
oF

a9'3-A

l
It

Asynchronous Control Circuit Design
and Hazard Generation: Inertial Delay

and Pure Delay Models

Nozar Tabrizi

B.S.E.E (Sharif University of Technology) 1980
M.S.E.E (Sharif University of Technology) 1988

A thesis submitted for the degree of

Doctor of Philosophy

in the Centre for High Performance Integrated
Technologies and Systems

(CHiPTec)

Department of Electrical and Electronic Engineering

The University of Adelaide

by

June 1997

Table of Contents

1 Motivation for Asynchronous Circuits

1.1 Introduction.

1.1.1 Clock skew

I

t.2

1.I.2 Power consumption.............

Ll.3 Variable computation time..

1.1.4 Modularity and upgradiblity

Organization

2.1.3 Delay insensitive circuits

2.2 State based techniques

2.2.1 Classical Huffman method............

2.2.2 One-hot coding.....

2.3

.. 1

,.2

..5

..6

..8

10

15

2 Delay constraints and Design Techniques of Asynchronous Control

Circuits L3

2.t Introduction t3

2.1.1 Huffman classical method..... 14

2.1.2 Speed independent circuits 14

.16

.16

t9

2.2.3 Timing requirements in the Huffman methodology.............. 22

2.2.4 Friedman and Menon's methods to design multiple input change

asynchronous circuits. 23

Burst mode or self clocked circuits26

2.3.1 Burst mode circuits using controlled excitation and edge triggered

flip-flops..... .26

2.3.2 Locally clocked asynchronous state machines

2.3.3 Q-Modules

2.3.4 3D Asynchronous circuits......

2.4 Muller's speed independent circuit theory

29

32

35

36

362.4.1 Introduction...

Two restricted types of speed independent circuits

A flow table based speed independent circuit realization...

High level graph specifications for asynchronous circuits ..

2.4.5 Signal transition graphs.

2.4.6 Change diagrams....

2.4.7 STG based implementations..

2.4.2

2.4.3

2.4.4

3.5.3

3.5.4

3.5.5

.39

.40

.43

.44

.41

49

3

2.5 Conclusion 50

TWo Level Logic Implementation of Asynchronous Circuits from STGs

under the Inertial Delay Model and the Well-Behaved Environment

4ssumption............... 51

3.1

3.2

3.3

3.4

3.5

3.6

3.1

3.8

3.9

Introduction. 51

Basic notions and definitions.......... .'.'....,,54

..........56

..........58

Well-behaved environment.....

Inherent function hazards

Multiple input change high to low dynamic hazards 58

3.5.1 Introduction 58

3.5.2 Dynamic hazards 59

3.5.2.t Dynamic function hazards (Type 1) 61

3.5.2.2 Dynamic logichazards caused by static logic l-hazards

(Type 2) 63

3.5.2.3 Real dynamic hazards (Type 3)............... 64

Delay bound for critical interconnection lines..71

3.5.3.l Critical wire delay restriction and virtual isochronic forks

..................12

Dynamic hazards in multi-level logici4

Example14

Multiple input change low to high dynamic logic hazards t5

Static logic ha2ards.................. 19

Delay hazards under the well-behaved environment assumption.......... 80

Conclusion 81

4 Delay Hazards in STG Based TWo Level Logic Asynchronous Circuits ...83

4.t

4.2

4.3

4.4

4.5

4.6

Introduction

A classification of delay hazards

Static O-delay ha2ards............

Static 1-delay hazards.......

High to low dynamic delay hazards....

Conclusion.....

Relocation of problematic inverters

Safe cells

Delay hazards analysis and verification

5.5.1 Static delay hazards.....

5.5.2 Dynamic delay hazards

Logic hazards in complex logic gates

Conclusion

83

85

87

90

99

103

1045 Hazards in Complex Gate Based VLSI Circuits....

5.1

5.2

Introduction

Different types of forks

5.2.1 Isochronic forks

5.2.2 Delay insensitive forks.........

5.2.3 Asymmetric isochronic forks

... 104

... 105

... 105

................ 107

................. 1 I 1

................ ttz

................ 1 r6

123

........... t23

........... 131

........... 133

...........137

.. t39

.. t40

.. t42

.. r42

142

r43

5.3

5.4

5.5

5.6

5.7

6 A Tabular Method for Guard strengthening, symmetrization and

operator Reduction for Martin's Asynchronous Design Methodology139

6.t

6.2

6.3

6.4

Introduction

Overview of Martin's methodology for asynchronous logic design

Circuit realization

Tabular method

6.4.I Deriving new descriptions: STG and STD....

6.4.2 K-Map generation

lll

6.4.3 Operator extraction .143

. r45

. 148

168

168

169

172

Examples

Conclusion

7

Bibliography 158

Appendix A Parallel rbansitions and Distributive Lattices.16g

6.5

6.6

Conclusion and Further Work154

4.1

4,2

4.3

4.4

Introduction

Basic notions and definitions..........

Transition cubes and Poset theory..

Example...

lv

1.1

r.2

1.3

1.4

1.5

1.6

List of Figures

A shift register suffering from clock skew.

Malfunction caused by clock skew.

Faulty triggering avoided using edge triggered master slave flip-flops

Faulty triggering avoided using two phase non-overlapping clock

A pipeline structure to demonstrate a better throughput for asynchronous systems.

The control unit has not been shown here.......... j
Bundled data model with two wire handshake, (a) modelling delay in a

processing element, and (b) timing diagram. .. 8

(a) Huffman model for asynchronous circuit, (b) the sequential counterpart. 16

Flow table design.......

2

3

4

5

2.t

2.2

2.3

2.4

2.5

2.6

2.1

2.8

2.9

2.to

2.tr

2.t2

2.13

2.r4

2.15

2.16

2.tl

An asynchronous circuit behaviour partially modelled by a flow table............... l8

Critical race as a result of multiple state variable change. 19

Direct implementation of a partial flow table using one-hot coding.21

Multiple input change: second interpretation.............23

Circuit M' is driven by both primary and delayed inputs.25

The timing of the Input transition | + Iyfor the circuit in Figure 2.125

A general block diagram of burst mode circuits introduced by Chuang andDas.2l

(a) Moore type and (b) Mealy type asynchronous state graph28

A general timing diagram corresponding to Figure 2.9.29

The general model of locally clocked asynchronous state machines................... 30

A general timing diagram for locally clocked asynchronous state machines.31

A general block diagram of a Q-module............32

Semi-delay insensitive timing diagram of control signals in a Q-module: there is

only one timing constraint.34

Multiple input change: parallel transitions.35

A restricted order for output signal transitions which is difficult to model in flow

table based techniques. ..

fl

2.I8 (a) An autonomous circuit and (b) its state transition diagram. 38

2.I9 A symbolic state transition diagram. The equivalent states are {a,b}, {c} and {d}

38

2.20 A general block diagram of Armstrong et al.'s design method.41

2.21 Timing diagram for the data-spacer method..

2.22

2.23

2.24

A Petri net modelling the behaviour of the Muller-C element.

(a) A state machine Petri net, (b) the corresponding STG.

(a) The STG corresponding to the Petri net in Figure 2.22 with proper

interpretation for the transitions, and (b) the resulting STD.

2.25 (a) A change diagram, and (b) the corresponding STD...

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.14 Inertial delay model does not prevent low to high dynamic hazards.....

3.15 Dynamichazard in the presence of wire delay.

.'.,...',42

.........43

.........45

.........46

.........48

..51

7I

7I

73

3.1 Parallelized STGs allow output signal to fire concurrently with input transitions

even under well-behaved environment assumption.

High to low dynamichazard caused by one hs-type p-term. 60

A transition cube (the whole map) with on-set vertices not covered by one cube.62

Dynamic hazard caused by static hazard.63

TCP or prime implicants, either can be used to avoid static hazards.64

High to low real dynamic logichazard generation in unrestricted delay model.. 65

Graphical representation demonstrating tg and lrp p-terms participating in a

possible 1-0 dynamichazard.66

An example demonstrating how an overlapping hsp-term is disabled when the tg

p-term is disabled. .67

3.9 Dynamic hazard in the absence of wire delay in SOP circuits............................. 69

3.10 Dynamichazard caused by static hazard assuming SI model. 69

3.11 Timing diagram showing dynamic hazard caused by static ha2ard.....................70

3.12 K-Map showing the role of static hazard in causing dynamic ha2ard..................10

3.13 Static hazard and hence dynamic hazardis now removed under the inertial delay

model

vl

3.16 Multi-level combinational circuit which is still 1-0 dynamichazard.free under

inertial gate delay model

3.I7 A STG resulting in a possible dynamic hazardon r = ad + ax + dxfor a- ll d-.15

3.18 A transition cube (the whole map) with on-set vertices not covered by one cube

to demonstrate a 0-l dynamic function hazard. j6

3.19 An example demonstrating how an overlappinghsp-term is disabled when the ts

p-term is disabled. ..

l4

t7

4.1

4.2

3.20 An example demonstrating how an overlappinghsp-term is disabled when the ts

p-term is disabled. 71

3.21 A 0-1 dynamic hazard. t8

3.22 A STG and the resulting two level logic implementation for node å to show

hazard generation due to non-atomic state model.............. 8t

1-0 dynamic or static 1- (delay) hazard. g7

(a) A partial STG and (b) a typical two level implementation demonstrating delay

static O-hazard generation under fork skew assumption g9

A STG, thehazard region for node c, and the logic equations of all variables.... 93

(a) The STG and hazard region for variable a, and (b) an implementation for node

a and the logic equations in Example 4.2............94

(a) The STG and hazard region for variable d, and (b) an implementation for node

d, and the logic equations in Example 4.3. 95

4.6 (a) The STG and hazard region, and (b) the logic equation and an implementation

for variable c in Example 4.4. ..96

A src and the hazard region (the shaded area) for node å (see Example 4.5). ..9g

(a) a typical SOP circuit, (b) - (Ð dlfferent delay behaviour of different p-terms in

SOPs 100

4.9 (a) Two hazard regions for node c, (b) asimple gate implementation for node c

r02

Two AND-OR-NOT complex gates realized with (a) real, (b) ideal transistors.105

106

4.3

4.4

4.5

4.7

4.8

5.1

5.2 A fork with different branch delays

vll

5.3 A set of parallel transitions replacing x* when signal x is propagated through a n

branch fork.

5.4 (a) A STG, (b) the extended STG with a two branch fork for literal a, (c) the same

extended STG with the implicit transition o2* + d.*, (d) a three branch version of

5.5

5.6

5.7

5.8

L/R element: (a) logic circuit, and (b) STG. 110

Both branches -r7 and x2 of the isochronic fork x in Figure 5.5 are acknowledged

on both transitions. 110

(c)

(2)

STG¡i: the two branch fork /; is an asymmetric isochronic fork. (see the logic

circuit in Figure 5.5)...........

(a) L/R element implemented with a R-s flip-flop, (b) extended src for fork

111

..lt2

113

....... r20

.......12r

.......121

.......122

li

5.9 Using De-Morgan's law a problematic inverter (1) is moved to a asymmetric fork

5.10 A problematic inverter which cannot be eliminated by applying De-Morgan,s

Law, (a) STG, (b) logic equations, (c) and (d) two possible 2-level

implementations.

5.11 A hazardous fork on SO(a)...114

5.12 Using double inversion the required order, that is bx and then a*, is guaranteed

115

113

5.13

5.r4

5.15

The basic structure of a safe cell. 116

(a) A partial src, (b) the corresponding extended STG, and (c) the same STG

with two safe node b and c............... llg
A second arrangement for the extended STG in Figure 5.14. Now only one node,

d, needs to be safe..

5.16 (a) A partial STG, (b) the corresponding extended STG, (c) the same STG with a

safe node b.................

5.I7 A STG and one coffesponding group of logic equations.

5.18 A modelling node, a2,implemented as two cross coupled complex gates.

5.19 Modulo 2 function to extract original variables from modelling variables

vl11

IS and SI Tables.122

Four possible signal transitions and the corresponding literal transition graphs.l2T

L/R element: logic circuit and STG. 130

complete srG and soP-Nor implementation of L/R elemenr........................ 130

complete srG and modified implementation of L/R element........................... 131

(a) Literal transition 1-2 from Figure 5.21, (b) and (c) two possible positions for

the third transition, PO(x)+..... r32

5.26 In simple gate based SOPs (a) both transitions q + x & x -+ q arehazardous, (b)

a redundant cube b.c is introduced to remove the hazard.

134

5.20

5.2r

5.22

5.23

5.24

5.25

5.27

5.28

5.29

5.30

(a) The immunity of complex gates against single input change static hazards, (b)

a typical logic diagram. 135

(a) Hazardous and (b) hazard free multiple input (static l-hazard) in simple gate

based SOPs. 135

Hazardous and hazard free multiple input change (static l-hazard) in complex

gate based SOPs. 136

Multiple input low to high dynamic hazards in simple gate based Sops.137

6.1 (a) The output of the handshake expansion of the L/R element. Variable ¡ has

been introduced to provide the circuit with enough memory, (b) an

implementation for variable x (see Example 6.1)...........

6.2 A complex gate implementation for the state holding logic operator x - rs*x.ls

t42

141

6.3

6.4

(a) Output sequence, (b) STG and (c) STD for Example 6.1. 146

K-Maps and logic circuits realising state holding node x, assuming shared use (a),

disjoint use (b) and not full use (c) of don't cares in Example 6.1.............I49

Output sequence (a), STG (b), and STD (c) for Example 6.2. 150

K-map pairs and corresponding circuit realizations for Example 6.2................ l5l
(a) compiled program, (b) the corresponding srG, and (c) the reshaped srG for

t52

6.5

6.6

6.7

Example 6.3...

lx

6.8 (a) Partial src, (b) the corresponding srD, (d) K-maps and (e) circuit diagram

(an RS-Flip-Flop) for variable b (c), and K-maps for variable so (c) in Example

6.3. . 1s3

4.1

4.2

Transition cube is a = I for transition I0l0 (s) to lI0l (x).

Hasse diagram for the transition cube shown in Figure A.l

172

172

X

Abstract

The distribution of global clock signals in increasingly complex digital integrated cir-

cuits is considered to be a limiting factor in the near future. Clock skew, high power clock

drivers, area penalty for global clock routing and a safety margin for clock period are the

major factors giving rise to this limit. As an attempt to cope with this shortcoming, asyn-

chronous methodologies have been considered a reasonable successor for the traditional

synchronous technique by many researchers since the mid 1980's. However, the remedy,

as a general rule, carries its own drawbacks. The major problem in asynchronous design

techniques is the generation of possible spurious signal transitions which can easily cause

a faulty state change and hence a peffnanent malfunction in the whole system. There are

two usual methods to avoid these problematic signal transitions or hazards.

l. Delays which may be inserted to balance delays in different signal paths (that is

hazard,prevention), or to absorbl spurious transitions (that is hazard.diminishing).

Both approaches suffer from some overhead in terms of area and performance.

2. Introducing redundancy is another common technique for preventing hazards.

This covers a vast area of research work from introducing redundant states as an

attempt to eliminate races in the classical Huffman methodology, to some recent

research work of gate level implementation of speed independent circuits.

One major objective in this Ph.D thesis is to relax the hazard problem through a third

avenue, that is considering a realistic delay model. Although some researchers have as-

sumed the inertial delay model in their work, this delay model has not been extensively

investigated to uncover its effect on the existence of hazards.

'We investigate two level logic synthesis of asynchronous circuits from STGs under

the inertial gate delay model and the well behaved environment. 'We show that multiple

input high to low dynamic logic hazards are ruled out under the inertial gate delay model

in two level SOP logic circuits. Multiple input low to high dynamic hazards are then stud-

ied under the same conditions and it is shown that this type of hazardis unlikely to occur

under the inertial gate delay model unless a liberal delay flexibility is required between

the first level AND gates of SOPs.

L Only inertial delay can be used for this pu{pose.

X1

In the next stage of our work we assume the isochronic fork model for interconnection

networks and first show that delay hazards are considerably reduced in two level SOP cir-

cuits under the pure bounded delay model. The gate delay model is then restricted to in-

ertial and it is shown that delay hazards are further reduced and limited to virtually one

type only.

The second major goal in this thesis is focused on design methodologies and hazard

free implementations based on redundant logic where the inertial delay model does not

help to avoid hazards.

1. Delay hazards are analysed in complex gate based implementations which may

only be caused by inverters at some inputs under the isochronic fork assumption.

We introduce safe cells,based on which well-formed STGs can be implemented

free of delay hazards with no unrealistic assumptions about physical gates.

Although this technique still compromises redundancy for the sake of preventing

hazards, we show that it may achieve a significant area gain in comparison with

the two-phase RS-implementation method [32] which is one of the few true speed

independent implementation techniques that we are aware of.

2. Martin's asynchronous design technique [49] is a robust speed independent

design methodology. In this thesis we introduce a tabular method to perform the

last two of the four phases of Martin's compilation process for asynchronous

circuit design. The method is then demonstrated with three examples, illustrating

that our systematic method is very straightforward, flexible and convenient to

apply, and hence it lends itself to automatic compilation.

In summary the contribution of this thesis is as follows:

We showed that two classes of hazards are ruled out or become considerably less like-

ly to occur under the inertial delay model and the isochronic fork assumption. The signif-

icance of these achievements is that the logic designer is relieved of the removing of a

major class of hazards.

V/e introduced safe cells to prevent delay hazards normally caused by inverters at

some inputs of complex AND-OR-NOT gates under the unbounded gate delay model.'We

developed a theorem identifying some sufficient conditions to implement a node with a

safe cell.'We concluded that safe cells are not dual rail code based and hence can be mixed

xll

with normal AND-OR-NOT gates. The significance of this theory is that the design be-

comes independent of the delay across inverters which has incorrectly been assumed neg-

ligible in some design techniques. This goal is achieved at some area overhead, depending

on the number of safe cells used in the circuit.

'We developed a tabular method to compile the output of the handshaking expansion

stage of Martin's asynchronous design methodology into combinatorial / state holding

logic operators in a complementary technology such as CMOS. We showed that this

method is a flexible and straightforward alternative for the original method.

xlll

Acknowledgement

I would like to express my gratitude to Professor Kamran Eshraghian my supervi-

sor for his valuable guidance and encouragement during my ph.D program.

My supervisor Mr. Michael Liebelt deserves special praise for his valuable time and

much helpful advice on this research. Mike was always available to discuss during various

stages of my research. His constructive reviews, comments and suggestions were always

a great support for the progress ofthe research.

I should thank all academic and administrative staff and also postgraduate students

specially in CHiPTec (the former GaAs) centre in our department who provided me with

such a pleasant environment allowing me to always have enjoyable time during my study

at the University of Adelaide.

I also thank my father, sister and my family. I appreciate their continual support and

encouragement.

I should thank the Ministry of Culture and Higher Education of the Islamic Republic

of Iran for providing me a scholarship and an opportunity for studying in Adelaide.

I also thank the Department of Electrical and Electronic Engineering, the University

of Adelaide for kindly paying my tuition fee for the past two and half years.

Nozar Tabrizi

June 1997

Adelaide

xv

List of the author's recent publications

1. Nozar Tabrizi, Kamran Eshraghian, Michael J. Liebelt, *A256 x 4 Bit Three Phase

GaAs D-RAM.", in Proceedings of the 13th Australian Microelectronics

Conference, (Micro'95), pp 306-31 l, Adelaide, Australia, July 1995.

3. Nozar Tabrizi, Michael J. Liebelt, Kamran Eshraghian, "A Tabular Method for

Guard Strengthening, Symmetrization and Operator Reduction for Martin's

Asynchronous Design Methodology", accepted for publication in the IEEE

Transactions on Computers, February 1997.

4. Nozar Tabrizi, Michael J. Liebelt, Kamran Eshraghian, "Dynamic Hazards and

Speed Independent Delay Model", in Proceedings of the Second International

Symposium on Advanced Research in Asynchronous Circuits and Systems,

(Async'96), pp 94-103, Aizu, Japan, March 1996.

5. Nozar 'îabrizi, Michael J. Liebelt, Kamran Eshraghian, "Delay Hazards in Complex

Gate Based Speed Independent VLSI Circuits", in proceedings of the Sixth Great

I'akes symposium on VLSI (GLS -VLSI' 96), pp 266-27 l, Iowa, usA, March I 996.

6. Nozar Tabrizi, Michael J. Liebelt, Kamran Eshraghian, "Delay Hazards in Two

Level Asynchronous VLSI Circuits Synthesised from Signal Transition Graphs",

accepted for presentation at the L4th Australian Microelectronics Conference,

(M ic r o' 97), Melbourne, Australia.

xvl

To the memory of my mother

xvll

Av[o tiu øtío n for Asyncftro nous Circuits

1..1 Introduction

Fabrication process dependent and hence unknown parasitic delays inherent in logic

gates and manifested as different types of hazards (that is spurious signal transitions),

have always been a restricting factor in logic design. In the mature synchronous logic de-

sign methodology these parasitic transitions are hidden through the use of a global clock

signal. However, considering the fast growing technology of integrated circuit fabrication

in terms of both chip area and transistor size (and hence transistor count), this signal itself

is now becoming a restricting factor: clock skew, high power clock drivers, area penalty

for global clock routing and more interesting, a safety margin (in terms of a pessimistical-

ly long clock period to guarantee the correct operation under the worst case data, voltage,

temperature and process parameters) are the side effects entailing extra design efforts. Al-

Chapter I

though the asynchronous design methodology due to Huffman [32] was proposed in the

mid 1950's, the resurgence in asynchronous logic design emerged in the mid 1980's to:

. relax clock distribution problems including

clock skew,

high power clock drivers and

area penalty for global clock routing,

'reduce power consumption (by eliminating clock drivers and unnecessary signal

transitions) and

'provide a better management for chip complexity resulting from the modularity

inherent in asynchronous circuits.

In this design methodology, however, the above mentioned spurious signal transitions

are manifested as implementation deviations from specification, which may not easily be

ignored any more and hence are still a major concern in asynchronous logic design.

The following are some of the major benefits in more detail cited for asynchronous

circuits:

1.1.1 Clock skew

Considering the clock drivers with limited derive capability and their highly capaci-

tive loads, the clock signal is naturally delayed as it is distributed across the chip. This

delay, known as clock skew, can easily cause circuit malfunction as demonstrated in Ex-

ample 1.1.

Bxample 1.1: Consider the shift register shown in Figure 1.1 implemented with edge

triggered flip-flops.

data-in data-out

CP

I
DO

2

DA

Chapter I

Figure 1.1 : A shift register suffering from clock skew.

2

Due to the extra delay caused by the clock driver and the interconnection wires, the

active edge of the clock signal is likely tobe seenby flip-flop 2 after this edge has affected

flip-flop 1, violating the hold time requirement of the second flip-flop. The result is incor-

rect triggering of flip-flop 2 as depicted in Figure 1.2.

CPl

data-in

delayed clock: CP2

faulty Q2

expected Q2

Figure 1.2: Malfunct¡on caused by clock skew.

Notice that the data transferred from flip-flop I to flip-flop 2 does not undergo such

a delay to counteract the clock skew, as the former is alocal signal as opposed to the clock

signal which is global.

Remedy to clock skew side effects

Normal level triggered flip-flops do not help at all, as clock skew can make the slave

of flip-flop-1 and master of flip-flop-2 become transparent simultaneously resulting in a

similar malfunction to that described above.

There are two solutions to solve this problem:

1- Edge triggered master-slave flip-flops

As the name implies these flip-flops are not level sensitive any more. Figure 1.3

shows how these flip-flops avoid malfunction caused by clock skew.

Q1

3Chapter I

Slave

Master I

rl

data-in

delayed clock: CP'

expected Q2

Figure 1.3: Faulty triggering avo¡ded using edge triggered master
slave flip-flops.

Let negative and positive edges of the clock signal trigger master and slave stages,

respectively, of all flip fops in the chip. Notice how faulty triggering is avoided now:
'When the second stage samples its input through its master stage (that is the negative tran-

sition of the clock signal), the slave of the preceding stage is expected to trigger (and

hence to change the input data of the second stage) half a period later, under conditions

of no clock skew. Therefore, clock skew will not cause any malfunction as long as it
does not exceed half the clock period, which may be chosen sufficiently long to guar-

antee safe operation. However edge triggered flip-flops are too complex to be normally

considered for use in VLSI implementations.

The usual technique to cope with clock skew in VLSI implementations is the two
phase clocking scheme [92]. Recall that the problem with level triggered master slave

flip flops is caused by too small a gap between the time slots enabling slave and master

stages, resulting in simultaneous transparency of slave stage n and master stage n+1.

This problem can be solved if the gap is made controllable and hence sufficiently wide,

that is a two phase non-overlapping clocking strategy as shown in Figure 1.4.

CP

QI

4Chapter I

o1

delayed QI

delayed Q2

data-in

Q1

Figure 1.4: Faulty triggering avo¡ded using two phase non-
overlapping clock.

Notice how the overlapping de-active region following (Þ1, that is the dead time,

guarantees that a master stage and the preceding slave stage will not become transparent

simultaneously. In other words as long as the clock skew does not exceed the dead time

the operation of the flip-flop may be considered safe. However, the dead time is under the

designer's control, so, safe operation can be guaranteed by choosing a sufficiently long

dead time, no matter how long the clock skew is. The dead time itself is the obvious price

to achieve this safety. The point is that as clock frequency and chip size increase, resulting

in an increase in clock skew, the inefficiency caused by the clock skew, (that is the ratio

of the dead time to the clock period) is increased as well. That is why clock skew is con-

sidered a major limiting factor as chip size and clock frequency are increased.

1.1.2 Power consumption

Considering the market demand for portable electronic products and environmental

concerns, low power consumption is becoming a major issue in electronic circuit design.

Asynchronous circuits seem promising in this aspect as well. This advantage stems again

from the global clock signal being totally eliminated in this methodology. Recall that in

a2

Q2

5Chapter I

synchronous circuits the global (two-phase) clock signal has to be distributed across the

chip and regularly trigger all synchronous memory elements, while many of these ele-

ments do not undergo any change in every clock signal transition. The net effect is that a

considerable amount of power is wasted during every clock cycle. As an example the sec-

ond-generation Alpha super scaler micro processor from Digital Semiconductor l22l dis-

sipates 50 Watts from a 3.3V supply at 300 MHz. Notice that an asynchronous circuit is

free of such a high frequency signal transition and its direct consequence, high dynamic

power dissipation, in the current CMOS technology. More precisely, there is no signal

transition other than required by the specification in an asynchronous circuit. So it makes

sense to presume that an asynchronous circuit operates at the minimum possible dynamic

power dissipation for a given implementation technology.

L.1.3 Variable computation time

Some asynchronous systems take advantage of data paths with true completion sig-

nals or self-timed logic [73] for each computational modulel. Thir grants the unique priv-

ilege to each module to notify its environment as soon as the result of the computation

becomes available. The overall effect may be a better performance for asynchronous sys-

tems as shown in the following idealized example.

Consider an-stage pipeline with only one single data item. In the synchronous version

the data word has to spend one clock cycle in every stage no matter how long the real proc-

ess time is. However in a self-timed asynchronous version the data word will leave every

stage as soon as the corresponding process terminates. The situation becomes more com-

plex with non-empty pipe lines. Consider the two stage pipeline shown in Figure 1.5.

If the pipeline is synchronous the clock period has to be chosen as Max [(tmt), ftm)],
with some safety margin, where tufl1 = Max (computation time-I) and tm2= Max (compu-

tation time-2) represent the worst case propagation delay time of the computational mod-

ules 1 and2, respectively. Input data, voltage, temperature and process parameters are the

parameters that determine worst case operation time. This of course is too pessimistic (but

the most convenient method) to determine the clock period, as not all fabricated chips will
operate at the maximum permissible temperature, nor under the worst case process pa-

This of course incurs some area and performance penalty, as the data path has to have some

redundancy. The common technique to realize self-timed data path is Differential Cascade Volt-

age Switch Logic, DCVSL [3]).

6Chapter I

Input Output

Figure 1.5: A pipeline structure to demonstrate a better throughput for
asynchronous systems. The controt unit has not been shown here.

rameters. Furthermore, not all clock cycles have to be wide enough to accommodate the

worst case computation. Considering this worst case performance the latency and

throughput of the synchronous pipeline is determined as 2 X Max (tmp tm) and
1

ñ;@-) resPectivelY'

Now consider the asynchronous alternative with a full pipeline where the processed

data in stage one does not have to wait for some pre-specified period of time to start the

second round of processing in stage two. That is the output of stage one will proceed to

stage two as soon as it becomes available provided that the following stage is ready as

well to receive data. This clearly reduces the latency and increases the throughput of the

pipeline. Assuming an average of half of the maximum delay time for the modules, the

average latency and throughput can ideally be improved by a factor of two.

It is interesting to note that speed is adapted to the current operating circumstances of

asynchronous circuits and hence is improved even in the absence of true completion sig-

nals for data paths. In such cases the delay of computational units are simulated by a fixed

delay element with some safety margin as shown in Figure 1.6.

This technique which is to satisfy the timing constraints in the bundled data model in

Micropipelines [75], although it lacks the data dependency flexibility introduced by true

completion signal generation, still offers an adaptive operation speed, as both the data

path and the corresponding delay element are under the same environmental conditions,

that is process parameters and temperature. Therefore, the resulting design need not suffer

from an extra safety margin to take the worst case process parameter and temperature into

consideration. This is in contrast to synchronous circuits where the fixed period of the

clock signal has to be sufficiently long to cope safely with the worst case process param-

eters and temperature.

7Chapter I

t- -'t

I

I

Input Output

Go
Ready

L_____J

(a)

Input bundle

Input bundle

Ready ->l

|
^¡,f___!_

(b)

Go

Figure 1.6: Bundled data model with two wire handshake, (a)

modelling delay in a process¡ng element, and (b) timing diagram.

1.1.4 Modularity and upgradiblity

Asynchronous systems are known to be modular, as a module in such a system may

be replaced with an upgraded version with no concerns about the environment of that

module. This, however, is not the case with synchronous systems. Consider replacing a

register in such a system, where some timing characteristics like set up time andhold time

of the replacing module must be taken into consideration and verified against the environ-

ment requirements before such a replacement is performed legitimately.

In synchronous systems there would be no point in replacing a slow Adder, for ex-

8

Logic

Ltt

vttid

VaIid

Chapter I

ample, with a faster one if the bottleneck is known to be somewhere else, say, the multi-

plier of the system. Self-timed asynchronous systems, however, are more susceptible to

an easy upgrading. In the above example since the computation time of all modules are

data dependent and hence variable, a fast Adder might result in a better performance, as

under some specific conditions the bottleneck may happen to be determined by the Adder

itself.

This flexibility of asynchronous systems is manifested as the ease of technology mi-

gration as well. A robust asynchronous design works under several different technologies

during the life time of the product.

Despite these interesting characteristics, asynchronous circuits still suffer from some

drawbacks:

1- Asynchronous circuits are more difficult to design. This is primarily due to

taking care of the transient response of gates which can easily result in faulty

operation in asynchronous circuits. While in synchronous circuits the transient

response is hidden by sufficiently wide clock pulses, every asynchronous design

technique assumes one type of restriction or another which limits one or more of:

1.1- the operation environment, such as single input change at a time in the

classical Huffman methodology, or the non-subset requirement for two

input bursts enabled in the same state, in the 3D burst mode asynchronous

design methodology (see Chapter 2),

1.2- the implementation flexibility, such as satisfying the isochronicity of

forks in the implementation of speed independent circuits (see Chapter 5).

2- The verification of asynchronous circuits is more difficult than synchronous

circuits t21lt59lt6l[43], as the design procedure is more complex than that

required for synchronous circuits. Furthermore, the verification requirements,

time and memory, typically grow exponentially as the complexity of the circuit

increases.

3- Asynchronous circuits suffer from much more difficult testability as well

I42ll5l. This is primarily due to the larger number and greater distribution of

memory elements in asynchronous circuits. The redundancies introduced in

asynchronous circuits such as redundancies to remove hazards, are another

9Chapter I

source of complexity in testability of asynchronous circuits. Furthermore,

incorrectly estimated transient response of asynchronous circuits may result in

permanent non-functionality. More specifically a manufactured chip with a

different implemented delay from the specification may not work properly at all,

due to a glitch causing an incorrect state change. While in its synchronous

counterpart this miscalculation in delays may easily be resolved by decreasing

the clock frequency.

4- It is not yet clear whether an asynchronous methodology may result in a net

speed gain, due to the overhead incurred by the specific handshaking protocol

employed in the methodology, in spite of the partial performance gain due to

average case instead of worst case operation discussed above.

1.2 Organization

This thesis is organised as follows:

In Chapter 2 some asynchronous design techniques are reviewed, with an emphasis

on the specific delay model in each methodology.V/e first review state based techniques

in Section 2.3 starting with the classical Huffman method and then continue with the first

generation extensions to that, namely: one-hot coding, Friedman and Menon's technique,

self clocked circuits, Q-modules and 3D asynchronous circuits.

Burst mode or self-clocked circuits are discussed in Section 2.3,whichare considered

as the second generation extensions to the Huffamn methodology.

In Section 2.4 eventbased circuits are studied. We start with Muller's theory of speed

independent circuits based on Lattice theory, and proceed with a flow table based speed

independent design which presents a redundancy based implementation technique to

identify end of operation similar to the idea later utilized in self-timed data paths. This

technique has been reviewed in this section, only because of its unbounded delay model

assumption for logic gates, although it is a flow table based technique. Graph based spec-

ifications for Muller's theory (that is signal transition graphs (STGs) and change diagrams

(CDs)) are then discussed which are considered as a bridge between the Lattice theory and

the theory of Petri nets. This chapter is ended with reviewing some restrictions utilized in

some extonsions to the original STG based design techniques. A more detailed review of

some of these design techniques will be presented in later chapters in order to provide a

Chapter I l0

deeper background for our work.

This chapter includes some discussions and comparisons between several sources. A

good example is the two different interpretations for the notion of multiple transitions

which has been covered in Section 2.2.

In Chapter 3, based on the work in [59], we investigate two level logic synthesis of

asynchronous circuits from STGs under the inertial gate delay model in addition to the

above constraints on the environment We show that multiple input high to low dynamic

logichazards are ruled out under the inertial gate delay model in two level SOP logic cir-

cuits. 'We then weaken the zero wire delay restriction and find an upper bound for the de-

lay along critical interconnection wires and hence propose avirtual isochronicforkmodel

for interconnection networks. Multiple input low to high dynamic hazards are then stud-

ied in two level logic implementations and it is shown that this type of hazard.is unlikely

to occur under the inertial gate delay model unless a liberal delay flexibility is required

between the first level AND gates of SOPs. Static hazards, on the other hand, are shown

to not be relaxed under the inertial delay model.

Delay hazards are investigated in two level logic and it is shown that even the well-

behaved environment assumption does not necessarily lead to delay hazard. free imple-

mentations, no matter whether the pure or the inertial delay model is considered. We show

that this type of hazard has been overlooked in the design of the STG compiler, SIS [74].

