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Abstract

This thesis is concerned with the action of an environment on a system.

We first deal with the. fundamentals of decoherence by describing a model for the

interaction of two particles. We use standard quantum mechanics to derive the density

matrix and its behaviour in time and space; this allows us to investigate what the model

can tell us about any mechanism which might be involved.

The remainder of the thesis looks at scalar fields, and uses the influence functional

technique to derive the density matrix resulting from the evolution of a gaussian density

matrix, which itself describes the initial state of a fi.eld mode coupled to a bath (of

oscillators).

First we cover the background to influence functionals and squeezed systems. We

then consider a squeezed system, in particular calculating the entropy production" We

show that influence functionals can reproduce and also extend earlier results that have

been obtained by others in several different ways. These earlier results were all derived

by calling on various ad hoc plescriptions for decohering a system; our approach is more

systematic in that we do not force any coarse graining to occur. In doing so we place the

system-environment interaction on a more secure footing.

Next we extend our formalism to consider the evolution of primordial fluctuations

in the early universe, using new inflation as a starting point. We are able to follow

the evolution of density fluctuations and their conjugate momenta to determine whether

the general model of a scalar field mode outside the horizon coupled to an environment

(composed of short wavelength modes which are stiil within the horizon) can adequately

produce the perturbations needed to act as seeds for galaxy folmation.
Lastly we use the influence functional technique to study particle creation in two typeq

of spacetime: those which have a horizon and those which don't. Traditionally, particle

creation has been associated with the presence of a horizon and its geometrical effect of
distorting field modes. We show that in our ìanguage the nature of particle creation need

not actually refer to the existence of a horizon; this goes some way towards tying together

the seemingly disparate viewpoints of statistical mechanics and the geometry of relativity.
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Chapter L

Introduction and statistical
background

Quantum mechanics traditionally is concerned with isolated particles evolving in some

potential, and it allows us to explore what characteristics they can be found to have as

the result of a measurement.

The conventional interpretation of quantum mechanics does not ask what happens

during this measurement process, merely what its results are. Of course the act of mea-

surement itself has long been seen as problematic, as typified by the Schrödinger's cat

paradox.

The resolution of such paradoxes-at least within the conventionai framework-appears

to lie with the identification of an "environment" which can act on a "system" of interest

whether or not an observer is present to consciously make a measurement.

This view, that the environment cannot be neglected in the evolution of a system, is

the subject of this thesis. The question of what "really" happens when a wavefunction

collapses is not addressed; instead we focus on investigating to what extent an environment

can influence a system in such a \¡¡ay that classical behaviour ultimately emerges from

a quantum treatment" This investigation has important consequences for ideas of the

universe's early evolution. For example, consider a system interacting with a detector.

Somehow as a consequence of the interaction, the density matrix of the system becomes

diagonal, which implies some sort of classical behaviour emerging. But if we consider

the system-detector to be a ne\ry, bigger system, then iús density matrix does not become

diagonal. If we introduce another detector to interact with this new system, the same

description holds: by introducing ever more environments which interact with the first
system to become ever larger systems, we are effectively pushing the off diagonal terms
further and further away"

In the originai contexts where the density matrix played a role, this continual sweeping
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under the rug gave no problems" But in the context of the universe as a whole we clearly
are running out of environments to soak up the extra terms. This thesis aims to develop

some techniques of dealing with the system-environment interaction at both small levels

and cosmological ones, with applications to investigating the emergence of classicality both
in a simple system and in the early universe, and an alternative view of the production
of thermal radiance for various types of motion and spacetimes.

It has two rather separate parts. The first comprises just one chapter on the DeWitt
model of decoherence. This model considers a light particle incident on a more massive

one, and it then goes on to consider the case of many light particles incident. DeWitt
wished to use this to follow a relatively simple route from a quantum system to a classical
one. Initially we studied his model in some detail to see what we could infer from it.
Because DeWitt's explanation of the model was somewhat sketchy, our aim in this work
was to calculate the maths fairly precisely, trying not to leave any stones unturned along
the way.

Unfortunately, doing so defeated the whole purpose of discussing such a simple model
in the first place" We made the model more realistic-and introduced the all-important
concept of time-by modelling the particles not as plane waves but as wave packets. Not
unnaturally, at this point a lot of numerical evaluation was needed to get some feel for
the increasingly more complex density matrices involved, and current computer speeds
are not up to allowing us to proceed at a worthwhile pace. It seems that on a closer
inspection, the model didn't live up to its initial promise of simple results. However we
did establish a new uncertainty principle in the piane \ryave case.

The second part of this thesis comprises the more technical, but hopefully more fruit-
ful, models of system-environment interactions modelled by influence functionals. The
influence functional technique, now something over thirty years old, is a formalism for
evolving a reduced density matrix, and as with so many tools in physics it finds its easiest
application to systems and environments composed of oscillators.

Any system with a quadratic lagrangian (which is always what we consider) has an
evolution operator that can be described in quantum optical language using Bogoliubov
coefficients. Besides giving the influence functional formulae in a more elegant format,
chapter 3 (the introductory chapter on influence functionals) gives a simple but very useful
theorem which states that the sum of the Bogoliubov coefficients of such a system satisfies
its classical equation of motion. This theorem is used throughout this thesis, because such
a sum figures prominently in the formalism. It has been noted before, for example in [l]
and in a more limited form (for the static case only) in [2].

In chapters 4 and 5 we use influence functionals to evolve reduced density matrices.
The main effort in these chapters concerns calculating coefficients in the matrix prop-
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agator. These coefficients contain divergent integrals, and when treating these in two

different ways we found a contradiction in the results. In chapter 4, the results found by

using a simple approach to regularising the integrals differ from the next chapter's more

sophisticated approach. We have not been abie to resolve this contradiction.

In the last chapter of this thesis we deal with the subject of thermal radiance as seen by

a variety of different observers, such as in the familiar Davies-Unruh effect. Although we

don't use influence functionals in this chapter, the sum of the Bogoliubovs again makes its

appearance. We concentrate on using the formalism as an alternative way to consider the

noise and dissipation created in the surrounding vacuum by say an accelerating observer,

and show that it gives the usual result that these are identical to the noise and dissipation

which an inertial observer would see in a thermal bath. We also show how the formalism

can be used in examples of more complicated motion which were previously thought to

be related to the existence of a horizon. In the influence functional treatment the idea of

a horizon is no longer really necessary at all.

Many of the long calculations for the influence functionals have been put into appen-

dices. Also in the appendices we have listed the various lagrangians for the scalar fields

used in this thesis.

A note about notation: there are three system-environment models discussed in this
thesis, each with different labels for the system and environment oscillators. I have chosen

not to use a uniform notation for all three, since this would make them unrecognisable

from other work which has been done in each of the three areas. Notation which has been

used is as follows:

chapter 2 chapter 4 chapter 5

system: X ï q

environment r q r

Statistical background

The idea of looking for the effects of an environment without having to include it in every
question we might ask about some system of interest, is important to quantum statistical
mechanics, and plays a major role in this thesis. For example it is thought to play a key
role in the quantum to classical transition, and in such areas as entropy growth for an
evolving system.

In practice we can t'hidet' the environment as follows. Suppose our system is labelled
by u, with the environment (or bath) labelled by q. Consider finding the expected value of
a system observable A("). The system plus environment is described by a density matrix
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p. Elementary theory enables us to trace over both q, r:

(A) : ft pA: Ik*lpAlqr) dqdr (1.1)

We wish to make use of the fact that A is independent of the bath, q" So write

(A) : I k"lolø'*'l(q' *'lAlqrl d,qd,q'dt d,r' (1.2)

The term involving A can be split into its constituent bra-kets, since it doesn't depend

on g. So we have

(A) I

I

k"lplq'æ')(r'l4lnl6(q' - q) dq' dqdrdx'

k "lplq 
n')dq (æ'lAlrl dx dx'

: (rlp,lill

þlp,lr') (r'lAlx) dr dr'

ft P'A

where this last trace is now only over Í, the system variable. This defines a new quantity,
the reduced density matrix, and armed with this we are in a position to treat the system

in the usual way without needing to refer to the bath.

Although the density matrix is central to the work which follows, it certainly does not
give an unambiguous description of the system. We can see this by describing two very
different mixed ensembles, both of which have the same density matrix" Each ensemble

comprises say three large sets of atoms. Suppose they are produced from an oven:

(1) In the first case, they leave the oven without our measuring their spin. Write a

density matrix description of them in the z-basis: it will be just a weighted sum of I 1)(1 I

and | [)([ l, and since we have made no measurements, the weightings must bofhbe If 2,

so that the density matrix can be written:

(1.3)

(1.4)
Ll2 0

0 112

We now could choose to send them through a Stern-Gerlach apparatus which sorts them
into spin up and down. We might measure the populations of the three sets as follows:

60T01,40% I
54% 1,46% I
50% 1,50% I

4



Obviously the percentage of each spin has some nonzero variance. Even for a ialge num-

ber of sets, the mean will tend toward 50%, but the variance will not tend to zero.

(2) For the second ensemble, we again have three sets each containing a large number

of atoms, except that now after exiting the oven, the atorrs have been prepared into equal

up and down spins by a preliminary measurement made by someone else, before we geT"

to measure them. Then their density matrix is again (1.4), but now on passing the atoms

through our Stern-Gerlach apparatus rr¡i¡e measure

50o/o 1,507o I
50%î,507o I
50%1,50% I

i.e. the mean is 50% and the variance is exactly zero. So these tu'o ensembles are distin-
guishable even though they have identical density matrices. We do not treat this point in
this thesis; we implicitly assume that the reduced density matrix we are using contains all
the information about our system and its past interaction with the environment. Holvever

we should bear in mind that issues such as how fundamental the density matrix is, are

still a matter of some debate within the various theories of quantum measurement.
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Chapter 2

A simple model for decoherence

In this chapter we explore a model originally proposed by DeWitt [3], who suggested it
as a simple means of exploring decoherence using elernentary quantum mechanics" We

examine his derivations and conclusions, but ultimately decide that the model is not as

useful or simple as it might at first appear.

The basic model is that of one light particle (the environment) incident on an infinitely

massive one (the'system), in one dimension. The light particle is modelled by plane waves

and the interaction potential is assumed to be a delta function. After analysing this we

then introduce a large number of incident light particles,, and ask how they affect the

position and momentum of the heavy particle"

DeWitt originally caiculated the density operator of the heavy mass) and used it to
conclude that if the mass was bombarded by a large number of light particles of incom-

mensurate momenta, then the density operator would become diagonal. He proposed that

this was a simple mechanism for the emergence of classical behaviour for the heavy mass.

We wish flrst of all to follow his argument, but with all details included.

Suppose the light particle has mass m and position r, while the heavy one has mass

M and position X. We take as our hamiltonian for the assumed point interaction:

u_-h, a2 h2 a2 , ..o : ,nt ax, - ^ã* 
+ s6(r - x) (2 1)

where g denotes a coupling constant.

Let the state vector of M b" lú) while that of the whole system is lV). DeWitt
originally assumed that the heavy particle is much more massive than the light one, and

used this to give the following solution to the Schrödinger equation:

ú(n,x,Ð : ry {uø - ,¡l"iÊ, * Re-iÊ(,-r",] n 0@ - x)TeiÊ,} "-i,*, e.z)

where .L is the length of a box used for normalisation, ,R and 7 are reflection and trans-
mission coefÊcients: l.Bl2 * l?12 : 1.
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We first wish to derive this result and follow DeWitt's reasoning" To this end we will
carefully define the problem and solve the Schrödinger equation.

2.L Deriving De\Mitt's result

The first thing apparent about (2"2) is that it appears to have been derived in a box,
and yet for X ( ø there are no left-travelling waves. This is an inconsistency: we expect
that for both periodic and non-periodic boundary conditions we should always have waves

moving in both directions.

Also DeWitt's argument depends upon one particle's being much more massive than
the other, and among other things we wish to investigate the extent to which this condition
must hold. So we solve the problem initially without assuming that M Þ rn.

We will change to coordinates which make the equation separable, and the form of the
potential suggests that the best transformation will be to the centre of mass; so define:

Y:r-X , Y:mr+MX, m*M (2.3)

together with the usual ieduced mass /¿) and write

ú(y,Y,¿) = O(y, t)ö(y,t) (2.4)

so that Schrödinger' equation becomes

-h2 a2

2(M + m) 0Y2
(2"5)

=Hv =Hv

If we follow the usual separation of variables approach, then we obtain an expression
which equates a function of Õ with a function of /, in which case each expression can be
set equal to some function of time only, say /(t). Then rearranging the equations gives

(',-ra))ö: oo#

(r, n/(ú))o : oo# (2.6)

So /(t) acts like a potential, and inasmuch as such a time dependence wasn't considered
by DeWitt,'ffe set it equal to zero. The two functions O(y) and þ(y) each satisfy their
o\4/n separate Schrödinger equations, and the one for O is easily solved to give plane wave
solutions with the centre of mass energy:

M*m)Ec*¡ /h-¿EcMt/h

-Tr2 a2

2t' W + V(Y) V:ihry
ðt

+

O(Y, ú) : 
"iY

8
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A more general solution (Þr"n can be made by summing over these modes. We will later

choose Q n"n to be a gaussian wavepacket.

The wavefunction for the relative motion, /, is expressed in terms of plane waves of

energy -8",¡. Separating the y and ú variables yields

ófu,t) : x@)e-i+' (z.s)

with

l+fr+ v(r)] x(ù: 8.",X (2"e)

Suppose we obtain the delta function limit by solving the more general problem of a

square barrier potential. Because this potential is a function of the relative positions of
rn and M, we can consider it as follows:

g_

a

V region 7 rcgion 2 region 3

a,

2¡t

r
0

We will let ¿ -+ 0 to get the delta function limit. In order to try to reproduce DeWitt's
solution we have not explicitly placed the interaction in a box, or rather, the box has a
length which tends to infinity. The unnormalised wavefunction for the separation of the
particles is:

Xt@):¿ikY*Re-ikY Y<0
xr(y): \¿tu * Beta rJ 1y <. a (2.10)

x"fu)-Teika a<Y
where

hk: 2þE,a , Tr1v = (I- ",,)
Matching the wavefunctions and derivatives at U : 0 and ¿ yields

shla
shTc f 2 chla
1+!& gita(

(2.1 1)

A
B

R

T

shTc f 2 chla
2"-ika

W"h1a+2rn1o

I

(2.r2)



-R and T are the usual reflection and transmission coefficients, with lÄl'+ lTl':1. We

can introduce a normalisation Jd IJT to write:

x@) : {* {tt-olleika + R"-ikol

+ 0(y)0(a - a) l,+"'o + nr-'ol

| 0(y - a)Teiku\, (2"13)

Finally the total wavefunction is

ú(x,x,t): eg"n (ffi,t) x@ - x)e-i'+t e.t+¡

We can show this leads to DeWitt's result. Set the width ø of the top hat equal to zero

and take out a factor o¡ 
"-;kx 

to match DeWitt's notation:

Ú(x,X,t):W,,,"(ffi,t){erx_ùl"or,*p"_;x{,_zx)]
* o(x - x)Teik') "-n'-P' (2.15)

DeWitt took M Þ m, so that

Y--+X 2m8,"¡ : plfilc --+ (2.16)

where p is the momentum of the light particle in the original X,r frame. Hence the
wavefunction becomes;

r[(r,x, , : ryos"n(x,Ð {06 - ele¿Ê, * Re-iÊ(,-r",] n 0@ - x)TeiÊ'} "-i;*,
(2.17)

If u'e put

,þ(X,t) = A[e-iÊxen",(X,t) (2.1s)

then this solution reduces to (2.2), which was given by DeWitt.
This factoring out of a wavefunction for the heavy particle depends on our taking

M > m. The density matrix for the whole system is just lV)(Vl. We can calculate a
reduced density matrix (calted simply p with no subscript r since this is the only density
matrix we will deal with) by tracing out rn:

p(x,x,,t) : I l*, r,rlilr)(ülr, x,,t) d

I o x@ - X)x"@ - X') dr

(2"19)

9en
Q s"n
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If Os,,, is chosen to be plane waves, then the Q s"nÞ]o,o in the last equation has no Ø-

dependence, and merely multiplies the rest of the integral by a function of X - X'. Also,
if M --+ærQe"n becomesafunctionof Xonly,andagainitplaysnopartintheintegral.
This is the case considered by DeWitt, and he concludes that this fact is crucial to the
decoherence process happening. In section 2"1.3 we'll investigate the consequences of
assuming that the masses can be quite arbitrary, and will take (2.I4) to be the correct
solution, calculating the reduced density matrix for the mass M. But for now we keep

M > rn but take a f 0, and calculate the reduced density matrix. In that case

p(X,Xt,t) : øs"n(X,t)e;"*(X,,t) I ,@ - X)x-@ - X,) d,x

: .Q 
s"n(X,t)Q;,*(X' ,t) x

Jr13 Y t {tf* - ùle;n<,-x) ¡ p";*(-')]

* 0(r - X)O(X * a - r)fl""r'-x) ¡ B"t6-")f
*0(r_ X-a)Teik("-x)\.

{t6', - x7 fet*tx'-') * R* e¿k(r-x')l

* 0(r - X')0(X' i a - x) lA" "','{'-x') * 
p* 

"t.(x' 
-,)l

* 0(r - X' - a)T""tx{x'-'l} dr e"20)

We assume X' < X, and first take the width of the hat a to be such that the ordering of
variables appearing in the integrals is as follows:

x x+o x+t
X, X'X'+AL

When L "+ æ the oniy surviving terms in the integral will be those with .[ in the limits
of the integral, i.e.

p(X, X' ,t) : Q s",(X,t)e;",(X' ,t)x

iÏ1 ry U::-",rletx{'-x) 
¡ p"ite(x-û)lleik(x'-t) ¡ p*"ik(,-*')f d.r

* I::""'' lTl2eik('-x) e¿k(x'-r) drI

- Q s"n(X,ÐA;",(X, ,t)l,A/1, [cos 
k(X - X,) _ il?12 sin k(X _ X)] e"2I)

In the limit of zero coupling (g : 0), T : I, so that

p(x,x"t) : Qs,.o(x,Ða;"*(x,,t) lN¡, "-u'1x-x,) 
: lt(X,t)$.(x,,t) (2.22)

11



as expected" Substituting this into (2.21), we can then recovel DeWitt's case by setting

¿ -+ 0 as follows: firstly, with ø --+ 0, we have 1a --+ 0, while 12a -. ff. H.n e, with

_ rngo:- ffi (2.23)

we have

(2.24)

So finally

p(X,X',t): \b(X,t) rþ.(X',¿) (1 + o')-t fr + o'"or{*-x') cos k(X - X')] Q.25)

which was arrived at by DeWitt, who points out that this density matrix can be modified

to describe a localised state. Two things must be introduced: first, bombard M with a

iarge number of identical masses m. In that case the "environmental modulation function"

nt(x - x'): (1 + o')-t lt + o'"orlx-x') cos k(x - x')] Q.26)

in the reduced density matrix (2.25) will become raised to some large power. A plot of

the lE¡l versus X - X'.will have sharp peaks, separated by X - Xt : Tllc. Second,

bombard M with further large numbers of light particles, but make sure that there are at

least two groups of incommensurate momenta. This has the effect of multiplying terms

like (2.26)-one for each different value of momentum, so that the neu' environmental

modulation function becomes

E{,'(x - x') El,"(x - x') "." (2.27)

When the modulus of this is plotted versus X - X' \rye now find that, fol ly'1, t\¡2 . . . large

and k1, k2 . . . incommensurate, that all peaks have been removed except for the one at

X - X' : 0; that is, the reduced density matrix has become diagonal. DeWitt describes

this as pointing to a localisation occurring. Actually, what has happened is that the den-

sity matrix has become diagonal. This doesn't mean the large mass has become localised;

for this to happen we would require all but one of the diagonal elements to go to zelo.

What we are really dealing with here is decoherence in position, and this is a first step in
the direction of classicality.

Does a similar thing happen for a top hat as opposed to a delta function interaction?
Again plot the modulus of (2.27) versus X - X', where each modulation factor now comes
from (2.21) for ft1 ,k"..., while o is given by (2.23) and ? is calculated in (2.12). It's easy
to verify that exactly the same thing happens: decoherence in position still occurs for a
top hat potential.

n--' -i1 T -+ f7*ia l*ia

12



Suppose we take the width a of the hat to be larger:

X X+a x+",

X' x'+a

Then as before the only surviving terms in the integral, eqn (2.20), will be those with

,t in their limits; this doesn't change the final expression for p, eqn (2"2I). Note we've

assumed X' < X. I1 X'> X we use the fact that p is hermitian: p(X,,X'): P"(X',X).
A typical plot of lÆfl1 -vs-X - X' for some large Iú is shown in figure 2.1. In sec-

1.0

lou
><

\on
t!

o.2

0.0

0 4 6 10
X_X

Figure 2.1: Modulation function for a large number of incident particles of one momentum.

tion 2.1.3 we relax the requirement that M be much greater than m. But first we use the

theory developed so far to introduce a new result not noted by DeWitt.

z.L.t A new uncertainty princíple

Refer to figure 2.1. We define 6X to be some measure of a peak's width (say, where

the first inflection point of the lø{@)l-vs-u curve occurs), and focus on the spread in
momentum of the mass M by defining a new quantity AP":

L_

2
X'

0.8

B2

LP2
large mass * interaction

_o

LP"\'u
large mass without interaction

+ LP:
correction

2ôX

13
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Armed with these definitions we here prove the important result of this section:

A.P" 6X - h (2.2e)

To do this we need to calculate AP2

LP2 : e'l-(P)'
: tr pP2 - (tr pP)2

Now we can for example calculate (P) by: (dropping the ú in the following expressions)

However it turns out to be simpler to write the trace in the following way:

Then using the fact that E¿(0) : 1, we have

dx (xlpPlxl

dx dx' (xlplx')l-ruftu(x'- x)]

d,x d,x, (xl,þl(,þlx,) ax(x - x,)l-*#t(x,- x)]

-ou I dx d,x' 6(x - x'),þ"(x'lftVt,fx) En(x - x,)l

-oo I dx ú-(x) l,þ'(x) + ,þ(x) ¿'i(o)l

(P) :trPP: I
t

J

t
J

(p) : I o" dx, 6(x - x,) \,þlx,) (--*) lurþþ) n*(x - x,)l (2.31)

(2.30)

(2"32)

(P)

I

(P), i.e. (P) for no interaction

(P) - ih EL@)

02dX dxt 6(X - X') rþ.(X')
0x2 l,þ6) an(X - X')l

Also,

(P') _h2

: -h' I dx dx' 6(x - x') ,þ.(x')# l,þ,,(x) øx(x - x,) + 2ú,(x) EL6 - x,)
+,þ(x) E'í(x - x'))

-h' I dx ?þ.(x) lrþ,,(x) + 2ú,(x) Ei(O) + ,þ(x)Eí(0)l

1-l¡, i.". (P2) for no interaction

(P') - 2ih ELe) (p) - h, E,l@)
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So

LP2 (P') - (P)'

(P') - 2*r ELe) (P) - h'z E'le)

- (P)', + 2ih ELQ) (P) + h'z E':(o)

+t' l";fq - E'í1r4)

LP'

rhus 
Lp: : n,ln;,ço¡ - E,i(o)) (2.38)

For simplicity, consider the case of l/ particles of mass m, each with momentum ñk,

bombarding the mass M. Then as previously discussed,

P(x, x' ,t) : tþ(x,t)rþ.(x' ,t)Ek(x - X') (2.34)

with(u=X-X')
Et"(u) : l"n*" ("o. k, - ilrl' rin kr)]N (2.3b)

Hence

Ei(o) : -iNklal2 , E'iQ): -t/(1/ - \)k' l4ln - 2NkzlRl2 (2.36)

and we obtain

LP: : Nrr2k2 (r - trtr) esr)
We now calculate óX, u'here we have defined it to be the peak half rvidth at the first
inflection point of lEfl(z)l-vs-u. With

f fu) = lEn(u)¡ : l"o.' ku -t lTlari.,' kr] + (2"3s)

then

f"@) : r/k2 lcos2 ku-llTlasin2ku)*-' lrl^- t) *

= LP!

