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PONTEM PERPETUI MANSURUM IN SAECULA

Gaius Julius Lacer, 98 AD

“I have left a bridge that shall remain forever”

This is an inscription on a bridge over the river Tagus in Spain.

The bridge, consisting of six arches, is still in use,

and carries 183 m of roadway 53 m above the river.
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ABSTRACT

Most composite steel-concrete bridges are designed using full-interaction which

assumes that the shear connection is infinitely stiff. The purpose of this research
was to determine the effect of partial-interaction and interfacial friction on the
fatigue behaviour of composite bridge beams. This has led to the development of
a set of design rules for the assessment of the residual strength and performance of
composite bridge beams.

A finite element computer model has been developed that allows for
partial-interaction by incorporating the complex load-slip characteristics of the
stud shear connectors and the frictional resistance along the interface under
reverse-cyclic loading. Parametric studies showed that partial-interaction reduces
the shear flow such that the connectors have a fatigue life longer than originally
anticipated, however, the flexural stresses increase which has an adverse effect on
the endurances of the steel and concrete components. Analyses also showed that
friction affected the shear flow over the entire length of the beams even though the
frictional forces are concentrated locally around the load points and supports.

Previous research has shown that partial-interaction theory is very
complicated and is not suitable for direct application in design. Hence, simple
mathematical models have been developed to predict the partial-interaction shear
flow and partial-interaction flexural stresses directly from full-interaction
analyses. These models can be used to give accurate predictions of the fatigue
endurance and strength from standard full-interaction analyses.

A new type of push test for reverse-cycle fatigue loads has been developed
from which the fatigue load-slip characteristics of shear connectors can be
predicted for use in computer simulations. The experimental investigation has
shown that for a given range of load, connectors subjected to reverse-cyclic loads
last longer than connectors subjected to uni-directional cyclic loads, and has
proven that current design techniques are safe as the design life is longer than
anticipated. These tests also showed that the increase in slip per cycle is constant
over about 3/4 of the design life after which the slip increases rapidly and, if

monitored, can be used to directly predict the end of the life of a structure.
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XV

NOTATION

The following notation is used in this thesis. Generally, only one meaning is

assigned to each symbol however, when more than one definition is possible, the

correct one will be evident from the context in which it is used.

{y =
[1 =

A =

A =

bf =

(Bav)avg=
Emean
E, =
e =

FIA =

vector

matrix

cross-sectional area of the component; residual strength constant;
regression coefficient

shank cross-sectional area of a stud shear connector

probability of occurrence for each type of fatigue vehicle; regression
coefficient; strain matrix

width

bottom flange when used as a subscript

constant in endurance equation; function of the composite cross-
sectional stiffness and geometry (Newmark, Siess and Viest 1951);
integration constant

concrete component or constant when used as a subscript

material stiffness matrix

distance between the centroids of the steel and concrete components
diameter of the shank of a stud shear connector

rate of change in slip per cycle

slip strain

modulus of elasticity; endurance

= asymptotic endurance

average uni-directional asymptotic endurance

= mean endurance

Jongitudinal shear spring stiffness
eccentricity

Full-interaction Analysis
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Fc = compressive force

Fr = force constant

Fr = tensile force

Fq = frictional resistance

f = frequency of a range in a shear flow influence line diagram; frictional

force required for equilibrium

i = concrete cylinder compressive strength

fi = full-interaction when used as a subscript

fp = focal point when used as a subscript

f; = concrete tensile strength

iy = tensile strength of a stud shear connector

g = gradual when used as a subscript

h = depth of the component

I = moment of inertia

Tac = moment of inertia of the transformed concrete section

K = integration constants; global stiffness matrix

K., = cyclic stiffness of stud shear connectors

K¢ = secant stiffness due to friction alone

K. = secant stiffness of a stud shear connector alone

K = initial static stiffness of stud shear connectors

K, = total horizontal connection stiffness

k = connector shear stiffness

Ke = four-noded element stiffness matrix

ke = spring element stiffness matrix

k, = foundation modulus (Adekola 1968)

L = length of a simply supported beam

LVDT = Linear Variable Displacement Transducer

L = load constant

Lep = length of a shear span

1 — distance of the concentrated load from the left support; length of shear
span

I = distance from support where RFr becomes constant
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M = bending moment

MF, = curvature multiplication factor

m = exponent in endurance equation; mid-span when used as a subscript
N = number of cycles; axial force; normal force across the interface

N = number of cycles prior to overload

Nexp = number of cycles to cause fatigue failure experimentally

N; = number of cycles when slip begins to increase rapidly

n = modular ratio; number of connectors to fail as a group

P = concentrated load; peak uni-directional shear flow force

PIA = Partial-interaction Analysis

PIFP = Partial-interaction Focal Point

Pmax = peak applied load

P, = residual strength of a stud shear connector

Pq = initial static strength of a stud shear connector

P = connector spacing

pi = partial-interaction when used as a subscript

Q = total longitudinal shear force

Qo = static shear flow strength required

Qo = shear flow strength at the start of the fatigue life

Qws = residual strength of the shear connection in an existing structure

Qst = shear flow strength at the start of the fatigue life

q = total longitudinal shear force per unit length; quarter-span when used as

a subscript
Qaowes = longitudinal shear force per unit length resisted by shear connectors
qL = shear force per unit length to the left of the concentrated load

(Newmark, Siess and Viest 1951)

q = shear flow force

R = total range of cyclic load resisted by the shear connectors; global load
vector

RFp = reduction factor for the peak uni-directional shear flow force

RFr = reduction factor for the total range

Ry = magnitude of the range in the positive branch of a cycle

r . = vertical force across the interface; rapid when used as a subscript
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S
SFV
Se

Si
Sr

Sy

Mg g < < < =

>

<«
3

stress

Standard Fatigue Vehicle

stress range

slip; steel component or support when used as a subscript

slip used to define [ds/dN],

initial slip

slip where slip begins to increase rapidly

ultimate slip at static failure

number of vehicles traversing a bridge; tensile force acting across the
interface (Adekola 1968); transpose of a matrix

thickness

top flange when used as a subscript

distance to the load from the left support (Newmark, Siess and Viest
1951); local nodal displacement in global x-direction

vertical shear force

vertical shear force acting at x

local nodal displacement in global y-direction

weight of a fatigue vehicle as a proportion of the SFV

width; web when used as a subscript

a parameter in the endurance equation

distance of the cross-section from the left support

distance between the centroids of the concrete component and the
transformed concrete section of the composite beam,; vertical deflection
(Adekola 1968); distance measured from steel-concrete interface

centroid of component with respect to the steel-concrete interface
centroid of the transformed concrete section with respect to the steel-

concrete interface
number of cyclic range magnitudes; distance between the centroids of

the steel and concrete components (Newmark, Siess and Viest 1951)

factor grouping together geometry, material properties, and connection

stiffness
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B = factor grouping together geometry, material properties, and connection
stiffness

) = displacement

8Q = resultant bearing force acting on a stud shear connector

€ = normal strain

o = curvature

Y = shear strain

1) = coefficient of friction

o = normal stress

shear stress

2]
]

) = Poisson’s ratio



Chapter 1

Introduction

1.1 EARLY HISTORY OF COMPOSITE STEEL-CONCRETE BEAMS

Probably the first time the term composite beam was recorded was in a report by
the Dominion Bridge Company of Canada in 1922 that presented the results of
tests on two floor panels, each of which contained two steel I-sections encased in
concrete. The excerpt, which is taken from a paper written by Viest on a review

of research on composite steel-concrete beams (Viest 1960), is as follows:

“_..While such beams have hitherto been designed on the assumption that
the entire load ... is carried by the steel, it was thought that the steel and

concrete might really act together so as to form a composite beam ...”

At about the same time, similar tests were being undertaken in the United States
and the United Kingdom, and tests on composite steel-concrete beams have been
carried out ever since.

The early tests were all on steel sections encased in concrete such that the
entire interaction was a result of the bond between the steel and concrete. In the
1930s, researchers were beginning to realize that unless the steel sections were
fully encased in concrete and there was no fluctuation in load, bond alone could
not be relied upon to provide the interaction required and, hence, the first forms of
mechanical shear connectors were used.

The first tests in Switzerland in 1933 used spiral connectors made by
forming round bars into a helix and used what are now commonly referred to as

push-out specimens. European researchers then moved from spirals to hooks or
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loops in the early 1940s that were made by bending reinforcing bars. While
European practice tended towards using stiff connectors, American researchers
preferred using more flexible connectors requiring less fabrication.

The first extensive tests undertaken in the United States, commencing in
1942 at the University of Illinois and Lehigh University, used flexible angle and
channel connectors, which showed that flexible connectors are also suitable to
provide adequate shear connection. The first test using stud shear connectors,
which are the common form of shear connection today, took place in 1954.

As the experimental tests showed that slip is inherent in composite steel-
corncrete beams, several theories considering slip on stresses and deflections were
being developed. The first theory was developed in 1951 by Newmark, Siess and

Viest and remains the basis for most partial-interaction theory today.

1.2 PURPOSE OF THE RESEARCH

The cross-section of a typical composite steel-concrete bridge beam is shown in
Fig. 1.1 where a series of parallel, longitudinal, steel I-sections, support a concrete
deck, which acts as the running surface. The two components are mechanically
fastened together along the steel-concrete interface with a distribution of stud
shear connectors that are welded to the top of the steel flange and embedded in the
concrete. The shear connection makes the steel and concrete components act as
one improving the efficiency of the cross-section. These types of bridges are
commonly used today as they are a competitive design option for both simply

supported and continuous spans ranging from 20 to 100 meters (Hayward 1987).

| Concrete Deck

J
< "l
Y 7 ‘*V‘-\V [y 7Ty gy
SNSEEES d T\T\ IS s

] \
Stud Shear c
Connectors %
[0}
)
Steel-Concrete o
Interface n
Y.

Figure 1.1: Typical composite steel-concrete bridge beam cross-section.
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The aim of this research project was to investigate the partial-interaction
behavior of composite steel-concrete bridge beams subjected to fatigue loading so
that the remaining strength and remaining endurance of these structures can be
more accurately predicted. Current design/assessment procedures assume that the
shear connection is infinitely stiff so that there is no relative displacement of the
components along the interface that is slip. This results in a continuous strain
distribution throughout the depth of the section, as shown in Fig. 1.2a, which
simplifies the design/assessment procedure. However, the connectors are not
infinitely stiff and slip along the interface occurs as vertical vehicle loads are
applied, which is known as partial-interaction. ~Consequently, the strain
distribution at a section is discontinuous at the interface level as shown in Fig.
1.2b, where the magnitude of the discontinuity is a measure of the slip, known as

the slip strain.

TT | T 1T 171

N.A. of trans. ! 2 B
section

Cross-section Longitudinal section Strain distribution

a) Full-interaction

[ e 1 T T e i S

f TN 1"é|i'9“"
steel-concrete S s — ;

interface

Cross-section Longitudinal section Strain distribution

b) Partial-interaction

Figure 1.2: Full- and partial-interaction strain distributions.

Hence, partial-interaction affects all aspects of composite steel-concrete

bridge beams and the following two points were focused on in this research:
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1) the reduction in the longitudinal shear force along the steel-concrete
interface, which influences the fatigue life of the shear connection; and
2) the increase in the flexural stresses in the steel and concrete components

that are required in order to maintain equilibrium.

In addition to the two points listed above, the complex interaction between
friction along the steel-concrete interface and the non-linear load-slip behavior of
the stud shear connectors was also investigated. Finally, an experimental
programme was undertaken to investigate the fatigue behavior of stud shear
connectors subjected to reverse-cyclic loading. As it will be shown in Chapter 2,
very little work has been done in this area, even though the shear connection is
subjected to reverse loading in most regions of the span.

The need for improved and reliable assessment techniques becomes clear
when one realizes that in the United States, for example, there are approximately
600,000 bridges, and on average, 12,000 of them reach their 50 year design life
every year (Yazdani and Albrecht 1987). Furthermore, it has long been stated that
general replacement of bridges after a life of about 100 years is impractical and
that complete replacement could not be achieved in less than a century (Ogle
1981). The need for reliable assessment techniques in composite steel-concrete
bridges is even more critical as the condition of the shear connection can, in

general, not be visually inspected.

1.3 DISPOSITION OF THESIS
The thesis is divided in to 6 chapters and the contents of each chapter are
summarized in the following section. It is noted that the models developed pertain
to simply supported composite beams assuming unpropped construction. The
implication of this being that the composite beam resists the live load due to
traversal of vehicles, while the steel section on its own resists the dead load of the
concrete component.

Chapter 2 is the literature review and contains all of the information that
the remainder of the thesis references.

The third chapter develops the linear partial-interaction models, where

simple techniques based on common full-interaction analysis are derived to
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predict the partial-interaction range resisted by the shear connection and the
partial-interaction flexural stresses. An example is solved to show the use of the
techniques developed by solving an illustrative problem.

Chapter 4 deals with the non-linear behavior of the shear connection when
the complex interaction between friction along the interface and the non-linear
load-slip behavior of the stud shear connectors are considered. A finite element
procedure is developed that can model the non-linear behavior and a comparison
is made between the results of the computer simulations and a simple hand
analysis technique.

Chapter 5 deals with the experimental programme that was undertaken as
part of this research project. The details of the specimens are given as well as the
experimental data and an analysis of the results is made.

Finally, Chapter 6 summarizes the conclusions that have been drawn from
this research and suggestions are given for future research in the area, which have

been identified but time has restricted from pursuing.



Chapter 2

Literature Review

2.1 INTRODUCTION

This chapter presents all of the information that is referenced in the remainder of
the thesis. The classical partial-interaction theory is discussed first, as it forms the
basis for this research. The current analysis and assessment techniques are then
described, followed by a review of research directions, primarily pertaining to
experimental investigations. Finally, details of the core finite element program

that was used to perform the computer simulations are given.

2.2 CLASSICAL PARTIAL-INTERACTION THEORY

The first partial-interaction theory, or incomplete-interaction as it was then called,
was developed in 1943 by Newmark, Siess and Viest (1951) after carrying out a
series of tests on small-scale composite T-beams at the University of Illinois.
Channel connectors were used at the time, and it was stated that no rational means
of predicting the stiffness of the connectors exists, hence, the stiffness was
determined experimentally by measuring the slip.  Since then, however,
relationships have been developed, as discussed in Section 2.5, that can predict the
stiffness of the most common form of shear connection that is stud shear
connectors. Slip measurements on large-scale composite T-beams showed that for
simply supported beams with a uniform distribution of shear connectors, the slip
near a concentrated load is very nearly zero and increases towards the support. It
was suggested that the low values of slip near the loads are, in part, a result of the
increased friction along the steel-concrete interface. Consequently, Newmark,

Siess and Viest were the first to acknowledge the presence of friction, however,
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results of this research (Chapter 4) suggest that although the frictional forces are
high in the vicinity of concentrated loads, the effect on the horizontal shear is
distributed over the full length of the beam.

The classical theory that was developed, which remains the foundation for
most of the partial-interaction theory used today, is based on the following four

assumptions.

1. The shear connection is continuous and uniform along the length of the
beam, which is a reasonable assumption to make particularly when dealing
with simply supported beams.

2. The slip is directly proportional to the shear load, which simply means that
the connector stiffness is constant. This was a valid assumption to make as
it was demonstrated that for the loads used in the tests, the load-slip
relationship was linear.

3 The distribution of strain is linear throughout the depth of each component
of the section, which is consistent with beam theory where it is stated that
plane sections remain plane.

4. The concrete slab and steel beam deflect the same amount at all points along
the beam at all times, which implies that the curvature in both components is
the same. This is a valid assumption as long as there is no separation of the
components along the steel-concrete interface. As stud shear connectors
have heads that are designed to resist uplift forces, it is reasonable to assume
that there is no separation along the interface, especially under serviceability

fatigue loading.

The theory was developed for a simply supported beam with a single
concentrated load acting anywhere along the beam, and relationships were
explicitly derived to predict the following properties at any section: axial force
acting on the steel and concrete components; horizontal shear force acting along
the steel-concrete interface; slip, which is the horizontal shear force multiplied by
the stiffness of the shear connection; strain distribution in the steel and concrete;
and deflection. The derivation of the equations as given by Newmark, Siess and

Viest will not be reproduced here. Instead, the derivation presented by Johnson
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(Johnson 1994), which is also based on the work by Newmark et al and was used
in the development of this research, is summarized in Section 2.2.1. However, for
comparison with the model developed as part of this research in Chapter 3, the
expression given by Newmark et al to predict the horizontal shear force for the

portion of the beam to the left of the concentrated load is

where ¢ is the shear force per unit length along the interface to the left of the

concentrated load, the parameters EA , EI and C are functions of the composite
cross-sectional stiffness and geometry of the beam, z is the distance between the
ce_ntroids of the steel and concrete components, P is the concentrated load, u is the
distance to the load from the left support, L is the length of the simply supported
beam and x is the distance of the cross-section from the left support.

As a result of the investigation carried out by Newmark et al, it was
concluded that the slip is negligible for a properly designed composite beam and,
hence, assuming full-interaction is satisfactory. Based on this conclusion and the
obvious complexity of the partial-interaction equations (Eq. 2.1 for example),
partial-interaction theory was never embraced in the design of new or the
assessment of existing composite beams. It is noted, however, that the
significance of the range of load on the fatigue life of shear connectors was not
realized at the time when partial-interaction theory was first being developed. Up
until the mid 1950s, when the first cyclic tests were carried out (Sinclair 1956),
only static tests were performed and, hence, it was not determined that even a
small change in the longitudinal shear force due to slip would have a significant

effect on the fatigue life of the shear connection as is shown in Chapter 3.
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2.2.1 Development of linear-elastic partial-interaction theory
As it is crucial to the understanding of the models developed in this research
project, the linear-elastic partial-interaction theory that was presented by Johnson

(Johnson 1994) is reworked in detail in this section.

2.2.1.1 Parameters

Figures 2.1 and 2.2 define the basic variables used in the derivation of the model.
The location of the concentrated load P and the design point are given by / and x
respectively in Fig. 2.1 where the origin is defined at the left support. The total
length of the beam is given by L and p is the connector spacing. As shown in Fig.
2.2, the depths of the steel and concrete components are given by ks and h.
respectively, and d; is the distance between the centroid of the steel component

and the centroid of the concrete component.

.[ l : P "‘1 p F‘ S design point

T T TITITITITTITITTITITT

steel-concrete interface —

Figure 2.1: Longitudinal section of theoretical composite beam.

concrete centroid ——\\ <

_ F — .

| i

~ steel-concrete
mterface |
- =
steel /

centroid Y

Figure 2.2: Cross-section of theoretical composite beam.




Literature Review 10

Figure 2.3 shows the forces acting on a small length of the beam dx located
at a design point x from the left support. The steel and concrete components are
separated to show the forces acting along the steel-concrete interface, and the
deformation is greatly exaggerated for clarity. The stress resultants M, F and V
represent the moment, axial and shear force respectively acting on the
components, where the subscripts s and ¢ are used to define the steel and concrete
components respectively. The superscript + is used to denote forces on the right

hand side of the element.

concrete centroid

steel centroid

Figure 2.3: Forces acting on element dx.

The slip s in Fig. 2.3 increases to st along dx and is defined by the

following equation
sT =54+ (ﬁjdx (2.2)

where ds/dx is known as the slip strain. Using the same superscript notation +, the

following terms are defined

M =M, + (%)dx 2.3)
c T dx
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and

M =M + (dM : ]dx (2.4)
dx

The longitudinal shear flow force, or longitudinal shear force per unit length, is
defined as g so that gdx is the longitudinal shear force acting on each component.
The vertical force across the interface is given by rdx and the force acting on each

connector is equal to pq and can be defined as
pq =ks (2.5)

where k is the connector stiffness, assumed to be constant.

From vertical equilibrium of the element in Fig. 2.3

V;’ =V +rdx (2.6)
and
VC+ =V —rdx 2.7

and from longitudinal equilibrium

F=F =F, 2.8)
2.2.1.2 Equilibrium

To eliminate F, the summation of moments about the centroid of the steel
component at x from the left support can be made, resulting in the following

equation

M, =M +Vfdx—qu%—rdx% 2.9)
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As the last term of the right hand side of Eq. 2.9 is of second order, it can be
ignored. Substituting Eqs 2.3 and 2.6 into Eq. 2.9 and rearranging yields the

following expression

M
i4+ﬂ+nh=lﬂx (2.10)
dx 2

Similarly for the concrete component

M

1
—~<+V —rdx=—qgh 2.11
o Tl 54 2.11)

4

By defining the vertical shear at x as V", the following equation is defined
V+V, =V 2.12)
and by substituting Eqs 2.10 and 2.11 into Eq. 2.12, the following is obtained

1 M dM. .
Lo w242 _y 2.13
g5 +h )= (2.13)

As d.=1/2(hs+h;) for symmetrical sections, Eq. 2.13 can be simplified and

rearranged to give

M. dM, .
M e vt —ga (2.14)
dx  dx

2.2.1.3 Elasticity

As any uplift forces are small within the elastic range, and the commonly used
stud shear connectors are designed to resist tensile forces across the interface, it
can be assumed that there is no separation of the steel and concrete components

along the interface, so that the curvatures ¢ in both components are the same. The

modular ratio #n is defined as
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n=—" (2.15)

p=—=—= (2.16)

The longitudinal strain on the concrete side of the interface along A-B in

Fig. 2.3 is given by the following expression where positive is taken as tension

1 nF

Ep ==ho—
AB 2 c¢ EXAL.