In Chapter 4 we assume the isochronic fork model for interconnection networks and

show that delay hazards are considerably reduced in two level SOP circuits under the

bounded pure delay model. The gate delay model is then restricted to inertial and it is
shown that delay hazards are further reduced and limited to virtually one type only.

In Chapter 5 hazards are analysed in single level logic family under the general pure

delay model. We first discuss different types of interconnection forks. Then delay hazards

are analysed which may only be caused by inverters at some inputs under the isochronic

fork assumption. We introduce safe cells, based on which well-formed STGs [59] can be

implemented free of delay hazards with no unrealistic assumptions about physical gates.

Although this technique still compromises chip area for the sake of preventing hazards,

we show that it may achieve a significant area gain in comparison with the two-phase RS-

implementation method [33] which is one of the few true speed independent implemen-

tation techniques that we are aware of so far. Delay hazards are then analysed in complex

Chapter 1 ll

gate based circuits under some gate delay restrictions and hence theorems are developed

to identify a subclass of delay hazards. V/e lastly show how logic hazards are relaxed in

this logic class. Notice that these achievements apply to the pure and hence to the inertial

delay model as well.

In Chapter 6 we introduce a tabular method to perform the last two of the four phases

of Martin's compilation process for asynchronous circuit design. The method is then dem-

onstrated with three examples, illustrating that our systematic method is very straightfor-

ward, flexible and convenient to apply, and hence it lends itself to automatic compilation.

The technique is independent of the particular delay assumption considered in the design

pfocess.

Chapter 7 is the conclusion.

Chapter I t2

D eføy Corutrøin* ønl D estgn lecfiniques of Asyru-

cñrortous C ontro I Circui*

2.L lntroduction

In this chapter we will consider different delay restrictions in some representative

asynchronous design methodologies, as we review and assess the methodologies them-

selves. These are relevant observations as a major part of the work presented in this thesis

is based on some specific delay assumptions.

Asynchronous control circuits are usually classified according to the particular delay

model assumed in their synthesis:

Chapter2 13

2.1.1 Huffman classical method

The Huffman classical method and its extensions llke þalÍ451t461 falling inro the

first category, assume the bounded but unrestricted gate-wire delay model. It is bounded

in the sense that the environment has to know an upper bound on all stray delays (and de-

lay elements if any) to determine the earliest instant of time to apply the next input vector

(fundamental mode operation), otherwise the new input may arrive too early disturbing

the circuit prematurely and causing a malfunction. As a result, if the value of a delay in a

synthesised circuit is increased due to a variation in the process parameters or temperature

the timing constraints on the environment must be revised accordingly. A group of these

so called delay hazards in two and one level logic circuits are the topic of Chapters 5 and

6, respectively, in this thesis.

This model is also unrestricted in that sense that

1- there is no restriction in the relative values on the gate-wire delays assumed in the

circuit. That is in the real chip a gaTe with an upper delay bound of 100 pico-seconds does

not have to operate faster than another gate which has been specified by an upper delay

bound of 150 pico seconds. Exceptions to these are some deliberately inserted delay ele-

ments to satisfy a particular inequality to guarantee the correct operation.

2- all stray delays can assume either type of models, inertial or pure, or even an iner-

tial followed by a pure, except for delay elements deliberately introduced to absorb spu-

rious transitions (spikes), which have to be of course of inertial type.

2.1.2 Speed independent circuits

The unbounded gate but skew free wire delay (Speed Independent) model was intro-

duced by Muller [57]. In his methodology the bounded delay restriction is lifted from the

gate model at the cost of another delay restriction on interconnection wires: the output sig-

nal of a gate must be absorbed at all fanout terminals with a negligible skew. This theory

also requires an atomic model for all gates, which may not be easily achieved with today's

technologies. Notice that both skew free and atomic delay model requirements have been

shown to be only sufficient in [50] and [14], respectively, for correct operation.

In some extensions to Muller speed independent theory such as [2] Armstrong not

only uses simple logic gates, but a bounded wire delay model as well, of course at the ex-

pense of some redundancy and hence arealpertormance overhead. Similar to Huffman

Chapter 2 t4

methods, this technique is flow table based as well, which again differs from Muller's.

2.1.3 Delay insensitive circuits

The most robust asynchronous design technique should obviously assume unbounded

gate and unbounded wire delay model, resulting in the so called delay insensitive circuits.

Although simple gate based delay insensitive circuits have been proven to be very limited

[48] there are some delay insensitive synthesis techniques which are based on some spe-

cially designed modules with some internal timing assumptions [20] [58], or a one sided

delay restriction on a single element [70].

Asynchronous circuit behaviour on the other hand may be classified as state based

and event based as well: In the first category starting with Huffman's work and continuing

with some extensions t65lt66l an intermediate but abstract notion of state is explicitly in-

troduced to link the specified inputs to the required outputs, so that at each instant of op-

eration the outputs are determined by the current state and possibly the current inputs. In

the event based methodology, however, the logic value of outputs are determined directly

by the previous input/output vectors and the current input transitions, that is there is no

intermediate layer of state as is the case with the Huffman methodology. As will be dis-

cussed in this chapter an interesting difference between these two methodologies is that

in the Huffman methodology the initial design usually starts with more states than are re-

ally sufficient, that is the initial description is shrunk as the design proceeds, while in the

event based methodologies the initial description not only is shrunk, but also is sometimes

expanded to solve the CSC problem, described in this chapter.l

In this chapter we present a concise but descriptive perspective of some developments

in asynchronous design techniques. 'We start with the Huffman methodology which is

more suitable to model choice, and is later developed by Unger [83], and then proceed to

its extensions. Then event based techniques will be addressed which are more amenable

to model concurrency.

1. Transition tables in the Huffman methodology may also be expanded by newly introduced state

variables to remove races, but not to increase the memory of the network, that is to solve the

CSC problem.

Chapter 2 l5

2.2 State based techniques

2.2.1 Classical Huffman method

The classical asynchronous design methodology due to Huffman [32] has a close sim-

ilarity with its synchronous counterpart as shown in Figure 2.1.

xI- xn .I 4n xl- xn .I 4n

!t-Jn It-ln

(a) (b)

CP

Figure 2.1= (al Huffman model for asynchronous circuit, (b) the
seq uential counterpart.

In this figure x¡, z¡, Y¡, and y¡ represent external input variables, external output vari-

ables, excitation variables and state variables, respectively. The principle idea behind both

of these techniques is that the outputs of the combinational logic, that is z and Y, depend

on (in addition to possibly the current external inputs, in Mealy circuits) some history of

the previously applied inputs.

In an asynchronous circuit, starting with a stable state, that is a state in which l¡ = Y¡

for all i, upon the arrival of a new input vector, the combinational logic is exposed to the

new.r vector but the previous y vector due to the delay elements which serve as a short

term memory, generating Y(x, yo¿¿). Now if it happens that f(¿ ! ou) = Y(x, Y(x, y o¡¿)) then

the whole network has in fact reached a new stable state2.

The high level description language in the classical Huffman methodology is a Flow

Table (FT) which presents a more qualitative operation principle of the circuit. A FT is in

Combinational

Network

YnYr
Memory

(Delay)

Combinational

Network

Yl Yn

(Flip-Flop)
Memory

Chapter 2 t6

factasemi-symbolic Karnaughmap for the combinational part of the circuit in Figure 2.1-

a, where all possible input vectors are laid out horizontally and the symbolic internal states

are laid out vertically. Each state variable vectoryi represents a state for the circuit. A state

concatenated with an input vector is called atotal state.For example the FT inEigtreZ.2-

a specifies that for the total state y.-r - y2 -01 and,ya -10the corresponding excitation output

of the combinational circuit (that is the excitation variable vectors) would be y3 and. yl
,

respectively.

xlx2 xIx2

v 00 01 I1 l0

-
Input vectors in

v 00 01 11 10

binary format yI

y2

?
v-

f

yI

y2

?
v-

f
L- Symbolic (uncoded) states

(a) (b)

Figure 2.2: Flow table design.

Due to the delay nature of the memory elements which specifies y(t) = y(t + Lt),itis
more descriptive to replace Y with y in this K-map, resulting in the FT shown in Figure

2.2-b.

Therefore, starting with a stable state, a FT shows the corresponding next state for

every input change. In Figure 2.3 staring with the total stable state y2-00, upon the input

change of 00 to 01 the circuit changes its state fromy2 to y4 and,eventually settles in the

stable total state y4-01. Stable states are encircled.

Referring to Figure 2.3 consider the notion of state: in order to generate the required

output the circuit should first reach the appropriate state. So, the notion of state seems an

intermediate stage between external inputs and outputs. The same interpretation is true in

Figure 2.1 where the output vector z is a function of both x and y.

2. This type of operation is called normal mode, as one stable state is reached through only one

unstable state. Generally speaking a circuit may pass trough more than one unstable state to sta-

bilise, resulting in a considerable speed penalty.

Y3

YI

f
?

v"

Chapter 2 t]

x
00

Pc2
0I 11 I0v

y1

y2

3

v-

f

Figure 2.3: An asynchronous circuit behaviour partially modeiled by
a flow table.

When the circuit is ready to accept a new input (in the case of the Huffman method-

ology this happens when the circuit is in a stable state) the environment may have some

choice of which particular input to apply to the asynchronous circuit.

Notice how choice is readily modelled by a flow table. In each stable state all possible

choices are tabulated in different columns of the corresponding row.

The first step in the design procedure is to construct a flow table based on the verbal

description of the problem. This is rather a non-routine procedure. Different designers

may come up with different flow tables with different numbers of states, as it is generally

not trivial to intuitively identify equivalent states to close up the flow table at early stages.

This problem, however, is greatly relaxed by a mechanical technique for flow tables re-

duction [68] which normally follows the flow table construction in the standard design

procedure. The resulting table has the minimum possible number of states, although it
usually has to be expanded again to resolve the critical race problem as described below.

The next step is state assignment, in which unique binary vectors are assigned to each

internal state in the simplified flow table just created in the previous stage. Numerical in-

ternal states usually introduce the critical race problem, in which the correct change of

internal state (as a result of an input change) depends on the relative delays of different

gates. Much work has been done to avoid critical races, while keeping a particular cost

minimum [26]17 2l t45l [80] t8 1 l.

As an example starting with the total stable state of 1100 in Figure 2.4 the input

change to 01 requires both the state variables to change from high to low. However, the

circuit will not settle in the correct stable state (that is 0001) if y1 completes its transition

before y2fires.

Chapter 2 l8

xrx2

v
oo yI

oI y2

1I y3

lo va

00 01 I1 10

Figure 2.4: Critical race as a result of multiple state variable change.

This problem may always happen if there is a chance for multiple state variable

change, revealing the critical role of this stage. An insufficient number of state variables

and also inappropriate state coding (even with right number of state variables) may cause

circuit malfunction, while a liberal use of state variables results in an inefficient circuit.

Furthermore, introducing a (long) sequence of unstable states to make the circuit immune

against critical races (that is multiple transition time encoding) entails as many passages

through the combinational logic as the number of unstable states in the passage, resulting

in a considerable degradation of performance, although the idea is straightforw ard.. Single

Transition time state encoding, on the other hand, entails only one state variable transition

in each state change. Therefore, this coding technique not only avoids critical races but

entails rippling through the combinational logic unit only once, most likely resulting in

the best possible performance.

The final step in the classical Huffman asynchronous circuit design is hazard detec-

tion and removal. Ahazard is a possible spurious signal transition on the output of a logic

gate, which may have different sources. We will discuss this topic in later chapters in

more detail.

Efficient computer aided design tools [93] have been developed to automatically per-

form the different stages of the Huffman design methodology.

2.2.2 One-hot coding

The one-hot coding technique due to Hollaar [29] is another flow table based tech-

nique to design asynchronous circuits. Recall that state coding is one of the critical stages

in the Huffman methodology, which determines the overall structure of the prospective

circuit. An appropriate state coding can remove all critical races with the minimum pos-

Chapter 2 l9

sible logic.

The one-hot coding technique totally bypasses the state coding (state variable assign-

ment) stage by using as many state variables as the number of states in the flow table, so

that each state is uniquely identified by one state variable asserted to logic high and the

rest of the state variables to logic low. This implies one state flip-flop for each state or row

of the flow table which of course incurs an exponentially increasing amount of redundan-

cy comparing with encoded states as in Huffman methodology. The major achievement

in this state coding technique is that every two adjacent states differ in exactly two bits

avoiding any races with a little care as discussed below.

It is concluded in l29l that every excitation variable may be represented as Yn =R.y,
+ S, where y,, is the corresponding state variable, and S & R, called transition term and

hold term in [28], are two logic functions independent of yn. This equation shows that eve-

ry state variable which represents one state in the one-hot coding can be implemented as

a RS-FF with some extra logic. Therefore, unlike the case with the traditional Huffman

methodology, one-hot coding approach does not only require state variable assignment,

but also has a straight forward implementation as demonstrated here:

Rule l: A state flip-flop, s, is set if and only if the current state is an immediate pred-

ecessor state of .ç and then a proper input is applied to the circuit specified by the flow ta-

ble. That is the set input is a two level AND-OR logic function with as many AND gates

as the number of immediate predecessors of state s.

Rule one specifies the logic for input S, that is the transition term of the state variable.

The logic for input lR is determined by Rule 2:

Rule 2: A state flip-flop is reset if and only if starting with that state a state changing

input is applied to the circuit according to the flow table. So the reset input needs an OR

gate with as many inputs as the number of immediate successor states.

Consider a flow table and the corresponding one-hot implementation shown in Figure

2.5.

Starting with the total state Qt-100, suppose thatx2 goes up. This transition is fol-

lowed by the following sequential transitions: x2* -+ a2*)Qz- + ez* -+ el +Qf .

This unique order of the transitions which is independent of any relative delays of the

gates and or wires guarantees arace free transitions, as the flip flops I and2 may not be

Chapter 2 20

,¿--1

Q2 'l
Q3

x1

x1x2xj
Q1

000 100 110 rrI
ql a2

x2

q3

xj

Figure 2.5: Direct implementat¡on of a partial flow table us¡ng one-hot
cod¡ng.

reset both at the same time.

The above technique may not be applicable any more if two states, e1 and e2, arc

immediately reachable from each other, that is Qt + Q2 and Qz + e1. According to the

above algorithm, since Q2 is an immediate successor of Ql, Q1 tends to set Q2. Likewise

since Ql is an immediate successor of Q2, Ql tends to also reset Q2. This holds Q2 in an

unstable situation with both outputs at logic high, preventing Ql from being reset and

hence resulting in a deadlock.

This problem is solved by introducing some redundancy to the circuit by either insert-

ing an intermediate state in the flow table, (to make one of the states a non-immediate

predecessor of the other one) or adding a product term to de-activate the R input of Q2

and hence let Q2 be pulled down freely.

In addition to structural and race free implementation, Hollaar further shows that his

methodology relaxes the fundamental mode restriction so that now two consecutive input

vectors in many cases may be applied closer to each other than is required by the tradi-

tional Huffman methodology. Notice, however, the main restriction of the bounded delay

o

o
Qz

Q2

o

Q3

Chapter2 2l

model still exists

2.2.3Timing requirements in the Huffman methodology

Generally speaking two successive input vectors may differ in exactly one bit, (that

is single input change) or multiple bits. The second case has two different interpretation

in the literature:

l- All signal transitions occur during some pre-specified maximum (and normally

short) time interval. So if the multiple input change x1 x2 xj:001 -+ 101 -+ I 1 1 (or 001

-+ 0l 1 + I 1 1) occurs within ô2, the circuit will consider the transitions on x1 x2 as simul-

teneotts, and hence will recognise the three input bit patterns, that is 001, 101 and I l1 (or

001,011 and 111) as nvo successive input vectors, that is 001 and IIL Otherwise they

maybeconsidered asthree consecutiveinputvectors,thatis00l, 101 and 111(or001,

011 and 111) as discussed later in this section.

2- The second interpretation of multiple input change is that no matter how close to

each other and in whatever order the transitions happen, the circuit reacts to this multiple

input change or input burst only after all transitions have fired. The primary implication

of this interpretation is that starting with a stable state no allowed input burst may be a

subset of another legitimate input burst, other wise the circuit would face a non-determin-

istic situation if the subset transitions occur first.

The usual trend in the classical Huffman methodology is the first interpretation men-

tioned above, which virtually restricts this method to single input change, as simultaneous

transitions are not very likely to occur. On the other hand, the new input vector in this

methodology can only be applied after all delay elements have reached a steady state, that

is every delay element (either explicit or implicit) has identical input and output logic lev-

els. This inherent critical time interval, ô.¡, categorises this methodology as bounded gate-

wire delay model based3, as the environment has to know an upper boundforthe different

delays in the circuit in order to be able to determine a right instant of time to apply the

new input vector and avoid too early inputs which may even result in faulty state change.

In summary t'ù/o input vectors are considered consecutive if they arc atleast ô7 time units

apart. This mode of operation is called/zndamental [54]. The second critical time interval

in this methodology is ô2 (ðl > ôz) which identifies simultaneous transitions as being sep-

3. as opposed to the unbounded gate delay model to be discussed in this chapter.

Chapter 2 22

arated at most ô2 time units apart. Unfortunately, if an input transition satisfies none of

these timing constraints, then the circuit reaction is not normally clear [83], unless some

provisions like what are discussed in [82] are made.

In the next two sections three techniques are reviewed to relax the problem associated

with the first interpretation for multiple transitions, that is to make ô2 as large as required.

As expected they impose some restrictions on the delay amount of the delay elements

used in the design to achieve the goal. However, requiring the input transitions to become

complete in some pre-specified time is itself a restriction as well, no matter how long it

is. Prolonging, ô2, on the other hand has a direct consequence of slowing the circuit down

as now the circuit has to wait for a longer time interval to distinguish between consecutive

and simultaneous input transitions.

The second (and more intuitive) interpretation for multiple input change is that all

specified transitions can fire in any order and with any spacing. Notice that the flow table

is already able to demonstrate this type of parallelism as shown in the partial flow table in

Figure 2.6, for the parallel transition ya: I I -+ 00. This topic will be discussed in more de-

tail later in this chapter.

00 0I 11 I0

Figure 2.6: Multiple input change: second interpretation.

2.2.4Friedman and Menon's methods to design multiple input change asynchro-

nous circuits

Friedman and Menon have proposed three fundamental mode asynchronous design

methods in [25] assuming simultaneous input changes. Consideringthe simultaneous in-

terpretation, all input bursts are naturally supposed to complete within some pre-specified

time interval, otherwise they might be recognised as two or more consecutive input vec-

tors as described above.

v
x

y1

y2

l
v-

y4

a?\
v' y4 y4 y4

v-

Chapter 2 23

In the first method the intended asynchronous circuit, M, is decomposed into a special

type decoder called source box and another asynchronous circuit, M',the inputs to which

are one-hot codes only, that is each input vector to M'has exactly one bit at logic high,

except for the spacer input (to be discussed shortly) which is all-zeros. For example a

three input M'has at most four legitimate input vectors: 000 (spacer), 001, 010 and 100.

The code conversion from binary (applied by the environment) to one-hot code is per-

formed by the source box which of course incurs some redundancy and hence area over-

head. The point is that, under fundamental mode assumption, circuit M' îow does not

undergo a multiple input change any more if all two consecutive input vectors to M' are

separated by a spacer. This will prevent M' fromfaulty change of state if all transitions in

the input burst are completed in some pre-specified time. Consider the multiple transition

000 -+ llI whichmaybeseenby M as000 +001 -+0ll-+ lll andfinally translared

to 0001 + 0000 + 1000 by the source box (before being applied to M') provided that

the whole transition is completed within the pre-specified time, d, which can be chosen

by the designer, and through a single delay element, D, in the source box [25]. Notice that

although M may see the above simultaneous input change as three (ambiguous) transitions

000 + 001, then 001 -+ 011 and then 011 --> 111, this is always translated to only two

consecutive single input chønges eventually, as seen by M' no matter how many transi-

tions the original multiple input change contains. This in fact means that the time interval

ô2 (in Huffman method) has now become under the control of the circuit designer.

All other classical problems pertaining to critical races and hazards need to be han-

dled as usual. FurthermoÍe, M'is to be so designed that neither the internal state nor the

output may change as the spacer replaces a one-hot code.

In the second technique in [25] for the synthesis of simultaneous input change asyn-

chronous circuits, in addition to the primary inputs x1, x1 ..., xn, circuit M' receives a de-

layed version of the inputs as well, as shown in Figure 2.7.

The delay, D, has to be sufficiently large to guarantee that the input burst is completed

before the delayed input starts its transition, and furthermore the circuit stabilizes in be-

tween. Figure 2.8 shows this timing restriction and different parts of the input transition

I¡ + Iy.

Since the number of input bits is doubled, now the flow table M'has many more col-

umns than the original M,however, the transition sequence between the columns of a par-

Chapter2 24

)cld
x1

xn

Figure 2.7= Circuit M'is driven by both primary and delayed inputs.

____*l i port t of transition

Primary input Ij

Z1

Z2

xnd

M
L

Ik

Delayed input rj lI*

Intermed

*l F part 2 of transition
I

I¡*
|t_

Figure 2.8: The timing of the lnput transition l¿ + l¡llor the circuit in

Figure 2.7.

Delay
D

D

Combinational

logic

YI YI

Yn!n

Chapter 2 25

ticular row due to an input transition does not include an input vector in which both

primary and delayed input burst are incomplete, as it is a required condition that first the

primary input burst must terminate and then the delayed input burst may start after the cir-

cuit has stabilised, as shown in Figure 2.8. Therefore, in the flow table M' andfor the tran-

sition (p, Il + (q, I¡),the columns corresponding to the stable inputs are filled identically

to the corresponding columns in flow table M. The rest of the states on the way of transi-

tion from Ij to Ik are considered a stable state, that is p.

Assuming a single transition time state assignment, the third method which is a

straight forward extension to the basic time interval õ2 is accomplished by placing a so

called Hufltnan delay box in the standard block diagram of Figure 2.l-a following the

combinational logic. Since the delay is of inertial type all spurious signal transitions in-

cluding those resulting from multiple input changes on the outputs of the combinational

logic will be absorbed provided that duration of these transitions and hence the comple-

tion time of the simultaneous input change do not exceed the added delay.

2.3 Burst mode or self clocked circuits

As an extension to the classical Huffman methodology some asynchronous design

methodologies still in the category of bounded delay model have been developed to allow

multiple input transitions in the second sense, that is intended multiple input transitions

may occur in any order and with any spacing while assuming the fundamental mode re-

striction. The circuit, however, will react against this change only after all transitions have

fired. In this method although the single input restriction which is normally attributed to

the classical Huffman method is lifted, no allowed input vector or input burst may be a

subset of another one in the same state. This usually reduces the number of input choices,

therefore a better high level description language for this type of behaviour is a state dia-

gram (rather than a flow table), presenting only the possible input bursts enabling the rel-

evant state transitions.

2.3.1 Burst mode circuits using controlled excitation and edge triggered flip-flops

A self clocked synthesis method is proposed in [19] for fundamental mode multiple

input change asynchronous circuits, using a local clock which makes the circuit behaviour

close to Moore type synchronous state machines, as shown in Figure 2.9.

Chapter 2 26

external

input

)(,

local clock

state
variables

(s)

external

output

z

Flip-Flops

Figure 2.9: A general block diagram of burst mode circuits introduced
by Chuang and Das.

A combinational logic circuit as usual is in charge of generating next state variables

based on the current state variables and the input burst, which are eventually latched into

the edge triggered flip-flops, as shown in Figure 2.9.lJponthe arrival of a new legitimate

input burst the combinational logic in charge of clock generation attempts to raise the lo-

cal clock signal only if the state of the circuit is to be changed as a result of this input burst,

while the next state variables are being worked out in the corresponding combinational

logic. The delay element At1 guarantees that the rising edge of the clock signal reaches

the state variable flip flops after the data gets stabilized at the input of these flip flops, re-

sulting in a new state. The output combinational logic now starts to evaluate the output

burst based on the recent input burst and the new state variables just worked out. The new

output vector, then, is loaded into the output flip flops by the sufficiently delayed (Lt2)

version of the same clock edge which triggered the state flip flops. The Moore type oper-

ation of the circuit is clearly shown: the output burst does not occur unless the new state

has been reached. A typical state diagram is shown in Figure 2.10-a. Figure 2.l}-b shows

another alternative, that is the Mealy model.

Notice how the hazardproblem is dealt with in this technique. The logichazard of the

input combinational logic is hidden by the sufficiently delayed (Â/7) clock pulse. The de-

lay element Lt2plays a similar role for the output combinatorial logic. On the other hand

since the delay element Âr7 is chosen to be of inertial type, all possible spurious transitions

at the output of the clock generator combinational logic are absorbed assuming a suffi-

LtzLttClock
Generator

Combinational
Logic Combinational

Logic
Flip-Flops

Chapter 2 27

x

x2/o 1

x/oo

x1/o1

x1/o 1

x2/o2

x1/o 1

xloo

x2/o2x2/o2

(a)

Figure 2.10: (a) Moore type and (b) Mealy type asynchronous state
graph.

ciently long delay. Figure 2.1 1 shows a typical timing diagram.

In [19] function hazards have also been considered likely to occur in the clock gener-

ator combinational circuit. Function hazards, however, may not occur unless the funda-

mental assumption of burst mode circuits is neglected as in [19], where, say, both input

transitions 00 -+ 01 and 00 -+ 11 are considered legitimate, resulting infunction hazards.

Suppose that the first input transition is specified to cause a state transition while the sec-

ond one must not cause a clock pulse, leaving the circuit in the current state. However, if
the input transition 00 -+ 01 + 11 (as a real transition for 00 -+ 1 1) takes place too slowly,

then the spurious transition on the output of the clock generator would be wide enough to

be considered as a legitimate clock pulse to cause a faulty change of state.

In order to distinguish between the two input transitions 00 --> 01 + 11 and 00 + 01,

in other words to absorb the spurious transition caused by the corresponding functionhaz-

ard, the environment has to comply with a harsh restriction and complete the input burst

within some pre-specified time interval, otherwise the spurious transition would pass

through the delay element, possibly causing a malfunction.

A systematic self clocked method has been reported in [1] to implement asynchro-

nous state machines on a PAL device 22Ip6 with no direct concern about hazards and crit-

ical races. This technique also assumes single input change and fundamental mode

operation.

(b)

Chapter 2 28

Output burst

Local clock after Lt2

Output of the
combinational

logic-2

State variables
on the output of

flip flops

Local clock after Lt1

Next state variables
generated at the
of combinational logic- I

Input burst

Figure 2.11= A general timing diagram corresponding to Figure 2.9.

2.3.2 Locally clocked asynchronous state machines

Nowick and Dill t65lt66l introduced another burst mode synthesis method for asyn-

chronous circuits based on a local clock which makes the circuit operation and modelling

nearly identical to Mealy type synchronous state machines, but with some extra logic for

local clock generation similar to that described in the previous section. This technique has

been used to design some real life examples as reported in [67]. Figure 2.12 shows the

general model of locally clocked asynchronous state machine.

Suppose that the two latches are transparent or disabled when the corresponding con-

trol signal is high or low, respectively. Therefore, considering the inverted input of stage-

1 the two phase latch operates like a master slave flip flop. The clock signal is normally

low, making the phase-1 and 2 latches normally transparent and normally disabled, re-

spectively. In this method as a result of an input burst a clock pulse is generated if and

only if a state change is to occur as a result of that input burst. However, no matter whether

Chapter 2 29

external

mput

x

local clock

state

variables

ts)

Figure 2.12: The general model of locally clocked asynchronous state
machines.

the state changes or not, the output will change as specified by the state diagram, but this

change always happens when the input burst is complete. This, however, is not a design

but the specification restriction. In Chapter 3 an extended specification is discussed in

which an output signal may change while the input burst in not complete yet, under the

assumption of a well-behaved environment.

Starting with a stable state and upon the arrival of an input burst the external output

and the pre-state variables S' take their desired logic value after some propagation delay

time. Although any spurious transition on S'can be hidden by delaying the rising edge of

the clock signal, the output signals (as well as the local clock generator, as in Chuang and

Das's method) still suffer from possible logic hazards. Since the phase-2 latch is still dis-

abled, the combinational logic and the clock generator (which is a combinational logic as

well) still operate based on the previous state variables.

After the combinational logic stabilizes, the local clock generator raises the clock sig-

nal disabling phase-1 latch and enabling phase-2 latch. Upon the rising edge of the clock

signal the machine enters the phase-2 of operation: The phase-1 latch becomes disabled

and the phase-2 latch becomes enabled in a master-slave fashion operation, bringing the

machine into its new state, as the updated state variables at the output of latch-l now are

transferred into latch-2, feeding back the new state variables to both the combinational

logic and the clock generator. Notice that the external outputs are not affected by this

change of state, as the output latch which is part of latch-1 was disabled at the end of phase

Clock
Generator

external output
z

Combinational

Logic
(s')

Phase-2
Latch

Phase-1
Latch

Chapter 2 30

one. As the new state variables appear on the output of the phase-2 latch, the local clock

generator pulls the clock signal back to logic low, disabling the phase-2 latch and enabling

the phase-l latch, and hence bringing the circuit back into the phase one of operation.

Consider the timing restriction on the clock signal: the clock signal should go high after

the combinatorial logic has managed to stabilize and the phase-l latch has received its

new data, that is the new state variables and the new output vector from the combinational

logic. However, there is no timing restriction on the falling edge of the clock, as the clock

(that is the effect) is pulled down after the new state variables (that is the cause) have been

stabilized at the output of the phase-2 latch.

Figure 2.13 shows the general timing diagram for the two operation phases of this

technique.

I

--------+l

Phase I of I

operation

r Phase 2 of
¡ operation

I

I

Output of Phase-2 Latch

Local clock

S' Output of Phase-l Latch

Input burst

Output burst

Figure 2.13= A general timing diagram for locally clocked
asynchronous state mach¡nes.

Chapter2 3t

2.3.3 Q-Modules

Although Q-Modules are usually cited in the delay-insensitive category, we discuss

them here, as they are self clocked and furthermore they still require a delay constraint

which entails a bounded delay model for some part of the circuit. In this section we see

how the inherently hazardous behaviour in locally clocked asynchronous machines is

avoided in Q-Modules, and furthermore how these modules achieve some other benefits

at the cost of more circuit complexity and high power dissipation. Figure 2.14 shows a

general block diagram of a Q-module.

local clock

external

input Ack¡ Ackx

z
external output

state state variables

Figure 2.14= A general block diagram of a Q-module.

Each Q-flop in the Q-flop array is a master-slave flip-flop, with data and acknowledge

outputs and some more features to be discussed later. The master and slave stages become

transparent when the clock signal is low and high, respectively. Therefore, Q-flops sam-

ple the external inputs and the current state variables on the falling edge of the local clock

and then make them appear on the output lines on the next rising edge. There are three

different groups of output lines from the Q-flop affay: external outputs, state variables and

the acknowledge signals. 'When the ith master stage of a Q-flop stores its own input data

on the falling edge of the clock signal, it pulls down its Acki line indicating the resolution

of possible metastability [15][16][34][35], as the inpur signal may change at any insrant

of time and asynchronously with the clock signal. Similarly, when the ith slave stage of

Clock
Generator

Combinational

Logic

Flops

O

variables

Chapter 2 32

the Q-flop array updates its output data on the rising edge of the local clock, the Ack¡line

is pulled up. The Ack signal which can be generated by a Muller C element as shown in

Figure 2.14, reflects the total situation resulting from all of the Q-flops: Ack is pulled

down and up after all Acki s have been pulled down and up, respectively.

Based on this introduction now the operation sequence and its limitation are consid-

ered. As the initialization stage suppose that the Q-flops are reset to an initial state and

then the local clock is pulled down, sampling the first input vector.'When all master stages

receive valid outputs, Ack line is pulled down triggering the clock generator to raise the

clock signal. The rising edge of the clock signal, on the other hand, updates the output of

the slave stages as described above, resulting in a rise on Ack signal, indicating that all

outputs of the Q-flops are valid and hence letting the combinational logic start its compu-

tation to evaluate the next state variables. Notice that the rising edge of the Ack signal is

also in charge of triggering the clock generator to bring the clock signal down. However,

the clock generation must be slowed down sufficiently to let the combinational logic sta-

bilize and apply its final outputs to the Q-flops with appropriate set up time. This is the

only delay constraint in this technique. The sufficiently delayed negative edge of the

clock signal necessarily samples the input data present at that specific instant of time (no

matter whether it is a new, partial or a complete input burst), and also the current state

variables just worked out by the combinational logic, initialising another operation cycle

of the Q-module. It is highlighted here that all signal transitions inside a Q-module occur

delay insensitively except for the delay constraint mentioned above, as shown in Figure

2.r5.

According to the operation principle of Q-modules presented above, the clock signal

samples the input vector periodically (but with a possibly variable period due to possible

metastability and hence a variable resolution time), no matter whether the input has been

changed or not since the previous sampling, or whether the input burst has been completed

or not. A very interesting and subtle point regarding the asynchronous nature of the input

bursts isthat partial sampling of an input vector resulting in a sampled input vector in the

Q-flops consisting of some new and some old input data (which is very likely to happen

due to unrestricted spacing in input transitions), does not cause any malfunction. Recall

that as a general requirement of burst mode operation no allowed input burst may be a

subset of another allowed input burst activated in the same state, or the circuit may not

Chapter2 JJ

to be larger than

combinational

logic delay

Local clock

Ack

Figure 2.15: Semi-delay insensitive timing diagram of contror signals
in a Q-module: there is only one t¡m¡ng constraint.

operate deterministicly. Therefore, since a partially sampled input data is considered as

an incomplete input burst, it shall not cause any state nor output change, resulting in an

idle clock cycle. The idle clock cycle will continue until the input burst becomes com-

plete, when the circuit reacts properly.

Since the output signals are taken from the slave stages of the Q-flops, all output

bursts necessarily have monotonic transitions, and hence the output signals are hazard

free. This technique, however, does not work for Nowick's locally clocked method men-

tioned above, as in this method no local clock pulse will be generated if there is no state

change. This means that applying the Q-module clocking technique to Nowick's results

in this malfunction that the output burst will not be seen in the outside world if the input

burst causes output change only.

The above hazard immunity for Q-modules stems from the fact that in this technique

the local clock is periodically (possibly with a variable period) generated no matter wheth-

er there are any input, output or state changes. This of course occurs at the cost of some

extra power dissipation, due to free running clock signals similar to what normally hap-

pens in synchronous circuits.

Another issue which should be carefully considered in this technique is the asynchro-

nous nature of the input transitions with respect to the local clock signal, which may result

Chapter 2 34

in metastability as mentioned before. Non-digital circuits are normally used to deal with

this problem but they are more expensive than their digital counterparts.

2.3.4 3D Asynchronous circuits

Following [65][66], Yun et al. [96][97] propose three dimensional asynchronous state

machines which are the direct extension of Huffman methodology based on the second

interpretation of multiple input change. Unlike [65][66], the 3D technique, however, does

not use a local clock, nor any explicit storage element. The flow table in Figure 2.16

shows the basic idea used in this technique.

00 01 11 10

Figure 2.16: Multiple input change: parallel transitions.

