 5.1. A 1900x1400x25 mm thick steel plate was fastened to the strong floor

by four tie rods. The plate was used to standardize the placing and removal of

specimens. The specimen itself was held in place by four supports located at each

corner of the concrete block. The supports were designed to prevent horizontal

111
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movement due to the pushing and pulling of the reverse-cycle load as well as

vertical movement of the concrete block due to the uplift forces resulting from the

eccentric loading.

525 1 200

a

oorf)

b
East

Face

PLAN

a - load cell

b - load cell/flange connection

c - comer support

d - roller support

e - tie rods

f - flange

West
Face

g - stud shear connector
h - LVDT
i - high strengh bolt
j - end support
k - strong floor
| - steel plate

1500

l.r)(o
C\¡

LONGITUDINAL SECTION

Figure 5.1: Experimental set-up.

The dimensions of the concrete block, 1200x500x265 mm, were primarily

governed by the restrictions imposed by the minimum height of the INSTRON

hydraulic actuator and the location of the supports on the strong floor. It was

determined (Oehlers and Bradford 1995) that no reinforcement was required to

prevent splitting of the concrete, however, a nominal amount was included to

provide anchorage for the lifting hooks used to move the specimens. No

h
b

g

od gh

go

4

Þ
Þ Þ o{

e<



Experimental Investigation 113

reinforcement was placed in the vicinity of the connectors to ensure that the

fatigue strength would not be affected.

Three stud shear connectors, 75X12.7 mm diameter, were supplied and

welded onto a steel plate (flange) at 300 mm spacing by a local contractor and

embedded in the concrete. It was decided to use more than one stud to reduce the

scatter of results; three studs were used, which was limited by the capacity of the

load cell. The 1500x100x10 mm thick flange extended approximately 525 mm

beyond the East face of the concrete block to provide the connection between the

load cell and the specimen.

An additional 500x100x12 mm thick plate was welded to the under-side of

the protruding flange in order to stiffen the connection and to lower the line of

action of the applied force so that the eccentricity could be minimized. The

eccentricity, e, shown in Fig. 5.2, is due to the line of action of the resultant

bearing forces acting on the studs, Q,being offset from the line of action of the

applied load, Q. The resulting moment due to the eccentricity is in turn resisted

by a set of tensile and compressive forces, Fr and F6 respectively, acting on the

end studs. The orientation of the forces depending on whether the applied load is

pushing or pulling. In an attempt to minimize the uplift of the flange, a roller was

placed over it near the East face of the specimen as shown in Fig. 5.1.

s
e

Figure 5.2: Uplift forces due to eccentric loading

The flange was attached to the load cell with two 25 mm diameter high

strength aluminium pins and was isolated from the load cell by a spherical

bearing. The bearing was used to prevent the transfer of any vertical and

rotational movement of the flange to the actuator, which could damage the seals.

As the pins were machined to produce a tight fit, in order to minimize any play in

the horizontal direction, it was necessary to replace the pin after lengthy fatigue

tests due to wear of the Pin.
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The load cell was fastened to the face of the actuator which was in turn

connected to a stiff reaction frame that can be can be seen on the left side of Fig.

5.3 which shows an overall view of the experimental set-up'

Figure 5.3: Overall view of experimental set-up

A Linear Variable Displacement Transducer (LVDT) was glued to the

concrete near the west end of the flange (Fig. 5.1) so that the relative movement

between the steel and concrete, or slip, could be measured as the cyclic or static

loads were applied. The data acquisition system used Visual Designer to convert

the analogue data from the load cell and the LVDT to digital format which was

saved in a PC file.

5.2.1 Casting Procedure

Figure 5.4 is a photograph of a section of the formwork ready for casting. Two

concrete pours were required to produce the twenty specimens, ten in each pour.

