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SUMMARY

This thesis reports an experimental investigation of the growth and aggregation of calcium
oxalate mono-hydrate in metastable saline solutions using batch and continuous systems.
There is much interest in the crystallisation of calcium oxalate hydrates for one reason — they
are the principal inorganic constituent of most human kidney stones. Growth and
aggregation have been identified as the important size enlargement mechanisms responsible
for stone formation, and although both have been extensively studied the mechanism by

which aggregation occurs is still poorly understood.

Firstly, states of saturation in the calcium oxalate system are studied, as supersaturation is a
key variable in any precipitation reaction. A simple method of calculating supersaturation in
metastable saline solutions, in terms of free ion concentrations from total ion concentrations
is developed. This method is shown to be as accurate, but much easier to use than more

complicated models that exist in the literature.

Seeded batch crystallisation experiments were conducted to investigate the effect of
supersaturation and the agitation rate on the growth and aggregation of calcium oxalate
mono-hydrate. A standard metastable solution of calcium (1.0 mM) and oxalate (0.2 mM)
ions in a saline solution of ionic strength 0.158 M was used to investigate the effect of
different rates of agitation. The supersaturation of the metastable solutions was increased by
adding different quantities of oxalate. Metastable solutions with initial oxalate ion
concentrations of 0.2 mM, 0.3 mM, 0.4 mM and 0.5 mM were used.

The data from the batch experiments were analysed using the program Batch, (Hounslow,
1990). This program extracts the growth and aggregation rates from changes in crystal size
distributions with time. It is found the growth rate is size-independent. The growth rates
from experiments at different agitation rates using solutions with different calcium to oxalate
ratios are all described by a single equation with a second order dependence of the growth
rate on relative supersaturation. These findings are consistent with those reported in many

other studies available in the literature.

The aggregation rate is best described by a size-independent aggregation kernel. It is found
that the aggregation rate constant decreases as the agitation rate increases. Of more interest is
the finding that the aggregation rate constant in metastable solutions is dependent on the

oxalate ion concentration only, rather than the activity product, or supersaturation.
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A mechanism is developed for the aggregation of calcium oxalate crystals in saturated and
supersaturated solutions. It is proposed that aggregation in supersaturated solutions
proceeds as a two-stage process, the first being reversible and described by conventional
electrical double-layer theory, the second irreversible and controlled by crystal growth.
Further, it is proposed that in order for crystals to aggregate irreversibly solute must first
diffuse to the point of contact and then deposit on the touching surfaces in order to “cement”
the crystals together. It appears that diffusion to the cementing site is the rate determining

step.

A novel tubular crystalliser is used to investigate calcium oxalate growth and aggregation in

long, thin tubes, similar to the tubules of the kidney.

Both the solute and particle phase residence time distributions (RTDs) of the crystalliser
were determined. A diffusion-advection model is used to explain the experimentally
observed solute RTD. The particle RTD is best described by a model in which it is assumed

the particles maintain a constant radial position in the tubes as they pass through them.

Continuous crystallisation experiments reveal that in addition to growth and aggregation,
sticking and breakage also occur in the crystalliser. A moment form of the population
balance is used to determine the rate constants for each mechanism from the experimental
data. Sticking is found to be size-independent and inversely proportional to the shear rate in
the crystalliser. Breakage is modelled by assuming that when an aggregate breaks, crystals
of all sizes are equally likely to form. It is found that the breakage rate is directly

proportional to the shear rate in the crystalliser.

The aggregation rates in the crystalliser are orders of magnitude lower than those from the
batch experiments at the same relative supersaturation. It is found that the aggregation rate
increases as the shear rate increases, and does not strongly depend on the oxalate ion
concentration. These observations can be explained by the aggregation mechanism proposed
and indicates the importance that hydrodynamics and particle shape may have on

aggregation.

Mechanisms and the kinetics for the growth and aggregation of calcium oxalate mono-
hydrate over a wide range of shear rates and supersaturation in both a batch system and a

novel continuous tubular crystalliser have been determined in this study.
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Chapter 1:

INTRODUCTION

In this chapter an outline of the problem to be addressed is given; this consists of
outlining the methods of modelling particulate systems, then reviewing the work

that has been done on modelling the growth and aggregation of calcium oxalate.

1.1 INTRODUCTION

Although calcium oxalate crystals are responsible for the toxicity of various plants (Doaigey,
1991 and Perera et al., 1990) and may be found in the human thyroid gland (Hackett and
Khan, 1988) and breast (Gonzalez ef al., 1991), undoubtedly the principal reason for the
interest in the crystallisation of calcium oxalates is that they are the major inorganic
constituent of human kidney stones (Prien and Prien, 1968). Calcium oxalate exists in three
states of hydration: the mono-hydrate (whewellite), di-hydrate (wheddellite) and tri-hydrate.
The mono-hydrate, then the di-hydrate being most prevalent in stones (Blomen and Bijvoet,
1983).

Kidney stone disease (urolithiasis) is a significant health problem with approximately 10%
of the male population likely to experience one stone episode in their lifetime (Sierakowski et
al., 1978). Therefore, not unexpectedly the cost to the community in both lost time and
financial terms is enormous (Marshall and Ryall, 1981). For example, according to Shuster
and Schaeffer (1984), the projected cost of stone treatment for adult males in the United
States is $315 million per annum. Thus an understanding of the underlying mechanisms of
stone formation will provide valuable information in efforts to prevent the occurrence of this

disease.

Although there are many detailed aspects to the theories of stone formation, it is commonly
accepted that some form of nucleation lies at the origin and that two processes, crystal
growth and aggregation are essential for the increase in size of the original crystals
(Vermeulen and Lyon, 1968, Pak, 1978). Further, Robertson et al. (1969) propose that the

formation of crystal aggregates is the critical phase of stone formation.



Human autopsy studies by Haggitt and Pitcock (1971) strongly implicate the kidney tubules
as the initial site of stone formation, a finding which has been confirmed in animal models
by Jordan et al. (1978) and Rushton et al. (1981). As urine passes through the tubules,
water is removed leaving a progressively more concentrated solution of wastes behind.
Among these wastes are both calcium and oxalate ions and it is possible to envisage a
situation where the solubility of a sparingly soluble salt such as calcium oxalate is exceeded,

in which case precipitation can occur.

Many complications such as the extremely complex chemical composition of urine, the
difference between the urine of stone formers and normal subjects and the potential role of
inhibitors and promoters of nucleation, growth and aggregation make research into the cause

of stone disease very difficult.

However, it is essential to have a clear understanding of the mechanisms of the size
enlargement processes, namely growth and aggregation. Thus, the main aim of this thesis is
to study and model the simultaneous growth and aggregation of calcium oxalate in inorganic
metastable solutions. Particular attention is paid to aggregation, as although nucleation and
growth have been extensively studied, aggregation has been largely neglected (Finlayson,
1978). Before reviewing the literature on the growth and aggregation of calcium oxalate, the

general mathematical framework for modelling particulate processes 1s introduced.
1.2 SIZE ENLARGEMENT MECHANISMS

The size enlargement mechanisms which are the focus of this thesis are growth and
aggregation. Breakage is also considered briefly, but other mechanisms such as nucleation

are not studied.