Starting with the initial stable state y411, suppose that the two input signals are to go

low but with an arbitrary order and unknown (but bounded) spacing. The flow table clear-

ly shows that no matter what the order and the spacing is, the final state would be y200.

Recall that as a general requirement for burst mode circuits with the second interpretation

for multiple input changes, no input burst is allowed to be a subset of any other input burst

allowed in the same internal state. In the design of the flow table or the state transition

diagram care must be taken to keep the output(s) unchanged until the input burst is com-

plete, that is the output burst may only occur after the stable state has been left, çy400 or

y200 inthe above example), as this is the implicit design specification. Notice that in this

design technique the order in which the output signal transitions occur is not a design re-

quirement, and is naturally determined by the specific implementation and also the stray

delays.

In the method described in [96][97] the specified output signals are considered as

state variables as well. This bypasses the state assignment stage in the classical Huffman

methodology and also eliminates the output logic, although it may not result in the best

v
yI

y2

?
v-
y4

y4 f I
?

v-

Chapter 2 35

state assignment. Extra state variables, however, are introduced if the circuit needs more

memory to remember the required past history. This style is similar to STG based design

techniques in the sense that it also first addresses the inpuloutput relation and then if nec-

essary extra variables are introduced to satisfy complete state coding.

Different types of hazards and critical races are treated in similar ways to the classical

Huffman methodology, and then sufficient conditions are presented to make the circuit

hazard free.

This design technique has a further similarity with a spacial case of STG based design

methodology under well-behaved environment [59][60] to be discussed in Chapter 3.

2.4 Muller's speed independent circuit theory

2.4.llntroduction

The above review shows that in the classical Huffman methodology and its exten-

sions the environment needs to know some upper bound for the propagation delay of the

circuit in order to determine when to apply the next change in the input, putting this tech-

nique in the bounded delay model category. (This in fact is the timing function of a clock

pulse, the need for which still exists in the Huffman model). Otherwise an early change

in input may disturb the network prematurely, resulting in an effoneous state and/or out-

put and hence in incorrect operation. Furthermore, the classical Huffman method and its

extensions are not powerful in modelling the combination of sequencing and concurrency,

thatis partial ordering. As an example consider a partial description of a circuit with four

outputs, o 1, 02, o j and oa Qnitially at logic low), which are supposed to go high, but in

a specific order, as the input 1.¡ is pulled down, so that O 1 and 02 ma! rise as soon as 1.¡

goes down but the transitions on O j and O4 may only occur if the transitions on O 1 and.

O2have already been completed. The cause-effect relationship describing this behaviour

is shown in Figure 2.17.

These shortcomings are relaxed in Muller's speed independent circuit theory [57].

The first restriction is removed by introducing suitable handshaking signals and the sec-

ond shortcoming is overcome by manipulating and monitoring all nodes in the network

explicitly, as discussed in the following sections.

Muller [57] used a directed graph called State Transition Diagram (STD) to model

the behaviour of a circuit with no external inputs, the so called qutonomous or complete

Chapter 2 36

of + oj+
If v

\
o2+ -> 04+

Figure 2.17= A restricted order for output signal transitions which is
difficult to model in flow table based techniques.

circuits. A circuit is a network of some logic gates or operators, so that the output of each

gate, that is each node of the network, may be an arbitrary function (either combinational

or sequential) of all or some of the variables in the circuit. The STD shows how the state

of the network changes. A bit pattern representing the logic values of all nodes in the net-

work at a particular instant of time is called the state of the network at that particular in-

stant of time, which is totally different from the previous notion of state in the Huffman

design methodology. Muller shows that every autonomous circuit has a unique STD de-

scribing the circuit behaviour, but the converse in not true. Figure 2.18 shows an autono-

mous circuit with the corresponding STD.

In this STD each state is three bits long representing the current logic values of the

three participating nodes, a, b and c in the circuit. A x following any logic value means

that the corresponding gate or node is excited. Otherwise the gate is stable. A gate is ex-

cited if its output is NOT consistent with its inputs at that specific instant of time, other-

wise it is stable. State s7 (like 11*0*) is connected with an arrow to another state s2 (like

l*00*¡ if one of the excited nodes in s7 changes its value in s2.

Each gate is assumed to be atomic, that is no matter what function it performs it is

modelled with the corresponding instantaneous decision element followed by some zn-

bounded inertial delay. For example the AND gate together with its inverted input in Fig-

ure 2.18-a is considered a single atomic gate4 although it might not be realizable in

today's technologies. Non-atomic nature introduces new node(s) into the circuit and this

might result in an implementation deviation from specification, that is ahazard. The out-

put signal, on the other hand, is supposed to reach the fan-out points with negligible skew.

Notice that this is less restrictive than negligible wire delay requirement, as a piece of wire

4. This in fact is a sufficient condition for speed independence. Some decompositions might not

jeopardize speed independence. Burns in [14] shows the legitimate decompositions.

Chapter 2 37

c

b+

a

(a)

(b)

Figure 2.18= (a) An autonomous circuit and (b) its state transition
diagram.

may be modelled as a non-inverting buffer with its own unbounded delay as demonstrated

in Figure 2.18. These are the two major restrictions in Muller's speed independent theory.

Since mutual reachablity is an equivalence relation, the set of states in a STD are par-

titioned into mutually reachable sets of states, called equivalence classes. Figure 2.lg tak-

en from [57] shows a symbolic sTD with three equivalence classes, {a,b}, {cJ and {d}.

Figure 2.19: A symbolic state transition diagram. The equivalent states
are {a,b}, {c} and {d}.

b
a

a

a

00
*l

01 l*

IIc* ø-

al

r*r*I 00l*

Chapter2 38

The following three definitions taken from [57] with minor changes give a clear and

concise description for speed independent circuits:

The terminal class of a state transition sequence is the final equivalence class in that

sequence.

A STD is called speed independenr with respect to a state s.¡, if there is only one ter-

minal class reachable from s7.5

A STD is called speed independenr if it is speed independent with respect to each in-

dividual state.

Therefore, the STD in Figure 2.18 is speed independent, as every state is reachable

from any other state, that is there is only one equivalence class in this STD. The STD in

Figure 2.19, on the other hand, in not speed independent, as the initial state b may reach

either of the equivalence classes, {a,b} and {d}.

The remarkable characteristics of a speed independent circuit lies in its robustness

against the delay variations of the logic gates. So that the state transition sequence speci-

fied by the STD will eventually occur in the right order no matter what the individual gate

delays are.

2.4.2 Two restricted types of speed independent circuits

In Figure 2.18-b two types of excitation are eminent: excited signals which eventually

fire (that is change their logic values) before becoming stable, like 1*in 00* l*, or excited

signal which may become stable without changing their logic values, like node b çt*¡ rn

I* l* I . The second situation shows a choice, where one of two (or more) excited signals

manage to fire (that is are chosen) and in the meantime the rest of the excited signals be-

come disabled.

In Muller's speed independent theory all signals are generated by the circuit itself, as

there is no external signal applied form the environment. Therefore, in this model all sig-

nals involved in a choice are necessarily non-input signals, resulting in a non-determinis-

tic operation for the circuit, which is normally not of much interest. Input choice,

however, is a remarkable flexibility added to asynchronous circuits, and will be discussed

5. The definition for speed independent states is slightly different froml42l, according to which

{d} is the only final class in Figure 2.I9, recognising the STD as speed independent.

Chapter 2 39

in this chapter when input signals are allowed in describing circuit behaviour.

Semi-modular circtitsí ur" usubset of speed independent circuits in which there is no

choice, preventing the conflict situations mentioned above for Figure 2.18-b.In other

words, in semi-modular circuits every excited signal will eventually fire, that is its exci-

tation will not be withdrawn by firing another excited signal in the circuitT.

Distributive circuits are, likewise, a subset of semi-modular circuits and are distin-

guished by the characteristic that, starting with any state in a STD, all disabled signals

may only be enabled by (possibly different instances of) exactly one signal transition, that

is the excitation region of a signal may only be entered by exactly one signal transition.

Definition 2.1: The excitation region of a signal transition is the largest possible set

of connected states (in the STD) in which the transition is excited.

2.4.3
^

flow table based speed independent circuit realization

Armstrong et al. in [2] propose two methods to implement both combinational and

asynchronous circuits under the unbounded gate delay model. Both techniques are based

on completion detection, of course at the price of some area overhead. In this section we

study the combinational logic only. The basic idea is the same for sequential circuits,

which undergo a flow table based procedure.

A general block diagram of this technique is shown in Figure 2.20.

Based on this model the environment knows when the next input vector may be ap-

plied, as the stable states are reported by the asserted Req lines, generated by the comple-

tion detector and based on some redundancy introduced in proper coding of stable inputs

and outputs as explained here:

Method 1: spacer-data: In the first method two types of inputs are supplied by the

environment and likewise two types of outputs are generated by the logic circuit as well.

6. Semi-modularity and distributivity (to be discussed shortly) are borrowed from the lattice the-

ory. A STD is semi-modular (distributive) if the underlying cumulative diagram is semi-modu-

lar (distributive).

7. Martin t47l t50lt51l has come up with a similar notion of s/aåility of prodtction rules as a nec-

essary condition to avoid hazards in speed independent circuits. The rule of stability requires

that if the guard of a production rule becomes true, it must not become false until the end of the

computation.

Chapter 2 40

Input Output

Figure 2.20= A general block diagram of Armstrong et al.'s
design method.

Type one input/outputs are some coded data called data words (or codes), so that each

data word applied to the logic circuit must generate a valid data word at the output. The

second type of input/output is called a spacer. The input spacer must generate the output

spacer.

There are two basic requirements in this design technique:

l- The input must alternate between data words and the spacer. If this sequence is ap-

plied to the circuit sufficiently slowly then the output will alternate between data words

and the spacer as well, with some possible transient response.

2- During input (output) transitions from the spacer to a valid data word and also from

a valid data word to the spacer no other valid input (output) word must be generated.

Condition 2 prevents any unspecified behaviour caused by the above transient re-

sponse.

As an example data words may be coded as normal dual rail codes, in which a single

bit 0 and 1 are coded as 01, and 10, respectively.

A valid data word detected at the output indicates a stable valid word at the input as

well. Therefore, the completion detector has to only monitor the output lines to request a

spacer. However, the case with the "data to spacer" transition is different, that is having

detected a spacer on the outputs does not necessarily mean a spacer on the input lines, as

the invalid input words during the input change may also cause a spacer on the output.

This can result in premature input transition and eventually malfunction. This type of haz-

ards (first reported in [2]) which are similar to what causes fundamental mode restrictions

in Huffman methodology, is called delay hazards.

This problem may be solved by getting the completion detector to monitor both input

Req

Logic
Circuit

Completion
Detector

Chapter2 4t

and output and not to request a new data word unless both inpuloutput are settled at all-

zeros. Figure 2.21 shows the timing diagram of this method.

Output Datu word

Input

Req Spacer

Req Dataword

Figure 2.21: Timing diagram for the data-spacer method.

Method 2z alternating data: In The second method there are two separate sets of

data words, so that no two inputs from one set must generate outputs from both of the sets,

eliminating the need for an explicit spacer. The fundamental requirements now are as fol-

lows: l-The input must alternate between these two set of data words. This implies that

the output will alternate between the two sets as well.2- During input (output) transitions

from one set of data words to another one, no other valid input (output) word from either

of the set must be generated.

The two required set of data words may be chosen again by allocating two coded bits

llke {(01, 00), (10, I 1)} to the original uncoded bit 0 and 1, respectively.

The second method has a better performance but at a considerable area penalty, due

to data code alternation, although the principle idea is the same as the first method. In this

technique input data alternating between the two sets of data words are applied to two

combinational modules, each in charge of processing one group of data. The output of the

irrelevant module is forced to all-zeroes. The request bus is again two bits wide: a data

word of type-l (type-2) is requested from the environment if the stable cuffent output is

of type-2 (type-1) and the module-1 (module-2)'s output is all-zeros.

Spacer

lDataword Spacer

Chapter 2 42

2.4.4High level graph specifications for asynchronous circuits

Two independent papers U Il llTl introduced a Petri nets based description for asyn-

chronous circuits. The theory developed in these works may be considered as a bridge be-

tween lattice theory (the basis for Muller's work on speed independent circuits) and the

theory of Petri nets, on the other hand.

Definition 2.2: A Petri net is a bipartite directed graph G = (P,7, F, M6), where p is

a finite set of places or conditions, Z represents a finite set of transitions, F is a flow

relation: F CP X. T) v (TX P) and M6 is the initial marking. 0

Figure 2.22 shows a Petri net which models the behaviour of a Muller C element if
the transitions are interpreted properly. (See next section).

ps

P3 P+

Figure 2.22= A Petri net modelling the behaviour of the Muller-C
element.

Assuming a maximum of one token per place, the initial marking is represented by

one token in some of the places of a Petri net Qt6 and p5 in Figure 2.22). 'When
a transition

receives one token in all of its fanin places (that is the places which immediately precede

that transition), then that transition is called excited and it may eventually fire. 'When
a

8. This theory has originally been developed by Petri. For a comprehensive review see [61]

6

t4

Chapfer 2 43

transition fires the tokens are removed from its fanin places and one token is placed in

every fanout place of that transition (that is a place which immediately follows that tran-

sition). Notice that one token in every fanin place is necessary and sufficient to excite a

transition, no matter what is happening in other parts of the net. This remarkable feature

of Petri nets makes them an interesting tools to model asynchronous circuits. Using this

capability partial ordering may be modelled readily.

Definition 2.3: A Petri net is called safe if no place can assume more than one token

in any reachable marking.g 0

Definition 2.4:In afree choice Petri net if a place has more than one fanout transition,

then it is the only fanin place for all its fanout transitions. 0

Definition 2.52 A marked graph is a Petri net with no choice, in other words in a

marked graph no place has more than one input and more than one output transition. 0

Figure 2.22 shows a marked graph Petri net, where there is no choice in the flow of

transitions.

DefÏnition 2.62 A state machine is aPetri net with no parallelism, in other words in a

state machine no transition has more than one input and no more than one output place. 0

Figure 2.23-a shows a state graph Petri net. Place p7 shows a choice instance, while

there is no parallelism in this Petri net.

2.4.5 Signal transition graphs

DefÏnition 2.7: A signal transition graph (SfG) [1S] is a free choice Petri ner in

which each transition is interpreted as a physical signal transition on some node of a

circuit. 0

The signal transitions in a STG may be either input (applied by the environment) or

non-input (generated by the circuit). STGs in general can model both choice and concur-

rency.

Figure 2.24-a shows the STG conesponding to the Petri net in Figure 2.22. Notice

how the transitions in the Petri net have been interpreted as signal transitions. Rising and

falling transitions of signal ø are shown as ¿+and d-, respectively. Input signals are usu-

9. In[94] it is shown that some restrictions like safeness are not necessary, although they may lead

to more efficient circuits. More examples are presented in [30].

Chapter 2 44

pI
PI

t2

P3

P3

p3

p7

t7

(a) (b)

Figure 2.23= (a) A state machine Petri net, (b) the corresponding
STG.

ally underlined, to be distinguished form internal and output signals. Internal signals are

introduced to solve the CSC problem, to be discussed shortly. All places with one input

and one output transition are eliminated from STGs for the sake of clarity.

Definition 2.8: A STG is called well-formed if it is live and its corresponding state

transition diagram satisfies the complete state coding property.

Definition 2.9: A safe STG is live if every transition can be enabled through some

transition sequence from every reachable marking. Furthermore, no two similar

transitions of the same signal may follow each other unless they have one transition with

the opposite direction in between.

Definition 2.10: A STG has the complete state coding (CSC) property if the state

+ b-

i
a+

I
d-

I
6+

a

I
{

I
d

+

c+

a-

I
¿+

Chapter 2 45

at|=o' t6=b

f

t I=c'

t6=b+

ts=b-

ps,8

p 3,4

\/
I

t l=c'

/\
t2=o- b=b-

\/
t4=r-

(a)

(b)

Figure 2.24= (a) The srG corresponding to the petri net in Figure 2.22
with proper interpretation for the transitions, and (b) the resulting STD.

transition diagram corresponding to the STG has the CSC property.

Definition 2.l1: A state transition diagram (or state diagram), STD is a two tuple (S,

E)wheresisasetofstatesandEisasetofedgessothatEcSX.S.Eachmarkinginthe

STG corresponds to one state in the STD. The value of each bit in a state bit vector is

determined by the latest transition of that bit. There is an edge, E¡, between .S¡ and S; if
and only il S¡ immediately follows S¿.0

Definition 2.122 A state, ,!, immediately follows another state, ,s¿, if M¡ can be

reached from M¡ through the firing of a single transition, where M¡ and M¡ arc the

markings corresponding to S; and ^[., respectively.

Definition 2.132 A STD has CSC property if there are no two identical states with

different non-input excited variables. 0

o*o*o

r*r*l

0l* l l*01

p7,S

Ps,¿

P0,z

t2=a-

Ps,¿

t,r=C

t5
I

=a'

00l*

Chapter 2 46

The STD corresponding to the STG in Figure 2.24-ais shown in Figure 2.24-b.Notice

how a STD is generated as the STG is executed.In other words a STD consists of all pos-

sible markings in the STG, that is all reachable markings starting with an initial marking

and following the above simple firing rule. Figure 2.24-b also shows the markings corre-

sponding to each state. Therefore, a STG is, on one hand, an interpreted Petri net, and on

the other hand a higher level of abstraction for the corresponding STD, which was origi-

nally introduced by Muller [57] based on the lattice theory.

Referring to the previous section note that a marked graph, that is a STG with no

choice, generates a distributive STD.

Definition 2.14: A STD is semi-modular if all its excited variables fire eventually,

that is no excited variable is disabled by the firing of another transition. In other words a

choice free STD is called semi-modular.

Definition 2.15: A detonant state has a stable signal which becomes excited by more

than one signal transition in more than one state immediately following that state. 0

Detonant states may only be introduced in Change Diagrams to be discussed in the

following section (and not in srGs) where weak precedence is allowed.

Deflrnition 2,16: A STD is distributive if it is choice free with no detonanr srare.

Corollary 2.1: General STGs fall into a special class of with choice-distributive

lattices, as there is no detonant state in STGs but (input) choice is allowed.

2.4.6 Change diagrams

A STG is able to model both AND and Exclusive OR (choice) casual relationships.

For example the STG in Figure 2.24-b specifies that both a+ and b+ are required to fire in

order to excite c+. Figure 2.23-b on the other hand specifies a choice: when p7 has a token,

either a+ or b- may fire (but not both). Also, on the merging point of the two branches of

the choice although either b+ or c+ may cause a-,Thetransitions b+ and.c+ aremutually

exclusive. Change diagrams (CDs) introduced by Varshavsky et al. t91lt33l do model ln-

clusive OR relationship between transitions while choice has not been considered in CDs.

Therefore, the CSC property is reduced to the USC property while there is no input signal

in the system:

Definition 2.172 A STD has USC violation (contradictory) if there are two identical

Chapter 2 47

states but with different excited variables.

Figure 2.25 shows a change diagram, and the corresponding STD.

I I* I*o
a

b-
+

c

/\
I lo*o* Iol*o*

l0l* l

a

{ b- ¿+

ø-
I I*01\/

d+ l*ooI
a

6+

d-

00

0l0l*

010*0

o*IIo

+

t(0t

c*

a-

+

6+

+

d-

I
cl

(a) (b)

Figure 2.25: (a) A change diagram, and (b) the corresponding STD.

The OR causal relationship (weak precedence) is specified by dashed arrows in CDs,

and the normal AND relationship by solid arrows (strong precedence). According to this

cD both b- and c- caî individually excite d+, so that the sequences c-b-d+, ad+b-, b-

td+ and b-d+ ¡ all are legitimate now, a behaviour which may not be modelled by STGs.

Since no choices are modelled by CDs, the resulting STD (using the same algorithm

as for STGs) are generally semi-modular, as no transition firing may disable another ex-

cited transition. A special class of CDs in which all causal relationships are of strong type

are called signal graphs. This class of circuits corresponds to distributive STDs.

1000*

¿+

d +C

Chapter 2 48

2.4.7 STG based implementations

STG's have been implemented as asynchronous circuits in different ways by different

researchers. Chu [17][18] and Meng t55lt56l have used complex gates to implement dif-

ferent nodes in the asynchronous network. This in fact is based on the exact assumption

of the atomic model of gates in the Mullers's theory of speed independent circuits. A com-

plex AND-OR-NOT gate almost satisfies speed independent requirements as long as no

signal is used in the complementary form, as inverted inputs may easily violate isochronic

fork assumptions.'we will discuss this topic in more detail in chapter 5.

Kishinevsky et al. [33] introduce 2 phase RS implementation, in which not only is the

above problem resolved, but the technique also has two other interesting features to be

discussed in Chapter 5. This technique however suffers from some area and performance

overhead

Beerel t3lt4lt7l has developed a simple gate based technique to implement speed in-

dependent circuits. In his technique although extra nodes are introduced in the network,

adhering to the two necessary and sufficient conditions of speed independency, (that is

acknowledgement and monotonicity) he shows that the resulting network is hazard free.

Acknowledgement requires that every signal request must be acknowledged before anoth-

er request is sent to the same signal. Monotonicity requires that the request must reach the

signal monotonically, that is the request has to be glitch free.

Moon t59lt60l has assumed a well-behaved environment to implement asynchronous

circuits from signal transitions graphs. In this technique the environment must be suffi-

ciently slow to avoid delay hazards. Logic hazards are removed similarly to the conven-

tional Huffman methodology.

Lavagno's simple gate design methodology Í421is based on the bounded wire delay

model. In this technique delay hazards are avoided by proper delay padding on some of

the wires, so the designer has to have exact knowledge about the delay bounds of different

wires in the circuit. Logic hazards are again removed using a similar method to Moon's.

Myers 1621163l has introduced timed signal transitions, in which, based on the design-

er's knowledge of upper and lower delay bounds between any two consecutive signal

transitions, some of the markings are found unlikely to occur, resulting in some area and

hence performance improvement.

Chapter 2 49

Martin t47lt50lt51l, Brunvandll2l and van Berkel t85lt87ltS8l (with some options

for handshake circuits t69lt90l) have introduced a systematic asynchronous design meth-

odology starting with a CSP [27] like programming language. This high level description

is then compiled in some stages into a speed independent circuit.

A more detailed review of some of these design techniques will be presented in dif-

ferent chapters in order to provide a better background for our work.

2.5 Conclusion

In this chapter some asynchronous design techniques with emphasis on the specific

delay restriction were reviewed and it was concluded that all of these commonly used

techniques assume one type of delay restriction or another, which is of course traded off

against the complexity of the resulting implementation. In this context we highlighted two

different notions of simultaneous and concurrent transitions. The closeness requirement

of simultaneous transitions is only raised in systems with multiple environments. This sit-

uation can easily be modelled in a flow table based technique, but not in self clocked nor

event based methodologies, in which an input burst may not be a subset of another input

burst if both bursts are enabled in the same state. On the other hand, partial ordering can

be modelled using event based descriptions like STGs, while they are too difficult to be

represented with a flow table like language.

Chapter 2 50

lwo Leuef Logic Imp bmentøtíon of Asy ncñrornus

circuitsfom SrÇs unler tfrr. In¿rtiøtDetøy gv[ofe[

ønI tfu.'We ff-ß eñna e I Enairo nnt¿nt As sump tio n

3.L Introduction

It was highlighted in Chapter 2thatthe major advantage of the Petri netbased descrip-

tion languages like STGs of asynchronous signal transitions, over the traditional flow ta-

ble based techniques is their ability to model partial ordering, no matter what type of delay

restrictions are taken into consideration to realize the STG as an asynchronous circuit. Un-

der no restrictions for timing constraints for different signal transitions in a STG, that is

Chapter 3 5l

the unbounded gate delay model, the original speed independent circuit theory design

techniques like [57][18][56] assume an atomic delay model, where each gate is modelled

with an instantaneous decision element followed by an unbounded delay. As will be dis-

cussed in Chapter 5 a complex AND-OR-NOT gate reasonably satisfies this requirement,

although they do not yet realize functions with both inverted and non-inverted inputs. In

order to make all type of possible logic functions available under the atomic gate delay

model the delay along inverters at some inputs of these gates has been assumed negligible

by some researchers (that is atomic NOT-AND-OR-NOT gates).

Complex gates are only available in full custom VLSI designs which may incur a con-

siderable waiting period between the design and the market. This fact has been the moti-

vation for much research work to properly decompose complex gates into simple gates to

reduce the variety of the gates required in a library and / or to relax the fanin restrictions,

l36l?ll44lll4ll3Tlalthough zero delay along inverters is still assumed. In addition to rhe

above drawback of using complex gates, stacked transistors, which are invariably used in

complex gates, suffer from too much noise margin degradation in technologies like n-

channel MESFET Gallium Arsenide [24]. This fact does not allow speed independent cir-

cuits to be realized in such technologies, as the Muller C-element utilized in some decom-

position techniques has to be implemented with two pull down stacked transistorsl unless

the inffici¿nr NOR-NOR fashion is employed.

The unbounded gate delay model which was the first requirement in realizing speed

independent circuits is considered too pessimistic by some researchers [42].To relax this

harsh requirement Lavagno l42l has developed an asynchronous design technique from

STGs based on a bounded wire delay model, where he assumes that gates and wires real-

izing the circuit all have known bounded delay. Based on this knowledge the circuit is de-

signed and fabricated with proper delay paddings to avoid delay hazards, (which of course

incurs some overhead in terms of area, performance and testability). Therefore, the circuit

will work according to the specification if the real delays do not exceed the presumed de-

lay ranges.

Myers [63] has also developed an asynchronous design technique from STGs but

l. This implementation requires two p-channel stacked pull up transistors as well, which is a sec-

ond reason why GaAs technology is unsuitable for speed independent circuits. These restric-

tions have recently been lifted by introducing complemetary GaAs technology [l l].

Chapter 3 52

again under a bounded gate delay model. The presumed delay bounds of the signal tran-

sitions of the STG are used to identify the non-reachable states in the corresponding state

transition diagram. This redundancy removal normally results in a significant perform-

ance gain. The correct behaviour of the resulting implementations is again subject to con-

forming to the presumed delay ranges.

Moon [59] has developed an asynchronous design methodology from STGs but with

different delay constraints which require the environment to not only comply with the sig-

nal transition ordering specified in the corresponding STG (as usual), but also be suffi-

ciently slow to assure that the predecessor ordered transitions have already been stabilised

and absorbed in the fanout gates before the new input transitions are activated. This tech-

nique does not suffer from stacked transistor limitation in the corresponding two level im-

plementations and hence is suitable for implementation of STG based asynchronous

circuits in technologies like GaAs, although the limited fanin restriction still exists.

In this chapter, based on the work in [59], we investigate the two level logic synthesis

of asynchronous circuits from STGs under fhe inertial gate delay model in addition to the

above constraints on the environment We show that multiple input high to low dynamic

logichazards are ruled out under the inertial gate delay model in two level SOP logic cir-

cuits. We then weaken the zero wire delay restriction and find an upper bound for the de-

lay along critical interconnection wires and hence proposs avirtual isochronicforkmodel

for interconnection networks. Multiple input low to high dynamic hazards are then stud-

ied in two level logic implementations and it is shown that this type of hazardis unlikely

to occur under the inertial gate delay model unless a liberal delay flexibility is required

between the first level AND gates of SOPs. Static hazards, on the other hand, are shown

to not be relaxed under the inertial delay model.

Delay hazards are investigated in two level logic under the well-behaved environment

assumptionz and. it is uncovered that even this restriction does not necessarily lead to de-

lay hazard free implementations, no matter whether the pure or the inertial delay model is

considered. We show that this type of hazard has been overlooked in the design of the

STG compiler, SIS [74].

2. A more general discussion of delay hazards in two level SOPs is covered in t79l

Chapter 3 53

3.2 Basic notions and definitions

Definition 3.1: The logic functionf(xp x2, ... xn) of n input variables is a mapping

from {0,1 Jn to {0, X, I }.

Defînition 3.22 A literal is a variable or its complement.

Definition 3.3: Each element in the domain of a function is called avertex.

DefÏnition 3.4: The subsets of vertices which are mapped to I , X, and 0 are called the

on-set, don't care set and off-set respectively of the function.

DefÎnition 3.5: In an n variable environment a cube is the set of 2k vertices ,0 < k <

n, which are identified by (n - k) variables with fixed values and all 2fr possible

combinations of two different values for the remaining fr variables. So, a cube can be

represented as a product term of the fixed literals (obviously with no complementary

pair).

Definition 3.6: A cube A covers a cube B if all vertices in B belong to A as well.

Definition 3.72If two cubes both cover the same one or more vertices, then they

intersect each other. Notice that the intersection of two cubes is a cube as well.

Definition 3.8: When a literal is removed, the cube is expanded. Therefore the

expanded cube covers twice as many vertices as the original one does.

Defrnition 3.9: An implicant is a cube which does not cover any off-set vertices.

Definition 3.10: If an implicant cannot be expanded into another implicant, then it is

called a prime implicant.

Definition 3.11: An on-set cover (or simply cover) of / is a sum of product

implementation of/in which the product terms (p-terms) are the implementation of a set

of implicants by which all on-set vertices and possibly some don't care vertices are

covered.

Deflrnition 3.122 Acover from which one or more implicants can be removed is called

redundant. Otherwise it is called irredundant.

Definition 3.13: During an input transition, if one or more spurious signal transitions

may occur on the output of a combinational circuit under the delay models assumed for

both logic gates and interconnection lines, then the transitionhas a combinational hazard.

Chapter 3 54

Notice that the absence of any spurious transition on the output of a particular

implementation does not necessarily imply ahazard free input transition.

In this paper hereafter by hazard we mean combinational hazard unless otherwise

specified.

Definition 3.14: An input transition has a static hazard if as a result of that transition

the output may change temporarily while it was expected to stay unchanged. A static

hazard is called a l-hazard or O-hazard if the spurious pulses are low or high, respectively.

DefÎnition 3.L5: An input transition has a dynamic hazard if as a result of that

transition the output may undergo a non-monotonic transition while it was expected to

change monotonically.

Definition 3.16: An input transition is called

I- adjacent if the two input vectors differ in only one variable,

2- non-adjacent or multiple if the two input vectors differ in more than one variable.

The second case is unrealistic in the sense that it is very unlikely for all input variables

to change simultaneously. Moreover, considering different parasitic delays with possibly

independent values, the input change will in general not be sensed simultaneously even if
they occur simultaneously. Therefore, it is more realistic to assume that input transitions

happen one bit or more at a time and in an arbitrary order, that is concurrent or parallel

transition of input variables.

Definition 3.L7: The set of ordered input states which may occur in a multiple

transition is called an input route.

Corollary 3.1: In a parallel input transition if the intermediate transitions happen one

bit at a time, then there are ft/ possible input routes, each t stages long, where Ë is the

number of bits in the input vector which are to change.

DefÏnition 3.18: The set of all input states appearing in all possible routes, is called

the transition cube.

Definition 3.19: The set of ordered output states corresponding to the ordered states

in an input route is called an output route.

Definition 3.202If at least one of the output routes shows a non-monotonic output

Chapter 3 55

transition, then the corresponding input transition has afunction hazard.

Corollary 3.2: Function hazards cannot be eliminated.

Lemma 3.L: During a parallel input transition the real sequence seen on the output is

not necessarily the corresponding output route.

Proof: Arbitrary delays may change the order by which the input variable changes

are seen by the last gate. Moreover, different paths introduce different propagation delays

even when a single variable change is propagated, so that during a transition the output

may take a value which does not correspond to any vertex in the transition cube.There-

fore,

Definition 3.212If an input transition is free of function hazards but the output may

still suffer from spurious transitions (which are due to parasitic delays of the circuit

elements), then the transition has a logic hazard.

Corollary 3.3: All function hazards can be identified through the circuit's truth table,

while the implementation logic equation and also the delay models are required to

determine all existing logic hazards.

Definition 3.222 Adelay element is called pure if all events on its input are transferred

to the output after some propagation delay time. While in inertial delay the input pulse

width must be sufficiently wide, that is greater than the propagation delay, to pass through

the element. Shorter pulses will be absorbed and disappear.

3.3 Welt-behaved environment

The following two definitions have been taken from [59]

Definition 3.23 z The environme nt is w e ll - b e hav e d if

. it sends inputs according to the order specified by the STG, and

'it applies an input transition s*3 only after the output signals which have signal

s in their fanin set, are stable.

Definition 3.242 A signal is stable if that signal and all the signals in its transitive

fanin have reached their steady-state values.

3. s* represents a signal transition on node s with unspecified direction

Chapter 3 56

Notice that well-behavedness is less restrictive than the fundamental mode require-

ment in which the next input vector may only be applied after the circuit has absorbed the

previous input vector and reached the steady state condition, that is all delay elements

both implicit and explicit have achieved outputs equal to the corresponding inputs. In oth-

er words the partial ordering feature of the specification is still valid in this methodology,

similarly to other STG based implementations. Consider the STG shown in Figure 3.1,

where the transitions b+ and a+are enabled. The well behaved environment is allowed to

fire b+ as soon as C fires and is absorbed, no matter what stage the transiti on d- is, as it
is positioned on a parallel branch.

a =b.ã+c.ã
b = c+b.d

a

c

j.

tr

c

¿+

1

a-
+

ç = ¡b+c|¡a+b)
d = a+b+c

Figure 3.1: Parallelized STGs allow output signal to fire concurrenfly
with input transitions even under well-behaved env¡ronment

assumpt¡on.

Corollary 3.4: From Definition 3.23 we conclude4 that under the well-behaved

environment assumption no two sequential output transitions are allowed in the STG if
the (unrestricted) delay between these two may cause any delay hazards, otherwise there

is no point in restricting the environment, that is sequential outputs can cause the same

problem (that is, delay hazards) that the well-behaved environment assumption is to

prevent.

Therefore, each cycle in a well-behaved environment based STG should normally

look like a recent notion of burst mode machine t65lt66lt96lt97l in which an input burst

is followed by an output burst and vice versa. In other words this class of STGs are able

to model burst mode machines while partial ordering may also be modelled.

4' Nothing has been mentioned regarding this restriction in the literature so far, as far as we are

aware.

Chapter 3 57

The details of the extraction of two level logic equations of different variables com-

prising an asynchronous circuit from STGs [18] are not repeated here. Therefore, we start

with the required logic equations and study different types of hazards in two level logic

under the inertial delay model.

3.4 Inherent function hazards

Theorem 3.1 has been proved in [59]. Here we use a more straightforward approach

to achieve the same result.

Theorem 3.1: All parallel transitions in well-formed STG's are free of function

hazards.