(2.17)

where the first term of the right hand side represents the portion of the strain
resulting from the bending of the component and the second term represents the
strain due to the axial compressive force acting on the component. Similarly, the
expression for the longitudinal strain along the interface C-D in Fig. 2.3 is defined

as follows

1 F
Ecp =—3h.\-¢+—E A (2.18)

2.2.1.4 Compatibility
The difference between the longitudinal strain along A-B and C-D in Fig. 2.3,
given by Eqs 2.17 and 2.18 respectively, is called the slip strain ds/dx which can

now be defined as

1 F
+—h@—— 2.19
" Ea, =

—d—s=1h6¢— nF
dx 2 EA,

Simplifying Eq. 2.19 and using the definition of d.=1/2(h;+h.), the expression for

the slip strain becomes
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ds Fn 1
e od, — E( +—) (2.20)

2.2.1.5 The differential equation

Equation 2.16 can be differentiated with respect to x to give

daM .

—=E]I ld (2.21)
dx dx

and

dM, _ E I fiﬁ 2.22)
dx n dx '

that can be substituted into Eq. 2.14 to eliminate M, and M., giving the following

expression
I .
E, (1\. +—i)5d£+ V =4qd, (2.23)
Y n)dx
By defining
I
I,=1+—= 224
n

and substituting Egs 2.5 and 2.24 into Eq. 2.23, the following expression is

obtained after simplification

d¢ _ (ks/p)d, — V" 2.25)
dx E]I, )

Differentiating Eq. 2.20 with respect to x gives
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dzs—i@d _éfi L+_]. 2.26
dx* dx © dx E\A, A, (2:26)
where by defining

Loz, L @27
AO [4 AY ) )

Eq. 2.26 can be simplified by substituting Eqs 2.25 and 2.27, and dF/dx=-q=-ks/p

to give

dx* pE.]I

S0

2 I . d,
d’s__ks (d02+4j-v d, (2.28)

and by defining

Eq. 2.28 becomes

2
. d,
ds ks v %

dx*  pEIA"  E],

(2.29)

(2.30)

Finally, by defining the following parameters

2 k
o =
pE I A’

and

_ d pA’

(2.31)

(2.32)
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Equation 2.30 can be expressed as the following differential equation

2
%xi_ ois=V'ap (233)

A solution to the differential equation given by Eq. 2.33 is
s = K, sinh(ax)+ K, cosh(ox )+ BV (2.34)

where K; and K, are integration constants, and ¢ and /3 are functions of the cross-

section of the composite beam and the stiffness of the shear connection as given
by Egs 2.31 and 2.32 respectively.

As Eq. 2.34 is a function of the shear force in the shear span V', the
distribution of slip along the entire span must be defined using two equations as V'
is different in each shear span. Consequently, four boundary conditions must be
defined in order to solve for the four integration constants. As this part of the
development is the start of the original component of this research project, the

derivation of the mathematical model is continued in Chapter 3.

2.3 OTHER LINEAR-ELASTIC PARTIAL-INTERACTION THEORIES

Not long after the presentation of Newmark, Siess and Viest’s theory in 1951,
other researchers began developing various partial-interaction theories based on
slightly differing assumptions. The most interesting variation did not assume that
the curvature in the steel and concrete components is the same (Adekola 1968),
hence, separation between the components along the interface is permitted by
modeling the axial stiffness, or foundation modulus k,, of the shear connection.
An additional assumption that was made, however, is that the uplift force is
directly proportional to the differential deflection, which means that the axial
stiffness remains linear-elastic. The difficulty with this theory arises from the
necessity of two foundation moduli depending on the orientation of the uplift
force. The foundation modulus for positive uplift, in regions where separation
occurs, can be readily obtained from pull-out tests of shear connectors. However,

in regions of negative uplift, where the concrete bears against the steel along the
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interface, no experimental values exist and furthermore, it is not initially known
over what regions of the beam negative uplift exists.

The fundamental difference between this theory and that developed by
Newmark et al can be illustrated by referring to Fig. 2.3 where a tensile force T,

given by the following equation,

T=k(y,-Y,) (2.35)

must be added to the steel and concrete components along the interface where the
term (y-yc) 1s the differential deflection, or separation, of the components along
the interface. The derivation leads to two differential equations; one fourth order
differential equation relating to the uplift force, and one second order differential
equation relating to the axial force acting on the components. In regions of
negative uplift, not all of the axial force from the steel component is transferred to
the concrete component as the resulting frictional force Fj, acting along the
interface, will resist some of the load acting on the shear connection.
Consequently, the differential equation relating to the axial force has an additional
term, in regions of negative uplift, which accounts for friction and is given by the

following expression

ar

o (2.36)

F,=u

where 4 is the coefficient of friction and d7/dx is the magnitude of the negative
uplift force per unit length.

The solution to the two differential equations is not simple and is treated as
a two-point boundary value problem that is solved using finite differences. The
solution is further complicated by the fact that it is not initially known where
negative uplift occurs, hence, an iterative procedure was adopted. The initial
assumption was that the coefficient of friction is zero to indicate regions of
negative uplift. Subsequent iterations incorporated a suitable coefficient of
friction in the negative uplift regions until convergence was achieved. Singleton

carried out a series of tests in 1985 to determine the coefficient of friction between
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steel and concrete under cyclic loading, which is briefly summarized in Section
2.4.

Adekola janalyzed a simply supported composite beam with a single
concentrated load and in which it was assumed that the coefficient of friction was
zero, hence, the effect of friction was not being considered. A comparison
between the partial-interaction stresses of the bottom flange of the steel
component and the full-interaction stresses of the bottom flange was made. It was
found that even for high degrees of interaction, in fact, higher than that expected
in practice, the partial-interaction bottom flange stresses were at least 20% higher
than the full-interaction stresses. The implication of this being that current full-
interaction analyses are significantly overestimating the fatigue life of the steel
component.

More recently, another research group (Robinson and Naraine 1987)
solved the theoretical model developed by Adekola for the case of a simply
supported beam with a single concentrated load and performed additional
analyses. Included in the paper, however, was an interesting comparison with the
theory developed by Newmark et al where it was assumed that there is no
separation of the components. The conclusion that was made was that the
difference in the shear force distribution along the interface is negligible
regardless of which theory is used. It could be said, therefore, that it would be
wiser to adopt the theory developed by Newmark et al, which is simpler because it
assumes equal curvature and the resulting loss of accuracy is negligible. A
significant observation was made, however, which could not have been predicted
by a theory assuming equal curvatures. It was found that the moment induced in
the slab in the vicinity of a concentrated load is considerably larger than that
predicted by the equal curvature theory due to the high negative uplift forces in the
area. The high negative uplift forces induce large vertical shear forces in the
concrete slab. It was stated that the concrete deck resists approximately 77% of
the vertical shear under a concentrated load. Such a high proportion of shear and
correspondingly large moment in the concrete deck may result in tensile stresses
near the bottom of the deck that may not have been accounted for in the design

and, hence, could result in premature cracking of the concrete.
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2.4 Cyclic coefficient of friction

Sméletbrﬂ investigated the variation of the coefficient of friction between steel and
;6ncrete under cyclic loading experimentally at the National University of Ireland
(Singleton 1985). The tests consisted of applying up to 4 million cyclic
displacements to a steel plate sandwiched between two blocks of concrete. The
normal compressive force was applied through large springs.

It was found that the coefficient of friction fluctuated during the tests,
consisting of a repetitive series of peaks and troughs ranging from 0.70 to 0.95.
An initial increase was due to the wearing away of the weaker surface of the
concrete block exposing the coarse, harder concrete. Additional cycles gradually
wears away and polishes the surface causing a reduction in the coefficient of
friction, until the coarse aggregate is once again exposed resulting in another

increase in the coefficient of friction.

2.5 FATIGUE BEHAVIOR OF COMPOSITE BEAMS WITH STUD
SHEAR CONNECTORS

The fatigue behavior of composite beams with stud shear connectors is unusual

because the mechanical properties of the connectors are continually changing

under the application of cyclic loads. This section describes the changes in the

properties of stud shear connectors that occur due to cyclic loading and presents

mathematical models that have been developed to predict the remaining strength

and endurance of composite beams.

2.5.1 Fatigue behavior of stud shear connectors

—

@qclaW carried out one of the earliest fatigue tests performed on stud shear
connectors at the University of Tllinois (Sinclair 1956). The tests consisted of a %
inch (19 mm) stud, welded onto a steel plate, which was cyclically loaded to
failure under varying stress ranges so that an S-N curve could be produced. The
studs were loaded directly, as they were not encased in concrete, which is not a
realistic approximation as the interaction between the stud and surrounding
concrete is not present. Subsequent fatigue tests used more realistic and complex

specimens where the studs were encased in concrete so that they were loaded

indirectly, examples of which are shown in Section 2.6.
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A typical example of the fatigue failure of a stud shear connector is shown
in Fig. 2.4 where the crack front is the horizontal straight line within the shank of
the stud and located axially at the interface between the shank and the weld collar.
The crack front started at the lower end of the shank immediately cyclic loads
were applied and gradually progressed up the shank at a fairly uniform rate as
shown by the light zone within the area of the shank (Oehlers and Bradford 1995).
The crack continued to propagate until the remaining or residual strength was
equal to the peak uni-directional load after which fracture occurred as can be seen
by the darker area within the shank above the crack front. The residual strength
just prior to fracture, as a proportion of the initial static strength, is roughly equal
to the area of the dark fracture zone, as a proportion of the area of the shank of the

stud shear connector.

Figure 2.4: Fatigue failure of a stud shear connector.

An oblique view of a stud shear connector after fatigue failure is shown in
Fig. 2.5. In this case, crack propagation can be seen to have occurred at the
flange/weld-collar interface, that has the same effect as at the weld-collar/shank
interface in Fig. 2.4, and also the érack propagation has occurred well above the
weld collar (Oehlers and Bradford 1995). The latter fatigue failure zone that
commonly occurs in practice is extremely important because it allows the stud

shear connector to fail in a ductile manner once fracture occurs (Oehlers 1990a).
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Figure 2.5: Fatigue deformation of a stud shear connector.

2.5.2 Cyclic load-slip characteristics of stud shear connectors

Tests have shown (Oehlers and Coughlan 1986) that the cyclic behavior of stud
shear connectors can be represented by the load-slip characteristics shown in Fig.
2.6. The general shape of the load-slip curve, however, was already determined
experimentally by 1959 from tests carried out at Lehigh University (Thurlimann
1959), however, no attempt to quantify the curve was made for some time. The

following sections quantify the load-slip curve shown in Fig. 2.6.
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Figure 2.6: Cyclic load-slip behavior of stud shear connectors.
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On the initial application up to the peak of the cyclic load, the connector
follows the path O-A of initial static stiffness K, given by the following equation
(Oehlers and Bradford 1995)

P
Kl‘l‘ = =
* " d,(0.16-0.0017f,)

(2.37)

where P,, is the static strength prior to cyclic loading, ds, is the diameter of the
shank of the stud, f. is the concrete cylinder compressive strength, and the units
are in N and mm. The first group to truly identify the parameters governing the
static strength of stud shear connectors in standard push-out specimens (Ollgaard,
Slutter and Fisher 1971) suggested the following equation

(P, ) s =054, F.E, (2.38)

where Ay, is the cross-sectional area of the shank of the stud shear connector, E, is
the stiffness of the concrete and the units are again in N and mm. However, as the
studs used by Oligaard et al all had the same tensile strength fu, and it was
assumed that the stiffness of the steel E; was constant, these parameters were not
included in their equation (Eq. 2.38). Statistical analyses (Oehlers and Johnson
1987), however, modified Eq. 2.38 to include f, and E; to give the following

relationship

0.40
(B ) =[5-3—£ w1 (—Eﬁ) | (2.39)
n E,
where n represents the number of studs that are expected to fail as a group. If the
mean static strength is required, n should be taken as oo. As it was suggested
(Oehlers and Bradford 1995) that the compressive force induced across the steel-
concrete interface of push-out specimens increased the apparent strength of the

stud shear connectors relative to those in a composite beam by about 20%, the
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following equation was given to predict the static strength of the shear connection

in a composite beam.

E

0.40
(P ean = (4-3—% ﬂf"‘s"ff‘”[%] (2.40)

If the load is then removed, path A-B of cyclic stiffness K., = 2.8Ky
(Oehlers and Coughlan 1986) will be followed in Fig. 2.6, at a permanent set O-B.
If a reverse cyclic load is being applied, the connector will follow the path B-O-C-
D-0O. On further loading, the connector follows the path O-E-F where the cyclic
load has induced a further increase of B-E in the permanent set which will be
referred to as the incremental set. If an overload is now applied that is sufficient
to fracture the connector, the connector will follow the path F-G-H-I where failure
will occur at the residual strength P,, which is less than the static strength of the
shear connection prior to cyclic loads Py, and ultimate slip (Oehlers and Coughlan

1986) given by the following equation

s, =(0.48-0.0042 1, )d,, (2.41)

where the units are N and mm.

2.5.2.1 Permanent set

Because the shear connectors in a composite beam are loaded indirectly (Toprac
1965), that is the shear force on the connector depends on its stiffness, the shear
force on a connector in a composite beam depends on the permanent set. For
example, it has been shown that: overloads that are applied to the beam reduce the
cyclic range and, hence, increase the residual endurance and residual strength
(Slutter and Fisher 1966); that the permanent set induces a fatigue limit in the
beam below which fatigue damage does not occur (Oehlers and Singleton 1986);
and that composite beams made using propped construction have a smaller
endurance than those made using unpropped construction (Oehlers and Bradford

1995, Slutter and Fisher 1966, and Oehlers and Singleton 1986).
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2.5.2.2 Incremental set

The incremental set in Fig. 2.6 is a loss of energy per cycle due to crack
propagation within the stud and powdering of the concrete bearing against the stud
(Oehlers and Foley 1985). This loss of energy has been found to occur as soon as
cyclic loads are applied to stud shear connections as was first shown by
Thurlimann in plots of number of cycles N against slip s (Thurlimann 1959)
although no attempts were made to quantify this observation. Experimental data
from other researchers also showed the existence of incremental and permanent
set (Toprac 1965 and Roderick and Ansourian 1976), however, it was not until
Hallam that one of the first attempts to quantify incremental set was made (Hallam
1976). Hallam first determined the slope of the s-N plot, which is referred to as
ds/dN, that was found to be constant for most of the fatigue life. Hallam then
plotted the load range as a percent of the static strength against ds/dN on a semi-

logarithmic scale to give the following expression

log(j—;J=—10.00+O.1299[£—x100} (2.42)
where R is the range of load defined as the difference between the maximum and
minimum load of a cycle and the slip is measured in mm.

Subsequent research carried out by Oehlers and Foley, using an energy
release per cycle approach developed another relationship for incremental set
(Oehlers and Foley 1985), which is similar in form to that proposed by Hallam,

and is given by the following equation

4.5
£=1.7><10‘5 .3 (2.43)
dN P

~t

where the units are again in N and mm.
As a consequence, the residual strength of stud shear connectors after
cyclic loading P, is always less than their static strength P prior to cyclic loading

(Oehlers 1990c). Furthermore, this incremental set allows the connectors to fail as
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group as it allows the stronger connectors to attract more load than the weaker
connectors (Toprac 1965, and Mainstone and Menzies 1967), hence, design or
assessment can be based on the characteristic strength or endurance of the mean of

a group as opposed to the characteristic property of an individual connector

(Oehlers and Johnson 1987).

2.5.3 General forms for representing the fatigue damage

It was shown in the previous section that the loss of energy associated with the
incremental set represents a loss of strength of the stud shear connection. Tests
have shown (Oehlers 1990c, and Oehlers and Foley 1985) that this loss of strength
can be assumed to be linear as shown by line A in Fig. 2.7 which is referred to as
the crack propagation approach (Oehlers and Bradford 1995, and Johnson and
Oehlers 1996) where N is the number of cycles of a load that have been applied
and E is the endurance. However, current design techniques assume that there is
no reduction in strength whilst N < E as shown by line B in Fig. 2.7 and this

technique will be referred to as the standard approach.

L standard

approach

-

crack propagation
approach

0 N/E L

Figure 2.7: Variation of the residual strength.

2.5.3.1 Crack propagation approach
The variation in the residual strength P, for the crack propagation approach in Fig.
2.7 is given by the following accumulated damage law (Oehlers and Bradford

1995, and Johnson and Oehlers 1996)
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=N P
Mg g (2.44)
w1 E

ko

Eod

st
where there are z magnitudes of the cyclic ranges R.

2.5.3.1.1 Asymptotic endurances

As the number of cycles increase, the strength of the shear connection reduces as
defined by the failure envelope (Oehlers and Bradford 1995) shown in Fig. 2.8 for
a given range R. Failure will occur when either the peak load of a cycle Ppay is
equal to the residual strength after N cycles, or when an overload occurs at N

cycles and the overload exceeds the residual strength.

Ps!
Shear
load
P
R .
i
N Neyo E,
No. of cycles

Figure 2.8: Residual strength failure envelope.

So, it becomes evident that the experimentally determined number of
cycles to cause failure N.y,, for a given range, is inherently related to the
magnitude of the peak load. To eliminate this effect, the asymptotic endurance
can be calculated from the following equation (Oehlers and Bradford 1995) that

was derived from a statistical analysis of fatigue data
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3.12-212 R
E, =10( 4 ][ﬁj (2.45)

S

where E, is the asymptotic endurance of a group of n connectors at two standard

deviations.

2.5.3.2 Standard approach

The standard approach endurance is often assumed to depend on R/P;; or on R/As.
Due to variations between the restraints on push specimens and the parameters
assumed to affect the fatigue endurance, several endurance equations have been
proposed (Oehlers 1990b), such as the following mean endurance equation

(Slutter and Fisher 1966)

: -5.3
E =8.08x10‘5(74@-) (2.46)

mean
sh

where E,.., is the mean endurance and the units are in N and mm.

However, it has long been suggested (Hallam 1976), and statistical
analyses (Oehlers 1990b) have confirmed, that the R/P,, parameter gives the least
scatter of results, and from these statistical analyses it was found that the

characteristic endurance can be given by

15.9-22 !
E, = 10( ﬁ)(—R—J (2.47)

Ci

227272 54
E, = 10( Vn )(ﬁ] (2.48)

The standard approach accumulated damage law is given by
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k=ZNk
ZE— <1 (2.49)
k=1"k

which is essentially Miner’s cumulative damage rule (Miner 1945) that was first
verified in 1976 as a suitable method of predicting the fatigue life of stud shear

connectors under variable amplitude repeated loading (Hallam 1976).

2.5.4 Fatigue equations for design and assessment

General fatigue equations have been developed (Oehlers and Bradford 1995, and
Ochlers, Gosh and Wahab 1995) for both the standard approach and for the crack
propagation approach of the general forms of the fatigue damage described

previously.

2.5.4.1 Generic fatigue equation
The fatigue material properties of Eqs. 2.44 to 2.49 can be represented by

the following generic forms

N

—=A 2.50
X (2:50)

where A is the residual strength constant and

E= c(_)_m (2.51)

where C is a constant, m is the exponent in the residual strength equation and X
can be any parameter such as Pg,.

The types of vehicles that traverse a bridge throughout its life are
numerous, and it is necessary to calculate the magnitude and frequency of the
range of cyclic forces applied to the shear connection in order to determine the
fatigue damage caused by each vehicle. In practice, a Standard Fatigue Vehicle
(SFV) is used as it is not feasible to determine the stress range caused by each

vehicle expected to traverse a bridge. A typical fatigue vehicle is shown in Fig.
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2.9 (BS5400 1980) and the variation in the fatigue vehicle weights is represented
as a proportion of the weight of the SFV, W, as shown in the second column of
Table 2.1 known as the load spectrum. The probability of occurrence of each
fatigue vehicle, B, is also given in Table 2.1 where the summation of the

probabilities must equal unity.

80 kN lsom 80 kN 80 kN

. 1800 6000 mm 1800 |

Figure 2.9: Standard Fatigue Vehicle (BS5400 1980).

Table 2.1: Load spectrum.

Fatigue Weight Probability BW™
Vehicle W) B)
1 Wi B, B,W,"
2 W, B B,W,"
b7 W, B, B,W,™
=10 Li=ZBW"

The distribution of force in a shear flow influence line diagram, at a given
design point along the steel-concrete interface, for the traversal of a particular
fatigue vehicle must be converted to a set of equivalent cyclic forces that produce
the same fatigue damage. One method of doing this is known as the reservoir
method of cyclic counting (BS5400 1980), which assumes that the influence line
diagram is the cross-section of a reservoir that is to be emptied from the lowest
point.

The cross-section of the reservoir is obtained by drawing two shear flow
influence line diagrams adjacent to each other as shown in Fig 2.10, where the
distance from the top of the reservoir to the lowest point, denoted by R;, is one
equivalent cyclic range. Any other remaining pockets must be drained from their

lowest points until there are no more pockets remaining. Each of the remaining
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pockets that are drained represents an additional equivalent cyclic range. For the

example shown in Fig. 2.10, there is only one more cyclic range, R».