The specimens were cast with the steel flange on the bottom and the studs

o¡ientated vertically upwards as is the case with composite bridge beams. This

was done to ensure that the concrete sunounding the studs could be adequately

compacted as the quality of the concrete in the area influences the strength of the

connection significantly (Johnson 1994). The specimens were rotated to the

orientation shown in Fig. 5.1, as required for testing, using four lifting hooks and a

crane. A layer of 10 mm thick styrofoam was placed in the formwork around the

flange so that when orientated in the testing position, the top of the concrete

would not extend above the bottom of the flange. The face of the flange on the

steel-concrete interface was coated with a thin layer of grease to prevent chemical

bonding with the concrete and reduce frictional forces along the interface that may
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be present during testing. The formwork was coated with oil to ease the stripping

of the specimens and permit the use of the same formwork for the second pour.

Figure 5.4: Formwork ready for concrete pour

5.2.2 Material propert¡es

The shank of four studs was machined to produce tensile coupons so that the

ultimate strength could be determined. The coupons were tested by applying a

monotonically increasing tensile force until failure. The maximum loads were

recorded and are shown in Table 5.1 where the average ultimate strengthJ, is

432.9 MPa. The flanges were center-punched to mark the location of the studs

and the surrounding surface was cleaned from any oil and dust so that the studs

could be welded onto the flange. A local contractor welded the studs, and the

quality of the welds was tested by hammering five studs that were welded on

sample steel plates as shown in Fig. 5.5. As none of the studs 'popped-off , it was

concluded that the welds were adequate.

Table 5.1: Results of tension tests on stud shear connectors.

Specimen fu [MPa]

I 427.9

2 429.3

J 435.5

4 438.7
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a) prior to hammer test

b) after hammer test

Figure 5.5: Evaluation of weld quality.

A 25 MPa concrete strength was specified for the two pours with a

maximum aggregate size of 10 mm and a slump of 80 mm, which was purchased

from a local ready-mix supplier. The concrete was vibrated using a hand held

pneumatic vibrator and the surface of the concrete was hand finished. Twenty five

200x100 mm diameter cylinders were also cast at the same time. The specimens

were then covered with plastic sheets for approximately 24 hours, after which the

cylinders were stripped, labeled and moved into a fog room. The specimens were

stripped approximately one week after casting in order to allow the concrete to

gain enough strength to permit handling. The specimens were labeled and stored

until testing. A similar procedure was adopted for the second pour, which took

place approximately six weeks later.

All of the specimens from the first pour, Pl, were tested first and the age

of the specimens, from the casting date, ranged from 92 to 223 days. The age of

the specimens at time of testing for the second pour, P2, ranged from 153 to 267



Experimental Investigation rt7

days. At various stages throughout the testing phase, a series of cylinders were

tested to determine the concrete compressive and tensile strength. A summary of

the results is given in Table 5.2, where the average f"=35-2 MPa andi = 3'3 MPa

for Pl and the averagef"= 40'2 MPa andj = 4'3 MPa forP2'

Table 5.2: Concrete ProPerties

Pour 2

Cylinder r,

lMPal

4.r

3.6

4.5

4.8

4.3

4.3

5.2.3 Testing Procedure

The cyclic frequency was kept constant at 0.5 Hz throughout the test except when

readings were taken. When readings were taken, at regular intervals throughout

each test, the frequency was reduced to 0.05 Hz so that a suitable number of data

points could be obtained to define the load-slip curve'

A summary of the tests carried out on the various specimens is shown in

Table 5.3, where the loads shown are the total loads applied by the actuator. The

maximum load shown is the peak load applied, or in the case of the static tests, it

represents the static strength of the specimen when pulled monotonically to

failure. The range is defined as the difference between the maximum and

minimum loads applied, and the last column is the number of cycles that were

required to cause failure in the fatigue tests.

1

2

3

4

5

6

7

8

Pour I

f,
lMPal

age

ldaysl

f,
lMPal

f,

lMPal

age

Idays]

153 NiA3.192 33.2

153 42.5J.J92 32.1

t53 39.2J.J92 34.6

40.r15332.692

267 N/A2.7223 36.5

261 40.23.1223 37.1

267 38.838.6 3.6223

40.226736.5223
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5.3 RESULTS

Three specimens were used to test the rig in order to solve any problems that were

not accounted for in the initial design. For example, the initial design did not

include the spherical bearing in the load cell-flange connection and the roller

support over the flange (see Fig. 5.1), which were added in order to eliminate axial

tensile forces in the studs that resulted from vertical uplift of the flange.