É (# - 1) (l"l'- 1) sin2 Zku * [.o,'A, + lrl'sin2 kz] .o.2Å,,] ess)
and this is required to equal zero for u : 6X. Since we are dealing with a stronglv peaked
modulation function, kz will be much less than one, so leplace the sin and cos by their
leading order approximations. Then since l?l f I we require the square brackets in the
above expression to equal zero. In that case, taking the reflection to be nonnegligible we
obtain

6X2- 1r 
trr^/ (i - l4f (2'40)

A^P" 6X ," h (2.4r)

Finally then

15



2.L.2 Creating a transmission resonance

As is well known, when the energy of the bombarding particle is chosen so that an integral

number of half-wavelengths fi,ts inside the square barrier, the reflection coefficient A be-

comes zero. In this case it appears that the DeWitt style decoherence no longer happens.

In this section we analyse this in more detail.

If"R:0then

++sh7a: o (2.42)
z K'l

This expression is not satisfied for 7 : 0 since both k and ¿ are nonzero. We also rule
out fr2 *'l' : 0, since this implies ¿ -+ oo or .g : 0, both uninteresting cases. So set

sh 7ø : 0 and solve for complex 1: \¡/e write

ör@): Aei(-it)Y * Be-i(-it)Y (2"43)

and note that when E,d ) Vs = gf a, öz will be oscillatory with an associated wavelength

À
2r

(2.44)

- i1a: nr n e Al (2.45)

This is just the half-wavelength resonance condition. The relative energ)¡ in this r.esonant

case becclmes

En =v, +# e.46)

-x'l
Now, sh 1a :0 * sin -i1a :0, or

€n-Err¡-En

we can find out by calculating lÆ¡(u)l as a function of l/ and e,". Firstly,

Ex(") - "iNku [cos 
fru - ilTl,.in kr]N

Set I = _it and. Bn = ##,so that

h2 k2 : 2m (e. * Vo _l þ,)

There are two competing influences here. The first is that by increasing the number /ú
of bombarding particles we can clecohere the position of M fúly. However by making the
relative energy equal to a resonant energy, we are setting lf l : I in (2.27), which sets
En(X - X') : 1 and implies that no .fy', however large, will give decoherence. Which
effect is the stronger here? Putting

(2.47)

(2.48)

16

(2.4s)



h2l2 :Zm(e. + p") (2.50)

(2.51)

(2"52)

This means

and with

( _ 1\n.
sinl¿ _ \ _'i 9r (2.b8)

20^

cosl¿ 
", 

(-1)" (2.54)

we can write l?12 as a series in o,r, keeping terms to second order. Eventually we obtain

trt':r_ffiffi+oþ3,)

1

Vl'

(2.55)

Substituting this into the expression (2"48) and taking the moduius gives

lE.t(u)l = 1- (Vo*20")'
Èliffisin2tcuN e2, (2'56)

So we see that the relative energy is the stronger competing factor, in that as we adjust
this energy closer to a resonance value, the number l/ of incident particles required to
offset the cohering effect increases dramatically.

2"L"3 Keeping M frnite
When the mass M is not infinite, we can no longer replace the centre of mass coordinate y
with the large mass coordinate X. We need to evaluate (2.1g), and one way to proceed is
tochoosesomeformforlos,,,l2. Supposethenthat lOs",,()t,0)l2isanormalisedgaussian,
so that Þs"n(Y,,O) is a rvavepacket centrecl around some wavenumber. l(¡. Then

Qo",(Y,o): "#** o" (2.57)

way, we obtain

| "n'xv 
- rï##-{x -xo¡2 o2 o^

If we now express Q s",(Yr0) as a sum of plane waves and evolve each in time in the usual

1

2
2

Q o,n(Y,t)

: 
"i ç2"¡-i o

17
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This is of course a wavepacket travelling with group velocity *fu We can now calculate

Q o"nÞ]o"n For what follows, define:

Ttt
4,7

ú2

4,3

4,4

O,g

b1

b2

2(m + M)
n'ì,

nx+M
M

m,+M
o2 * iat
o'o"
2lonl'

o

Jztrla+l

- o2" x2 - i xo o2 oz x _ "7 
x'' _ i It o o2 at x, _z I{3 o2 otr

e noo ' o4 n"i ai l"+12

{r2o,sX a2asXt 2l{so2a1a2
- 2t^ - ,"; - 

lonl,

The X, X' dependence is contained within fu and ó2 (and when the arguments are not
explicitly inserted it's implied that they are X,X').
Then

*,",(ffi,,)r;,-(ffi'¿) : b1 ¿-os'2+bz" (2'58)

Note that even though this is a gaussian in r, we cannot invoke its vanishing at ø : *oo
to do away with fhe llt/L in the normalisation in (2.13). If we attempt this, setting

/å/å lú12 dr dX : I and solving lor !{, the integration over X is still divergent; so

we have no choice but to retain the llt/L factor in (2.13).

The expression (2.19) for the reduced density matrix becomes

p(x,x',t) : ¡ÏJ-Yut I e-ou,'*b,, ,
{rt, - x) le;rr'-x) * ¿";t{x-r)]

-f 0(r - X)0(X I a - r) lte''t'-x) ¡ g"t6-')f

*0(x_ x-a)Teik('-x)\x

{U6' - æ¡ le;*tx'-') * R*eik(r-x')f

* 0(x - X')0(X' * a - r) lA""'r'{'-x') * g*g.(x'-,)l

* 0(n - X' - a)T""ir'l.x'-,1} dæ (2.bg)

We assume X' < X, and first take the width of the hat a to be such that the ordering of
variables appearing in the integrals is as follows:

18



X X+a x++
x,-* x'xt+a

Again, L --+ æ means most terms in the integral are immaterial, except those with I in
the integral limits, i.e.

p(x,x',t) : n$ut(x,,x') x

{ f' . "-ø5r2+b2r le;t"t,-x) ¡ p"ik(x-n)] 
[e;ttx'-,) ¡ p*"ik(r-t')] ¿*

lJ x'_r,12 -

n l::,t'" lT1z"-"u'z*bzx "ik(r-x) 
,nrt*'-,¡ o*) (2.60)

)

This is just a sum of gaussian integrals. If we \et L ---+ oo in the integrals, they don't
diverge, and hence don't provide any factor of .L to cancel the lNll2lL term. So despite
the fact that we have already discarded some terms to get the previous expression, for
now we will keep tr finite and denote this by a subscript on p, obtaining

Pr(x, x' ,t) : ry+"Ål#L*iatKo(x-x') *

{1"-'*,"-") 
+tlt,"ik(x-xl] 

þ,.r (^ *,- #) -"* (1"
+ Reik(x+x)"-TÈ 

l",t (o x,-bï-ru?!rþ) -"* (u (*,

+ R*e-ik(x+x)e!!+Ê 
þ,r (^ ,, -ur!r?utr) _"* (^ ("

*trt2e-ik(x-x')þ. (^ ("* Ð-#)-*r (ø;(x+ø) -h)l\
(2.61)

and we have p: lim¿*oo pr. If we now take the width ¿ of the hat to be larger so that
the order o1 X,X'is as shown on page 13, the only surviving terms in eqn (2.5g) will be
those with tr in their limits, and the expression for p is unchanged.

Showing a correspondence to De'Witt's result

Here we show that in the limit M + oo with ø : 0 our expression for p(X, X,,l) will
reduce to DeWitt's corresponding quantities, as it should. Consider

pik(X -Xt) _( y _vt¡2
lim pt, : 4e-#+iKo(x-x') xM*æ'" f,

19



""Mhm_
M*æ )yn {lu'^,*-*) 

+tlt'"'k(x-x')] 
þ,r +# -*r ({ä:' #)]

+trt2e-it(x-x')þ. (ftf -ffi)-",,ç!] 
)

(2"62)

The first error function limit is calculated as follows

: L o-t*!\''
,;ã" 

8oz (2.63)

Similarly the second has the same value. The tr's then cancel, and after a few steps we
have

Jt:l o" : #"-8#L*nno(x-x')(1 * az¡-t l'* o,.nrrx-x')cos k(x - x,)] Q.64)

Finally, this is just DeWitt's result with the appropriate {(X,ú) (and the L dependence
has vanished).

2"L"4 characteristic shape of the reduced density matrix
Although the full density matrix (2.61) is too unwieldy for any useful analytical lr,ork,
we can plot its evolution for typical parameters with L > æ, to see how necessar5,the
requirementisfor mKM (setN - l withoutlossof generality). Atypicalplot of
lp(X,X')l is shown in figure 2.2 (note that to keep computing times manageable, the
grid size chosen for this plot was insufficient to portray the detail of the inner peaks,
as is evident from the cross section of this plot shown in figure 2.3). As expected lpl is
symmetrical about the main diagonal, X - X' : 0. Because of this, we can take a cross
section in the orthogonal direction, namely X + X,: o for some constant o (which we
have taken to be 70 for plotting purposes). This plot is shown in figure 2.J. It corresponds
to DeWitt's modulation function, except that now we have included the gaussian density
matrix due to 'þ(X,t) in (2.2) (and this acts to,suppress all but the central ridges). There
is no reason to exclude this, as we must deal with the entire density matrix to see how
it will decohere" Further plotting orlp(x,X')l for various times shows that the width of
the modulation of the central ridges is constant through time. This is presumably due
to our modelling the incident particle by plane waves, which by definition fill all of space

ri^L (ttx' Lm \läit-zm \-æ--WM))
..Mlim :- drM-æ 2m

..Mhm_
M-æ 2rn
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Figure 2.2: lp(X,X')lfor ú:100, top hat width:1, equal masses

and time. Clearly, if we arrange for a large number of incident particles, then p is raised

to a large por'^/er which leads to the central ridge being accentuated; that is, decoherence

occurs.

Characteristic width of lpl

DeWitt states that in his model, localisation (which we suggest should be read as position
decoherence) is not expected to be sharper than the width of the potential. In that case

he can achieve decoherence with many particles only because he is using a delta function
potential. Here we have used a square barrier, so we can test his idea for the case of one

o

o

-o

oo7

oo6

oo5

oo4

oo3

oo2

oo1

€

o

o

o

o

30 70

Figure 2.3: Cross section of previour lp(X,X/)l from (X,X,): (0,70) to (20,0).
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incident particle by examining the width of lp(X,X')1.
Since 'ü¡e are taking a cross section of. lp(X, X') | along the line X + X' : û, we consider

I^fP 1 -"f,12x-o¡2
lp(X,o - X,t)l: ï 

^re----;a- 
x lúerms in braces in eqn (2.61)l (2.65)

where the terms in the braces have been modulated by

"# (2.66)

This is a gauösian centred around al2 (as we expect) with a half width (i.e. a standard

deviation) of o f as, which is just o(I+mlM). Note that the width of the modulation-the
measure of decoherence-doesn't depend at all on the width of the potential, ø. However

decoherence is maximised (i.e. the modulation width is minimised) when nxlM -r 0,

which is not unlike DeWitt's assertion that in his model, localisation (i.e. decoherence)

is a consequence of. mf M --+ 0. Certainly þ\'choosing a small enough ø. we can have

decoherence better than the square balrier width, but this can mean starting out with a
well localised centre of mass of the system"

2.2 Conclusion

We startecl this chapter by explaining the model proposed by DeWitt who used it to try
to understand decoherence in a simple way. DeWitt's result is not as lealistic as it might
at flrst appear, based as it is around modelling the incident particles b¡' plane waves

which by definition have existed for all tine" As such it contains no information on the
evolution of the systems, and can tell us nothing about the decoherence time, However,
we did use this simple model to derive a new uncertaint¡r principle. We then began a more
rigorous treatment based on wavepackets, which unfortunately soon gets held up by the
long computer time needed for numerical work. Although it seems that we can decoher.e

the large mass arbitrarily finely in position, to do so requires an initial u,avepacket for
the centre of mass whose width is smail. We still have no time evolution information
because the small mass has still only been modelied as plane waves, but nodelling it as

a vvavepacket increases the model's cornplexity significantly.
At least in the way we have pursuecl it, the model's initial attraction of allowing

simple tests on decoherence ideas quickly becomes complicated when we make it more
rigorous. In the remaining chapters of this thesis we consider the effect of an environment
by modelling it as oscillators using the influence functional technique. This technique
could possibly be developed for application to a bath of particles-as opposed to the
more usual oscillators it more easily adapts itself to-and that forms a direction which
further work on DeW'itt's model could take.
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Chapter 3

Influence functional theory

The influence functional formalism was first introduced by Feynman and Vernon [4] as

a way of deducing the influence of an environment on some system of interest. It was

later applied by Caldeira and teggett [5] to the high temperature limit of a model where

both system and environment are composed of static osciliators. Iniiially, a prerequisite

for the use of the formalism was that the system and bath were initially uncorrelated-
an assumption we use throughout this thesis-although it was later developed for more

general cases of initial correlation [6].

The language of influence functionals is different to that of field theory, but nevertheless

has points of contact with it (as indicated in this thesis), and in fact it can be shown [7]

to be formally equivalent to the Schwinger-Keldysh closed time path formalism. Hu et
al. [8, 9] used the influence functional approach to derive the master equation for a static
oscillator coupled to a bath of static oscillators, and this was later extended to include
time dependence in both system and bath [2]. It{ost work in this area has concentrated

on a bilinear system-bath coupling, while a perturbation approach for other couplings [9]
has also been developed using field theory formalism.

In this chapter we further develop the work of [2], by considering a squeezed system
coupled bilinearly to a static bath, but now with a time dependent coupling constant.
Including such a time dependence will be necessary for our work in chapters 4 and b.

We also lay out the groundwork for how we will go about calculating such quantities as

entropy, fluctuations and coherence, which form the focus of those chapters.
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S"L Propagation of the density rrratrix using influ-
ence functionals

The primary thing we wish to consider is the evolution of the reduced density matrix of

our system. For this we use the Feynman-Vernon influence functional method. This has

been discussed at length in [2]; we describe it here in order to establish the notation, and

just state its main results without deriving them.

Again consider our system described by r which interacts with its environment q

through some interaction. The combined action is

sl*,q]': s[r] + s'ø[q] * s;,¡læ,ql (3.1)

We require the reduced density matrix of the system at time t. This is found by tracing

out the environment:

p,(r r'Ð : l:dq p(* qr' qt) (3"2)

The full density matrix p(x q n'q ú) evolves unitarily. Suppose we expand it using com-

pleteness relations and then path integrals:

p(x E*' qt): (x qtlplr' qtl
: I a* o aqo I a*'n d,qí (* q tlr ¿ q¿ 0l þ o q¿ 0l pl*'o ql¡ 0) (*'¿ ql, 0lr' q t)

= | ar,dqt I d,rid,qlo l" o* 
lno,on"'ts[',otp(r;Ç¡r'¿elq l.', ol 

lrirDqt "-is[c',n'1

: I o*odqt I d,x'¿d,ql J(rqr'qtlr¿Ç;r'¿ell) p(*nq¿riqil) (8.3)

where ,./ is seen to be an evolution operator for the entire system plus bath. Now to
allow further calculation we make the assumption that the system and bath are initially
uncorrelated, i.e.

p(x¿q;*'¿ql}): p,s"(r;r'nO) pp(q¿qlo}) (3.4)

In this case Iile are able to rearrange the order of integration to write the reduced density
matrix in the following way:

p,(n x'Ð : I dr¿ d,r'o J,(x æ' tlr¿ r';0) p,o"(æ¡ r'nl) (3.5)

where the evolution operator for the reduced density matrix is defined by

J,(r x'tlr¿rt¿o) = ['o* ['.' D*' 
"islr]-islr'l Flr,r,) (3"6)Jq J"i

and f'[r, ø'] is the so-called influence functional:

Fln, r'l : I On d,q¿ dql pu(qo q:nO) 
Ir:, 

Dq eis"[ø]+is¡n¡[r,q) 
Iro, 

Oo, 
"-iselqt]-isintlr',q'f 

(3.7)
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We can also write the influence functional in a basis-independent form as follows. First
we write the path integrals as propagators

Flx,r'): I o, d,qn dqi pø(q¿q'¿o) (qlu(t)lq¿) þilu'Iþ)lq) (3.8)

where U(t),U'(t) are the propagators for ,9¿[q]* S;n,lr,q] and Sølql*S;,t[r', q] respectively,

Then upon integrating over q, Ç¡ and writing the remaining integral as a trace, we obtain:

Ffr,a'l: tr U(t) en(o)U'tþ) (3.9)

This form allows the influence functional to be found. The calculation is done elsewhere [2]
and here we just list the rebult: if we use sum and difference coordinates (which we do

throughout this thesis) defined by

X:(ø*r')lZ, A=æ-ï' (3.10)

then the influence functional can be w¡itten in terms of two new quantities, the "dissipa-
tion" ¡r(s,s') and "noise" u(s,s'):

Flr,rl- eXp + l"' o" 
Io" 

ds' A(s)[z(s, s') A(",) * i¡r(s,s,)2E(s,)] (3.11)

Thus the influence of the environment is completely invested in the dissipation and noise"

3.2 Squeezed states and their relevance to density
matrices

A density matrix suppiies information about a certain quantity, say position. \A¡e can of
course convert to the corresponding matrix as a function of the conjugate variable, in this
case momentum. As the system evolves, we can plot the uncertainties in phase space, in
which case the resulting ellipse will flatten out with time, its axes of symmetry singling
out two new variables which will be some linear combinations of ¿ and p. This process is
naturally enough called squeezing. We describe some of its formalism here, for rvhat we
will need throughout this thesis.

Suppose we start with the general oscillator Hamiltonian

H(t): f@+ + f (Ð++ h(t)(ata+rl2) + d(t)a+d:(t)at + s(t) (3.12)

The propagator for this has been calculated in [2] and is

U(t,ti): ,g(r, ó)R(0)D(e)e--lpl2/2 (8.13)
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where pru) are defined in terms of the coefficients appearing in fI, and

n(ù : exP(-P*ø-h't")

R(0) : exp -io(ata + 112)

s(r,ó) : exp(re-2ióa2lz -h"c") (3.14)

There is a large body of theory concerning the action of these three operators, and here
we note just a few points to explain the formalism. First, suppose we start with a simple
harmonic oscillator with lagrangian

(r" - fr'*') (3.15)

If we construct a gaussian state in the position basis, with initialty the same width os as

that of the ground state of such an oscillator, displaced try some arbitrary amount and
with a phase proportional to z, we find this to be an eigenstate of the lowering operator,
and is called a coherent state. Suppose we locate the point (("), (p)) in phase space
and draw an ellipse about this point, the lengths of whose axes being the uncertainties
L,r2, A'pz . Then as the oscillator evolves this uncertainty ellipse revolves about the origin
with angular speed 0.

A squeezed state is again such a state, but with an arbitrary initial width ø. We find
that as the oscillator evolves the uncertainty ellipse again revolves about the origin, but
its axes change length and it can also rotate about its own centre.

It turns out that the squeeze parameter r is related to the width of such a state:

, -M.2

,Cgr-ln-
o 2MA (3.16)

fi
Og

Hence a coherent state has r : 0, or zero squeezing. A gaussian that initially has a width
smaller than o6 will have some r ) 0, and so is squeezed (hence the name). We can
generate a squeezed state by applying S(r,ó) to the ground state of the simple oscillator.
Consider the new operator

b: [JtaU = aa, * þ" qt (8.12)

where it turns out that

d

p

a:
p:

: e-¿o chr
: -e-i(e*zó) shr (3.18)

Going from ø to ó is then just a Bogoliubov transformation, and so a, B become Bogoliubov
coefficients for our system. Their equations of motion are

-iha - if.0
ifa{ihB
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q(ti):l , p(tn):0

where f ,h as defined in the hamiltonian (3.12) are calculated from the general system

lagrangian. This lagrangian has time dependent mass and frequency, and we will also

allow it to have a time dependent cross term for some t:

t:ry(r,*2t(t)àr-n2çt¡x,) (3"20)

Then f , h arc given bV [2]

r: ilþ,n'+t')-;¡+2i8]
h' : t=lAtn' 

+ t2\+ al (8.21)'0 21rc\"þ tv)t 
MJ

and rc is an arbitrary positive constant that can be chosen to simplify the relevant equa-

tions"

In the next section we shall find that the quarrtity of much importance to our work

turns out to be the sum of the Bogoliubovs, X : a+ P"It follows from (3"19) that X
satisfies the classical equation of motion for the system:

x+ffx*(n'+t+#)x:o (r.zz)

with initial conditions

x(tn):1 ; x(t¡):ffi-\tn) (3.23)

This is an important result, reducing as it does the usual task of finding the Bogoliubov

coeffi.cients a,B ftorn two coupled first order differential equations to that of solving one

second order equation for X.

3.3 Evolution of the reduced density matrix
Suppose now that we work within the context of quantum brownian motion, using the

notation of [2]. That is, our system is modelled by an oscillator with time dependent

mass, cross term and natural frequency. This interacts bilinearly with an environment
moclelled in the same way, the total lagrangian being

Sl",q] : s["] + ^9¿[q] * .9i^t[ø, g]

l' o"{ry (r, *Zt(s)rr- f-r2(s)22)

+ Ð lry G:^+2e*(s)q*q^ -,'^(,)q!-)] - Ð lc(s)rq*l (3.24)
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where the particle and the bath oscillators have coordinates ø and q,, respectively.

We wish to start with some initial system density matrix p"y"(r¿rl0) and evolve it
using (3.5) As described in [2], .Ç is calculated using the standard path integral approach.

Using the sum and difference coordinates defined in (3.10), the classical paths followecl

by the system, X.¡, A"r, can be written in terms of more elementary functions u, u:

Then it can be shown that the superpropagator -Ç is equal to

J,(r,, æ' ,tlr¿, rtr,t¿) lbrl
2rTt

1

X"¡(t¿)21 (s) + I,r(t)ur(s)
A"¡(ú¿)u1 (s) * A"r(ú)u2(s)

""0 [f larr^ - ózxa¿ * ósx¿a - b4Eiui)

(orrAi f ø124¿A * o""L')f

M(t)ù,(t) + M(t)8(t)

M(ti)trr(ti)

M(t)ùL(t)

M (t i)th(t i) + tw çt o7 t çt o¡

x,r(") :
a"r(") :

fr

(3.25)

(3 " 26)

The functions å1 -+ ba aaî be expressed as

h(t,ti) :
b2(t,ti):
h(t,ti) :
b4(t,t¿):

while the functions a;¡ are defined by

(3.27)

t:, ds' ¡.r(s,,s') u(s') : Q (3.29)

Itt¡ta¿¡(t,t¡): 
t * ," Jr,ot Jr,ot' 

u;(s) v(s,s') u¡(s') (3.2s)

The functions z1 --+ u2 are solutions to the following equations (dropping subscripts on
uru):

ü(s) + #,*(n'* e+ff)

ü(s) + #r*(n'n e+fft)
subject to the boundary conditions

2u--_M(') 1",
ds' p,(s,s') u(s') : I (3.30)

ut(ti): ul(¿r) : 1 u1(t): u1(t) :9

1(ú)uz(t¿) : uz(t¿) :0
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3.3.1 Calculating the superpropagator .Ç: ohmic environment

To proceed further we need explicit expressions for ø11 '--+ b+" These are expressed in

terms of z1 -+ u2, which in turn come from solving (3.29, 3"30). To solve these equations

we need to know the dissipation p of the environment.

The noise and dissipation can be calculated from [2, eqns 2.I8,2.I9]. We choose the

bath oscillators to be simple harmonic, that is, static with no cross term, since this turns

out to correspond to the simplest form of dissipation-local-as shown in appendix A.