Proof: Referring to Definition3.20 recall that function hazards are independent of the

implementation and can be well conceptualized under the no-delay gate model (which is

a special case of the speed independent unbounded atomic gate delay model) and are man-

ifested as a (unwanted) non-monotonic output route. Notice, however, that for all parallel

transitions modelled by STGs all possible output routes aÍe necessqrily taken into consid-

eration, and explicitly extracted and displayed in the resulting state transition graphs

(when the STG is executed) to (partially) satisfy the requirements of the unbounded gate

delay model.In other words, for each atomic gate implementing the corresponding vari-

able of the STG, each input route out of /</ routes is considered possible and hence a valid

input route. In the presence of function hazards not all input routes are valid, as some of

them force the output to undergo spurious transitions, while in STG based specifications

there is no signal transition other than those specified by the STG (under the atomic gate

model) and hence there is no spurious signal transition causing non-monotonicity in any

output routes. So the proof is complete. 0

Therefore, all functions derived from well-formed STGs are free of function hazards.

However as mentioned above and to be discussed in more detail later in this chapter, delay

hazards used by precedence reversal are in fact newly introduced function hazards which

have to be avoided in designing robust asynchronous circuits.

3.5 Multiple input change high to low dynamic hazards

3.5.L Introduction

Different types of hazards have been studied extensively under the bounded gate and

Chapter 3 58

wire delay model t9lt10lt83l[64]. It is well known that under this delay model not all

multiple input dynamic logic hazards can be removed from all two stage combinational

logic circuits. In this section we restrict the delay model to the well-known inertial gate

delay and show that under this model half of the dynamic logic hazards can no longer oc-

cur in two level logic circuits. We then weaken the zero wire delay restriction and find an

upper bound for the delay along critical interconnection wires and hence propose avirtual

isochronic fork model for interconnection networks.

3.5.2 Dynamic hazards

Any combinational logic function can be realized in the "two level" form of Sum of
Product (SOP) logic possibly with inverters for some of the inputs. As a result of a mul-

tiple input transition, a product term in the corresponding implementation may stay low

or high, may have a high to low or low to high transition, may have a static O-hazard or a

static I-hazard or a dynamic hazard.

Definition 3.25: The different product terms described above are called as, a1, ts, t1,

ho, hl and d, respectively.

Lemma 3.22In a multiple input change causing a high to low output transition for a

SOP circuit, the hg (with only one spurious pulse), ag and t¡-type product terms are the

only possible product terms, under monotonic input transitions.

Proof: a0type product terms have no effect on the behaviour of the function.

No a7 or t I type product terms may exist, as they require the output to reach a final 1-

state.

An hg-type with more than one spurious pulse, an h1 and also a d type product term

cannot exist either, as this could only occur if a cube is first exited and then re-enteréd,

which would require that a variable had at least two transitions, which is not monotonic.

To further clarify notice that when the output of an AND gate (that is a p-term) is

pulled down by an input signal/(so/= 0) during a multiple input change, the output can-

not be pulled up again, as/is still at logic low, and will stay low until the end of the tran-

sition, because the transition is assumed to be monotonic.

A rising input followed by a falling one of an AND gate may cause an hstypeproduct

term. An hgtype product term is consistent with the 1-0 output transition.

Chapter 3 59

A r¿ type product term is the replica of the intended output and is caused by a falling

input of an enabled AND gate.

Therefore, ag, tg and hg are the only possible product terms in a multiple monotonic

input change high to low output transition. 0

In the following discussion we assume that there are no a1 and tI type product terms

in the input transitions. Otherwise, according to Lemma 3.2the transition cannot be of 1-

0 type. We further assume that the input transitions under consideration are monotonic

and free of function hazards unless otherwise specified, therefore

Lemma 3.3: Under the bounded but unrestricted wire and gate delay model and in a

SOP circuit, a multiple input transition has a high to low dynamic hazard iff there is at

least one t¡type and one h6-type product term.

The following Lemma from [64] states the concepts of Lemma3.3 in a different way:

Lemma 3.4: Under unrestricted gate-wire delay model, a 1-0 multiple input

transition suffers from a dynamic hazard iff a p-term in the cover intersects the transition

cube but does not cover the initial vertex (illegal intersections). 0

In this section it is shown that under the inertial gate delay model these two Lemmas

are not valid any more.

Considering these two Lemmas, in order to generate a high to low output transition

with a dynamic hazard, first all t0type p-terms have to be exited (legal intersections ter-

minate), so that the output of the circuit is pulled down as well and then one or more hg

pulses (illegal intersections) occur, that is the output experiences one or more spurious

pulses (see Figure 3.2).

tg

output

Figure 3.2: High to low dynamic hazard caused by one hs-type p-term.

It becomes clear that hgtype p-terms (illegal intersections) are the major cause of dy-

namic hazards, as the other partner, that is at least one /¿-type p-term (legal intersection)

ho

Chapter 3 60

is inevitable for an output high to low transition.

h6type p-terms have three different causes:

1- Function hazards (Dynamic function hazards are caused by static function haz-

ards),

2- Static logic 1-hazard,

3- The rest, we call them real dynamic hazards.

In the following subsections the conditions under which function hazards may occur

are first determined. These conditions must be avoided or dynamic hazards are inevitable,

no matter what the delay model is. Then we discuss dynamic logichazards caused by stat-

ic logic hazards. These hazards can be removed using the traditional method of adding the

required redundancy to the cover. This can always be performed no matter what the delay

model is. These first two groups are in fact the minor groups of dynamic hazards. We

show that the major group, that is the real dynamic hazards which are problematic under

the unrestricted gate and wire delay model, cannot occur under the inertial delay model if
they are of type high to low.

3.5.2.1Dynamic function hazards (Type 1)

Definition 3.26: An implicant inside the transition cube which cannot be expanded

to another implicant inside the transition cube, we call a Transition Cube Prime QCP)

Implicant.

In Theorem 3.2 and Theorem 3.3 normal transition cubes, that is transition cubes with

at least two off-set vertices are considered. The special case of one off-set vertex is studied

in Theorem 3.4.

Theorem 3.22In a high to low output transition, if all on-set vertices in the transition

cube are not covered by a single implicant, then the transition has a 1-0 dynamic function

hazard iff the initial vertex is not within the overlapping area of the TCP implicants

covering the on-set vertices of the transition cube.

Proof:

(Necessary) Notice that a dynamic function hazard occurs iff there is an input route

which leaves the on-set area of the transition cube and then enters it again and finally ter-

minates with an off-set vertex (see Definition 3.20). This, however, may only happen if

Chapter 3 6t

the first left area and the second entered area belong to two different cubes, as when one

cube is exited it may not be re-entered under a monotonic input transition. Therefore, if
the initial vertex, v, is in the overlapping area of the TCP implicants, no high to low dy-

namic function hazard may occur.

(Sufficient) Now suppose that there is an on-set vertex, x, in the transition cube but

there is no on-set cube covering both v and x.It is shown here that such a transition suffers

from a l-0 dynamic function hazard.

Since there is no on-set cube covering both y and x, there must be at least one off-set

vertex, w, which is less than x and greater than v in terms of the POSET theory5 (See Ap-

pendix A). Therefore, in the path from v to w and then to x, there is a static function 1-

hazard. Notice that the destination vertex, z#w, is the greatest element in the transition

cube, that is, it is reachable from all vertices within the transition cube, including;. This

means tltatvwxz is one or more input routes with a non-monotonic output route, that is, a

1-0 dynamic function hazard.0

Example 3.1:

Consider the multiple input transition t -) z in Figure 3.3. Here the transition cube is

the whole 4 x 4 map with the on-set vertices not covered by one cube only. Notice that

the starting vertex, /, is located inside the overlapping area. Therefore, the transition is free

of function hazard.

ab
00 0I t] 10

00

01

II
I0

Figure 3.3: A transition cube (the whole map) with on-set vertices
not covered by one cube.

5. In Appendix A we show that every transition cube in a parallel monotonic input transition to a

logic circuit realizes a distributive lattice under the follows partial ordering.

Chapter 3 62

Now consider the transition u -) y,which has the same transition cube but the starting

vertex is outside the overlapping area, which causes a function hazard, as an input route,

say, ursxy corresponds to a non-monotonic output route, 101 10. ç

3.5.2.2 Dynamic logic hazards caused by static logic l-hazards (Type 2)

Figure 3.4 demonstrates a logic circuit not implemented with the prime implicant as

a p-term.

ab

cd 00 0I 11 I0
P2=
a.b.c

00

01

11

10

Figure 3.4: Dynamic hazard caused by static hazard.

Consider the multiple transition 0010 (v) + 0101 (z),for which the transition cube is

¿. This implementation suffers from a static l-hazard, as during the transition the enabled

p-term, p1,may turn off being replaced with another newly enabled p-term, p2,which

eventually manifests itself as a 1-0 dynamic logic hazard. This would have never occurred

if the prime implicant a.b had been implemented as a p-term and replaced those two im-

plicants.

Now consider the same transition and hence the same transition cube, but in a differ-

ent functionf = a.b + a.b, shown in Figure 3.5.

Notice that one of the p-terms, a.b falls outside the transition cube, so that there is no

risk of switching from one p-term to the other one, that is why TCP implicants 1ã.å= in ttris

example), are significant, although prime implicants are obviously sufficient to guarantee

a static hazard free transition, and furthermore, are normally implemented as individual

p-terms in practice. We will later show an example in which both type 2 and 3 dynamic

hazards are involved.

Pt = a.b.c

/)
V) o,

/,,)
\liv\¿

Chapter 3 63

ab
00 01 rI 10

b

00

01

II
I0a. a.b

Figure 3.5: TCP or prime implicants, either can be used to avoid
static hazards.

Notice that one characteristic of type 2 dynamic hazards is that the output of a func-

tion may be pulled down before exiting the on-set area of the transition cube (see Figure

3.2).

3.5.2.3 Real dynamic hazards (Type 3)

'We assume that in the multiple input transition under consideration all r¿-type TCP

implicants (or other implicants which cover t¡-type TCP implicants) exist in the corre-

sponding implementation, unless otherwise specified. It was shown how the lack of this

requirement results in dynamic hazards caused by static hazards. Notice that it is accept-

able to expand a TCP implicant out of the transition cube, as discussed in the example

shown in Figure 3.5.

Before introducing the major theorem, consider how a real dynamichazard.may oc-

cur: Starting from a (on-set) vertex in the overlapping area of all the t'-type p-terms and

moving toward the (off-set) destination, one or more hg-typep-terms may become excited

and then affect the output of the circuit after all t¡-type p-terms have been exited. These

problematic obstacles are those implementation p-terms overlapping the t0-typep-term(s)

being travelled in the transition cube.

Example 3.2

Consider the implementation shown in Figure 3.6 with one ts and two hg-type p-

terms, in which the multiple transition abcd: 001I (v) -+ 010012) occurs. The transition

cube corresponding to this transition is ã. During this transition one or both of these hg

type p-terms may get excited but be sensed by the OR gate only when pl has been pulled

down, resulting in a non-monotonic output change, that is a dynamic hazard.0

I I
I 0

z I
I I
Iv I

Chapter 3 64

0
z

I(ì I I
I t'.!,

ab
00 0r 11 r0

P3=
b.c.d (h6)

pt = a.d (to) Pz = b.c.d (ho)

Figure 3.6: High to low real dynamic logic hazard generat¡on ¡n

unrestricted delay model.

Notice that here unlike type 2, the output of the circuit necessarily stays high as long

as the on-set vertex area has not been exited.

Considering the dynamic hazard generation mechanism, the following Theorem
6states a relationship between the disabling sequence of ts and, hs-typep-terms:

Theorem 3.3: In a multiple input transition 1-0 dynamic logic hazard, under the

bounded but unrestricted wire and gate delay model, each hg-type p-term is necessarily

disabled by at least the same input transition which disables one or more of the tstype p-

terms.

Proof: Consider the possible situations that a hgtype p-term may have in a multiple

input transition: It may be isolated from all tgtype p-terms or may overlap one or morc tg

type p-terms. The first case introduces a function hazard according to Theorem 3.2, asthe

t6type p-terms are supposed to be at least TCP implicants.

We discuss the case of one t¡type p-term. Two or more /¿'s cases may be treated sim-

ilarly.

Recall that the intersection of two cubes p1 and p2is athird cube ps = pt np2. Now

consider two overlapping p-terms pt (hù and p2 (r¿) shown in Figure 3.7.

6. The notion in this theorem has been stated in [59] as well but in a different way from our

approach, which was performed independently.

00

01

I]
r0

Chapter 3 65

pz (to)

P t (ho)

Figure 3.7: Graphical representation demonstrating tsand hs

p-terms participating in a possible 1-0 dynamic hazard.

Starting from an initial vertex such as v, when p2 is exited then either p7 is exited as

well (vertex ¿), or a vertex such as w in the non-overlapping area is entered. However, if
w is outside the transition cube, then it is NOT reachable, and if it is inside the transition

cube there is a functionhazard according to Theorem 3.2. Thereforc, if p2 is exited, p.¿ is

also necessarily disabled with the same input transition as well, in a function hazardfree

environment, even if it might already have been disabled by one or more other input tran-

sitions or it might have never been excited at all.

Notice that z cannot belong to another h6, ds the same reasoning also applies to that. 0

Example 3.3:

Consider the parallel transition abcdef:000 100 (x) --> 010 111 (z) for which the tran-

sition cube is a.c.d (the highlighted area in Figure 3.8). Starting from x, the tsp-term, p2,

may be exited by any of transitions a+, b+ , d-, or e+ . Notice, however that a+, and, d- are

not possible, otherwise the transition cube boundary will be violated. On the other hand,

b+ or e+ can individually disable the p7 product term as well. 0

Now we consider the special case in which there is only one off-set vertex in the tran-

sition cube. Theorem3.4 uncovers sufficient reasons to prove that such a transition is nec-

essarily hazardfuee.

Theorem 3.4: If there is exactly one off-set vertex in the transition cube, then the

starting vertex is necessarily the unique intersection vertex of all TCP implicants.

Proof: suppose that 7 = (a1, a2, ... an, b 1, b2, ... ba) is the only off-set vertex of a func-

tion/ where b¡'s are the fixed literals which specify the transition cube, and a¡'s are the

variable literals which determine the specific vertex in the transition cube. For the sake of

brevity we ignore the å;'s. Therefore, the starting vertex, v, becomes (orã2, ... a) andthe

o
z

Chapter 3 66

bc
a=0

00 0r 11 r0
a= l

10 11 01 00
ef

10

1I

01

00

d=0

d= I

p2 a.b.d.e pI = b.c.d.e.f.

Figure 3.8: An example demonstrating how an overlapp¡ng hop-term

is disabled when the t¿ p-term is disabled.

function/realizing the transition cube may be represented as

f = al.a2.an

or

f=ãt+a2+...*an

The above equation clearly shows that the function/has n (TC) prime implicants in-

tersecting in the unique vertex, (ot, ã2, ...ã), which is the starting vertex of the transi-

tion.0

Corollary 3.5: A single off-set vertex transition cube has a unique starting vertex for

a high to low transition.

Lemma 3.5: A transition cube with exactly one off-set vertex represents a dynamic

hazar d free transition.

Proof: First notice that one off-set vertex transition cube is free of dynamic function

hazards, as in order to have a non-monotonic output transition such a hazardneeds at least

two off-set vertices.

Now, according to Theorem 3.4the starting vertex is in the overlapping areaof all

TCP implicants, in other words all p-terms implementing the on-set area of the transition

0
z

I 7\ T

f,1" 1/

Chapter 3 67

cube are of t1type, that is there is no hs type p-term in the implementation if all TCP im-

plicants are implemented as p-terms, unless there are other p-terms added to the set of

these /¿'s. This, however, does not cause any hazards, as each newly added å¿ vertex is

necessarily covered by one t0type p-term, and this means that, with similar argument to

Theorem 3.3, there is no high to low dynamic logic hazard. 0

No restriction to the delay model has been assumed so far, that is, both wire and gate

delays have been considered unrestricted but bounded. Now, we restrict our discussion to

the model in which a logic gate is modelled with an instantaneous decision element fol-

lowed by an arbitrary inertial delay. Interconnection wire delays, however, are assumed

negligible. We will relax this restriction later. Notice that what is crucial is the lack of any

restriction on the relative size of delays. Hence, the following theorem presents some suf-

ficient conditions for multiple input transitions to occur hazardfree:

Theorem 3.5: There is no 1 to 0 dynamic logic hazardfor a monotonic multiple input

transition in a SOP circuit under the inertial gate delay model.

Proof: According to Lemma 3.3 a high to low dynamic logichazard necessitates at

last one hsandone tgtype p-terms in the corresponding SOP implementation. On the oth-

er hand Theorem 3.3 specifies that the hgtype p-term has to be disabled by the same signal

transition that disables a t0 type p-term. This implies a minimum logic circuit as shown in

Figure 3.9. Suppose that a is the input transition disabling both pz Qù and p 1 (hs) and b+

is the input transition enabling pt.

Therefore, b++ pf , a-) pf , b* < a- and. a- + p2-, or

a < p2 (3.1)

where -> shows the causal relationshipT and e+ < d is a temporal relationship mean-

ing that e+ happens before g. In other words ¿+ and g- may be interpreted as the corre-

sponding transition instants. å+ is the input variable transition causing the hgnode to rise.

Notice that whether variable b is inverted or not does not affect the generality of the dis-

cussion. An inverted b can only defer the rising edge on p 1, if any.

Now it is shown that under the above mentioned conditions, the hg p-term cannot

7. Notice that here the sign -+ is used for a different purpose from that for which it was used ear-

lier, that is to show a transition from one input vector to another one. The intended meaning is

clear from the context.

Chapter 3 68

p] _Jt_
f
-l_J-l_

Figure 3.9: Dynamic hazard in the absence of wire delay in SOP

circuits.

cause a dynamic hazard. The same reasoning applies to other hg's and also other /¿'s.

Since the gate delay model is assumed inertial, p7+ has to occur before ø-, otherwise

there is no spurious pulse on p 1 and hence no spurious transition on/ that is

pt* < ù (3.2)

On the other hand, comparing (3.1) and (3.2) yields

pf 1pz- (3.s)

Therefore, the OR gate sees its inputs according to the temporal precedence shown in

(3.3), which under the atomic gate model guarantees ahazard free transition. 0

In the remainder of this section an example including both type 2 and 3 hazards are

presented:

Consider the multiple transition abc: I I I + 001 for the logic function / - ãb+ac

shown in Figure 3.10. Figure 3.11 shows a possible hazardous timing diagram for this

transition.

b:l ->0
ab
-t-l

a: I -->0 Pt

c=l
----l__

Figure 3.10: Dynamic hazard caused by static hazard assum¡ng Sl

b

a

I

f

a

Chapter 3

model.

69

a

a

PlThis is a static 1-hazard
causing dynamic hazard.

Pz

Figure 3.11: Timing diagram showing dynamic hazard caused by
static hazard.

ab
00 01 11 10

0

I

Figure 3.12: K-Map showing the role of static hazard in causing
dynamic hazard.

Here in Figure 3.11 the output spurious logic low pulse is in fact astatic l-hazard

caused during the transition from x to y, that is an effect of a- , as shown in Figure 3 . I 2.

Applying the classical solution (that is introducing the redundant cube bc tothecover) re-

moves this static hazard and hence the corresponding type 1 dynamic hazard. On the other

hand, now referring to Theorem 3.5, the h6-type p-term, that is a.b, cannotcause a type 3

dynamic hazard either. (Notice that cube åc is exited by the same input transition as cube

ab is exited, that is å-.) However, under the unrestricted wire-gate delay model this dy-

namic hazard could not be eliminated without introducing another hazard. Figure 3.13

shows a modified timing diagram.

Notice that 0-1 dynamic hazards cannot be eliminated even under the inertial delay

model, although they are relaxed under this delay model, as shown in a later section.

Chapter 3 70

b

a

a

P2

r

Figure 3.13: Static hazard and hence dynamichazard is now removed
under the inertial delay model.

The following example shown in Figure 3.14 clarifies this difference between the two

types of dynamic hazards: Consider the multiple transition abcd: 0001 (v) + 0010 (z), in

which bothpT andp2 are entered as c+ occurs, and thenp2 is exited by d-. Now if the

inertial delay of gate p7 is so large that before p7 is being pulled up, p2 experiences both

its transitions, then a 0-1 dynamichazard is inevitable.

ab
00 01 11 10

00

01

11

10

Pl=a.c P2= b.c.d

Figure 3.14= Inertial delay model does not prevent low to high
dynamic hazards.

3.5.3 Delay bound for critical interconnection lines

Definition 3.27: Referring to Lemma 3.3, the hs-type AND gates, their outputs and

the corresponding AND to OR interconnection wires are called critical gqtes, critical

PI

3

0v
I À I

\..1" ,

Chapter 3 7t

nodes and critical wires respectively. Also, the ts- (and tl for Section 3.6) type AND

gates, their outputs and the corresponding AND to OR interconnection wires are called

lransition gate s, transition node s and transition w ires respectively.0

In the theory of speed independent circuits, although wire delays are assumed negli-

gible, they can be modelled with a delay element (as if there were a non-inverting buffer)

if desired. This element does not cause any problems as long as that wire drives only one

fan-out gate. However, for two or more fan-outs if some delay is attributed to the wire,

then some restrictions, like isochronic forks [48][86], are requiredS.

In our discussion regarding dynamic hazards, however, an arbitrary delay could no

longer be allocated to a critical wire even if only one fan-out gate were driven by that wire,

as this newly introduced delay can easily cause equation (3.3) to not be satisfied any more.

This, however, is not more restrictive than isochronic forks and is less restrictive than ex-

tended isochronic forks [89]. As shown below, a similar assumption to isochronic forks

on transition and critical wires, which is weaker than zero wire delay, still guarantees haz-

ard free operation. We call this type of interconnection wires connecting the critical and

transition nodes to the OR gates, virtual isochronic forks.

3.5.3.1 Critical wire delay restriction and virtual isochronic forks

Referring to Figure 3.9 andconsidering the line delays as shown in Figure 3.15, in

order to have ahazard free transition, the two transitions p7- and p2- must be seen by the

final OR gate in the following temporal order

pt'* 1p2'- | Lton* n
ß.q)

where

pt'=pt+Ltl

p2'=p2+Lt2

pt=b+LpI

P2=a+Lp2

in which p7 is the transition instant on node p t, Lt I and Lt2 are the delays of critical

and transition wires, respectively and Ar¿¡ is the inertial propagation delay of the OR

8. Except for the limited class of delay insensitive forks (see Chapter 5).

Chapter 3 12

Ltt
b

q
Pl Jt_

pr' f
-l_fl-

I p2

Ltt -1--

Figure 3.15: Dynamic hazard in the presence of wire delay.

gate. Substituting for pi and p2' in (3.a) yields

b+ + Lpf + Ltf <a- + Lpz- + Lt2- + Lton*

or

Lpf + Ltf < (o- - b*) + Lpz- + Lt2- + Ltsp+ (3.5)

where Ap+ and Lf are the low to high and high to low propagation delay of the AND

gate p and an interconnection wire, respectively.

Now considering that due to the inertial delay model of the critical AND gate, Lpl
cannot exceed a- - b+ (or there is no static O-hazard), equation (3.5) is simplified as fol-

lows:

Ltf < Lpz- + Lt2- + Lton* (3.6)

Under the assumed gate model and in order to have ahazard free output transition,

equation (3.6) shows the required restriction (that is, an upper bound) on the delay of the

critical wire. Assuming equal rise and fall times for the wire delays and according to (3.6),

if the critical and transition wires have similar delays (an assumption similar to isochronic

forks), then equation (3.6) and hence the hazard free operation requirement is satisfied

with some safety margin. 'We call this type of matched interconnection wires virtual iso-

chronic forks. In the example presented above an asymmetric virtual isochronic fork is

9. When the term Ar¿¡ is added to this equation, the OR gate is in fact allowed to operate in a so

called non-semi-modular fashion, as the excited output may be disabled by the rising transition

of p7. On the other hand, p 1 may also be disabled by a . These, however, do not cause any con-

cern, as having satisfied equation (3.4), no hazards may be introduced on the output resulting

from this signal disabling. Notice that internal nodes like p7 of this SOP are not normally sup-

posed to be seen by any other nodes in the network, in other words they are invisible in the cor-

responding STGs.

Chapter 3 73

adequate to satisfy the hazard free requirement. However, if a pair of critical and transi-

tion wires happen to swap their statuses in two separate transitions, then a symmetric vir-

tual isochronic fork is required.

3.5.4 Dynamic hazards in multi-level logic

Our findings may be generalized to multi level logic provided that the delay of the

critical AND gate branch is guaranteed to not exceed the transition branch delay. This is

of special importance in gate decomposition for the purpose of limiting the fanin of stand-

ard gates (due to technological constrains). Consider the decomposed circuit in Figure

3.16.

bî
Ltt

Pt _¡_
P],aJ f
Pz

-LIl-

Ltt --

Figure 3.16: Multi-level combinational circuit which is stiil 1-0
dynamic hazard free under inertial gate delay model.

In this figure the first level AND gates have been decomposed into two levels. Again

assuming the inertial delay model for the second level AND gates the circuit is free of

high to low dynamic hazards. Of course for all possible dynamic hazards resulting from

different sets of parallel transitions, all hgtype p-terms have to be disabled through a sig-

nal transition injected to gate /r in Figure 3.16.

3.5.5 Example

The following example is taken from [59]. As shown in Figure 3.17, x is a state hold-

ing variable for which the parallel transition a ll d- is considered suffering from a 1-0

dynamic hazard. Using the cube reduction technique in [60], the dynamic hazard is re-

moved through adding some redundancy, so that the modified logic is x = ãcd + ax + dx.

Using thehazard removal algorithm in [59] the following multi level implementation is

achieved

Chapter 3 74

x=dy+ax,c=ãc+!,J=ã+x

However, notice that the dynamic hazard is of 1-0 type and therefore, according to

Theorem 3.5, the above multiple transition is free of this hazard under the inertial delay

model.

+

\

+a a

c+c

a d a d-

+ x

Figure 3.17= A STG result¡ng in a possible dynamic hazard on x --
ad + ax + dxlor a- ll d-.

3.6 Multiple input change low to high dynamic logic hazards

In the previous section we showed that multiple input change high to low dynamic

logichazards may not occur in two level logic circuits under the inertial delay model and

virtual isochronic fork assumptions. In this section we extend the previous work to mul-

tiple change low to high dynamic logichazards and show that this type of hazard can be

avoided through a reasonable delay constraint imposed to the first level AND gates in

SOP implementations.

The following theorems are the duals of Theorem 3.2 andTheorem 3.3 respectively:

Theorem 3.6: In a low to high output transition, if all on-set vertices in the transition

cube are not covered by a single implicant, then the transition has a 0-1 dynamic function

hazard iff the final vertex is not within the overlapping area of the TCP implicants

covering the on-set vertices of the transition cube.

Proof: The proof is the dual of the proof presented for Theorem3.2.

//\

\,/\,/

+

x

Chapter 3 75

Example 3.4: Consider the multiple input transition f -+ zinFigure 3.18 which is the

complement of the function shown in Figure 3.3, where the transition cube is the whole 4

x4 map with the on-set vertices not covered by one cube only. Notice that the terminating

vertex, e, is located inside the overlapping area. Therefore, the transition is free of func-

tion hazard.

Now consider the transition u) y, which has the same transition cube but the termi-

nating vertex is outside the overlapping area, which causes a function hazard, as an input

route, say , ursxy (the same input route referred in Section 3 .5 .2) corresponds to a non-mo-

notonic output route, 01001 .0

ab
00 01 11 10

00

01

t1

10

Figure 3.18: A transition cube (the whole map) with on-set vertices not
covered by one cube to demonstrate a 0-1 dynam¡c function hazard.

Theorem 3.7: In a multiple input transition 0-1 dynamic logic hazard, under the

bounded but unrestricted wire and gate delay model, each hg-type p-term is necessarily

enabled by at least the same input transition which enables one or more of the 17 type p-

terms

Proof: The proof is the dual of the proof presented for Theorem 3.3.

Example 3.5:

Consider the multiple transition abcdef: 01 11 11 -+ 000100 shown in Figure 3.19. The

transition cube a.d is highlighted. The /1p-term (that is pt =à.b.Ò is enabled by6* which

is in the fanin set of p2as well. Therefore, prior to p7 being enabled (by 6 \, p2 cannotbe

enabled by any signal.

a, 7:Iq 4 z

.t x 1y I
0t w T I
0u v (t

Chapter 3 76

bc
a=0

00 01 11 r0
a= I

10 11 01 00
ef

10

11

0I
00

d=0

d= l

d= l

Pl = a.b. Pz= b.c'd.ef

Figure 3.19: An example demonstrating how an overlapp¡ng hop-term

is disabled when the t¿ p-term is disabled.

a=0 a= l
bc

00 0I 11 10 10 11 01 00

d=0

ef

10

]I
01

00

Pz= b.c.d.ef

Figure 3.2O: An example demonstrating how an overlapp¡ng ho p-

term is disabled when the f¿ p-term is disabled.

Example 3.6: Figure 3.20 shows the same multiple input transition applied to a dif-

ferent logic implementation, in which the /7-type p-term (that is, pt = a.b.c.fl is enabled

only after both ã + and ã+ have fired. Notice that pz may not rise either until these two

transitions occur.

P t = a.b.c.d

/r
^I I X

0

I I (,t

\. /

/l\
1/ x

0
1(t (')
I

Chapter 3 17

Theorem 3.8: There is no 0 to / dynamic logic hazardfor a monotonic multiple input

transition in a SOP circuit under the inertial gate delay model if the ho-type AND gate

does not have less than half the delay of the t rtype AND gate.

Proof: Consider the 0-l dynamic hazard shown in Figure 3.21

pr -J]-
r

b

a

JLT
I

Figure 3.21= A 0-1 dynamic hazard.

Referring to Theorem 3.7 suppose that ø+ is the signal transition causing p2+ and,

p r*'0 .In order to guarante e ahazard,free operation the transitions p2+ and, p 1- have to be

seen by the OR gate at times such that

pz+ - pf< Lton (3.7)

where Âr¿¡ is the inertial delay of the OR gate and p2+ is given by

p2* = a+ + Lp2 (3.s)

where Lp2is the inertial propagation delay of the transition (t1 type) AND gate. Sub-

stituting for p2+ in (3.7) from (3.8) yields

o* + Lpz- p[< Lton ß.9)

On the other hand considering the inertial nature assumed for the delays for the AND

gates the pulse generated on the critical line has to be wider than the inertial delay of the

critical AND gate, that is

pt- - pf > Lpt ß.10)

where Lp 1 is the inertial propagation delay of the critical (hstype) AND gate and p f
is given by

!aPI'=a'+LPr (3.11)

10. Recall that this is the worst case, as the t1 type p-term may be enabled before the hotype p-term

has been enabled. This precedence of course reduces the possibility of spurious transitions

occurring.

Chapter 3 78

Substitutingfor Lp ¡ in (3.10) from (3.1 1) results in (3.12):

pt-) a* + 2Lp1 (3.12)

Now substituting for p I in (3.9) from (3.12) yields

Lp2 - 2Lp1 < Lton ß.13)

Equation (3.13) (the so called 50Vo delay requirement) shows that if the critical AND

gate is not over twice faster than the transition AND gate, then with a reasonable safety

margin, that is Lton, the possibility of a0-l dynamichazardis ruled out under the inertial

gate delay model and the proof is complete. 0

Notice that this is a one sided requirement which deals with p-terms of the same SOP,

that is the p-terms which are normally fabricated physically close to each other. This lo-

cality makes it very likely that the AND gates will satisfy the 50Vo delay requirement.

Also notice that if in aparticular specification two AND gates happen to be both transition

and critical gates with respect to the each other, the delay restriction becomes double sid-

ed. Rewriting restriction (3.13) for Lp2and Lpl results in (3.14) with some safety margin,

Lton, not mentioned any more:

or equivalently

Lp,

; . Lp2<z\p
r

Lp,t

;. Lpt z\pz

(3.14)

(3. r s)

3.7 Static logic hazards

Recall that static 1-logic hazards exist in two level SOPs whenever a disabled p-term

is enabled to substitute for another enabled p-term which is disabled in the transition cube.

In other words this type of hazard exists iff the transition cube is not covered by one p-

term. The inertial delay model does not alter this behaviour. Therefore, this delay model

cannot relax the static 1-hazard problem.

It has been shown in [83] that static O-hazards may not occur in SOPs unless both in-

verted and non-inverted literals of the same variable are applied to the same p-term, which

does not happen in practical two level SOP circuits.

Chapter 3 79

3.8 Delay hazards under the well-behaved environment assumption

The well-behavedness assumption of the environment is known in the literature as a

sufficient condition to implementhazard free two level circuits from well-formed signal

transition graphs. In this section we uncover this fallacy and show that non-atomic oper-

ator based implementation of well-formed STGs may result in hazards even in the absence

of problematic sequential outputs discussed above and no matter how slow the environ-

ment is.

Having obtained the logic equations for all non-input nodes from a well-formed STG

and shown that races cannot occur under the existing conditions, the methodology in [59]

is focused on the removal of different types of logic hazards for each individual node in

the network. This is as performed in the classical Huffman methodology in arather similar

basis. However, the guarantee for proper settling intervals for the sequential signals has

been overlooked, so that these signals can be generated and applied close enough together

to violate the fundamental mode requirement and hence to lead to an implementation de-

viation from the specification, (a hazard). To avoid this problem imposed by the environ-

ment, it is assumed in [59] that the environment is slow enough to meet this requirement

or proper delay elements must be inserted in the path of outgoing signals in order to guar-

antee a proper gap between an output signal (ready signal) and its following input signal.

However as shown below this does not guarantee a proper gap between an input signal

and its following output signalll. Consider the STG and the corresponding logic equa-

tions generated by the automatic STG compiler SIS [74] in Figure 3.22,where c, d and e

are input signals.

Suppose that after å+ fires the environment raises ¿ with a sufficiently long pause to

let the preceding output transition/ to get stabilised and absorbed. Notice, however, that

the transition/- is out of the environment's control any more, and may fire too early after

¿* has fired, so that if in Figure 3.22 the NOR gate is faster than the AND gate, then input

y of the OR gate would be pulled down before the input x has been pulled up, no matter

whether the delay model is inertial or pure. Considering the logic high state for node å

during these transitions, a static l-hazard is likely to occur on node b as aresult of the

precedence reversal by parasitic delays.

I 1. A similar precedence violation is also likely when introducing internal signals in sequence with

output signals in an attempt to solve the CSC problem.

Chapter 3 80

x
e

ã
f

b fc
e

f=c+e

(c)

Figure 3.22= A STG and the resulting two level logic
implementation for node bto show hazard generation due to non-

atomic state model.

Delay hazards may be avoided if the function can be changed based on a proper use

of don't care states. For example Equation (3.16) shows a delay hazard free function for

node å which happens to be a state holding operator.

b=b.d+f (3.16)

3.9 Conclusion

In this chapter we studied the design of two level hazard free asynchronous circuits

from signal transition graphs under the inertial delay model and well-behaved environ-

ment. Different sources of dynamic hazards were first investigated, and then a major

group of this class, that is multiple input high to low real dynamic hqzards, were identified

which we proved could not occur under the inertial gate delay model in two level SOP

logic circuits. Notice that the inertial delay model restriction only applies to the first level

AND gates. The inverters before this stage can still be modelled with the unrestricted de-

lay model, while the final OR gate may be modelled as an instantaneous decision element

followed by an inertial delay and then a pure delay. For this gate the inertial delay model

can even be eliminated at the cost of losing the term Lton* in Equation (3.6). We then

relaxed the zero wire delay assumption and determined an upper bound for the delay of

critical wires and introduced the notion of virtual isochronic forËs, under which hazard

free operation is still guaranteed.