Growth occurs when non-particulate material is deposited, usually on the surface, of a
particle. In solution crystallisation, such as that studied here, the non-particulate material is
usually an ion diffusing to, and reacting on, the surface of a crystal. Growth results in an
increase in particle size and the total volume of particulate material. However, growth has
no effect on the number of particles in a system. Growth is shown schematically in Figure
1.1 (a).

Aggregation is the process where particles collide, adhere to one another and form a new,
larger particle. Therefore aggregation not only acts to increase the size of particles, but also
to decrease the total number of particles present in a system. Importantly, aggregation

conserves the total mass of particulate material in a system, which is frequently taken to

N,



(a) Growth
@

(b) Aggregation

Legend: . Non-particulate
matter

@ Particle

Figure 1.1 Schematic depiction of (a) growth and (b) aggregation.
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mean the volume of particulate material is conserved. Aggregation is shown schematically in

Figure 1.1 (b).
1.3 PARTICLE SIZE DISTRIBUTION ANALYSIS
1.3.1 Phase space

A particle may be characterised by a number of independent properties such as its size,
shape, surface area or volume. These are its internal coordinates. The location of a particle
in space is defined by its external coordinates. Together the internal and external coordinates
locate a particle in Phase Space, a concept introduced to the analysis of particulate systems
by Hulburt and Katz (1964).

This work by Hulburt and Katz implies that the exact theoretical characterisation of groups
of particles would require a multi-dimensional description. However, for a whole group of
particles the practical difficulties of measuring more than a few coordinates in phase space
outweighs theoretical considerations. Frequently only one coordinate of phase space is

measured, that being the size of the particles.

Randolph and Larson (1988) note that provided all particles have approximately the same
shape, it is generally sufficient to use only a single coordinate of phase space: particle size.
The usual way to characterise particle size is to use either volume, v, or length, L, (some
linear dimension of the particle). As will be shown later, both have merits, depending on the
size enlargement mechanisms that are present in a system. Particle length and volume are

simply related by

v=k, I’ (1.1)

where k, is the volume shape factor. Finally, there are many different measures of particle
length, such as Stoke’s diameter, sieve diameter, volume equivalent diameter and many
others. The measure of crystal size chosen usually depends on the method of measurement.
Such is the case in the current work in which nearly all particle sizing was performed using a
Coulter Counter, which gives the particle size as the diameter of a sphere of the same volume
as the particle. In this case the shape factor in eq 1.1 is n/6. For a more comprehensive

discussion of particle size measurement see Allen (1981).



1.3.2 Particle size distributions

There are many mathematical formulations available to present a particle size distribution
(PSD). Perhaps the simplest conceptually are the cumulative size distributions. For
example the cumulative number oversize distribution, COSN(L), gives the fraction of
particles larger than size L, and the cumulative number undersize distribution, CUSN(L),
gives the fraction of particles less than size L. As these distributions are normalised, they

tend to a value of one regardless of the number of particles present.

Another means of describing PSDs is by the use of density functions. The number density

function, n(L), gives the differential number of particles, dN, in the size range Lto L+dL

dN =n(L)dL (1.2)

In eq 1.2, length is the internal coordinate, however a density function with volume as the

internal coordinate can be written as

dN = n(v)dv (1.3)

From the above equations it can be seen that the number density function is the local

derivative of the cumulative distribution.

Similar to the density function is the histogram, which merely plots the amount of a
measured quantity, either number or volume, that appears over each increment of the
measured characteristic, normally particle size. Particle size analysers such as the Coulter
Counter usually report PSDs in the form of a histogram, however these can be used to

calculate density and cumulative distributions.
1.3.3 Moments of a size distribution

The moment of the number density function, n(x), with respect to its internal coordinate, x,

is defined as

oo

m; = [ ¥/ n(x)dx (1.4)

0

If particle length is the internal coordinate the first four moments provide useful overall

properties of the PSDs:



The total number of particles per unit volume of suspension = my

The total length of particles per unit volume of suspension = k; m;

The total surface area of particles per unit volume of suspension = k, m,

The total volume of particles per unit volume of suspension = k, m;

The standard statistical properties of the PSD may also be calculated directly from the

moments.

The mean size, L = —- (1.5)

g
2

The variance, 02 = ™M _ (ﬂ] (1.6)
my \ My

The coefficient of variation, CV = % = 110_’”2_2 -1 (1.7)

m

The advantage of representing a PSD in terms of its moments or statistical properties is that it
can substantially reduce the complexity of modelling particulate systems, as will be

illustrated in Chapter 10.
1.4 MODELLING PARTICULATE PROCESSES

The aim of modelling a particulate process is to describe how the size and number of
particles change with time. The Population Balance is the mathematical description of this

problem.
1.4.1 The population balance

Although population balances were developed by Smoluchowski (1916), and Muller (1928),
Hulburt and Katz (1964) are generally credited with the first thorough description of the
population balance. The population balance can be deduced by various methods: Hulburt
and Katz proceed by analogy (with for example the conservation of mass in fluid flow),
Randolph and Larson (1988) use a Lagrangian view and Hounslow (1990) an Eulerian
approach. The outcome of any of these methods of analysis, in terms of the number density

function, n, is:



%r;-+V-(nu)=B—D (1.8)
where u, is the velocity vector which gives the rate of change of position in phase space.
Here u= {uint,uex,}, where, u,,, and u,,, are the internal and external velocity vectors.
For the external coordinates the components of u,,, are the conventional velocities in 3-D
space, for the internal coordinates the components of u;,, are the rate of change of position
along the internal coordinate axes. In many systems, such as the one studied here, the
change in particle size, or the growth rate, G, is the only important internal coordinate
velocity. The right hand side of eq 1.8 gives the birth and death rates of particles per unit

volume of phase space due to mechanisms such as nucleation, aggregation and breakage.

Eq 1.8 is referred to by Randolph and Larson (1988) as the micro-distributed form of the
population balance as it applies to a differential zone in phase space. Those authors then
develop a macro-distributed form of the population balance that is of more use in practical
applications. This form of the population balance assumes a well mixed control volume and

therefore discards u,,,. The macro-distributed population balance is

d
a_’z + V . (nuim)

k
ndV 1
4 —_ n.+B—D 1.9
o=y z{Q' : (1.9)
1=
where V, is the volume of the vessel, k, the number of streams entering and leaving the
vessel and Q; and n; are the flowrates and number density function in the streams entering

and leaving the vessel.

The macro-distributed population balance has been widely used to model particulate
processes in fields such as crystallisation (Hulburt and Katz, 1964 and Randolph and
Larson, 1988), granulation and pelletisation (Sastry, 1975 and Ouchiyama and Tanaka,
1982), polymerisation (Stokmeyer, 1943) and aerosol coalescence (Schumann, 1940 and
Friedlander, 1977). It has also been used to model the growth and aggregation of calcium

oxalate by Hartel and Randolph (1986) and Hounslow et al. (1988a).
1.4.2 The moment form of the population balance

In most situations where growth and aggregation are active a complete solution to the
population balance is not possible. In the absence of an analytical solution for n(L), the
moments of the PSD may be obtained from writing the population balance in terms of
moments. Randolph and Larson (1988) develop micro- and macro-moment forms of the

population balance, the more useful for this work being the latter which is:
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1=
This equation applies only for a system with size as the only internal coordinate and with a

size-independent growth rate. The birth and death terms on the right hand side of eq 1.10

are defined by
B :IU B(L)dL (1.11)
0
D, :ILj D(L)dL (1.12)
0

The moment forms of the population balance can be very powerful. Typically they reduce to
a set of ordinary differential equations, which are often analytically tractable. This is
illustrated in Chapter 10, when the growth and aggregation of calcium oxalate in a

continuous system is modelled.
1.4.3 Growth and aggregation in the population balance

Growth. There is much discussion in the literature regarding the nature of the growth rate.
For crystallisation from solution, McCabe (1929) suggested that the linear rate of crystal
growth, G =dL/dt, is size-independent. The alternatives to this formulation are either a
size-dependent linear growth rate (e.g. Branson, 1960, Canning and Randolph, 1967 and
Abegg et al., 1968) or growth rate dispersion (e.g. White and Wright, 1971, Larson et al.,
1982 and Human et al., 1982).