First Occurrence | Second Occurrence

Shear flow force influence line diagram

Figure 2.10: Reservoir method.
The equivalent cyclic forces are recorded in tabular form, known as the
force spectrum shown in Table 2.2. The frequency f is the number of times the

range R appears in the influence line diagram for the design point.

Table 2.2: Force spectrum.

Range Range Frequency fR™
number (R) ®
1 R, f fiR"
2 R, fr f2R,™
Y R, f, f,R,"
Fr= ZfR™

The magnitude of the range for a given fatigue vehicle is therefore equal to

W,R, where substitution into Eq. 2.51 gives
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R -m
E, = C(W—kﬂ (2.52)
X /

and the number of times the range will occur during the life of the bridge is

wo £} orew e
,\J\f'\

N,=BT,f, (2.53)

where T} is the total number of fatigue vehicle traversals. Substituting Eqs 2.52

and 2.53 into Eq. 2.50 and rearranging gives the following expression

S BT, £, )W,R,

k=1 = A 2.54
X" (2.54)

Defining the following two terms

k=y
swr C (2.55)
=1

(Lf )k =

k

where L, is called the load factor and is given by the sum of the last column inthe -

load spectrum (Table 2.1), and

k=y

LR (2.56)
=]

(Ff)k =

k

where F} is called the force factor and is given by the sum of the last column in the
force spectrum (Table 2.2). Equations 2.55 and 2.56 can be substituted into Eq.
2.54 and rearranged to give the following generic fatigue equation (Ochlers 1992
-and Oehlers and Bradford 1995)

xmo__AC 2.57)

=y
(tF,L,)

bt

k=1
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where there are y fatigue zones and a fatigue zone is defined as a period of Ty

fatigue vehicle traversals where both Fyand Ly are constant.

2.5.4.2 Crack propagation design equation for stud shear connectors
Using the crack propagation fatigue material properties in Egs. 2.44 and 2.45, the
generic fatigue equation (Eq. 2.57) can be written in the following form (Oehlers

and Bradford 1995)

1
51
1318 1—&

O
= (2.58)
O =| T TG L E LG )+t T ) ),

where Q, is the static shear flow strength required, such as the strength required to
resist the maximum overload and Q. is the shear flow strength when the structure
is first built.

The application of the crack propagation approach to design is illustrated
in Fig. 2.11 where Q, is the known static strength requirement and Q. can be
derived from Eq. 2.58 and is a function of Q,. The increase in strength at a design
point in the beam (Qyr - @) is the additional static strength required to cope with
the reduction in strength due to fatigue damage and occurs along the length of the

beam.

Figure 2.11: Fatigue analysis procedures.
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The standard approach is also illustrated in Fig. 2.11 where separate calculations
are used to derive the static requirement Q, and the endurance requirement O
from which the upper bound of the two separate approaches are used in the design.
It can be seen that the crack propagation approach is a fundamentally new

approach in design.

2.5.4.3 Crack propagation assessment equation for stud shear
connectors
Equation 2.58 can be written in the following form for the assessment of the

residual strength of the stud shear connectors Qs of an existing structure

k=y
.\.—[5-1 o (TFfo )k

=0,|1- = 2.59
Qre.\ Q.\f 1318 ( )

where Qy is the shear flow strength of the stud shear connectors prior to fatigue
loading. Equation 2.59 can be rearranged in the following form in order to

determine the residual endurance 7, when a residual strength O, is required.

k=y~1
1318Q_f,"[1——QQ—’L"]— (tF,L,),
T. — st k=1
¥ (Fj.Lf )y

(2.60)

2.5.5 Fatigue behavior of composite beams
Computer simulations of composite beams that incorporate the stud shear
connector load-slip characteristics in Fig. 2.6 have been used to illustrate the

general fatigue behavior of composite beams.

2.5.5.1 Longitudinally stationary loads
The results (Oehlers and Singleton 1986) from a computer simulation of a simply
supported composite beam with a uniform distribution of stud shear connectors

that is subjected to cyclic loads at the mid-span are shown in Fig. 2.12. The line
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marked A is the distribution of the shear flow forces along the beam when the
beam is first loaded so that the connectors are still following the linear partial-
interaction path such as O-A-G in Fig. 2.6. The line marked B is the distribution
just prior to fatigue failure where the connectors are following path O-B-A in Fig.
2.6 and the difference between lines A and B in Fig. 2.12 is caused by the gradual
reduction in stiffness due to the incremental set. It can be seen that the
incremental set has the beneficial effects of both reducing the shear flow forces, so
that both the residual strength and endurance will be greater than originally
anticipated, and in redistributing them more uniformly, so that the connectors can

fail as a group close to their mean properties.

linear partial :
interaction !

B I
maximum !
shear flow just prior to fatigue :

force failure :
support mid-span

Figure 2.12: Redistribution of shear flow through incremental set.

2.5.5.2 Longitudinally moving loads

The effect of longitudinally moving loads (Oehlers and Carroll 1987) on the
fatigue behavior of a composite beam is illustrated in Fig. 2.13 where g* is the
shear flow force. The envelope marked A was derived from a full-interaction
analysis and would be used in most standard procedures for fatigue design and,
hence, will be used as the benchmark. The envelope marked B was derived from
a linear partial-interaction analysis. It can be seen that partial-interaction can
considerably reduce the shear flow forces and, hence, considerably increase the
residual endurance and the residual strength. However, the reduction in the shear
flow due to partial-interaction depends on the span of the beam; the reduction
decreases as the span increases. The envelope marked C is a partial-interaction

analysis that allows for incremental set and it can be seen that the incremental set
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redistributes the shear load. It is also worth noting that partial-interaction reduces
the region of the beam that is subjected to reverse cyclic loading so that there is a

tendency for the connectors to be loaded uni-directionally.

full-interaction

incremental set

linear partial | T~ Te-X
interaction

Figure 2.13: Shear flow envelopes induced by longitudinally moving loads.

2.5.6 Beneficial effects of interface friction
The beneficial effect of interface friction is illustrated in Fig. 2.14 for the case of a
single point load moving across a composite beam (Oehlers and Bradford 1995,
and Oehlers and Bradford 1999). The shear flow force envelope is marked A.
The shear flow frictional resistance is marked B and tends to infinity at the
supports. The hatched region is the shear flow force resisted by the stud shear
connectors. It can be seen that friction reduces both the range and peak of the
shear flow force resisted by the stud shear connectors and, hence, both increases
the residual endurance and residual strength above that anticipated in the original
design. Furthermore, the beneficial effect of friction is greatest at the supports.
Procedures for incorporating the beneficial effect of friction into
assessment equations such as Eqs 2.59 and 2.60 have been determined (Oehlers

and Bradford 1995) and have the following form

_VAy Vu
I L

ne Sp

q (2.61)
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where VAy/I,. is the well known equation for the shear flow force, and the term
Vi/Ly, is the shear flow force resisted by friction in which V' is the shear force
acting at the design point, Ly, is the length of the shear span that includes the
design point, x is the coefficient of friction at the interface between the concrete
slab and steel beam of the composite beam, A, is the cross-sectional area of the
concrete element, y is the distance between the centroid of the concrete element
and the centroid of the transformed concrete section of the composite beam and I,

is the second moment of area of the transformed concrete section.

a) longitudinally moving point load

—1

0)
o i

b) shear flow envelopes
1

L

shear flow force on stud
shear connectors

shear flow force

shear flow frictional resistance

sl e S AR P e

B

Figure 2.14: Beneficial effect of friction.

2.6 REVERSE-CYCLIC TESTS ON STUD SHEAR CONNECTORS

Numerous tests by researchers worldwide have investigated the fatigue behavior
of stud shear connectors experimentally (Slutter and Fisher 1966, Mainstone and
Menzies 1967, Oehlers and Foley 1985, and Gattesco and Giuriani 1996). The
vast majority of the classical push-out tests subjected the specimens to either

monotonically increasing static loads or uni-directional fatigue loads.
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It is known, however, that the shear connection in composite beams is
subjected to reverse-cycle loading for at least part of the fatigue life, if not all of it,
as can be seen in Fig. 2.13. Even though the total range tends towards a uni-
directional one in simply supported composite beams due to incremental set
(Oehlers and Bradford 1995), the connectors within the mid-span region of the
beam are subjected to reverse-cyclic loads over a large portion of their fatigue
lives. Unfortunately, very little reverse-cycle fatigue tests on stud shear
connectors have been undertaken, furthermore, little analysis of the results was

made.

2.6.1 Early reverse-cycle tests

The initial reverse-cycle tests (Slutter and Fisher 1966, and Mainstone and
Menzies 1967) formed only a small part of extensive experimental programmes.
The specimens used in the reverse-cycle tests were essentially the same as those of
the uni-directional tests with slight variations to permit application of the load in
the reverse, or opposite, direction. Details of these early reverse-cycle tests are

given in the following two sections.

2.6.1.1 Slutter and Fisher

The experimental investigation was to determine the fatigue strength of stud shear
connectors and channel connectors in order to optimize their use in composite
highway bridges. The tests were performed at Lehigh University, Pennsylvania,
where 35 fatigue tests were carried out on specimens containing % inch (19 mm)
stud shear connectors, nine of which were reverse-cycle, and 9 fatigue tests used
7/8 inch (22 mm) stud shear connectors, three of which were reverse-cycle.

Each of the specimens had four studs welded onto the top flange of a
standard I-section and embedded in reinforced concrete as shown in Fig. 2.15.
These tests were unusual in the sense that the load was applied through the edge of
the concrete slab, where traditional push-out tests were loaded through the steel
section. The load was simply applied to both sides of the concrete slab for the

reverse-cycle tests and load cycles were applied at a frequency of 4 Hz.
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Figure 2.15: Experimental set-up (Slutter and Fisher 1966).

The results for the relevant tests are summarized in Table 2.3 where the

maximum load is the peak load of the load cycle, and the range is the difference

between the maximum and minimum loads of the cycle.

Table 2.3: Summary of results (Slutter and Fisher 1966).

Specimen | Load Stud Maximum Range No. of cycles
type' | Diameter Load [kN] to failure
[mm] [kN] (x10%)
alA R 19 78.8 125.8 1587.4
blA R 19 78.8 125.8 1975.2
clA R 19 78.8 125.8 2557.5
a2A R 19 110.4 157.4 104.6
b2A R 19 110.4 157.4 104.8
c2A R 19 110.4 157.4 171.1
a3B U 19 141.5 125.8 139.4
b3B U 19 141.5 125.8 114.7
c3B U 19 141.5 125.8 199.5
a4B U 19 173.1 157.4 41.5
b4B U 19 173.1 157.4 50.7
c4B U 19 173.1 157.4 58.7
elG R 22 106.8 170.9 1056.4
e2G R P2 150.0 214.0 218.6
e3H U 22 192.2 170.9 112.5
e4H U 22 235.4 214.0 33.0

1 U - uni-directional cyclic loading
R - reverse-cyclic loading

All of the specimens failed in fatigue where cracking initiated at the weld

and propagated through the flange of the steel section. However, in cases where

the weld penetration was not complete, the fatigue crack propagated through the
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weld. The results were plotted on an S,-N curve and expressed by the following

mathematical model

S =AN? (2.62)

where A and B are regression coefficients and S, is the stress range. However, as
it was realized that for the same total range, the fatigue life of a shear connection
subjected to reverse-cyclic loading was longer than the fatigue life of a connection
under uni-directional loading, the reverse-cycle tests were not included in the
analysis. Furthermore, as the fatigue life prediction for reverse-cycle loading
would be conservative when using the relationships from uni-directional tests, no

further investigations or analyses were carried out on reverse-cycle tests.

2.6.1.2 Mainstone and Menzies

A series of 83 push-out tests were carried out at the Building Research Station
(Mainstone and Menzies1967) in parallel with the drafting of the then new British
Code (CP117: Part 2 1967) in order to provide additional data with regards to the
design of stud shear connectors. The tests were carried out on % inch (19 mm)
stud shear connectors, channel connectors and hoop connectors, and the loading
rate varied from 0.25 Hz to 4 Hz depending on the anticipated length of the
fatigue life.

Eleven of the specimens containing the stud shear connectors, each of
which contained four studs, were tested statically, and of the 23 fatigue tests,
seven of them were reverse-cycle tests. A traditional type of push-out specimen
was used in these tests where the load was applied through the steel section as
shown in Fig. 2.16. A set of four springs, where one end of the spring was
fastened to the steel section and the other end to the concrete block, were
tensioned prior to the reverse-cycle tests in order to induce the force in the

opposite direction.
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Figure 2.16: Experimental set-up (Mainstone and Menzies 1967).

Based on the results of nine static tests, the average static strength of the

specimens was found to be 427 kN. The results of the relevant fatigue tests are

given in Table 2.4.

Table 2.4: Summary of results (Mainstone and Menzies 1967).

Specimen | Load Maximum Range No. of cycles to
type' | Load [KN] [KN] failure (x10%)
S10 U 267.2 133.6 1700.0
S12 U 298.8 149.6 679.0
S13 R 79.6 159.6 630.0
S14 R 99.6 199.2 200.0
S15 R 49.6 159.6 481.0
S17 R 69.6 139.6 2200.0
S18 R 109.6 219.2 101.0
S20 U 328.8 165.6 669.0
S21 R 139.6 278.8 21.0
S23 8] 338.8 84.8 657.0
S24 U 348.8 87.2 9.2
S25 U 368.8 92.0 13.3
S27 U 348.8 174.4 8.97
S28 U 348.8 174.4 6.0
S30 U 348.8 174.4 13.1
S31 U 338.8 169.2 8.6
S32 8) 368.8 92.0 165.0
S33 U 394.8 89.6 106.0
S34 R 129.6 243.6 16.5

1 U - uni-directional cyclic loading
R - reverse-cyclic loading
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The goal of the tests was to establish relationships between the maximum
load and the fatigue life of the shear connection at different minimum to
maximum load ratios. Although it was again evident that the fatigue life of stud
shear connectors with the same total range is longer under reverse-cyclic loading
compared to the fatigue life of connectors under uni-directional loading, no
additional comparison or analysis was suggested.

An additional feature that was monitored in this investigation was the slip,
and it was plotted against the number of cycles elapsed as a percent of the
estimated fatigue life of the connectors. It was shown that for the uni-directional
specimens, the rate of increase in slip per cycle, ds/dN, remains constant until
approximately 20% of the fatigue life remains at which time it increases rapidly.
A similar observation was made for the reverse-cycle specimens. This is
significant as it indicates that if the slip was monitored on an existing bridge, the

remaining life of the shear connection could be predicted.

2.6.2 Recent reverse-cycle tests

Up until recently, there appears to have been little, if any, research carried out on
the reverse-cycle behavior of stud shear connectors. This is most probably
because it is felt that it is not necessary to refine the understanding of reverse-
cycle loading as the results are conservative when compared to uni-directional
cyclic loading with the same total range.

It was realized, however, that detailed experimental results are required to
more accurately carry out numerical analyses and refine computer simulations of
composite beams subjected to cyclic loading (Gattesco and Giuriani 1996). In
addition, it was also stated (Gattesco, Giuriani and Gubana 1997) that for long
span composite beams, if the connection is not stiff enough, the slip may be in
excess of approximately 1 mm which would load the shear connectors beyond the
linear-elastic range while the rest of the structure remains linear-elastic. As a
result, a force in the opposite direction occurs as the loads are removed and the
beam returns to its original configuration due to the inelastic unloading
deformations of the connectors.

A test specimen was designed, which is suitable for static, uni-directional

cyclic and reverse-cyclic loading.  The specimen is considerably more
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sophisticated than the classical push-test specimen as it was designed to more
accurately simulate the stress conditions surrounding a stud shear connector in a
composite beam. A pilot investigation consisting of four tests; two static tests and
two cyclic tests (Gattesco and Giuriani 1996), was performed where the viability
of the specimen was confirmed. The cyclic tests were of the high-amplitude, low-
cycle type such that failure occurs after a relatively small number of cycles. The
cyclic load was applied in blocks of increasing total range by both increasing
maximum load and decreasing the minimum load, where a new block was applied
after the incremental set of the previous block settled to a constant rate. As a
result of the large total range and high peak load, failure occurred after only 1223
and 625 cycles in the two cyclic tests.

Due to the small number of tests, the conclusions (Gattesco and Giuriani
1996) could only be qualitative, however, an interesting observation was made in
that the increment of slip becomes very nearly constant after the first few initial
cycles which implies that there is a progressive accumulation of damage and no
shakedown. The fact that the damage is progressive is a key point which was first
noted in the 1960s (Toprac 1965), however, it is still generally assumed that there
is no reduction in strength and stiffness of the shear connection until failure, as
shown previously in Fig. 2.7.

A further eight tests were performed (Gattesco, Giuriani and Gubana 1997)
which, in addition to reversal of the shear load, looked into the reduction in the
range as the number of cycles increases due to the redistribution of the
longitudinal shear forces along the length of the beam. The research methodology
adopted was a unique one in that a strain-life approach was used, where the
maximum slip is kept constant, opposed to the load-life approach typically used
where the range is kept constant. This approach was taken because the slip of the
shear connection in a structure is governed by the global behavior and, hence,
tends to remain constant and the range reduces as a result of the redistribution of
the shear load. The maximum slip was varied in all of the tests and it was
determined that for slips of 1 mm, which can occur in long composite beams, the
fatigue life can be less than ten thousand cycles.

Further experimental work is needed using the strain-life approach as the

outcome would be useful by improving future computer simulations which may



Literature Review 43

lead to simplified mathematical models that can account for this type of inelastic

behavior.

2.7 FINITE ELEMENT FOMULATION
This section briefly describes the details of the finite element program (Cheung
and Yeo 1975) adopted for the computer simulations forming part of this research

work.

2.7.1 Finite element selection

The program uses standard four-noded isoparametric plane stress elements to
model the steel and concrete components of the composite beam, which means
that the same shape functions are used to define both the geometry and
displacement of the elements. There are two orthogonal translational degrees of
freedom per node as shown in Fig. 2.17a. An orthogonal set of springs, shown in
Fig. 2.17b, is used to model the stiffness of the shear connection along the steel-

concrete interface.

V3
T v

4 -
U3
u u
] p
v
a) four-noded element ' b) orthogonal spring element

Figure 2.17: Finite elements.

The springs are connected to each corresponding concrete element node
and steel element node across the interface as shown in Fig. 2.18, which illustrates
a portion of a typical finite element mesh used in the simulations. The vertical
spring models the stiffness of the connectors in the direction normal to the
interface, while the horizontal spring models the longitudinal shear stiffness of the

connectors. As the model of the non-linear behavior of the connection stiffness
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forms an original development of this research project, the details are given in

Chapter 4.

Concrete Deck
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Z =
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\

Figure 2.18: Typical finite element mesh.

Steel Beam

Proof that the developed finite element program gives realistic results is
shown in Chapter 3. Computer simulations are compared with theoretical partial-

interaction analyses and very good correlation is obtained.

2.7.2 Component stiffnesses

As it is assumed that the steel and concrete components remain linear-elastic when
subjected to fatigue loading, the stiffness of the steel and concrete remains
constant throughout the analysis procedure. The stiffness of the steel E; is user

defined and is typically equal to 200000 MPa. The stiffness of the concrete is

calculated from the following equation
E, =50004/f, (2.63)

where f. is defined by the user in MPa.
The longitudinal shear stiffness of the connectors is calculated using Eq.
2.37 where the parameters required are input by the user. The iterative secant

stiffness approach adopted when the non-linear behavior of the shear connection is

modeled is discussed in Chapter 4.
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2.7.3 Stresses and strains

The following vector defines the three independent strains

=t & 7.1 (2.64)
where the strains are found from displacements { 8} by

{e}=IBle} (2.65)
where [B] is the strain matrix, which is simply the partial derivatives of the shape

functions.

The following vector defines the stresses

fol=fo. o, 71" (2.66)
where stresses are determined from the strains by the following expression
fo}=[DJe} 267

where [D] is the material stiffness matrix, which for plane stress elements is

defined as
N 1 v 0
[ ]=1 v 1 0 (2.68)
-V .
2

where v is Poisson’s ratio, which is user defined but is usually taken as 0.15 for

concrete and 0.3 for steel.

2.7.4 Element stiffness matrix

The element stiffness matrix for the spring elements is defined as
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E, 0 -E, O
v | © 1x10° 0  -1x10" 2.69
v —E.vp 0 Esp 0 ‘ )

0 -—-1x10" 0 1x10"

where E,, is the horizontal shear stiffness, which is initially equal to K, given by
Eq. 2.37 but varies when a non-linear analysis is performed as, described in
Chapter 4. The vertical stiffness is assumed to constant as well and is fixed at the
relative large value of 1 X 10'% in order to conform with the linear-elastic partial-
interaction assumption that there is no separation between the steel and concrete
components.

The element stiffness matrix for the four-noded element is derived from

the following integration over the area of the element
k,=t[[B]"[D]B]d(area) (2.70)

where ¢ is the thickness of the element that is user defined and is obtained from the
cross-sectional geometry of the composite beam.
As each of the four-noded and spring element stiffness matrices are

determined, they are assembled into the global stiffness matrix [K].

2.7.5 Loading

The current program permits only concentrated loads, which are used to represent
the vehicle axle loads traversing the beam longitudinally. As these loads may only
be applied at nodal points, they are assembled directly into the global load vector
(R} and are used to calculate the displacements {J} given by the following

relationship
{R}=[xKe} 2.71)
Axle loads are applied to any number of the top row of nodes along the

concrete component and can simulate a moving vehicle by moving the loads to the

adjacent node (on the right) after each analysis is completed. Dead loads are
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calculated by the user prior to the simulation and are applied to the top node of

each set of spring elements along the length of the beam.