Table 5.3: Loading pattern.

Specimen No. of cycles to

failure (x103)

Fl-P1 938.0

Fz-PI 658.3

F3-P1 60.0

F4-P1 19.8

F5-PI 15.8

F6-P1 86.8

S1-PI

52-P2

F7-P2 555.2

F8.P2 233.1

F9-P2 (616.8)

F10-P2 95.5

Fl1-P2 698.7

Ft2-P2 t97.5

Ft3-P2 661.5

Ft4-P2 50.0

Ft5-P2 78.2

stopped cycling at 616.8x1 cycles then loaded statically to failure at 110.0 kN

5.3.1 Static test results

The load-slip curves of the two static tests, Sl-Pl and S2-P2, are shown in Fig.

5.6. These tests involved increasing the load monotonically, under displacement

Range

tkNl

Load type Maximum Load

tkNl

20 40Reverse

25 50Reverse

6030Reverse

7035Reverse

6070Uni-directional

50Uni-directional 60

Static t49.0

151.8Static

50 40Uni-directional

25 50Reverse

5025nto.0Reverse/Static

5060Uni-directional

50Reverse 37.5

50Reverse 31.5

25 50Reverse

42.5 50Reverse

5042.5Reverse
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control,untilfailure. Failureof sl-Pl occulredataloadof 149.0kN,while52-

p2 failedat a load of 151.g kN. As the difference between the two static strengths

is small, it was concluded that the slightly higher concrete strength of pour two

had a minimal effect on the overall behavior. Therefore, the average static

strength of the specimens was taken as the average of the two tests, 150'4 kN'

which is within l|Vo of the predicted strength (P,)pu,n = 176 kN that was

calculated using Eq. 2.39 with n taken as oo to give the mean strength'

The static strength of a stud shear connector in a beam can be predicted

using Flq.2.40 where taking n as ægives (PrJ¡,an= 143 kN which is less than 5vo

below the experimental average of 150'4 kN. This suggests that the net axial

force acting on the connectors in the current experimental set-up is very neafly

zero rather than being compressive which is observed in standard push-out tests'

unfortunately, the extension of the LVDT used to record the slip 'was not

long enough to record the post-failure behavior, where a softening branch of the

curves would have been seen in Fig. 5.6. The ductility of the shear connection is,

however, shown by the extent of the yield plateau, both extending well beyond 5

mm.
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Figure 5.6: Monotonically increasing static load test'
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5.3.2 Cyclic test results

A total of 15 cyclic tests were performed, 4 of which were uni-directional. A

typical load-slip curve, from specimenwl-P2, is shown in Fig. 5'7. It can be seen

that P,,*r was 50 kN for this specimen and R was 40 kN, which is the difference

between the maximum and minimum load of the cycle. The slip shown is that of

the unloading branch of the cycle, and the numbers above each branch indicate the

number of cycles that have elapsed when the reading was taken' Figure 5.7 clearly

shows that the slip increases as the number of cycles increase, which is referred to

as the incremental set. The initial loading curve from the mean load of 30 kN to

the peak load of 50 kN of the first cycle is also shown to illustrate the transition

from static loading to cyclic loading.

10

0
0.4 0.5

slip [mm]

0.6 0.7 0.8 0.9

Figure 5.7: Uni-directional load-slip curves of specimenF7-P2.

Another way of representing the data presented in Fig. 5.7 is by plotting

the maximum slip against the number of cycles elapsed, M as shown in Fig' 5'8'

Figure 5.8 illustrates that the rate of increase in slip is constant over most of the

fatigue life of the shear connection, as indicated by the broken line. There is a

rapid increase in the slip at the start of the fatigue life where the initial softening

of the connection takes place prior to stabilizing. The damage that occurs

involves local crushing or powdering of the concrete in the vicinity of the
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connector and the initiation and propagation of fatigue cracks within the connector

or the steel flange near the weld collar. More significantly, it is evident that the

maximum slip, hence, the incremental set and the fatigue damage increase very

rapidly near the end of the fatigue life of the connection, providing a reasonable

amount of warning of eminent failure. A more detailed analysis of the shape of

the slip-N curve is given in Section 5.4.2-

0

0 1oo 200 300 400 500

N (x103)