For such an environment the dissipation and noise can be shown to be

p(", r') - Io* 
O, I(u,s,s')Im [X(s)X.(s')]

u(s,s') : 
lo* 

o, I(a,s,s')coth ftn" [X(s)x-(s')] (3.32)

where by 7 we will always mean kBTlh,; X is the sum of the Bogoliubov coefficients for

the bath oscillators and ,I is the "spectral density", a function defined by

I(a,s,r') :4Ðt(t2Io(, -r^) (3.33)
Lf\ n

which encodes information of the action of the environment on the system. In general the

spectral density can be described by some function of ar , where j is set by the particular
environment being modelled. The case o1 j :1, a so-called "ohmic" environment, is a

borderline between the super-ohmic case (j > l)-which models weak damping--and the

subohmic case (j < 1) modelling strong damping. We can in effect consider both damping
extremes by taking an ohmic environment together with some strength 7s which can be

altered from zero, for a free system, up to higher strengths.

Also, by considering the continuum limit of the coupling constant, it can be shown

that this constant's independence of n also leads to an ohmic environment; so we will only
consider spectral densities of the following form:

I(a,,s,"):+ø c(s)c(s') (g.34)

For a general lagrangian the sum of the Bogoliubovs X will be complicated; however we

have simplified our calculations by taking the bath to be composed of unsqueezed (i.e.
coherent) static oscillators with unit mass. For this type of bath the dissipation and. noise
are calculated in appendix A for an arbitrary bath temperature; we use the integral form
of the noise as being easier to work with:

P(", "') : 2'ys c(s)c(s')ó'(s - s')

u(s,s') : 2J!"þ)"(u) 
lo* 

øcoth ftrorr(" s') d,u (3.35)

In the high temperature limit the noise becomes white, that is it tends toward a delta
function as shown in that appendix.
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Calculatir,g u1 --+ u2

Now we are in a position to solve (3.29,3.30) for u1 --+ u2. First consider (3"29)" We treat

the integral of a delta function and its derivative in the following way: use a smooth step

function (i.e. d(0) : I12) to write (rt > 
"o)

I"
["'

." M. (
u+ Mtr+\n'n#+s-#)i,:o

f(æ)6(r - a) dx = f(a) 0(q - a) 0(a - ro)

f (r)6'(æ - a) dr = -f'(") 0(*, - a) 0(a - ,o)

(3"36)

(3.37)

(3.40)

These relations can easily be proved by checking the five cases individually, of a 1 rs,

a : ro) xs 1 a ( u1 etc" Note that treating the delta function in this 'smoothed' *.y
eliminates the need for the frequency renormalisation in [10]. This smoothing essentially

just defi.nes ff ó(r)dr : I12 (see e.g. [11] for a discussion of this).

Hence (3"29) together with (3.35) becomes (with u being either u1 or u2)

ü(s) + (# -'#),; + (n, * #- + t +'#) u: o (B Bs)

Now define ú by

"*p[r'l:,#ü'o] (3.3e)

in which case it follows that

u:u

Comparing with (3.22), we recognise this as just the equation of motion of an oscillator
with mass M, cross term t and an effective frequency

02 :oz -13c4'"¡ = Q" - i¡, (3.41)

So, we are in a position to describe our system in terms of an equivalent system. Hence

we know a solution for û(s)-it is the sum X of the Bogoliubov coefficients for this new
system. So we write (with 51, !2 constants to be determined)

u(s) : sxp [g'X(r) + e2X-(s)]
nu ^2

-T J,, fr*"'

-,"1: #oo

(3.42)

By including the boundary conditions for u1 arrd u2 we obtain

ur(s) exp

"*p f'v' l"' #oof

Im [X(t)x-(s)]
Im x(t)

Im X(s)
(3.43)uz(s)
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This tying in of the propagator formalism to the language of squeezed states (such as

Bogoliubov coefficients) will be very useful in the next chapter where we relate the entropy

of a field mode to its squeeze parameter r.

In the same \l/ay that we solved (3.29), eqn (3.30) becomes

{,(s) + (* -'#)a+ (o, * #- + t -'#)u : 0 (s 44)

Now write
¡s n2

-'Yo J,, fr*"'expuU

t, +
M
M

: 
""0 [-r. l,'#oo]

(3"45)

(3"46)

(3.47)

(3.48)

d4t1o,lX(z)X. ((')l
Im X(z)

ImX s

Im X(z)

dçn ¡^ X(C')

and just as for the case of u we have

't) + (n'* #; *, -#)u: o

So now u1 and n2 cãî aiso be written as combinations of and Xn. Including the

boundary conditions we eventually obtain

ur(s) :""nþ/',#')#
u" lsl

Im X(s
Im x(l)

Calculating ø11 + öa

To facilitate our calculations we introduce dimensionless parameters for time

z = nt , (:ot
X(r) = X(ú) etc.

and a carat will denote division by ,c, e.g. ')'0 : 1olo. Note that f is the lagrangian time,

which isn't necessarily cosmic.

Now we are able to calculate the propagator. Making use of (3.28, 3.27) we obtain

all(2, z¿) : # l,', 
¿C 

1,", 
d,C' 

"7o 
\l,*oe"l=### ,(C,(') 

"1" 
Ë, *

útz::"|"",ael,",d,e,"1o[!,toe',I=#,((,e)"-1o[,,Çae',

.22 : # I"', 
¿e 

1,", 
d(t 

"-io 
I; #*"h xØ 

,(C,(') 
"-i" 

Ií,*
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b1(2, z¿) -16 nc2(z) +.MØrffi + Me)s(z)

ó13 l
TK "+io 

[i,*oe

Irn X(z)

-1s nc2(z¿) o'ff iÍ?- Me¡)t(z¿)

3.3.2 Initial and final state

The systems we will deal with are initially in the vacuum state, so that their density
matrix is gaussian. So we start with an arbitrary gaussian reduced density matrix and
propagate it. The initial matrix is

Pr(t; r'o t¿) x ¿-Ê'?¡vx¡xt¡-('r!2 (3.50)

This is propagated by using (3.5, 3.26) to give

p(ærr"t): Ne-AA2-ziB^E-tCÐz (3.51)

where we have used the same A, B and C notation of [12], and with {,,{¿ the real and
imaginary parts of (:

¡/:z{cl"
A : azz * ï {Xrr, + Ð 14* ¿rrl bZ + Qe¡ t ba) a12b" - (2€, - Ð"?r)

B : -brl2+ ftfe, + b4l2) bz bs - (2€, - x)avbzl

c : l"(re, -Ðbz4t)

D : 4l€l' - x2 + 4Qe, - x)an r 4€ub+ + b2+ (8.b2)

These expressions form the basis of the calculations in chapters 4 and 5. The quantity
lrye are focusing on is the reduced density matrix, (3.51), using the expressions in (3.52).
These in turn use (3.49), which in their turn depend on our obtaining X, the sum of
the Bogoliubov coefficients for the effective oscillator. The diagram shows the flow of
logic, together with the means for producing the Bogoliubov coefficients and the squeeze
pararneter r, as described in the next chapter.

b4 (3"4e)
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system lagrangian (3.20)

M t ç¿

'loget f),¡' (3.41)

choice of rceqn of motion for X (3.22)

X a, B (4.6) r 4.4)

aøLt -+ b4 (3.49)

p(*r' ú),i.e. A+D (3.52)

Figure 3.1: The general scheme we will follow to implement the influence functional
approach.
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Chapter 4

Entropy generation in squeezed
systerns

One of the issues of interest in studies of quantum cosmology is to what extent the universe

retains information about its early evoiution. The natural loss of information with time,

familiar from statistical mechanics, reflects in some way the viewpoint of a particular

observer, and as such might bethought to be verymuchobserver dependent [13]. So we

expect the entropy of some system to be dependent on its coupling to a measuring device.

Conversely, we can consider the entropy of the measuring device itself as it couples to the

system. Suppose we have some system which has been decomposed into two subsystems.

Then using the definition of entropy below, it can be shown [1a] that between the entropies

St, S, of the two subsystems, and that of the total system, Srz, a triangle inequality holds:

lS1 - Szl I St, ( Sr *,Sz (4 1)

In particular, if the total system is closed and so in a pure state, then it has zero entropy,

so that the two subsystems necessarily have equal entropies. Hence, asking for the entropy

growth of a system is equivalent to asking for the entropy growth of the environment it
couples to, if the overall larger system will be in a pure state"

The entropy of a system is usually defined as the logarithm of the number of accessible

states it can occupy. This is useful for a system containing a finite number of degrees of
freedom, but for systems such as fields, with an infinite number of degrees of freedom, we

need to resort to other means. The von Neumann definition of quantum entropy uses the
density matrix of a system:

S:-tr plnp (4.2)

As it stands, the universe presumably evolves as a closed system in a pure state, so

that p2 - p and hence the entropy is always zero. This global idea of entropy is not
especially useful. More appropriate is an attempt to relate entropy growth to an arrow
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of time. Penrose conjectured that \¡e may be able to assign entropy to the gravitational

field by integrating the square of the Weyl tensor. Thus, the universe's evolution toward

greater gravitational clumping would be accompanied by a growth in the entropy of the

gravitational fi.eld, since the squared Weyl tensor increases regardless of whether the

universe is expanding or contracting.

As the universe evolves, inertial observers must continually update the particle num-

bers they assign to Fock states, so that particles are being created by the frelds that are

present. Hu and others [16, 17] have given a description of the entropy growth of a system

of particles in curved spacetime based on the von Neumann entropy of the density matrix
of the system" If we disiinguish a system of interest from the rest of the universe, which

then acts as its environment, then we can calculate the entropy from (a"2) by using the

reduced density matrix of the systern. Calculating this quantity is generally only possible

if we can diagonalise p,"¿) lhat is, if we can find a basis in which its off-diagonal elements

ale zero

This vanishing of off-diagonal elements is generally equated with decoherence and

a quantum to classical transition, at least in that particular basis. Other approaches

to the idea of decoherence have also been proposed. Brandenberger, Mukhanov and

Prokopec [18] introduced a decoherence procedure which relies on the squeeze formalism,

first introduced in its full context by Grishchuk and Sidorov [19]. They average over the

squeeze angles appearing in the probability functional (rvhich plays a similar role in their
formalism to the reduced density matrix). This coarse graining procedure has the effect

that all off-diagonal elements go to zero.

A different decoherence procedure was used by Gasperini and Giovannini [20] who

considered a squeezed vacuum in terms of new variables for which the fluctuations are

maximised and minimised, and then neglecting information about the subfluctuant vari-
able. Kruczenski, Oxman and Zaldarriaga [21] also use a procedure of setting off-diagonal
elements to zero before calculating the von Neumannentropy. Likewise, in [12], Matacz
considered the density matrix of a squeezed vacuum, decohering it by setting off diagonals
to zero in the coherent state basis.

All of these approaches give an entropy of .9 : 2r pet mode in the high squeeze limit
(r --+ oo). However, all of these methods are nondynamical schemes which decohere a

system in some chosen basis by hand: simply setting the off diagonal elements to zero
in that basis. What is needed is a rigorous dynamical approach to entropy generation
using nonequilibrium statistical mechanics. The purpose of this chapter is to place the
problem of calculating the entropy of a field in an open system framework, using influence
functionals to evolve the system, and calculating the reduced density matrix which will
then yield the von Neumann entropy in the usual way via (4"2).We then hope to see to
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what extent the seeminglv very robust lesult of ,9 : 2r is true.

Our field will be initially in a vacuum state, corresponding to a gaussian density matrix
as modelled in the last chapter, with examples lesiding in both flat and de Sitter spaces.

We will calculate the entropy as a function of the amount of sclueezing the system would
have undergone in the absence of an environment.

Our plan is first to find an expression for the squeeze parameter r as a function of
Iate time, for a given lagrangian; we then wish to calculate the entropy as a function of
late time, which allows us to express the entropy as a function of r" Unfortunately, since

many of the expressions resulting from our formalism have no closed form, we cannot

caiculate the entropy for a general squeezed svstem. Instead we'll concentrate on two
examples of squeezed systems that are both solvable and relevant to cosmology. However

in the discussion section we do point out that one might expect a contribution of 2r to
the entropy quite generally, but tbat there may be other contributions of a similar size

that need to be calculated on a case by case basis.

4.L Calculating r from the system lagrangian

For an inverted oscillator, i.e. one with Q2 ( 0, at late times r is expected to blow up. In
that case we can calculate it from (3"18) as follows.

lol * lBl--+ e'lz (4.3)

so that

r --+ ln(2lal) (4"4)

Rather than use (3.19) to calculate o, ollce we have X we can extract o from it. This is
done by writing, from (3.19),

X : a-fþ
ax læ : i(f - h)a + i(h - f)p (4 b)

which can be solved for o, B using (8.21):

{;}:å('*Y**## (46)

In terms of squeeze notation, we can follow the behavioul of r,ö,0 by lvriting (3.19)
in squeeze language, with / : lf lei,:

i - l/lsin(2d+e)
ó : -h + l/lcoth 2r cos(2g j e)

0 : h-lflthrcos(2/f e) GJ)
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These equations are useful for numerical work. They also tell us of the existence of
constant, and so possibly attractor, solutions for /, d" If we set r --+ oo then the equations

fors'dbecome 
0:-ó:ft-l/lcos(z/fe) (4.s)

1. Suppose thereexist somed and /suchthat d: ó:0. Then h:lflcos(2/*e),
so that lål < l/1. Thus, since å is real, we have h" < lfl", and from (3.21) this
inequality is true if and only if ç¿2 < 0

2. Conversely suppose 02 ( 0. Then by the previous argument, lål < l.fl, o. -1 <
hlVl < 1. Thus there must exist some / such that cos(2þ * e) : hllf l. From (4.8)

\,\¡e see that for this value of $, 0: d : 0.

In other words, there will exist constant solutions for $,0 if and only if Q2 < 0 (the
oscillator is "inverted'). Of course, this doesn't reveal whether these constant solutions
are attractors. Numerically solving (a.7) with 0' I 0, for various t, Q and ,r, shows that
5,0 apparently do always quickly tend toward constants, always accompanied by one of
r + *oo.

As a final comment, we note that it's common to eliminate the cross term in the action
by adding a surface term:

(r' * 2tùx - e'*') -'rfrf*t*l

[',-(n,*#*t) ,,]

Although this leaves the classical equation of motion unchanged, it will change the squeeze
parameters. Throughout this thesis we leave the cross term in our lagrangians.

4.2 Entropy from the reduced density matrix
The entropy of a field mode has been calculated in 122]. It can be derived from the final
density matrix by using (4.2), and is

5:1¡.lnto*(1 -r)ln(l -.)] = t -lnt¿ if tr.¡-+ 0 (4.10)

where

2\F¡t, = ñ_ (4.11)

The linear entropy is often more useful to work with owing to its simplicity:

St;n = -t, p' : -\F ¡e e.Iz)

L -' ry
2

M
2

(4.e)
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and ,S : 0 -r oo is equivalent to S¡;,, : -1 -+ 0, both strictly increasing" Then if S¡;,, + 0

we have

,S--+-ln1,5¡;,1+t-inZ, i.". St;o--"t-sf2 (4.13)

As an example, suppose we have a system in an initially pure gaussian state (X : 0), .o

that noise and dissipation are absent: Js : 0. In this case, from (3.35, 3"49) we have

dtL: &r2: az2:0 (4.14)

so that.(3.52) gives Cf A: I and hence from (4.10) S:0 as expected.

4.3 Examples

4"3.L lJncertainty and entropy of a static oscillator

We demonstrate how the previous results are used in the simplest case, by calculating the

entropy of a static oscillator coupled to a thermal bath of static oscillators, with a static

ohmic coupiing. In this case from section 3.3.1 we have local dissipation 1i.". tt x ó'(A)],
and if we demand T --+ oo then the noise becomes white [z x á(A)]. To evaluate ,S, we

need A and C; in turn for these we need at! + åa. These are calculated from (3.49)1. For

the static oscillator with unit mass choose the following lagrangian:

L:! (*, - kzæz\ (4.1b)2\- '"* /
From (3.41) with M : c:1 the effective frequency is

(4.16)

Then the equation of motion for X is, from (3"22) with fl --¿ {I"fr

*+o'x:o
x(0) :t , xço¡:-¡o

which leads to

X(z) - e-'"

with z: rcú. Then

Im lx(z)x.(()l _ sin(z - ()
kn X(z) sin z In X(z) sin z

(4.20)

lVarious notations exist describing these results; see for example [I2,23,24]. To compare with [24,
eqn2.2.Tlisamatterof carefullytranscribingthenotation; keythingstonotearethat X:E,Y:-A;
here we have taken to = po : 0;124, eqn 2.2.6c] should have an o11 in place of. the a22; the ö¿'s in [2] are
writtenexplicitlyin[2a] via12,3.11]; [2,o12] equalsl24,ap+aztf; [2,7e] equalsl24,7sl2l.

Q'"fr : k' -'13: o'

(4.t7)

(4"18)

(4.1e)

sin (0ImX
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with noise for ? --+ oo being white:

Then trr --+ óa follow:

"1oC "-i" 
Ií t¿e" - ¿-io(z-ç¡

,((,('):4K1oT6((-C')

ezio" - 1 - io sin2z - iTG - cos2z)

2(1 + "t3)

- cos z shlsz * 7s sin z chlsz
r+i3

-e-2io" + 1 - 76 sin Z" + i\G - cos2z)

"+o 
fj fae" - (4"2r)

att

al-z

T
sin2 z

2T
sinz z

(4.22)

(4.26)

(4"27)

T
2(r + i3)

óüÌ : o(-io L. cot z) , bß\ : *::7" 
@"22)

strT z

For thermal equilibrium, the standard statistical mechanics result for the entropy at high

temperature is

.9--+1+h+ (4.24)
k

Can we show this using our formalism? First, we take our oscillator ground state as

_*2
,þ(*,0) o."V fi (4.25)

so that its density matrix is

p(xr'0) x exp -i#

and in (3.50) we have

€:#, X:o
The reduced density matrix evolves into (3.51), with

A : ezzt ; {t# + o,,] b!* arzbzb^- *
B: +*h{^u^-!\

b,,

2at

&zz
sin2 z

C

D

8Do2
1

4"^ +
o2

+b1
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Tt's by no means trivial to show that the entropy calculated using these expressions does

indeed tend toward (4.24), and in particular the cscz terms in the ø¿¡'s and å¿'s mean their

values can diverge depending on the time" But this divergence cancels out when physical

quantities are measured, as \À/e can see by verifying numerically that our entropy really

does tend toward the usual asymptotic value at late times. First we can plot ,9-vs-z for

say d : L,lc: 1,70 :0"1,7: 105, as shown in figure 4.1. Note that for these numbers,

Ø

5 10 15
z

Figure 4.1: Entropy growth over time.

(4.24) gives S -+ 12.513 as z ---+ oo, as comparedwith ^9 
--+ 12.514 numerically at z - 100,

a result indicated by the frgure. The relaxation time, defined to be

14

12

10

B

6

4

2

0
0

(4.2e)

is apparent in the flgure as a characteristic time over which the entropy climbs to its final
value, while the decoherence time scale [10]

t-
AW"r", :2'5 x 1o-o (4.30)

is too small to be noticeable.

Coherent state as the state of least entropy

We now use our entropy expression to investigate the claim that for large times the state
of least entropy for the static oscillator is the coherent one, at least for white noise and
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local dissipation. 'lhis was shown in [23] in the small Ts limit by using a Wigner function
approach.

Using our expression for the entropy ^9, we can plot S versus the initial squeeze pa-

rameter r for various times in frg" 4"2. We have chosen k : 10,70 : 0.1" The squeeze

parameter r is related to ø the width of the gaussian wavefunction by

tg
,Cgr=ln-

o
f1l* (4.31)

or in other words
e-r

,/zo
Note that at early times (".8. , : 0"001), the entrop¡' is minimised for high initial

z=0.001 z=0.1 z=1

(4"32)
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Figure 4.2: Entropy at various times.

squeezing, as noted in [23, fiS. 1]; this is not unreasonable since such a highly squeezed
state will spread with time, becoming indistinguishable at later times from states which
started out being less highly squeezed. At late times the entropy is minimised by starting
with small or zero squeezing, i.e" an initially coherent state is the one which minimises
entropy at late times. Thus our approach agrees with [23], and may be more useful in
that it allows us to directly calculate the entropy at all times.

4.3.2 Static inverted oscillator
The static inverted oscillator is the simplest squeezed system, and as such forms a good
testing ground for the formalism developed so far. It also forms a model for the zero mod.e
of the inflaton field in New Inflation" Its lagrangian is:

L(t) : 
f,lr, + trrrl (4.38)

-6-4-20 2 4 6
T

-6-+20 2 4 6
T

-6-4-20 2 4 6
T

42



Suppose this is coupled to the usual environment of harmonic oscillators in a thermal

state, with coupling constant c(s) : 1. Then the equivalent oscillator we consider has

unit mass,, no cross term and frequency

Q'"fr:-¡z-73=-o' (4.34)

(4.35)

(4.36)

(4"3i)

(4"40)

so that ftom (3.22) the sum of its Bogoliubov coeffi.cients is (taking ú¿ : 0)

X(t): chz-ishz

Hence from (4"6) we have

' a- chz , 0:-ishz
so that from (4.4) at late times (z -+ oo)

r--+z

To investigate the dependence of the entropy on the various quantities in the propaga-

tor coefficients, we caiculate these coefficients first for white noise analytically; we then

calculate them numerically for zero temperature.

The b¿'s are independent of the temperature, and using (3.49) they are found to be

ó{l} : rc(* coth z - io) , b{,,} : *t# 
(4.38)

High temperature

White noise is given by z(s, "') 
: 41oT á(s-s'), or u((,(') : 4iorc,f dG-(,); the relevant

quantities are inserted into (3.49) with the ø¿¡'s then becoming

att : #lhz ¡ ez^,." - ro rh z" - i3 ch2z)

etz : i#[(r - "".'¡ chz * (L + ez',,,) 7o sh,]

crzz : ffil-îå"'r' - 1+ ioe2io"(,yo "h 
2z - shz)l (4.3g)

Note that io : 1of * ( 1; however if we assume small dissipation (îo < 1) we can write
down large time limits of these quantities:

Tio
Qtt+,- r-70

Tio
Ac¡ -* 1*io

ó{l}-rc(+1 -is)
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We can now calculate large time limits of the density riratrix coefficients from (3.52):

A-+a,22 , B*-brl2 , Cn*- @.4r)
16411

These coefficients are independent of the initial conditions, which might be expected since

the dissipation is acting to damp out any late time dependence on these initial conditions.

So we have

S¡ir, : -
lc -K2e-".,_ -V I ztoT

(4"42)

(4.43)

Zero temperature
'We are interested in the case 7 : 0, since eliminating temperature has more potential

to shed light on the action of the environment due to quantum effects only. In this case,

(4.20) gives [with p(æ) = P(tlr))

u(s,s'):2J9p'ç" - ,') i.e. ,(e ,e):'{lte - e) @.44)

We could now use this principal part prescription to evaluate the a¿r's" This approach

is not particularly straightforward and we do not pursue it here. However, if we write
the noise in its primitive form as the usual integral over frequency then we can leave this
frequency integration until last after the time integrations have been done. Note that this
is a more naive approach than the one \¡/e will follow in chapter 5, but we show it here to
investigate what value it might have.