For size-independent growth, a convenient form of the population balance is obtained with

length as the only internal coordinate. The appropriate form of eq 1.9 is

on on
—+G—=B-D 1.13
5t VoL (1.13)

By contrast, if volume is used as the internal coordinate then the resulting form of the

population balance is more complex. The growth rate may be written as

G, =3k, Gv¥* (1.14)

Then eq 1.13 becomes



07(n v2/3)
dv

al’l 1
—+3k13G
at Y

=B-D (1.15)
Comparing eq 1.13 with eq 1.15 it is clear that for size-independent growth the population

balance is much simpler with length rather than volume as the internal coordinate.

Aggregation. A binary collision model for aggregation was included in the population
balance formulated by Hulburt and Katz (1964), extending the analysis of Smoluchowski
(1916) on particle coalescence. Aggregation results in the simultaneous birth and death of
particles at different sizes. The birth of a particle of volume, v can occur when particles of
volume v— € and € aggregate. The birth rate for this event is calculated by summing over

all the possible values of €:

v
1
B(v)=EJ-ﬂ(v—e,e)n(v—e)n(e)ds (1.16)
0
where f(v, €) is the aggregation rate constant called the aggregation kernel, as explained
below, and the factor of 1/2 is included as the integral counts each collision twice.

A death occurs at a particle volume v when a particle of that volume aggregates with another

particle of volume &, summing over all possible values of € gives the following death rate:

D(v)= n(v)-[ B(v, &)n(e)de (1.17)
0

The above expressions for the birth and death rate may also be written with length as the

internal coordinate, they are according to Hounslow et al. (1988a)

2 58((2-2) A (2-2)" |u(a)an
B(L)= £y (L3 B /13)2;3

(1.18)
0

oQ

D(L)=n(L) j B(L, A)n(1)dA (1.19)
0

Clearly the formulation for the birth term is much more complex with length as the internal

coordinate.



The above expressions have been developed assuming that particles are free to collide with
any other particle in the system. This is known as a free-in-space system. Sastry and
Fuerstenau (1970) suggest that in a system that is not free-in-space, the birth and death terms
should be altered by dividing by the total number of particles, Ny. The systems studied in

this work are considered to be free-in-space.

The aggregation kernel, B(v, €) measures the frequency with which particles of sizes v and
¢ collide and successfully form a stable aggregate. The aggregation kernel is often viewed
as being a combination of two factors: one relating the frequency with which particle
collisions occur, the other describing the effectiveness of collisions in forming an aggregate.
Many different functional forms of the aggregation kernel, both theoretical and empirical,
have been proposed for various aggregating systems. For aggregation in crystallising
systems, Hartel et al. (1986) and Beckman and Farmer (1987) tabulate some of the relevant

theoretical and empirical kernels.
1.5 SOLVING THE POPULATION BALANCE

Solving the population balance involves finding the PSD, n(L), that satisfies the population
balance for the system, subject to the appropriate initial and boundary conditions. A related

problem is the inverse problem in which mechanisms are chosen to model experimental data.

In this section an overview of some of the useful analytical and numerical methods of
solving the population balance that are relevant to the current work is given. For a more
comprehensive review of methods of solving the population balance see, Ramkrishna

(1985), Pulvermacher and Ruckenstein (1974) and Seigneur et al. (1986).
1.5.1 Analytical solutions

Analytical solutions to the population balance are notoriously difficult to obtain particularly
when growth and aggregation occur simultaneously. As pointed out by Hounslow (1990)
for systems that are analytically tractable integral transforms such as the Laplace transform

are most frequently used.

The moment form of the population balance may also be used to obtain analytical solutions,
for example for size-independent batch aggregation. Hulburt and Katz (1964), using
volume as the internal coordinate, and Hounslow (1990), using length as the internal

coordinate, show that the rate of change of the zeroth and third moments are given by:
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The last result simply states that the rate of change of the third moment must be zero if

aggregation is to conserve total particle volume.

If a size-independent growth term is included, then eq 1.20 remains unchanged as growth
does not affect the number of particles in a system, however from eq 1.10, the rate of
change of the third moment becomes:

dm3

—2=3G 1.22
g e my (1.22)

The results given by eqs 1.20 to 1.22 are important and are used later in Chapter 10.

1.5.2 Numerical methods

The majority of the solutions to the population balance reported in the literature are obtained
by numerical methods. Hounslow (1990) classifies these methods into three groups:
classical numerical methods (such as finite elements), cubic spline methods and discretized
population balances (DPBs). Of these a particularly useful method is the DPB, in which the
size domain is discretized into intervals and it is assumed that the particle size distribution
function is constant within each interval. The advantage of using a DPB is that it transforms
the population balance equation into a set of ordinary differential equations, which drastically

reduces the complexity of solving the population balance.

Many different DPBs have been developed and are reviewed by Hounslow (1990). He
proposed that a DPB must imply a set of moments which are consistent with the continuous

population balance. Stated formally, Hounslow’s criterion is that:

The rates of change of moments implied by the DPB should be equal to the rates of change

implied by the continuous population balance.

He showed that all the existing DPBs failed to satisfy this criterion and proceeded to develop
a DPB which satisfies the criterion. It is this feature that distinguishes the DPB of
Hounslow from others. In particular this DPB ensures the correct prediction of particle
number and volume for the aggregation terms in the DPB and the correct prediction of the

first three moments for the growth terms. This DPB has been applied in modelling
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crystallisation, by Hounslow et al. (1988a), Ilievski (1991) and Hostomsky and Jones

(1993), it is also used to model the batch experiments reported in the current work.
1.5.3 The inverse problem

The problem of choosing an appropriate aggregation kernel to model experimental data is
called the inverse problem in aggregation (Muralidhar and Ramkrishna, 1986). This
problem and methods of solving it has been recently investigated by Smit et al. (1993) and
(1994). These authors show that under specific operating conditions some kernels may be
rejected a priori as being unsuitable for modelling aggregation. One of the major aims of this
work is to determine the form of the aggregation kernel that best describes the aggregation of

calcium oxalate in batch and continuous systems.
1.6 MODELLING CALCIUM OXALATE CRYSTALLISATION
1.6.1 Introduction

As a result of the important role that growth and particularly aggregation may play in the
formation of kidney stones, there are many studies of these phenomena in the literature.
However, most research focuses on the prevention of stone formation. Consequently, great
importance has been placed on the effect of many different inhibitors of both growth and
aggregation and very little importance has been placed on understanding the mechanism and
kinetics of growth and particularly aggregation. Studies of the growth and aggregation of

calcium oxalate can be divided into two groups:
« Those that measure growth and aggregation in terms of some empirical parameter.