Figure 5.8: Uni-directional slip-N curve of specimenFT-P2'

600

The results of the remaining three uni-directional cyclic tests are similar to

those shown in Figs 5.7 and 5.8 and, hence, are given in Appendices A and B

along with the other results not discussed in this section. Figures 5.9 and 5.10

show the curves obtained for the reverse-cycle case using the results of specimen

Fl3-pZ. This specimen failed in fatigue after 661.5x103 cycles and was subjected

to a range of 50 kN with a maximum positive load of 25 kN, so that the ratio

P*rr/R was equal to 0.5.

Figure 5.9 shows the load-slip curve where a positive shea¡ load represents

the pull branch of the cycle meaning that the load was orientated such that the

actuator was pulling on the flange of the specimen. The behavior is similar to that

of Fig. 5.i for the uni-directional case, and the results are again shown for the

unloading branch of the cycle in both directions.
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Assuming everything being equal, one would expect the slip to be equal in

both the push and pull branches of a cycle. However, as Fig. 5.9 clearly shows,

the slip was greater in the pull portion of the cycle implying that the fatigue

damage was greater on the East side of the connectors. Of the six reverse cycle

tests performed where P^,,,/R is 0.5 and in which the fatigue damage is expected

to be equal in both directions of a cycle, larger slips were recorded for the pull

branch in four of the tests. It may be that the experimental set-up induced

somewhat more adverse effects during the pull branch of a cycle. Unfortunately,

insufficient tests are available to confirm this hypothesis.

Figure 5.9: Reverse-cycle load-slip curves of specimenFl3-P2, P,*'JR = 0.5.

'When the maximum positive and negative slips of each cycle are plotted

against N, the curves shown in Fig. 5.10 are obtained. The shape of the curve for

both the pull and push branches of the cycle is similar to that of the uni-directional

case (Fig. 5.8) with a constant rate of increase of slip over most of the fatigue life.

As was noted in Fig. 5.9, the slips recorded during the pull branch of the cycle

were consistently greater than those of the push branch. However, it is interesting

to note that the slip begins to increase rapidly in both of the branches at

approximately the same time.
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0.3
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Fig. 5.10: Reverse-cycle slip-N curves of specimenFl3-P2, P^,'/R = 0'5'

Figure 5.11 shows the load-slip curve for the unloading branch of the cycle

in each direction for specimen F11-P2, where R = 50 kN and P,, /R = O'75'

Failure occurred in the pull portion of the cycle, after 698.7x103 cycles, as would

be expected due to the larger maximum positive load'
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Figure 5.11: Reverse-cycle load-slip curves of specimen Fl1-P2, P^,,/R=0.75
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Figure 5.12 shows the maximum slip-N curves for the pull and push cycles

of specimen Fl1-P2, which again exhibits the same behavior as that observed in

Figs 5.8 and 5.10 for the uni-directional and P*"/R = 0.5 cases respectively.

The significant observation to make in Fig. 5.12 is that there is very little

fatigue damage occuning in the push branch of the cycle as the slip is very nearly

equal to zero throughout the fatigue life. This may lead to the suggestion, that for

values of Pr./R greater than about 0.75, the fatigue behavior can be considered to

be uni-directional.
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0.7

0.6
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Figure 5.12: Reverse-cycle slip-N curves for specimen Fl1-P2, P^,,/R=0.75.

5.4 ANALYSIS OF RESULTS

The results of the current investigation are compared with those obtained by

Slutter and Fisher in 1966 and by Mainstone and Menzies in 1967. The parts of

the tests that can be compared with the current investigation have been

summarized Section 2.6.t.

Unfortunately, static tests of the specimens tested by Slutter and Fisher

(1996) were not performed, however, sufficient information was given so that Eq.