'We next proved that under a reasonable delay constraint all simple gate based SOP

circuits are free of multiple input change 0-1 dynamic hazards when the inertial delay

model can be assumed. These two results relieve the designer of all dynamic hazardprob-

lems in many cases. Static hazards, on the other hand, are not relaxed under the inertial

v

b=d.e+f

(b)

Chapter 3 8l

delay model and hence they have to be prevented through the classical method of intro-

ducing some appropriate redundancy to the cover of the function.
'We uncovered a fallacy and showed that even the well-behaved environment

assumption might result in delay hazards in non-atomic two level gate based imple-

mentations, although delay hazards are significantly reduced by the well-behavedness

assumption of the environment. In order to eliminate this type of hazards a different

cover has to be found with no hazardous behaviour. We showed this possibility through

an example.

Complex SOP/SOP CMOS gates introduced in [Kudva]l are static hazard free

under an unrestricted wire and gate delay model [Kudva]. If the wire delay is restricted

to the isochronic fork model, then complex gates (both SOP/SOP and standard CMOS)

become immune to dynamic hazards, as shown in chapter five of this thesis for stand-

ard complex gates, no matter whether the gate delay model is pure or inertial. However

the inertial delay model by itself does not provide this immunity in the absence of the

virtual isochronic fork (symmetric or asymmetric, whichever is relevant).

Notice that as feature sizes shrink and transistor, and hence gate, speed increases

regularly lMatzkelz, at some stage it makes sense to imagine that in a VLSI design

wires are connected to each other through gates, rather than gates through wires, as

wires do not scale well. This of course jeopardizes the isochronic fork model assumed

in this chapter and some other research works. Recall that an isochronic fork model

assumes negligible delay skew between the branches.

However if the (virtual) isochronic assumption remains valid by, say, accurately

adjusting branch sizes in the forks, our findings in this chapter remain valid as long as

the first level AND gate delay model is assumed inertial. In other words the inability to

scale interconnection wires, predicted in fMatzke], does not affect the relaxation of

dynamic hazards presented in this chapter. Therefore what a design tool must do in

order to eliminate 1-0 dynamic hazards is to accurately adjust the branches of all sym-

metric virtual isochronic forks by proper placement and routing. These forks can be

identified by considering all possible signal transitions during a pre-pass phase of the

compilation.

To make sure of having sufficiently short rise and fall times, an accurate transistor

level simulation may be necessary. Signal transitions with too long rise/fall times enter-

ing critical AND gates may not let 1-0 dynamic hazards disappear. In such circum-

Chapter3 82

Du@ 9{azørls in SfÇ ßøsellwo Leaef Logic

Asy ncftr o no tß Cir cuits

4.L Introduction

STGs have been realized as asynchronous circuits in different ways with different de-

lay assumptions. Chu [17][18] and Meng t56lt55l have assumed an atomic gate model

which canrealize all logic functions with a single delay element at the output of the gate.

All (logic and delay) hazards are ruled out under this atomic gate assumption under either

the pure or the inertial delay model. Martin t47lt50lt51l has used a library of gates but

with isolated inverters for the inverted inputs, which may be problematic if the circuit be-

comes sufficiently complex. Moon t59lt60l uses two level logic based on the pure delay

model but with a well-behaved environment as discussed in Chapter 3. Recall that in this

methodology the environment must be sufficiently slow or delay hazards may be inevita-

ble. Logic hazards, on the other hand, are eliminated by introducing some redundancy.

Lavagno [42] has considered a simple gate implementation based on a bounded pure wire

Chapter 4 83

delay model. In this methodology delay hazards are avoided by delay padding on the out-

puts of some of the logic gates in the asynchronous network, while logichazards are again

eliminated by adding some redundant terms. Kishinevsky et.al [33] have introduced a two

phase RS speed independent implementation based on atomic AND-OR-NOT gates. As

discussed in Chapter 5 each node in this methodology is implemented as two modelling

variables, resulting in true speed independent circuits with some area and performance

penalty. Beerel t3lt4lt7l has developed a design methodology for a simple gate based

speed independent implementation in which simple gates with as many inverted inputs as

required are considered atomic.

In this chapter we assume the isochronic fork model for interconnection networks and

show that delay hazards are considerably reduced in two level SOP circuits. The gate de-

lay model is then restricted to inertial and it is shown that delay hazards are further re-

duced.

The following definitions are repeated here for the sake of clarity:

DefÏnition 4.1: A delay element is calledpøre if allevents on its input are transferred

to the output after some propagation delay time, while in inertial delay the input pulse

must be sufficiently wide, (that is, greater than the propagation delay) to pass through the

element. Shorter pulses will be absorbed and disappear.

Definition 4.22 As a result of a monotonic input transition if the output of a logic

circuit may undergo a non-monotonic transition under the zero gate-wire delay model,

then the transition suffers from afunction hazard.

Definition 4.3: In a stable SOP if an input transition is free of function hazards but

the output may still suffer from spurious transitions (which are due to parasitic delays of

the circuit elements), then the transition has a logic hazard.

DefÏnition 4.4 In a logic circuit if an input is applied too early, that is before the

previous input has been absorbed, then the output may undergo a spurious transition. The

early transition is said to incur a delay hazard.

In this chapter we assume that an AND gate with as many inverted inputs as needed

is an atomic gate, unless otherwise specified. Our theory is based on the fundamental and

obvious assumption that given a correct implementation of the STG, the right order of all

signal transitions is always preserved according to the corresponding signal transition

Chapter 4 84

graph. Therefore, the crucial point is that delay hazards may only be caused by ordered

signals and unknown delays of the first level AND gates. This may best be understood if
one realizes that parallel transitions are already allowed to fire in any order specified by

the STG and with any spacing, so that the delays introduced by the individual gates com-

prising a logic circuit for a variable can only produce another legitimate order for the par-

allel signal transitions, unless tvvo ordered signals overtake each other, as seen by the final

OR gate in a two level AND-OR implementation. That is, possible delay hazards may

only be generated due to the delays in the first level gates of a two level logic realization

of the node under consideration. Therefore, we only need to consider ordered transitions

to identify this kind of hazard.In the following section we first classify delay hazards and

then address each one individually.

4.2
^

classification of delay hazards

Notice that the notions of statíc and dynamic used in logic hazards cannot be identi-

cally applied to delay hazards, as in logic hazards the type of hazard is determined by the

starting and the ending vertices in the transition cube. 'When considering delay hazards the

SOP logic may not be stable and hence the transition cube is not sensible any more, as the

circuit might not have responded to an input transition when the next input transition is

applied. Therefore, we first define static and dynamic hazards in the context of delay haz-

ards, and then address different types ofhazards separately.

Definition 4.5: The fanin set of node x is the set of all variables arriving in the first

level NOT-AND gates realizing the SOP circuit of node x. The fanin set is formally

defined as

fi(x)={vlx=f(v)&veVl

where Vis the set of all variables in the STG andf is the logic function realizing x.

Notice that since a node may be reahzed with different logic functions, it may have

different fanin sets in different implementations.

Notice that the inputs of OR gates in a SOP realization of node x that are not single

fanin inputs, are not STG specified signals and hence are the source of all possible delay

hazards.

Definition 4.6: A trigger enabling fanin signal transition, of node x, tef(x), is an

Chapter 4 85

immediate predecessor of -x+.

DefÎnition 4.72 A trigger disabling fanin signal transition, of node x, tdf(x), is an

immediate predecessor of x .

Definition 4.8: The set of all signal transitions in a simple cycle of a STG occurring

after a positive transition of signal x and before the first negative transition of x, is called

a basic hazard region of node ¿ abbreviated as ßt{K(ù, where .r is the output (not the

inverted output) of the corresponding SOP1. A basic hazardregion of node x is formally

defined as follows:

ßttqk) = {v*lv e V, "* < v* < t & allv*'s belong to same cycle}

where V is the set of all variables in the SZG and a+ < b- means that a+occurs before

b-.

Definition 4.9: The set of

1- all transitions in parallel with at least one transition in a ßt{\(a)in conjunction with

2- all transitions in the ßt{ß, and

3- all transitions in parallel with x+, is called a hazard region. Ahazard,region is for-

mally defined as follows:

,LKQJ= {y*l v e V,r* ll y* &y* . ßttq} u ßtt\u {r*l v e V,u* ll"*1

DefÏnition 4.10: In a STG based asynchronous circuit suppose that a hazardregion is

entered with stable logic gates. If the output of a SOP may undergo spurious transitions

as a result of early input transitions in ahazard region, then the delay hazardis of high to

Iow dynamic type if the spurious high pulse may only occur on the output after each tdf

has propagated through at least one p-term to the output node. Otherwise, the spurious

transitions are called static one delay hazards.0

According to this definition in the hazardous SOP output shown in Figure 4.I if tran-

sition 17 is caused by tdf (x), then this non-monotonic transition demonstrates a high to low

dynamic delay hazard, otherwise it is a static one delay hazard.

Deflrnition 4.11: When a signal specified in the STG goes low freely of static one and

L All of the achievements for SOPs can of course be applied to POSs as well by considering
proper dualities.

Chapter 4 86

SOP output
t1 t2 tj

Figure 4.1= 1-0 dynamic or static 1- (delay) hazard.

high to low dynamic delay hazards, any possible spurious transition caused afterwards (as

a result of early input transitions outside a hazard region) is called a stqtic zero delay

hazard.0

The reason that only one type of hazards is attributed to the outside of hazardregions

will become clear in the following section.

Corollary 4.1: According to the above two definitions dynamic low to high hazards

are not defined any more in the context of delay hazards.

In the following sections we study all different types of delay hazards, that is high to

low dynamic hazards and also static one and zero hazards in SOPs, under both the inertial

and pure delay models.

4.3 Static O-delay hazards

In this section we identify a major part of STGs which archazard free in the corre-

sponding two level implementations under the pure delay model. Therefore, the results

automatically apply to the inertial delay model as well.

Definition 4.122 A p-term is input enabled if its inverted and non-inverted inputs are

asserted to logic low and logic high, respectively. Otherwise, it is called input disabled.

Notice that being an input enabled or input disabled p-term does not by itself necessarily

determine the state of the output of the AND gate, because of the propagation delay time

of the gate.

In this chapter the prefix input is left out whenever the intention is clear from the con-

text.

Corollary 4.22 The output of a disabled p-term may be either I * or 0 (neither 0t nor

1) under inertial gate delay model, but it can be 0* under the pure delay model.

Corollary 4.3: The output of an enabled p-term may be either I or 0 * (neither 0 nor

1*) under inertial gate delay model, but it can be 1* under the pure delay model.

Chapter 4 87

The following theorem identifies a necessary condition to cause delay hazards and

hence shows the importance of hazardregions in generating delay hazards in SOPs:

Theorem 4.1: Under the pure gate delay model and the isochronic fork assumption2

a signal transition may directly cause a spurious transition on the output, x, of aSOP only

if the transition falls inside ahazard region of x. (a necessary condition.)

Corollary 4.4: Under the pure gate delay model and the isochronic fork assumption,

all SOP implementations are free of static 0-delay hazards.

Notice that because of this hazard free area, we did not define low to high dynamic

hazards separately in Definition 4.I1, Section 4.2.

Proof: Recall that outside ahazard region of node x, the specified value for x is zero

or excited to zero. 'We first need to prove that under any delay attributes of the first level

AND gates, the output of two level logic gates would not undergo a spurious transition if
the output signal is specified to stay low during some sequential signal transitions. Notice

that a spurious low to high transition on the output of a SOP, x, necessitates such a tran-

sition on a p-term, say, p t, that is the relative delays of no two AND gates may cause any

concern of generating spurious low to high signal transition on the output node of a SOP.

Therefore, a spurious low to high transition on x may only be caused as a result of two

sequential fanin transitions, t1 and t2, of that node, implying that one of these transitions,

say t2, is an enabling and the other one, t1, is a disabling fanin transition. This, moreover,

necessitates that the enabling fanin transition fires before the disabling one, that is t2 I t 1.

On the other hand under the intended operating conditions there is no spurious transition

on x. Therefore, p 1is first disabled by 17 before getting a chance to become enabled by tz,

that is t t < tz. Notice, however, that both t 1 and t2 are STG specified signals and cannot

lose their specified orders. Furthermore, the implementation is skew free fork based, so

that the right order is preserved at the input terminals of the AND gate p 1as well, that is

the output cannot be pulled up. The proof is complete. 0

It is worth highlighting that in the above theorem, unlike static }-logic hazards, the

skew free assumption is inevitable. The output may easily suffer from a static O-delay-

hazardunder an unrestricted delay assumption. Consider the situation depicted in Figure

4.2.

2. See Chapter 5 for more details about isoch¡onic forks.

Chapter 4 88

(a)

non-isochronic .fork

a

a¿

b
pzJ--L-

Pl

x

C

d

(b)

Figure 4.2= (al A partial STG and (b) a typicaltwo level implementat¡on
demonstrating delay static O-hazard generation under fork skew

assumption.

In Figure 4.2 if the falling transition ø- is so delayed that gate p2 sees a¿ after node

å has been pulled up, a spurious positive pulse onnode p2and hence on the outputx would

be likely to appear. Notice that an asymmetric isochronic fork would be sufficient to avoid

this delay hazard as far as this partial STG is concerned, that is a larger delay on the branch

going to node b,than the delay on the other branch still guarantees ahazardfree operation.

The boundedwire delay model and hence the above possibility of delay hazards have been

addressed in [41] where all delay hazards are avoided by proper delay padding based on

the exact knowledge about the delay limits of different wires prior to the circuit design.

However, static zero delay hazards are avoided under the pure gate delay model and the

isochronic fork assumption as proved above.

Notice that the isochronicity assumption, on the other hand, may be violated by in-

verters at some of the inputs, resulting in delay hazards, similar to what was mentioned

regarding wire delays. There are many published works in the design of speed independ-

ent circuits assuming negligible delay across inverters t3lt4lt18lt56l, that is each basic

logic gate together with all its input inverters aro assumed atomic. This, however, is not

so restricting, as in many cases these inverters may properly be relocated to asymmetric

Chapter 4 89

forks (like the example in Figure 4.2) or even to delay insensitive forks, relaxing the atom-

ic gate restriction. Therefore, under the pure gate delay model and the isochronic fork as-

sumption, and outside hazard regions possible spurious transitions may only be caused by

inverters (fork isochronicity violation) at the inputs of some AND gates. Regions outside

hazard regions are hazard free if the problematic inverters are properly relocated or the

library cells have been carefully designed to make every gate, together with the input in-

verters, behave as an atomic gate. In this chapter we also assume that these inverters are

non-problematic unless otherwise specified.

It should be highlighted that here some transitions with appropriate delays outside the

hazardregion may be able to prevent some delay hazards. In other words these transitions

are not the direct cause of the spurious transitions, that is why the term directly has been

included in Theorem 4.1. See Example 4.4 for more details.

Notice that the above theorem does not restrict the delay model to the inertial model.

The result is general and applies to the pure delay model as well.

4.4 Static L-delay hazards

In the previous section we showed that static 0-delay hazards may not occur under the

pure gate delay model in SOP circuits assuming isocronic forks where necessary. In other

words, it was demonstrated that a major part of STGs are immune to hazards. Later on we

will show that this immunity is further extended to dynamic hazards as well, under the

inertial delay model. Now, in this section static 1- delay hazards are addressed which are

the only type of delay hazards to be concerned about in SOP implementations.

Theorem 4.1 showed that static delay hazards may only happen in hazard regions.

Furthermore notice that the hazard generation mechanism is similar to logic hazard gen-

eration: a spurious transition may occur on the output of a SOP as a p-term is disabled and

replaced with an already enabled p-term. This mechanism will be demonstrated through

some examples in this section.

Definition 4.13: Two p-terms in a SOP are called input overlapping if during ahazard

region one may become disabled after the other one has become enabled. Notice that this

does not guarantee an overlapping period for the asserted outputs of these two gates, that

is outpul overlapping, under an unrestricted delay model.

Definition 4.142 Two p-terms are called output overlapping if the first output is not

Chapter 4 90

pulled down unless the second output has been pulled up.

Corollary 4.5: Input overlapping is neither necessary nor sufficient condition for

output overlapping in simple gate SOPs under an unbounded delay model. It is necessary

and sufficient under the assumption of a atomic complex gate implementation with

unbounded delay.

Therefore, generally speaking, two level SOPs suffer from delay hazards under an

unbounded delay model. In order to avoid hazards some delay restriction is inevitable,

which implies a bounded delay model as well for the relevant gates.

Definition 4.15: A primary p-term (pp-term) of node x is a p-term which may excite

the output node under some specific combination of the relevant parasitic delays.

Primary p-terms are normally expected to be excitedby tef(x). We call these pp-terms

type-l. This, howevet, is not always the case, as we will see in this chapter. A pp-term

which is not excited by tef(x) is called a pp-term type-2. On the other hand pp-terms of the

same type may not be unique either. Therefore, primary p-terms are not deterministic in

many cases as demonstrated in this section.

Primary p-terms may be excited simultaneously as well. Therefore, two simultaneous

primary p-terms are necessarily enabled by the same signal transition but may be disabled

by different signal transitions.

Notice how logic high may be maintained on the output of a SOP logic circuitrealiz-

ing variable x during ahazard region: x+ is excited through a pp-term and possibly with

tef(x).Generally speaking, the pp-term becomes disabled at some stage in the hazard re-

gion but after another p-term has become enabled, to maintain input overlapping. This

switch over process between input overlapping p-term pairs may continue a few times un-

til the final enabled p-term(s) becomes disabled by tdf(x), eventually resulting in pulling

x down. Therefore, in ahazard region it is guaranteed there is at least one sequence of in-

put overlapping p-term pairs starting with a pp-term and possibly initializedby tef(x) as

described above. This guarantee is made by the specification. However, in order to avoid

static l-hazards there must be a sequence of output overlapping p-terms which may only

be guaranteed by the implementation, say, providing sufficiently long input overlapping

times between consecutively enabled p-terms. Therefore, to prevent possible output

glitches due to delay variations in the AND gates, it has to be guaranteed that there is a

Chapter 4 9l

sequence of output overlapping p-terms (a necessary condition). This requirement in 2

level SOP based implementations of course incurs some delay restrictions on some of the

AND gates. In this chapter we assume that the output overlapping sequence is provided

through the corresponding input overlapping sequence with proper delay constraints,

where necessary. However, notice that we are not developing an algorithm for optimal de-

lay padding in this thesis.

Definition 4.16: Every sequence of input overlapping p-term pairs in ahazardregion

starts with a pp-term and possibly continues with some auxiliary p-terms, ap-terms.

Therefore an auxiliary p-term, is enabled before the primary (or a previous auxiliary)

p-term is disabled and is disabled after the primary (or the previous auxiliary) p-term is

disabled. Furthermore, an auxiliary p-term is disabled after another ap-term has already

been enabled, unless it is the final ap-term which is disabled by tdf(x) and hence terminat-

ingthe t{ß.

An auxiliary p-term, p2, may happen to be enabled by the same signal transition that

disables the preceding enabled auxiliary or primary p-term, p7. This particular situation

shows a static 1-logic hazardin two level logic which can be removed by imposing a delay

restriction or introducing a redundant cube, p3, to the onset cover of the variable. Now p3

is a newly introduced ap-term.

Example 4.1: Consider the STG, the hazardregion and the logic equation for variable

c in Figure 4.3. Notice that the hazard region here is reduced to the basic hazard region as

there is no parallelism in the STG. The pp-term is ab which is enabled by a+and is later

disabled by o-, however, notice that the auxiliary p-term, c.d,has already been enabled by

c+, so that if the delay of the AND gate corresponding to the p-term c.d is less than the

total delay from c+ to a , (that is the two level logic realizingnode aplus the delay of the

ANDgatecorrespondingtothep-term a.b,)thentheoutputof thetwop-termsa.bandc.ã

will be overlapping and hence no spurious pulse might occur on node c during this switch

over process.

The auxiliary p-term c.d itself is later on disabled by d* ,however, now the former pp-

term, a.b is playing the role of the new auxiliary p-term, as it has already been enabled by

¿+ in the hazardregion. This second switch over between the two p-terms can be the cause

of a second static 1-delay hazard, unless a similar delay constraint is imposed on the rel-

evant gates.

Chapter 4 92

Hazard regionfor variable c

c

e
+ c*+ a + b+- tr + A _____>

a=c.d+e

b=a+ã

c=a.b+c.d

d=a.e+b

e=a.c+c.e

Figure 4.3: A STG, the hazard region for node c, and the logic
equat¡ons of all var¡ables.

Notice that if signal ¡ has exactly one tdf, then the tdf may not cause a static 1-delay

hazard for variable ï, as no matter how slowly it fires, node x may not be pulled down

before its unique predecessor fires.

Corollary 4.62If x has exactly one tdf then the basic hazard region is redefined as

ßtt\k) = {y*lv e V,x* <v* < t &r* *.{ & all y*'sbelong to same cycle.}

where Vis the set of all variables in the STG and ox is the immediate predecessor of

the transition x .

In multiple tdf,however, even an immediate predecessor may cause a static l-delay

hazard as demonstrated in the following example:

Example 4.2zFigure 4.4 shows a STG and the hazardregion for node a.

The pp-term for node a is d.c which is disabled by r* in the hazard region and the

auxiliary p-term is a.b.If gate 2 is so slow that y (see Figure 4.4-b) goes high (as a result

of transition a+) after x goes low, (as a result of transom c+) a may undergo a spurious

transition. Notice that here c+, atdf of ø, is causing a static 1-delay hazard,

The hazard generation mechanism becomes more complex as thehazard region in-

Chapter 4 93

Hazard region for variable a a+

a

x4
c
a
b

ù

1

{

1

¿+

a-

b

v

a=d.c+ab

c=ã.cla

d = a.b.c

(b)

+

(a)

Figure 4.4= (a) The STG and hazard region for variable a, and (b) an

implementation for node a and the logic equat¡ons in Example 4.2.

cludes more parallel transitions, as now all parallel branches may affect the node under

consideration.

Example 4.3: Consider the STG and the hazard region of node d in Figure 4.5.

Here a is the unique pp-term for signal d which is later disabled by a-, while the cor-

responding ap-term is c.d. This ap-term itself is disabled by ,* , on the other branch, how-

ever, c+ has its own preceding ap-term, å+. This requires that

1- b goes high before the p-term d.c is output disabled by .* which in this specific

circumstance is always the case, as å is a single input p-term, and

2- on the other branch c.d must be output enabled before a goes low, that is x+ < a-

and b+ < x- in order to guarantee static one delay hazardfree behaviour. (See Figure

4.5-a)

Output overlapping for the p-terms of variable d may be achieved by different delay

restrictions: if å goes high before a occurs, node d is free of static l-delay hazards. This

type of delay restriction, that is between two parallel transitions, results in eliminating

some states from the state transition diagram. For example under the above assumption

the state abcd = 0001 may not occur at all. This type of restriction, as discussed under

timed asynchronous circuits l62lt63l may become non-feasible if a signal like b is an in-

Chapter 4 94

a+

a = a.d+ c.d

b=alc.d

c=d.c+b

Hazard region for variable d

(a) (b)

Figure 4.5: (a) The STG and hazard region for variable d, and (b) an

implementation for node d, and the logic equations in Example 4.3.

put signal for which no upper bound for the delay restriction may be assumed.

Notice that the pp-term may be non-deterministic, that is it may be different for dif-

ferent situations on the parallel branches and"/or different delays of the relevant first level

AND gates, as demonstrated in the following example:

Example 4.42 A STG and the hazard region for node c is shown in Figure 4.6 for

which the pp-term is non-deterministic, that is which p-term becomes the pp-term, (the

successful pp{erm) depends on which transition is enabled on the left branch in the haz-

ard region when ¿+ fires and also depends on the delays of the relevant first level AND

gates to which signal a is a fanin signal. Different situations are summarized in Table 4.1

assuming that the first input enabled p-term is the first output enabled one as well. Notice

that all pp-terms here are of type-1.

d

x¿

d
c

a

b

Chapter 4 95

a

d+

I
a+

I
c+

r
1

d-

î
{

1

g+

Hazard region for variable c

v

x

z

;ó
a

a
b

ar
d

(a)

c=a.df+a.g+a.b

(b)

c

Figure a.6: (a) The STG and hazard region, and (b) the logic
equat¡on and an implementation for variable c in Example 4.4.

Chapter 4 96

Table 4.1

position of
token

pp-terms

1 a.d.f

2 a.d.f , ab

J ab

4 ab, a.g

5 ab, a.g

As shown in this table any p-term may happen to be the pp-term unlike the previous

examples in which the pp-term was deterministicly unique. Again if we assume the two

parallel branches to be independent, a robust design requires the worst case condition to

be satisfied, that is we need to satisfy two equations z+ < x and y+ < { in order to guar-

antee a glitch free signal on node c under the worst case delay restriction where a.d.f is

the pp-term.

Notice how controlled delays outsidehazard regions may avoid hazards as well: In

Figure 4.6 if the right branch is sufficiently slow, so thatf is seen before a+ is seen by

the relevant final OR gates, then the first restriction determined above is ruled out. Fur-

thermore, this delay restriction is now of type 2, where a delay restriction is imposed

among parallel transitions.

Considering the generation mechanism of static one delay hazards addressed above

the following theorem is proved:

Theorem 4.2:Under the unbounded gate delay model an input overlapping sequence

suffers from a static one delay hazard if and only if one or more auxiliary p-terms in the

sequence have two or more literals.

In addition to the non-determinism among multiple possible pp-terms enabled by tef s

(pp{erms type-1), this type of pp-term is not necessarily the first p-term to enable the out-

put of a SOP, as demonstrated in the following example:

Example 4.5: A two level logic equation for variable b andthe corresponding hazard

region are shown in Figure 4.7.

Chapter 4 91

a

"/f*

1

d-

1

c+

1

8-

1

e+

xe

br
v

d

ã
e

b=e.a+e.d.f

Figure 4.7= A srG and the hazard region (the shaded area) for node ö
(see Example 4.5).

The only type-1 pp-term in this hazard region is e.a, however, this is not necessarily

the p-term which excites node b, as d+ may fire and enable the corresponding p-term

(e.d.f) before the pp-term e.ahas been enabled.

Now the delay restrictions are considered for different possibilities to avoid static one

delay hazards:

Suppose that pp-term type-1 e.ø is first pulled up. Since the corresponding ap-term is

e.d.f, the delay of gate 1 must be less than the total delay of the logic from d to a, plus the

delay associated with gate 2, in order to avoid static one delay hazards.

Consider the second alternative where the p-term type-2 e.d.f is asserted first. This pp-

term, however, is not disabled in the hazard region except with ¿- which is the ùfþ).
Therefore, under the second alternative there is no static one delay hazard.

Even if the above circuit might be static hazard free under the specified conditions, it

would still suffer from dynamic hazards: if the transition from a to d and then d to x is

slow enough, then under the pure delay model the p-term I may be asserted to high after

f-

Chapter 4 98

node y has been pulled down by
"-.This

type of hazards is the topic of the next section.

4.5 High to low dynamic delay hazards

The mechanism of static 1-delay hazardgeneration was discussed in the previous sec-

tion. It was shown that if there is an output overlapping sequence of p-terms for every pos-

sible pp-term in ahazard region, then static l-delay hazards will be avoided under a

bounded pure gate delay model assumption. This, however, does not rule out the possibil-

ity of all spurious transitions on the output of a SOP, as the output may still suffer from

dynamic delay hazards under a pure delay model. In this section the generation mecha-

nism of high to low dynamic hazards is addressed and then it is shown that they are auto-

matically avoided under the inertial gate delay model.

Refening to Example 4.4 (Figure 4.6) suppose that when ø+ fires both p-terms x and

z are enabled but z happens to be the pp-term. Since there is no delay restriction for x+,

this may fire after c has been pulled down resulting in a dynamic high to low hazard.

A similar hazard is likely to occur if p-term y happens to be the pp-term. Consider the

situation that when a+ occurs ¿- has already been excited so that both z and y become ex-

cited as well. Now due to some particular parasitic delays if y goes high first, there is no

guarantee for z+ to fire before y goes low by g+. This can also result in a high to low dy-

namic delay hazard.

Definition 4.l7zThe pp-term which enables the output of the SOP in reality is called

the s uc c e s sful pp-term.

Definition 4.18: A secondary p-term (sp-term) is a p-term which is enabled during a

hazard region but is not a part of the sequence of the overlapping p-terms corresponding

to the successful pp-term.

Theorem 4.3: Under the bounded pure delay model if there is a sequence of output

overlapping p-terms for node x in its hazardregion, then node x will not suffer from a high

to low dynamic delay hazard if there are no secondary p-terms in the hazard region.

Proof:

Suppose that a variable r goes high not as a result of tef s and after all tdf s have fired.

Thehazardous rising transition may not have been caused by a p-term in the output over-

lapping sequence, as the output of such p-terms are only pulled up before the output of the

Chapter 4 99

a
xb

PI

Pz

p3

(a)

c

primary p-term

auxiliary p-term

prrmary p-term

auxiliary p-term

hazardous output

primary p-term

auxiliary p-term

secondary p-term

primary p-term

auxiliary p-term

secondary p-term

primary p-term

auxiliary p-term

secondary p-term

(b)

(c)

(d)

(e)

(f)

hazardous output node

Figure 4.8: (a) a typical SOP circu¡t, (b) - (f) dlfferent delay
behaviour of different p-terms in SOPs.

Chapter 4 100

previous p-tenn in the sequence has been pulled down resulting in no transitions

output x. Therefore, the spurious transition must have been caused by a p-term outside the

sequence of the output overlapping p-terms, that is a secondary p-term. So the proof is

complete.0

Consider the two level implementation based on a well-formed STG and the different

timing situations for its p-terms shown in Figure 4.8.

In Figure 4.8-b the primary and the auxiliary p-terms are output overlapping. So the

output is not hazardous as far as these two p-terms are concerned. The two p-terms are not

output overlapping in Figure 4.8-c, resulting in a static 1-delay hazard. Figure 4.8-d and

e show a secondary p-term which is pulled up before the last auxiliary p-term is pulled

down. It is clearly shown that no matter when the secondary p-term is pulled down the

output is hazard free. Finally Figure 4.8-f shows a situation in which the secondary p-term

is pulled up after the previous auxiliary p-term has been pulled down. This situation suf-

fers from a high to low dynamic delay hazard. Notice that the two seemingly similar be-

haviours in Figure 4.8-c and f are of different nature. In Figure 4.8-c the apparent dynamic

bazard has been caused by a static l-delay hazard, that is the pulse on the auxiliary p-term

can be of type logic 1, while in Figure 4.8-f the pulse on the secondary p-term is of 1*

type. In other words when the output of this p-term goes high the corresponding AND gate

has already been input disabled.

Example 4.6: Consider the STG in Figure 4.9 taken from [7].

There are two hazard regions for node c in this STG corresponding to the two possible

choices, as shown by the shaded areas in the figure. The first one is empty so there is no

delay hazard on node c in the first hazard region.

For the second region d+ is the tef(c), the pp-term d is asingle fanin (no gate), d- is

the transition which disables the pp-term and gate I realizes the multiple input auxiliary

p-term, åc. Therefore, according to Theorem 4.2 transition d - causes a static one delay

hazard, under the unbounded gate delay model.

Now consider the secondary p-term 2 which is enabled by transition ø . According to

Theorem 4.3 this p-term is the cause of a dynamic delay hazard. Therefore, there are two

independent sources for delay hazards inhazardregion2.

Notice that the delay model that we have assumed so far in this section is the pure de-

Chapter 4 l0l

da
a+

I
b+

I
d+

I

+b

I
c

c c
b

c

c=bc+a.b+d

(b)

(a)

Figure 4.9: (a) Two hazard regions for node c, (b) a simple gate

implementation for node c.

lay model. In the following theorem we restrict the delay model to the inertial delay model

and show that dynamic delay hazards can no longer occur in two level logic circuits.

Theorem 4.4: Under the inertial delay model high to low dynamic delay hazards are

automatically prevented in SOP implementations.

Proof:

In Theorem 4.3 we showed that such a spurious pulse is caused by a secondary p-

term, which is enabled during a hazard region but outside the output overlapping se-

quence.

Let t1 and tg be the instants of time at which the secondary p-term is output enabled

and the output of the last disabled p-term in the output overlapping sequence goes down,

respectively.

Notice that a spurious transition may only occur if t6<tI. Att6all tdf s and hence the

disabling transitions of the secondary p-term have already fired in the hazard region. The

equation tg 1 tl then implies that the output of the secondary p-term has not been pulled

up yet at r¿ while one or more of its inputs has/trave already been disabled. This situation

corresponds to an output of 0x for this p-term while the input is disabled which is not fea-

sible under the inertial gate delay model according to Corollary 4.2. Therefore, the output

2 +c

Chapter 4 t02

of the secondary p-term may only be pulled up while a p-term in the output overlapping

sequence is still high and this rules out the possibility of high to low dynamic hazards un-

der the inertial delay model assumed for the first level NOT-AND gates in two level SOP

circuits.0

Referring to Example 4.6 under the inertial gate delay model transition a- in Figure

4.9 is no longer hazardous, according to Theorem 4.4.

4.6 Conclusion

In this chapter different types of delay hazards in STG based two level asynchronous

circuits were addressed. We first identified a major region in STGs which are immune to

hazards and hence showed that static O-delay hazards have no chance of occurring under

the pure delay model and isochronic fork assumption. Furthermore, according to our haz-

ard classification low to high dynamic hazards are no longer defined. We then showed that

static 1-delay hazards may be avoided if there are sufficient sequences of output overlap-

ping p-terms in the hazard region. 'We further showed that these sequences eliminate all

dynamic high to low delay hazards as well, under the inertial gate delay model and iso-

chronic fork assumption.

Chapter 4 103

Í{øzørfs in ConpteaÇøte ßasel'I/LSI Circuits

5.1 Introduction

In Chapter 4 delay hazards were analysed in two level SOP implementations and it

was shown that this class of logic become more immune to delay hazards under the iner-

tial delay model. In this chapter hazards are analysed in single level logic family under the

general pure delay model and it is concluded that the inertial delay model does not alle-

viate the hazard problem. We first discuss different types of interconnection forks. Then

delay hazards are analysed which may only be caused by inverters at some inputs under

the isochronic fork assumption for wire forks. We introduce safe cellsbased on which

well-formed STGs can be implemented free of delay hazards with no unrealistic assump-

tions about physical gates. Although this technique still compromises chip area for the

Chapter5 104

sake of preventing hazards, we show that it may achieve a significant area gain in com-

parison with the two-phase RS-implementation method [33] which is one of the few true

speed independent implementation techniques that we are aware of so far. Delay hazards

are then analysed in complex gate based circuits under some gate delay restrictions and

hence a theorem is developed to identify a subclass of delay hazards. We lastly show how

logic hazards are relaxed in this logic class. Notice that these achievements apply to the

pure and hence to the inertial delay model as well.