So we refer to (3.49, 4.13), swapping the limits of integration to write

du # 1"" 
de I de' e7o(c+<') sh (z - () sh (z - (,) cos ô(( - (,)

so that from (4"13, 4.37)

,9-rr+1+n4

l(y'max

J"

ùì: ù coth# t-

{ù' - ,)2 ¡ 2¿zio'+ (r + 7! + ,;:2) chzz

- n"lozlcosû:z ( chz * io sh z) + â: sinô.tz sh z] * 27s sh ,"\ I
lî,n + za' (r + îð) + ôn]

'lo

;æ; cotu hats-

where

(4.45)

(4.46)

In

.y|e-lo' 
¡Co^^^ , ^üt2: I d'tr)r sh'z Jo
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Similarly

Itz (4.47)



where

Iu {-z "i' " (t + "'io") -2io 'h, (r - "'io')
* e1o" cosôtz [l + io2 + ù2 + (ît' _ô'?) ch zz] + 2t)e1o" sint)sz sh2z) f
[*'* za'? (t + i3) + ùn) (4"4s)

and

(4.4e)

where

Izz = {2¡szio'lîi'z -ù'z + (r+ t3+a') ch2z_ zloshzz)

* 4"1o" [cosû:z (- "h 
z * io sh z) - û: sinû:z 

"h "]) I
lî,n + za'(r + î3) + ôn] (4.50)

With T : 0 the coth term is set to one. Then in all cases øij starts at zero at z :0; for

low dissipation all, ø22 quickly climb to similar constant values while 412 climbs briefly

but then rapidly decreases to zero. This behaviour quantitatively matches the large time
limits of the white noise ø¿¡'s in (4.40), even though the two calculations were done

quite differently. The asymptotic value of c11 increases in even steps as we increas€ ô-u*
exponentially" So we can make all arbitrarily large by taking a large enough cutoff, so

that it will always dominate D.
In that case, with 7o < 1 we have at late times, using the ó¿'s in (a.aO)

A--+a22 , B-_.brl2 , Cn*- (4.b1)
16as

Again the coefficients are independent of the initial conditions" Since ó2 is unchanged

from the high temperature case and drt¡a22 tend toward constants, r,ve now can say

and so again from (4.13, 4.37)

ù) th coth# ,*

,9--+r+1+6Æt9Z

1oe-2ioz
Q,.t1 : 

--

2tr sho z

(4.52)

(4.53)
K

4"3"3 Scalar field in de Sitter space

In chapter 5 we will consider a phenomenological model for inflation. This model evolves
the density matrix for a massless scalar field minimally coupled to gravity in a de Sitter
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spacetime. Such a field is chosen since it models the fluctuations in inflationary cosmology,

as well as being a generally solvable squeezed system. It has lagrangian

L(,t) : I l*' +?** - (r' - +) ,'l Ø.54)\'/ 2l rÌ \ nt/ J

which arises from (8.13). Wu also use a spectral density of the form

I(r:rr¡rr¡'): 2'Yo a
r H 1/r¡rl-

(4.55)

so that 
"(rt) 

: Ilv/=Ert" This forrn of spectral density will be justified in chapter 5,

although for now we note that it dbes not make the equation of motion for X any harder

to solve than if we had used a static coupling. Since ,y6/fl is dimensionless we rewrite it
as c [not to be confused with c(7)]. Incorporating the bath gives the equivalent oscillator
with M : I,t : If rl and frequency, from (3"41),

CI? _ t'2 I*c2
l.fr: tc'- 

î 
(4'56)

Also we choose n : Ic to simplify the equation of motion. With z : lcn we can write this
together with its initial conditions from (3.20,3"22,3.23) as

x"(")* (t-'+)x:o
X(z;):1 , X'("¿)=-i-Ilz¿ (4"57)

where z 4 0" The solution of this equation can be constructed using Bessel functions
whose index is a function of c; however since \rye are interested in small c we take the
soiution to be approximately that of the same equation but with c set to zero. This
simplifies things greatiy:

x(z): (, - *) rþ) + nr"At (4.b8)

where

f e) = lt - 1) "iþ;-z) (4.be)\ z)
We can further simplify X by using a very early initial time, setting zi --+ -oo. We also
disregard the phase in the resulting expression for X, since this is not expected to make
any difference to physical quantities" In this case we obtain a new function which we
rename X:

x(z).,+ ( - 2) 
u," (4.60)
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The Bogoliubov coef;Êcients can now be found from (4"6):

T1--
2z

-LZ ne)P -L
2z

(4.61)

(4.64)

d:

and so from (4.4) at late times

r -, -Inlzl (4.62)

This result was also obtained in [12] using a different formalism.

First we calculate the ó¿'s. Since vr'e are only interested in late times we can work

to leading order in z (although with hindsight we include some next higher order terms

which will be needed later). Using (3.49) we find

U : cklz -f kz + O(23)

bl?¡ : ¡klzlr+"lz;l+"

b4: (c+L)klz¡¡kz3fJIO(zs) (4.63)

and for the ø¿¡'s we need the following expressions, calculated from (4.60):

Im [X(z)X.(()] ñ (r- zl()co.(( - ,) -(" +Ll(.)sin((- z)
kn X(z) cos z * z sin z

tm [x(O] $+'i"ç
ff+sinz

: (( I "¿)-"
exp io

" ,r((,,)
M dc" : Ql()" (4.6ö)

High temperature

Write

ñ
( zXIm )

",.p (t, 1,"""#'' o*'

7¡"
-I
2le2 J,,

2cT 
1"",

t/ : 4cc2(s)T6(s-s')

-4cle2T -,,:-l-ó((-(')

ryó((_r,, (Í)

t,

(4.66)

We calculate a¡ here and leave the details of ae,a22to appendix C. First, (3.49) gives

-" I- [x(z)x-(O]cln :

1
----
-(

-" Im lx(z)X"((')l
hn X(z)

(4.67)

lm X(z)

Im [x(z)x.(()]
Im X(z)

2

We wish to investigate the dependence of the o;¡'s on z as z + 0, and so rrye now separate
each integral into a sum of two parts. The first is gotten by integrating in to some constant
À close to z, while the second integral contains the z upper limit:

a7'\:"'ll":* l^"]. (:)-'?" (Im L{(4{l(c)l)' + (468)
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It's only necessary to work to leading order in z. We need the following expressions: when
only z æ 0 we have the z dependence in the integrands as

Irn lX(z)x.(ol : cos(-sin(/( *o(22) =å(() *o(22)lrn X(z)
Iït{(ç)f ry zþos(l(*sin0 =zfz0)Im X(z) ''

while if both z,e æ 0 then to leading order

(4.6e)

bn lX(z)X.(Ol
Im X(z)

rm [x(0]
Irn X(z)

We are now in a position to write

N (-('+ ,"1013

= "l(, (4.70)

dn o( *ll,:d,( ll-zc-t/í(0 + 
I^" 

o| fl-'"-'(-(, + zs lj),ls1
J

: "r (oçt¡ * olzl-2"+s)

cr oQ) @.7r)

since we have taken c to be small. A similar approach gives the following results for
út2¡azz (details can be found in appendix C):

atz : cT Olzl'+r

clz2 : cT O(I) Ø.72)

since ? is large, all dominates D while a22 dominates l.; so we have

A --+ a22 , B - -brl2 1 (4.73)

These of course have the same form as for the static oscillator case, although it's by no
means clear whether such a fact could have been deduced from the general expressions
for the ø¡¡'s" 'We 

now have

Sun - : Ol"lt-" (4.74)at(Izz

and using (4"13, 4.62) we can write

^9 
--+ (1 - ,), + constant
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Finite temperature

Here we leave the frequency integration until last as was done for the static oscillator.

The integrals can then be done in the same way as in the last section, although some

subtleties are present in this case (details are in appendix C). We finally obtain

An:

atz :

&zz :

ck o(1)

ck olzll/2

ck O(z)

Again since we integrate over ô, ø11 will be large and so dominate D" Again we'll have

(4.76)

(4.77)

(4.78)

(4.7e)

and so

and so with (4.13, 4.62) we have

B --+ -fu12

St;o * Olzltlz-"

S -+ (Ll2 - c)r * constant

¿.- b7

- l6arr

4"4 D tsctlsslon

In this chapter we have calculated the entropy of a static inverted oscillator and that of
a scalar field mode in de Sitter space.

Bearing in mind that our results should be doubled since each of our modes was split
into sine and cosine components (see appendix B), we might expect a result of S : r if
we are to agree with previous work described in the introduction to this chapter.

For the static inverted oscillator, in both temperature regimes for low coupling we

obtain .9 -+ (1 - io), * constant. In the de Sitter case, the high temperature result
is ,9 ---+ (I - clz)r { constant. Thus these three examples certainly do confirm the ad

hoc approaches to calculating entropy that have been used by others. However at lower
temperatures the de Sitter entropy is S -+ (I12- c)r-þconstant. This last result requires
us to look more closely at ,4 and C which together give the entropy. First write from (4.12,
4.13), and neglecting the added constants which are always implied:

t -TrnA-Lrnc
When the system-environment coupling is small, all of the above cases give -Il2lnC -n r.
We suspect this might be true for more general examples, if the dominant contribution

o
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to C always comes from ó2 in the late time limit. But the behaviour of A needs to be

examined" For the static inverted oscillator and high temperature de Sitter examples

LlZInA -+ constant, while the finite temperature de Sitter case stands out in that there

we find ll?In A -> -r f 2. In all cases, A and C have similar dependenc€ on o11 -+ ba. A
appears to have a strong dependence on the coupling, unlike C which is relatively immune

to changes in the coupling.

It may well be that the standard result of ,S + r expresses the C dependence only

and somehow misses any contribution of A. Remember that this result is normally de-

rived using a coarse graining which sets all off-diagonal elements to zeto in the reduced

density matrix. It may well be that in doing so, these ad hoc approaches are discarding

information about the system whicil should in fact be kept. It appears thaf Amight give

a contribution which can only be evaluated case by case. The finite temperature de Sitter
result shows that this contribution can be important, and so the ad hoc result wiil not be

reliable as it stands"
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Chapter 5

Decoherence and fluctuations
during inflation

The 1992 detection by COBE of angular variations in the cosmic microwave background

radiation [26] gave new impetus to the idea that modern galactic structure might have

been caused by primordial density fluctuations of a quantum scalar field.

By this time, the essence of the theory of inflation originally proposed by Guth l27l in
1980 had become widely accepted. This scenario asserts that the universe went through
a de Sitter phase in its very early expansion. This inflationa,ry phase is driven by a

quantum scalar field with a potential y(O) which can assume different forms satisfying the

"slow roll" conditions. Inflationary scenarios fall into two categories. The first includes

Old and New Inflation, in which the scalar field (the "inflaton") is assumed to be in
thermal equilibrium with the rest of the universe [28]. The universe obeys the standard
hot big bang cosmology both before and after inflation. The second scenario is Chaotic
Inflation, where the inflaton is assumed to be only very weakly coupled to other fields.
This relaxing of the coupling strength allows one to choose initial conditions that are far
from equilibrium. The standard hot big bang cosmology now only applies after the reheat
stage of inflation.

Along with its solutions to the well known problems of Big Bang cosmology, inflation
predicts an amplification of quantum fluctuations as the universe expands. It does this as

follows. Divide the universe's early histor¡' into two main epochs: inflation, during which
thescalefactorissay &--êHt,followedbyreheating,where axtn where n:Ll}inthe
initially radiation dominated phase, followed by n - 213 for later matter domination.

The linearised quantum fluctuations of the inflaton, thought to be responsible for gen-
erating density fluctuations, can be shown to be described by a free, massless minimally
coupled scalar field. This field comprises modes of wavevector k whose physical wave-
length is just the scale factor times the coordinate wavelength, i"e.2raf k. Suppose we
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plot this physical wavelength versus cosmic time, and on the same graph superimpose a

plot of horizon size, af a,¡. The resulting plot is shown in figure 5.1. The horizon size is

cosmic time 
-_->

Figure 5.1: Physical wavelength and horizon size. Both axes are linear.

constant d.uring the de Sitter phase, but increases with time in the radiation and matter

dominated phases. At some time the physical wavelength will be equal to the horizon

size. For modes that ultimately give rise to features typical in scale of today's observable

universe, this time is about ten Hubble times after inflation begins (i.e. a cosmic time of

l0lH). Because inflation is thought to continuefor at least 60 Hubbie times, it's appar-

ent that modes of interest to us today really will become longer than the horizon before

inflation ends. (See [29] for a summary of the COBE data in relation to what modes we

need to consider).

What is the significance of this period for which the wavelength is greater than the

horizon size? To answer this question, consider the lagrangian for a free massless, mini-

maily coupled scalar field in conformal time, equation (B.20) (now with' : dlCq):

L(ù :'rln - zeqq - (*, - 
"t) 

n) (5 1)

From (3.20, 3.22) fhe equation of motion for q is

d+(k'-g):o (b.2)'\ a/
which becomes, in de Sitter space'

a+ (t'- +) Ç: o (5.3)
\ q'/

physical wavelength

Hubble radius

radiation and matter ePoch

de Sitter
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Now at early times such that kq < -t/2, the solution to this equation will be sinusoidal.

However for times later than this the oscillations stop, and instead the solution becomes

amplifi.ed; and it's approximately just at this time that the wavelength becomes larger

than the horizon size (which from setting 2tralk equal to af a,¿ for de Sitter, occurs at

Icn : -2tr).
So, the scenario is that at kr¡ È -1, a mode "leaves the horizon", and as it does

its amplitude grows; this corresponds to particle creation. Quantum fluctuations in the

scalar freld modes which reenter the horizon today have been shown able to perturb the

CMBR through the Sachs-Wolfe effect [30].

There have been many.studies of the free quantum scalar field in a de Sitter phase

(see for example [31]), in the hope of shedding light on how density perturbations might

be created. In Oid and New Inflation the inflaton is assumed to be in thermal equilibrium

with the rest of the universe, and this implies a coupling to an external environment, so

that the freld is not free at all. Yet despite this there has been little work on the dynamics

of fluctuation creation for such a coupling.

One such model was investigated by Cornwall and Bruinsma [32], who represented

the zero mode of New Inflation by an inverted oscillator bilinearly coupled to a thermal
bath. This bath was comprised of modes of another scalar field, conformally coupled to
a background de Sitter spacetime. Although they did not attempt to study the bath's
effect on the scalar field perturbations, they did consider it plausible that the bath might
introduce a damping effect which would affect the amplitude of the generated perturba-
tions. In principle this could lead to an easing of the fine tuning problem that has plagued

infl.ationary theories.

In this chapter we wish to investigate the effect such a thermal bath might have on

the scaiar field fluctuations. To this end we study a massless, minimally coupled scalar
field of wavevector k, bilinearly coupled to a conformaily coupled scalar field bath. This
model of the bath is similar to the one used by Cornwall and Bruinsma, but with two
modifications: the addition of a phenomenoiogical damping term in the system lagrangian,
and a time dependent system-baih coupling. Our main aim will be to calculate the
statistical properties of the quantum fluctuations of our system, and to compare these
with the standard results for the free system. Ary significant deviation from the standard
results would have implications for our current understanding of the how a quantum
scalar field might generate density fluctuations. The results we derive will also be useful in
further investigating the entropy issue of the last chapter, as well as showing any quantum
to classical transition that might occur as a result of the system's coupled evolution.

First we state our lagrangian, which includes a phenomenological term whose origin
we justify. We then start with a vacuum, and define two linear combinations of the mode
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amplitude and momentum: these are the super- and subfluctuants as used extensively

by [20]. We calculate the f.uctuations in these new variables as the system interacts with
its environment. The concept of a coherence length is defined, and we calculate this for
the super- and subfluctuants, as well as the entropy produced by the system's evolution.

5.1- The rnodel

Our system will comprise a fluctuation mode of the inflation field, Q, evolving in a

Robertson-Walker universe with metric

ds2:d*-a2(t)dæ2

In the following calculations we will always take:

(5.4)

,9
: dlds

: dldr

q" -2 -qq -

cosmic time

conformal time (5.5)

while a prime is used to denote an alternative variable, such ãs QrQ', and also for a
derivative with respect to z (where z willbe written explicitly). We will work in conformal
time ry : I dt la(t) and the scaled system variable q : a8. The system plus bath that we
will study has the action

slq,rl S[q] + ,9¿[r] * ,9i.t[q, r]

l,:,* CT{;

ti

(*, - 5 - rr"r, +,p¡*,-,a) ø"f

(r'- - r"'r)l+ Ð [-oo(")ø "*l] (5.6)

The system action is the same as (5.1) but with an extra term in the potential. This will be
necessary to obtain the appropriate semiclassical equation of motion for the system. The
bath action is that of a conformally coupled massless scalar field in an FRW universe,
i.e. (8.14), with the field rescaled analogously'to q. This type of bath was considered
by Cornwall and Bruinsma who investigated the zero mode of the inflaton, and who
also used an influence functional approach to investigate viscosity and diffusion during
inflation. However because they added a difierent surface term to their bath action (see
appendix B), this action was time dependent, leading to a more complicated open system
than ours. Our interaction is more general than Cornwall and Bruinsmats because we
consider a time dependent coupling; we will see shortly that such a coupling is necessary
for a more realistic model.

D
k

+
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The motivation for including the extra potential term in the system action is as follows.

Suppose we write down (3.38):

r.(#.ry),+ (cr' +#+€+'#)u:o (57)

Referring to (3.10, 3.25), we see that since the above is an equation of motion for z, it's
also an equation of motion for X. But setting q: q' in (3.10) gives E : Ç.; hence this is
an equation of motion for q as well. The relevant parameters ate, from (5.6),

M:I , t:-tl"

Then (5.7) becomes

{12 : k2 - à' l o' - z1o(r + p)a2a-r à c: o,P (5.8)

ö + 21oo"o d + (k' - äl o - 21sa2n-t à)q : o (5.e)

Now convert this to Q,ú, to get

Q,u*(3H +21oa2n-t¡q,r+lr"lo'Q:0 (5.10)

This is the effective semiclassical equation of motion of our system. For the choice p : I12
it describes the usual classical equation of motion along with an additional constant
damping term proportional to 70" Our system action was chosen in order to generate

this simple damped effective semiclassical dynamics for the system. The choice of p - 0,

as used by Cornwall and Bruinsma, would be inappropriate since it leads to a damping
coefficient which decays in time. Kolb and Turner have argued for a constant damping [33],
and we have included this by setting p: Ll2.

5.2 Quantum to classical transition
The description of cosmological particle production in terms of squeezing language, which
we will use here, was first introduced by Grishchuk and Sidorov [19]. The dynamics of
our system in (5.6) can be parametrised in terms of the language of squeezed states by
defrning the squeeze parameter and anglê, r,S and the rotation angle d, as discussed in
section 3.3.1. The phase space these refer to is defined by our variables g and p = 0lðQ"

A clea¡er picture of the open and closed dynamics of such a system can be obtained
if we rotate the phase space axes so that the density matrix can be expressed in terms
of so called super- and subfluctuant variables. (Alternatively, we are rotating the Wigner
function in phase space so as to eliminate the cross term there). Call these variables u, u,
expressed as real linear combinations of g, p. We fix the linear combinations such that one
variable (u, the superfluctuant) grows exponentially while the other decays exponentially.
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In the case of no coupling to the environment we proceed by expressing (22), (u2) in
terms of k'\, þp + pq), (p'), and then substituting for these the standard squeezed state

results [12]. This enables us to write

@"):* , þ'l:# (5.11)

These relations fix u,u in terms of 8rp, and we now use the same transformation for the
case of nonzero dissipation:

u : -rcsinóq*cosþp
?) .: cosSq+ l--¿e (b.12)

K

What we wish to do is take a density matrix in position, (3.51), and write it in the u,u
basis. Consider first of all calculating p(u,u'):

p(r,u'): ll"ln) p(q,q') (q'lu'\ dqdq' (5.i3)

We need ("1ù. This can be found by solving the p.d.e which follows by quantising (5.12)

and applying both sides to (qlr)'

"(ql"l: (-rc sinþ q - i cos ó Aò kfu) (b.14)

which has solution

(qlr) : /(u) exp i - lrcsin-Ó 
q2 

+ qrl (b.lb)'cos/L 2 'l
with /(u) to be determined. We determine this by redoing this calculation with the roles

of q and u interchanged; since [u, u]: i, we have

q(ulql - (-silÖu * icosøa) t,lol (b.16)
\K/

Solving this determines /(u) and allows us to finally write (up to a phase)

(qtu) : #"*p;:A 1ry" * qu+"t#] (5 17)

Similarly we find

l-cosþq2 cosgu2l

I 2 -rqù- , )

K

2r sinþ
(qlr) : exp

?,K

sin / (5.18)

Now, suppose we start with a gaussian density matrix as in (3.51). W" can then easily
change bases using (5.13, b.12, 5.18) to get, with

.y:|cotþ , o!"+l+ac+@-ù,) (5.1e)
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^:4AC 
_t (4to _* B _ t)2 (b.20)

4o2

p(u,u') : rF^"*, #,lo"Z * 2i(41o + B -7)4,x, + 4cD'z,l

p(r,r') : ,8".*p +oa loo?, - 2i(41o + B - ^ùL,E, + 4cr,?l (b.21)

where we have used sum and difference variables, e.g. Eu : (u * u') 12, 4,, = 'u - 'u,' .

We can show that in the absence of a bath, these matrices reduce to the expected ones

for a squeezed vacuum. First, in the q-representation the density matrix of a squeezed

vacuum is known to be [25]

p(q,q,)--ilffi(ø,+ø,,) 6.22)

If we write p(q,q') in terms of sum and difference coordinates and compare with the

definitions of A,B,C in (3.51), we find

A:C

B:
1-2cos2Stanhr*tanh

Substituting these into (5.21) gives (after much computation)

K 1-tanh2r
1 t - 2cos2þtanh r * tanh2 r

rc sin2$ tanh r

("" + "'')

(5.23)

(5.24)

2rc

-Ke''
2

T

,'')

_e-2,
p(u,,r')

P(u,u')

(""1 - (u)' :

(.'' +

These are the expected results, as can be seen by the fact that with p, q replaced by u,u
respectively, they are produced when g is set to zeroin p(p,p,) and p(q,q,).

Measures of fluctuations and coherence

Returning to the general case of dissipation, the fluctuations in u and u are calculated
from the density matrices:

Lu2

L.u2
( 5.25)

and both of these are just equal to l12 divided by the coefficient of -D2 in their density
matrix.

I u''*,u) d,u -V " p(r,u) t"f: #o
2C

Ð/



As a measure of coherence we note that a large coefficient of -42 means that the
density matrix is strongly peaked along its diagonal, i.e. there is very little coherence in
the system. A measure of coherence was defined in [3a] as a squared coherence length tr2,

equal to 1/8 divided by the coefficient of -42, so that a large L2 mears a high degree of
coherence in the system. With this defrnition of ,[2, (b"21) gives

2A
(5.26)

We can also relate the coherence lengths and fluctuations to the entropy of the system
(see section 4.2 for definitions). W" can write

_!f--&:s¡,.:E (5.27)L,u2 Lu2 " tzn A
(Note that the linear entropy is negative by definition so that it will increase with S,
so that as ,9¡;,, increases, Sl;o decreases). Also the uncertainty relation for u, u becomes,
from (5.19, 5.20, 5.25):

Io o
2A

L2
u

t
1)

L

(41o*B- 1)' (5.28)
16AC

Fbr the free field the last term in the square brackets is zero while Srin : -1 (since S : 0),
so that L,uLu : Il2.

5.3 Calculation of fluctuations and energy
We wish to calculate the fluctuations in amplitude and momentum of a mode of the
minimally coupled massless system inflaton, of wavenumber k. These can also be used to
calculate the average energy of a mode. We take P = Q,, [12], in which case the following
hold:

LQ' : Lqt lot , LP' : /''p' lon (5.2g)

We first calculate LQ', starting from

aq' = (q') : (q)' (5.30)

We start with an arbitrary gaussian initial density matrix (3.50) and propagate it to
get (3.51), calculating the expectation values via

(q"l : | ø"ok,q,t) dq (5.31)

Then the nth moment of the mode amplitude is

(q"): [7 r"*"-4cf d.e (5.32)

a,uza,u2: # ll .
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so that we obtain

Le":# (b.sa)

Momentum fluctuations are calculated from p(p, p'), which itself comes from the amplitude
in the usual way:

p(p' p') 

:'!,,'T,"1,'^ ":!::,'),ril1.' ̂ ,, c')2 -iB(c'-c'')-c(q+q')"

2 B2 + 4AC

Then using (p") : ï p" p(p,p,t) dp we calculate

""p 4@+ A,.,)loo:. - zilr.ele + 4cÐ'zel

^P2 
: (# -r^) i

¡/
(5.34)

(5.35)

Fluctuations with no environment

We can check that the above expressions reduce to the well known scale invariant ones

for a coherent de Sitter vacuum as follows. From (5.22), take 7s:0 with €: kl2, X:0
in (3.50). With no noise the ø¿¡'s reduce to zero. The sum X of the Bogoliubovs was

calculated in section 4.3.3 to be

x(z): (, - i) u," (5.36)

so that to leading order the ó¿'s become:

bt:bz-k", bs:-lcz, bn:kltn+kz3l3 (5.32)

Then using (3.52) we have in the small z limit

^-r1 -k"n'14, B=-k'nl2 (5.3g)

finally giving

L,p2:lHnno ^ H2
-, , LQ":zlr" (5.39)

as expected; these are the well-known exþressions.