2.39 could be used to estimate the static strength of the specimens. For the A- and

B-series specimens shown in Table 2.3, a static strength of 439 kN is predicted

-giv,gn 
that the averagefu= 4IO MPa andf,. =29.0 MPa, andn was taken as ooto
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obtain the mean strength of the four 19 mm studs that were used in each specimen.

As J, = 450 MPa for the 22 mm studs, the static strength for the G- and H-series

specimens also shown in Table 2.3 is predicted to be 658 kN using F;q.2.39, given

that the averagef" = 31.8 MPa, and again taking n as æ.

5.4.1 Asymptotic endurance of experimental results

In order to determine Eo, two points along the failure envelope shown in

Fig. 2.8 are required so that it can be extrapolated to the horizontal axis, as

indicated by the broken portion of the failure envelope.

For the current experimental results, and those taken from Slutter and

Fisher and Mainstone and Menzies, the two points along the failure envelope are

defined by the static strength of the specimens (0,P,,), and by the maximum load

applied during the fatigue test (Nr*r,P,*,). The asymptotic endurances determined

for the current investigation are determined using the results given in Table 5.3

and are shown in Table 5.4. The asymptotic endurance for the results of the other

researchers were determined using Tables 2.3 and 2.4 and are summarized in

Table 5.5.

Table 5.4: Asymptotic endurances.

Specimen

F1-Pl

F2-PI

F3-PI

F4-P1

F5-P1

F6-P1

F"7 -P2

Eo

(x103)

1081.9

189.5

75.0

25.8

29.6

r44.4

83t.7

Specimen

F9-P2

F10-P2

Fl1-P2

Ft2-P2

Ft3-P2

F14-P2

Ft5-P2

R - reverse-cycle
U - uni-directional

Eo

(x103)

2296.2

158.9

930.8

263.r

793.4

69.7

109.0

Load

Typ.t

R

R

R

R

U

U

U

R

Load

Typ"t

R

U

R

R

R

R

R

F8-P2 219.6
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Table 5.5: Asymptotic endurances for other researchers.

a) Slutter and Fisher b) Mainstone and Menzies

Specimen

alA

b1A

clA

a2A

b2A

c2A

a3B

b3B

c3B

a4B

b4B

c4B

e1G

e2G

e3H

e4H

R - reverse-cycle
U - uni-directional

Eo

(x103)

1934.7

2407.3

3117.0

r39.7

140.0

228.6

205.7

169.3

294.4

68.5

83.7

96.9

r26t.t

283.1

158.9

5r.4

Specimen

s10

s12

s13

s14

s15

s17

s18

s20

s21

s23

s24

s25

s27

s28

s30

s31

s32

s33

s34

Eo

(x103)

4533.3

2260.5

774.5

260.8

591.3

2629.2

135.8

2903.5

31.2

3172.5

50.0

97.O

48.8

32.6

71.3

41.5

1203.3

660.7

23.7

Based on Eq. 2.45, the asymptotic endurance can be plotted against the

non-dimensional parameter MP,,. Figure 5.13 plots the log(E ) vs log(R/P.,r) data

for the current investigation along with the asymptotic endurances predicted by

Fjq.2.45. The mean endurance line is determined using F,q.2.45 with n = -,
which represents the case when all of the connectors fail as a group. The two

characteristic endurance bounds represents the endurance of a single connector,

hence, n = I inBq.2.45. The coefficients shown beside the reverse-cycle data

points are the P^r,/R values.

Load

Typ"t

R

R

R

R

R

R

U

U

U

U

U

U

R

R

U

U

Load
I

I ype

U

U

R

R

R

R

R

U

R

U

U

U

U

U

U

U

U

U

R
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The results fall within the bounds defined by the characteristic endurance

(Fig. 5.13), with the exception of one test, that of specimen F9-P2 which was

loaded monotonically until failure after 616.8x103 cycles. It can also be said that

all of the reverse-cycie tests have higher endurances than the corresponding uni-

directional test with the exception of the two tests where P,*/R = 0'85'