2.7.6 Solution Algorithm

A Bandsolver approach is used to solve the system of finite element equations and
integration over the area of the four-noded element is performed by the use of the
2 X 2 gaussian quadrature rule. As in all finite element programs, the user must
ensure that the structure is adequately restrained to ensure that rigid body motion

is prevented.



Chapter 3

Linear-elastic partial-interaction

theory

3.1 INTRODUCTION
Slip occurs because the connectors have a finite stiffness, hence, the connectors
must deform before they can begin to carry load, this is known as partial-
interaction. As a result, the total range of load resisted by the shear connectors Rpi
must be less than that predicted from a full-interaction analysis Rs. It will also be
shown that computer simulations performing partial-interaction analyses also
indicate that Ry is reduced significantly. As the endurance, or fatigue life, of the
stud connectors is highly dependent on the total range (Eq. 2.45), even a small
reduction in Ry results in a large increase in the fatigue life. This implies that the
current design procedure is conservative with respect to the distribution of shear
connectors, however, there is a trade-off. The smaller longitudinal shear force
acting along the steel-concrete interface implies that the adjacent steel and
concrete components are subjected to greater flexural loads than what is currently
predicted in order to maintain equilibrium. The greater than anticipated flexural
stresses in the steel and concrete can reduce the fatigue life of the components and
may potentially result in effects occurring that have not been accounted for in the
initial design.

It is, therefore, the purpose of this chapter to present the development of
simple relationships that can model the partial-interaction behavior of composite

beams, so that the reduction of the longitudinal shear flow resisted by the shear

48
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connectors, guower» and the change in the steel and concrete stresses can be

predicted.

3.2 PARTIAL-INTERACTION SHEAR FLOW

The effect slip has on the shear flow along the steel-concrete interface of a
composite bridge beam is discussed in this section. A 50.4 m long simply
supported composite beam is used in the analyses, where the cross-section is
shown in Fig. 3.1. There is a single row of stud shear connectors uniformly
distributed along the length of the beam where dg = 19 mm, f. =450 MPa, f. =35
MPa and E;, = 200000 MPa. Two connector distributions were used in the
simulations. One is for a more realistic shear connection with one stud located
every 100 mm, and the other is for a relatively flexible shear connection where the

stiffness is equivalent to placing one stud every 600 mm.
B 3000 mm
B
B 1.
T T
320 F‘J =

1650

p!

. i

——
700 K

Figure 3.1: Cross-section of 50.4 m long simply supported composite beam.

3.2.1 Shear flow force distribution

Figure 3.2 shows the shear flow force distribution along the steel-concrete
interface when a 320 kN concentrated load is applied at the mid-span. The
theoretical full-interaction analysis (FIA) distribution is determined from the well

known linear-elastic equation given by the first term on the right hand side of Eq
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2.61, where, from the cross-sectional geometry of the 50.4 m long composite
beam Ao/, = 0.504 X 102 mm"'. The computer simulation assuming full-
interaction, which is accomplished by increasing the connector stiffness to
minimize interfacial slip, predicts the shear flow force distribution very well. The
discrepancy in the vicinity of the supports and the concentrated load is because a
two-dimensional finite element program cannot instantly model a jump in the

shear forces - the stresses must build up.
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Figure 3.2: Shear flow force distribution for concentrated load at mid-span.

The results of two partial-interaction computer simulations are also shown
in Fig. 3.2. As expected, the results are symmetrical, as both the beam and the
Joading are symmetrical about the center-line. The important observation to make
here is that the shear flow force distribution is reduced along the length of the
beam when a partial-interaction analysis (PIA) is performed, and that the
reduction increases as the stiffness of the shear connection decreases. Reducing
the stiffness of the shear connection results in an increase in the interfacial slip.

Similar distributions are obtained for any position of the concentrated load
along a simply supported composite beam. Figure 3.3 shows the distribution
when the 320 kN concentrated load is located at the quarter-span of the 50.4 m

long composite beam. The full-interaction computer simulation distribution again
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models the theoretical linear-elastic shear flow distribution very well. A reduction
in the shear flow force distribution is again observed when a partial-interaction
computer simulation is performed, and the reduction increases as the stiffness of
the shear connection reduces. As the loading is no longer symmetrically situated
on the structure, the location where the shear flow force changes direction, called
the transition point, is shifted towards the mid-span of the beam from the loading

point as the connection stiffness reduces.
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140 +

Figure 3.3: Shear flow force distribution for concentrated load at quarter-span.

It was established in Chapter 2 that the fatigue life of stud shear connectors
in composite beams is highly dependent on the total range of force applied to the
connectors. Hence, it follows that the effect of slip on the total range of load must
be investigated in order to determine the impact on the fatigue life of the shear
connectors.

Although the reduction of the shear flow force does not appear to be
significant, as seen in Figs 3.2 and 3.3, the reduction of the range of load is

significant, as described in the following section.
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3.2.1.1 Total range resisted by connectors
The peak shear flow force envelope shown in Fig. 3.4 is produced by recording
the peak positive (global maximum) and peak negative (global minimum) shear
flow force along the simply supported composite beam for each design point, as
the concentrated load is moved across the span. The total range at a design point x
is then defined as the difference between the maximum and minimum shear flow
force.

As observed in Fig. 3.4, the maximum total range Ry for the case of a
single point load traversing a simply supported beam is constant throughout for a
full-interaction analysis using linear-elastic theory. Partial-interaction analyses
using computer simulations also indicate a constant but reduced maximum total
range R,; along the length of the beam, where the reduction is due to the reduction
in the shear flow distribution due to partial-interaction described in the previous
section. It is also noted that for any location along the beam, the peak
unidirectional shear flow force Py is also reduced to Py as a result of partial-
interaction.

The reduction in both R; and P; when partial-interaction analyses are
performed has a tremendous impact on the predicted fatigue life of stud shear

connectors potentially extending the design life of the bridge.
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Figure 3.4: Shear flow force envelope.



Linear-elastic partial-interaction theory 53

3.3 SHEAR FLOW REDUCTION

The development of the linear-elastic partial-interaction theory that was started in
Section 2.2.1 is now continued where the generic equations for slip and, hence,
shear flow are developed in a form suitable for deriving the simplified approach in

the next section.

3.3.1 Generic equations

As the slip, s, in Eq. 2.34 is a function of V', the distribution of s along the entire
length of the composite beam must be defined by two equations, one for each
shear span. As shown in Fig. 3.5,/ and V define the length of the shear span and
the vertical shear force in the shear span respectively, where the subscripts I and 2

refer to the left and right shear spans respectively.

SR N |4 L
| “shearspan 1 | shear span 2 |

V2
— .

Figure 3.5: Definition of shear spans.

Four integration constants are required, two for each shear span; K4 and Kp
for shear span I, and K¢ and Kp for shear span 2. Similarly, the following four

boundary conditions are necessary to solve for the four integration constants

0 @x=0 (3.1)
dx

% _g@x=L (3.2)
dx

4 _95% @y (3.3)
dx  dx

5, =5, @x=] (3.4)
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where the slip strain ds/dx is derived by differentiating Eq. 2.34 with respect to x

to give the following

?:mq cosh(axx) +0kK, sinh(ax) (3.5)
X

Solving the resulting system of equations simultaneously gives the

following four integration constants

K,=0 (3.6)
K, = fiP[cosh(a, )—sinh(at, )ooth(oL)] (3.7)
K, = fPsinh(c,) (3.8)
K, =—/iPsinh(al, )eoth(aL) (3.9)

Substituting the four integration constants into Eq. 2.34 gives the two
equations required to model the distribution of slip along the length of a simply

supported composite beam for a given concentrated load located a distance /; from

the left support

s, = fiP[cosh(a, )~ coth(aL)sinh(a, Ycosh(ex)- AV, (3.10)
and

s, = fiP[sinh(0x)—coth(aL cosh(ox)lsinh (a; )+ AV, (3.11)

where s; and s; are the distributions of slip within shear spans 1 and 2
respectively, and P, V; and V; are all taken as positive.
The distribution of longitudinal shear flow force is obtained simply by

substituting Eq. 2.5 into Egs 3.10 and 3.11 to give the following
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e %{ﬂP[cosh(odl )—coth(od )sinh (o, )Jcosh(ox)— AV, } (3.12)
and
(Qgpet ) = —kI;{ﬂP[sinh(ax)— coth (o )cosh(ox)]sinh (o2, )+ BV, } (3.13)

Figure 3.6 compares the shear flow force distribution predicted by the
computer simulation, for the case where the 320 kN concentrated load is located at
the quarter-span of the 50.4 m long composite beam, with the theoretical shear
flow force distribution given by Egs 3.12 and 3.13. The stiffness of the shear
connection used in the analysis is such that k = 54720 Nmm™ and p = 600 mm.
As the force P = 320 kN is located at the quarter-span: [; = 12.6 m; V; = 240 kN;
and V, = 80 kN as L = 50.4 m. The remaining parameters, & and [, are equal to

0.183x10° mm™ and 5.53x10°° mmN"' respectively.
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40 +

20 +

-60 +

shear flow force [N/mm]

-80 +

100 - —— computer simulation

------ linear-elastic P! theory
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Figure 3.6: Comparison of shear flow force distributions.

Figure 3.6 shows that the agreement between the theoretical and computed

partial-interaction shear flow force distributions are very good. It follows then
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that the next stage in the development is to quantify the reduction in the partial-
interaction shear flow force distribution with respect to the full-interaction

distribution.

3.3.2 Quantifying the reduction in the shear flow force distribution

It is important to be able to quantify the reduction in Ry and P due to partial-
interaction so that a better estimate of the fatigue life of the shear connectors can
be made. The expression for the reduction factor RFg for Ry is developed next,

which is then followed by the development for the reduction factor RFp for Py.

3.3.2.1 Reduction of the total range

The two locations of the traversing concentrated load that results in the maximum
and minimum P,; for a design point x is determined by differentiating Eqs 3.12
and 3.13 with respect to [; and equating to zero. The equations modeling the
distribution of slip (Eqs 3.10 and 3.11) can be used instead of the equations for the
distribution of the shear flow force because they only differ by the constant factor
k/p and the resulting derivatives are equated to zero.

Two cases, as shown in Fig. 3.7, must be considered depending on which
side of the concentrated load the design point is located. The term (1;); in Fig.
3.7a defines the location of P, where the subscript 2 refers to the design point
being in shear span 2 to obtain the maximum positive slip (s2)max, hence, the
maximum shear flow force at x. Similarly, (1;); in Fig. 3.7b defines the location of
P, where the subscript I outside the brackets refers to the design point being in

shear span I, to give the maximum negative slip (57)max at x.
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Figure 3.7. Two cases required to develop Rp.

The location (I;)- is found by substituting

v,), = (l‘%P (3.14)

obtained from equilibrium in Fig. 3.7a, into Eq. 3.11 giving

s, = f3P[sinh (ax) - coth (oL )cosh (ex)Jsinh A )2']+ p (‘E‘L)ZP (3.15)

and differentiating Eq. 3.15 with respect to (1;). to give

ds,

d(,),

= afiP[sinh (0 )— coth (o )cosh(ox coshar(t, ), ]+ ﬁTP (3.16)
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Then, equating Eq. 3.16 to zero and solving for (I;). gives the following
expression for the location of the concentrated load that results in the maximum

positive slip (52)max

1 4 -1
@)= a cosh {aL[sinh(wc)— coth(aL)cosh (ax)]} B2

where 0< (, )2 <x.

Similarly, (I;); is found by substituting
)P
(V])1=P———(% (3.18)

obtained from equilibrium in Fig. 3.7b, into Eq. 3. 10 giving

s, = fPlcoshler(t, ) ]~ coth(o)sinh [er(t, ) Jrcosh (o) ,BP[I —%] (3.19)
and differentiating Eq. 3.19 with respect to (I;); to give

ds, . fP
0 ofP{sinh[ar(l,), - coth(oz )coshlax(, ), ]}cosh(ax)+—L— (3.20)

where the term (I;); cannot be isolated when Eq. 3.20 is equated to zero because of
the coth(aL) term. However, if we assume that coth(od) is equal to unity, which
will be justified subsequently, the following expression for (I;); is found which
locates the position of the concentrated load to give the maximum negative slip

(S1)max

@)= —_—lln[—l——] (3.21)

a | olcosh(ax)
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where x < (j, )l <L.

The validity of the assumption that coth(aL) = I is shown in Table 3.1
where the magnitude of coth(ol) for a number of beams and connector
distributions is given. As oL increases, coth(al) approaches 1 and the error
resulting from the assumption made to develop Eq. 3.21 diminishes. It can be
deduced that the longer the beam and/or the stiffer the shear connection, the more

accurate the estimate of (I;); will be.

Table 3.1: Magnitude of coth(od).

L connector o (x10) ol coth(od.)
[m] distribution [mm™]

6 1 @ 500 mm 0.537 32022 1.003

6 1 @ 250 mm 0.759 4.554 1.0002
20 3 @ 240 mm 0.455 9.107 1.00000003
20 3 @ 120 mm 0.644 12.88 1.0
50.4 1 @ 600 mm 0.183 9.223 1.00000002
50.4 1 @ 100 mm 0.449 22.63 1.0

Now that (I;), and (I;); are known, the maximum range Ry; at a design

point x can be determined using the following relationship

Rpi = (qduwel )2 m (qdowel )1 (322)

where (qaower)2 18 given by Eq 3.13 with I; = (11), and (qaower): is given by Eq. 3.12
with I; = (I;).

As the stiffness of the connection approaches infinity, Eq. 3.22 approaches
R;; where the assumption is that there is no slip along the interface, so that the

reduction factor RFy at a design point x can be derived from the following

R
RF, = (3.23)
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where the numerator is obtained from Eq. 3.22 using the realistic connector
stiffness k, and the denominator is also derived from Eq. 3.22 by taking the limit
as k — oo. As k approaches o3 «in Eq. 2.31 also approaches o, and both (I;), and
(1,); approach x. When there is full-interaction, the maximum shear flow at a
design point x occurs when the load is applied at the design point so that taking

the limit of Eq. 3.22 as k — eoyields the following
(R,;). <P (3.24)

Substituting Egs 3.22 and 3.24 into Eq. 3.23 gives the following expression for the

reduction factor after simplification

RF, = [sinh(oxx)— coth(aL )eosh(ax)Jsinh o ¢, ), -

{cosh [ot(ll )l ]— coth (aL)sinh [Ol(ll )1 ]}cosh (o )+ g‘)—z—;@‘— +1

(3.25)

where (1;); is given by Eq. 3.21 and (1,); by Eq. 3.17.

The distribution of RF from the mathematical model of Eq. 3.25 is shown
in Fig. 3.8 for two distributions of shear connectors along the 50.4 m long
composite beam. The reduction in Ry from computer simulations is also shown in
order to validate the mathematical model. The agreement is very good and the

mathematical model is slightly conservative throughout.
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Figure 3.8: Distribution of RFg.

3.3.2.2 Reduction of the peak unidirectional shear flow force

As the maximum unidirectional shear flow force is also required to assess fatigue
damage (Eq. 2.60), the reduction of P; due to partial-interaction must also be
considered. As before, the two cases in Fig. 3.7 must be accounted for depending
on the direction of the shear flow.

Considering Case 1 first in Fig. 3.7a, the reduction factor can be defined as

(RF,), =_—EZ“"W"’ ;z-k (3.26)
dawel /2 0o

where (qaowe)2 1S given by Eq. 3.13 with I; = (I;);. The numerator of Eq. 3.26 is
obtained by using the realistic connector stiffness k, and the denominator is
determined by taking the limit of Eq. 3.13 as k approaches oo As before, when k
approaches oo, orin Eq. 2.31 also approaches e, and (1;); approaches x for a design

point at x, so that taking the limit of Eq. 3.13 as k — eoyields the following

xP

(qdowel) o0 oc —f (3.27)
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Substituting Eqs 3.13 and 3.27 into Eq. 3.26 gives the following expression for the

reduction factor after simplification

(RF,), = {[smh(ooc)— coth(od )eosh(ex)Jsinhfar(, ), ]+ (IL)Z} (3.28)
Similarly for Case 2 in Fig. 3.7b, the reduction factor is defined as

(RF )1 (qdnwel )l k (329)

@aone b

where (qaowel)s is given by Eq. 3.12 with [; = (I;);. The numerator of Eq. 3.29 is
obtained by using the realistic connector stiffness k, and the denominator is found
by taking the limit of Eq. 3.12 as k approaches c. As before, & in Eq. 2.31
approaches oo and (1;); approaches x for a design point at x so that when taking the

limit of Eq. 3.12 as k — oo, the following relationship is found

(qdawel )l,oe e P(_l_*-%\) (330)
/

Substituting Eqs 3.12 and 3.30 into Eq. 3.29 gives the following expression for

(RFp); after simplification

(RF,), = . fL feoshfa(t,), J- coth (o )sinh fer(t, ), Jlcosh (cox) -1+ (I—IL)'-} (3.31)

Figure 3.9 shows the distributions of (RFp); and (RFp); along the 50.4 m
long composite beam resulting from the traversal of a 320 kN concentrated load.
The reduction of P from a computer simulation is also shown. The agreement
between the mathematical models of Eqs 3.28 and 3.31 and the computer

simulation is again very good. It is important to note that for fatigue the
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governing peak shear flow force at a design point is the one that results in the

larger Pp;.

distribution of RFg for same

09 T ' connector distribution
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Figure 3.9: Distribution of (RFp); and (RFp).

The distribution of RFx in Fig. 3.8 is also superimposed on Fig. 3.9 where
it can be seen that the reduction factors for P; and Ry intersect at the supports and
at the mid-span. This is expected because when the design point is at the support
R, is equal to Pp;, as shown in Fig. 3.4, which results in the same reduction factors
at the supports. When the design point is at the mid-span, the absolute value of
the positive and negative Py, are equal, again seen in Fig. 3.4, which also results in

the same reduction factor as for R;; at the mid-span.

3.4 SIMPLIFICATION OF THE REDUCTION FACTORS

The mathematical models developed to determine the distribution of Rp; and Pp;
are too involved to be used in everyday design or assessment situations. The
following section proposes a set of simplified equations that have been developed
by making some simplifying assumptions without significantly reducing the

accuracy of the predictions.
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3.4.1 Simplification of the total range reduction factor
The distribution of RFx in Fig. 3.8 is symmetrical about the mid-span of the
simply supported composite beam such that it is a maximum at the supports from
where it gradually reduces until a relatively constant reduction is maintained over
the mid-span of the beam. The idealization proposed determines the reduction
factor at the supports (RFg); and the location along the beam I. where the
reduction factor becomes constant at (RFg).. Straight line segments, as shown in
Fig. 3.10, connect these points.

The simplified relationship for the peak RFy at the left support is given by
the following expression obtained by substituting x = 0 and (1;); = 0 into Eq. 3.25

(RF,), =1- % _feoshr(t,), ] coth (oL )sinh[e:(t, ) I (3.32)
where by substituting x = 0 into Eq. 3.21, (1,); is given by the following

1. (1
@), 7111[51 (3.33)

/

If the assumption that coth(aL) = 1 is again used, the last term of Eq. 3.32
can be simplified, and by substituting Eq. 3.33 into Eq. 3.32, the following simple

expression can be used to estimate RFp at the supports

1 1 2
(RF,), = 1+zln[al~m (3.34)

which is now only a function of the parameter & (Eq. 2.31) and the total length of
the beam L.

As the distribution of RFg is constant when (;); is greater the zero, the
point /. in Fig. 3.10 defines the location where RFr, first becomes constant so that

substituting (I;); = 0 and x = [ into Eq. 3.17 yields the following equality
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; = )
cosh {aL[sinh(o:lc)— coth(aL )cosh (e, )]} . (353)

As cosh'l(H) = (0 when 6 = I, and again using the assumption that coth(ad) = 1, I,

in Eq. 3.35 can be isolated giving the following expression
-1 1
I, =—In|— (3.36)

The constant magnitude of RFp that is (RFR). in Fig. 3.10 is also found by
substituting x = I and (I;); = 0 into Eq. 3.25 giving

(RF,), = 1-%)—' _feoshfer(t, ), ]~ coth(az )sinh[(t,), Jieosh (e, ) (3.37)

where after substituting x = I into Eq. 3.21, (1), is given by the following

-1 ]
[, =—In|—————= 3.38
T @ n‘:focosh(aic)} =9

By substituting Egs 3.36 and 3.38 into Eq. 3.37 and by making use of the
assumption that coth(al) = I, Eq. 3.37 can be simplified to yield the following

simplified expression for the constant RFr at I

1 2
(RF,), =1 +E{1n[m} -~ 1} (3.39)

which is also only a function of o (Eq. 2.31) and L.

The various approaches are compared in Fig. 3.10 where is can be seen
that the loss of accuracy, when using the simplified model, is minimal and any
differences are conservative, which is acceptable from the point of view of the

fatigue life of the shear connectors.
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Figure 3.10: Example of simplified model of RF.