« Those that use a population balance analysis to propose a model for growth and

aggregation.
1.6.2 Empirical measures of growth and aggregation

When particle size analysis, for example by Coulter Counter, of seeded systems was first
applied to kidney stone research no attempt was made to distinguish between growth and
aggregation. For example, Robertson and Peacock (1972) use the increase in the number of

crystals larger than a certain critical diameter as a measure of growth and aggregation.

A similar technique is used by Robertson et al. (1973) to determine the effect of chemical

inhibitors on growth and aggregation. A degree of inhibition is defined as
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cont

where R, and R, are the experimental results under control and test conditions
respectively. In this case the experimental results are the number of crystals greater than

some critical size.

The shortcomings of the method outlined above have been stated by Ryall et al. (1981a) who
recognise that the effects of growth and aggregation should be measured independently even
though they occur simultaneously. They propose the use of two parameters, as defined in
eq 1.23, one for growth and one for aggregation. For growth, the experimental result used
is the change in crystal volume and for aggregation the experimental result is the change in
crystal number. This approach is then used to show that the same value of the degree of
inhibition, eq 1.23, can be obtained from different combinations of growth and aggregation

inhibition.

This method is extended by Ryall et al. (1986) who produce a computer program to calculate
the “extents” of growth and aggregation over some time interval. Here growth and
aggregation are investigated using overall changes in crystal number and volume with time,
given that growth conserves crystal number and aggregation conserves crystal volume.
However, even though this method deals with simultaneous growth and aggregation, as its
authors point out, it only calculates the extents of growth and aggregation and cannot be

used to obtain rate equations for the mechanisms.
1.6.3 Population balance models for growth and aggregation

A population balance analysis has been extensively used to study the growth of calcium
oxalate, particularly in a mixed suspension, mixed product removal crystalliser (MSMPR).
The main advantage of using an MSMPR to study crystallisation is that an analytical solution
to the population balance exists if only growth and nucleation occur, as shown by Randolph
and Larson (1988). Consequently the MSMPR has been extensively used to study the
nucleation and growth kinetics of calcium oxalate (Kavanagh, 1992). However, if
aggregation occurs the analytical solution for nucleation and growth alone is not valid, and
the rates calculated will be wrong. In the context of this study, in which simultaneous
growth and aggregation are of interest, many of the studies in the literature, which ignore

aggregation are not relevant.

— 13—



The author is aware of only two studies that use a population balance analysis to model the
simultaneous growth and aggregation of calcium oxalate, and these give rise to contradictory

results.

Hartel and Randolph
Hartel and Randolph (1986) model growth and aggregation in a Couette-flow agglomerator

in series with an MSMPR. They propose that in addition to growth and aggregation, two
other mechanisms must be included, namely breakage and a source function. Breakage is
modelled by using a two-body equal-volume breakage function (Randolph and Larson,
1988) in which it is assumed that one large particle breaks into two smaller fragments, each
of half the original volume. A source function is used to account for a problem often
encountered with particle size analysers, being that during the course of an experiment
crystals can grow and aggregate into its field of view. A source function is defined, as the
rate of appearance of crystals in the first interval of the size range covered by the particle size

analyser.

A population balance is derived, with volume as the internal coordinate, and is solved
numerically using the method of Gelbard and Seinfield (1978). A size-independent growth

rate is assumed and is calculated from the size distributions at the outlet of the MSMPR.

The inverse problem for aggregation is investigated and a best fit procedure is used to find
values of the aggregation, breakage and source function rate constants that minimize the
logarithmic sum of square errors difference between the experimental and predicted size
distributions. The results of Hartel and Randolph will be discussed in more detail in relation

to the findings of the current work, but in summary they find:

« A semi-empirical kernel for aggregation developed by Thompson (1968) best fits

the experimental data.

o The size-independent part of the aggregation kernel and the breakage rate constant

are both highly dependent on supersaturation and shear rate in the agglomerator.

Hounslow
Hounslow (1990) summarises the work of Hounslow et al. (1988a) and (1988b) on the
seeded batch crystallisation of calcium oxalate. Hounslow assumes that growth is size-
independent and uses a source function to account for growth of particles into the field of
view of the particle size analyser. A computer program, Batch, is produced that solves the
population balance using the DPB outlined in Section 1.5.2. The inverse problem in

aggregation is investigated, using a sum of square errors to minimize the difference between
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experimental and simulated size distributions. The findings of this work may be

summarised as follows:
o Aggregation may be modelled using a size-independent aggregation kernel.

« Both the growth rate and the aggregation rate constant are directly proportional to

supersaturation.
1.7 LAYOUT OF THIS THESIS

The objective of this thesis is to address the problem of the simultaneous growth and
aggregation of calcium oxalate mono-hydrate, particularly to investigate the mechanism for
each phenomenon and their dependence on supersaturation. To this end, in Chapter 2, the
physical chemistry of calcium oxalate mono-hydrate in aqueous solutions is considered.
This is a necessary preliminary as the growth and aggregation kinetics cannot be treated in

isolation from their driving force.

In Chapter 3 the details of the experimental procedure used to investigate seeded batch
crystallisation is given. In Chapter 4 the growth and aggregation kinetics obtained from the
batch experiments are examined and discussed in relation to the results available in the

literature.

The topic of Chapter 5 is an in-depth study of aggregation. A mechanism is proposed for
aggregation in saturated and supersaturated solutions. Further, a diffusion-reaction model is
developed to explain the observed behaviour of the aggregation rate in supersaturated

solutions.

A review of the systems for the in vitro study of kidney stone formation is presented in
Chapter 6. Significantly, it is found that one of the faults common to all systems is
geometry. While the kidney has a vastly complicated geometry, at least part of itis,toa
good approximation, made up of cylindrical tubes. A tubular crystalliser to be used as an in

vitro system is described.

Chapters 7 and 8 report experimental studies and analysis of the solute and particulate
residence time distributions in the tubular crystalliser. The solute residence time distribution
is described by a diffusion-advection model. The particle residence time is described by a
model in which it is assumed that the particles maintain a constant radial position as they

pass through the tubes in the crystalliser.
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In Chapter 9 seeded continuous crystallisation is studied in the tubular crystalliser. In
addition to growth and aggregation, the crystals stick to the tubes in the crystalliser, and also
undergo breakage. The aggregation rates obtained are compared to the results from the batch

experiments.

Finally, Chapter 10 gives an overview of the main results of this thesis and

recommendations for future work.
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Chapter 2:

PHYSICAL CHEMISTRY OF CALCIUM
OXALATE IN AQUEOUS SOLUTIONS

In this chapter existing definitions of supersaturation are discussed. It is found
that several physico-chemical factors complicate the definition and calculation of

SUpersaturation.

A simple method for calculating supersaturation is developed. This method
produces results in excellent agreement with a more sophisticated method for

both saturated and supersaturated solutions.

Various physical constants are used in the model, the most important of these is
the solubility product. The value of the solubility product determined

experimentally was found to be in good agreement with those in the literature.