Figure 5.14 shows the results of Slutter and Fisher and Mainstone and

Menzies superimposed on the results of the current investigation (Fig. 5.13)' The

behavior observed with the other researchers is similar to that of the current

investigation where in general, the fatigue life of the reverse-cycle specimens is

longer than that of the uni-directional ones. Most of the results from the other

researche¡s also fall within the bounds defined by the characteristic endurance

lines, and the scatter is also similar to that observed in Fig' 5'13' This provides

some degree of reassurance that the current results obtained are reliable'

In order to give a better feel for the scatter in the test results and the actual

increase in the asymptotic endurance under reverse-cycle loading, the increase in

Eo is plotted against the ratio RrzR' This is shown in Fig' 5'15' where R' is defined

as the magnitude of the range in the positive branch of the cycle only' The term

Ru is introduced so that the ratio would equal 1.0 for the uni-directional case'

opposed to using P^u,wherethe ratio P,,,/R would, in general, be greater than 1.0

for the uni-directional case. The increase in the asymptotic endurance is defined

by the raf\o, Eu/(Eo)oug, where the denominator is the average asymptotic

endurance of all the uni-directional tests performed for the corresponding range'

As it is necessary that both the reverse-cycle and uni-directional tests have the

same total range, only the results from slutter and Fisher could be used in this

comparison.

Figure 5.15 clearly shows that the endurance of stud shear connectors is

increased under reverse-cycle loading compared to the uni-directional case with

the same total range. The increase in Eo also appears to increase as R'lrR

approaches 0.5. It is also evident that there is a significant amount of scatter in

both test results, more so, however, with the current investigation. A certain

amount of scatter is inevitable with all forms of testing, however, it is more

pronounced with fatigue tests especially in the reverse-cycle case where additional

problems are encountered as the cycle passes through zero load'
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Some of the scatter observed during the current selies of tests may be

attributed to the quality of the welds' Figure 16a shows a photograph of a good

weld after fatigue failure has occurred, while Fig. 16b shows a poor weld. There

is significant pitting present in the poor welds and there does not appear to be any

fatigue cracking associated with failure. Approximately ll3 of the welds appeared

to be poor, however, there does not appear to be any correlation between the

number of poor welds'in a specimen and the endurance' The only exceptions

being specimens F14-P2 and F15-P2, both of which had P*,/R = 0.85 and

endurances less than the uni-directional case, where all three of the welds in each

specimen apPeared to be Poor.

steel
flange

concrete
block

a) good weld b) poor weld

Figure 5.16: V/elds after failure.

5.4.2 SliP-N characteristics

The shape of the slip-N curves for all of the tests where sufficient data points were

collected is well defined. A bi-linear distribution is used to idealize the slip-N

curve as shown in Fig. 5.17. The first part of the distribution represents the

gradual increase in slip that occurs at a constant rate of lds/dl{r' The slip

increases gradually over most of the design life, defined by the slip s, at the onset

of cyclic loading and the point (N"s,,) which represents the point where the slip

begins to increase rapidly as failure approaches. The slip s, is related to the initial
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slip s¡, aS will be shown later in the section, which can be determined by

estimating the initial stiffness of the shear connection in the composite beam.

After N, cycles, the slip increases exponentially, however, this portion of the

distribution is also idealized linearly with a constant slope of [ds/dl'|f,. The

constant slope of the rapidly increasing portion of the distribution is defined once

again by (N"s) and the point (Nr'r,sr) at failure. As it was not possible to record

the maximum slip just prior to failure, the ultimate static slip s, (F;q,2'41) is used

as an approximation.

Slip ---T

su

sr

Sn

si

--T-t 
or I' 

[-dN ] s

NN

No. of cycles
exp

Figure 5. 17: Slip-N characteristics

A summary of the numerical analysis that was performed is given in Table

5.6. The first row in each of the reverse-cycle specimens represents the results

from the push branch of the cycle while the second row is that of the pull branch.

All of the values were taken or derived from the experimental data with the

exception of su, which was calculated using Eq. 2.41. It is also noted that the

magnitude of N, is subject to Some effor as judgement was required in determining

when the slip begins to increase rapidly. The cells that have been left blank

indicate that insufficient data was available to confidently predict the parameter in

question. Where appropriate, the average value of the various parameters is given.