5.2 Different types of forks

5.2.1 Isochronic forks

A complex AND-OR-NOT gate as shown in Figure 5.1-a, reasonably satisfies re-

quirements for speed independence, as no matter how close together two sequential inputs

occur, they affect the circuit in the same order.

f=ab+cd
f=ac + bd

(a)
(b)

Figure 5.1: Two AND-OR-NOT complex gates real¡zed with (a) real,
(b) ideal transistors.

Note that the only factors [86] jeopardizing its robustness are the differences between

' the threshold voltages of the transistors participating in the sequential inputs,

and

. the rise and fall times of the corresponding input signals.

These differences usually happen to be within a safety margin including

C

d

a

b

c

d

a

b

Chapter5 105

' the time gap between tìüvo sequential inputs, as considering the causal

relãtionship, no two sequential inputs may occur simultaneously. Otherwise, a

simple NAND gate would not be a speed independent gate either,

' the inertial delay nature of the gate itself, which absorbs short signal glitches.

The situation becomes different if interconnection networks are taken into consider-

ation. Consider atwo branch fork shown in Figure S.2wherethe branches have been mod-

elled with two delay elements. Generally speaking all gates, such as Gate 2 are expected

to see a transition on node x (that is xx) before xx propagates to any output node like G7.

This entails Lt2 < Lt1+ Ltro¡"_1, or

Lt2 - Lt1 < Ltsate_t (s.l)

Otherwise Gate 2 will see x* after it sees the possible transition on G7 caused by I l,
that is a change of the specified order of signal transitions.

I1 G1
x

G2

Figure 5.2: A fork with different branch delays.

The dual of this conclusion leads to the following equation

Lt1-Lt2 <Ltgate_2 é.2)

Considering Equations (5.1) and (5.2) the following equation is concluded in order to

guarantee the correct order of signal transitions:

I Lt1 -Lt2l < Min. (Ltgate_2, Ltrot"_Ð (5.3)

Therefore, some fork skew less than the relevant gate delay is still accepted without

disturbing the right order of signal transitions and hence the correct operation of the cir-

cuit. Notice that the delays can be the pure type.

In the above discussion Lt1 andÂr2 include both the corresponding branch delay and

the delay caused by the threshold voltages of the fanout transistors together with the non-

zero rise/fall times of the relevant signal transitions. An interconnection fork on which a

Gate 1Delay Âry

Gate 2Delay Lt2

Chapter5 106

transition is detected in the fanout gates with a negligible skew is called isochronic l5}l.
Assuming an isochronic fork model the complex gate in Figure 5.I-a necessarily becomes

a legitimate gate for speed independent asynchronous circuits as demonstrated here. In

Figure 5.2 consider the transition x* è Gt* which may be split into

x* + I1*-+ G1* (5.4)

Equation (5.4) means that

(5.5)

Assuming the two branch fork -r to be isochronic, implies that

I r* = 12* o.6)

Substitutingfor Il in (5.5) from (5.6) yields

Ir* . Gr* (5.7)

Equation (5.7) shows that Gate 2 sees the two sequential transition,
"*

è G f in the

right order under the isochronic fork assumption.

Under the isochronic fork assumption complex AND-OR-NOT gates provide a com-

plete collection of speed independent gates as long as all input signals are unipolar. How-

ever, as soon as both the inverting and non-inverting literals of a variable are used in the

circuit, the basic speed independent theory assumption is violated, (unless the fork under

consideration is delay insensitive or asymmetric as discussed in the following subsec-

tions). This is because the inverted and non-inverted signal transitions may not reach all

fanout points simultaneously due to the delay along the inverter, unless the implementa-

tion process allows the use of complementary transistors in the pull down trees as shown

in Figure 5.1-b.

5.2.2 Delay insensitive forks

The following definitions are repeated here for the ease of reference:

Deflrnition 5.1: In a STG a signal transition is acknowledged by its immediate

successor(s).

Definition 5.22 In an implementation a fork is called delay insensitive if an

unbounded but finite pure delay can be attributed to any branch of the fork, while the

circuit still works according to the specification. 0

I,* . Gl

Chapter5 lo7

Different delays across the different branches, including possibly inverted branches,

in a fork distributing signal x, introduce some new nodes,)c1, x2,... x, modelling the end

points of n branches, so that in the extended STG,
"* lin both + and - directions) is re-

placed with the parallel transitions shown in Figure 5.3. The extended STG for node x is

represented as STG*.

*
x

¿
J

xn
i<

x1
x2

Figure 5.3: A set of parallel transitions replac¡ng x*when signal x is
propagated through a n branch fork.

After this substitution if each x¿* becomes an immediate predecessor of at least one

transition in STG*, then the implementation complies with the specification. Therefore

l4tl

Corollary 5.1: A fork is delay insensitive if and only if all newly introduced signal

transitions (that is x1*,x2* ...rr* in Figure 5.3) in the corresponding extended STG are

acknowledged.0

Corollary 5.2: In each direction n-l transitions out of n transitions in Coroll ary 5.l

will have immediate successors with multiple immediate predecessors.

Proof: Consider the partial STG in Figure 5.4-a.

In the corresponding complex gate implementation suppose that signal a propagates

through a two branch fork with the end nodes called a1 aîd d2 as sho'wn in Figure 5.4-b.

Transition a1* is explicitly acknowledged by transition b*. We assume that transiti on a2 ,

on the other hand, is implicitly an immediate predecessor of another transition , d * as

shown in Figure 5.4-c, that is a2* is a necessary condition to enable d". According to

Muller's theory of speed independent circuits a1* and a2* areexpected to simultaneously

reach and be absorbed by the gates realizing variables å and d, respectively, that is Âry =

Â/3,whereÂryand Ltjarethepropagationdelaysalongthetwobranches alanda2respec-

tively. On the other hand Lt2,thepropagation delay from a2* to d
*

is finite but unbounded

under the speed independent model. Therefore, the specification does not restrict the de-

Chapter5 108

ot*+ b* -+ ... + d*-+
or*--> b* -+ ... a* + d*-+ ..

(a)

Lts t< -t<
a1 -)b è

v
*

a *oa2

(b)

a2

t<
tc +d--)

7v

; a2*-

+
*

a

Ltt Ltz

(c) (d)

Figure 5.4: (a) A STG, (b) the extended STG with a two branch fork
for literal a, (c) the same extended STG with the implicit transition

a2* - d
.,

(d) a three branch version of (c).

lay along the sequential transitions o*+ o2* + d*,thatis Ar7 + Lt2.In other words the

total delay Lt1 + Lt2is specified finite but unbounded. Therefore, Lt1 canbe assumed un-

bounded as well and hence independent of Ar3. This implies that fork a is delay insensi-

tive.

Since in the original graph, Figure 5.4-a, all transitions have at least one immediate

predecessor, all newly introduced (that is the dashed) arrows, as in Figure 5.4-c will be

the second or later input arrow to the corresponding immediate successor.

The idea can easily be generalised to forks with three or more branches. Figure 5.4-d

shows the three branch version of the fork. In a similar way it can be shown that the prop-

agation delay time Lta along the third branch of the fork can be unbounded, if there is a

dashed arrow from aj* to a transition c* in the STG. 0

As an example consider fork x in Figure 5.5 [50], with two end nodes x1 andx2. No-

tice that branch x7 is inverted.

The resulting extended STG is shown in Figure 5.6, where both branches are ac-

knowledged I on both rising and falling transitions. Therefore, forkx is a delay insensitive

l. V/e use the term "branch" to imply one or more of the conesponding falling / rising signal tran-
sitions, as long as the intention is clear from the context.

Chapter5 109

Ii

l¡t

x1

ro

ro
x

r¡
x2

Io ri2

r¡I

l¡* - ro* --) ri* -+ x* + ro-

1J
Io-? x-ç- U+ lo++ri

(a)

(b)

Figure 5.5: UR element: (a) logic circuit, and (b) STG.

x1

\

J

lo- t + Ii <- Io+ <- r¡
\¿

x2*

Figure 5.6: Both branches x7 and x2ot the isochron¡c fork x in

Figure 5.5 are acknowledged on both transitions.

fork, as mentioned inl4ll as well

A non-delay insensitive fork need not be isochronic yet. Consider a fork x with two

branches x 1 aîd)c2, whene x,¡ is acknowledged but x2 is not. Further assume that the delay

across the branch x,¡ is known to be larger than that of x2's. Then, there would be no im-

plementation deviation from the specification, as by the time that x7 fires x2has already

fired. In other words the transition acknowledging xl ma! be considered the (worst case)

acknowledgement of x2 as well. This type of fork is called an asymmetric isochronic fork,

which is the topic of the following section.

Chapter5 ll0

5.2.3 Asymmetric isochronic forks

In the previous section delay insensitive forks were reviewed, and it was concluded

that after inserting the newly introduced transitions representing the end points of a fork,

if the extended STG still remains connected (that is these transitions are acknowledged),

then the fork is delay insensitive. Notice that delay insensitive forks are very rare in asyn-

chronous circuits, which is why simple gate based delay insensitive asynchronous circuits

are very limited [48]. In this section asymmetric isochronic forks, another class of inter-

connection forks, are considered.

The STG in Figure 5.5 has been extended for fork /; in Figure 5.7.

I¡f
v\
I¡* ,o* -) rí !I' +-r' + ro

1\/,r* J

lo-<- x
\

l¡z

!_'?ril¡+lo
/I

l¡ t-
This transition is not ac-

knowledged.

Figure 5.7: STG¡¡: the two branch fork l¡ is an asymmetr¡c

isochronic fork. (See the logic circuit in Figure 5.5)

In this extended STG both transitions on l¡2 are acknowledged. However, the other

branch, /;7, is acknowledged only on the positive transition. Therefore, this fork is not de-

lay insensitive, but it does not have to be isochronic either. Since the branch /;2 is always

acknowledged, there is no implementation deviation from the specification as long as the

delay along the branch /;2 exceeds that of the branch /¿7. Asymmetric forks are particularly

useful when one branch of a fork is inverted. Now if the inverted branch is always ac-

knowledged, the implementation is correct if the delay along the inverted branch

dominates the delay along the other branch, which is a reasonable assumption in many

cases.

Notice that the type of an interconnection fork may depend on the specific implemen-

tation, as shown in Figure 5.8. In this figure the L/R element has been implemented with

Chapter5 llt

R

s

This transition is not ac-

knowledged any more.

l¡t

ro

R-S flip flop r¡

,o* --) ,i* --> x+ + ro

J

li

lo

i2

(a)

l¡z* l¡f

(b)

e <-

l¡t-

\ v \
I¡*

1

r¡+

\
Iil;<- {

\,/
I¡z-

lo

Figure 5.8: (a) UR element implemented with a R-S flip-
flop, (b) extended STG for Íork l¡.

a R-S flop-flop, instead of a Muller C-element as shown in Figure 5.5. As a result of this

particular implementation, the fork /¡ has to be isochronic, as, unlike the extended STG in

Figure 5.7,the transition I,r+ is not acknowledged any more, as shown in Figure 5.8-b.

5.3 Relocation of problematic inverters

In this section we discuss how hazardous inverters may be relocated in the circuit in

order to possibly avoid delay hazards. Consider the problematic inverter in Figure 5.9-a

where ø* immediately follows å* in the corresponding STG. Assume that in fork b the in-

verted branch is not acknowledged on at least one direction. Then, this inverter has to be

relocated or the circuit may undergo spurious transitions. Applying De-Morgan's law to

gate y makes fork b free of inverters, as shown in Figure 5.9-b, although now fork ¿ has

received one inverter. If fork a happens to be delay insensitive or its inverted branch is

acknowledged then the behaviour of this part of the circuit would behazard free. Other-

Chapter5 tt2

a

xx

vv

a

b

a

b

2

(b)

c=d+e

d=ab+ad

e=a.b=a+b

(b)

e

I
a

-+b*
ì!

a

(a)

Figure 5.9: Using De-Morgan's law a problematic inverter (1) is
moved to a asymmetric fork (2).

v\ 6+ + e-c+e* +-)-+ b-

C

(a)

a e a

b b

dd
C c

(c) (d)

Figure 5.10: A problematic inverter which cannot be eliminated by
applying De-Morgan's Law, (a) STG, (b) logic equations, (c) and

(d) two possible 2-level implementations.

wise as shown in the following example the inverter would remain problematic even if
De-Morgan's law were applied.

Figure 5.10 shows a STG, the logic equations for nodes c, d and e, andthe two pos-

sible implementations for node ¿. Notice the transition a+ + b+ may generate a spurious

transition on node e in Figure 5.10-c as a result of the delay along the inverter. This prob-

Chapter5 tt3

lem may not be solved by applying De-Morgan's law (Figure 5.10-d), as now another pair

of transitions, that is å- + a- becomes hazardous.

The situation becomes more complex when multiple branch forks are considered, al-

though the principle remains the same.

Every gate, including a safe cell (to be discussed later) may have two visible comple-

mentary outputs:

Definition 5.3:The primary output (PO) of a gate is the visible output generated first.

Definition 5.4: The complement of a primary output is called the secondary output

(so).

In other words PO and SO are the non-inverted and inverted branches of a two branch

fork corresponding to the variable being propagated through the fork. Notice that having

assumed the isochronic fork model for the possible wire fork following the inverter in the

SO branch, it is sufficient for only one branch in the wire fork to be acknowledged (in or-

der to have a hazard free implementation) if no PO type branch has already been acknowl-

edged. This is further clarified by the following example. Consider the extended STG in

Figure 5.1 1.

... + po+f
") 1
t \ å+ -+ ... -) e-

I
SO-(a)

2\

Figure 5.11: A hazardous fork on SO(a).

In the STG SO-lø)7 is acknowledged and the other branch, SO-(a)2, is not. However,

what makes the inverted fork a problematic, as far as this partial STG is concerned, is that

SO-(a)1is not acknowledged before PO+(a)rhas been acknowledged. In other words the

acknowledgement of SO-(a)1, (that is e-) does not fire before the acknowledgement of

PO+(a)3, (that is b+¡ has fired. This may cause the node which has SO(a)2 in its fanin set,

to erroneously see the transition Sù(a) ffue after some transitions such as å+ have fired,

due to the unbounded delay assumed along the inverter generating SO-(a).

Chapter5 ll4

a

xx

a

vv

a

PO

SO

b

b

b

SO

E

PO

b

a

* *
(a) b a-) (b)

Figure 5.12: Using double inversion the required order, that is þ. and

then a., is guaranteed.

Further to De-Morgan's law, "double inversion", that is convertin g a PO type output

to a SO type and vice versa may also help solve the delay hazard problem as shown in

Figure 5.12.

In this technique the problematic inverter remains in the same fork but is moved to

another branch. In Figure 5.12-a suppose that SO(b) = b is not acknowledged so the im-

plementation is hazardous. In Figure 5.12-b literal å (instead of å) has become SO(b), and

since it is acknowledged according to the assumed transition pair b* + a*,the implemen-

tation becomes hazard free, as far as this partial STG is concerned. Notice that this tech-

nique may only solve the problem under special conditions. Consider a common situation

in which SO(b) is acknowledged in only one direction and PO(b) is acknowledged only

in the other direction. Then, no matter which literal of the variable å happens tobe SO(b),

the implementation would be hazardous under the speed independent model.

Kishinevsky, et al. [33] have introduced a two-phase RS-implementation which elim-

inates the delay hazards caused by inverters. Although this technique suffers from some

speed and area penalty due to doubling the nodes in order to introduce modelling nodes

and the modulo-2 operations for extraction of the original signals, it has two interesting

features apart from its robustness against gate delays:

' the complete state coding (CSC) problem is automatically solved by doubling

the nodes,

Chapter5 115

' using a simple algorithm, the logic equation for each node is easily determined

with no need for the state transition diagram, which grows exponentially as the

number of parallel transitions increases.

The methodology will be discussed in more detail in the following section.

5.4 Safe cells

In the previous sections different types of interconnection forks were discussed, and

it was concluded that in complex AND-OR-NOT based circuits an inverter causes delay

hazards if it happens to be placed on a branch of an isochronic fork. Remember that if two

sequential inputs SO(x) and PO(y) ("* + y*¡ are applied to a logic operator 1, then due to

the delay along the inverter on the SO branch, the node zmay see the rise of x after y has

gone up and this may result in a hazard and hence non-speed independence. On the other

hand, a safe cell, introduced in this subsection, is so realized that its output (the effect)

cannot change unless both its SO and PO type input transitions (that is, the cause) have

already been stabilized and absorbed. Now in the above example if y were a safe cell, then

z would never see y+ before -x occurs, as y would never have been pulled up if both x

and -x had not been absorbed yet in the fanout points, where -x is the inverse of x. (We

will use the negation sign - instead of an overline for the sake of clarity whenever neces-

sary.)

A safe cell is rcalized with two complementary trees, Tl and T2, and one 2-input

Muller C-element as shown in Figure 5.13 in which Vi, I < i1n,bi= ai.

PO SO

a1

a2

bn

br
b2

an

Chapter5

Figure 5.13: The basic structure of a safe cell.

116

If a gate receives a PO type input transition its safe version will receive both the PO

and SO type transitions according to Figure 5. I 3. As a result of a PO type input transition

the output of the Muller-C element may not change unless both the trees have been stabi-

lised which necessitates the absorption of both PO and SO type input transitions, that is

the output will not change until the SO type transition has fired as well. Both PO and,SO

type transitions are acknowledged in safe cells. This eliminates the hazardous effect of in-

verters.

Notice that the operation of safe cells is not dual rail coding based. Instead, they are

driven by and generate normal single rail logic levels. Therefore, these cells can easily be

mixed with normal complex gates or even simple gates as far as logic levels are con-

cerned.

Theorem 5.1: In order to remove delay hazards resulting from a non-acknowledged

SO type transition, it is sufficient to make safe all logic operators corresponding to the

immediate strccessors of the corresponding PO type transition. 0

Proof: Considering the above introduction the theorem is proved.

Consider the partial STG and the corresponding extended STG in Figure 5.14-a and

b, respectively. Transition a+ is not acknowledged on the SO side. Therefore, according

to Theorem 5.1 it is sufficient to make both nodes b and c safe in order to avoid thehaz-

ardous effect of the transitions on node ¿.

The dashed arrows in Figure 5.I4-c show how the graph would be modified if nodes

c and b werc made safe, where none of the sequences starting with b+ and c might pro-

ceed unless SO-(a) fires. Notice that unlike the implicit acknowledgement in Figure 5.4,

making the graph connected by only one dashed arrow, (that is only one acknowledge-

ment) is not always sufficient to avoid delay hazards in situations like Figure 5.14-c, as

because of the incorrect state of logic high on SO(a), generally speaking some nodes may

be affected erroneously while the non-acknowledging sequence of transitions proceeds

forward.

In this example nodes b and c are not of course the best candidates for being safe, as

using the double inversion technique the new extended STG in Figure 5.15 requires only

one node, that is d,tobe implemented safe, as shown by the dashed arrow.

Notice that Theorem 5.1 only specifies some sufficient conditions to make a circuit

Chapter5 rt7

b -)

\ r +.

+

v \

v
!

--> a'

+ ro*¡a¡ v

!\
So-(a)

This transition is not ac-

knowledged.

/'...- Po+(a)

a -)d +

PO-(a)

t
So+(a) + d- ...

\

(a)

+c

b++

(b)

)
v +

\

v

+b

,\c-+
tv1 v

PO-(a)

t
So+¡a) -> d- ...

\
SO-(a) t

(c)

Figure 5.14: (a) A partial STG, (b) the corresponding extended
STG, and (c) the same STG with two safe node b and c.

hazard free, that is not all immediate successors of non-acknowledged SO type transitions

have to be always safe. We discuss one situation here. More work is needed to formally

determine the necessary conditions to implement a variable as a safe cell.

Example: Consider the STG shown in Figure 5.I6-a, and the extended STG in Figure

5.16-b. We show that although SO-(a) is not acknowledged and c is an immediate suc-

cessor of PO+(a), (that is the sufficient conditions in Theorem 5.1 are satisfied), node c

Chapter5 118

+ PO-(a) +
t b+-+

so*(o)
v \

Po+(a)

v
d-+.v

\ so-la)\ t+... V

Figure 5.15: A second arrangement for the extended STG in Figure

5.14. Now only one node, d, needs to be safe.

does not necessarily have to be implemented as a safe cell.

Notice that the only node which may directly be affected by a late transition of SO-

(a) is the node which has SO(a) in its fanin set. Spurious transitions on this node may of

course result in further deviations from the specification on some other nodes. Assume

that node å (but not c) is safe as shown in Figure 5.16-c. Therefore, the only erroneous

state in Figure 5.16-b occurs when c has fired while SO(a) is still erroneously high. This

of course may only occur if å+ has not fired yet, as we assume that variable å has been

implemented as a safe cell as shown in Figure 5.16-c. Otherwise if b+ has already fired,

SO(a) has necessarily been stabilized (to logic low) as well (because of the dashed arrow

in Figure 5.16-c) and hence no spurious transition appears on any outputs. Thus, as far as

this partial STG is concerned, the node which has SO(a) in its fanin set may have spurious

transitions only if SO(a) = 1 and then c is pulled down.

On the other hand a literal at an erroneous logic high level (that is SO(a) = 1) may

only tend to pull the output of a SOP-NOT, x, down while ¡ has been specified to stay

high. Therefore, if SO(a) and c arenot in the same p-term of the complex gate implement-

ing the above node, no p-term may be enabled by the effoneous input SO(a) = I andhence

no output will suffer from spurious transitions.

Example: In this section the STG in Figure 5.17, taken from [4][33][59], is imple-

mented using both the 2-phase RS technique and safe cells, and it is shown that the second

method results in a considerable area gain.

In the 2-phase RS method two modelling signals, x1 ãîd x2, àla introduced for every

original one, r. Considering the equivalent two phase STG (not shown here), one consist-

ing of all positive and the other one consisting of all negative modelling variables, the log-

Chapter5 tt9

Ièa'

... -+ fO*¡a¡ V

This transition is not ac-

knowledged.

-)

b+ --> ... + d-+ ... a +v

\

(a)

b+ -+ ... + d--+ ... PO-(a) --> SO+(a) +

c

\t
So-(a)

c

(b)

b+ -+ ... --> d-+ ... PO-(a) + SO+(a) + ...

I

\

v
.. -sPo+¡a) '

\t
SO-(a)

c

(c)

Figure 5.16: (a) A partial STG, (b) the corresponding extended STG,
(c) the same STG with a safe node þ.

ic equation for these variables can be readily determined as follows using a simple

algorithm described in [33]. Table 5.1 shows the set and reset functions2 for the RS flip-

flops realizing different nodes, as depicted in Figure 5.18, for node a2 as an example.

Then each original signal is determined using a modulo-2 function as shown in Figure

5.19 for the variable a, as an example.

2. As shown in Figure 5.18, the original signal corresponding to the immediate predecessor('s) of
the modelling signal being generated has to be considered in the R and S functions as well. See

[33] for details.

Chapter5 120

b-

"/
\

a = b.d+c.d

b = c+b.d

ç = ¡b+c¡.(ã+6)

d = a+b+

d- ¿+

ï
a

c

I
6+

c

+a

\"/
+c

Figure 5.17: A STG and one corresponding group of logic equat¡ons.

Modelling

Variables

b

41.

41.

c2

b2b

b2

c1

c1

bI

ã2

d2

a2

c2

c2

4.1

dr

a1

cI

Ib

I

d2

a2

a2

d1

I

Set

Reset

b2 bI

Table 5.1 : Set and Reset functions for the modelling variables.

-c2

c

a2-42

c2

Figure 5.18: A modelling node, a2¡ implemented as two cross coupled

complex gates.

c

Chapter5 t2r

a -a

a7 -41

Figure 5.19: Modulo 2 function to extract or¡g¡nal var¡ables from
modelling var¡ables.

IS Table PO
SI Table

ab cdPO 15

a crd

arb

a2-42

b crd

15

Figure 5.20: lS and SI Tables.

a

b

C

d

C X,/
d arb

Now, the same circuit is implemented using safe cells. According to the logic equa-

tions shown in Figure 5.I'l , all PO's are inverted. The 15 Tqble in Figure 5.20 shows all

immediate successors of the inverted PO's from the STG.

Next, it is checked whether any PO (from the above list) excites any of its own im-

mediate successors. Such cases are shown with a X in the SI (Speed Independent) table in

Figure 5.20. Notice that here b is the corresponding PO. Referring to Theorem 1, the SI

table shows that only node c may need to be implemented as a safe cell.

The above implementation needs only one safe cell, showing a significant area gain

over the corresponding two-phase RS -implementation.

Chapter5 122

Considering the two methods in Section 5.3 to relax the delay hazards caused by in-

verters further work is required to optimize a complex gate based asynchronous circuit us-

ing safe cells.

5.5 Delay hazards analysis and verification

The unbounded delay model is sometimes considered too pessimistic [42], andhence

unnecessarily expensive in terms of area and performance of the resulting implementa-

tions. With this motivation we relax the unboundedness constraint only for inverters in

this section and assume that a logic operator in a network may only be affected by the

change of precedence of only two consecutive transitions (that is, one transition and its

immediate successor) due to the delay along possible inverters. In other words in a se-

quence of transitions o* -+ b* --> c* we assume that the delay along the inverter in the fork

of signal a is sufficiently small so that SO*¡a¡ fires before f O*þ) fires. Based on this as-

sumption different types of signal transitions in only sequential STGs (that is state ma-

chines) are analysed and hence the hazardous situations are identified.

Definition 5.5: A STG in which all transitions are of PO type, we call a complete

STG. O

Hereafter all partial STGs are assumed to be complete unless otherwise specified.

For each pair of signal transitions like ø* + b*,two possible groups of nodes, that is,

non-immediate successor and immediate successor nodes, possibly suffering from delay

hazards, are considered.

5.5.1 Static delay hazards

In this section we study the possibly hazardous behaviour of a node, ¿ which has two

transitions o* &. b* (o*-+ b) in its fanin set, but is not the immediate successor of b*.

Therefore, during the transition ,*-+ b* node x is not supposed to undergo a transition,

according to the specification. However, the unknown delay along inverters may disturb

the normal operation, and cause node x to experience spurious transitions.

Theorem 5.2: Suppose that node x has the two variables a and å in its fanin set.

Further assume that PO(b)* immediately follows PO(a)* in the STG, that is PO(a)*-+

PO(b)*, but x* is not an immediate success or of bx. Two different cases are considered

according to the initial state of x, where x is the immediate output of the corresponding

Chapter5 r23

AND-OR-NOT gate:

If -r is initially at logic high, then it suffers from a delay hazard (in the form of a static

l-hazard) iff PO (a,) undergoes a low to high transition, and both transitions SO(a)- and

å+ (where transition b+ canbe either PO(b)+or SOþ)\ are applied to the same p-term of

node x, and this p-term is not disabled by another signal during the transition pair

PO(a)*+ POþf .

If x is initially at logic low, then it suffers from a delay hazard (in the form of a static

O-hazard) iff PO (a) tndergoes a high to low transition, and transitions SO(ø)+ and b-

(where b- can be either PO(b)- or SO(b)-) are applied to two different p-terms of node x,

and the p-term including b is the only enabled p-term of the cover during the transition

pair PO(a)*-+ PO(b)*.

Proof: Assuming two sequential transition, o*& b*¡a*+ å*¡ being applied to a two

level atomic AND-OR-NOT circuit with an output x, the proof is based on the following

partial proofs:

1. If the transitions are in the same direction, the change of their order will not cause

any spurious transitions on the output, .r, as two transitions with similar directions

are tending to stabilize the output x at the same logic level.

2. If the transitions are in different directions, then a change in their order may

cause ahazard as demonstrated here:

2.1. Assume that the specified directions of the transitions are a++ b-,but b-

overtakes a+ in time, then two different situations may be considered:

2.l.l.The two signals are applied to the same p-term. Notice that if the

specified order of the transition pair a+-+ b- is reversed, that is b-< o*,

then the p-term is necessarily disabled during this transition pair, as

either a or b is at logic low. On the other hand, the only way that the

transition pair a++ å- in its specified order may affect the p-term is to

enable the p-term by o* , and then disable it by b-. This in turn could

only cause a negative pulse on the output of the AND-OR-NOT gate,

x, pulled down by o*, and then pulled up by å- if the output was at

logic high. Otherwise, it has no effect on the output, x. However,

Chapter5 t24

according to the specification the transition ø+ does not affect the

output, x. Therefore, the change of the precedence of the two

transitions a* &. b- will not violate the specification, as this change of

order may only keep the p-term disabled.

z.l.z.The two signals a and b are applied to two p-terms, pa and pb,

respectively. If the output x is specified to be at logic high (which

entails all p-terms being disabled), no matter which transition, a+oÍ b-,

arrives first, the output will stay at the same level, as both p-terms

must already have been disabled by other inputs regardless of the order

of this pair of transitions. Now suppose that the output is at logic low,

and moreover pb is the only enabled p-term, then a+ must be in charge

of enabling another p-term (that is pa) which is intended to replace pb

in order to still keep the output at logic low. This is a hazardous

situation, as the enabled p-term, pb, is disabled before the disabled p-

teÍ-Ín, pa, is enabled. Therefore, a change in the order of the two

transitions a+ and b- may pull the output, x, up temporarily,

2.2. Assume that the specified directions of the transitions are a-+ b+, btt b+

overtakes a- in time. Again two different situations may be considered:

2.2.l.The two signals ¿ and b are applied to two different p-terms, pa and

pb, respectively. Notice that the only way that the transition pair a +
å+ in its specified order may affect the output of the two p-terms is to

disable paby a , and enable pbby å+. This in turn might only produce

a logic high pulse on the output x, which would be enabled by a , and

then disabled by b+ if x was originally at logic low. If the order of the

transitions pair, a--) å+, was reversed then no pulse would appear on

the output, .r, as at least one p-term at a time is enabled (pb is enabled

before pa is disabled). However, according to the specification, the

transition ø- in its correct order does not affect the output, x. Therefore,

the change of the precedence of the two transitions a- and b+ will not

violate the specification.

Chapter5 125

2.2.2.The two signals ¿ and b are applied to the same p-term. The correct

order of the transition pair a- --> b+ first disables the p-term by a-.

However, the reversed order would enable the p-term by b*, and then

disable itby a- if the p-tern was not disabled by any other signal. This

spuriously enabled p-term would cause a spurious negative pulse on

the output x if x was at logic high.

All possible sequences resulting from a PO type transition pair, PO(b)*-+ SO(b)*, and,

seen by the logic operatorx are tabulated in Figure 5.21. The first column shows the four

possible specified situations for the transition pair PO(b)*-+ SO(b)*. The second column

shows the two possible literal transition sequences for each situation. The first transition

sequence in each row in which å is excited by SO*(a) is free of delay hazards, as all these

literal transitions happen sequentially. In other words SO
*¡a¡

is acknowledged by åx in

all of these situations. The second sequence in each row in which SO
*¡a¡

is not acknowl-

edged3, however, may cause delay hazards as demonstrated below.

1. First consider the sequence l-2 in Figure 5.21. The literal transitions for this case

may be seen as one of the following sequences:

l.l. PO(a)+ < pO(ø)+< SO¡a¡- < SO(b)- 4, with one change in rhe precedence

which is between POþ)+ and SO(a) -, that is a positive transition, PO(b)+,

has erroneously preceded a negative transition, SO(a)-. According to partial

proof 2.2.2 if these two transitions are in the same p-term, the output might

undergo a spurious logic low pulse only if it was initially at logic high.

1.2. PO(a)+ < POþ)+ <

between SO(b)- and SO(a)-, and between POþ)+ and SO(a)-. The firsr

change of precedence does not cause any hazards, according to partial proof

1 above, as both of these transitions are in the same direction and hence

tending to stabilize the output x at the same logic level. However, the

precedence change between POþ)+ and SO(a)- may cause a delay hazard,, in

the same way as explained above. If PO(b) and SO(a) are applied to two

3. Notice that now a SO type transition being not acknowledged is not sufficient to cause hazards,
as the delay along inverters is assumed to be bounded in this section.

4. o* < b* indicates a temporal relationship meaning that a* occurs before å*.

Chapter5 126

PO transitions Literal lransitíons

1-1. PO(a)+ + SO(a)-+ PO(b)+ + SO(b)-

l- PO(a)+ -+ PO(b)+ ;a SO(a)-

1-2. PO(a)* + po(b)+-+ SO(b)-

2-1. PO(al + SO(a)++ POþf -+ SO(b)+

2- Po(a)- + Po(b)-
, SO(a)+

2-2. PO(a)- -> po(b)--+ SO(b)+

3-1. PO(a)+ + SO(a)-+ PO(b)- + SO(b)+

3- PO(a)+ -+ PO(b)-

, SO(a)-

3-2. Po(a)+ -+ po(bf+ So(b)+

4-1. PO(a)- -+ SO(a)+-+ PO(b)+) SO(b)-

4- PO(a)-+ PO(b)+

, SO(a)+

4-2. PO(a)- + p)(b)++ SO(b)-

Figure 5.21= Four poss¡ble signal transitions and the corresponding
Iiteral transition graphs.

different p-terms, the output will not experience a transition, according to

partial proof 2.2.1. However, if these two transitions are in the same p-term,

the output might undergo a spurious logic low pulse only if it was initially at

logic high, according to partial proof 2.2.2.

Chapter5 127

A similar seasoning may be applied to the sequence 3-2inFigure 5.21. The two pos-

sible literal transitions are as follows:

1.3. PO(a)+ < pO(ø)- < SO(a)- < SOþ)+, where the only precedence change is

between PO(b)- and SO(a) -. This, however, does not cause any hazards,

according to partial proof 1, as both of these transitions are in the same

direction and hence tending to stabilize the output x atthe same logic level.

r.4. PO(a)+ < ro¡b¡- < SOþ)+ <

between PO(b)- and SO(a)-, and between SOþ)+ and SO(a)-. The first

change of precedence does not cause any hazards, according to partial proof

I above, as both of these transitions are in the same direction and hence

tending to stabilize the output x at the same logic level. However, the

precedence change between SOþ)+ and SO(a)- may cause a delay hazard,.If

SO(b) and SO(a) are applied to two different p-terms, the output does not

experience a transition. However, if these two transitions are in the same p-

term, the output might undergo a spurious logic low pulse only if it was

initially at logic high, according to partial proof 2.2.2.

2. Now consider the sequence 2-2 in Figure 5.2L The literal transitions for this case

may be seen as one of the following sequences:

2.I. PO(a)- < PO(b)- < SO(a)+ < SO(b.)+, with one change of precedence

between PO(b)- and SO(a)+.If PO(b) and SO(a) are applied to the same p-

term, the output does not experience a transition, according to partial proof

2.1.1. However, if these two transitions are applied to two different p-terms

of node x, the output may undergo a spurious logic high pulse only if the

output was initially at logic low, and the p-term including PO(b) was the

only asserted p-term, according to partial proof 2.1.2.