We can easily derive the fluctuations in u,u from (5.11) by calculating the squeeze
parameter r. we simply insert (5.36) into (4.6), using (a.J) to finally give

"" 
--. llr' (5.40)

so that the fluctuations are

/,.u'- k at]-"= 2", , ^u- 
: 

ik (5.41)
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again as expected: the superfluctuant u has increasing fluctuations as z --+ 0 while those

of the subfluctuant u are decreasing, and AuAu: I12.

Also, A: C and so the linear entropy is -1, again as expected since this implies the

usual entropy is zero. Hence from (5.27) we have coherence lengths of

L',:# , L?,:* $.42)

The average energy per mode is obtained as follows. The energy density of the field
is the qq'h component of the stress-energy tensor:

ry1 -r 
I 

Jrnn 7 il{ø,,)'+ D(d,,)'l tr.+al

and since we have expanded the f.eld modes in terms of Q we can write the energy per

mode as 
f;¡u,ar + k,g,l (5.44)

Brt 1rQ: a}rQ = aP, so that fi.naliy the mean energy is

(energy)/mode : (o'e') + k" (Q'))

(o'ne' + k2 Le'z)

5.3.1- de Sitter expansion with environment

lVe now turn our attention to the real case of interest. The spectral density is, from (3.34,

5.6) with p:712:

I(r,n,n') : '+, ar/2iùat/2(rtt)

1

,
1
:-
2

2cu
rJrtl )

Again choose n : k so that 
_r"

z: lcn : Ë"_r,
To caiculate X, use (5.6,3.22,3.23, 3.41) to give

c: 'yolH

X:0

(5.45)

(5.48)

(5.46)

(5.47)

/ l. + Jc f c2\x"(,)o(t-t-;-)
X(z¿) :1
X'(rr) - -i - If z¿ - -¿

x(z) : atFZ Jlzl + b\/=ylzl
which has solution
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where by Jlzl,Yl"l we mean J,(-"),Y(-") since z is always negative, and

: 312+c
: irllÃa'- icz)

: i@f", * ica)

: +-tY'lz¡l ¡ c2: t)i:,' - t'r"n,

: Ylr;l , c+: Jlz¿l

U

a,

b

C1

C3

We wish to calculate a¡ ---+ bafor z ---+ 0, i.e. long after exit where the physical wavelength

is much bigger than the horizon. First we consider what choices can or must be made for

some of the parameters.

Time scale of interest
'We are interested in evolving the field mode of a coherent vacuum, and for such a field

the initial density matrix coefficients are { - k12,X: 0. Calculating the times of interest

involves switching back and forth between cosmic and conformal time (multiplied by k):

ú and z. The initial time is

t;:0 z¿:-klH:-e' (5.51)

Modes able to be probed by COBE [29] are those with coordinate wavelengths in the

range 10-6lH ---+ I0-3 f H, so that we can take z in the range 7 ---+ 14.

Horizon exit occurs when the Bessel solutions to (5"48) stop osciliating, that is, ap-

proximately when their arguments equal -1. So write z*oss: -1, or t,,orr: z/I/. Now,

it's known that inflation must occur for perhaps 60 Hubble times, so that the final time
of interest is

t=601H ; zl:--10-20 (5.52)

so that we have constructed the time scale in both cosmic and conformal times. We
will keep f and z arbitrary, although bearing in mind that they're of the above order of
magnitude

Calculation of ø¿¡'s and ó¿'s

As usual these are calculated from (3.49). The ó¿'s are straightforward; by considering
large argument forms of the Bessel functions [see (D.36)] we are led to define

(5.50)

(

(

stn - sin

- cos
)

cos
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and so use (3.49) to write

b'l k

bç,¡ lk

bnl k

zlz¡+ -t- L

c+7
rlzll2 (- {'1").rlrl + (cos)}'l zl)

(5.54)
zi

When l"l < I we can write, with a1 defined in (D.39):

br=#2", bz=e"'a1lcz , bz?-e-"'a1lcz7+2" , bs=kl-r"-'-B] (5.55)

where in simplifying the expression for ba we have assumed (cos) 74 0.

The ø¿¡'s are much more involved-we have left all details for appendix D, here simply
quoting results for typical values of r,c:

dtt t L0L2 azre-' clc , ar2 - 10a alcklzl ¡ a22 - 0.01 a2rcklzl-r (5.56)

There are two regimes of interest to us: values of c for which ø11 either does or does not
dominate D in (3.52). Taking € : k12,X:0 allows us to write, from (3.52):

D: k2¡ katr¡bzn

N tr+!'rkz -^l ,(sin)"1'?
(cosy * k" 

l-ue-" 
* õ] 

(5'57)

and all will dominate this expression when the second term is much larger than the third,
which occurs when c is larger than some critical value, c*ít 1e'fl0L2. As r increases
from 7 to 14, c",;¿ increases exponentially from 10-10 to 10-7" So we define two regimes
of weak and strong coupling.

5.3.2 'Weak coupling regimc2 c { c",¡¡

This is the case for which ø11 doesn't dominate D. We wish to calculate the fluctuations
and compare the results with the free field case,'in older to establish whether a small but
nonzero c gives different results to the free field case (c:0).

By writing the expressions for A ---+ D from (3.52) and making use of (5.5b, 5.b6) with

D - lcz + b24 - k2 f (cos)2 (b.bg)

we can compare the various terms and see which are dominant. This allows us to write

A-orrry0.01 a2rcklzl-r , B=-ór- -lcz , c:ry="r,,k2, (b.bg)- 2 -2(r+zc) ) v- 4D-"
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At this point refer to (5.19, 5.20,5.25,5.26, 5.33, 5.35) to calculate the fluctuations and

coherence lengths. We first need 7, and for this we need the squeeze angle $. This is

calculated as follows. From (3.18) we infer that for large squeezing,

2ó+n-arg (5"60)

Then using (a.6) we write

1 X(z) + iX'(z)
(5.61)

X(") - iX'(z)

(v

þ

a.

p
+ x

z

LI

From (5"49, D.37) we have (working to higher order with the benefit of hindsight)

x(z)xt"t-"-,(r-#) tr.url

Hence we can extract a, B using (+.6); taking their ratio allows us to conclude that to
leading order,

rl
Ó+; --arg l-z-liLL

(5.63)

If c is large enough to dominate the imaginary part of this, we'll obtain

ö: "l'
while if this condition isn't met, or in particular if c : 0, then

ó: + +'\2 i)2 4c*2

(5.64)

so that for the free case (" : 0) we havel

(5.65)

ó:"-"12 (5.68)

Even for the weak coupling case we wiil take c large enough so that (5.64) holds, in which
case we can now proceed to calculate 1.ro,À. For all the calculations we will assume
that (cos) 74 O-allowing for this not to be necessariiy so complicates the discussion

lGiven / for these cases, we can relate u,a to q,pvia (5.12) as follows. For the free case

u: lcq* zp ¡ ,t) = tS -f plk (5.66)

-lczu:-Q*p ,

au=q*, p
lcc

while for cÞ lzl
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considerably, which we will not do here-and simply quote the results; we will also replace

e' by the equivalent le f H:

z clcó:; , -t:; , o:I , Ào *## (b.6e)

so arriving at 
Lu2 _r0.01r.",* a,u2", + (b.20)Aw - (cos)2lzl 1 av - (kln¡z'¡rrz

(5.71)

decrease. Mo-

L2" - &lH)'"lrrt ,

The fluctuations are growing in both variables

mentum and energy fluctuations are

while the coherence lengths

0.
(5.72)

(cos)2k3

and for the contributions to the average energy per mode we have

o2¡p2 =0n?g!!,r'r!rl , rrr/'e, = ,. ,Hl = , (5.73)(cos)zk - (kln¡z'¡

It can be seen that for small c, the momentum fluctuations are heavily dependent on c,

unlike the amplitude fluctuations.

Entropy for weak coupling

The entropy as a function of the squeeze parameter for the free system is of interest, and

can be calculated as foliows. From (5.27,5.59) we have

Stin: -(klí)"(cos)lzls/z Ø.74)

We now need r as a function of z fo¡ the free case. Equation (5.40) leads to

r -+ -Inlzl (5.75)

so that (4.13, 5.74) together yield for each mode polarisation,

S + 3rl2 * constant (5.76)

5.3.3 Strong coupling regimez c) c",¡¡

In this regime ø11 dominates D so that

D - 4lcas - I07 ck2 l(cos)2 (5.TT)
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In that case from (5.55, 5.56) we obtain

A - ozz - 0.01 alcklzl-r -b' - lcz
R-'ru-

2 - 2(1 -t 2c)

r," - r!' \4H)'"k*
c

kbr,

4D - 10-8 .2cx¡r2 (5.7g)

(5.80)

(5.81)

C-

which are very similar to the weak coupling resuits. Then ó,'l,o are the same as for the

weak coupling case while ) is different:

^ 
- o'orez"' c-lc2 z

(cos)2 (5'79)

In the same way the fluctuations and coherence lengths are also similar:

Momentum and energy fluctuations are

LQ, =
L07 cH2

(5.82 )(k I H)r"k3

while the contributions to the averag energy per mode are

az¡p, =0.9}cU-2.lzl lc2ya2 - 
107 cH2

(cos)zk - (k I U¡2"¡, (5'83)

and the entropy is again S --+ 3l2rf constant. For both weak and strong coupling
regimes, we have found the super- and subfluctuants growing (i.e. these become seeds

for galaxy formation) while their coherence lengths are decreasing, from which it appears
that our model is becoming classical.

5.4 Discussion

Several results have been derived in this chapter

o The entropy was calculated using a more sophisticated approach than that of the
last chapter, insofar as \rye related the noise to the symmetric 2-point function for
the conformally coupled bath field, which allowed us to use Vilenkin and Ford,s
regularised value of the 2-point function.

We found that for both strong and weak couplings S -+ Jrf2 f constant, and
(referring to the discussion of the last chapte r) -I lzln C --' r while L lzln A --+ r f 2.

This differs from the result S --+ r f 2 calculated in the last chapter. There, in
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expressions (4"45, 4.47, 4.49) we assumed a static cutoff in the ô integrations which

was a first attempt at regularising the otherwise divergent integrals. On the other

hand, in the current chapter we have done the calculation quite differently, assuming

a time dependent cutoff to the integrations. In this case we've again obtained

-llzlnC ---+ r, but now we frndLlzlnA -+ *r12. So apparently our choices of

how to evaluate lhe a¿¡ integrals may be naive in some ways; it appears that the

calculation of A is completely sensitive to the regularisation approach used, while

that of C is not.

o For both coupiings, the coherence lengths of both super- and subfluctuant vari-

ables are tending to zero with time [see (5.71,5.81), and note that these assume

the coupling is nonzero, so that we can't just set c : 0 to recover the free case

there]. Compare this result with that for the free field, (5.42), which shows the su-

perfluctuant coherence length Lu to be increasing, while the subfluctuant length -L,

decreases. The environment-induced decay of coherence lengths in both variables is

an indication of decoherence occurring.

o Also in both coupling regimes the uncertainties in both super- and subfluctuants

are increasing with time (5.70,5.80); compare this with the free case (5.41) in
which the superfluctuant uncertainties grow while the subfluctuant's ale suppressed.

We interpret these environment-induced fluctuation growths as seeds for structure
formation.

o For both couplings, fluctuations in the amplitude Q have similar forms to the free
field (5.39, 5.72, 5.82), whereas the P fluctuations, while tending to zero as za in
the free case, tend to zero as z3 in both coupled cases.

Note that even for weak coupling, the P contributions to energy, a2 L,Pz . go to zero at
different rates in free and coupled cases (22 and z respectively), shou'ing that even

a weakly coupled bath can have a strong effect on observables long after Hubble
crossing. This point is relevant to the gauge invariant theory of perturbations [35]
in which P is the most important variable. This theory is equivalent to ours in
the massless, minimally coupled case, and stresses the importance of the Bardeen
variable, which is the same as our P (up to a numerical factor).

The amplitude contributions to energy, lc2 LQ2, are constant for both free and cou-
pled cases, so that they dominate the momentum ones both in the standard free
theory and in the coupled theory.
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Chapter 6

Therrnal radiance for
near-exponential dynarnics

This chapter concerns work done towards the building up of a unified picture of the
production of thermal radiance in different spacetimes.

Traditionally, the notion of particle creation has been linked with the concepts of
fi.eld theory, and in particular the idea of modes being distorted either by a source, or
by the spacetime geometry itself [36]. These distortions are quantified by our examining
the relationship between field modes in the far past and far future, described by the
Bogoliubov transformation. Modes which represent the vacuum in the far past will in
general contain particles when viewed from a different basis in the far future.

Particle creation has been viewed within a variety of spacetimes. As early as the
late fifties particle creation in an expanding universe was discussed by Takahashi and
Umezawa [37] and later by Parker [38]. In the early seventies Hawking considered black
hole particle creation [39] while Fulling, Davies and Unruh [40, 46] analysed the spectrum
seen by a uniformly accelerated detector.

Previously it was thought that the production of thermal radiation went hand in
hand with the existence of an event horizon [41], and certainly the previous examples all
possess this. For example, in the black hole case, the geometric approach considers the
modes around a collapsing star as being embedded in the collapsing geometry, and as

such takes the event horizon as having a global significance. For accelerated detectors,
it was previously assumed that the entropy increase associated with the detector's seeing
thermal radiation was due to its being unable to access information outside the Rindler
wedge. However it was later shown that accelerated frames not possessing event horizons
can be constructed containing radiation [42], and similarly cosmological examples have
been found 143, 441.

The work of this chapter is a continuation of earlier work by Hu et aL l2,4b] and is
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aimed at further developing this idea, by approaching particle creation from a stochastic

viewpoint. Our basic viewpoint is that vacuum fluctuations of a quantum field mode are

amplified by an interaction with a bath of oscillators. For each system we consider-
accelerating mirror, collapsing spherical mass and cosmological examples-we calculate

the noise and dissipation of the scalar field environment. By comparing these expressions

with the corresponding ones for a thermal bath of static oscillators, we are abie to extract

the temperature that such a bath would need to have in order to reproduce the noise

and dissipation seen by the fields in our examples. This temperature, together with
the effective spectral density (which we also calculate, but which is not central to our

discussion) completely characterises the effect of the environment on the system of interest.

Such a characterisation enables known results to be rederived, such as the Hawking
temperature of a Schwarzschild black hole, or the Davies-Unruh temperature measured by
an accelerated observer in a Minkowski vacuum [2]. But it goes further, in that because

it doesn't assume the existence of a horizon (together with the geometrical interpretation
that this attracts), it can be extended to more arbitrary cases of spacetime or detector

motion. Thus our method differs from traditional approaches which assume equilibrium
thermodynamics and stress the mode distortions.

We note that cases which give thermal spectla involve an exponential scale trans-
formation, and we show that by perturbing this transformation the resulting perturbed
spectrum can be derived. Note that in principle we can treat arbitrary motions and are

not restricted to perturbations around the usual exponential ones. But in practice ar-

bitrary motion is technically difficult to treat, and does not cast any new light on the
principle of the way we are treating the problem.

The disparate perturbed cases of accelerating mirrors, black holes or expanding space-

times can all be characterised by a parameter h which measures the departure from the
straightforward exponential transformation, This parameter then appears in the per-
turbed spectrum.

6.1- Moving mirror in Minkowski space

\{e first treat the motion of a mirror following a trajectory r : z(t) in a zero temperature
scalar field, which in turn is coupled to a detector moving at constant velocity. We
can calculate the noise and dissipation produced by the field, and write these together
from (3.32):

( =, * i¡t : Io* 
of I(lc,s,s,)X(s)X-(s,)
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Given this form, we can equate it with the standard form

foo( : Jo dk 1,fr(k,E) lC (k, X) cos kL - i sin kAl

where

X:(ú+t')12 , A,:t-tl
This is the form of ( which, with the function C replaced by cothS, would describe a

thermal bath of static oscillators each in a coherent state. We will show that the unknown

function C does indeed have the form of a coth, and can then deduce the temperature of
the radiation seen by the detector. Here I"g(k, X) is the effective spectral density, also to
be determined. We can always write ( in this way since z is even in A while ¡; is odd.

By equating the real and imaginary parts of the two forms of ( and Fourier inverting, we

obtain

Iqc dA cos kA z(X, A)

r"n : + l:da sinka p(x,a) (6.8)

These expressions will be used throughout this chapter to calculat e C forthe various cases

of induced radiance that we consider.

6"1.1 Thermal Radiance

We start by obtaining the field þ(ú, r), so must solve

a'ó _02ó _n
ôtr- A*r: u (6'4)

subject to the condition that the field vanishes on the mirror:

ó(t,,çt¡) : o (6.5)

For a general mirror path this equation is difficult to solve; however we can exploit the
invariance of the wave equation under a.conformal transformation to change to simpler
coordinates. We follow the treatment of 146,47). If the mirror is static for ú ( 0, we can
introduce a transformation between the null coordinates LL),n and new coordinates u,u
defined through some function / by

u:f(a) , u:ú (6.6)

where

: +I:

(6.2)

u:t-r
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together with new coordinates Í, r derived as might be expected

ú:t-7 , ú:t*r (6"8)

These coordinates will be chosen so that the mirror trajectory is just r : 0" To do this,

we relate the two sets of coordinates as foilows:

[ Ð + /(u)]

(6.e)

On the mirror path, setting î :0 means that the trajectory can be written as

1

Io - /(z)]

1+-
2
1

&
2

1lî- f(î)l: z [ 7 + /(r)]
2

I -c p ó(1,î) 6(r - r) dr
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(6.10)
2

which allows / to be implicitly determined. In the new coordinates the wave equation
is unchanged, however it now has a time independent boundary condition, meaning the

mirror is static, while the detector moves along some more complicated path. Thus the
\ /ave equation with boundary condition can easily be solved to give

ó(î,*): [* çzot )-tl'.i., kr e-ikt dk (6.11)
JO

where the mode functions are orthonormal in the Klein-Gordon inner product. The
barred coordinates are especially useful since they just give us the usual vacuum influence

functional; alternatively ihis can be seen by calculating X(î). To do this we make use of
a result which was stated in chapter 3, specifically (3.22,3.23): for a quadratic lagrangian
the sum of the Bogoliubov coefficients satisfies the classical equation of motion. In this
chapter we always take rc : k.

In the present case the time dependent modes of the field are just exponentials. That is,

they can be described by oscillators with unit mass and frequency k. So X(l) is a solution
to this oscillator equation, and by satisfying the initial conditions X(0) :1,X'(0) : -ilc
we obtain

x(t) : e-¿kt (6.12)

If we now write
((î,í): 

lo* 
d,k r(k,'î,r') xq)x-(t') (6.18)

we have the usual zero temperature vacuum form of the influence functional.
The spectral density of the field is determined by the path of the detector, and the

coupling which we take to be a delta function. With c denoting the coupling of the
detector's internal variable p to the field /, we write

L;o,



:l:l
c p Q\t1r )

-c p qk(î) sinkr dlc

-ct P Ç¡ dlc (6.14)

then we have

I(k,î,î') : [ *ufr - k*)r'sin k,z,(7)sin /c,r(-r')\r' Jzkn
^2: 
fisinkr(l)sin k r(-/) (6.15)

We now need an expression for the detector path, F. Since it's inertial, we have r(t) :
ro * ut in the usual coordinates, with r*, u,l constants. Convert to barred coordinates via

1

2 It +, + f-' (¿ - ")l

Inn*_ r-'(¿-")l (6.16)

in which case the detector path is written by identifying r,r with r,x in (6.16):

1r
r(t) : il, *,(t) - ¡-'(, - "(r))] {o.rz;

In order to find f , we need to specify a mirror path. A convenient choice of path is the
following:

z(t): -t- Ae-2^'+ B (6.18)

lor A, B, rc positive (note that this rc is used in [a7] but is different to the one we have
used previously, which we just write no\ry as k). This path provides a horizon in the sense

that there is a last ingoing ray which the mirror will reflect; all later rays never catch up
with the mirror and so are not reflected. It's this aspect which enables the moving mirror
to emulate a black hole. Note that a variety of mirror paths are possible, but we will
pick one with sufficient generality but simple enough to admit an analytic solution to the
equations that follow.

Equation (6.10) can now be solved to give

rF) : -î - Lrn" ,l (6.1e)KA
which can be inverted in the large time limit to give

f_t@)_ B_Ae_^(B+"\ (6.20)

The detector path becomes

t

r

r : t[r. + (1 * u)t - B + A"-n[B-r'*(r-ü')4]

7T

(6.21)



For use in the black hole calculations that we do presently, we rewrite the field modes in

terms of the null coordinates. By using (6.6) the modes in (6.tt) can be written as

óx x e-ik" _ 
"-;kf 

-1(u) 
rc.22)

Then with /-1(u) calculated above, we write for the c, d constants

óx x 
"-¿*" 

_ 
"ik(ce-".+d) (6"23)

For black holes (as described in the next section) this will be found to be describing the

radial modes of infalling matter (excepting the r-1 factor due to the spherical geometry).

This fact enables us to extend these results very quickly to the black hole case. It also

justifies the choice of (6.18) for the mirror path.

We are now in a position to calculate (. With

r:r(T) , rt:T(t'), Ã=î-l , R*:rtf (6"24)

we write (6.15) as exponentials, and substituteit together with (6.12) into (6.13), arriving
at

(: + lr* + [e;rrF+-Ãl - e;k(R--T) - ";*1-n--Ã) + eiÆ(-E+-Ã)] (6.25)

What i. ff "ur'lk dk? We can write

*l"-#or:nIo* "ik"d,t 
:* rc.26)

and then integrate to obtain

¡6 -ikx

J, îO*: - ln(r + ie ) + constant (6.27)

Actually this constant is formally infinite, but will cancel in the expressions to follow.
Equation (6.25) now becomes

u.-(-.(: - ln"8
(-E- + 7) (E- + 7) _
(-E* + 7) (E* + 7) (6.28)

where T:T' - ie and we have changed all signs in the logarithm's argument: with this
change, the logarithm can be seen to be the same as the two point function for the in-
vacuum in [47],, a fact we make use of shortlyl. This correspondence is important since it
establishes a connection between the influence functional theory we are using here, and
the conventional field theory approach based on the in and out states.

lThis can be seen as follows. Consider the first term in the argument, -A + A. This equals -T + t +
r' -f , which from (6.16) and (6.17) is just /-1(r - r(¿)) - l-r(tt - r(r,)) In rhe norarion of [a7]rhis is
written p(u) - p(u'). The other terms follow similarly.
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Given this form for (, we now proceed to calculate I"¡ ar'd C from (6.3). We can make

use of a result found in [a7] by first writing the Fourier transforms as complex exponentials

involving (, which is possible since z(A) is even and so contributes nothing to the sine

transform:

- 1 /'ooÍ'J"fr : ; J__d,4, 
p,sin kA^

: * l:da, leik^ - "-it 
rf (

-c2 ¡æ: ,* J:oo l"oooc - "-*nl (6.2e)

Substituting the identity [47]

-4r where Tt: dL, e-ik\ ( : r("+-r)
into (6.29), we get the effective spectral density

c2

"fr 
: 

4lc

Similar steps allow us to use (6.3) to calculate C. Writing

I

K

2tr

I-w
1*t¿ (6.30)

(6.31)

(6.32)

and again using (6.30) we arrive at

(6.33)

So a thermai spectrum is observed, redshifted by the Doppler factor involving t¿; as in
(6.30). This is the influence functional derivation, in contrast to the usual approach of
dealing with two point functions for 'in' Fock states.

r"nc : * l:d,L leik^ + "-o'o] 
(

A different mirror path

As a further example we will consider a more specific mirror path, again static for f ( 0,

but one which reduces to the above path for large ú. This is

z(t) ::11" tL o¿ (6.34)

Following our previous calculation, we can use (6.28) to caiculate (. For this we need F,

and hence /-1. Again, by solving (6.10) this is found to be (for all ú > 0)

f-'{u): lr" (, - "-*) (6.35)

C : coth#'
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so from (6 17) '*-l_:::î;" 
),r(¿) : åþ.*(1 +u.,)z-lln (2_ "-^r-'.*r'--)a)] (6.36)

This can be used in (6.28) to calculate (, and hence the spectruml however in this case

the calculation is harder since the Fourier transform might not exist in closed form.