In order to determine whether or not there is a noticeable difference between the
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reverse-cycle and uni-directional cases, the results are given separately and then an

overall average is calculated where applicable.

Table 5.6: Analysis of slip-N curves.

l,oad

type

Reverse

Average

Uni-dir

Average

lds/dNl,

(x10-6)

19.3

19.3

30.4

30.4

45.9

45.9

2t.3

21.3

870

468

59

253

lds/dNlr

(x10-6)

N,/8" NIN,,Ps/s¡ s,/s¡Specimen

0.684

0.684

0.06

0.06

2.280

2.280

0.570

0.570

1.468

1.468

Fz-PI

6

6

1.080

1.418

F3-P1

10

9

F4-P1 1.602

t.392

0.429

0.429 0.22.192

0.358

0.358

F8-P2 r.678

2.250

0.01

0.02

F9-P2 2.t04

r940

0.3

0.662

o.662

0.881

0.881r.t97 2.949

Fl1-P2

1

Ft2-P2

2.3t6

0.718

0.718

0.02

0.1

2.014

3.851

0.599

0.599

r.67r

2.140

Ft3-P2

N/A

200.395 0.7412.957F5-P1 r.552

50.548 o.912r.227 4.544F6-P1

0.890 0.64.569 0.5941.603F]-P2

0.855 43.546 o.5141.584F10-P2

0.850

Over-all Average
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All of the parameters calculated in Table 5.6 are related to the magnitude

of R to varying degrees. This implies that for parameters which are very sensitive

to R, an average value, based on all the tests performed, has no meaning. For this

reason, no average values are given for the parameters lds/dNlr and lds/dNf,

which are similar to the incremental set relationship given byF;q.2.43.

Although Eq. 2.43 was derived assuming a linear relationship, it is

compared to the fds/dNlr results of the current proposal in Fig. 5.18. A linea¡

regression of the experimental data points resulted in the equation given in Fig.

5.18, which is also represented graphically by the solid line, where the factor

6.678 is comparable to the exponent 4.5 of Eq- 2.43.

Figure 5.18: Incremental set comparison.

The remaining parameters presented in Table 5.6 do not appear to be as

sensitive to R as the corresponding averages for the reverse-cycle and uni-

directional tests a.re reasonably close. It is noted that there are too few test results

to suggest a numerical model for the bi-linear slip-N curve proposed, however, the

general shape can certainly be described. ln particular, attention is drawn to the

s,/s¡ parameter where the average value indicates that the slip begins to increase

rapidly once the maximum slip is about 3 times the initial slip at the sta¡t of the

design life. Alternatively, it could also be said that the slip begins to increase

-1

-2

-3

-4z
E
ø_RE
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log(ds/dN) = 6.6781o9(F/P"J - 1.8947

- (8q.2.43)
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rapidly after 5OVo of the asymptotic endurance is reached as given by the

parameter N/8,. This is significant as it can be used to predict the remaining life

of a structure.



Chapter 6

Gonclusions and

Recommendations

6.1 CONCLUSIONS

The following section presents the conclusions the have been made from the

original work associated with this research project, which is divided into three

main categories; linear-elastic partial-interaction (Chapter 3), non-linear partial-

interaction (chapter 4) and experimental investigation (chapter 5). Finally,

suggestion are given for future directions in the area'

6.1.1 Linear'elastic partial-interaction analyses

Simple procedures have been developed that can be used to more realistically

assess the residual strength and residual endurance of simply supported steel-

concrete composite bridge beams. The procedures take into account the change in

the shear flow forces along the steel-concrete interface and the change in the

flexural stresses by allowing for partial-interaction, using simple reduction and

multiplication factors. It has been shown that the simple procedures, developed

using linear-elastic theory, agree very well with linear finite element partial-

interaction computer simulations, validating the approach.