2.1 INTRODUCTION

Sohnel and Garside (1992) identify supersaturation as a key variable in any precipitation
reaction: the level of supersaturation inevitably governs the rate of the precipitation process.
For calcium oxalate many workers have found that the growth rate is dependent on
supersaturation. Hartel and Randolph (1986) and Hounslow et al. (1988a) find that for

calcium oxalate the aggregation rate may also be correlated with supersaturation.

The objective of the work in this chapter is to study different definitions and methods of

calculating supersaturation with respect to calcium oxalate in aqueous solutions.
2.2 STATES OF SATURATION

In solution, soluble calcium oxalate exists within well defined physico-chemical ranges as
illustrated in Figure 2.1. In Figure 2.1 supersaturation is measured by the activity product,

AP, which is the product of calcium and oxalate ion activities,

AP = A2+ Fppt- (2.1)
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The activities are related to concentrations by an activity coefficient, 7,

= Y,[Ca™"]

a, 2o =Y [0277] (2.2a and b)

%

A

UNSTABLE REGION

— Primary nucleation occurs

Metastable
Limit
L METASTABLE REGION
Activity
Product — Crystal growth and aggregation occurs
Solubility
Product
UNDERSATURATED REGION

— Crystal dissolution occurs

Figure 2.1 Regions of saturation of calcium oxalate in solution.

A solution is said to be saturated when soluble and solid calcium oxalate are in equilibrium,
the value of the activity product at equilibrium is called the solubility product. If the activity
product is less than the solubility product the solution is undersaturated. The addition of
solid calcium oxalate to an undersaturated solution will result in dissolution. If the activity
product is greater than the solubility product the solution is supe rsaturated. The
supersaturated region is divided into two ranges. As the activity product increases a point is
reached at which primary nucleation occurs, which is called the formation product, or
metastable limit. Between the solubility product and the metastable limit is the metastable
range. The addition of solid calcium oxalate to a metastable solution will result in crystal
growth and aggregation. Above the metastable limit solutions are unstable as primary

nucleation occurs.
2.3 DEFINING SUPERSATURATION

Hounslow (1990) observes that despite an extensive literature on the crystallisation of
calcium oxalate there is no generally accepted definition of supersaturation. There are two
reasons for the existence of many different definitions of supersaturation. Firstly, the

apparatus and solutions used in crystallisation experiments differ considerably, as a result an
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appropriate definition of supersaturation for one system might not be suitable for another.
Secondly, and of greater importance, a definition of supersaturation must account for

various physico-chemical complexities in the calcium oxalate system.

2.3.1 Physico-chemical considerations

There are three physico-chemical problems to consider:
« The characterisation of the reversibility of the precipitation reaction.
« The fact that two ionic species react to form a crystal.
« The formation of ion complexes.

These problems can be avoided if supersaturation is not calculated. As mentioned in Section
1.6.3, the mixed suspension, mixed product removal crystalliser (MSMPR) has been widely
used, for example by Miller et al. (1977), Li et al. (1985) and Springman et al. (1986) in the
study of the growth and nucleation of calcium oxalate. In this case the growth rate may be
correlated with the nucleation rate without calculating the supersaturation, see for example

Miller et al. (1977) and Rodgers and Garside (1981).
2.3.2 Reversibility

Reversibility is characterised by the solubility product, as explained in Section 2.2. At

equilibrium

Ky = @ @0 = 711Ca" 1,108 L (2.3)

where Ksp is the solubility product and a*Ca2+, a*0x2+, [Ca2+]eq and [Oxz_]eq are the

calcium and oxalate ion activities and concentrations at equilibrium.
2.3.3 The reaction of two ionic species

Under certain conditions a single variable can describe the reaction of two ionic species.
This is possible if the initial concentration of one ion is much higher than that of the other, or

if both ions have the same initial concentration.

In the first case supersaturation may be defined in terms of the ion which is not in excess.

For example Drach et al. (1978) use

s=C-C; (2.4)
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where C is the mass of calcium oxalate equivalent to the solution oxalate concentration and
C, is the mass equivalent to the oxalate concentration at equilibrium. Similarly Hounslow et

al. (1988a) use

AC =[0x¥1-[0x*" T (2.5)

where [Oxz' ]* is the oxalate concentration at equilibrium, which can be calculated from eq

2.3. Since calcium is in excess, [Ca2+] is almost constant.

In the second case the concentration of both ions is the same throughout an experiment. In
this situation, Nancollas and Gardner (1974) define supersaturation in terms of

concentrations as

N =[Ca*]-1Ca*T =[0x*"1- [0x* 7 (2.6)

whereas activities are used by Meyer and Smith (1975a and b)

* *
N= aCa2+ - aCa2+ - a0x2_ B a0x2_ (27)

In the current work neither of these methods can be applied. The metastable solutions used
in the experiments reported in Chapters 3 and 10 neither reactant was in excess and the

calcium and oxalate concentrations were not equal.

Two other approaches are available. One is to define supersaturation as a measure of the
change in concentration required to reach equilibrium. Both Nancollas and Gardner (1974)
and Meyer and Smith (19752 and b) define supersaturation as the amount of calcium oxalate

that must be deposited from solution before equilibrium is reached. In terms of activities

Ky = (@gpe = N)@g0- =N (238)

from which it follows,

: _
(age +ap0-) J@gon + g0 ~ 4800~ Kip)

N= > 2.9)

Alternatively a relative supersaturation may be defined as the ratio of an ion, or product of
ions, to its value at equilibrium. DeLong and Briedis (1935) use the concentration of

calcium oxalate
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. [CaOx]

= 2.10
[CaOx],, ( )
Werness ef al. (1985) use the activity product, defined in eq 2.1 giving
AP
= 2.11
X (2.11)

There are many other similar definitions. Some are identical, but with different

nomenclature. For example Gardner (1975) uses geometric mean concentrations

ica 110571161 [0 N
J1Ca?1,, 10571,

whereas Singh et al. (1987) use the activity product and K . giving

o

(2.12)

I
AP |2
g:[_ﬁ] 1 (2.13)
K.\'p
Substituting egs 2.1 and 2.3 into 2.13, it can be re-arranged to give eq 2.12.

Alternatively the same product of ions are compared but different functional forms are used

to define the relative supersaturation. Hounslow (1990) defines

S"=AP-K,, (2.14)

which may be divided by K to give a relative supersaturation
P

-1 (2.15)

Brecevic et al. (1986) define

o= ln[ip—} (2.16)
K.vp

Common to all these definitions are the activity product and the fact that at equilibrium the
value of the activity product is Ksp. However, as the activity product increases the values
calculated depend on the functional form of the definition of the relative supersaturation.

This point is illustrated in Figure 52 in which the relative supersaturation defined by eqs
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Eq 2.11 Werness et al (1985)
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Figure 2.2 Comparison of different definitions of relative supersaturation.
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2.11, 2.13, 2.15 and 2.16 are plotted against the ratio of the activity product to Ksp. At low
values of the activity product all the definitions give approximately the same value of the
relative supersaturation, as the value of the activity product increases the difference between

the values of the relative supersaturation obtained from each definition increases.