3.4.2 Simplification of the peak unidirectional shear flow force

reduction factor
As previously illustrated in Fig. 3.9, the distribution of RFp coincides with the
distribution of RF at the supports and at the mid-span. Therefore, the proposed
simplified model of RFp uses (RFR), at the supports (Eq. 3.34) and (RFg). at the
mid-span (Eq. 3.39) connected by straight line segments as shown in Fig. 3.11.
Figure 3.11 shows the distribution of RFp from Fig. 3.9 and superimposes the
distribution of the proposed simplified model, where the critical reduction factors,
at the supports and the mid-span, are determined using (RFg)s and (RFg).
respectively.

The reduction of Py; due to partial-interaction is overestimated along some
portions of the beam, such as within A-A and B-B in Fig. 3.11, resulting in a
slightly unconservative estimate of Pp. The effect on the fatigue life of the

connectors is minimal, as will be shown in the example given in Section 3.9.
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Figure 3.11: Example of simplified model of RFp.

3.4.3 Validation of the simplified model
The preceding comparisons were Jimited to the 50.4 m long composite beam with
a uniform distribution of connectors. The simplified model using Eqs 3.34, 3.36
and 3.39 is also compared to computer simulations for a 20 m and 6 m long
simply supported composite beam.

The details of the cross-section of the 20 m long beam is shown in Fig.
3.12 where the connector distribution and the cross-sectional geometry is such that

o= 0.644x10" mm™.

3000 mm .,
I_
T 18

800
©

405

Figure 3.12: Cross-section of 20 m long simply supported composite beam.
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The cross-section of the 6 m long simply supported composite beam is
shown in Fig. 3.13 where the connector distribution and the cross-sectional

geometry is such that o= 0.759x10 mm".
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Figure 3.13: Cross-section of 6 m long simply supported composite beam.

Figure 3.14 compares the distribution of RFg using the simplified model
with that of the computer simulations and the mathematical model for the 20 m
beam. As was the case with the 50.4 m beam (Fig. 3.10) the agreement between
the computer simulation and the mathematical model is very good, the simplified

model being conservative over the length of the beam.
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Figure 3.14: Comparison of RFg, for the 20 m beam.
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Figure 3.15 compares the distribution of RFg using the simplified model
with that of the computer simulations and the mathematical model for the 6 m
beam. The mathematical model again agrees very well with the results of the
computer simulation, as does the simplified model. However, the discrepancy
between the simplified model and the mathematical model is slightly greater for
this beam, the reason being that the error resulting from the assumption that

coth(al) = 1 is greatest for this relatively short beam as can be seen in Table 3.1.
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0.8 + computer simulation

------ mathematical model
+ simplified model

RFg

Figure 3.15: Comparison of RF for the 6 m beam.

Similarly, Fig. 3.16 compares the distribution of RFp using the simplified
model with that of the computer simulations and the mathematical model for the
20 m beam. The agreement between the mathematical model and the computer
simulation is again very good. As was the case with the 50.4 m beam (Fig. 3.11),
the simplified model is also slightly unconservative over two areas of the beam
within A-A and B-B in Fig. 3.16. As before, however, the relatively small
discrepancy will have a minimal effect on the change in the fatigue life of the
connectors.

Finally, Fig. 3.17 compares the distribution of RFp using the simplified
model with that of the computer simulations and the mathematical model for the 6

m beam. The agreement between the mathematical model and the computer
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simulation is again very good. The simplified model is also acceptable, again
slightly overestimating the reduction of Py within points A-A and B-B in Fig.
317. The error between the simplified model and the mathematical model is
greater than that observed for the 20 m beam (Fig. 3.16) resulting from the greater

deviation from the assumption that coth(oL) = I, again due to the relatively short

span length of this beam.
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Figure 3.16: Comparison of RFp for the 20 m beam.
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o9+ | mathematical model
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Figure 3.17: Comparison of RFp for the 6 m beam.
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3.5 STRAIN DISTRIBUTION BOUNDS

As the effect of partial-interaction on the shear flow forces has been quantified,
the remainder of this chapter concentrates on the effect of partial-interaction on
the flexural stresses by first investigating the change in the strain distribution at a
point along the beam under a given load condition.

Two extremes or bounds exist with regards to the strain distributions at a
section: one bound occurs when the connector stiffness is infinite, known as full-
interaction; and the other bound results from an analysis where the connector
stiffness is zero, known as no-interaction. The assumption that there is no
separation between the steel and concrete components is made in both the full-
interaction and no-interaction analyses, hence, the steel and concrete curvatures at
a section are assumed to be the same. It follows then that the partial-interaction
strain distribution, where the shear connectors have a finite stiffness, must lie
between these two boundaries depending on the magnitude of the connection
stiffness.

The linear-elastic strain distribution at any point along a beam can be
defined by determining the curvature and the location of the centroid. The

curvature ¢ can be found by using the following well known relationship

¢ =—= (3.40)

where the subscript i refers to the location of the section along the beam, and EI is
the flexural stiffness.

As we are dealing with composite steel and concrete beams, the flexural
stiffness is dependent on the properties of both the steel and concrete such that for
full-interaction Elj; = E.l,, and for no-interaction El,; = (EI). + (EI); (Oehlers and
Bradford 1995) where the subscripts ¢ and s refer to the concrete and steel
components respectively.

The 50.4 m simply supported composite beam with a uniform distribution
of connectors (Fig. 3.1) is again used to illustrate the various strain distributions
discussed. A single concentrated load of 320 kN is located at the mid-span, and

the strain distributions shown are for a section located 24 m from the support such
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that the bending moment M = 3840 kNm. The material properties and cross-
sectional geometry of the section are such that Elg = 26.4x10" Nmm? and EI,; =
7.60x10'° Nmm?, and substitution into Eq. 3.40 yields the following curvatures at
the design point; ¢; = 0.146x10° mm™ and Oni = 0.505x10® mm™'. The centroid

of the transformed concrete section for the full-interaction distribution ¥, is

located in the steel component 474 mm below the steel-concrete interface. The
no-interaction distribution passes through the centroid of each component, where

y,= 125 mm and y = 1290 mm, both with respect to the location of the steel-

concrete interface. Having defined the curvatures and centroids for the two
boundary conditions, the strain distributions can be determined as shown in Fig.
3.18 where negative is taken as compression. Figure 3.18 also shows the strain
distribution obtained from a partial-interaction computer simulation for a uniform
longitudinal connector distribution equivalent to 1 connector every 600 mm.

The two points where the boundary strain distributions intersect in Fig.
3.18 are of special interest as every strain distribution must theoretically pass
through these points regardless of the connector stiffness. The points are defined
as Partial-Interaction Focal Points and are labeled PIFPs and PIFP., where the
subscripts s and ¢ refer to the focal point in the steel and concrete components
respectively. It will be shown that it is these focal points that allow the increase in

the flexural stresses due to partial-interaction to be quantified.

J 2250 T ——top of concrete
PIFPC-——:“- - component
r
steel-concrete interface ——l D\
Y
~ Sen ds/dx
E -\‘\"-. 0
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[ S
< S
-~- full interaction
---- no interaction
|— Pl - computer simulation
[ 1 0
r T T T ~ )
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4

strain [mm/mm] x10°

Figure 3.18: Strain distributions.
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It is evident from the partial-interaction results in Fig. 3.18 that the steel
and concrete stresses are greater than the full-interaction stresses currently being
used. It follows then that a theoretical model must be developed to quantify the
partial-interaction stresses that occur. A model is first developed in the following
section to predict the partial-interaction curvature at any section along the beam.
A method is presented that defines the location of the strain distribution at a

section from which the corresponding flexural stresses can be calculated.

3.6 PARTIAL-INTERACTION CURVATURE

In order to develop a relationship for the curvature anywhere along a beam
due to partial-interaction, Eq. 2.25 must be integrated with respect to x, the
distance from the left support to the design point. By substituting Eq. 3.10 and V'
= -V, into Eq. 2.25 and then integrating with respect to x, the following
mathematical expression is obtain for the curvature distribution in shear span I

6, = %‘f"—{ﬁ [cosh(cd, )~ coth(od )sinh (ed, ))sinh (e2x)- le} + EV% +C, (3.41)
o '

I S0

where the integration constant C; = 0, as the boundary condition is ¢; = Oatx =
0.

Similarly, by substituting Eq. 3.11 and V'=V, into Eq. 2.25 and integrating
with respect to x, the following mathematical expression is obtained for the

curvature distribution in shear span 2

2 .7
¢, = c;‘: ;‘ {ﬂ [cosh (oo )— coth(a )sinh eox)sinh (a2, )+ sz} + 212; +C, (342)
1 \a

o st o

where the integration constant C; is given by the following term using the

boundary condition ¢, =0 atx =L

2 47
c, == ZCIA { P [cosh (L )— coth (oL )sinh (oL )]sinh (o7, )+ VZL} +% (3.43)
) a

S0

sTo
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Figure 3.19 shows the variation of curvature along the length of the 50.4 m
simply supported composite beam when the concentrated load of 320 kN is
located at the quarter-span. The no-interaction and full-interaction conditions
given by lines A and B respectively again define the bounds to the curvatures.
Also shown is a partial-interaction curvature distribution for a constant connection
stiffness under the same loading condition using both the results of a computer
simulation and the theoretical model given by Eqs 3.41 and 3.42. The partial-
interaction distribution lies between the two boundary conditions, as expected, and
the theoretical model (line C), when compared to the predictions of the computer
simulation (line D), is conservative over the length of the beam especially in the
vicinity of the applied load. The discrepancy between the theoretical model and
the computer simulation can be attributed to the effect of the disturbed region near
the loading point on the finite element analyses.

Equation 3.41 can also be used to predict the variation of curvature in
shear span 2, therefore, Eq. 3.41 is used to model the curvature along the length of

the beam as it is simpler than Eq. 3.42.
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Figure 3.19: Variation of curvature.
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3.6.1 Quantifying the increase in curvature

For a single concentrated load acting on a simply supported span, the maximum
moment, hence curvature, at a design point occurs when the load is situated at the
design point. As the maximum full-interaction curvature is readily calculable
using Eq. 3.40, this section develops a multiplication factor MF, that can be
applied to the full-interaction curvature ¢; in order to determine the partial-
interaction curvature @;.

The multiplication factor is defined as

MF, =£’<— (3.44)

where the numerator represents the partial-interaction curvature obtained from Eq.
3.41 when using the realistic connector stiffness k, and the denominator is the full-
interaction curvature also obtained from Eq. 3.41 as the connector stiffness k

approaches . Hence, the full-interaction curvature is given by

_Wx

4. (a2a+1) (3.45)

sT0

As the maximum curvature occurs when /; = x, the shear force in the shear

span is given by

P(L-
v, =—(L—x) (3.46)

and by substituting Eqs 3.41, 3.45 and 3.46 into Eq. 3.44, the expression for the

multiplication factor becomes

MF, =(-d2a’+1)" %

{dCZA'Iim(cosh(ax)— coth(aL)sinh(ooc))sinh(ax)_1} +1} (3.47)
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Figure 3.20 shows the distribution of MF, using Eq. 3.47 and the results of
the computer simulation for the 50.4 m composite beam where the distribution of
connectors and cross-sectional geometry are such that & = 0.183x10° mm, d. =
1410 mm and (I/A) = 2.80x10° mm?. The agreement is very good, and the

discrepancy is again due to the disturbed effect at concentrated loads.
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Figure 3.20: Distribution of MF,

The relatively large multiplication factor near the supports is somewhat
deceiving in that the moment, hence curvature, approaches zero at the supports
resulting in only a small increase from the full-interaction curvature. The
magnitude of the multiplication factor is much more significant in the middle

portion of the beam where the curvatures are greatest.

3.6.2 Simplification of the multiplication factor

The mathematical model developed in Eq. 3.47 is too computationally intensive to
be accepted and used in everyday design or assessment situations. Therefore, a
proposed set of simplified equations is developed by making some simplifying
assumptions that do not significantly reduce the accuracy of the mathematical

model.
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The simplified model involves estimating MF, at the supports, the quarter-
span and the mid-span, and joining these points by straight line segments. As the
distribution of MF, is symmetrical about the mid-span of the beam under this load
condition, the multiplication factor at the support (MF); is used at both the left
and right support, and the multiplication factor at the quarter-span (MF ), is also

used at the three-quarter-span.
As x approaches L (the right support) the term within the square brackets
in the right hand side of Eq. 3.47 approaches zero resulting in the following

simplified expression for the magnitude of the multiplication factor at the supports
(F,) =(a2a+1) (3.48)

The multiplication factor at the mid-span can be obtained by making the following

assumption for the hyperbolic terms in Eq. 3.47 that is subsequently justified
(cosh(ozx)— coth(aL)sinh(ooc))sinh(ax)zé (3.49)

Hence, the expression for the magnitude of the multiplication factor at the mid-

span becomes
(mF,) = dCZA'+1T1[d62A’(—Ozz—1]+1} (3.50)

Similarly at the quarter-span, the assumption stated in Eq. 3.49 is also made when
x = L/4 and substitution into Eq. 3.47 yields the following magnification factor at

the quarter-span

(r,) = 424 +1) [de’(%—l}u 1] 3.51)
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Figure 3.21 shows the distribution of MF, from Fig. 3.20 for the 50.4 m composite
beam and superimposes the distribution using the proposed simplified method
where the magnification factors (MF o)-‘ in Eq. 3.48, (MF 0,),” in Eq. 3.50 and (MF o)q

in Eq. 3.51 are connected with straight line segments.
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Figure 3.21: Example of simplified model of MF,

The accuracy of the proposed simplified model compared with the
mathematical model is conservative over the entire span and is a good
representation of the distribution, indicating that the assumptions made while
developing the simplified approach are reasonable.  The agreement is
exceptionally good near the mid-span where the significance of the multiplication
factor is greatest as previously noted. Table 3.2 shows the actual value of Eq. 3.49

for a range of composite beams, validating the assumptions made.

Table 3.2: Validation of assumptions.

L o (x10) oL Eq. 3.49 Eq. 3.49
[m] [mm™] x=L"2 x=L/4

6 0.759 4.554 0.489585 0.448269
20 0.644 12.88 0.499997 0.499202
50 0.183 9.223 0.499901 0.495031
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3.6.3 Validation of the simplified model

The preceding comparisons were limited to the 50.4 m composite beam. The
simplified model of Eqs 3.48, 3.50 and 3.51 and mathematical model of Eq. 3.47
developed are now compared to computer simulations for the 20 m (Fig. 3.12) and
6 m long (Fig. 3.13) simply supported composite beams.

Figure 3.22 shows the results for the 20 m beam with a uniform
distribution of connectors and cross-section such that & = 0.644x10° mm™, d, =
560 mm and (1/A7) = 0.564x10° mm>. The mathematical model is again slightly
greater than that predicted by the computer simulation due to the disturbed effect
under the point load in the finite element analysis. The simplified model is
conservative along the entire span, with very good agreement being achieved over
the mid-span portion of the beam where the change in the curvature, hence

flexural stresses, is most critical.
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Figure 3.22: Comparison of MF, for the 20 m long beam.

Figure 3.23 shows the results for the 6 m beam with a uniform distribution
of connectors and cross-section such that o = 0.759x107 mm'l, d. = 227 mm and
(1/A) = 82.0x10*> mm? The comparison given in Fig. 3.23 shows that the

predictions are acceptable and that the simplified model is conservative over the
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entire span, however, the differences are greater for this relatively short 6 m beam
compared to the results of the 20 m beam in Fig. 3.22 and the 50.4 m beam in Fig.
3.21. The greater discrepancy between the computer simulation and the
mathematical model in Fig. 3.23 is due to the disturbed region affecting a larger
proportion of the span; the discrepancy between the simplified and the
mathematical model is due to the deviation from the assumption given by Eq. 3.49
that was made while developing the simplified relationships. The smaller o
and/or L, the greater the error will be as seen in Table 3.2, however, the proposed

simplified model is still useable as the error results in conservative predictions.
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Figure 3.23: Comparison of MF, for the 6 m long beam.

3.7 PARTIAL-INTERACTION FOCAL POINTS
The previous section developed a procedure for predicting the partial-interaction
curvature from the full-interaction curvature. However, in order to determine the
partial-interaction strain distribution, so that the corresponding flexural stresses
can be calculated, the position of the strain profile at the known curvature must be
determined. This section develops a means of locating the partial-interaction
strain distribution by quantifying the focal points already described.

It was shown in Fig. 3.18 that the two bounds to the strain distributions,

resulting from a full-interaction and no-interaction approach, intersect at the
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locations that have been referred to as the focal points, PIFP. and PIFP,. It is
significant to note that the point does not necessarily lie within the corresponding
component, as is the case with PIFP. in Fig. 3.18. As the boundary distributions
intersect at these points, it is logical to question whether any strain distribution at
that section must also pass through the same two points, thereby defining the
additional points necessary to locate the partial-interaction curvatures and, hence,
strain distributions.

The following analyses show that two focal points exist, that all partial-
interaction strain distributions pass through these points, and that the location of
the focal points are independent of the connector stiffness. Simple expressions are
then developed to locate the focal points. The first step is to prove that only one
strain distribution can exist that results in equilibrium at a section. This is
accomplished by investigating the strain distributions at a section of a composite
beam that is made up of two components of equal size and stiffness, as shown in
Fig. 3.24, where the magnitude of the externally applied axial load N is equal to
Zero.

A full-interaction analysis yields the strain distribution given by line A in
Fig. 3.24 where the centroid of the composite section is at mid-height of the
composite section. The no-interaction analysis distribution is given by line B
where the centroid of each component is located at mid-height of the component.
The question that is posed is: “Given a partial-interaction strain distribution, line
C, which passes through the focal points, is there another distribution that can be
defined with the same curvature but offset from the focal points by an amount A,
line D, such that equilibrium is maintained?”

By defining the strain at the top of component I as -g, the strain at the
bottom of component 2 must be € by symmetry, where negative is taken as
compression. The partial-interaction curvature ¢ is the same in both components
assuming that there is no separation at the interface. It needs to be shown that the
shift Ae must maintain zero total axial load, N = 0, in the composite member.
Simplifying the calculations somewhat by assuming that the width b, depth &, and
stiffness E are equal to unity, the net axial force in component 1 at the shift Ae is

given by
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N, =%’"——£—As (3.52)

and the net axial force in component 2 is

N, =-%+E-Ae (3.53)

Summing Egs 3.52 and 3.53, and equating the result to zero to enforce the

equilibrium condition of zero total axial load, it is found that

Ae=0 (3.54)

proving that only one partial-interaction strain distribution exists at a section for a

given moment.
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Figure 3.24: Simple partial-interaction distribution.
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It is now shown that the partial-interaction focal points exist for a general
composite section, and that the partial-interaction strain distribution must pass
through the focal points, so that these two points can be used to locate the
distribution.

A general composite bridge beam cross-section is defined in Fig. 3.25,
where the variable 4 is used to define the depth, 7 the thickness and w the width of
the various elements; the subscripts ¢ and s represent the concrete and steel
components respectively, #f the top flange, bf the bottom flange and w the web.
Therefore, the area of concrete A, = how, the area of the top flange Ay = wyty and
similarly, the area of the bottom flange Apr = Wirlsr. The variables y; and y. are
distances to points within the steel and concrete components respectively
measured from the steel-concrete interface, where positive is taken as the direction

shown in Fig. 3.25.

i
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._.3] \ 3 Wt N
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Figure 3.25: Definition of variables.

An arbitrary yet compatible partial-interaction strain distribution is defined
in Fig. 3.26 where the vertical dimension is exaggerated for clarity. The

distribution is defined by the strain at the top of the steel component (&)sp, the
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partial-interaction curvature ¢, (Eq. 3.41) and the slip strain given by the

following expression obtained by substituting Eqs 3.6 and 3.7 into Eq. 3.5 to give
%xs— — afP|cosh(ed, )-sinh (o, )eoth(ad )]sinh (o) (3.55)

The magnitude of the reference strain (&)ip is then determined by ensuring that
the equilibrium condition of no axial force is satisfied by first calculating the net

axial force in the concrete
ho.
N, = ECAC[(ﬁdﬁ__fﬁiJ— (e, )m,,] (3.56)

and the net axial force in the steel component

N.v = E.v (g.\‘ )mp l— A[f + (ttf + thf - h.v )tw - Ahj J+

(3.57)
%E.v¢pi y Ay t (_ trfz +h,’ - 2hty, + thfz)tw + (2h'.v — Ly )Abf]

By summing Egs 3.56 and 3.57, equating to zero and solving for the strain at the

top of the steel component, the following expression is obtained

Ac ds h’c¢ i ¢ i
(e ) s,

dx 2
€,), =— (3.58)
A
A4
n
where
(Ah),, =ts + (— £, +h = 2hity +1y )tw +(2h, -1, )4, (3.59)

For the case when the steel component is doubly symmetrical, Eq. 3.58 can

be simplified to the following
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A(ds k) On
——[ ] 2 (Ah,)

n|dx 2
(8.\‘ )mp = A

(3.60)

__A.v
n

Having defined (&)sp, the following equations can be used to calculate the

strain at any depth along the cross-section

€,), =87~ (), (.61)

and

(), ==,y gt (3.62)
¢ /pi piZc s Jtop dx

where (&)pi and (&:)pi are the partial-interaction strains in the steel and concrete

respectively.
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Figure 3.26: General partial-interaction strain distribution.
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If the assumption that the partial-interaction strain distribution passes
through the two partial-interaction focal points is true, the strain at the focal points
for a given moment at a section must be constant regardless of the stiffness of the
connection. Similarly, the distance of the focal points from the steel-concrete
interface must also be constant and independent of the connection stiffness. It

must therefore be shown that

d(gs)pi _
o (3.63)

at the focal point in the steel component and that (y;)p, which is the distance of the
focal point in the steel component measured from the interface, is not a function

of k. Similarly for the concrete strains, it must be shown that

d (8c)p'
— 0 3.64

at the focal point in the concrete component and that (yc)p, Which is the distance
of the focal point in the concrete component measured from the interface, is also
not a function of k.