2.2. PO(a)- < PO(b)- < SOþ)+ < SO(a)+ with two precedence changes between

SOþ)+ and SO(a)+, and between PO(b)- and SO(a)+. The first change of

precedence does not cause any hazards, according to partial proof 1 above,

as both of these transitions are in the same direction and hence tending to

stabilize the output x at the same logic level. However, the precedence

Chapter5 728

change between PO(b)- and SO(a)+ may cause a delay hazard.If PO(b) and

SO(a) are applied to the same p-term the output again does not experience a

transition, according to partial proof 2.1.I. However, if these two transitions

are applied to two different p-terms of node x, the output may undergo a

spurious logic high pulse only if the output was initially at logic low, and the

p-term including PO(b) was the only asserted p-term, according to partial

proof 2.1.2.

A similar reasoning may be applied to sequence 4-2. The literal transition sequence

corresponding to this sequence are as follows:

2.3. PO(al < POþ)+ < SO(a)+ < SO(b)-, in which the only change in rhe

precedence is between POþ)+ and SO(ø)+. This, again, does not cause any

hazards, as both of these transitions are in the same direction and hence

tending to stabilize the output at the same logic level, according to partial

proof 1.

2.4. PO(a)- < POþ)+ <

between POþ)+ and SO(a)+, and between SO(b)- and SO(a)+. The first

change of precedence does not cause any hazards, according to partial proof

I above, as both of these transitions are in the same direction and hence

tending to stabilize the output ¡ at the same logic level. However, the

precedence change between SO(b)- and SO(a)+ may cause a delay hazard.If

SO(b) and SO(a) are applied to the same p-term the output again does not

experience a spurious transition. However, if these two transitions are

applied to two different p-terms of node x, the output may undergo a

spurious logic high pulse only if the output was initially at logic low, and the

p-term including SO(b) was the only asserted p-term, according to partial

proof 2.1.2.

Example: A STG and the corresponding logic circuit5 for a L/R element [50] are

shown in Figure 5.22.6

5. The procedure of logic equation extraction is not discussed here. The interested reader may
refer to II8].

6. This STG has been taken from [78]. In [78] we show the close similarity between STGs and the
output sequence of the handshaking expansion phase of Martin's methodology.

Chapter5 129

li ro
x

lo
Po(r)

r¡

So(r)

I¡* - ,o* è ri* --> x* -+ r;
1J
Il+ x + Ii ? lo* ç-ri

Figure 5.22= UR element: logic circuit and STG.

Figure 5.23 shows an equivalent circuit (in which the AND gates have been replaced

with NAND gates in order to show the immediate outputs of the logic operators according

to our assumptions) and the corresponding complete STG. Notice that node x has been as-

sumed to be the corresponding PO although the conclusion in this example would be valid

if ¡ were supposed to be the corresponding SO as well.

In this example the lower NAND gate generating -Iohas the two variables r¡ and x in

its fanin set. Furtherrnore, two transitions of these variables are consecutive in the STG,

that is PO(r)+ --> PO(x)+. Considering that this NAND gate is not disabled by any other

ro

lo -lo Po(r)
r¡

So(r)

l¡* - -r; + ri* -) x+-) -ro+

1J
-Io* - x <- Ii <- -Io +- r¡

Figure 5.23= Complete STG and SOP-NOT implementation of UR

element.

li

x

Chapter5 130

signal, case 1 of Theorem 5.2 applies to this example, as the immediate output of the gate,

(that is -/o) is at logic high during the transition pair PO(r)+ + PO(x)+ , PO(r) undergoes

a low to high transition in this transition, and both transitions SO(r)- and x+ are applied

to the same p-term of node -/o. Therefore, the transition pair PO(r)+ + PO(x)+ is haz-

ardous for node -/o. Notice that according to Theorem 5.2 this conclusion is valid no mat-

ter whether x is of SO or PO type.

The hazard problem in this specific case can be resolved by applying De-Morgan's

law to the lower NAND gate, as shown in Figure 5.24, as r¿ is now applied to the NOR

gate in its PO type. It is interesting to note that the newly introduced inverter on the lower

branch of fork x is not problematic at all even under unbounded delay model, as the fork

is delay insensitive as discussed in Section5.2.

Ii -ro ro

x

-x Po(r)Io

Po(r)

.!
-

I I I

L¡' è -ro è ri' --) x'-) -ro'
1J
lo* * t <- I¡<- I, <- ri

Figure 5.24= Complete STG and modified implementation of UR

element.

A similar situation exists for node -ro which has the two variables /; (in PO type) and

x in its fanin set, with two consecutive transitions in the STG, that is PO(Q- -+ PO(x)-.

Since SO(I) is not in the fanin set of -ro, a necessary condition does not exist any more

and hence the transition pair PO(li)- -+ PO(x)- is free of delay hazards for node -ro.

5.5.2 Dynamic delay hazards

In the rest of this section the behaviour of the immediate successor of b* inthe pair of

transitions a*+ b* is investigated, that is ¿*+ b* + x*, to see how x can undergo a non-

r¡

Chapter5 131

monotonic transition by re-ordering the two preceding transitions, ø*and b*. Remember

that in the discussion in the previous section we assumed that node x is specified to stay

at a fixed logic level during a pair of transitions. Therefore, delay hazards manifested

themselves as static hazards. However, now delay hazards will manifest themselves on

variable x as dynamic hazards, as ¡ is specified to undergo a transition after the sequence

a*+ b*. Since AND-OR-NOT gates are assumed atomic, at least three out of order tran-

sitions are required to generate a dynamic hazard, as a dynamic hazard causes at least

three transitions on the hazardous output. Therefore, under our assumption of only two

out of order transitions, dynamic hazards are ruled out in sequential STGs.

The above conclusion may be verified more closely by looking at all possible literal

transitions in Figure 5.2 1 . All literal transitions in the first row of every situation have all

transitions acknowledged, and hence are free of delay hazards. The second row of each

situation, however, has some out of order transitions. We study case 1-2 which is repeated

in Figure 5.25-afor the sake of clarity. The rest of the sequences may be treated similarly.

;a SO(a)-

Po(a)+ -+ poþ)++ so(b)-

(a)

;a SO(a)-

Po(a)+ + poþ)++ so(b)-
\- PO(x)+

(b)

;a SO(a)-

Po(a)+ -+ Po(b)+--> so(b)-
\ po(*)*

(c)

Figure 5.25= (a) Literal transition 1-2 from Figure 5.21, (b) and

(c) two poss¡ble pos¡t¡ons for the third transition, PO(x)+.

Chapter5 132

The signal transition corresponding to)c may be added to this literal transition se-

quence according to either Figure 5.25-b or Figure 5.25-c. Without the loss of generality

the third transition has been assumed to be of positive type. In Figure 5.25-b PO(x)+ is

excited by POþ)+ . Considering the atomic nature of the AND-OR-NOT gates used in this

section, the late literal transition SO(a)- can only púl PO(x)+ down, therefore its delay in

firing has no effect on PO(b)+. In Figure 5.23-c PO(x)+ is excited by SO(b)-. Notice that

now the delayed literal transition SO(a)- is in the same direction as the immediate prede-

cessor of PO(x)+, that is SOþf , therefore the only effect of this delay can be delaying

PO(x)+.

5.6 Logic hazards in complex logic gates

Different types of logic hazards have been studied extensively in two stage combina-

tional logic [83]. In this section complex AND-OR-NOT gates with possible inverters at

some inputs are analysed and are shown to be more robust against logichazards than their

normal two stage simple gate counterparts. Although complex gates have been used by

some researchers as mentioned earlier, we are not aware of a systematichazatd analysis

in this family so far. Furthermore, in most design strategies the delay along the inverters

is assumed negligible t17l t55l as mentioned in the introduction.

Remember that the delay model assumed in this chapter is the pure gate delay model

In this section we assume all logic circuits are in the form of sum of product (SOP) (unless

otherwise specified) possibly with some inverted inputs, although taking proper duality

into consideration, our discussions would apply to product of sum implementations as

well. It is also assumed that all transitions are free of function hazards.

Lemmas 1, 3 and 5 are adapted mainly from [83][64], while the rest which deal with

complex gates, have been developed in this work.

Lemma 5.1: A single input transition in simple gate SOPs is free of static l-hazard

iff both vertices are covered by a single product term (p-term). 0

The example in Figure 5.26 demonstrates a hazardous single input change, abc: 0l I
) 11 l. A redundant cube is needed to remove the hazard. Notice that here both directions

q + x & x -+ q arehazardous, while according to the following Lemma in complex gate

based SOPs only one direction is hazardous.

Chapter5 t33

ab ab
cc

00 01 II 10

q+x&x+q:
both are hazardous

(a)

00 01 II 10

to remove hazard

cube b.c is required.

(b)

0

I

0

I

Figure 5.26: ln simple gate based SOPs (a) both transitions q + x
& x + q are hazardous, (b) a redundant cube b.c is introduced to

remove the hazard.

Lemma 5.2: A low to high single PO type input transition may not have a static 1-

hazard in complex gate SOPs. A high to low transition of a PO type input, however, has

a static l-hazard in this family iff both (on-set) vertices are not covered by a single p-term.

Proof: A single input transition may disable and enable two enabled and disabled, re-

spectively, p-terms. If the enabled p-term is disabled before the other p-term is enabled

then the output will suffer from a low glitch. In complex gates, however, the transition on

the PO always reaches the atomic AND-OR-NOT gate before the SO transition reaches

it, under the isochronic fork assumption. Therefore, it is always guaranteed that the disa-

bled p-term is first enabled if the PO transition happens to be low to high. Similarly a low

to high SO type transition always reaches the gate after the high to low type PO has

reached the gate. This always carries the risk of spurious transitions. 0

Therefore the transition q: 0I I -+ x: I I I is hazard free in Figure 5.2J, as PO(a) :un-

dergoes a low to high transition. However, the transition x: I I I -+ q: 011 is hazardous,

because now SO(a) (and not PO(a)) experiences a low to high transition.

Lemma 5.3: A multiple input transition in simple gate SOPs is free of static l-hazards

iff the transition cube is covered by one p-term. 0

Figure 5.28-a shows a hazardous multiple high to high input transition due to switch

over between the p-terms similar to that shown in Figure 5.26, where unlike the case in

Figure 5.28-b the transition cube is not covered by one cube. The following Lemma shows

that complex gates are more immune to multiple input change static l-hazards as well.

However, this immunity is not of any practical advantage, as it is never economical to im-

Chapter5 134

ab

C
00 01 1I 10

q --> x is hazardfree

x+qishazardous

(a)

C0

I
(Po) a

00

0I

1I

10

b

f=a.b+a.c

(b)

r

Figure 5.27= (a) The immunity of complex gates against single input
change static hazards, (b) a typical logic diagram.

ab
cd 00 01 11 10 cd 00 01 11 10

ab

00

01

11

10

hazardous hazardfree

Transition cubes
(a) (b)

Figure 5.28: (a) Hazardous and (b) hazard free multiple input (static 1-

hazard) in simple gate based SOPs.

plement an all-one transition cube with multiple p-terms.

In a 1-1 multiple input change, an originally disabled p-term which may be enabled

during the transition, has one or more enabling inputs:

Lemma 5.4: A multiple input transition is free of static 1-hazards in AND-OR-NOT

complex gate based SOPs iff each vertex in the transition cube belongs to an initially

enabled p-term, or a p-term with no SO type enabling inputs.

Proof:

Similarly to single input change, suppose that a low to high SO type transition enables

-a

I

L{ s x

I/I t w

(, I v

I r q

15 I x

I t I w

(" I v

Chapter5 135

(' l'
T)
((, ,)

T t)

ab

cd 00 01 1r 10

00
a.c

01

1I
a.c

10

v -+ z: -r*, -d* (So) + hazardous

z -+ v: ,*, d* (Po) = hazardfree

Figure 5.29: Hazardous and hazard free multiple input change
(static 1-hazard) in complex gate based SOPs.

a disabled p-term to replace another enabled p-term which is disabled during the transi-

tion. Due to the unknown delay of the inverter on the way of the SO type transition the p-

term may be enabled after the enabled p-term becomes disabled, resulting in hazards.

Suppose that the output of a SOP suffers from a spurious low glitch when an enabled

p-term is disabled and replaced with a newly enabled p-term. The signal glitch is again

caused by late enabling of the disabled p-term. Under the atomic gate model for complex

AND-OR-NOT gates this, however, may only happen if the enabling low to high transi-

tion is of SO type, which reaches the gate in an unknown propagation delay time. 0

For example consider the implementation shown in Figure 5.29. The transition z:

0100 + v: 001t is hazard free, as both enabling transitions, c+ and d+, are of PO type.

However, the reverse transition, that is v: 00ll + z: 0100 is hazardous, because the two

enabling transitions, that is -c+ and -d+ are of SO type.

Lemma 5.5: A multiple input transition in simple gate SOPs is free of 0-1 dynamic

hazards iff no product term in the cover intersects the transition cube unless it also covers

the final vertexT.

Figure 5.30 shows an example demonstrating a low to high dynamic hazard.If the p-

term p 1is sufficiently fast that p 1is enabled and then disabled before p2 has had a chance

to become enabled, the output may undergo a non-monotonic transition.

7. We show in [76] that multiple input transitions are free of 1-0 dynamic hazards under the inertial
delay model for SOP circuits.

a.d

Chapter5 136

ab

Cd 00 01 11 r0

00

01

1I

10

Transition cube

Pl = b.c.d

p2 = a.c

v+zishazardous

Figure 5.30: Multiple input low to high dynamic hazards in
simple gate based SOPs.

Lemma 5.6: Multiple input transitions in AND-OR-NOT complex gate based SOPs

are free of dynamic hazards. 0

Specifically speaking, we mean real dynamic hazards in Lemma 5.6. See Chapter 3

for different types of dynamic hazard.

Proof: For two level SOP logic, referring to Theorem 3.3 recall that in a multiple in-

put transition 1-0 dynamic logichazard, each h6-type p-term is necessarily disabled by at

least the same input transition which disables one or more of the tg type p-terms. Since

now there is no first level gate delay in our intended implementation, the complex gate

sees the falling transitions of both hs-type (if any) and ts-type p-terms at the same time.

Therefore the output is free of spurious transitions.

For multiple input transition 0-1 dynamic logic hazard, through a similar argument in

the proof of Theorem 3.3 it is shown that each hs-type p-term is necessarily enabled by at

least the same input transition which enables one or more of the tl type p-terms. Since the

t¡type p-term is an ideal instantaneous AND gate, the complex gate will NOT see its tran-

sition after it sees the positive transition of the hg-type p-term. Therefore the output will

not undergo any spurious transitions.0

5.7 Conclusion

In this chapter we first studied different types of interconnection forks in STG based

speed independent circuits and concluded that inverters on the input of some complex

AND-OR-NOT gates may cause delay hazards in many cases where isochronic forks are

v0
414 7\ ('I

I
z.

I
,/.

Chapter5 131

inevitable. With this motivation safe cells were introduced and shown to be robust against

delay hazards. Then, some sufficient conditions were identified to determine those nodes

in a network which need to be realized as safe cells. This method was compared with the

two phase RS-implementation technique in an example, and it was concluded that safe

cells might result in a significant chip area gain.

Safe cells are so designed that they acknowledge both the SO and PO type input tran-

sitions. Therefore, no matter how slow the inverters are, the correct order of transitions

are always guaranteed by safe cells.

'We then relaxed the so called pessimistic assumption of unboundedness of delays in

inverters, studied delay hazards in complex gate based circuits and identified a subclass

of delay hazards in different nodes of the network.

Finally combinational hazards in complex AND-OR-NOT gates were discussed and

it was shown that this logic family is more immune to those hazards than the two level

AND-OR logic.

Chapter5 138

A lø6ufør 1v[etfrol for Çuørl /

Synnetrkøtíon ønl O p erøtor fuluction for
1v[ørtin's Asy ncñro naxß D esign 1v[etfro lo hgy

6.L Introduction

In this chapter we introduce a tabular method to perform the last two of the four phas-

es of Martin's compilation process for asynchronous circuit design. The method is then

demonstrated with three examples, illustrating that our systematic method is very straight-

forward, flexible and convenient to apply, and hence it lends itself to automatic compila-

tion. The technique is independent of the particular delay assumption considered in the

design process.

Chapter6 r39

6.2 Overview of Martin's methodology for asynchronous logic design

Martin t47lt50lt51l[53] has developed an asynchronous design methodologyl start-

ing with a high level description similar to Hoare's CSP [27]. The source program is com-

piled into some asynchronous circuits in four stages called process decomposition,

handshaking expansion, production rule expansion and operator reduction.

During the process decomposition stage, the initial (complex) program is translated

into some sub-programs with simpler control structures using the following subroutine

c all f ashion al gorithm :

Replace the process P containing a section S with two processes P7 and P2 commu-

nicating on the channel (c r cz). Here P7 is the same as P, but replacing ,S with a commu-

nication action c1 on channel (c1, c2), and P2 is the process *llcz + S ; czff, where c2

(called aprobe) indicates to P2 that the calling process (P7) is waiting for P2. Having

found c2 asserted, the process P2 executes S and then proceeds to complete the suspended

handshake cycle, c2, (see below) initiated by the process P7.

The handshaking expansion phase replaces each communication action with the

corresponding handshaking signal transitions. To carry out this transformation, each so-

called software channel is implemented with two wires between the two communicating

modules: for example two wires c in2 -c outl and c orr2- c ¡r1 for channel (c r ,z).Four phase

handshaking has been utilised in Martin's methodology, that is on the P2 side, the signal

transition sequence fc¡rz] -+ cout2l --> l-c¡n2) -) cou¡2l replaces a full communication ac-

tion on channel (cp c2), where + indicates the cause-effect relationship, and [,r] means

"wait until x is asserted". Notice that now c¡n2 in fact conveys the notion of the probe c2,

which is the handshake initializer of the communication action c2. Therefore, the process

p2is eventually translated into *llc¡rzf --> S; corr2l ;l-c¡n2f i coutzl) at the end of the

handshaking expansion phase.

The production rule expansion consists of three sub-stages:

. State assignment, which is a heuristic solution for the lack of sufficient

variables; that is to satisfy the complete state coding (CSC) condition

t39l[84][95]. As an example, x is not a pre-specified signal in Figure 6.1 (from

Example 6.1), however, it provides the circuit with memory to remember

L The design methodology has been automated in [13]

Chapter6 140

*ttt¡l;roî;[r¡];*1 ;[x];roI; [-r¡];Io1 ;t-I¡l;xI; [-x] ; loll

(a)

r¡

)c -x

Weak

(b)

Figure 6.1: (a) The output of the handshake expansion of the UR

element. Variable x has been introduced to provide the circuit with

enough memory, (b) an implementation for variable x(see Example 6.11.

sufficient past history in order to distinguish different situations and hence

behave according to the specification.

. Guard strengthening: adding some more restrictions to the input of some logic

operators to enforce program sequencing. This guarantees that the signal

transitions in physical design occur in the same order as they have been

specified in the compiled program.

. Symmetrization, which is an attempt to avoid state holding operators as much as

possible. (See Example 6.3.)

In the operator reduction stage, the required logic gates are determined based on the

compiled program sequence generated in the previous stage.

Martin's research group reported in 152] the first asynchronous microprocessor de-

signed and implemented based on this methodology. The successful fabrication of this

chip and some other complex systems on first silicon, such as "a self-timed circuit for a

distributed mutual exclusion" (see Example 6.3), show the robustness of this methodolo-

gv-

In this article we introduce a tabular method replacing the current technique for the

last two stages, specifically guard strengthening, symmetrization and operator reduction.

Ii

Chapter6 141

Notice, however, that this is a general method to realize well-formed STG's as complex

CMOS combinational/sequential gates, as discussed in the following section.

6.3 Circuit realization

Martin has used a CMOS based implementation technique in which for every combi-

national cube covering some vertices in the on-set and off-set of each signal, x¡ = f (x 1, x2,

... xn), a pass transistor path is allocated from the corresponding node to Vdd and GND

respectively. In order to avoid the threshold voltage loss, NMOS and PMOS transistors

are used in the pull down and pull up trees, respectively. For the state holding gates, a

cross coupled inverter pair is usually placed at the output, although it could be eliminated

if a minimum refreshing frequency was guaranteed to counteract the charge leakage at the

output. For example Figure 6.2 shows this type of realization for the logic equation x =

rgtx.lg.

J(-x

Weak

Figure 6.2: A complex gate ¡mplementat¡on for the state
holding logic operator x = rs*x.ls

6.4 Tâbular method

6.4.1 Deriving new descriptions: STG and STD

Our method is applied starting from stage 3 (see Section 6.2), that is the production

rule expansion, after the state assignment has been performed. We consider the wait

states, in the output sequence of the handshaking expansion stage, as normal signal tran-

sitions. Therefore, the compiled program, so far, becomes the corresponding signal tran-

sition graph (STG) for which the state assignment problem (if any) has already been

solved in the state assignment stage.

Io

Chapter6 142

Notice that when there is no parallelism in the STG, the resulting STD has the sim-

plest possible form with only 2 X n states where n is the number of signals modelled by

the STG, assuming one instance of each transition in the corresponding compiled pro-

gram.

6.4.2K-NIap generation

When all transitions have a single instance in the STG, each variable,,r;, divides the

STD into two disjoint subgraph t2, \SG; and I SG¡, in which the off-set and on-set vertices

of the corresponding variable are located. These subgraphs end with one or more termi-

nating states, defined below:

DefTnition 6.1: In aterminatircg state of SG¿, x¡ma! change immediately; that is -r¡ is

excited.

Definition 6.22 A KM¡ is a normal Karnaugh map made for the variable x¡, in which

x¡ itself has been excluded from the map's co-ordinates. 0

Now based on the resulting strings, two K-maps, 1KM¡ and lKM¡ respectively, are

generated for every node, x¡, applying the following algorithm based on [18]:

Algorithm - K-map generation: Every state in)SGí(ISG,) causes a logic zero (one)

to appear in the corresponding box of 0KM¡ (LKM) except for the terminating state(s)

which corresponds to a logic one (zero).0

6.4.3 Operator extraction

Since these tables are derived from a well-formed STG, any logic extracted from

them necessarily enforces the program order [19][59]. This in fact replaces the guard

strengthening procedure in Martin's methodology. The other two steps are also performed

within this framework as explained below.

Defïnition 6.3: The entries zero and one for 1KM and lKM, respectively, we call

compatible entries, otherwise they are called incompatible.

Lemma 6.1: For a variable, x¿, two different entries in identical positions in the two

KMi's must be compatible.

2. In the general case of n instances of each transition ofx¡, the STD is divided into 2 X n disjoint

subgraphs by.{i, so that there are nX OSG¡'s and nX 1SG¡'s in the STD.

Chapter6 143

proof- Incompatible different entries in identical locations of the two KMis mean

that the corresponding signal is not a positive unate function of itself. On the other hand

it is proved in [59] that each signal generated through a well-formed STG is a monotone

increasing (positive unate) function of itself. Therefore, the two entries must be compati-

ble.

Lemma 6.22If the two maps }KM¡ and lKM¡, have two identically located different

entries, the corresponding gate, x;,is state holding.We call such entries sequential entries.

Proof- Notice that according to Lemma 6.1 two identically located different entries

must be compatible. Now, two identically located different compatible entries forx¿ mean

that x¡may take both logic values for that particular combination of co-ordinate variables,

x¡, 1 3 j 1n, i+ j, where n is the number of variables. In other words, r; cannot be deter-

mined by that combination of variables, so it must be a memory element for that specific

combination of the variables.

Lemma 6.3: Two identically located similar entries in the two maps }KMi and lKMi,

represent a combinational state for x¡. 'We call such entries combinational entries.

Proof- Two identically located similar entries for x¡ mean that x¡ is determined by the

particular combination of variables,x¡, I <i <n, i+ j, where n is the number of variables.

Therefore, x¡ is a combinational function of the co-ordinate variables for that particular K-

map entry.0

Having derived the proper 2 X n K-maps for n nodes and considering the above prop-

ositions, operator extraction can be performed for each variable according to the follow-

ing algorithm:

Algorithm - Operator extraction:

. 1: Check the two K-maps to see if there are any two identically located (different)

compatible entries. Such a pair of entries identifies a state holding gate according to

Lemma 6.2, otherwise the gate can be purely combinational, according to Lemma

6.3. Note that if there are two identically located different incompatible entries, then

the maps are not correctly constructed.

. 2: For the combinational entries, group all zeros together with as many don't cares as

required in as few and large groups as possible. Each resulting cube implies one path

from the output to GND.

Chapter6 144

. 3: Similarly, group all combinational entries that are one together with as many don't

cares as required in as few and large groups as possible. Each resulting cube implies

one path from the output to V¿¿.

This is because of the combinational nature of the circuit under this group of literals

forcing the output to necessarily be pulled down (up) through a pass transistor path con-

necting the output to GND (Vdd) in case 2 (case 3), regardless of the previous history of

inputs.

. 4: All remaining zeroes and ones with a corresponding don't care in the other K-map

can be considered either sequential or combinational, whichever simplifies the final

design; that is if the gate has already been determined as state holding, disregard

such entries, otherwise check which choice incurs a lower cost.

Notice that these so called isolated zero's and one's may belong to either group, se-

quential or combinational entries3, depending on how the corresponding don't care entry

in the other K-Map is assigned a logic value by the designer.

Corollary 6.L: The implementation of isolated on-set or off-set vertices (discussed in

number 4 above) as a combinational entry does necessarily entail some cost.

Proof: These vertices may obviously not be merged with other cubes, as they should

have already been merged (in the second and third stages of the algorithm) if it had been

feasible. Therefore, at least one new cube must be considered which incurs some extra cir-

cuitry.

6.5 Examples

In this section we demonstrate the convenience of our tabular method through three

examples.

Example 6.L: Consider the output of the handshaking expansion stage for the L/R el-

ement Í471in which the CSC violation has been solved by introducing a new variable, x,

as shown in Figure 6.3-a. The compiled program sequence in terms of the STG notation

and the corresponding STD are shown in Figure 6.3-b and Figure 6.3-c, respectively.

3. In other words they constitute a third group we call don't care grorrp, as they may be assumed

either sequential or combinational.

Chapter6 145

*ttlil ; ro1 ; [r¡] ; rI ; [x] ; roI ; t-r¡l ; Io1 : t-I¡l ; xI ; [-x] ; toJl

!¡* - ro*) Li*+ x++ rf
1J
Ii + x- ? !i-+ lo*ç- t¡

(a)

(b)

rc000 10010 I I0I0 11011
I¡* ,o*

l¡.r¡.Io.ro.x

00000
r¡ x*

I
x

00100 0u0r 10101 10001 11001

Figure 6.3: (a) Output sequence, (b) STG and (c) STD for Example 6.1.

+

(c)

Chapter6 146

In this example node x is the only state holding node. It has been implemented in three

different forms as shown in Figure 6.44, depending on how the don't care entries have

been utilized. In Figure 6.4-a some don't cares have been shared between 1's and 0's to

simplify the resulting circuit as much as possible. This approach, however, carries the risk

of creating undefined logic levels at, say, the power on time, as the output node might be

pulled both up and down by the unpredicted input vector l¡.r¡- 0I if the input signals l;

and r¡ are not preset properly.

In order to resolve this problem the pull down and pull up cubes have been selected

to be mutually exclusive in Figure 6.4-b, at the cost of one extra transistor and a larger

fan-out for the upper inverter.

The same K-maps, on the other hand, may be translated into the well-known but more

expensive Muller C-element by using fewer don't cares as shown in Figure 6.4-c. This is

what has been considered in 1471, as it has been based on the use of a standard library of

logic operators to build up the asynchronous networks. Notice that there are two options

here based on the logic value assigned to the don't care entries.

Example 6.2zIn this example the newly introduced variablex in Example 6.1, is

placed in the output sequence in a different position and in parallel with r¿+ and /f, as

shown in Figure 6.5-a. The corresponding STG and STD are shown in Figure 6.5-b and

Figure 6.5-c, respectivelys, where all 3 nodes are now of state holding type as shown in

Figure 6.6.

Example 6.3: In this example the switch B, a more complex module and one of the

two modules of a speed independent circuit for distributed mutual exclusion [49], is stud-

ied. The compiled program (taken from [49]) and the corresponding STG are shown in

Figure 6.7.

Having removed the non-input choices [18]
6from Figure 6.7-b the reshaped STG of

Figure 6.'7-c is obtained. Figure 6.8 shows the partial STG and the corresponding STD,

K-maps and the circuit diagram for node å. According to the operator extraction

4. Generally speaking the inverters at some inputs of these operators violate the atomic assumption

of the corresponding logic gates, which may result in hazards 1771. T\e situation becomes worse

if two level (AND-OR) logic is used to implement the operators even under the well-behaved

environment assumption. See [59][77] for more details.

Chapter6 147

algorithm, b is the only sequential signal in this example. However, if the don't care

entries were not properly assigned, then the combinational signals might also need output

memory. As an example, if the K-map entries of signal soare grouped as shown in Figure

6.8-c, then so has in fact been assumed as a state holding signal; that is the don't care entry

in the right table corresponding to the single zero in the other table has been assigned a

one, otherwise these two entries should have been grouped and allocated a pass transistor

path as well. This in fact is the symmetrilation stage in Martin's methodology which is

performed clearly here.

6.6 Conclusion

In this chapter we have presented a tabular method to compile the output of the

handshaking expansion stage of Martin's asynchronous circuit design methodology into

the CMOS combinational/state holding complex gates. As the examples demonstrate, our

method is flexible, straightforward and descriptive. The method is STD based so, in

common with several other asynchronous design methodologies, the size of STD grows

exponentially for highly concurrent designs. Also notice that the major problem with this

type of circuit implementation is the limited number of stacked transistors allowed in

today's technologies.

5. In this STG, x cannot immediately be followed by r¡ nor by l¡, as the environment is supposed to

monitor only ro and Io. Notice that having satisfied even this requirement, x may not take an

arbitrary position in the STG, or the CSC property may still be violated. Also notice that in this

implementation the mutual exclusion between the on-set and off-set cubes has been observed.

6. This has been performed by properly splitting the choice place pl in Figure 6.7-b into two

places p2 and p3 in Figure 6.7-c. Notice that in pI the non-input signal å may have both logic

values, whlle in p2 and p3 it may take only one logic value, that is 1 and 0, respectively.

Chapter6 148

0 l
0

I 0

0

1\ I

I

0 I

I¡ r¡
0K-map I K-map

00 01 11 10 00 01 11 10Io fo

00

01

II
TO

Io fo

r¡

x -x

I Weak

Vy'eak

I¡r¡ oK-maP

(a)

1K-map

I0 00 01 1I I0

00

01

11

I0

lo ro

00 01 11

l¡ r¡

¡ I

I

0 l

(b)

)K-map I K-map

00 01 11 I0 00 01 1I I0

r¡

I

x -x

r

Ii00

0I

I1

10

x -x

Weak

(c)

Figure 6.4: K-Maps and logic circuits real¡s¡ng state holding node x,

assum¡ng shared use (a), disjoint use (b) and not full use (c) of don't
cares in Example 6.1.

00

I 0

0

I I

I

0 I

Chapter6 149

*ttlil;ro1 ;[r¡],xI ; [x];roL;[-r¡];lrî;t-I¡l ,xI; [-x] ; toJl

(a)

2l++ ,o*

+

r"

J

t¡

L¡

x+)li

l¡

1
ta

/;(
É.

)

elo*
(

)c

(b)

00000 ¡.+ 10000 ro+ 10010 + 11010r¡

001

li.ri.Io.ro.x

r10r1
ro

001u 10101 100u 11001

(c)

Figure 6.5: Output sequence (a), STG (b), and STD (c) for Example 6.2.

)c
li

t; rcrcl x

10011

r¡lo*

Chapter6 150

0 ¡
0\ 0

0 0

0 0

I I

0\ I

l¡ r¡

00

01

1I
10

l¿

00 01 11 10 00 0I II 10

To=0 fo= l

(a)

00 01 11 10 00 0I I1 I0 ro

lo= 0 lo= l

Io

li

)c

r¡

ro -ro

Weak

lo -Io

Weak

-x

rùy'eak

I¡ r¡

00

01

11

10

rtx

00

01

11

10

I¡ r¡

r¡

x

li

(b)

00 01 11 I0 00 01 I1 I0

x

lo

loro x=0 x= l
(c)

Figure 6.6: K-map pa¡rs and correspond¡ng circuit real¡zat¡ons

for Example 6.2.

0 0

0 I

0 0

0 0

0 I

I l

0 0 I I

T 1\ I ò

a D-' /-0 0\,

Chapter6 151

B =
x llq¡nb --> qol ; [--q¡] ; øoJ

lq¡x--b -+ro1 ;[ri];roI; [---r¡] ; qo| ; [--q¡] ;qol

I s¡ -+ bî ; soî ; [--sJ ; sol

I t¡ + bJ ; bI ; [---t¡] ; tol

ll. (a)

b=O

++ tis;

I
b

I
.ç

I
so

tt
"A t+

to*

J
ti

I
t;

Q¡

I
,i*

I
ro

I
r¡

I,
Qo'

J
qi

Qo

qi

I
qi

t_
4o

/

4o

I
qi

I
Qo+

I
r¡

I

Q¡'

J
fo*

,1,

ri*
,1,

ro

,r/

ti

J
to

++
oJ

J
.ç

:s

+
.ç t¡+ +

tl
qo* ro*

+
.ço

(b)

I+

Pz P3

t¡t si*

ø- 6+ ti*

Figure 6.7: (a) Compiled program, (b) the corresponding STG, and (c)

the reshaped STG for Example 6.3.

q¡*

J*
Qo'

J
qi

Jq;
\t-/

(c)

Chapter6 752

b

l.
J
sa

,1, -so

ø-
.1,

to*

J
t;
Jt;

S ¡.So.t¡.to.b

10000 10001 11001 01001 00001

6+ o .1¡ .1o

+

+s

ti* si*

ti to b-

00000 00010 00110 00100 00101

(b)

00 01 rr r0 00 01 11 10

t;-

(a)

s¡t¡
to

00

0I

11

10

so=0 so= I

si s,

(c)

00 01 11 10 00 0l I1 10

b=0 b=l
(d)

ti to

00

0I

11

IO

s;

b-b

t¡

Weak

(e)

Figure 6.8: (a) Partial STG, (b) the corresponding STD, (d) K-

maps and (e) circuit diagram (an RS-FIip-Flop) for variable b (c),

and K-maps for var¡able s" (c) in Example 6.3.

lo À 0 X

0 0 I 0 À

0/ \,v

0 À
0

/o
¡0 -l

I I fI À

\3)

Chapter6 153

Cfrnpter 7

Conc[usion ønl furtfr¿r'lr/or fr

This thesis considered asynchronous design techniques in two aspects. Identifying

unlikely hazards in a bounded delay model, and preventing hazards through the introduc-

tion of some redundancy in the unbounded delay model. Following this technique, we in-

troduced an alternative for the last two stages of Martin's four stage asynchronous design

methodology.