6.t"2 Perturbed Mirror Tlajectory

We now wish to calculate the particle creation from a mirror trajectory deviating from
that which produces a thermal sp.ectrum (which we call a 'thermal mirror trajectory').
Consider the perturbed trajectory

z(t): _'t- Ae-2fi*{")a" * U (6.37)

and introduce a dimensionless parameter measuring the deviation from the thermal mirror
trajectory (6.18):

h:1 (6.38)

We expand rc(t) to first order in t:

rc(t) = rc(o) + n(o)rc'?(o) ¿ (6.8e)

provided that this expansion is only taken as valid for f ( (n1O¡"10f)-t. In that case,

\Me are essentially taking å. as roughly constant, so that we can replace /z(0) by å in what
follows. Substituting (6.39) into the above expression for z, we obtain (with rcs = rc(O))

,(t)- -t-Ae-2"0t-r'"f,t2 ¡fi (6.40)

Following the same route as for the thermal case, we find / by solving (6.10). It is inverted
in the large time limit to give

Í-'(u)N B-¡"-xo(B*u)-$P+'¡' (6.41)

To calculate ( we again use (6.12) and (6.15) in (6.13). If we indicate the dependence of
r on h then we can write to first order in å,:

r(h,t) N F(0,ú) -þ"!o"-^olr+¿-e(¿)l[ B +t -p(t))'8: 10+67

where Fs is just the unperturbed f in (6.21). Note that although the form of r has changed,
because we're obliged to work in the new coordinates as dictated by the perturbed mirror
path, the physical path of the detector remains inertial.

(6.42)
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Next we calculate the perturbations to the noise and dissipation, ó(,

"2-ó(: _;ó(

by referring to (6.28). To frrst order

((ro + 6r,fo+ á/) (("-0,4) +
4F'"(f +ú _ r'l)6r + 4ro(72 - r'zo +r'l 6l

- f2o - T'o')' - 4T2o Tf

(6.43)

(6.44)

(6.46)

= (+0ç

Also the change in the spectrum of fluctuations is given by

6(r 
"nc)

6I 
"fr

+ ltAe-2^o'rc2o t2

): # Il-0"{;:"i-"^} (6.45)

The fluctuations are seen to be proportional to å.

Note that these integrals are by no means trivially done, and in particular we cannot

just set 6 : 0, since this would immediately make both 1,6 and C pure imaginary.

Alternative perturbation

We can follow a slightly different approach which will make the previous calculation more

applicable to the black hole case in the next section. First, we rewrite (6.40) by taking

å < 1 and expanding the exponential:

6(

z(t\ N -t-Ae-2*o'+B
: ,o(t)

where zs(t) ísjust our unperturbed mirror trajectory. V/e wish now to calculate the new

T. For this we need the new /-1 [see (6.17)]. So we solve (6.10) for 7 in terms of /,
whereby the resulting function is by definition .f -t. W" write

î : f-' U(Ð) = /;'(/) + ó(/;'X/)

where from (6.20)

/ot(") -'fi - ¡"-n(B+u)

To solve (6.10) we expand z6 to first order in ó(/;1) obtaining

(6.47)

(6.48)

ó(/;')(") -
26z0(+(ftl(z) + u)

+ 6zs(t)

(6.4e)r-",o(åt¡;'(u) +u)

From (6"17) the detector path can now be written in the new coordinates as

F =16 * 6r:T[t *, - fi'U- r) - a(/;1)(r - r)]
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or 
-lor : ja(/o 'X¿ - ") (6.51)

Now that we have obtained ór, we can substitute it together with rs from (6.21) into

Eq (6.4a), which then gives us the corrections to the spectrum as derived in the last

section.

6.2 Collapsing spherical rnass

In this section we study thermal radiance from a collapsing spherical mass coupled to a
scalar field by analogy with the moving mirror case just discussed. Outside the body the

metric is conformal to flat space, and we write it as

ds2 : C(r)dudu (6.52)

where Lr,) u ate null coordinates defined as in the mirror case, except that now r is replaced

by the Regge-Wheeler coordinate r*:

îr dr'
'. = J^odñ (6'53)

with Ao the radius of the body. That is,

rjy) : ,tt + d,r* (6.54)
\¿'J-uL-rq'

The freld equation outside the body, ó'\* :0, is now solved in the large time limit [a7]
to give radial modes containing time dependence which are written

"-íku 
_ 

"ik(ce-*"+d) 
(6.bb)

where rc is defined by 
l

K: 
;C'(Rho,í,on) (6.b6)

These modes are identical to those of (6.23); this shows that the collapsing body case

is equivalent to the mirror case already calculated. So by analogy with the previous

calculation, we can define a function f-'@) by writing the field modes as in (6.22), and
similarly define coordinates 7 and ã as in (6"6):

T-¡ : f-t@)
t+r : u (6.57)

Hence the radial modes are again sin kr r-iÀr uo¿ just as for the mirror, we obtain
X(t) : .-;*t.
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We can now calculate ( for a detector placed at constant r. Such a detector is also at

constant r*, or by analogy with the mirror case, constant r. This just corresponds to the

mirror case when tr : 0. So the mirror calculation carries over to here, and we obtain
T : rcl(2¡r).

For the case of a Schwarzschild hole, C(r) - 1- 2Mfr,rc: Il(4M) is the surface

gravity of the star, and we arrive at Hawking's well known result

1'l' : =---:- (6.58)
8nM

6"2.L Perturbed Schwarzschild metric

Suppose we now perturb the Schwarzschild metric, sa¡, by the arrival of a gravitational
wave. How does this affect the spectral density and temperature of the hole?

Perturbations to the Schwarzschild metric have been studied by many authors [48]
for stability considerations [+9] (a necessary condition for the existence of black holes in
nature) and gravitational wave analysis [501. We use the notation of [49], restricting our
attention to radial modes only. In this case only the even parity modes survive, and we

can write the perturbed metric using two new functions, Ho(r),f/r(r), as

d,s2 : (t-'+) (t- no;nr,)or, -2lt"-ikt¿¡ o, - (r-'+)-'(r * Hoe-ik,)d,r2

(6.5e)
Since we assume f10 < 1 we can rewrite the metric in a more convenient form, with
C(t,r)= (1 - ry) Q - Hoe-;*t¡.

d,s2 : c(t,r) 
iar 

- (r + H,"-nr,) 
#Ã)far + (r - Hte-;*t¡ åÃ] (6 60)

Now in the static case we calculate the form of the wan e modes resulting in (6.bb), where
we are using (6.54) to define u,u. These unperturbed expressions for d,urd,u are easily
integrable. However in the perturbed case this is no longer true: if we define du,du to be
the two bracketed expressions above in analogy to (6.5a) then they cannot be integrated
to give u, u. This is because the expression

du : f (t,,r) dt + s(t,r) dr (6.61)

is only integrable if 0 f I Ôr : 0g I 0t, a requirement that fails for both bracketed expressions
above. So what we must do is introduce a new function .F-(f , r) which ailows us to define
u and u again in analogy to (6.5a) while keeping the form of (6.b2):

du

du

F(t,r)

1

p0Ð [a,+(r -Hre-;*t)

drl_l
C (t,r)l

drl_l
C(t,r)]

at-(iHte-ikt)

ryrytl

(6.62)



This function is in principle known by applying (6.61), although in our case the differential

equations are probabiy not analytically solvable. We assume it's known and follow the

method of [a7] to obtain the scalar field modes. Writing the modes in the form

.-iku _ 
"-ikB(a(u)-zRs) 

(6.63)

for some -Rs, where U : a(u),V : 0-'(u), we must obtain the functions a, B. To do this

we first specify the two line elements: the first, outside the perturbed hole is

dsz : C(u,u)du du, (6.64)

while the second, inside the perturbed hole, is

ds2 : D(U,V)dU dV, (6"65)

where the surface of the hole is at r : -R, and

U : ,-(R-fio)
V : r*(,R-r%) (6.66)

for some constant Ao. On the horizon we match up the two metrics and solve for I (where
: dldr). Then we have

{1i/*}
LIF
F

(1a R)c
(6.67)

R2+CD(t-R')+n
The experience of an observer at late times is determined almost entirely by rays not far
separated from the last ray to emerge from the hole. This being the case, we can concen-

trate on near-horizon approximations and solutions of the equations for a, B it (6.67).

Near the horizon (6.67) simplifies to

- FR_,T D
2R

Hence by expanding C at the horizon to first order in .¿? - .R¿ (the radial distance from
the horizon) and noting that C vanishes at the horizon, we can again define

.=Lyl"=,dl,=*n (6'69)

and write, with u - B some constant near the horizon

dU -n(U - U,\
d,=ffi (6'70)

du 1A-1_
- 

ñ 

--(1du-F 2ilv

dv
d" (6.68)
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So the first equation in (6.68) has the solution

IJ : 
"r"-^ 

I ¡to + Un (6.71)

for some constant c1. The second equation in (6.68) is solved by the same argument as

used in [47]. However we must include the function tr' evaiuated at z ---+ oo and u : ,8.

This gives

v:Dlrfo) -F(oo'B)'-ffi(,_,,) (6.72)

withø=-it(r¡).Hence

-/ -\- 2oc1 
^"-'lt#ø¡=._14. _*., (6.23)É(o(z) - 'po) 

: oçt-+ o¡4*, ø¡ D(r i o)F(æ, B)

and in the static case with F : I this must reduce to -ce-^u - d.

We want now to connect this with the perturbed moving mirror case. We do this via
the expressions for the modes. Since f-'@): fiI(") + ó(/;t)("), eqn (6.22) can be

written as 

"-ircu - "-i*f-ce-*u-d+á(/o-1)(¿)r (6.74)

Now compare this to (6.63, 6.73). Without perturbations (ó(/;1) : 0) we have

2oc, e-*u 2o[],
õlTõ+r(l+") Icz=-ce-ou-d (6'75)

For convenience write F(u,B): 1 * e (u). The modes become

exp(-iku)- exp -rrl6"-xu"x[e@'^ * ffi* rr]
(6.76 )

The bracketed part above can be written as

Zoc1e-ou ZoUn

-T-----Tvz-T

D(r+o)' D(I +") ' "' '
"" f-r(-¡*.le@)a,f (*)

2oc1 2oU¡
D(L + o)

: -ce-*u - d therefore: ô(/;r)(")
(6.77)

This ó(/;1) can now be used in (6.51) to give ór and hence the corrections to the spectrum
and temperature of the hole.

Note that we haven't used the original perturbation parameter å here. The per-
turbations to the Schwarzschild metric were directly calculated from the Einstein field
equations. However we can recover the å that these perturbations imply, by connecting
ó(/;t) with the original 6zs via (6.49). More specifically, starting with some perturbation
å we have the following progression:

h(99 6269! á(/;t) 9.$) 5¡ (6'43',6'44) 
corrections to spectrum and temperature (6.7g)

79



The route is admittedly quite convoluted. (Even in the perturbed Schwarzschild case,

solving for the quantities introduced in [49], as well as the function F(t,,r), are difficult
analytically or numerically. The limit involved in (6.a5) is also not trivial). Here, we are

content with just sketching out a pathway to obtain the spectrum from a perturbed metric,

but leave the details, which may prove necessary in the consideration of backreaction

problems.

6.3 A cosmological spacetime: the Parker metric
In [2] the radiation seen in de Sitter space was calculated as an example of the usefulness

of the influence functional formalism. In this section we again use this approach to
investigate particle creation in a different spacetime: that of [43], which reports a thermal
radiance.

The metric is as follows:

ds2 : o6d,T2 -\a2çdxi¡2 (6.7e)

where

on('t):I¡¿n (6'80)

v'ith p some parameter. We consider the action of a massless, minimally coupled real

scalar field /, which forms an environment acting upon a detector coupled to this field
at some point in space. The field can be decomposed into a collection of oscillators of
time-dependent frequency. Usihg the influence functional formalism, we can determine
the effect of such an environment on the detector, which is also modelled by an oscillator.

To do this we calculate the noise and dissipation produced by the field. These are
given as before:

. /-.( : Jo dk I(k,r,r')X(r)X.(r') (6"81)

Here we calculate X, the sum of the Bogoliubov coefficients for the bath. First we
decompose the field into its modes; the lagrangian density is

L(*) ó'' ó,,
J-

In terms of normal modes the lagrangian becomes

(ó,,)' - onÐ(ó,n)'

L(rù : 
rP=., l{øi.,,)' - on k' (qi.)'l

i:
2

2

(6.82)

(6.83)
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We see then that the bath can be described by a set of oscillators with mass and frequency

m : r ,, e2 : anlc2 (6.84)

Now as was already mentioned, X satisfies the classical equation of motion for an oscillator

with the given parameters. So we need to solve

X"(rù+k2(l*eeq)X:o

X(rto):t , X'(qo):-ik (6.85)

The solutions are written in terms of Bessel functions:

/2k 
eor/2\ * czJ-z¡n ('r "rr,r1 (6.g6)x(rt)="rJ,#\p 

/ o \p /
To fix the constants c1,c2 consider that the initial time is [o -r -oo; unfortunately the

complex index Bessel functions oscillate infinitely often as their arguments appro ach zero,

and so for now we leave ?o unspecified. In that case we can calculate2 c1 and c2; the final

expression for X becomes, with

2k 2k pno/2z=-
"on 

/z , zo: -€
and Bessel indices labelled by u =orOf , ,; 

o

x(n) : ]*.n'# {,"'"''ln',, ßll lß, j:tÀl\ (6 82)

In the limiting case of 17 ---+ oo (with To + -oo) we can use first order and asymptotic
expressions for,,I and./'to write (which defines the phases 0t,0r)

J"("o)

0z- 0, arg

J'"(rr) 2k

Pzo

2 ( ult r\
____:__ üws r zrlnz \ 2 4)

ry

t,(,) (6.88)

In evaluating X(r)X.(r') we obtain varioüs products of Bessel functions with their deriva-
tives (note: J) : J-,); in particular we need

2ikI+_
p

k

2i k
p

f

2i
arq--_"p2

-argf
It

provided k # 0 (6.8e)

2To calculate these coefficients the wronskian of J2;¡¡o and. J-2¡¡¡p is needed; note that there is a
misprint in Gradshteyn and Ryzhik $8.474: the relevant quantity should be jsínvr.
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Also, when calculating the Bessel products, there arise sines and cosines with argument

f?) + f0) = 2klp(eo"/z +ee''/2); when ? --+ oo and we ultimately integrate over k,

these terms won't contribute to the integral and so can be discarded. Changing to X, A
variables we finally obtain

( - "-oÐ/z lo* 
or I(k,r,r,rl*"'i

(6.e0)
We can now equate ( with the standard form (6.2) and, as before, obtain the expressions
for the effective spectral density and temperature of the radiation, (6.3). In order to use

these we need to calculate the dissipation and noise, p, and u.

We first evaluate p as given by (6.90); substituting it into (6.3) will then give us the
effective spectral density I"n(k,,E). Define

o : ?("c"tz-"or'/z\ -  
"ol/zrh+ (6"91)p\ / p 4

To proceed, we need to specify a form for the spectral density. This has been calculated
in [2], and in 3*1 dimensions it is

I(k,r,r): # (6.92)
+7t'

where c is the coupling strength of the detector to the field. Then from (6.90) we have
-2

tl : -fie-oElz 
Jr* 

or lcsinolc

c2 
(6'93)

: 
4n2e-cD/z 

16'(o) (6.94)

where the last result follows from (,{.11). Substituting this formfor ¡L,into (6.8) gives the
following result:

1"6(k,Ð) : c2 lc

-=€4tr'¿
-3pÐ/2 (6.e5)

Evaluating the noise kernel u is a more complicated affair. From (6.90) we write

*u", l"* d,k lc cosok roth2nk
p

: fi"-o'r'l#rr,") * ) - #*.n'îl tu nul

where again the last result has been calculated in appendix A. Upon substituting this
into (6.3) and replacing I"g with the appropriate result, we obtain

c(k,E) : # l:da cos ntfrl¡,¡
- h l]*0" cos kÂ 

[.,.h, + - epEcsch2 (e,zrz,, +)] (6.e2)
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The first integral can be done by parts to get

[* oo .o"ntlr1lo) : [* oo $.o. ntlr¡¡"¡
J -æ O,O J -æ O,O dO

l:+*[#""'*"1-PV
4trk - 2rk_ coth _pp

The second integral in (6.97) does not appear to be expressible in terms of known func-

tions. Suppose we call it B(k,p,D), and write

B(k, p,E) : z 
lo* 

oo cos ka l.r.h' + - eoÐcsch2 ("0'r' " +)] (6.ee)

Then we have

(6.e8)

(6.101)

c(k, p,E) - eo> 
lå".,n '+ - fi¡"-,, a&, p,D)f (6.100)

We need to examine the second term in the last brackets. The function -B tends to
zero for large k (by Riemann-Lebesgue), and attains a maximum at k : 0 (since the
cos term stops oscillating there). However, numerical work shows that this maximum
value increases roughly with ept which means that on first glance the second term in the
brackets won't necessarily vanish at late times (X -+ oo).

So we need to examine the value of B at k : 0 more closely, to see precisely how it
changes with Ð. To this end we can consider plotting a graph of B(0, p,E)-vs-ept and
analysing its concavity; i.e. with r : ¿oE we need 02Bf 0r2. Differentiating twice under
the integral sign gives an integrand which is everywhere negative, and so we conclude that
02 B f ô* ( 0, which means that B as a function of r is everywhere concave down. But
B increases with r, and thus B f r : ¿-cE 3 --+ 0 as Ð --+ oo. In that case the second. term
in the brackets gives no contribution in the large time limit.

Finally, from (6.2) \4/e can write ( in a form which reveals the thermal nature of the
detected radiation:

(: l,* dk 1"fr(k,,Ð)
4ePÐ - 2trk

- 
coth cos kL - i sin kApp

The temperature of the radiation is now found by equating the coth argument,2rlcf p,
with the coth argument in the noise termfor static coherent oscillators, klQT),giving:

p

4tr

o9o()

T (6.102)



Parker metric with alternative tirne

Inspection of (6.90) suggests that an alternative time variable can be chosen

t:2 ¿on¡z
p

The metric becomes

ds
4a6

p't' d* -\a2(dxi)2

with

(6" 103)

2
(6.104)

a,:r+t! (6.10b)

Again following the previous formaiir;, *" u..ill at a description of the environment in
terms of oscillators, this time with time dependent mass and frequency:

pt*:T , 4aale2
)u) (6.106)

P2tz

Solutions for X in this case follow through from (3.20, 3.22,3.23) and are the same as

before, and all the calculations carry through in much the same way. With now D and A
defined as mean and differences of f and ú/ we again arrive at thermal forms for the noise
and dissipation:

l"*( - "-oDlz
dle I(k,s,s')

a4þÌ) = .l I epon *

="t(n)

n*l^
cos,bA.oth'"o -isinkAp

(6.107)

and the detected temperature is the same as in (6.102).

6.3.1 Perturbing the Parker metric
We now want to perturb the Parker metric (b.1) by writing

on(,ù :1 * exp ll"' of,l a,] (6.108)

and then seeing whether we obtain a near-thermal spectrum characterised by the param-
eter

h
p

(6.10e)

If we expand p to first order in r [with po = p(0)], and also assume hp|q, ( 1 (as well as
the usual hpon K 1) we arrive at:

p2
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As before we need to solve for X from

X"(q)+ k2[rlepon + ó(¿á)(?)]X:0 (6.11i)

Since we are only perturbing our original X, which \rye now call Xe, we change this last

equation slightly to make it resemble (6.85):

X"(rt) + k2(t I eeon)X : -k26("t)Xo (6.112)

We can solve this last equation by the method of variation of parameters. First we

postulate a solution

x(ù : T,þùJ+ ('!*',,'\ t n(rùJ-,¡r (4"^,r,\ (6.11r)6\po / '¿\t/ ã\po /
Variation of parameters then yields the following results ffor c1, c2 approximately the
same as in the Xs case, i.e. (6.86, 6.87)]:

tr(q)

'Yr(n)

J -",r
irlc2 , 2trk

Po Po

2k 

"'o' 
/'

Po

2k 

"oo"/,Po

t: 6(a[)(r) Xo(r) dr t ct

ó(¿fi)(r) Xo(r) dr I c2 (6.114)

po

-irk2 2trlc_csch_
Po Po

From this one can in principle calculate X(r)X.(r') and hence ((r,r').We can immedi-
ately see from (6.110, 6.114) that the spectrum perturbation is again proportional to å.

Horvever, rather than pursuing the details for this model, it is more instructive to consider
a similar perturbed model in an inflationary universe, which has more astrophysical and
practical importance.

6.4 Inflationary flniverse

6.4"L Eternal versus Slow-roll Inflation
In this section we consider particle creation of a massless, zero temperature conformally
coupled scalar field in a spatially flat FR;W universe undergoing a near-exponential (in-
flationary) expansion. The example of de Sitter space which corresponds to the exact
exponential case has been treated in [2]. Here we frrst solve for a general scale factor
ø(ú) using a slightty different language from [2]--our approach is that developed in this
thesis" We then specialise to a spacetime (the Brandenberger-Kahn metric [b1]) which
has initial de Sitter behaviour but with scale factor tending toward a constant at late
(cosmic) times. We can also define the parameter å which measures the departure from
an exact exponential expansion.
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The calculation has been done for arbitrary temperature in appendix F. Set 7 : 0 in
(F.15) to get the following equation [where rly are defined in that appendix, eqn (F.6)]:

(6.1 15)

This equation is the main tool of this section: it allows us to compute the spectrum

corresponding to an arbitrary scale factor. For example, in the de Sitter case with a, : eHt

we use
2e-HE

c:+1"_l*

r : 2eHD.rr 
äA

2

which when substituted into (6.115) gives

dL
v

Ak

:x

cos

v
HAsh_

2
(6.116)

(6.1 17)

(6.1 18)

H

C : cothf

So for this case we can infer the temperature seen to be

p
4r

--H
2r

as was calculated using a slightly different approach in [2].

As an aside, we note that from the above analysis for a general scale factor, the noise

kernel is

, : -'-' [* ¿t cos ka [* l lcos fral da
rr Jo Jo Lda , l¡ (6'119)

with dissipation
e2ó'(L)

(6" 120)

An often-used alternative to our principal part prescription is the introduction of
a cutoff in the ff expressions; unfortunately following this procedure doesn't leacl to
tractable integrals even for the relatively simple de Sitter case.

Note that in equation (6.115) for the temperature in the general case? we are essentially
dealing with products of ø and 7, and it's therefore not surprising that for de Sitter
expansion, where a x. If r¡, that (6.115) can be äone analytically. For other forms of a,
even very simple ones, (6.115) becomes very complicated.