From a thermodynamic point of view the functional form of the definition of supersaturation
is not important, at a given temperature and pressure Ksp is constant, thus the value of the
activity product in a system at equilibrium is constant. From a kinetic point of view the
functional form is important, for the same value of the activity product, different values of
the supersaturation are obtained from different definitions. The apparent reaction order for a

process that varies with supersaturation must depend on how it is defined.
2.3.4 Dissociation

In solution, ions may exist in a free form, or as complexes in association with other ions.
Only the free ions are available for precipitation, which implies free ion concentrations

should be used to calculate supersaturation.

In experimental studies of the crystallisation of calcium oxalate the use of an artificial urine is
common. In addition to calcium and oxalate these solutions contain other ions found in
human urine such as phosphate, biphosphate, sulphate, citrate, magnesium and ammonium.
As Rodgers and Garside (1981) observe, these ions form complexes in solution making

evaluation of the free ion concentrations and supersaturation extremely difficult.

The mass action equation for the formation of a complex between two ions A% and B* is

aap [AB]
K, = _ _ (2.17)
7 apiap VEIATNBT

where K,, is the association constant. Eq 2.17 may be written as
K ,5[AB]= V2 [A*1[B*"] (2.18)

where K,p is the dissociation constant which is simply the reciprocal of the association

constant.

An equation such as eq 2.18 can be written for each complex that forms giving a system of
simultaneous equations. This is investigated by Finlayson (1977), who produces a

computer program, EQUIL, to determine the free ion concentrations. Subsequent updates of
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this code, EQUIL2, Werness et al. (1985), and the latest version EQUIL89d (EQUIL89d
Users manual) have increased its capability, for example by expanding the number of

complexes available.

These programs use an iterative method to determine the free ion concentrations. It is
assumed that the total concentration of each species is known and initial guesses are made
for the free ion concentrations. The mass action equations for the formation of each complex
and mass conservation equations for each ion are solved to generate new estimates of the
free ion concentrations. This process is repeated until the values of the free ion

concentrations have converged.
2.3.5 Concluding remarks on defining supersaturation

The physico-chemical problems associated with defining supersaturation are dealt with in the

following ways in the current work:

« Reversibility is characterised by a solubility product.

» Supersaturation is measured by the activity product.

« Free rather than total ion concentrations are used to calculate the activity product.
2.4 CALCULATING SUPERSATURATION

To calculate the supersaturation the first step is to determine the free ion concentrations from
the total concentrations. To do this the use of a program such as EQUIL is warranted for a
solution such as an artificial urine. Solving a system of mass action equations for complex
formation is a difficult task if more than a few complexes form. However, in some cases the
iterative approach used by EQUIL may overcomplicate a problem to which there is a simpler

solution.
2.4.1 A simple method of calculating free ion concentrations

The solutions used in the current work contain only Ca2+, Oxz", Na*, and C1” ions. From
these the formation of only two complexes, namely CaOx and NaOx~, are likely to be

important. The mass action equations for their formation are

K, [CaOx]= V2[Ca* 1[0x*7] (2.19)

Knaox-[NaOx™1= V:[Na*1[0x*"] (2.20)
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Note that in eq 2.19, the activity coefficient for a zero charged ion is one and the activity

coefficients for the singly charged ions cancel in eq 2.20.

A mass conservation equation can be written for each ion involved in complex formation,

T, o+ = [Ca*t]+[CaOx]) (2.21)
T, = [0x*"]+[CaOx]+[NaOx™] (2.22)
T+ = [Na™1+[NaOx"] (2.23)

where, for example, T ca?t and [Ca2+] are the total and free ion concentrations of calcium

respectively.

Before solving these equations a simplification is possible. In the work reported in this
thesis the ionic strength of the solutions is provided almost entirely by the sodium and
chloride ions present. The total concentration of sodium is approximately 0.16 M, some 800
times that of the total oxalate concentration, 0.2 mM. As sodium only forms one complex,
with oxalate, it can be assumed that the total and free jon concentrations are equal for this
species. This makes eq 123 redundant and enables the use of the total sodium concentration
in eq 2.20.

Expressions for the free and complex ion concentrations in terms of the total concentrations,
the dissociation constants and activity coefficient can be obtained by solving egs 2.19 to

2.22 analytically, which gives:

_ T. .K
[Ca2+]___ }_L KCGOX _ Na CaOx + T - _Toxz_ +_____A\/;é——-1 (2.24)

P C 2
2 Yi yiKNan_ ‘ Yi KN::( Ix~

KNan— (_-TNa+ Yi B KCan B yi(TCazJ' - TOxz_ )) T \/6

[0x*"]= . (2.25)
2 Y:tKNan_ (TNa+ yi + KNan_)
T. .K
[CaOx] = l(KCaZOA + 7/Na CaOx + Tca2+ + TO\:Z'_ _ __Z_\fg__} (2.26)
2 Yi iKNan— . yiKNa().r-
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T nar (—KCGOX(TNa+ e+ Kyor ))

27K

[NaOx™ 1=
NaOx~ (

TNa+ Vet KNan“)

" Ty (KNan‘ Yi(TOxz_ ~ T+ ) * \/—@_)

2 '}’__', KNan— (TNaJr '}’__,_ + KNan_ )

(2.27)

where the parameter © is given by

_ 7 2 _
0=K,, 13T, (2TNa+ Y Keaon + Kygor- (2Kcaon + 12(Tp- = 2T o0 )))
2 2
+ KNan— yi TCa2+ (2TNa+ Yi:KCan + 2Kca0xKNa0x_ * yiKNan_ TCa2+ )

2 2 2
+ KCan(TNa+ yi + 2TN¢1+ yiKNan— + KNan")

The other roots of the equations give negative values for the complex ion concentrations and
values for the free ion concentrations that are greater than the total ion concentrations. Both

of these are physically impossible.

While the above expressions are quite complicated, they are simple enough to be used in a
standard spreadsheet. The computer application Microsoft Excel was used to produce a
spreadsheet to calculate the free and complex ion concentrations from the total

concentrations.
2.4.2 Saturated and supersaturated solutions

In addition to knowing the free ion concentrations a measure of supersaturation is required.
One may be found by including the definition of relative supersaturation from eq 2.11 in the

list of equations to be solved as

oK, = AP="[Ca*"1[0x""] (2.28)

Eq 2.28 and eqs 2.19 to 2.22, provide a system of equations from which an expression for
the relative supersaturation can be obtained in terms of total concentrations. Alternatively,
the total concentrations can be written in terms of the relative supersaturation, dissociation
constants, solubility product and activity coefficient. For example solving eqs 2.19 to 2.22

and 2.28, the expression for the total calcium concentration is

T _ Kspo n KspKCanG( Trna Vs + Knaox~)

Ca2+

. (2.29)
KCan yiKNan“ ( KCanTOxz_ - Kspo-)
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The accuracy of this simplified method was assessed by comparing results from it with those

from EQUIL89d.

Firstly, consider saturated solutions. Although o =1 for all these solutions they may have
different total calcium and oxalate concentrations. Values of the total calcium and oxalate
concentrations in different saturated solutions were obtained from EQUIL89d. The
temperature used was 37°C and the solutions had an ionic strength of 0.1578 M supplied by
sodium and chloride ions. These conditions are the same as those in the batch experiments
reported in Chapter 3. The values of the dissociation constants, solubility product and

activity coefficient used by EQUIL89d are given in Table 2.1

Table 2.1 Constants used by EQUIL89d.