Differentiating Eq. 3.61 with respect to k, where y; = (vs)p and @p; is a
function of k, and solving for the location of PIFPs results in the following

expression

(3.65)

where the Ak, term is replaced by (Ashg)ws in Eq. 3.59 if a non-symmetrical steel
component is used. Similarly, Eq. 3.62 is differentiated with respect to k, where y.
= (Ye)»» and @p; and ds/dx are a function of k, in order to solve for the location of

PIFP, giving
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Ah 1 h.
—‘—£+A\, ___’__-‘
on  ld A 2

0., = (3.66)
% + A,
n

where again the Aghs term is replaced with (Ashg)ws in Eq. 3.59 if a non-
symmetrical steel component is used.

It has, therefore, been proved that any strain distribution at a section must
pass through the partial-interaction focal points regardless of the connection
stiffness, as Eqs 3.65 and 3.66 which define the location of the focal points, are
not a function of the connector stiffness. The next section develops a simple
procedure whereby the partial-interaction strain distribution can be located making

use of the partial-interaction focal points.

3.8 PARTIAL-INTERACTION STRAIN DISTRIBUTION
As all strain distributions at a section pass through the two focal points regardless
of the connection stiffness, it follows then that the points where the full-
interaction and no-interaction strain distributions intersect can be used to define
the position of the focal points.

Dealing with the focal point in the steel component first, the strain
distribution in the steel under full-interaction and no-interaction can be defined

using the following equations respectively

M —
(8.\' i E]: (y\ - ync) (3.67)
and

M _
() = SH (>, -7.) (3.68)

where by equating Eqs 3.67 and 3.68, (ys)p can be found and which is given by the

following simple equation
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_ EI, _
Y

Yne —
EI

_EI

¢ nc

ZEI

(3.69)

and the corresponding strain at PIFP; can be found by substituting Eq. 3.69 for y;
in Eq. 3.67 to give

€), == (0, - %) (3.70)

Enll

Similarly for the focal point in the concrete component, the strain
distribution in the concrete under full- and no-interaction can be defined using the

following equations respectively

Ve = o) (3.71)

(€.); =

ElI,

and

(3.72)

(g )m = ZEI yc+—}7c)

where by equating Egs 3.71 and 3.72, (y.)p can be found from the following

simple expression

Cm‘.—

y'l(.
Er’
0.)s=—F ,Z (3.73)

Lm._l

> EI

where (y.), may be located outside of the concrete component, and the
corresponding strain at PIFP. can be found by substituting Eq. 3.73 for y. in Eq.
3.71 to give
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), =E—Af—(— 0.)p = Tec) (3.74)

3.8.1 Proposed procedure
The following summarizes the proposed procedure for determining the partial-
interaction strain distribution so that the corresponding flexural stresses can be

found using the relationships developed in this chapter:

1. Calculate the full-interaction curvature ¢ at a design point using Eq.
3.40;

2. Determine multiplication factor MF, using either the mathematical
model of Eq. 3.47 or the simplified model of Eqs 3.48, 3.50 and 3.51;

3. Find the partial-interaction curvature @; by multiplying @¢; with MF;

4. Define the location of PIFP by determining (yy)s from Eq. 3.69 and
(&) from Eq. 3.70;

5. Repeat step 4 for PIFP. using (y.)p from Eq. 3.73 and (&)s from Eq.
3.74;

6. The partial-interaction strain distribution is determined by passing a
line with slope @,; through both PIFP; and PIFP.; and

7. Calculate corresponding flexural stresses as required.

3.9 ILLUSTRATIVE EXAMPLE
The following example is used to illustrate the beneficial effect of partial-
interaction on the endurance of the shear connectors and the detrimental effect of
partial-interaction on the flexural stresses. The decrease in the shear flow due to
partial-interaction is determined by applying the reduction factors to the full-
interaction shear flows. The increase in the flexural stresses due to partial-
interaction are determined using both the increase in the full-interaction curvature
as derived from the multiplication factors and the focal points.

Suppose that the 50.4 m long simply supported composite beam (Fig. 3.1)
has been designed using a full-interaction analysis procedure and for a fatigue life

of 100 years or 200x10° fatigue vehicle traversals. The cross-sectional geometry
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of the beam is such that [, = 3.80x10'° mm* and (1/A") = 2.80x10° mmz, and the
standard fatigue vehicle loading was such that Rs = 161 N/mm and P; = 80.7
N/mm for the design point at the mid-span. The beam was designed for a
maximum design overload Qs = 9xP; = 726 N/mm and the shear flow strength
required at the start of the design life was Oy = 1845 N/mm. A uniform
distribution of connectors was used consisting of 2 rows of studs at 100 mm
centers which resulted in o = 0.635x10”> mm™'. In this example, Fy = (1.0)(161)5‘1
= 1.82x10"! (N/mm)™! and Ly will be taken as unity.

The condition of the shear connectors after the original design life of 200
million fatigue vehicle traversals can now be assessed. By substituting ol = 32.0
into the relevant expression for the reduction factor of R; (Eq. 3.39) gives (RFR).
= 0.77 so that R, = (0.77)(161) = 124 N/mm. As the design point under
consideration is at the mid-span, the same reduction factor is applied to Py so that
Pp; = (0.77)(80.7) = 62.1 N/mm. The force factor must also be revised to Fy =
(1.0)(124)5 1 _ 4.75%10'° N/mm, and the maximum design overload becomes Qres
= 9x62.1 = 559 N/mm. Substituting these new values for Fy and Q. into the
fatigue damage equation in assessment mode (Eq. 2.60) gives the following

expression

1318(1845)5"[1—1—58—5%]- 200x10°(4.75%10'° X1.0)

I, =

3.75
4.75%10"°(1.0) G.13)

where the last term in the numerator of the right hand side represents the fatigue
damage that has occurred, and the denominator is the fatigue damage that can still
occur. Solving for the remaining endurance gives T, = 677x10°, that is, 677
million fatigue vehicles. Assuming that 2 million fatigue vehicles occur annually,
as used in the initial design, the remaining life of the shear connectors is another
338 years. It is worth noting that the remaining endurance of 677x10° vehicles is
reduced to 563x10° vehicles when the reduction in the peak shear load Py due to
partial-interaction is ignored. Therefore, the reduction in Ry alone accounted for

83% of the increase in the remaining life of the shear connection.
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The changes in the flexural stresses due to partial-interaction at mid-span
are investigated next. The full-interaction strain distribution is shown in Fig. 3.27

where the centroid of the full-interaction transformed concrete section ¥, is

located 474 mm below the steel-concrete interface in the steel component. The
full-interaction curvature is ¢y = 0.159x10° mm™ where M = 4032 kNm and El;
= 2.64x10"® Nmm”.

The first step in the analysis is to calculate the multiplication factor for the
full-interaction curvature at the mid-span which is given by Eq. 3.50, where the
cross-sectional geometry of the beam is such that d. = 1410 mm, to give (MF )n, =
1.15 so that @, = (1.15)(0.159x10°%) = 0.183x10° mm™. Knowing that the no-

interaction flexural stiffness El,,; = 7.60x10"° Nmm?, and ¥, = 1290 mm and Yo

= 125 mm, which are both measured from the steel-concrete interface, the location
of the partial-interaction focal points may be calculated using Eqs 3.69 and 3.73 to
give (y;)p = 1620 mm and (y.)p = 368 mm respectively, again measured from the
steel-concrete interface. The corresponding strains at the PIFP’s are now
calculated using Eqs 3.70 and 3.74 to give (&)p = 0.182x10 mm/mm and (&), =
-0.134x10”> mm/mm respectively. The partial-interaction strain distribution at the

mid-span is shown in Fig. 3.27.
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Figure 3.27: Strain distributions at mid-span.
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Several conclusions can be drawn from Fig. 3.27. Perhaps the most
significant observation is that the partial-interaction focal points are located on the
extreme fiber side of the centroids of the corresponding component, therefore,
amplifying the effect on the strains and stresses adjacent to the steel-concrete
interface. Hence, there is little change in the compressive stress at the top of the
concrete component and only a slight increase in the tensile stresses at the bottom
of the steel component. The increase in the tensile stress range in the steel
component is about 2%. If the fatigue endurance exponent for the steel is taken as
3 then this 2% increase in the stress will reduce the endurance of the component
by a factor of (1.02)* = 0.94. Adjacent to the steel-concrete interface, the
compressive stress at the top of the steel flange is increased significantly by 52%,
which may need to be allowed for in the design for buckling of the flange.
Furthermore, the concrete compressive stress adjacent to the interface is reduced
by 10% which in this application is beneficial, however, it is noted that if the
reduction is great enough tensile stresses may result in the concrete for which

account must be taken.



Chapter 4

Non-linear partial-interaction

4.1 INTRODUCTION

The dead load of the concrete structure above the longitudinal steel beams and the
downward acting vehicle loads result in a compressive distribution of forces
acting normal to the steel-concrete interface. As the coefficient of friction
between steel and concrete under cyclic loading varies between 0.70 < y < 0.95
(Section 2.4), frictional forces acting along the steel-concrete interface influence
the longitudinal shear forces resisted by the stud shear connectors.

The effect of the frictional resistance and the non-linear load-slip
relationship of the stud shear connectors are combined in an iterative non-linear
secant stiffness procedure so that the understanding of the behavior of simply
supported composite bridge beams can be increased. The physical behavior of the
longitudinal shear forces that act along the steel-concrete interface are described
first which is then followed by the resulting finite element model used to simulate
the behavior. Typical results are presented to qualitatively illustrate the effect of
friction on the behavior of composite bridge beams, and finally, a comparison is

made with the mathematical model given by Eq. 2.61.

4.2 PHYSICAL BEHAVIOR

The model shown in Fig. 4.1 was developed to determine the magnitude and
direction of the forces acting along the steel-concrete interface at a stud. The total
longitudinal shear force Q must be resisted by the connectors and, if present,
friction f. The change in the longitudinal slip s is a function of the force that is

resisted by the connectors ggower. The force gaower is related to s by the stiffness of

93
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the spring k, which represents the stiffness of the connectors, by the following

equation

qdnwel = kS (41)

The change in guwe depends on the magnitude of the frictional resistance
available Fj, with respect to the other forces as described in subsequent sections
4.2.1 and 4.2.2. The magnitude of Fy, is a function of the magnitude of the normal

force N acting across the interface as given by the following expression

F;, =|uN| 4.2)

when there is negative uplift, hence, the normal force is orientated such that it is
compressive across the steel-concrete interface as shown in Fig. 4.1. In areas of
the span where there is positive uplift, and the tendency is for the steel and

concrete components to separate, Fy, is taken as zero.

e R

— LYV YANNY

dowel
%’f S Fir
N

Figure 4.1: Model of the forces acting along the steel-concrete interface.

AN N NN

It is the change in F and Q at a specific point, as the applied load is
moved across the beam, that is important as the change is what determines the
magnitude and direction of s, hence, gdowel- This is described in more detail in the
following two sections; the first one illustrates the behavior when Q remains uni-

directional, and the second section deals with the case when Q reverses direction.
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4.2.1 Uni-directional case

This section illustrates possible changes in slip, at a point, as the load is moved a
distance dx along the beam, from location i to i+1, when the direction of the total
Jongitudinal shear force does not change. The following terms are defined as they

are required in the explanation

AQ = lQi+] _Qil (4.3)
AF, =|(Ffr ).~ F,) (4.4)
As= |Si+l - si| (4.5)

Aqdowel = |(qdowel )i+1 . (qdawel )i (46)

where the prefix A represents the change in the magnitude of the variable. The

discussion also makes use of the following equality, required for horizontal

equilibrium, as shown in Fig. 4.1
Q . f + qdowel (4'7)

In order to determine possible load-slip paths, two general categories have
been identified; the first category is when Qi+, > Q;, and the second is when the
opposite occurs and Qj4; < Q;. Each of the categories are in turn subdivided into a
number of sub-categories depending on the relative magnitudes of Fy, and Q.

Numerous scenarios exist for each of the sub-categories, the qualitative
examples that follow are used to give a feel for the possible load-slip paths. All of
the examples presented are valid when (Fp); = Qi Figure 4.2 illustrates three
general load-slip paths for a point along the steel-concrete interface, which are
possible when Q. is greater than Q;, where the vertical axis is the total
longitudinal shear force, the horizontal axis is the slip and the solid arrow
indicates how the slip will change as Q increases. Figure 4.2a illustrates the case
when Fj; has increased and the increase in the total longitudinal shear force is less
than the increase in the maximum frictional resistance. As not all of AFy is

utilized while maintaining equilibrium, there is no change in qgowes, hence, s. This
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case illustrates the point that f is not necessarily equal to Fy, however, it is

necessary that Fj be exceeded before there is a change in guower-

Q. Qiy =t
1 A‘qn:‘tc:'«w.reI:
AQ )
AF,
QI _________ | : Q: N P Y
Aqdowel = 0 i
S =9 éi s;+1
a) (Fy).qi > (Fy) and AQ < AF,, b) (F)is > (Fp)and AQ > AF,
Qi+1 il - T \
Q AQ v /""' H Aq
i 1 | _,.---"'a :I dowel
AFfI’ 1: é.“_ """" g i /
.
s s,

C) (Ffr)i+1 < (Ffr)i
Figure 4.2: Possible load-slip diagrams when Qi.; > Q..

Figure 4.2b illustrates the scenario when F; again increases, however, the
increase in the total longitudinal shear flow is greater than the increase in the
maximum frictional resistance. In this case, all of the Fy is utilized and, hence,
Gadowel MUst increase in order to maintain horizontal equilibrium (Fig. 4.1). The
increase in the longitudinal shear force resisted by the connectors, AGgowel, Must be
equal to (AQ - AFy,), which results in the increase in slip 4s.

The load-slip path when the maximum frictional resistance reduces and the
total longitudinal shear force increases is shown in Fig. 4.2c. Again, all of the Fy,
is utilized and there must be an increase in ggowe: in order to maintain equilibrium.
Under these conditions, however, Aggower must equal (AQ+A4Fs) resulting in a

corresponding increase in slip, 4s.
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The second category that can occur is when there is a decrease in the total
longitudinal shear force at a point, defined by the inequality Qi; < 0;, when the
load is moved along the beam. Two general load-slip paths are presented in Fig.

4.3 that are used to explain various scenarios.

o B Q- .—
AQ AQ
L , Q- {-Aq
AQdowel =0 [ oonel
Siu1 - Si S, S
2 P> Fohor ) (ot < (Fy) and AQ < AF,

(Fidi < (Fy)y and AQ > AF,
Figure 4.3: Possible load-slip diagrams when Qi+ < Q.

The scenario illustrated in Fig. 4.3a, which shows that there is no change
in the slip at a point even though the total longitudinal shear force has reduced,
occurs under two different conditions. The first condition is when the maximum
frictional resistance increases as the total longitudinal shear force decreases. In
this situation, the frictional force required to maintain horizontal equilibrium f is
less than Fy and, hence, there can be no change in ggowe and therefore, As = 0.
The second condition Fig. 4.3a represents is when the maximum frictional
resistance reduces, but to a lesser extent than the reduction in the total longitudinal
shear force. Again Fy, remains larger than that required for equilibrium such that
(Fp)ivr > fir1 = Qivs - (dower)i and 50, AGgower=As=0.

When the maximum frictional resistance at a point is reduced more than
the total longitudinal shear force, the load-slip path shown in Fig. 4.3b occurs. In
this case, all of maximum frictional resistance is required such that fi;; = (Fp)i+s
and, hence, in order to maintain horizontal equilibrium, ggower must increase by
Aqaowet = AFp — AQ. Tt can be seen, therefore, that it is also possible for the slip to

increase even though the total longitudinal shear force has decreased and that the
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influence of friction along the steel-concrete interface contributes significantly to

the load-slip behavior of the shear connection.

4.2.2 Reverse case

The situation will arise when the total longitudinal shear force at a point changes
direction as the load is moved along the beam. A general load-slip path is
presented in Fig. 4.4, which also includes a simple numerical example down the
right side of the figure to aid in the discussion. The initial conditions are given by
point A in Fig. 4.4 where the slip is s; and the total longitudinal shear force is Q; =
10. It is assumed that all of the maximum frictional resistance is utilized at point
A so that f; = (Fp);, which in this example is equal to 5, therefore, for horizontal
equilibrium, (Gdowe)i = Qi — (Fp)i = 5 and is in the same direction as the frictional
force. The final condition at G in Fig. 4.4, after the load has moved, is that Q;,; =
9 and in the opposite direction of Q;, and that (Fj);+; = 8, which of course can act
in any direction as required. Using this simple numerical example, the remainder
of this section describes the load slip path taken as the total longitudinal shear
force changes from Q; to Q. ;.

As the total longitudinal shear force reduces from Q; (point A in Fig. 4.4),
the frictional force required for equilibrium f reduces proportionately from (Fp);
until point B is reached. At point B, the total longitudinal shear force has reduced
to (qadower)i» hence, the frictional force f required to maintain equilibrium is zero.
Further reduction of Q results in an increase in f, in the direction opposite that at
point A, to maintain equilibrium such that f = (qaowe): — Q. At point C,0=0andf
= (qdowe)i» Which has yet to exceed (Fg);4s and require a change in ggowe, Which is
why the slip has not changed from s;. Beyond point C, the total longitudinal shear
force begins to increase in magnitude in the opposite direction of O, f continues to
increase and is equal to (Guower)i + Q until point D is reached. At D, the frictional
force required for equilibrium is equal to (Fg)i+1. As f can not exceed (Ff)is; any
further increase in Q must be equilibrated by a change in guowe, Which will result
in a change in the slip as can be seen by the load path beyond point D in Fig. 4.4.
In fact, the unloading path D-E-F-G in Fig. 4.4 is the same as A-B-O-C in Fig. 2.6.
After point D is reached, gg,we reduces in order to maintain equilibrium and is

equal to (F)irs — O, until point E is reached where Q = (Fp);.+; and therefore quowe
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= 0 and all of the slip is recovered at point F. Finally, as Q continues to increase
to Qi+s» Gaower increases in the opposite direction of (qaower)i until point G is
reached where (Gaowe)i+s = Qi+ - (Fp)iss and the slip increases proportionately in

the opposite direction to the final value of s;.;.
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Figure 4.4: General load-slip path when Q reverses direction.
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Load-slip paths other than that shown in Fig 4.4 are of course possible.
Potential differences include the location of point D along the unloading path,
where (Ff)iys is first exceeded (if friction is at all present) and gowe begins to

unload and eventually reverse direction (assuming Q4 is large enough).

4.3 FINITE ELEMENT MODEL

The linear-elastic finite element formulation was discussed in Section 2.7. This
section deals with the non-linear secant stiffness approach that was developed in
order to model effects of friction along with the load-slip characteristics of stud
shear connectors. This is accomplished by modeling the shear connection along
the steel-concrete interface with a set of three spring elements, which are

described in the following section.

4.3.1 Non-linear finite element model of the shear connection
The distribution of stud shear connectors is modeled using a set of three
independent spring elements, as shown in Fig. 4.5, connecting each corresponding

steel and concrete node along the interface.

axial stiffness

connector stiffness

frictional stiffness

Figure 4.5: Non-linear spring element configuration.

As was the case with the linear finite element formulation (Section 2.7) a
single vertical spring is used to represent the axial stiffness of the connectors and
the surrounding concrete. The stiffness is assumed to remain constant and is made
relatively large as the shear connectors are designed to resist axial loads and

prevent separation of the steel and concrete components along the interface.
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The two horizontal springs shown in Fig. 4.5 are used to model th A

combined effect of friction and the non-linear load-slip relationship of the
connectors. The effects have been separated in order to avoid the possibility of a
negative secant stiffness as the load-slip path can pass through the second
quadrant (Fig. 4.4) when the total longitudinal shear force reverses. The method
of determining the stiffness of the two horizontal spring elements is described in

the following two sections.

4.3.1.1 Stiffness of stud shear connectors

One of the horizontal springs is used to model the shear stiffness of the stud shear
connectors where the theoretical load-slip model adopted is that given in Fig. 2.6,
ignoring incremental set. The tri-linear finite element model of the load-slip
behavior of stud shear connectors used in the computer program is shown in Fig.
4.6. The most significant difference between the finite element model and the
theoretical one (Fig. 2.6) is the slope of the unloading portion within the
permanent set zone. As preliminary simulations found that a slope of zero caused
numerical instabilities in the finite element analysis, subsequent simulations were
carried out varying the slope until it was determined that the minimum slope
possible is 0.25K.

A secant stiffness approach is used in the analysis where the secant
stiffness of the connector K. must be within the bounds Ky = Ko 2 0.25K,,
which requires an iterative approach. If the previous peak load applied to a stud is
(Pmax); as shown in Fig. 4.6, the cyclic curve A-B-O would be defined.
Subsequently, if the load acting on the connector is @; < (Pmax)1, the secant
stiffness of the connector would be defined by the line passing through O-G where
G is the point along A-B-O that corresponds to load Q0;. Alternatively, if a load
(Pax)2 > (Pmax)y is applied, Kee = K, and a new cyclic curve is defined as given
by C-D-O in Fig. 4.6.