The beneficial effect of partial-interaction is that the reduced shear flow

force increases the fatigue life of the shear connectors significantly with respect to

current full-interaction procedures. The detrimental effect is that the steel and

concrete flexural stresses increase, especially in the vicinity of the steel-concrete

interface, due to the location of the partial-interaction focal points' The stresses at

t36
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Conclusions

the bottom face of the concrete component may be tensile causing accelerated

cracking and fatigue problems in the concrete, which are not anticipated with full-

interaction analyses. In the steel component, increased compressive Stresses nsar

the interface may potentially result in unexpected buckling problems' and the

increased tensile stresses near the bottom flange will reduce the fatigue life in the

area.

6.1.2 Non'linear partial'interaction analyses

The complex interaction between friction along the steel-concrete interface and

the nonlinear load-slip behavior of the stud shear connectols was qualitatively

described using a simple physical model, which led to the development of a non-

linear finite element program suitable for modeling the behavior'

computer simulations showed that the normal compressive forces acting

across the steel-concrete interface are concentrated around the load locations'

However, it was observed that the longitudinal shear force resisted by the

connectors was reduced relatively uniformly along the span. It followed,

therefore, that the total range resisted by the connectofs was also reduced' further

increasing the anticipated fatigue life of the shear connection with respect to the

linear partial-interaction analyses'

A comParison between the computer simulation and an existing

mathematical model showed that the predictions of the model are conservatlve

over the length of the beam. The model is a simple hand procedure based on full-

interaction results.

6.1.3 ExPerimental conclusions

Several conclusions can be drawn from the results of the experimental programme

and the comparisons made with the results from other researchers.

It is clear that the strength and stiffness of the shear connection is

constantly reducing throughout the fatigue life from initial application of cyclic

loads. This is evident by the constant increase in slip measured as the number of

cycles increased. This information can be useful when trying to establish the

remaining fatigue life of existing composite bridges as the rate of increase in slip
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remains constant until approximately 50Vo of the asymptotic endurance remains,

which would provide adequate warning of failure.

The second significant conclusion that can be made is that the fatigue life

of a shear connection subjected to reverse-cycle loading is longer than one

subjected to uni-directional cyclic loading of the same total range. As the scatter

for both the current investigation and that of the other researchers is quite large,

the increase in the endurance can not be quantified. However, the increase in

endurance is substantial, ranging from about 1.5 to 15 times the uni-directional

asymptotic endurance.

A desirabl e realization of this study is the fact that current design

procedures are conservative as the fatigue endurance of connectors subjected to

reverse-cycle loading are predicted using relationships obtained from uni-

directional tests.

6.2 RECOMMENDATIONS

It would be beneficial to extend the linear-elastic theory and develop simple

reduction and multiplication factors, similar to those given in Chapter 3, for two-

span continuous beams. As the partial-interaction focal points are located near the

extreme fibers of the cross-section, the effect of partial-interaction is amplified

near the steel-concrete interface. This observation may be even more important in

the negative moment regions of the beam over the internal suppofts where the

tensile stresses in the top steel flange may be significantly greater than that

predicted by full-interaction analyses. It is also suggested that the theory be

developed for other practical load conditions, in particular, uniformly distributed

loads that could, amongst other things, be used to predict the behavior of beams

cast using proPPed construction.

euantifying the additional reduction in the range resisted by the shear

connectors due to friction and the non-linear load-slip path of the connectors for

the simply supported case would be advantageous. The effects of incremental set

could also be included and again, the extension of the theory to continuous beams

is suggested.

An experimental investigation of two-span continuous beams under cyclic

JOqding would be beneficial to determine the strains in the steel section, especially
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in the negative moment region, and slip along the interface in order to validate the

theoretical models and computer simulations. Additional testing of reverse-cycle

push-out specimens would be required to reduce the observed scatter so that the

increase in the endurance could be quantified. Placing more emphasis on the

welding procedure, resulting in a more consistent set of welds may also reduce the

scatter. Additional tests would also be required to quantify the slip-N curve more

accurately, which could be used in computer simulations to help predict the

remaining strength and endurance of existing structures'
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Appendix A

Load-sliP curves

The following Appendix shows the load-slip curves of all of the specimens tested

as part of the experimental investigation'
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Appendix B

Slip-N curves

The following Appendix shows the slip-N curves of all of the specimens tested as

paÍ of the experimental investigation'
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