Constant Value
Activity coefficient, ¥, 0.314
Solubility product, K, 2.24x107°
Dissociation constant for CaOx, Kc,0x 3.64x107*
Dissociation constant for NaOx™, Ky,0x- 7.52x1072

Using eq 2.29 with =1 and the values of the constants in Table 2.1 the total calcium
concentrations in saturated solutions, with different total oxalate concentrations can be

calculated.

Eq 2.29 is plotted along with the results from EQUIL89d in Figure 2.3. The agreement
between the two is excellent. The method, which only considers the formation of two
complexes accurately describes solutions at equilibrium. EQUIL89d considers the formation
of many other complexes, such as Can%_, CaHOx™ and HOx™, however this only

complicates the calculations without changing the results.

Now consider solutions that are supersaturated. Eq 2.29 can be re-arranged to give

ac* +bo+c=0 (2.30)
where a=—Kyuon- (Ve Ko ) (2.31a)
b= Ksp KCan (KNan_ yi(TCaz"L + T0x2_ )+ KCan( TNaJr yi + KNan_ )) (23 1b)
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Figure 2.3 A comparison of total calcium ion concentrations calculated from eq 2.29 and by
EQUIL89d for saturated solutions with different total oxalate ion concentrations.
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and ¢ = Kyaox- (Kcaox¥e ) Tea?* Tox> (2.31c)

The relative supersaturation can be calculated from the appropriate root of eq 2.30. Further
simplification is possible by considering the magnitude of the coefficients in eq 2.30. Using
the values of the constants in Table 2.1 and the total calcium and oxalate concentrations ina
standard metastable solution described in Section 3.3.2, 1 mM and 0.2 mM respectively

gives

a=-3.75%x10"20 | b=443%x10""7 , c=-1.97x107"

The constants b and c are three to four orders of magnitude greater than a, which suggests

eq 2.30 may be written as

_ K naox-Kcaox Vs
—-c _ : NaOx~ ®CaOx' % (2.32)
b Ky (KNan‘ Yi(Teat + Tox2) + (Tnat Ve + Knaox™ ))

o=

Data from the batch experiments reported in Chapter 3 were used to compare the value of &
from EQUIL89d with those calculated from egs 2.30 and 2.32. As an experiment proceeds
crystals grow and aggregate in a solution of decreasing supersaturation. From data which
are collected at regular time intervals the total calcium and oxalate concentrations can be

calculated (see Section 3.5.2).

The values of the relative supersaturation calculated from egs 2.30 and 2.32 are plotted along
with the value from EQUIL89d, for the batch experiment 22/12a, in Figure 2.4. The
agreement is excellent over the entire range of supersaturation. For the range of
supersaturation used in the work in this thesis the relative supersaturation may be calculated

from eq 2.32.

As the relative supersaturation is defined in terms of free ion concentrations, both the free
and complex ion concentrations must also be accurately predicted. This is verified in
Figures 2.5 (a) and (b), which are plots of the free and complex ion concentrations
calculated from eqs 2.24 to 2.27 and those from EQUILS89d for the batch experiment
22/12a.

2.5 PARAMETER ESTIMATION

Having developed a method for calculating supersaturation there is another issue to consider:
that of parameter estimation. So far the values of the dissociation constants, solubility

product and activity coefficient from EQUIL89d have been used. It is worth considering
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how these constants are obtained and comparing the values from EQUIL89d with others

available in the literature.
2.5.1 Literature values

Finlayson (1977) outlines how the activity coefficient can be calculated from the Davies
modification of the Debye-Hiickel solution to the Poisson-Boltzmann equation. This method
has been widely used in the literature, for example by Nancollas and Gardner (1974), Meyer

and Smith (1975a), Brecevic et al. (1986) and is also the method used by EQUIL89d.

The association constants for the formation of CaOx and NaOx~ are available in the
literature. From these the dissociation constants can be calculated. For example from
Finlayson (1977) the values are 3 65x10~4 and 7.46x1072, respectively, whereas from
Tomazic and Nancollas (1979) the values are 5.35x107* and 7.58x107*. These are
different from those used by EQUIL89d as given in Table 2.1, particularly for CaOx.
However, as the value of the dissociation constant for CaOx is small compared to that for
NaOx", the concentration of CaOx is always much less than that of NaOx™, as shown in
Figure 2.5 (b). Thus the variation in the dissociation constant for CaOx 1s not significant

and the values for the dissociation constants from EQUIL89d can be used.

Blomen et al. (1983) tabulate values of the solubility product. There is considerable
variation in the values they report, from a minimum of 2.2x107° (Koutsoukos et al., 1980),
to a maximum of 3.63x10~° (Meyer and Smith, 1975a). These values vary by a factor of
1.65. Nancollas and Gardner (1974) report other literature values that range from
4.46x1072 to 6.7x10~°, however they point out these values may not allow for complex ion

formation.

It appears that the most uncertainty exists in the value of the solubility product, which is
perhaps the most important parameter as it defines equilibrium in a system. In view of this
experiments were conducted to determine a value of the solubility product and compare it

with values from the literature, particularly the one used by EQUIL89d.
2.5.2 Experimental value of the solubility product

Batch experiments using a standard metastable solution were performed as described in
Section 3.3.3. No data were collected until 24 hours after the start of the experiment, when

the system was at equilibrium.

At equilibrium, o=1, re-arranging eq 2.29 the expression for the solubility product is
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2
K. = £ KCanKNan_ T T -

S 2
yiKNan_ (TCa2+ + TOxz_ ) t KCan( TNa+ yi + KNan_ )

(2.33)

Experimental values of the total calcium and oxalate concentrations at equilibrium can be
calculated by a mass balance as the initial concentrations are known and the volume of
particulate matter deposited can be determined from the crystal size distributions measured

using the Multisizer.

Values of the total calcium and oxalate concentrations at equilibrium and the solubility
product from the experiments, as well as the mean and standard deviation of each parameter
are given in Table 2.2. The experimental data and calculations used to determine the results

in Table 2.2 are presented in Appendix 3.

The mean experimental value of the solubility product was compared with that used by
EQUIL89d. A two sided #-test, with the null hypothesis that both values are the same,
against the alternative that they are different was used. At the 5% level, the null hypothesis
was accepted. Based on this result the value of the solubility product from EQUIL89d,
2.24x107° is used in this work.

Table 2.2 Experimental values of the solubility product.

Experiment T cat M) T0x2‘ M) Ksp

25/6 8.22x107* 3.72x107 1.60x10~
28/6 8.38x107 5.33x107° 2.32x107°
29/6 8.33x107* 4.85x107° 2.11x107°
30/6 8.32x107* 4.72x107 2.05x107°
117 8.34x107* 4.94x107 2.15x107°
11/7 8.27x107* 4.28x107 1.85x107°
mean 8.31x107* 4.64x107 2.01x107
standard deviation 2.31x1076 2.31x107 1.04x10710
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2.6 DISCUSSION

It is worth noting at this point that the difficulty of calculating relative supersaturation and the
free and complex ion concentrations has been significantly reduced. By assuming that the
formation of only two complexes, CaOx and NaOx~, is significant, the relative
supersaturation, in terms of free ion concentrations, can be accurately calculated from a
single linear equation, eq 2.32, in terms of the total concentrations. This is much simpler

and faster than using EQUIL89d.