As it is assumed that the behavior of stud shear connectors is the same
when the load is reversed, the load-slip curve is also extended into the third
quadrant, as shown in Fig. 4.6. If the peak load in the reverse direction is given as

(Pmax)3, the cyclic curve in the reverse direction will be defined as E-F-O.
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Figure 4.6: Finite element load-slip model of a stud shear connector.

4.3.1.2 Frictional stiffness model

The second horizontal spring is used to represent the effect of friction along the
steel-concrete interface. The theoretical friction model is shown in Fig. 4.7a
where slip can not occur until the shear force exceeds Fi, after which, slip is
permitted and there can not be any increase in the frictional resistance.

The infinitely stiff spring that would be required to prevent slip along the
interface, within regions of the beam where O < Fp, would have caused numerical
instabilities in the finite element simulation. Hence, trial simulations were
undertaken to determine the maximum frictional stiffness Ky possible. It was
determined that a maximum stiffness of 3K, as shown in Fig. 4.7b, which is the
model used in the finite element formulation, was suitable to make the slip
sufficiently small. Conversely, if Q is greater than Fy, slip would occur and K
would be determined by the slope of the line defined by O-B in Fig. 4.7b, where

point B is dependent on the magnitude of the slip at the connector.



Non-linear partial-interaction 103

B~
Ffr > .,
shear shear !
force force :
. o) e
slip slip S

a) theoretical b) finite element

Figure 4.7: Friction model.

If the normal force across the interface at a pair of nodes is such that
positive uplift is induced, Fy = 0 and, hence, Ky = 0 so that the horizontal stiffness
of the connection at the nodes is based solely on the stiffness of the connector as

defined in the previous section.

4.3.2 Convergence of the non-linear analysis procedure

As was the case with the linear analysis approach described in Section 2.7, a finite
element analysis is performed each time the applied load is moved along the
length of the beam from the initial node to the adjacent one, known as a load
stage, simulating the traversal of a vehicle. With the linear analysis approach, the
solution is obtained after the first iteration as the stiffnesses of all the components
are assumed to be constant. However, with the non-linear analysis approach
presented in this chapter, several iterations are generally required to produce
converged results. This is because the stiffness of the shear connection is
dependent on the magnitude and orientation of the forces at the interface, all of
which are not known at the start of each load stage. Consequently, a method is
required to determine when the results have converged so that the iterative
procedure may be stopped and the next load stage commenced. The convergence
criteria used is based on the total stiffness K; of each set of horizontal springs
located at each node along the interface, where K, is the sum of the connector
stiffness K. (Section 4.3.1.1) and the frictional stiffness Ky (Section 4.3.1.2). The

criteria is in the form of a ratio, which compares K; of the current iteration i with
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K, of the previous iteration i-/ for the same set of springs, as given by the

following equation

(Kr );_1 — (Kt );'

(K t ),'

convergence ratio =1+ (4.8)

The convergence ratio for each set of springs at every node along the
interface is then compared with a convergence limit that is input by the user.
When each convergence ratio is less than the prescribed limit, all of the stiffnesses
are deemed to have converged and the next load stage can commence. Trial
simulations have shown that a convergence limit of 1.001 yields adequately

converged results, typically in less than 30 iterations.

4.4 RESULTS OF COMPUTER SIMULATIONS

This section presents a qualitative description of the effect of friction on the range
of load resisted by the stud shear connectors using the non-linear finite element
procedure developed in this chapter. The results of a finite element simulation are
also compared with the simple mathematical model given by Eq. 2.61 that takes
into account the effect of friction.

Figure 4.8 shows two distributions of normal force across the interface for
a single concentrated load of 320 kN acting at the quarter-span of the 50.4 m long
simply supported composite beam (Fig. 3.1). Consistent with the convention
adopted, a positive normal force indicates a tensile force across the interface. The
broken line represents the distribution resulting from the concentrated load alone,
while the solid line is the distribution obtained when the dead load of the concrete
is also taken into consideration.

As one might expect, there are large compressive forces in the vicinity of
the concentrated load and the supports whether or not the dead load is considered.
If, however, the dead load of the slab is ignored (broken line in Fig. 4.8), the
normal force across most of the span is negligible, and is in fact tensile in the
regions adjacent to the large compressive forces. This suggests that the frictional

forces act only locally around load points. When the concrete dead load is taken
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into account (solid line in Fig. 4.8), the entire distribution becomes compressive

and, hence, frictional forces act over the entire span.
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Figure 4.8: Normal force distribution along the steel-concrete interface.

Figure 4.9 shows various shear flow distributions obtained from both
linear and non-linear computer simulations of the 50.4 m beam with a
concentrated load of 320 kN acting at the quarter-span. The results of the non-
linear analyses also take into account the dead load of the concrete component.
Considering the total longitudinal shear flow force distribution from the non-linear
analysis Q, it can be seen in Fig. 4.9 that the distribution increases locally near the
supports and under the load location. In fact, these local increases coincide with
the high compressive normal forces shown in Fig. 4.8. As the maximum frictional
resistance is large in areas of high normal compression, the frictional stiffness is
expected to be very large (Fig. 4.7b). Therefore, it can be concluded that the large
shear stiffnesses along the interface, in the areas of high normal compression,
attract a greater portion of the total longitudinal shear force. The longitudinal
shear force distribution that is resisted by the connectors based on a non-linear
analysis Ggowe: 1S also shown in Fig. 4.9. The difference between the distributions
of Q and qGuewe is in fact the frictional force distribution f that is required to

maintain horizontal equilibrium along the interface as given by Eq. 4.7. The
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distribution of ggowe is smooth and continuous throughout the length of the beam
except in the vicinity of the concentrated load (Fig. 4.9) where it is equal to zero.
As the longitudinal shear force is typically small and the maximum frictional
resistance very high near a load point, it may well have been expected that gzowe =

0 in the vicinity of a concentrated load.
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Figure 4.9: Shear flow force distribution along the steel-concrete interface.

Superimposed on the non-linear analysis distributions of Q and ggower in
Fig. 4.9 is the result of a linear analysis g, which is the same distribution shown in
Fig. 3.6. The comparison to be made is between the distributions given by g and
Gdowe» as they predict the magnitude of the shear force acting on the connectors
themselves based on the two different analysis approaches. It can be seen that the
difference between the g and ggowe: distributions is relatively constant over most of
the beam. It can therefore be concluded that although the frictional forces are
highly concentrated in the vicinity of concentrated loads, the effect on the
longitudinal shear force is distributed over the entire span.

To investigate the effect of the non-linear model on the total range, the
shear flow force envelope is constructed using the same technique presented in
Section 3.2.1.1. Figure 4.10 shows the shear force envelopes for a number of

analysis techniques, where the distributions shown for the full-interaction and the
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linear partial-interaction analyses are the same as those shown in Fig. 3.4. The
difference between the full-interaction and linear partial-interaction envelopes
shown in Fig. 4.10 has already been quantified in Chapter 3 and consequently, will
not be discussed further in this chapter. The primary concern in Fig. 4.10 is the
additional reduction in the partial-interaction envelope when the non-linear

analysis is performed.
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Figure 4.10: Shear flow force envelopes.

Figure 4.10 shows that allowing for the non-linear behavior of the shear
connection slightly increases the length of the span subjected to uni-directional
ranges. If incremental set were included in the non-linear analysis procedure
(Section 2.5.2.2), further redistribution would take place as the number of cycles
increases until almost all of the connectors would be subjected to uni-directional
ranges as shown in Fig. 2.13. Although the difference between the two sets of
partial-interaction envelopes appears to be small, the change in R is actually
substantial.

Figure 4.11 shows the distribution of R resisted by the connectors for
various analysis approaches. As was the case in Fig 4.10, the distribution for the
full-interaction and linear partial-interaction analyses were previously determined

and quantified in Section 3.3.2.1. The difference to note in Fig. 4.11 is the
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substantial reduction in R from the linear analysis when the non-linear analysis is
performed. It is again seen that the difference between the linear and non-linear
partial-interaction analysis distributions is almost constant along the span,
signifying once again that the effect of friction is global. Although the reduction
is not formally quantified, it is worthwhile noting that in this example, the 19%
reduction of the non-linear distribution of R, with respect to the linear partial-
interaction distribution, increases the fatigue life of the connectors by a factor of

approximately (1.0 - 0.19)%' =3.
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Figure 4.11: Distribution of range.

4.4.1 Comparison with the mathematical model
The following section compares the result of the computer simulations shown in
Fig. 4.11 with that of the simple mathematical model given by Eq. 2.61. In the
comparison the coefficient of friction is taken as 0.70, which is the minimum of
the range given in Section 2.4 and, hence, will result in conservative predictions
with respect to the magnitude of R. Furthermore, to simplify the calculations of
the mathematical model, the effect of the dead load of the concrete component
was ignored

Figure 4.12 superimposes the predictions of the mathematical model (Eq.

2.61) with the results of the computer simulations given in Fig. 4.11. The
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distribution given by the mathematical model is considerably different to that
given by the computer simulations because the former is a full-interaction analysis
and the latter are partial-interaction analyses. The mathematical model is
conservative over the full length of the beam. The decrease in the range using the
mathematical model, with respect to the full-interaction results, is greatest near the
supports, which is expected based on the formulation of the model. As the normal
forces across the interface are highest and the shear span lengths the shortest when
the load is near the supports, the frictional resistance is assumed to be very large

resulting in the significant reduction in the range resisted by the connectors.
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Figure 4.12: Reduction in R using the mathematical model.

To summarize the results of Chapters 3 and 4, there are now four analysis
options available for use when predicting the remaining strength and/or endurance
of a composite bridge beam, each with a varying degree of complexity and
accuracy. Initially, a full-interaction analysis could be preformed, the simplest
type of analysis, which would give a safe endurance with respect to the fatigue life
of the shear connection. Increasing the level of accuracy somewhat, a full-
interaction analysis could be performed taking into account the effect of friction,
with little increase in the amount of work required. If a more refined and accurate

analysis is required, a linear-elastic partial-interaction analysis could be
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performed, which would give a much more realistic representation of the
distribution of R along the length of the beam. Finally, a non-linear partial-
interaction analysis could be performed taking into account friction. This analysis
approach could be used to consider the influence of the dead load of the concrete
deck, and the weight of the vehicles on the distribution of R resisted by the shear

connection.



Chapter 5

Experimental Investigation

5.1 INTRODUCTION

An experimental programme was developed to further investigate the behavior of
stud shear connectors subjected to reverse-cycle fatigue loading. In the current
investigation, a simple specimen was desired so the manufacturing cost could be
kept low and, hence, twenty specimens were cast and tested so that a wide range
of load conditions could be applied. It was also decided to subject the specimens
to a large number of cycles and, hence, low load ranges, as the shear connection in
composite bridges are typically subjected to millions of cycles over the life of the

structure.

5.2 EXPERIMENTAL SET-UP

As it is very difficult to simulate the load conditions surrounding the shear
connectors in a composite beam using push-out specimens, a simple specimen was
designed to allow for a relatively large number of tests so that a reasonable
comparison could be made. The variation between various push-out tests,
however, can be allowed for by using the ratio R/P,, as suggested in Section
2.5.3.2. Therefore, to apply the results of push-out tests to beams, all what is
required is Py for the beam as given by Eq. 2.40.

A top view of the experimental set-up, and a longitudinal section, is shown
in Fig. 5.1. A 1900x1400x25 mm thick steel plate was fastened to the strong floor
by four tie rods. The plate was used to standardize the placing and removal of
specimens. The specimen itself was held in place by four supports located at each

corner of the concrete block. The supports were designed to prevent horizontal

111
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movement due to the pushing and pulling of the reverse-cycle load as well as
vertical movement of the concrete block due to the uplift forces resulting from the

eccentric loading.

S
(Yol
West
Face
a - load cell g - stud shear connector
b - load cell/flange connection  h-LVDT
c - comer support i - high strength bolt
d - roller support j - end support
e - tie rods k - strong floor
f - flange | - steel plate

o
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LONGITUDINAL SECTION
Figure 5.1: Experimental set-up.

The dimensions of the concrete block, 1200x500x265 mm, were primarily
governed by the restrictions imposed by the minimum height of the INSTRON
hydraulic actuator and the location of the supports on the strong floor. It was
determined (Oehlers and Bradford 1995) that no reinforcement was required to
prevent splitting of the concrete, however, a nominal amount was included to

provide anchorage for the lifting hooks used to move the specimens. No
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reinforcement was placed in the vicinity of the connectors to ensure that the
fatigue strength would not be affected.

Three stud shear connectors, 75x12.7 mm diameter, were supplied and
welded onto a steel plate (flange) at 300 mm spacing by a local contractor and
embedded in the concrete. It was decided to use more than one stud to reduce the
scatter of results; three studs were used, which was limited by the capacity of the
load cell. The 1500x100x10 mm thick flange extended approximately 525 mm
beyond the East face of the concrete block to provide the connection between the
load cell and the specimen.

An additional 500x100x12 mm thick plate was welded to the under-side of
the protruding flange in order to stiffen the connection and to lower the line of
action of the applied force so that the eccentricity could be minimized. The
eccentricity, e, shown in Fig. 5.2, is due to the line of action of the resultant
bearing forces acting on the studs, 80, being offset from the line of action of the
applied load, Q. The resulting moment due to the eccentricity is in turn resisted
by a set of tensile and compressive forces, Fr and F¢ respectively, acting on the
end studs. The orientation of the forces depending on whether the applied load is
pushing or pulling. In an attempt to minimize the uplift of the flange, a roller was

placed over it near the East face of the specimen as shown in Fig. 5.1.

e
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Figure 5.2: Uplift forces due to eccentric loading.

The flange was attached to the load cell with two 25 mm diameter high
strength aluminium pins and was isolated from the load cell by a spherical
bearing. The bearing was used to prevent the transfer of any vertical and
rotational movement of the flange to the actuator, which could damage the seals.
As the pins were machined to produce a tight fit, in order to minimize any play in
the horizontal direction, it was necessary to replace the pin after lengthy fatigue

tests due to wear of the pin.
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The load cell was fastened to the face of the actuator which was in turn
connected to a stiff reaction frame that can be can be seen on the left side of Fig.

5.3 which shows an overall view of the experimental set-up.

Figure 5.3: Overall view of experimental set-up.

A Linear Variable Displacement Transducer (LVDT) was glued to the
concrete near the West end of the flange (Fig. 5.1) so that the relative movement
between the steel and concrete, or slip, could be measured as the cyclic or static
loads were applied. The data acquisition system used Visual Designer to convert
the analogue data from the load cell and the LVDT to digital format which was

saved in a PC file.

5.2.1 Casting procedure

Figure 5.4 is a photograph of a section of the formwork ready for casting. Two
concrete pours were required to produce the twenty specimens, ten in each pour.
The specimens were cast with the steel flange on the bottom and the studs
orientated vertically upwards as is the case with composite bridge beams. This
was done to ensure that the concrete surrounding the studs could be adequately
compacted as the quality of the concrete in the area influences the strength of the
connection significantly (Johnson 1994). The specimens were rotated to the
orientation shown in Fig. 5.1, as required for testing, using four lifting hooks and a
crane. A layer of 10 mm thick styrofoam was placed in the formwork around the
flange so that when orientated in the testing position, the top of the concrete
would not extend above the bottom of the flange. The face of the flange on the
steel-concrete interface was coated with a thin layer of grease to prevent chemical

bonding with the concrete and reduce frictional forces along the interface that may
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be present during testing. The formwork was coated with oil to ease the stripping

of the specimens and permit the use of the same formwork for the second pour.

Figure 5.4: Formwork ready for concrete pour.

5.2.2 Material properties

The shank of four studs was machined to produce tensile coupons so that the
ultimate strength could be determined. The coupons were tested by applying a
monotonically increasing tensile force until failure. The maximum loads were
recorded and are shown in Table 5.1 where the average ultimate strength f, is
432.9 MPa. The flanges were center-punched to mark the location of the studs
and the surrounding surface was cleaned from any oil and dust so that the studs
could be welded onto the flange. A local contractor welded the studs, and the
quality of the welds was tested by hammering five studs that were welded on
sample steel plates as shown in Fig. 5.5. As none of the studs ‘popped-off’, it was

concluded that the welds were adequate.

Table 5.1: Results of tension tests on stud shear connectors.

Specimen f. [MPa]
1 427.9
2 429.3
3 435.5
4 438.7
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b) after hammer test

Figure 5.5: Evaluation of weld quality.

A 25 MPa concrete strength was specified for the two pours with a
maximum aggregate size of 10 mm and a slump of 80 mm, which was purchased
from a local ready-mix supplier. The concrete was vibrated using a hand held
pneumatic vibrator and the surface of the concrete was hand finished. Twenty five
200100 mm diameter cylinders were also cast at the same time. The specimens
were then covered with plastic sheets for approximately 24 hours, after which the
cylinders were stripped, labeled and moved into a fog room. The specimens were
stripped approximately one week after casting in order to allow the concrete to
gain enough strength to permit handling. The specimens were labeled and stored
until testing. A similar procedure was adopted for the second pour, which took
place approximately six weeks later.

All of the specimens from the first pour, P1, were tested first and the age
of the specimens, from the casting date, ranged from 92 to 223 days. The age of

the specimens at time of testing for the second pour, P2, ranged from 153 to 267
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days. At various stages throughout the testing phase, a series of cylinders were
tested to determine the concrete compressive and tensile strength. A summary of
the results is given in Table 5.2, where the average f.=352MPaand f,=3.3 MPa
for P1 and the average f. = 40.2 MPa and f; = 4.3 MPa for P2.

Table 5.2: Concrete properties.

Pour 1 Pour 2
Cylinder age Je fi age fe fi
[days] | [MPa] | [MPa] | [days] | [MPa] | [MPa]
1 92 33.2 3.1 153 N/A 4.1
2 92 32.1 3.3 153 42.5 3.6
3 92 34.6 3.3 153 39.2 4.5
4 92 32.6 - 153 40.1 .
5 223 36.5 ) 267 N/A 4.8
6 223 37.1 3.7 267 40.2 4.3
Wl 223 38.6 3.6 267 38.8 4.3
8 223 36.5 - 267 40.2 -

5.2.3 Testing procedure
The cyclic frequency was kept constant at 0.5 Hz throughout the test except when
readings were taken. When readings were taken, at regular intervals throughout
each test, the frequency was reduced to 0.05 Hz so that a suitable number of data
points could be obtained to define the load-slip curve.

A summary of the tests carried out on the various specimens is shown in
Table 5.3, where the loads shown are the total loads applied by the actuator. The
maximum load shown is the peak load applied, or in the case of the static tests, it
represents the static strength of the specimen when pulled monotonically to
failure. The range is defined as the difference between the maximum and
minimum loads applied, and the last column is the number of cycles that were

required to cause failure in the fatigue tests.
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5.3 RESULTS

Three specimens were used to test the rig in order to solve any problems that were

not accounted for in the initial design. For example, the initial design did not

include the spherical bearing in the load cell-flange connection and the roller

support over the flange (see Fig. 5.1), which were added in order to eliminate axial

tensile forces in the studs that resulted from vertical uplift of the flange.

Table 5.3: Loading pattern.

Specimen Load type Maximum Load Range No. of cycles to
[kN] [kN] failure (x10%)

F1-P1 Reverse 20 40 938.0
F2-P1 Reverse 25 50 658.3
F3-P1 Reverse 30 60 60.0
F4-P1 Reverse 35 70 19.8
F5-P1 | Uni-directional 70 60 15.8
F6-P1 | Uni-directional 60 50 86.8
S1-P1 Static 149.0
S2-P2 Static 151.8
F7-P2 | Uni-directional 50 40 555.2
F8-P2 Reverse 25 50 233.1
F9-p2! Reverse/Static 25/110.0 50 (616.8)
F10-P2 | Uni-directional 60 50 95.5
F11-P2 Reverse 37.5 50 698.7
F12-P2 Reverse 37.5 50 197.5
F13-P2 Reverse 25 50 661.5
F14-P2 Reverse 42.5 50 50.0
F15-P2 Reverse 42.5 50 78.2

! stopped cycling at 616.8x10° cycles then loaded statically to failure at 110.0 kN

5.3.1 Static test results

The load-slip curves of the two static tests, S1-P1 and S2-P2, are shown in Fig.

5.6. These tests involved increasing the load monotonically, under displacement
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control, until failure. Failure of S1-P1 occurred at a load of 149.0 kN, while S2-
P2 failed at a load of 151.8 kN. As the difference between the two static strengths
is small, it was concluded that the slightly higher concrete strength of pour two
had a minimal effect on the overall behavior. Therefore, the average static
strength of the specimens was taken as the average of the two tests, 150.4 kN,
which is within 15% of the predicted strength (Ps)push = 176 kN that was
calculated using Eq. 2.39 with n taken as e 10 give the mean strength.

The static strength of a stud shear connector in a beam can be predicted
using Eq. 2.40 where taking 7 as e gives (Psi)beam = 143 kKN which is less than 5%
below the experimental average of 150.4 kN. This suggests that the net axial
force acting on the connectors in the current experimental set-up is very nearly
zero rather than being compressive which is observed in standard push-out tests.