6.4"2 Near exponential expansion

In this section we consider the case of a near de Sitter universe with a scale factor composed
of the usual de Sitter one together with a factor that decays exponentially. We show that
the spectrum seen is near-thermal tending toward thermal at late times.
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We start by considering the Hubble parameter to have a constant value (characterising

de Sitter space) plus an exponentially decaying term:

H(t) : ¡r' (t r o,e-Ênot) (6.121)

and from this ou aim is to calcuiate C using (6.115). The scale factor then follows:

(6.r22)

'We can define a parameter å which measures the departure from exact exponential ex-

pansion to be

h(t) = ffi -+ -aBe-ÞHot as Bt--+ æ (6.123)

and as we might expect it decays exponentially at late times.

To proceed we indicate the de Sitter quantities by a subscript zero as well as writing

Í:ãoÐ ; Ã:øoA (6.124)

a(t) :"*n (ø., - \U;au")

so that from (6.116),

*o :2"1 th\= ;
2

We wish to perturb these by using the new

^-aÍt: -; e
p

(6.125)

(6.126)

(6.127)

(6.128)

(6. i2e)

2e-D
Ao H

scale factor"

"(r-É)E "6
(r-p A

2

-BE "h 
(=)a

"h+

Ãsh-
2

Suppose we write

r : ,o(r + /r(t, Ã))

a - uo(1 + /r(t, Ã))

We first have

In the late time limit we can approximate this by

x : a(t) -f a(t,) - "Hot-þe-u"o' 
+ 

"Hot'-þe-Fvoy'

2arryro-T

Then fi follows

¡t dt,_
It, a(t)

li, "*, (-r* * i"-0,,,)

Next we write

a:q(t)-ry(t')
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and by making the same late time approximation as for r we get

1 -þHot

- rlc
and so write, to first order in fi, f2:

*dA d coskA

dL

-2k sh sin kA 1

Ho(t + p) sh'?fchf 1+P

(6.131)

(6.133)

,h ß1PA cos kA

.h'f rh f

y-

-4

a.*p"

This leads to

{ - o "-þl th gryÉ
r': Pç1¡B1Tí (6'132)

Note that at late times fi,f2 tendto zero. In that case to calculate C we write (6.115)

in the form

l"*#,[î3,'-o)] +C

Uo dL rs
(6.134)

-cothÍkf Hs =ac, the perturbation

Evaluating AC is lengthy but straightforward so \\¡e merely write the answer in terms of
an integral:

'=#1"

AC:

4 f*d,Ll" d cosle\, , d frcoskAl

"k Jo 
^ 

lt'd.L ," - dL ., )

dL

_, 2k ch HE sin kA G - Ø sf' ftt'E cos kA-ri.-;h,T.h+--@
(6.135)

The important point is that the factor 
"-Éi "rrrrrres 

that this perturbation to the thermal
spectrum dies off exponentially at late times.

6.4.3 Brandenberger-Kahn model
We are now in a position to derive the function C(lc,X) for the Brandenberger-Kahn
model. In this case,

a(t) : ¿'4J (r-"-",r,¡ (6.136)

with fls, a constants. As f tends toward zero and infinity, a(ú) tends toward eït anð. 
"zH/arespectively. The Hubbie expansion function is

H(t¡:!:Hoe
o,

(6.137)
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and the parameter å(ú) which measures the departure from exact exponential expansion

is 
t-H(t) û att2 -0n = ffi: -ù""t' : ñt o(o2t2¡ (6.138)

We assume that lo¿l < 1. Equation (6.115) is much too difficult to evaluate analytically
here, but we can get some insight by calculating it as a frrst order correction in å, to the

de Sitter case.

At this point, we also mention an alternative perturbation of de Sitter space) given by

the scale factor

a(t) : "lir(r)¿, (6.139)

which describes a solution of the vacuum Einstein equations with a time-dependent
cosmological constant 

^(¿) 
: 3H2(t). One may expand 11(t) in a power series about

ú: 0. Defining å as in (6.138), this form of perturbation turns out to be identical to the
Brandenberger-Kahn model to first order in å. We have to first order, from (6.138),

H(t) = Ho + HSht (6.140)

We will therefore calculate the detector response for the Brandenberger-Kahn model only,
keeping in mind its correspondence with this last model.

Again define h,fz as in (6.126). The corrections are then written as

/,(^) : *lt, - ++ rÃ,r +]

r,(^) : *lft+ 1) (Ã..th + - ,) - (t, * i)] (6 141)

After some computation we obtain

C(k,Ð): (1 + hf1) cotþ 1!
Hs $'r42)

a form which shows its approximately thermal nature, with

-i¡e ñ
l. - 

uH.,-d-'å+(i+,) 
|'-(,,ff) ?Ëç$,] (6 143)

(As a function of klHs the unevaluated integral looks much like tan-1, tencling to rf 2 as
klHs ---+ æ.)

In the low frequency limit the departure from a thermal spectrum is, to O(k2):

år,-¿l¡+r-(t +2tr) (#)'f-0, (6.144)
L
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Note that we stipuiated that låtl - lo¿l < 1, so that Al1 remains small as time passes.

In the high frequency limit bhe departure is given by

å11 -+ -2hl "-tk/Ho
rk__1
Ho

(6.145)

which again remains smali, and is especially close to zero for high frequencles"

6.5 Conclusion

The influence functional approach to thermal radiance is useful in that it places the

origin of the radiance in the excitations produced in the vacuum by a detector, and allows

these excitations to be described in a statistical way via the noise and dissipation of the

environment.

All of the variables which characterise the models we considered, whether mirror tra-
jectories, spherical infalling modes or cosmological scale factors, have had one thing in
common: they all contained an exponential growth in scale. This is what gives rise to
the Planckian spectrum of thermal radiance, and by specifying the parameter h which

measures any departure from an exact exponential transformation, we have found pertur-
batively that the departure from a Planckian spectrum is just proportional to ä.

We reiterate that the statistical approach can quite adequately cover more general

cases of scale transformation; but the calculations appeil to be only straightforrvard for
exponential ones-see for example the discussion on page 86 concerning the de Sitter case

in equation (6.115).
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Appendix A

Calculation of noise and dissipation
for a static oscillator bath

We wish to derive the noise and dissipation corresponding to a bath of static oscillators

with unit mass at arbitrary temperature" The spectral density has been chosen to be

ohmic:

I(u,s,"') - "o 
ø c(s)c(s') (A 1)tlT\/\

To calculate X(s), note that each bath oscillator has lagrangian

L(t): [q' - ,'q']1

2

and from (3.20, 3.22,3.23) the sum of its Bogoliubov coefficients with t; : 0 is

X(s) - e-'"

(A"2)

(A"3)

where we have chosen K : u) in (3.23). Then from (3.32) the dissipation becomes the
distribution 

, ,\ -2-ro¡;(s,s ): ,t c(s)c(s') 
Io* 

,sinø(s - s') d,w (4.4)

This integral tends to be seen as obscure, and we will flrst devote some explanation to
calculating it.

Principal part formalism

To calculate the above integral, we first consider the meaning of

fo* "nr' 
dk
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We can calculate this using a real variable approach as follows. First, we define

"i(r*ie)'k 
¿¡,

i
z lrm

" r*ie
: Iim "å- *i lim -= (A.6)e f'¿+e2 e e __rÇ

ãã
Now we introduce a finite support test function T(r) and integrate L1 and L2 with it in
turn, freely swapping limits and integrals where necessary. First .L1:

llrø¡t{x)d,x

lim
e+0* ]"*

oo

lim s
é

um [r(ø)t..,

- l:r'@)

.r
-t I ,'@)tan-'9 d,,lim

"12 z ) 0

-r12 r ( 0
dr

r T(0)

lirø¡ r 6(r) d,r

A similar approach gives tr2:

t: T(r)L2(r)dr ,,P/:ffi0'
,'I"i/: +l',*|,*lHo.
ri5"A1.[dtto] ffi o,

rimrimll_:. l,-lffidr*rim nf ll,ffio.
ru/: M a,* üm re) hm ïnAh o.

tu /: T-(Ð ¿*+ Iim r(o) Iim l|r"o' ¡ ,\]'_,

'u/: 
T-@- a,

Il_rA¡ Pelr) d,x (A.8)

(A.7)

(A.e)

We frnally summarise:

[* 
"no, 

d,k: 16(r) +; e$¡r¡
Jo

Note that the principal part distribution has effectively been defined as

P(tlr): lim -1 -' e*o* 12 + e2
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and just as the delta function can be visualised as the limit of a sequence of, say, gaussians,

so the principal part can be visualised as identical to 7f r for r f 0, while continuous at

r : 0 and equal to zero there"

Having said this, any impulse to treat P(tlr) just like If r can give wrong answers.

In particular, does dldr P(llr) equal -P(Il12) as is claimedin [52]? We need only test

this by integrating each of these with a test function, say e-'" , for r : -oo -+ oo. For

dldæ P(Ilr) the integral converges; for -P(ll12) it doesn't. So these two distributions
are certainly not the same.

p and u frorn (A.9)

Differentìating (4.9) w.r.t. ø gives

l"*
d

I-t. dr
(4.11)

(4.12)

u)et" da: -ir6'(r) P(Ilr)

The dissipation then follows straight away

p(", t')
_)^,-: +c(s)c(s')rm lo* 

,"n,r"-"') d,u

: 21sc(s)c(s')ó'(s - s')

This form of the dissipation is called local; it is physically reasonable and justifies the
choice of the spectral density, as well as simpiifying subsequent calculations.

Calculating the noise is more difficult; from (3.82):

u(s,s') : /-.oth #r@,s, s')cosr(s - s,) da

: ryr(")r(") 
lo* 

øcoth ft"o"ø(s - s') d,u (4.13)

This integral can be calculated by first expanding the coth term, with A : s - s, for
brevity:

lo* 
, coth 

ftcos 
øA 

^ 
: 

lo*
- ø cos ¿¿A

c¿ cos c¡A d,w * , l" Ar- du (4.14)

I1 I2

Re u.í'L d",

ft'ç'¡t¡
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which is a distribution identical to -If L2 for A f 0, but is continuous with an upward-

pointing spike at A:0. Also, 12 becomes

h: L - n2T2csch2 rTL, (4.16).A

and so we arrive at the general form for the noisel:

z(s, s') - 21o 

"(").("') ilfL
d PGI^) 1t*r 

62-tr
2T2csch2 rTL, (A.20)

dL

This expression is nonlocal: that is, this is an example of the presence of weak damping

without an associated Markov dynamics. Normally it's assumed that weak damping

necessarily implies Markov dynamics [55]. Here we see that this needn't be so.

When c(s) : 1 we can show this expression for the noise becomes the usual delta in
the limit of high ?. First, we notice that as 7 -+ oo, dld\ P(llÐ +IlL2 becomes

Iocalised at the origin, as does the csch2 term. If we then integrate ,(L) : z(s, s') with
a test function we get

[- l(n),(A) da : /(o) /- u(L) da
J_*" '\ / ur-,J__

lln reference [53] Boyer calculates L = -ll L2, contrary to the usual approach of using generalised

functions, and concludes

^æ

J, 
duucoLhfiro"r\,=:¡r2T2csch2rTA, (4.12)

This is manifestly wrong, since we expect 11 to be a generalised function. Further, we can show it is

wrong as follows: first, introduce a test function, 
"uy "-a', and integrate this with the noise by swapping

the order of integration:

I:r^ ,-n" Io d.u u coLh ft cos,L, = l,* o,ø corh # I:dL, e-^" cosøa

lo* 
o,øcoth ftn I:r""-a2+iua'

6 lr* 
d,u u cotttL"4 (4.18)

This is finite. In contrast, Boyer's result (4.17) giv s

Lr" "-o' lo d,u u coth fr; "o"ra' = -o272 l: r^ e-a' csch2 tr L, (4.19)

the integrand of which is an even function, everywhere positive, and divergent at A = 0like 1/42; so the
integral on the right hand side of this last equation must diverge, which we know is not true. Hence (4.12)
rs wrong.

Note that [54] has essentially arrived at our result (,{.20), although there the principal part notation
has not been taken advantage of, and instead the answer is expressed in terms of the limit in (4.10).
This is not really useful, missing as it does the utility of the principal part formalism.
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0f 2'Yo

7t
)

)

)

Pr.l^)-i* rrcoth"ro]:

a%r 6(L) dL

: awTf(o: Il*¡r"
and thus for 7 -¡ oor

z(A) : a%r 6(L) (A'21)

which is the well known form for white noise.

Evident here is a convergence subtlety that is not being addressed, since ? appears in
this expression for the noise. The usual approach taken in deriving the high temperature
form offers some help here'and is as follows. From (,{.18) we write (with c(s) : 1 1o.
brevity)

u(s,s'):+ 
lo* 

,cothftcosu!, d,u (A.zz)

Now strictly speaking this integral is only defined for some frequency cutoff, so we write

u(s,s') :+ 
Io'^* ø corh ft"oru!, ú,t (A.23)

When Ø.,,.* ( 7 the argument of the coth will always be small, so we can approximate
it for small argument and write

u(s,s,) = lt fo'^* cosuL du (A.24)

Then as Ømax --+ oo this tends toward 41sT6L,. So this is the condition (at least a sufrcient
one) for which r¡¡e can use the delta function as the high temperature noise:

@-.* ( 7 (A.25)

Although we have calcuiated the noise explicitly in (4.20), in fact it turns out that this
form can be difficult to work with analytically. Actually, in appendix F we do make
use of this explicit expression. However in chapters 4 and 5 we work with the original
expression (4.13) as an integral over ø.
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Appendix B

Calculatittg the relevant lagrangians

This appendix derives the relevant cosmological lagrangians we have used.

We always deal with a spatially flat FRW universe, containing a scalar fleld O of mass

rn, coupled to the curvature by {. The lagrangian density for this field is

t : + ln,'r,re,, - (*' *€r?) o'] (8"1)

We calculate the lagrangian first in conformai time (' : dldn), then in cosmic time

(' : dldt).

Conformal time

The metric is

ds2 : "'Ø) dn'-Ð(¿r)' (8.2)

For the FRW universe, R:6a" 1a3, and by rescaling the field with ¡ : aQ we obtain a

new lagrangian density

L :rlr'' -Ðx,? -z{xx' - x' (*"o' - # + 6e+)l t" tl

We wish to place the field in a box of side .L, and express ¡ in terms of plane wave modes q.

Fourier expanding gives

x(ry,x) : rE Ë qr(q)"nk* (8.4)
I tc¡,lcg,Ær=-6'6

where the normalisation will be justified iater. We can split the field into two sets, one

with positive k,'s and the other with negative (discarding k" : 0 as we will take the
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continuum limit eventually) and write

x(ry, x)
T2l* t D qr.(?)rnu'"+q-u(n)"-'k'"

æ

k,2o kr,lco=-6

-.-
: Lk>o

(8.5)

(8.6)

(B.10)

: tE" 
">-rr. 

* q-t) cos k' x * i(q¡ - q-t) sink' x

: ,[l"Aqf, cos k 'x * ø¡ sink'x

As an aside, given the normalisation we have chosen in (B.a) it follows that we can second

quantise the modes by taking ,'; : Jþ.þ ¡ yn2 = fkz ¡ *z urr¿

e-i.n A, eirn Al
(B.7)8u 2\/u

q-k
2Ju)

Then (8.5) will become

I -ik.x-iun ^
x(n,x) : tr "rD,.d 

*h.c. (B 8)

which is the usual expression in terms of raising and lowering operators. This last expres-

sion is the starting point for appendix E"

Now, to calculate L(rt): I L(r)d3x, we need expressions for / x2d"r etc. Write x in
terms of reai modes, (8.6), and use

[" ,o"k ' x cos L .x d}t ¡L 13

Jo ¡sk'x cos/.*d"r: 
Jo sink.x sind.xd3r:îUu,,

¡L

J, cos k . x sin I-x d3r :0 (B.g)

so that after some straightforward calculation we obtain

" ,"d,"*: Ð q[.' + ql' =Ðq,
k>o

which motivates the original choice of normalisation in (B.a). Similarly,

I"

X,,d"':Dq,'
¡L

J" D,x,? dst :Dk"q"
lo" rr'a,t* :løQ' (8.11)

Now it becomes a simple matter to use these to calculate the lagrangian from the density
(8"3), and we merely state the result:

L(ù :)- I |"0" - 2o' /
, - t- z L" - o-qq' - n' (r' r m2o2 - # + 6€l)l 

r B.r2)

l"
L
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Inside the brackets we now add a surface term of 6((q2a'la)'to eliminate the a," term,

which now leads to the final, new lagrangian:

1,".(,t): t ilr'+ 2(64 - r)Inn' - n' (r' + *'o' + (64 - r#)l (B'i3)

This becomes, for a massless conformally coupled field:

L,"-(T) :U,rlø'' - t'ø"f (8.14)

and for a massless minimally coupled field:

1,",(t): t ilr, - z{qq' - n' (r' - #)) (B.15)

which has the de Sitter space form:

L*"-(n): r ilt'+?qq'- r'(r' - å)] tB 16)

Cosmic time
Here the metric is

d,s2 : dt2 - a2 (t)Ð(¿ro)' (8.17)

The calculation of course follows through in much the same way) except that the Ricci

scalar is now R: 6(à2lo' + älo). The lagrangian density (8.1) becomes

L--+
[0, - "L,+e,? 

- {*' * r, (5- ;)} . 2 (8.i8)

'We 
choose not to scale the O into a X as before, since doing so turns out to produce a

more complicated equation of motion (i.e. now we are just expanding Õ itself in plane

waves). The lagrangian becomes

L(t) :Ð+ln' - n,{# - *' + r, (#- ;)}] (B ,e)

Now we add a surface tenn6(f a3 dldt (o'ìrq') within the brackets to remove the ä:

1,".(t): D *ln + n¿!n4 - n (5 r m2 - rr5)l tB 20)

These lagrangians are used in the body of this thesis, although there the "new" subscript

has been omitted.
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Appendix C

Calculation of a, n chapter 4

de Sitter with high temperature

Here we evaluate the ø¿¡'s leading b (a.72). We are using the foliowing small z, ( approx-

imations:

i, j's i

Firstly,

Im [x(z)x.(O]
Irn X(z)

Im x(()
kn X(z)

4cT

Im X(z)

(;)

deK

1"",*
-" Im [X(z)x.(()]

z+O
=: cos ( - sin (/( * O(22) = /, (() * O(22)

"'e=o (-(, + ," lÒ ls

=3 zþosU(*sin() ="fr4)
z,(+O t ,

-) 
zlç

-" I- [x(z)X"(()) n"*'r' u(ç (')(" \" l- xrc')
-ç \- ) t^ x1,7

(z\" t x(0
\c/ r x(z)

de rca"-'(-(' + ; lÇ ,()

(c.1)

(c.2)

atz : 
r!, 1"", 

¿( 
I^". 

¿( (:)
1

-(

t:

provided c <I12. Finally,

o,¡o: \1",*2k

: zcr 
1", 

aç

ryá((-r', (å)
1Im x(()

Im X(z) _C

dC l(l-2c-r flî) r' +

o( "rvrll.,
: cT Olz¡.+t

o( cTlzl2"

kn X(z)

l-2c-l rt3) " rrï) +

)
" Im X((')

Irn X(z)
t

v:: cf Oe)
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de Sitter with finite temperature

We leave the frequency integration until last:

u: 2c 1 f- ,tÐ
;G J" c¿ coth ¡ cos'(s - s') du

2c ka f* ,^;R J" dùôcoth ft."',;,((-(') (c.4)

The ø;¡'s are

att : ,7"4 [* *ô coth * "" rJo 2T

1,", * f ,", ü' l(l-"-'t'

= 111

Ql-z :
2ck 

¡* dû, ù coth?kit Jo ';f;'(,nr)'

1"",* I,',4' l(l-,-'t'
Im [X t

cos ô(( - (') l('l-'-'t'
. (()l Irn X (')

Im X(z) kn X(z)

dzz : ,"t4 [rJo
oo ,^.1^.. wtu

d,aacot,h 
- 

x
2T

1"", 
oe l"',ü' ,rr,.-'''ffi cosô(( - (') l('l

= 172

=122

ù^o, K. -Il^
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-.-r¡rIlr.' X(e')
Im X(z)

Using the expressions from (C.1, 4"65) the first of the inner integrals becomes

rtt : l": * Kl.-r/, f,rOll"^ dÇ, cos,¡(( - (,) l(,1-"-, /, r,K,)

* 
l^" 

d,(' cosûr( le'f"-'/2(-(2 + z3lç)þ]

n l^" 
o, l(l-"-'/'(-(" + ," ¡ç¡ßll":d,Ç' cosù(' l('l-"-,/, r,(e,)

, + 
I^" 

Or' cosô(( - (') l('l-" -L/2(-(t2 + * ¡ç, ¡Z¡f

We now have a difficulty. In order to get a reasonably useful analytic result, it will be
an advantage to replace the cosô(( - (') term in the fourth integral above by something
simpler' We will have competition between ô increasing in the frequency integral versus
z decreasing in time. Suppose then we use a frequency cutoff u)max" In that case we can
approximate cos'ù(c - (') for (,(' x 0 by choosingôs^o, such that cosô(( - (,) = 1 in
the fourth integral. This will be true provided

(c.5)

(c.6)

(c.7)



However now we don't expect our result to necessarily agree with the high 7 result found

in (4.71), since there we had taken ù^n, + oo, which was made possible by the use of the

delta function.

At this point we refer to the discussion of the high temperature limit in appendix A.
There it is shown that the high temperature (delta function) regime is that for which
e^o, K. T and ernax -4 æ. This absence of a cutoff in the high temperature limit is

usually not stressed, but it forms the most relevant fact here. In general we must impose

a cutoff for all finite 7 values, otherwise the frequency integral is not well defrned-unless
? -+ oo. So we conclude that the regime for which our analysis is valid here is T S ,^o,.

With the last cosine set equal to 1 as before, these integrals are all O(1) and therefore

so is ø11. Next:

In

Evaluating these integrals gives [2 : Ql2l-c+t/2 so that at2: Olzlt/2. Lastly,

l"^, * l(l--'-'/'f,@ll":d(' cos û(( -(') l('l-"-' /'r,(('),

+ I' d(' cosô( l('l-"-t /'rl('f

* I^ oe vl"-'/'(-(' + ," ¡ç¡ßll":d(' cos ùe' rc'a'-'/'f,(c) "

* l^" 
d,(' cosù(( -(') l('l-"-'/'"le']

l,:0, ßl-'-'/'r,ro..ll", d,(' cosû,(( -(') l('l-"-' /" f,((') ,

* 
I^" 

d,(' cosû( rc'a"-tl'rl(']

* l^' 
o, lq-'-'/',1(ll":d(, cos ,i(, lç,1-"-,/, r,((,),

* l^" 
d(' cos ô(( - C') l('l-"-' /2 r l(

Olzl-z'+t

Izz

(c.s)

(c.e)

so that azz: O(z)
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Appendix D

Calculation of o,ij', in chapter 5

From (3.49) it's apparent that the first thing we need to consider is an expression for the

noise. Comparing our bath in (5.6) with (3.2a, 3"35) we find that our noise kernel is

u(r,r,):2Jgot/"çr)ar/2(r,¡ 
Io* 

,cothftcos,(r - r,) d,, (D.1)

where the initial temperature we use is

T¿: MnH (D"2)

(where Mp¡ is the Planck mass; this form for the temperature follows from one of the slow

roll conditions for inflation:

H2-9 (D.3)
MtH

together with the potential's being y(O) - Tf at the start of inflation).
The noise kernel is formally infinite, and so we must find a way of regularising it. As

noted in section 5.1, the bath is equivalent to a massless, conformally coupled scalar field
(call this field ¡) in an FRW background. We show in appendix E that the above noise

kernel is directly related to the two point function of this field. We can therefore use

known results for the regularised two point function to deduce a consistent (regularised)
expression for the noise kernel. For this vge will make use of Vilenkin and Ford's result [b6]
for the two point function.