1- Unlikely hazards were identified under the inertial gate delay model. 'We studied

the design of two level hazard free asynchronous circuits from signal transition graphs un-

der the inertial delay model and the well-behaved environment. Different sources of dy-

namic hazards were first investigated, and then a major group of this class, that is multiple

input high to low real dynamic hazards, were identified which we proved could not occur

Chapter 7 r54

under the inertial gate delay model in two level SOP logic circuits. 'We then relaxed the

zero wire delay assumption and determined an upper bound for the delay of critical wires

and introduced the notion of virtual isochronic forfts, under which hazard free operation

is still guaranteed.

We next proved that under a reasonable delay constraint all simple gate based SOP

circuits are free of multiple input change 0-1 dynamic logic hazards when the inertial de-

lay model can be assumed. These two results relieve the designer of all dynamic hazard

problems in many cases. Static hazards, on the other hand, are not relaxed under the iner-

tial delay model and hence they have to be prevented through the classical method of in-

troducing some appropriate redundancy to the cover of the function.

We uncovered a fallacy and showed that even the well-behaved environment assump-

tion might result in delay hazards in non-atomic two level gate based implementations,

although delay hazards are significantly reduced by the well-behavedness assumption of

the environment. In order to eliminate this type of hazard a different cover has to be found

with no hazardous behaviour. We showed this possibility through an example.

In the direction of uncovering unlikely hazards different types of delay hazards in

STG based two level asynchronous circuits were addressed. We first identified a major

region in STGs which are immune to hazards and hence showed that static O-delay haz-

ards have no chance of occurring under the pure delay model and the isochronic fork as-

sumption. Furthermore, according to our hazard classification low to high dynamic

hazards are no longer defined.'We then showed that static 1-delay hazards may be avoided

if there are sufficient sequences of output overlapping p-terms in the hazard region. We

further showed that these sequences automatically eliminate all dynamic high to low de-

lay hazards as well, under the inertial gate delay model and the isochronic fork assump-

tion.

2- In our attempt athazardprevention by introducing redundancy we first studied dif-

ferent types of interconnection forks in STG based speed independent circuits and con-

cluded that inverters on the input of some complex AND-OR-NOT gates may cause delay

hazards in many cases where isochronic forks are inevitable. With this motivation safe

cells were introduced and shown to be robust against delay hazards. Then, some sufficient

conditions were identified to determine those nodes in a network which need to be real-

ized as safe cells. This method was compared with the two phase RS-implementation

Chapter 7 155

technique in an example and it was concluded that safe cells might result in a significant

chip area gain.

Safe cells are so designed that they acknowledge both the secondary and primary in-

put transitions. Therefore, no matter how slow the inverters are, the correct order of tran-

sitions are always guaranteed by safe cells.

'We then relaxed the so called pessimistic assumption of unboundedness of delays in

inverters and studied delay hazards in complex gate based circuits and identified a sub-

class of delay hazards in different nodes of the network.

Finally combinational hazards in complex AND-OR-NOT gates were discussed and

it was shown that this logic family is more immune to those hazards than the two level

AND-OR logic.

Following the above redundancy based technique, we presented a tabular method to

compile the output of the handshaking expansion stage of Martin's asynchronous circuit

design methodology into the CMOS combinational/state holding complex gates. As the

examples demonstrate, our method is flexible, straightforward and descriptive. The meth-

od is STD based so, in common with several other asynchronous design methodologies,

the size of STD grows exponentially for highly concurrent designs. Also notice that the

major problem with this type of circuit implementation is the limited number of stacked

transistors allowed in today's technologies.

Notice that the outcome of both approaches may end up with some problematic in-

verters pointed out above. Therefore, in order to resolve this problem safe cells as general

purpose gates may be utilized.

In summary we enhanced in this thesis the understanding of the role of gate and wire

delay models in generating different types of hazards in asynchronous circuits. These

achievements will affect the optimization techniques in the corresponding CAD tools.

Then, based on the principle of acknowledgement we introduced safe sells in an attempt

at removing delay hazards and hence implementing true speed-independent circuits.

Future research work may be directed as follows:

In this thesis unlikely hazards were investigated under the inertial delay model in two

level logic circuits. This study should be extended to multi level logic as well. This will

probably help to choose an optimum decomposition.

Chapter 7 156

Unlikely hazards identified as dynamic logic and delay hazards do degrade noise im-

munity of logic gates. This degradation is in direct relation to rise and fall times of the

relevant signal transitions, and the threshold voltages of the corresponding transistors. So

that too slow signal transitions can eventually lead to hazards. Ratioed logic such as n-

channel MESFET GaAs technology in which rise times significantly dominate the rele-

vant fall times can give rise to this concern. As a part of the future work noise immunity

degradation caused by unlikely hazards (uncovered in this thesis) should be investigated

in different technologies.

Delay hazards under the well-behaved environment and the mechanism of their gen-

eration were addressed in this thesis. However, a general solution to eliminate the delay

hazard problem under the well-behaved environment has not been investigated yet. We

expect the solution to be concentrated first on finding a different cover, as delay hazards

under the well-behaved environment assumption are manifested as newly introduced

function hazards. Although this method will not resolve all delay hazards it should assist

the designer with different trade offs, such as STG reshaping, and to find an optimum cov-

er to avoid more likely hazards. If on the other hand a speed-independent solution is

sought then unresolved delay hazards may be treated as a special case of general simple

gate based speed independent design methodologies, in which state holding gates and

some combinational type of redundancy are normally used.

We introduced safe cells as hazard free building blocks and developed a theorem

identifying some sufficient conditions to implement a node in the circuit with a safe cell.

More work should be performed to identify the corresponding necessary conditions. This

would result in an optimum circuit with the minimum possible number of safe cells. The

problem becomes more complex if a bounded delay is assumed for inverters. Then for

every delay a different affangement for safe cells would result.

Chapter 7 t57

ßi6fiogrøpíty

tl] F. Aghdasi, M. Bolton, "Self-clocked asynchronous state machine design with

PALZZIP 6", M ic ropro c e s s o r s and M ic ro sy s 1 ems, February I 99 1 .

l2l D. B. Armstrong, A. D. Friedmen, P. R. Menon, "Design of Asynchronous Circuits

Assuming Unbounded Gate Delays",IEEE Transactions on Computers, Vol. C-

18, No. 12,pp.1110-1120, December 1969.

t3l P. A. Beerel and T. H-Y. Meng, "Automatic Gate-Level Synthesis of Speed

Independent Circuits", in Proceedings of the International Conference on

Computer-Aided De sign, Novemb er 1992.

14) P. A. Beerel and T. H-Y. Meng, "Gate-Level Synthesis of Speed Independent

Asynchronous Control Circuits", in Proceedings of the ACM International

Workshop on Timing Issues in the Specification and Synthesis of Digital Systems

(TAU), March 1992.

l5l P. A. Beerel and T. H-Y. Meng, "Semimodularity and Testablity of Speed-

Independent Circuits", Integration, the VLSI Jourrnal, 13(3), pp. 3OI-322,

September 1992.

t6l P. A. Beerel, J. Burch and T. H-Y. Meng, "Efficient Verification of Determinate

Speed-Independent Circuits", in Proceedings of the International Conference on

Computer-Aided De sign, 1993.

lll P. A. Beerel, CAD Tools for the Synthesis, Verification, and Testability of Robust

Asynchronous Circuits", Ph.D thesis, Stanford University, August 1994.

t8l J. G. Bredeson, "On Multiple Input Change Hazard-Free Combinatorial Switching

Circuits V/ithout Feedback", in l4th Annual Symposium on Switching and

AutomataTheory, pp 56-63, October 1973.

t9] J. G. Bredeson, "Synthesis of multiple input changehazard free combinational

switching circuits without feedback", International Journal of Electronics,39 (6),

pp. 615-624, 1975.

110] J. G. Bredeson and P. T. Hulina, "Elimination of static and dynamic hazards for

multiple input changes in combinational switching circuits", Information and

Bibliography 158

Control,2O, pp. II4-224, 1912.

tl1l B. Bernhardt, et. al., "Complementary GaAs (CGaAsTt)' A High Perforïnance

BiCMOS Alternative", 1995 IEEE GaAs IC SymposiumTechnical Digest, pp. 18-

2r.

[12] E. Brunvand and R. F. Sproull, "Translating Concurrent Programs into Delay -

Insensitive Citcuits", in Proceedings of the International Conference on

C omp ut e r-Aide d D e s i gn, pp. 262-265, November I 9 8 9.

[13] S. M. Burns and A. J. Martin, "Syntax-directed Translation of Concurrent

Programs into Self-timed Circuits", in Proceedings of the fifth MIT Conference on

Advanced Research in VLfl, March 1988.

[14] S. M. Burns, "General Conditions for the Decomposition of State Holding

Elements", in Proceedings of the Second International Symposium on Advanced

Research in Asynchronous Circuits and Systems (Async'96), pp.48-57, Ãizu,

Japan, March 1996.

[15] T. J. Chaney and C. E. Molnar, "Anomalous Behavior of Synchronizers and

Arbiters", IEEE Transactions on Computers, Yol. C-22, pp. 421-422, April 1973.

t16l T. J. Chaney, "Measured Flip-Flop Responses to Marginal Triggering",IEEE

Trans ac t ions on C omp ute r s, Yol. C-32, pp. l2O7 - 1209, Dec. I 98 3.

[17] T. A. Chu, "Synthesis of Self-timed Control Circuits from Graphs: an example",

in Proceedings of the International Conference on Computer Design,pp.565-571,

1986.

[18] T. A. Chu, "Synthesis of Self-timed VLSI Circuits from Graph-theoretic

Specifications", Ph.D thesis, MIT, June 1987.

[19] H. Y. H. Chuang, S. Das, "Synthesis of Multiple-Input Change Asynchronous

Machines Using Controlled Excitation and Flip-Flops", IEEE Transactions on

Computers, Yol. C-22, No. 12, 1103-1I09,Dec. 1913.

t20] W. A. Clark, "Macromodular Computer Systems", in Proceedings of the Spring

Joint Computer Conference, AFIPS, 1967 .

Í2Il D. L. Dill, "Trace Theory for Automatic Hierarchical Verification of Speed-

Independent Circuits", in Proceedings of the fifth MIT Conference on Advanced

Bibliography 159

Research in VLSI, March 1988.

l22l B. J. Benschneider, et al., "A 300MHz 64-b Quad-Issue CMOS RISC

Microprocessor", IEEE Journal of Solid-State Circuirs, Vol. 30, No. 11, November

1995.

[23] A. Doerr and K. Levasseur "Applied Discrete Structures for Computer Science",

Science Research Associates, 1985.

l24l K. Eshraghian. "Fundamentals of Ultra High Speed Systems", Prentice HalI,tobe

published.

[25] A. D. Friedman and P.R. Menon, "Synthesis of Asynchronous Sequential Circuits

with Multiple-Input Changes", IEEE Transactions on Computers, Vol. C-17, No.

6, June 1968.

Í261 B. Hazeltine, "Encoding of Asynchronous Sequential Circuits", IEEE

Trans actions on Ele ctronic C omputers, Vol. EC- 1 4, pp 7 27 -7 29, October 1965 .

Í271 C. A. R. Hoare, "Communicating Sequential Processes", Communications of ACM

2I, 8, PP. 125-130, August 1987.

[28] D. H. K. Hoe and A. T. Salama, "GaAs Trickle Transition Dynamic Logic", IEEE

Journal of Solid State Circuits,Yol.26, No. 10, Oct. 1991.

l29l L. A. Hollaar, "Direct implementation of asynchronous control units", IEEE

Transactions on Computers, Yol. C-31, No. 12, pp. 1133-1141,Dec.1982.

t30] S. Hauck, "Asynchronous Design Methodologies: An Overview", Proceedings of

the IEEE,pp.69-93, Vol. 83, No.1, Jan. 1995.

[31] L.G. Heller, V/. R. Griffin, J. V/. Davis, N. G. Thoma, "Cascode Voltage Switch

Logic: A Differential CMOS Logic Family", in Proceedings of 1984 IEEE

International Solid State Circuits Conference, ßEE Press, pp.16-17,1984.

l32l D. A. Huffman. "The Synthesis of Sequential Switching Circuits." J. Franklin

Institute, 257 : 16l-190, 27 5-303, March 1954.

t33l M. Kishinevsky, A. Kondratyev, A. Taubin, V. Varshavsky, "Concurrent

Hardware, The Theory and Practice of Self-Timed Design", John Wiley & Sons,

1994.

Bibliography 160

l34l L. Kleeman and A. Cantoni, "On the Unavoidabilty of Metastable Behaviour in

Digital Systems", IEEE Transactions on Computers,Yol. C-36 No. 1, pp. 109-112,

1987.

t35] L. Kleeman and A. Cantoni, "Metastable Behaviour in Digital Systems", IEEE

Design andTest of Computers, Vol. 4 No. 6, pp. 4-19,1981.

[36] A. Kondratyev, M. Kishinevsky, B. Lin, P. Vanbekbergen, A. Yakovlev, "Basic

Gate Implementation of Speed-Independent Circuits", in Proceedings of ACM/

IEEE Design Automation Conference, 1994.

[37] A. Kondratyev, J. Cortadella, M. Kishinevsky, L. Lavagno, A. Yakovlev,

"Technology Mapping for Speed-Independent Circuits: Decomposition and

Resynthesis", in Proceedings of the Third International Symposium on Advanced

Research in Asynchronous Circuits and Systems (Async'97), pp. 240-253,

Eindhoven, The Netherlands, April 1997.

[38] M. Ladd and W. P. Birmingham, "Synthesis of multiple-input change

asynchronous finite state machines" ln Proceedings of the Design Automation

Conference, 309-314, June 1 99 1 .

t39l L. Lavagno, C. W. Moon, R. K. Brayton, and A. Sangiovanni-Vincentelli,

"Solving the state assignment problem for signal transition graphs", in

Proceedings of Design Automation Conference, pp. 303-308, 1991.

[40] L. Lavagno, K. Keutzer, and A. Sangiovanni-Vincentelli, "Algorithms for

Synthesis of Hazard free Asynchronous Circuits", in Proceedings of Design

Automation Conference, pp. 568-512, Jlune 1992.

l4ll L. Lavagno, and A. Sangiovanni-Vincentelli, Linear Programming for Optimum

Hazard Eliminaiton in Asynchronous Circuits", in Proceedings of International

C onfe renc e on C omp ut e r D e s i gn, pp. 27 5 -27 8, 1992.

l42l L. Lavagno, "Synthesis and Testing of Bounded V/ire Delay Asynchronous

Circuits from Signal Transition Graphs", Ph.D Thesís, University of California at

Berkeley, 1992.

[43] Trevor W. S. Lee and Mark R. Greenstreet and Carl-Johan Seger, "Automatic

Verification of Asynchronous Circuits", IEEEDT,YoI. 12, No. 1, pp.24--31,1995.

Bibliography l6l

t44l K. J. Lin and C. S. Lin, "Direct Synthesis of Hazard-free Asynchronous Circuits

from STGs based on Lock Relation and MG-Decomposition Approach", in

Proceedings of European Conference on Design Automation, pp.178-183, 1994.

t45l C. N. Liu, "A State Variable Assignment Method for Asynchronous Sequential

Switching Circuits", Journal of ACM, Vol. 10, pp 209-216, April 1963.

t46l G. Mago, "Realization Methods for Asynchronous Sequential Circuits", IEEE

Transaction on Computers, Vol. C-20, No. 3, March 1971.

l47l A. J. Martin, "Programming in VLSI, From Communicating Processes to Delay-

Insensitive Circuits", Chapter one, pp. I-64, Developments in Concuruency and

C ommunic ation, Addison-V/esly I 990.

[48] A. J. Martin. "The Limitations to Delay Insensitivity in Asynchronous Circuits" in

WiIIiam J. DaIIy, editor Proceeding of Advanced Research in VLSI, pages 263-

Z7\,MIT press, 1990.

l49l A. J. Martin, "The Design of a Self-timed Circuit for a Distributed Mutual

Exclusion",inProceedingsof ChapelHiIlConferenceonVLSI,pp245-260, 1985.

[50] A. J. Martin, "Compiling Communicating Processes into Delay Insensitive VLSI

Circuits", Distributed Computing, 1, pp. 226-234,1986.

[51] A. J. Martin, "Formal Program Transformations for VLSI Circuit Synthesis", UT

Year of Programming Institute on Formal Developments of Programs and Proofs,

ed. E. W. Dijkstra, pp. 59-80, Addison-Wesley, 1989.

[52] A. J. Martin, S. M. Burns, T. K. Lee, D. Borkovic, P. J. Hazewindus, "The Design

of an Asynchronous Microprocessor", Decennial Caltech Conference onVL$, C.

L. Seitz, ed., pp. 351-373, MIT Press, Cambridge, Mass., 1989.

[53] A. J. Martin, "Synthesis of Asynchronous VLSI Circuits", Formal Methods for
VLSI Design, J. Staunstrup (editor), pp. 231-283, Elsevier Science Publishers B.

V. (North-Holland) 1990.

[54] Mc-Cluskey, "Fundamental mode and pulse mode sequential Circuits", in

Proceedings IFIP congress on Information Processing, Amsterdam, North-

Holland Publishing Co., pp. 125-730,1963.

t55l T. H.-Y. Meng, R. W. Brodersen and D. G. Messerschmitt, "Automatic Synthesis

Bibliography t62

of Asynchronous Circuits from High Level Specifications",IEEE Transactions on

Computer-Aided Design, 8(11), pp. 1185-1205, November 1989.

t56l T. H.-Y Meng, "Asynchronous Design for Digital Signal Processing

Architectures", PhD thesis, U.C. Berkeley, November 1988.

[57] R. E. Miller, "Switching Theory", Volume 2, Chapter lO, John Wiley and Sons,

t965.

t58] C. E. Molnar, T. P. Fang and F. U. Rosenberger, "Synthesis of Delay Insensitive

Modules", in Proceedings of the 1985 Chapel H|II Conference onVLSI, Computer

Science Press, Princeton, USA, pp. 67 -86, 1985.

t59l C. W. Moon, "Synthesis and Verification of Asynchronous Circuits from Graphical

Specificatiorts", Ph.D Thesis, University of California at Berkeley, 1992.

t60l C. 'W. Moon, P. R. Stephen and R. K. Brayton, "Synthesis of hazard free

synchronous circuits from graphical specifications", in Proceedings of

International Conference on Computer Aided Design, pp.322-325, November

199r.

[61] T. Murata, "Petri nets: Properties, analysis and applications", Proceedings of

IEEE,Yol.7l, No. 4, pp. 541-580, 1989.

162l C. Myers and T. H.-Y. Meng, "Synthesis of Timed Asynchronous Circuits", in

Proceedings of Internatíonal Conference on Computer Design, pp.279-282,1992.

t63l C. J. Myers and T. G. Rokicki and T. H.-Y. Meng, "Automatic Synthesis of Gate-

level Timed Circuits with Choice", in Proceedings of the l6th Conference on

Advanced Research in VLSI", pp. 42-58, 1995.

t64l S. M. Nowick and D. L. Dill, "Exact Two-Level Minimization of Hazard Free

Logic with Multiple-Input Changes", in Proceedings of the International

C onferenc e on C omputer-Aided D esign, pp. 626-630, Novemb er 1992.

t65l S. M. Nowick and D. L. Dill, "Synthesis of Asynchronous State Machines using a

Local Clock", in Proceedings of the International Conference on Computer

Design, pp. 192-197, l99L

t66l S. M. Nowick and D. L. Dill, "Automatic synthesis of Locally Clocked

Asynchronous State Machines" in Proceedings of the Internqtional Conference on

Bibliography 163

Computer-Aided Design, pp. 318-32I, 1991.

t67l S. M. Nowick, K. Y. Yun and D. L. Dill, "Practical Asynchronous Controller

Design" in Proceedings of the International Conference on Computer Design, pp.

341-345, November 1 992.

t68l M. C. Paull and S. H. Unger, "Minimizing the Number of States in Incompletely

Specified Sequential Switching Circuits", IRE Transactions on Electronic

Computers, Vol. EC-8, pp356-367, September 1959.

[69] A. Peeters and K. van Berkel, "Single-Rail Handshake Circuits", in Proceedings

of the Second Working Conference on Asynchronous Design Methodologies, pp.

53-62, May 1995.

[70] F. U. Rosenberger, C. E. Molnar, T. J. Chaney, T. P. Fang, "Q-Modules: Internally

Clocked Delay-Insensitive Modules", IEEE Transactions on Computers, Vol. 37,

No. 9, pp 1005-1018, Sept. 1988.

Ul) L. Ya. Rosenblum, A. V. Yakovlev, "Signal Graphs: from Self-Timed of Timed

ones", in Proceedings of International Workshop on Timed Petri Nets, pp. 199-

206, Torino, Italy, 1985.

l72l G. Saucier, "Encoding of Asynchronous Sequential Circuits", IEEE Transactions

on Electronic Computers, Vol. EC-16, No. 3, pp 365-369, J:une 196J.

173) C. L. Seitz, "System Timing", in C. A. Mead and L. A. Conway, "fntroduction to

VLSI Systems", Chapter J, Addis on-We sley, I98O.

l74l E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H.

Savoj, P. R. Stephen, R. K. Brayton, and A. Sangiovanni-Vincentelli. "SIS: A

system for sequential circuits synthesis", Technical Report UCB/ERL M92/41,

U.C. Berkeley, May 1992.

[75] I. E. Sutherland, "Micropipelines", Communications of the ACM, Yol.32, No. 6,

pp.72O-738, June 1989.

[76] N. Tabrizi, M. J. Liebelt and K. Eshraghian "Dynamic Hazards and Speed

Independent Delay Model", in Proceedings of the Second Intentational

Symposium on Advanced Research in Asynchronous Circuits and Systems

(Async'96), pp. 94-103, Aizu, Japan, March 1996.

Bibliography 164

t77l N. Tabrizi, M. J. Liebelt and K. Eshraghian, "Delay Hazards in Complex Gate

Based Speed Independent VLSI Circuits", in Proceedings of the Sixth Great Lakes

Symposium on VLSI (GLS-VLSI' 96), pp 266-21 I, Iowa, USA, March I 996.

[78] N. Tabrizi, M. J. Liebelt and K. Eshraghian, "A Tabular Method for Guard

Strengthening, Symmetrization and Operator Reduction for Martin's

Asynchronous Design Methodology", accepted for publication in the IEEE

Transactions on Complúers, February 1997.

t79l N. Tabrizi, M. J. Liebelt and K. Eshraghian, "Delay Hazards in Two Level

Asynchronous VLSI Circuits Synthesised from Signal Transition Graphs",

accepted for presentation at the l4th Australian Microelectronics Conference,

Micro' 97, Melbourne, Australia.

[80] J. H. Tracy, "Internal state assignment for Asynchronous Sequential Machines",

IEEE Transactions on Electronic Computers,EC-15(4), pp 551-560, August 1966.

[81] S. H. Unger, "A Row Assignment for Delay-free Realization of Flow Tables

without Essential Hazards", IEEE Transactions on Computers,Yol. C-|J ,No. 2,pp

146-158, February 1968.

[82] S. H. Unger, "Asynchronous Sequential Switching Circuits with Unrestricted

Input Changes", IEEE Transactions on Computers, Vol. C-20, No. 12, December

197r.

t83l S. H. Unger, "Asynchronous Sequential Switching Circuits",Wiley-Interscience,

1969.

t84l P. Vanbekbergen, B. Lin, G. Goossens, and H. de Man, " A Generalized State

Assignment Theory for Transformations on Signal Transitions Graphs", ln

Proceedings of International Conference on Computer Design, pp. Il2-lll,
November 1992.

t85] K. van Berkel and M. Rem, "VLSI Programming of Asynchronous Circuits for

Low Powef', in G. Birtvvistle and A. Davis editors, Asynchronous Digital Circuit

Design, workshops in computing, springer,pp. 152-210, 1995.

[86] K. van Berkel, "Beware the Isochronic Fork", Integration, the VLSI journal, 13

(2):103 -128, June 1992.

Bibliography 165

[87] K. van Berkel, J Kessels, M. Roncken, R. Saeijs, F. Schalij, "The VLSI

Programming Language Tangram and its Translation into Handshake Circuits", in

Proceedings of European Conference on Design Automation (EDAC), pp. 384-

389,1991.

t88l K. van Berkel, "Handshake Circuits. An Asynchronous Architecture for VLSI

Programming", Interttational Series on Parallel Computation, vol.5, Cambridge

University Press, 1993.

t89l K. van Berkel, F. Huberts and A. Peeters, "Stretching Quasi Delay Insensitivity

by Means of Extended Isochronic Forks", in Proceedings of the Second Working

Conference on Asynchronous Design Methodologies, pp. 99-106, May 1995.

[90] K. van Berkel and Arjan Bink, "Single-Track Handshaking Signaling with

Application to Micropipelines and Handshake Circuits", in Proceedings of the

Second International Symposium on Advanced Research in Asynchronous Circuits

and Systems (Async'96), pp. 122-133, Aizu, Japan, March 1996.

t91l V. Varshavsky, M. Kishinevsky, V. B. Marakhovsky, V. A. Peschansky, L.Y.

Rosenblum, A. R. Taubin, B. S. Tzirlin, Edited by V. Varshavsky, "Self-Timed

Control of Concurrent Processes", Kluwer Academic Publishers, 1990. (Russian

edition 1986)

[92] N. H. E. V/este and K. Eshraghian, "Principles of CMOS VLSI Design", Addison-

Wesley,1993.

[93] S. F. Wu and D. Fisher, "Automating the Design of Asynchronous Sequential

Logic Circuits", IEEE Journal of Solid State Circuirs, Vol. 26, No. 3, March 1991.

[94] A. V. Yakovlev. "On Limitations and Extensions of STG Model for Designing

Asynchronous Control Circuits", in Proceedings of International Conference on

Computer Design, pp. 396-400, 1992.

t95l C. Ykman-Couvreur and B. Lin, "Optimised State Assignment for Asynchronous

Circuits Synthesis", in Proceedings of the Second Working Conference on

Asynchronous Design Methodologies, pp. Il8-l2l , May 1995.

t96l K. Y. Yun, S. M. Nowick, D. H. Dill, "Synthesis of 3D Asynchronous State

Machines" , in Proceedings of International Conference on Computer Design, pp.

Bibliography t66

346-350,1992.

t97l K. Y. Yun, D. H. Dill, Automatic Synthesis of 3D Asynchronous State Machines",

in Proceedings of International Conference on Computer Aided Design, pp. 346-

350, 1992.

Bibliography 167

@prnlíKA

lP ør ø ffe I lr øns itío ns ønl D is trí 6 utía e L øttices

4.1, Introduction

A parallel input transition to a logic circuit specifies a cube, called a transition cube,

containing all possible input states which may occur during that transition. In this appen-

dix an interesting feature of transition cubes is uncovered and it is shown that every tran-

sition cube in a parallel monotonic input transition to a logic circuit realizes a distributive

Iattice under thefollows partial ordering.

This Appendix is organized as follows: In subsection A.2 basic notions and defini-

tions are reviewed mainly from [23] with some minor changes. In subsection 4.3 Lemmas

and Theorems are developed to prove our claim. Section A.4 shows an example as the

conclusion.

4.2 Basic notions and definitions

Definition 4.1: A relation, (from set A to set B is a subset of the product of the two

sets. A relation, { from AtoA is called arelation onA. For a, b e A,a \b means (a, b)

e(,

Appendix A 168

Definition 4.2: A relation (on a set S is called transitive if whenever a \b and b \
c, then a \c, for all a, b, c e S.

Definition 4.3: A relation .(on a set S is called reflexive if a \a for all a e ,S.

Defïnition 4.4: A relation -(on a set S is called antisymmetric if whenever a \b and

b Ka,then a = b,for all a, b e S.

Definition 4.5: A relation is called a partial ordering if it is transitive, reflexive and

antisymmetric.

4.3 TFansition cubes and Poset theory

Having introduced the basic foundation, in this section the notion of transition cube

is studied in terms of the Poset theory. We first show that every transition cube is a Poset,

then it is proved that a transition cube is a lattice as well and finally we show that every

transition cube, moreover, is a distributive lattice.

DefÏnition 4.6: If a partial ordering relation is defined on a set, then the set is called

a partially ordered set or a Poset under that partial ordering relation.

Lemma 4.L: A transition cube, T, is a Poset under thefollowsl partial ordering. (This

partial ordering, hereafter, will be represented by the symbol <.)

Proof: 'We need to show thatthefollows relation is reflexive, antisymmetric and tran-

sitive.

1- Reflexive- Since there is no timing restriction on any transient input vector, each

vertex may be imagined as a successor of itself, that is x 1 x for all x e T.

2- Antisymmetric- During a parallel input transition when a vertex, -x, changes to an-

other vertex, y, that is ¡ < y, y cannot change back to x under monotonic input transition,

that is y < x may only hold if x = y. Therefore, the follows relation is antisymmetric.

3- Transitive- If vertex x follows vertex y, and vertex y follows vertex z, then -r also

follows z,that is thefollows relation is transitive.

Therefore, the follows relation is a partial ordering and hence a transition cube is a

Poset under that relation. 0

7. By follows ordering, we mean the order in which input transitions may occur. In other words, each input
route specifies one possible order.

Appendix A 169

Definition ,{.7: In Poset P, x e P is a lower bound of a, b e P if x 1 a and x < b.

Definition 4.8: In Poset P,y e P is an upperbound of a, b e P if a1y andb 3y.

Corollary 1: One of the two elements in any pair of elements in a Poset may be less or

greater than the other one or they may not be comparable at all.

Corollary 2: Not every pair of elements in a Poset have necessarily a lower and./or upper

bound.

Definition 4.9: In a Poset if all lower bounds of a pair of elements, x and y, are

comparable with at least one of the lower bounds, ø, such that u is greater than all of them,

then for that pair of elements ø is calledthe greatest lower bound or glb for short and is

represented as Lt = y n x (read "y meet x").

Corollary 3: In a Poset if at least one lower bound of a pair of elements is non-

comparable with any other lower bound of that pair, then there is no glb for that pair of

elements.

Definition 4.L0: In a Poset if all upper bounds of a pair of elements, x and y, aÍe

comparable with at least one of the upper bounds, v, such that v is less than all of them,

then for that pair of elements v is called the least upper bound or lub for short and is

represented as v = y v x (read "yjoin x").

Corollary AzlnaPoset if at least one upperbound of apair of elements is non-comparable

with any other upper bound of that pair, then there is no lub for that pair of elements. 0

It has been shown that for each pair of elements in a Poset, lub and glb are unique if
they exist (see [23]).

Definition 4.1L: In a Poset if each pair of elements has a lub and a glb, then the Poset

is called a lattice.

Theorem 4.1: Every transition cube is a lattice under thefollows partial ordering.

Proof: Suppose that the starting vertex in a transition cube is all zero and the ending

vertex is all one for those vertices that change during the transition. This does not affect

the generality of our discussion and can always be assumed. Notice the notions of glb and

lub in a transition cube. The glb of two vertices is the first common input vertex which is

reached if the corresponding Hasse diagram is traversed starting from x and y toward the

least vertex, that is an ancestor vertex which is as similar to those two vertices as possible.

Notice that such a ancestor necessarily exists, as it belongs to the transition cube. Also no-

Appendix A 110

tice that an ancestor cannot have any greater bit than its successors2. In other words, the

glb of two vertices, x and y, is a vertex, ¿ such that

vi = xiif x¡ - y¡ (4.1)

vi = Min. (x¡, y) if x¡+y¡ (A.Z)

where a¡ is the i'thbit of vertex ¿.

Equations (4.1) and (4.2) may be written in a more compact form as

ví = xi.Ji Ø.3)

where "." is the logic AND operator. Equation (4.3) clearly shows that for every ar-

bitrary pair of vertices, x and y, the (unique) glb, v, exists.

Now consider the notion of lub. The lub is the nearest common vertex which is

reached if the corresponding Hasse diagram is traversed starting from ¡ and y toward the

greatest element, that is a successor vertex which is as similar to those two vertices as pos-

sible. Notice that such a successor necessarily exists, as it belongs to the transition cube.

Also notice that a successor cannot have any smaller bit than its predecessors. In other

words, the lub of two vertices, x andy, is a vertex, a, so that

ui = xiif x¡ - y¡ (4.4)

ui = Max (x¡, y) if x¡f y¡ (4.5)

or

u¡ = x¡ t t¡ (4.6)

where "+" is the logic OR operator. Equation (A.6) clearly shows that for any arbi-

trary pair of vertices, x and y, the (unique) lub, u, exists. 0

In the last part of this Appendix we show that each transition cube is a distributive

lattice.

Definition A¡.I22 A lattice L is distributive if the meet and join operators (see

DefinitionA.9)aredistributiveoneachother,thatisav(bnc)=(avb)n(avc),and

a x (b v c) - (a nb) v (a n c),for all a, b, c eL.

Theorem 4.2: Every transition cube is a distributive lattice under thefollows partial

ordering.

2. Notice that I is greater than 0, and 0 is less than l, as the initial vertex has been assumed to be all 0.

Appendix A 171

Proof: In Theorem A.1 it was shown that the glb andthe lub of every pair of vertices

in a transition cube exist and may be determined by bit-wise ANDing and bit-wise ORing

respectively of the two vertices. In other words, it was proved that the meet and join op-

erators can in fact be replaced with bit-wise logic AND and OR operators respectively,

which are distributive. So, the proof of Theorem 4.2 is now complete. 0

4.4 Example

The following example clarifies some of the notions used in the context of this appen-

dix.

Figure 4.1 shows the transition cube for the parallel input transition abcd; 1010 (s)

-+ I 101 (x) where a, b, c and d are the inputs of a four input logic function. Notice that

the logic function itself is not required to be specified for our purpose.

ab a= l
11 I0cd 00 01

00

01

11

10

Figure A.1: Transition cube is a = 1 for transition 1010 (s)

to 1 101 (x).

Since only three out of four variables are to change, the transition cube is an 8 member

set: T = { s, t, u, v, w, x, y, zl , each member being identified by a unique 3-bit pattern. The

Hasse diagram of this Poset is shown in Figure 4.2.

vw

I

z

x

I

u

v

I

s

t

Figure 4.2: Hasse diagram for the transition cube shown in
Figure A.1.

v z

x w

u v

st

Appendix A 172

The upper half and lower half (the shaded area) of Table 4.1 show all upper bounds

and lower bounds, respectively, of all pair of vertices in the transition cube. Notice that

each pair has its lub and glb which have been shown in bold style in the Table.

As an example of distributivity consider v v (z x t) which is supposed to be equal to

(v v z) n (v v r). Referring to Table 4.1, v v (z n t) may be replaced with v v s which is

equal to v. (v v z) x (v v t), on the other hand, may be replaced with w n ø which is equal

to v, as well.

Thble 4.1 : Upper boundsr lower bounds (shaded area)r lub's and glb's of all pair of
vertices in the Hasse diagram of Figure 4.2.

s t u v w x v 7

^t t,Y,
U, X,

U,X Y, ü,
W'X

wx x Y'X Z, W,

x,y

t ürx ürX x x Y'x Yrx

u U,X x x x x

v \il, X x x W'X

w x x \il, x

x x x

v Y'X

7

Appendix A 173