Unfortunately, the extension of the LVDT used to record the slip was not
long enough to record the post-failure behavior, where a softening branch of the
curves would have been seen in Fig. 5.6. The ductility of the shear connection is,
however, shown by the extent of the yield plateau, both extending well beyond 5

mim.
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Figure 5.6: Monotonically increasing static load test.
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5.3.2 Cyclic test results

A total of 15 cyclic tests were performed, 4 of which were uni-directional. A
typical load-slip curve, from specimen F7-P2, is shown in Fig. 5.7. It can be seen
that P, was 50 kN for this specimen and R was 40 kN, which is the difference
between the maximum and minimum load of the cycle. The slip shown is that of
the unloading branch of the cycle, and the numbers above each branch indicate the
number of cycles that have elapsed when the reading was taken. Figure 5.7 clearly
shows that the slip increases as the number of cycles increase, which is referred to
as the incremental set. The initial loading curve from the mean load of 30 kN to
the peak load of 50 kN of the first cycle is also shown to illustrate the transition

from static loading to cyclic loading.
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Figure 5.7: Uni-directional load-slip curves of specimen F7-P2.

Another way of representing the data presented in Fig. 5.7 is by plotting
the maximum slip against the number of cycles elapsed, N, as shown in Fig. 5.8.
Figure 5.8 illustrates that the rate of increase in slip is constant over most of the
fatigue life of the shear connection, as indicated by the broken line. There is a
rapid increase in the slip at the start of the fatigue life where the initial softening
of the connection takes place prior to stabilizing. The damage that occurs

involves local crushing or powdering of the concrete in the vicinity of the
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connector and the initiation and propagation of fatigue cracks within the connector
or the steel flange near the weld collar. More significantly, it is evident that the
maximum slip, hence, the incremental set and the fatigue damage increase very
rapidly near the end of the fatigue life of the connection, providing a reasonable
amount of warning of eminent failure. A more detailed analysis of the shape of

the slip-N curve is given in Section 5.4.2.
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Figure 5.8: Uni-directional slip-N curve of specimen F7-P2.

The results of the remaining three uni-directional cyclic tests are similar to
those shown in Figs 5.7 and 5.8 and, hence, are given in Appendices A and B
along with the other results not discussed in this section. Figures 5.9 and 5.10
show the curves obtained for the reverse-cycle case using the results of specimen
F13-P2. This specimen failed in fatigue after 661.5x10° cycles and was subjected
to a range of 50 kN with a maximum positive load of 25 kN, so that the ratio
P,../R was equal to 0.5.

Figure 5.9 shows the load-slip curve where a positive shear load represents
the pull branch of the cycle meaning that the load was orientated such that the
actuator was pulling on the flange of the specimen. The behavior is similar to that
of Fig. 5.7 for the uni-directional case, and the results are again shown for the

unloading branch of the cycle in both directions.
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Assuming everything being equal, one would expect the slip to be equal in
both the push and pull branches of a cycle. However, as Fig. 5.9 clearly shows,
the slip was greater in the pull portion of the cycle implying that the fatigue
damage was greater on the East side of the connectors. Of the six reverse cycle
tests performed where Pnu/R is 0.5 and in which the fatigue damage is expected
to be equal in both directions of a cycle, larger slips were recorded for the pull
branch in four of the tests. It may be that the experimental set-up induced
somewhat more adverse effects during the pull branch of a cycle. Unfortunately,

insufficient tests are available to confirm this hypothesis.
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Figure 5.9: Reverse-cycle load-slip curves of specimen F13-P2, Ppu/R =0.5.

When the maximum positive and negative slips of each cycle are plotted
against N, the curves shown in Fig. 5.10 are obtained. The shape of the curve for
both the pull and push branches of the cycle is similar to that of the uni-directional
case (Fig. 5.8) with a constant rate of increase of slip over most of the fatigue life.
As was noted in Fig. 5.9, the slips recorded during the pull branch of the cycle
were consistently greater than those of the push branch. However, it is interesting
to note that the slip begins to increase rapidly in both of the branches at

approximately the same time.
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Fig. 5.10: Reverse-cycle slip-N curves of specimen F13-P2, Pu/R = 0.5.

Figure 5.11 shows the load-slip curve for the unloading branch of the cycle
in each direction for specimen F11-P2, where R = 50 kN and P,./R = 0.75.
Failure occurred in the pull portion of the cycle, after 698.7x10° cycles, as would

be expected due to the larger maximum positive load.
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Figure 5.11: Reverse-cycle load-slip curves of specimen F11-P2, Ppu/R = 0.75.
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Figure 5.12 shows the maximum slip-N curves for the pull and push cycles
of specimen F11-P2, which again exhibits the same behavior as that observed in
Figs 5.8 and 5.10 for the uni-directional and Pp./R = 0.5 cases respectively.

The significant observation to make in Fig. 5.12 is that there is very little
fatigue damage occurring in the push branch of the cycle as the slip is very nearly
equal to zero throughout the fatigue life. This may lead to the suggestion, that for
values of P./R greater than about 0.75, the fatigue behavior can be considered to

be uni-directional.
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Figure 5.12: Reverse-cycle slip-N curves for specimen F11-P2, P,./R =0.75.

5.4 ANALYSIS OF RESULTS

The results of the current investigation are compared with those obtained by
Slutter and Fisher in 1966 and by Mainstone and Menzies in 1967. The parts of
the tests that can be compared with the current investigation have been
summarized Section 2.6.1.

Unfortunately, static tests of the specimens tested by Slutter and Fisher
(1996) were not performed, however, sufficient information was given so that Eq.
2.39 could be used to estimate the static strength of the specimens. For the A- and
B-series specimens shown in Table 2.3, a static strength of 439 kN is predicted

given that the average f. = 410 MPa and f. = 29.0 MPa, and n was taken as o to
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obtain the mean strength of the four 19 mm studs that were used in each specimen.
As f, = 450 MPa for the 22 mm studs, the static strength for the G- and H-series
specimens also shown in Table 2.3 is predicted to be 658 kN using Eq. 2.39, given
that the average f. = 31.8 MPa, and again taking 7 as ee.

5.4.1 Asymptotic endurance of experimental results

In order to determine E,, two points along the failure envelope shown in
Fig. 2.8 are required so that it can be extrapolated to the horizontal axis, as
indicated by the broken portion of the failure envelope.

For the current experimental results, and those taken from Slutter and
Fisher and Mainstone and Menzies, the two points along the failure envelope are
defined by the static strength of the specimens (0,Py), and by the maximum load
applied during the fatigue test (Nexp, Pmax). The asymptotic endurances determined
for the current investigation are determined using the results given in Table 5.3
and are shown in Table 5.4. The asymptotic endurance for the results of the other
researchers were determined using Tables 2.3 and 2.4 and are summarized in

Table 5.5.

Table 5.4: Asymptotic endurances.

Specimen Load o Specimen Load B,

Type' (x10%) Type' (x10°)
F1-P1 R 1081.9 Fo-P2 R 2296.2
F2-P1 R 789.5 F10-P2 U 158.9
F3-P1 R 75.0 F11-P2 R 930.8
F4-P1 R 25.8 F12-P2 R 263.1
F5-P1 U 29.6 F13-P2 R 793.4
F6-P1 U 144.4 F14-P2 R 69.7
F7-P2 U 831.7 F15-P2 R 109.0
F8-P2 R 279.6 " R - reverse-cycle

U - uni-directional
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Table 5.5: Asymptotic endurances for other researchers.

a) Slutter and Fisher b) Mainstone and Menzies
Specimen Load E, Specimen Load E,
Type' (x10%) Type1 (x10%)
alA R 1934.7 S10 U 4533.3
blA R 2407.3 S12 U 2260.5
clA R 3117.0 S13 R 774.5
a2A R 139.7 S14 R 260.8
b2A R 140.0 S15 R 591.3
c2A R 228.6 S17 R 2629.2
a3B U 205.7 S18 R 135.8
b3B U 169.3 S20 U 2903.5
c3B U 294.4 S21 R 31.2
a4B U 68.5 S23 U 31725
b4B U 83.7 S24 U 50.0
c4B U 96.9 S25 U 97.0
elG R 1261.1 S27 U 48.8
e2G R 283.1 S28 U 32.6
e3H U 158.9 S30 U 71.3
e4H U 514 S31 U 41.5
' R - reverse-cycle S32 U 1203.3
U - uni-directional
S33 U 660.7
S34 R 23.7

Based on Eq. 2.45, the asymptotic endurance can be plotted against the
non-dimensional parameter R/Py,. Figure 5.13 plots the log(E,) vs log(R/Py) data
for the current investigation along with the asymptotic endurances predicted by
Eq. 2.45. The mean endurance line is determined using Eq. 245 with n = o,
which represents the case when all of the connectors fail as a group. The two
characteristic endurance bounds represents the endurance of a single connector,
hence, n = 1 in Eq. 2.45. The coefficients shown beside the reverse-cycle data

points are the Pp./R values.
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The results fall within the bounds defined by the characteristic endurance
(Fig. 5.13), with the exception of one test, that of specimen F9-P2 which was
loaded monotonically until failure after 616.8x10° cycles. It can also be said that
all of the reverse-cycle tests have higher endurances than the corresponding uni-
directional test with the exception of the two tests where Pn./R=0.85.

Figure 5.14 shows the results of Slutter and Fisher and Mainstone and
Menzies superimposed on the results of the current investigation (Fig. 5.13). The
behavior observed with the other researchers is similar to that of the current
investigation where in general, the fatigue life of the reverse-cycle specimens is
longer than that of the uni-directional ones. Most of the results from the other
researchers also fall within the bounds defined by the characteristic endurance
lines, and the scatter is also similar to that observed in Fig. 5.13. This provides
some degree of reassurance that the current results obtained are reliable.

In order to give a better feel for the scatter in the test results and the actual
increase in the asymptotic endurance under reverse-cycle loading, the increase in
E, is plotted against the ratio Ri/R. This is shown in Fig. 5.15, where R, is defined
as the magnitude of the range in the positive branch of the cycle only. The term
R, is introduced so that the ratio would equal 1.0 for the uni-directional case,
opposed to using Pma: Where the ratio P./R would, in general, be greater than 1.0
for the uni-directional case. The increase in the asymptotic endurance is defined
by the ratio, E/(E. )ave, Where the denominator is the average asymptotic
endurance of all the uni-directional tests performed for the corresponding range.
As it is necessary that both the reverse-cycle and uni-directional tests have the
same total range, only the results from Slutter and Fisher could be used in this
comparison.

Figure 5.15 clearly shows that the endurance of stud shear connectors is
increased under reverse-cycle loading compared to the uni-directional case with
the same total range. The increase in E, also appears to increase as R./R
approaches 0.5. It is also evident that there is a significant amount of scatter in
both test results, more so, however, with the current investigation. A certain
amount of scatter is inevitable with all forms of testing, however, it is more
pronounced with fatigue tests especially in the reverse-cycle case where additional

problems are encountered as the cycle passes through zero load.
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Some of the scatter observed during the current series of tests may be
attributed to the quality of the welds. Figure 16a shows a photograph of a good
weld after fatigue failure has occurred, while Fig. 16b shows a poor weld. There
is significant pitting present in the poor welds and there does not appear to be any
fatigue cracking associated with failure. Approximately 1/3 of the welds appeared
to be poor, however, there does not appear to be any correlation between the
number of poor welds in a specimen and the endurance. The only exceptions
being specimens F14-P2 and F15-P2, both of which had P.,./R = 0.85 and
endurances less than the uni-directional case, where all three of the welds in each

specimen appeared to be poor.

concrete ‘@
block s

by
i

=kt el

a) good weld b) poor weld

Figure 5.16: Welds after failure.

5.4.2 Slip-N characteristics

The shape of the slip-N curves for all of the tests where sufficient data points were
collected is well defined. A bi-linear distribution is used to idealize the slip-N
curve as shown in Fig. 5.17. The first part of the distribution represents the
gradual increase in slip that occurs at a constant rate of [ds/dN];. The slip
increases gradually over most of the design life, defined by the slip s, at the onset
of cyclic loading and the point (N,,s,) which represents the point where the slip

begins to increase rapidly as failure approaches. The slip s, is related to the initial
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slip s;, as will be shown later in the section, which can be determined by
estimating the initial stiffness of the shear connection in the composite beam.
After N, cycles, the slip increases exponentially, however, this portion of the
distribution is also idealized linearly with a constant slope of [ds/dN],. The
constant slope of the rapidly increasing portion of the distribution is defined once
again by (N, s,) and the point (Nexp,s,) at failure. As it was not possible to record
the maximum slip just prior to failure, the ultimate static slip s, (Eq, 2.41) is used

as an approximation.

No. of cycles

Figure 5.17: Slip-N characteristics.

A summary of the numerical analysis that was performed is given in Table
56. The first row in each of the reverse-cycle specimens represents the results
from the push branch of the cycle while the second row is that of the pull branch.
All of the values were taken or derived from the experimental data with the
exception of s,, which was calculated using Eq. 2.41. It is also noted that the
magnitude of N, is subject to some error as judgement was required in determining
when the slip begins to increase rapidly. The cells that have been left blank
indicate that insufficient data was available to confidently predict the parameter in
question. Where appropriate, the average value of the various parameters is given.

In order to determine whether or not there is a noticeable difference between the
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reverse-cycle and uni-directional cases, the results are given separately and then an

overall average is calculated where applicable.

Table 5.6: Analysis of slip-N curves.

Load | Specimen | s/ s/si | N/E, | N/Neyp | [ds/dN)g | [ds/dN],
type x10%) | (x10%)
F2p1 | 1468 | 2280 | 0570 | 0.684 | 006 | 193

1468 | 2280 | 0570 | 0684 | 006 | 193

F3P1 | 1080 | - i - 6 :

1418 | - - - 6 -

FaPl | 1.602| - i - 10 =

1392 - : i 9 ;

F8P2 | 1678 | - | 0358 | 0429 - 304
Reverse 2250 | 2.192 | 0358 | 0429 | 02 30.4
FoP2 | 2.104 | - . : 0.01 i

1940 | - i - 0.02 -

Fl1P2 | - 0662 | 0881 - 459

1197 | 2949 | 0662 | 0881 | 03 45.9

FI2P2 | - - - - ; .

2316 | - " : i i

F13p2 | 1671 | 2014 | 0599 | 0718 | 002 | 213
2140 | 3851 | 0599 | 0718 | 0.1 213

Average 1695 | 2594 | 0.547 | 0678 | NA | NA
F5p1 | 1552 | 2.957 | 0395 | 0.741 20 870

[ FeP1 | 1227 4544 | 0548 | 0912 5 468
U By [ 1,605 | 4569 | 0.594 | 0.890 | 0.6 59
F10.p2 | 1.584 | 3.546 | 0514 | 0.855 4 253
Average 1492 | 3904 | 0513 | 0850 | NA | NA
Over-all Average | 1.650 | 3.118 | 0530 | 0.764 | N/A | NA
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All of the parameters calculated in Table 5.6 are related to the magnitude
of R to varying degrees. This implies that for parameters which are very sensitive
to R, an average value, based on all the tests performed, has no meaning. For this
reason, no average values are given for the parameters [ds/dN], and [ds/dN],
which are similar to the incremental set relationship given by Eq. 2.43.

Although Eq. 2.43 was derived assuming a linear relationship, it is
compared to the [ds/dN], results of the current proposal in Fig. 5.18. A linear
regression of the experimental data points resulted in the equation given in Fig.
5.18, which is also represented graphically by the solid line, where the factor
6.678 is comparable to the exponent 4.5 of Eq. 2.43.

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 $
-1 -
log(R/Pg)
-2 -+
_3 -

log(ds/dN) = 6.678log(R/Py,) - 1.8947

log(ds/dN)
)

Figure 5.18: Incremental set comparison.

The remaining parameters presented in Table 5.6 do not appear to be as
sensitive to R as the corresponding averages for the reverse-cycle and uni-
directional tests are reasonably close. It is noted that there are too few test results
to suggest a numerical model for the bi-linear slip-N curve proposed, however, the
general shape can certainly be described. In particular, attention is drawn to the
s,/s; parameter where the average value indicates that the slip begins to increase
rapidly once the maximum slip is about 3 times the initial slip at the start of the

design life. Alternatively, it could also be said that the slip begins to increase
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rapidly after 50% of the asymptotic endurance is reached as given by the
parameter N/E,. This is significant as it can be used to predict the remaining life

of a structure.



Chapter 6

Conclusions and

Recommendations

6.1 CONCLUSIONS

The following section presents the conclusions the have been made from the
original work associated with this research project, which is divided into three
main categories; linear-elastic partial-interaction (Chapter 3), non-linear partial-
interaction (Chapter 4) and experimental investigation (Chapter 5). Finally,

suggestion are given for future directions in the area.

6.1.1 Linear-elastic partial-interaction analyses

Simple procedures have been developed that can be used to more realistically
assess the residual strength and residual endurance of simply supported steel-
concrete composite bridge beams. The procedures take into account the change in
the shear flow forces along the steel-concrete interface and the change in the
flexural stresses by allowing for partial-interaction, using simple reduction and
multiplication factors. It has been shown that the simple procedures, developed
using linear-elastic theory, agree very well with linear finite element partial-
interaction computer simulations, validating the approach.

The beneficial effect of partial-interaction is that the reduced shear flow
force increases the fatigue life of the shear connectors significantly with respect to
current full-interaction procedures. The detrimental effect is that the steel and
concrete flexural stresses increase, especially in the vicinity of the steel-concrete

interface, due to the location of the partial-interaction focal points. The stresses at

136
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the bottom face of the concrete component may be tensile causing accelerated
cracking and fatigue problems in the concrete, which are not anticipated with full-
interaction analyses. In the steel component, increased compressive stresses near
the interface may potentially result in unexpected buckling problems, and the
increased tensile stresses near the bottom flange will reduce the fatigue life in the

area.

6.1.2 Non-linear partial-interaction analyses

The complex interaction between friction along the steel-concrete interface and
the non-linear load-slip behavior of the stud shear connectors was qualitatively
described using a simple physical model, which led to the development of a non-
linear finite element program suitable for modeling the behavior.

Computer simulations showed that the normal compressive forces acting
across the steel-concrete interface are concentrated around the load locations.
However, it was observed that the longitudinal shear force resisted by the
connectors was reduced relatively uniformly along the span. It followed,
therefore, that the total range resisted by the connectors was also reduced, further
increasing the anticipated fatigue life of the shear connection with respect to the
linear partial-interaction analyses.

A comparison between the computer simulation and an existing
mathematical model showed that the predictions of the model are conservative
over the length of the beam. The model is a simple hand procedure based on full-

interaction results.

6.1.3 Experimental conclusions
Several conclusions can be drawn from the results of the experimental programme
and the comparisons made with the results from other researchers.

Tt is clear that the strength and stiffness of the shear connection is
constantly reducing throughout the fatigue life from initial application of cyclic
loads. This is evident by the constant increase in slip measured as the number of
cycles increased. This information can be useful when trying to establish the

remaining fatigue life of existing composite bridges as the rate of increase in slip
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remains constant until approximately 50% of the asymptotic endurance remains,
which would provide adequate warning of failure.

The second significant conclusion that can be made is that the fatigue life
of a shear connection subjected to reverse-cycle loading is longer than one
subjected to uni-directional cyclic loading of the same total range. As the scatter
for both the current investigation and that of the other researchers is quite large,
the increase in the endurance can not be quantified. However, the increase in
endurance is substantial, ranging from about 1.5 to 15 times the uni-directional
asymptotic endurance.

A desirable realization of this study is the fact that current design
procedures are conservative as the fatigue endurance of connectors subjected to
reverse-cycle loading are predicted using relationships obtained from uni-

directional tests.

6.2 RECOMMENDATIONS

It would be beneficial to extend the linear-elastic theory and develop simple
reduction and multiplication factors, similar to those given in Chapter 3, for two-
span continuous beams. As the partial-interaction focal points are located near the
extreme fibers of the cross-section, the effect of partial-interaction is amplified
near the steel-concrete interface. This observation may be even more important in
the negative moment regions of the beam over the internal supports where the
tensile stresses in the top steel flange may be significantly greater than that
predicted by full-interaction analyses. It is also suggested that the theory be
developed for other practical load conditions, in particular, uniformly distributed
loads that could, amongst other things, be used to predict the behavior of beams
cast using propped construction.

Quantifying the additional reduction in the range resisted by the shear
connectors due to friction and the non-linear load-slip path of the connectors for
the simply supported case would be advantageous. The effects of incremental set
could also be included and again, the extension of the theory to continuous beams
is suggested.

An experimental investigation of two-span continuous beams under cyclic

Joading would be beneficial to determine the strains in the steel section, especially
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in the negative moment region, and slip along the interface in order to validate the
theoretical models and computer simulations. Additional testing of reverse-cycle
push-out specimens would be required to reduce the observed scatter so that the
increase in the endurance could be quantified. Placing more emphasis on the
welding procedure, resulting in a more consistent set of welds may also reduce the
scatter. Additional tests would also be required to quantify the slip-N curve more
accurately, which could be used in computer simulations to help predict the

remaining strength and endurance of existing structures.
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Appendix A

Load-slip curves

The following Appendix shows the load-slip curves of all of the specimens tested

as part of the experimental investigation.
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Appendix B

Slip-N curves

The following Appendix shows the slip-N curves of all of the specimens tested as

part of the experimental investigation.
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