So, from (D.1, E.8) with ar/2(r) : Ll.\/-Hr we have (with ": 1'¡,IH)

u(r,r'): SçX),y^v rr' (D'4)

so that
8rc

l'l
u(r,r) :
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Now, choose a cutoff LD^o, iÍr the noise such that u(r,r) can be equated with Vilenkin

and Ford's regularised (X2):

u(r, r) '=u #, fo'^* r¡ corh ft a- required to 
(D:u) 

ffi ,\r"l ,", (D 6)

But
Î@nøÍ t,t

J, øcoth *da=
,

w^o"

2

o'T:
3

(D 7)

(D.12)

so that
, ,2 *2ry.2

ff+?=8tr2(y2),,n (D.s)

Vilenkin and Ford deal with a scalar field t/ which just equals \f a times our bath field

which is responsible for the noise. We therefore have

(X'1,"*: o,2 xVilenkin and Ford's (rþ') :# - # (D.9)

So (D.8) gives (with (: kr)

uz^o,='#-ry (D.10)

At late times the second term will dominate; we ask for the time at which this begins to

happen. All we need do here is to set the two terms equal to one another and solve for
the time. Using a value of [29]

Yt = n' (D.11)

we find that the terms are of equal size at around 8 Hubble times after inflation begins.

Before this time the temperature term dominates, while afterwards the scale factor has

grown large enough for the H2a2 to dominate the cutoff frequency. In that case we divide
the time into two regimes, each with its own @maxl

u2*
'# = QT¿)'

I
3¡¡l3

H2a2

0<ËIf58
8<Ht

where in the late time regime we have replaced the result from (D.10), llr, by a sym-
metrised version: IltG¡. We now use this frequency cutoff in (D.1) to calculate the
noise in each regime, and these will be labelled /qs and ¡z¡.s respectively.

It's not clear that the noise kernel (D.1) describes a bath whose initial temperature
is falling exponentially to the de Sitter temperature. This is because the noise has been
expressed in conformal time. In appendix F we reexpress it in cosmic time, and show that
it does have the expected behaviour.

106



Before 8 Hubble times. Here rÐ*o" - 2T¿, so we replace the coth term in (D.1) by

2T;f u, integrating up to 2T¿ to get

4ctc2T¿ sin [?(( - (')] (D.13),."((,('): ?rJ(( \-s
In terms of cosmic time, this noise can be written in the following way. Working in terms

of sum and difference coordinates of two cosmic times s, s', we define

t=4# ; D=Hs-Hs, (D.14)

so that after some algebra. we can write

v<a(e ,(') : ?H'"To 
"

ffe-s shf;sin
2S (D.15)

sh )

For some fixed ^9, if we consider the noise as a function of D, we find that it oscillates

more and more rapidly as D increases. So we model this noise by a top hat function of
height 

a
,."(D - o) : acq Tl"s7r ' (D'16)

and haif width determined by the sine's argument equaling z', which leads to

DholÍ t;drh :Zln Hres
__l-
4T¿ |

-Ifs

H

(D.17)

(D"1e)

Over the period ,S : 0 --+ 8, this half width increases from about 0.002 to 3 Hubble times.

After 8 Hubble times. In this regime umac * (3rr')-r/2, so set the coth equal to one

in the noise and integrate to u)^o,. Defining

t rlrl
^-ln-T-T

2
(D.18)

we have

2c cos-A-1
\t/3(E2-L2 /4\

A
u2a(rrr'):

rL, _ Lrl+

Again, switch to cosmic time S, D variables via

A : T-T' e-H t' 2

H H_
-e D

+

E
_p-s - D(, Ir')12:+coshf
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A plot of z;,s(,9, D)-vs-D looks much like a sinc function, decaying after a characteristic

time of about 3 independently of the value of S. So again we model the noise by a top
hat of half width 3 Hubble times, and height given by the noise when D :0:

*# lDl <g
o 3<lrl

Switching to cosmic time sum and difference variables S, D, allows the noise to be modelled

by a top hat, which would not be possible using conformal time sum and difference

variables. However the price to be paid for this simplifying of the noise is that the
integration becomes more complicated when written in S,D variables.

To calculate the a¿¡rswe use (3.49, 4.65), so that the general expressions are

crt
*2c.i

d(' f'(() ,(Ç,(') /'((')

Qtz

2k2

(ro")'
lc2

a^z'"
2k2

üzz

where fy, f2 are given by

/,(0 = t-et-"I- lå(;l{:tcil ; r,(o= (-0

d( fr(() r((,(') fr3')

d( f'G) r((,e') fr3')

1"",0* h() u((,e) r,G')

Io' or' k'"-'s fr(e) ,G,() rr4,)

(D.21)

(D.22)

(D.25)

(D.26)

"-" frî) r((,,(') /,((')
(D"27)

u2g

1,", 
* 1,"

l'"' 
o( 

I'"'

1,", 
* 

1,",

-"Im X(()
(D.23)

Irn X(z)
We will calculate ø11 showing the steps of the calculation; ap and a22 follow in exactly
the same way, and so only the results of these will be shown.

Since we will be integrating over cosmic sum and difference coordinates ,9, D, we start
by writing the region of integration in these variables" Note that although we're using
5,, D, we will continue to use (, (' .t shorthand for the corresponding expressions [see (b.b1)
for the definition of r]:

( : kr : #"-'" - -"r-s-D/2 ; e' : -"x-s+D/2 e.24)
Then

t?" rzatt: fuJ",0(
"?" rt: fuJ,o'

Since the domain of integration is a square in the s, s' plane, the new axes of S, D are at
a 45o angle to the s, s' axes, breaking the integration into two regions:

ctr,L: ##11"""' ot l::,d'D + lï,,,.t l1,ii,'-',,,0o]
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Introducing the two different noises further increases the number of integrals, since we

must now consider two regimes for the times:

att : #1/"" d,s e-2s |-roo /,(0 ,.,((, (') /,((')
rHtl2 ¡25

* J" ds e-2s 
J_rroo /'(() ,r'((,() rr?')

* ['r d,s e-2s [2Ht-2s dD fr(() ,rr((, (') /, ((')l (D"28)
J Htlz J -(2Ht-25) I

Now, consider the first integral, involving zas. Now for ,S : 0 -r 7 approximately, the

half width of the zqs top hat is on average about 0.25, increasing to 3 when ,S : 8 lsee

(D.17)]. Compare this with the dynamical time scale of the system, which we define to

be l/frequency of system as determined by its equation of motion:

x"(()*(r-2+3:+c'z) 
":o 

(D.2e)
\s/

so that the angular frequency is approximately

2l3c l c2 _ 312 J:
(2 lfl

which gives the time scale as approximately l(1, for small c. In that case, since ( :
-k I H ¿-u", ,À/e see that the system changes significantly over one Hubble time. So write
the first integral as ff : Il *fi8 and note that in the first region (0 - 7) the noise

correlation time of about 0.25 is much less than the system time scale. Hence we take the
limits of the first integral to be constant at -0.25 -i 0.25 (since this is the average half
width of the top hat for z¡s). We are effectively writing /43 âs

| 1"n r7"' lDl < o"z5

"*:t o 0.25<lrl (D'31)

The last two integrals in (D.28) can be rewritten as follows. Since both use z;s which
has a half width of 3, we can combine them almost into one; but as ,S increases from
Ht12 to Ht, the D integration covers an ever shrinking domain until the top hat starts
to become obscured, which happens when zUt _ 25 :8, or ^g -- Ht -Jl2.Taking this
into account, all now becomes

-2ca;

(D.30)

att
2H2

+

+

+

lt;

I,-

dS e-2s Ï,':,d,D r,G) u<e((,(') .f,((,)

ll,oof,(0,.,((, (') /'((')

"-" I:"dD fr(() ,rr((,(') /,((,)I"''-"''

dS e-2s

dS

rHt r2Ht-25 I
lrr-",rds e-2s l_lrrr_rqdD fr(() ,rr((,(') /t((')l
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Finally, the fourth integral in the above expression can be broken into two regions:

lHt-3/2 : I{ -l fft-stz. The reason we d.o this is because now in the second integral
of this pair, we can use a small argument approximation to the Bessel functions (see sec-

tion 5.3.1 for an explanation of the time scales involved). The expression for all which
we wili use can then be written

att
,?''z

2H' ll"'ou "
2S

-25

-2s

l:,':,d'D r'G) u<e((,e') r'G')

l_roo frt]),."((, () f,(e')

ll"oo /,(o ,,.(( ,(') f,G')

l_"oo frÖ) ,r"((, (') /r((')

¡8

+ I dse
Jz

+ ['¿s"
Js
¡Ht-3/2

+J, dSe -2s

(D.33)

The five integrals above can be characterised in the foilowing way.

1. The first has a noise correlation time (0.25 Hubble times) much less than the system
dynamical time (1 Hubble time), which allows us to extract the fi functions out of
the D integration, setting D : 0 in them. AIso, because l(l is large in this region of
integration, rve can replace the Bessels by their large argument forms which makes
the integrations tractable.

2. The ;ft's can't be extracted from the D integlation for the second integral, since
here the noise correlation time (- 3) is greater than the system dynamical time.
Also the Bessel arguments are approaching one. so that we can use neither the large
nor the small argument forms of the Bessels. Hence this integral remains a double
integral over the Bessels.

3' The third integral behaves just like the second, although of course for values of ø
less than 8 it won't arise.

4. For the fourth and fifth integrals we can invoke small argument forms of the Bessel
functions (l(l < 1, and of course for all the integrals we can take lzl < 1).

We now calculate the first, fourth and fifth integrals, and assume that the second and
third have intermediate values. In fact, for all the ø;r's the three calculable integrals are
dominated by either the first or last one, so we will assume that integrals 2 and 3 can
safely be neglected.

rHt r2Ht-25 l
+ ln'-"¡'ds e-2s l-r"'-"rdD l'(o 

"t(('(') 
/t((')l

110



First integral in (D.33) Write this as

o2co;: 
zH,

2H2

Io' 
ot n" I:,':d.D r,G) u<a(e ,(') /,((')

lo' 
ot "-'s rr((ln=o)/,(('lr= ù l:"':rdD uas(Ç,(') (D.84)

,ftr)

which can be done since we are using the fact that he system is not changing greatly

over the n ise correlation time. Hence

11) e2""2cT? Í ,^ -c "c / c-s\oli, - Ê J" 
os 

"-" fï (-"'-') (D.35)

To treat the Bessel fi nctions i large and small arg ment limi s we need the following

expressions. For large arguments:

while for small arguments

{:'i} tu-ru12-"14)

Y,(Y)

{?"ii\}
IT
le (D.36)

(D.37)

(D.38)

a'J,(a) = 1 =-#('.#r)

z+o t¡ 1
------+ ^lV 2 (cos)

,
a

2" ul ull

[We work only to leading order, but in fact the full expressions in (D.37) are needed to

calculate fu in (5.55) and also for (5.62)].

The following are the forms of fr,/2 together with what is needed for subsequent

calculations:

å(0 = l(l-"I- [x(z)x.(()] : lqttr-" (ort,l(l - azV,ll)

=3 o,ld'/'-'("r,te t +;hl"f,nte)
c'u=o 

hlcf,r-" (l{1" _ l,l,"l4-")

: lqtt'-" (o"t,l(l + "rY,l(l)
r9 oul"l+'Élrtr-" (t,ßl_ y"l(l/(sin))

e!3o 
lrl"*t l4-r.-1 /(cos)

Irn X(z)

with

/,(O = l(l
Im Xlo
Im X(z)

A1

A2

Ylrl
(cos)Ylzl - (sin)/lzl

Jlrl
(cos)Ylzl - (sin)"rlzl
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-(sin) "-9 aslzl'+t
1

,[4
1

,[4

(cos)Ylzl - (sin)/lzl

(cos)

(cos)Ylzl - (sin)/lzl
"-o, -a5lzl"+1/(sln )

03

d.4

d.5 (D.3e)
(sin)zr

(cos)f (z)2"

ForcST,z(lwehave

/r (-"'-") = -or1þ¡ "-c(t-s) 
cos er'-s (D.40)

so that we can write (D.35) as

oÍ") = 
4#! G)' |,', 

o, 
"Qc-L)s 

cos2 e,-s (D.41)

The integrand is a nonnegative, rapidly oscillating function modulated by ¿Qc-t)s, so that
we can estimate the integral as just half the area under this exponential, which for small

c is approximately (L - zc)-t 12; so that we finally arrive a

oÍt)- alzcke'(L\',
= nr, - ul\u ) Q'42)

Fourth integral in (D.ss)

4)
1

-2c.i

2H' "-" l:,dD l,(0,,,((, () f,G') (D.43)

This is

Ht-3/2
dSl.o\

.24) as shorthand. We can use the small (, z expressions

"/' d,s u l:rdD Ge)r/2-. ( ey -Þl""lea")(lf,l,- l"l,'lc, l-,)
(D.44)

t, yielding

[" ¿n - 2u@-s)(t-zc)J_s 
s)(r-zc) 

lt*r" rh (32) + Jlzl6+a."-("-s¡1s+2"¡] (D.4b)

The ,S integration is now esulting expression contains terms involving
eHt, ar'd it remains only t ,z'via

"'llrl (D.46)

to finally give

"fl : * ffi)" ",.' lr - es/z 4" n?¿'1,";: ( zls-+""-s/z-øc - y)

- gP 
þf*," (1, -,."-".-,)l (D.42)
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Clearly, lor z K 1 the 1 in the brackets dominates, leading to

o\n) = ffi) (D.48)

(D.50)

ck

3"

2
2cr

e

Fifth integral in (D.33) The last integral to be done is

o[î) = # I::_"¡,ds "-" l:::;,':,,,d,D r,G)z>a((, (') /.((') (D 4e)

This is done in much the same way as o{l), 
"n 

using small (, z expressions the integrand

is written as in (D.44), and the D integration is then done to give

l".OO : 2"@-s)(t-zO lçZUt - ZS) ("{'-s){s+z ") ¡ lz16++""-('-s)(a+zc))

- ?1r¡*'" shlu(Zftt- 2S)l
u

Just as for o[]), this can be easily integrated over ,9, and, resulting terms involving eHt

can be replaced by ,,2 via (D.46). The final expression is

,lî) æ *ffi)z "2",¡"lzlrn*7fe es/2 -6+4lt+"-nr,-u"(-r rl2- 6Ò)

- #- *(t - "-'" Ich 3z t cf u.n rr])]

: ck al ol"l" (D.51)

Comparing (D.42, D.48, D.51) we see that ø11 is dominated by the expressions of oÍ1), oÍ1)

(and presumably 
"11) 

, "l"r) 
as well), and will be a function of c with vanishing z dependence.

We expect the contributions of o\'r) ,"1'r) to be secondary to that of oft), since their regions
of ^9-integration are smaller than that of ø!1r) while the Bessels are still oscillating there.
In that case this function of c is determined by adding o[1), o11). Write

oÍ1)+ olnl:alckl =?,"-", =(-!\'+=2':' ,=f'¡1r -ø \n ) + sn2,,,r.,i (D'52)

Remember that we are considering r to be in the range 7 ---+ 14. Taking typical parameters
as ,t: 10,c: O.2rTif H - 10u, the first term in the brackets equals 107 while the second
is 0.2. In fact if c is held at 0.2, the second term will only begin to dominate when r - 22,
which is far outside the bounds \rye are concerned with. Alternatively set r : 14, the most
extreme value, and calculate a bound on c such that the first term dominates. We find
that this will occur when c ¿ 10-5 (and at the other extreme when r : T the condition
becomes c ¿ 10-3).
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Hence we take the dominant contribution to ø11 to be oft) u"d write

(4t ? I0r2 e-'al clc (D.53)

where we have set the I -2c term to be 0.6 since it depends only weakly on small c, whiie
Ieaving the overall factor of c explicitly written. Note that the term containing a1 has

been left unevaluated; from (5.53, D.39) we have

l" Ylrl z+o t¡ 1o':r,li -VrøO (D'51)

This term is very sensitive to e" .: z¿: IclH. This might be an effect which has been

introduced due to our choice of the system-environment being initially uncoupled. Or it
might be an artifact of the normalisation carried out in (3.43), since several quantities are

tending to zero in the expression for X in (5.a9).

The remaining quantities, ctr!2¡d22,t are handled in exactly the same way as we have

shown for ø11. Here we just quote the results, with numerical parameters evaluated in the
same way as \ryas done with ø11.

o'12 ru

azz ry

I}a al cklzl

0.01 of ck lzl-r (D.55)
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Appendix E

Equivalence of two point function
and noise

Since the two point function (XØ,")Xø',x)) can be calculated by taking a trace with

a thermal density matrix, we choose to work in the number basis. In that case, we can

decompose the field ¡ into plane wave modes as was done in appendix B, eqn (8.8):

xnx

We can write

(tr.1)

(E.3)

\x(n,*)x(q', *)) : t' x(rt,x)x(n',,x)prn

: D(-r#n (#*n.) *¿ (#*n.)
r (1 - "--/')Ð"-"','lnl\nlm) (tr.z)

We sum over n and note that the k,k'cross terms will ultimately vanish (see e.g. [17]),
allowing us to write (keeping only nonzero contributions from the ø, øl):

(x(rl, *)x(?', x)) * Ð (t - "-'/r) + le-i'(n-n') þrlaatlm) ¡ "i'(n-n) þnlat alfl]
u rn;k>o

1

L3 D
k>o

1

(I - e-./r)2u le-;,(n 
-n' ) ¡ ei.(n -n') -, / Tl

The symmetrised two point function is then

\xxl,u^= (xþt,*)x\t',x)) + Tt * rt' : hà: cothftcosu(r¡ - r¡')
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We now take the continuum limit, bearing in mind that from (8.5),

t
k>o k"20 l<,,lcu=-61

D

Since an integral number of wavelengths must fit into L, we must have Llc" - Lka :
Llc" : 2n f L, in which case

å: (*)'F,o'* -(*)" I*",,¡i,*,!"L (tr5)

If the fleld is massless then c¿ : l\1, and so êk : c¿2 sin 0 dw d0 dþ. Hence

I -----' # I,* u2 d, (E.6)
k>o

which when substituted into (8.4) gives

(xx),r^: # Io* 
,coth#cosø(4 - n) d, (E.7)

This is the main result of this appendix: it relates the noise produced by a massless scalar

freld to its two point function. This is another point of contact between the influence
functional formalism and the more well known techniques of quantum field theory.

Finally, from (D.1) it follows that

,þt,rt):?11 ot/zçr¡at/2(r¡,) 4r2(yy),y^ (8.8)
'tf

This expression is used as the starting point for the calculation in appendix D.

Ð
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Appendix F

Effect due to r:.oÍtzero ternperature
bath during inflation

a

This appendix calculates the function C as used in section 6.4, and also shows that the
effects due to the bath temperature decrease exponentially as mentioned in appendix D
(page 106).

We are working in cosmic time. The lagrangian for a massless, conformally coupled
field is (8.20):

1,",(t): t *ln +z|øø- n (5 - #)l r' 
'r

Using (3.20, 3"22,3.23) we can write the equation of motion of X as (with n : lr)

(F.2)

x(to) :1 ; x'(t¡) : -ik - à(to) (F B)

The solution is simply

x çt¡ : {,'l!, (F.4)\ / a(t)
where ri is the usual conformal time.

We wish to show how the radiation observed for this type of field depends on the
temperature of the bath. Referring to [2], for a bath of oscilÌators in a thermai state the
influence kernel is given by

*+ze*.(5* 
"{,n1)*:o

(: [* d,u I(u,s,s,)"Jo

We introduce for brevity:

Re [X(s)X.("')] + i Im [X(s)X.(r,)] (F.5)coth
+nu

2kBT

c(X, A) : a(t) + a(t,)

y(x, A) : n(t) - n(t')

r17

(F.6)



in which case it follows that

((t, 
"')

I"*

le2
;@4Ð4"'

Comparing this with (F.8) allows us to write

#ø Io* 
or I(k,s,,") ("oth fi,o"kv - i,i" ks)

(F"8)

where C,I"¡(k,X) are two functions to be determined. As explained in section 6.1, if C
was replaced by cothkl(27), ( would describe a thermal bath of static oscillators. Our
plan is to show that C indeed has the form of a coth. Herc I"¡(lc,X) is the effective

spectral density. Equating the real and imaginary parts of the two forms of ( and Fourier
inverting, leads to (6.3) which will.be used to calculate C.

The spectral density of the scala¡ field is found by calculating (3.33) for the case of a
point interaction between a system harmonic oscillator and the field; the short calculation
is done in [2] and gives 

.2L
I(k,s,t') : # (F.9)

In this case we can evaluate the integral in (F.7): see appendix A for details on how this
is done" The imaginary and real parts of ( are, respectively,

tt, 
1 e2= æf,"6'(Y)

dk 1"fr(k,s, s') (C(lc)cos ftA - i sin kA)

la¡ay rç¡E) +rly' -,rzT2.r.h2rTyl (F.10)

(F"7)

(F.11)

(F.12)

(F.13)

(F.14)

u

r"n: #l: 6,@)

r"nc : :1 [-4tf J-- la¡av 16¡ù + rlv' - r2T'csch2rTy)

The first expression is easily changing variables from A to y, using

za(t)a(t')
dy a(t) { a(t,)

A useful fact here is

A :0aay-0 ; A: :Eoo(+g::!oo

in which case it foliows that independently of the scale factor a(t),

- e2lclefr: _;_;
+lf '
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The second expression i (F.11) now becomes

c : + Il_* d#Ð lolo, 
p(tlù * rly' - tr2r2csch'?nry)

We can integrate this b parts to write

(F.15)

-4
l"*rlc v dL a(t) + &(t,)

lP(tla) - Lla * rT cothrTvl

(F.16)

(F.1e)

d cos kA
dL a(t) I a(t')

Suppose \rye now specialise to de Sitter space:

' 
"(t) 

: eH' ; nU) : -"-Ht ¡¡¡ (F.17)

for which we need

a(t) + a(t'):2eEEcosh Hl.lz ; y :'t;sinhHLl2 (F.18)

The usual Hawking temperature is now easily recovered by setting T : 0, so that -I ly +
rT cothrTy is set to zero in (F.16) to give

-2 d cos kA
C PV

dL a(t) -t a(t,)
cos frA

rlc

,rk
coth 

"
and by comparing this with (F.8) we immediately arrive at the well known effective
temperaturc of H l(2r).

If we keep T nonzero in de Sitter space then our analysis proceeds as follows, referring
to (F.16). First, the principal part just gives the coth term as just calculated. The
argument of the integral is even in A and well behaved at the origin, so we write

c: coth # - h I"* oo l**##rp]rru *trrcothnryl (F 20)

We now concentrate on the integral (= /) in this last equation, and show that it tends
to zero exponentially for large times. First we write all A's explicitly:

r : t lo* 
oo l*#fo] lr=*fu + e-HÐ,rr 

""tr', (Te-Hx sinh H 
^tr)]

(F.21)
Suppose we now assume late times (large X) and split the integral into two intervals. For
the first 'we assume X is large enough to allow a small argument expansion of the coth
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term (coth r - If r+rl3); for the second we assume A is too large to ailow this, in which

case we use a large argument approximation of the coth, i.e. coth r - L The coth can

be expanded to first order as long as its argument is much less than one, and this is true

provided that

a < 2t + 1n4 = no F.2z)HrT
With these approximations the last integral becomes

t N ,_ ["' dA I -t'i"t+ _ llcoskA_sinhÉIA 121 21272J N zJ" lcoshHl,l2 2cosh2HLl2-i * e-znz¿sinhHL'12

1 /* , ^ | -k sin frA Il cos ,tA sinh H!12] - H*; Jo,d^ L;,r'ÆÞ l¡"¡"nurn (F'23¡

Clearly the first integral goes to zeïo as 72"-znzf H. For the second, if we approximate

each sinh and cosh term by an exponential then a straightforward if slightly lengthy

calculation shows that its modulus is always less than a term which goes to zero in
exactly the same way. So \rye can write (F.20) as

c-cothnk *o(r'u'll\H \ kH-) Q'24)

It's evident that for late times, the effects due to a nonzero temperature environment
become washed out exponentially quickly. As might be expected, a slightly longer time
is needed as ? increases and fI decreases.
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