Calculation of the free and complex ion concentrations is somewhat more difficult as the
expressions for them are quite complicated. However, the equations are simple enough that
a spreadsheet package, such as Microsoft Excel, can be used to calculate the concentrations.
This makes the analysis of experimental data very easy as the flexibility of a spreadsheet is
utilised. Calculating the free ion concentrations for a new set of data is as simple as entering

the new values of the total concentrations into the spreadsheet.

Compare the method just described to using EQUIL89d, in which a FORTRAN program
performs the iterative calculation of the free and complex ion concentrations. For each set of
data an input file must be created and output from the program is written to another file. The
required data, for example the relative supersaturation, must then be extracted from the file
containing the output. This is obviously more time consuming and much less flexible than

using a spreadsheet.

However, the problem of complex formation should not be oversimplified. For a standard
metastable solution as reported in Chapter 3, Hounslow (1990) only considered the
formation of one complex, CaOx. He found that during an experiment the fractions of each
ion present as a complex varied from 0.03 to 0.01 and 0.16 to 0.14 respectively for calcium
and oxalate. As these fractions are approximately constant and relatively low, he assumed

total concentrations may be used to calculate supersaturation.

These results can be compared with those from the method adopted in this work which
considers the formation of two complexes. The concentrations of CaOx and NaOx™ for the
batch experiment 22/12a are given in Figure 2.5 (b). The concentration of NaOx™ is always
at least twice that of CaOx. This shows that the formation of NaOx™ cannot be disregarded,

it is actually more important than the formation of CaOx.

When both complexes form, the fraction of each ion present as a complex during an

experiment varies from 0.06 to 0.02, and 0.47 to 0.45, respectively, for calcium and
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oxalate. While the variation in the fraction dissociated is not significant for either ion, the

fraction of oxalate that is present as a complex is significant.

These results differ from those quoted by Hounslow (1990), as he did not consider the
formation of NaOx~. Consequently the fraction of oxalate bound up in complexes is
underestimated in his work. Also, as the free ion concentration is only approximately half
the total concentration it is wrong to calculate supersaturation using total concentrations.
Therefore the supersaturation used by Hounslow is unreliable, as the method used to

determine the free ion concentrations is not accurate.

Further, the correlations for the growth rate and aggregation rate constant with
supersaturation must be questioned. The form of the correlation will be correct, but the
constants in it will not be, because both the growth rate and the aggregation rate constant are
directly proportional to supersaturation. The fraction of calcium and oxalate present as free
jons is approximately constant, therefore by ignoring the formation of NaOx™ the amount by
which the supersaturation is underestimated is approximately constant. For example,

according to Hounslow, for growth
G=kgS (2.34)

where  S" =[Ca’ )[0x*"1- K,, =[Ca®"1[0x""] (2.35)

Now, the actual free calcium and oxalate ion concentrations are a fraction of the values in eq

2.35 therefore

S* =~ k[Ca® 1[0x*) (2.36)

where k <1. Eq 2.34 then becomes
G =~ kk[Ca* Ox* 1= kS (2.37)

As explained above, when the free rather than total ion concentrations are used, the form of
the correlation is unchanged, but the value of the constant of proportionality will be

different. The same analysis can be performed for the aggregation rate constant.
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2.7 CONCLUSIONS

In this chapter definitions and methods of calculating supersaturation for calcium oxalate in
aqueous solutions have been investigated. Three physico-chemical factors were identified

that complicate the definition and calculation of supersaturation, viz.
« The reversability of the precipitation reaction
« Two ionic species reacting to form a crystal
« The formation of ion complexes

In this work supersaturation is expressed in terms of the activity product, AP, calculated in
terms of free ion concentrations. At times it will be convenient to determine a relative
supersaturation, in which case the activity product is compared with its value at equilibrium,

K.

A simple method has been developed to calculate relative supersaturation in terms of free ion
concentrations from total ion concentrations. It has been demonstrated that the relative
supersaturation as well as the free and complex ion concentrations are all accurately predicted

by this method.
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Chapter 3:

BATCH CRYSTALLISATION: MATERIALS AND
METHODS

This chapter describes an experimental investigation of the batch crystallisation
of calcium oxalate. A detailed description of the materials, methods and
analytical techniques used in the experiments is given. The experimental method
used is based on the seeded technique of Ryall et al. (1981D).

Of particular interest is the dependence of the growth and aggregation rates on
supersaturation and the agitation rate. The range of supersaturation is increased
by varying the calcium and oxalate concentrations in the metastable solution, the

agitation rate altered by changing the rate at which the flasks are shaken.

Batch, an interactive computer program written by Hounslow (1990), which is
used to calculate growth and aggregation rates from the experimental crystal size

distributions is described.

3.1 INTRODUCTION

Batch crystallisation has been widely used to study calcium oxalate crystal growth and
aggregation. Two factors make batch crystallisation appealing; firstly there are well-
established experimental protocols. Secondly, and of greater importance, numerical
methods have been developed to determine growth and aggregation rates from experimental
data. This is highly desirable given the complexity of the analysis of an experimental system
in which there is simultaneous growth and aggregation. Further, Smit et al. (1994) describe

the ambiguity in extracting aggregation rates from continuous systems.

In this chapter experiments to determine the dependence of growth and aggregation rates on

supersaturation and agitation rate in a batch system are reported.
3.2 ANALYSIS TECHNIQUES

In many systems in which crystallisation is studied the most important data are the crystal

size distributions (CSDs). In this study, the CSDs are used to calculate the growth and
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aggregation kinetics and solution concentrations. This Section describes the equipment and
methods used to measure and verify the accuracy of the CSDs, and outlines the other

experimental techniques used.
3.2.1 Crystal Size Distributions

All CSDs were obtained using a Coulter Multisizer IL. In common with all zone sensing
devices the Multisizer records particle numbers classified by equivalent volume diameter

(Multisizer II Users Manual, 1987).

A size range of 2 to 32 pm was wide enough to cover all the crystals considered in this
work. This size range was easily spanned with a single 70 um orifice. In addition to
selecting the correct orifice it is necessary to use a suitable electrolyte together with a
procedure for representative sampling to obtain reliable data. The sampling procedure used
is shown to be representative in Section 3.2.2. The metastable solutions used in the
experiments were effectively 0.15 M saline which were suitable for use as an electrolyte with
the Multisizer. Further, the concentration of crystals was such that no dilution was
necessary. Thus there was no need to store samples taken during an experiment — they were
analysed directly as collected. A detailed description of the operation and configuration of

the Multisizer used in this work is given in Appendix 4.
3.2.2 Solution and Solids Concentrations

Solution and solids concentrations were calculated from the CSDs obtained from the
Multisizer. The mass of solid present in a sample can be estimated from the third moment of

the CSD using

(2
w=psgm3 (3.1)

It is important to determine whether this method is an accurate way to measure crystal mass.
For example, in calculating mass from eq 3.1 no account is taken of possible voids in the

crystals, such as may be present in aggregates.

Prior to the start of the batch crystallisation experimental program, experiments were
performed to demonstrate that data from the Multisizer could be used to determine crystal
mass. A 4 ml sample of a calcium oxalate seed suspension was added to 200 mlof a0.15M
saline solution, saturated with respect to calcium oxalate, and samples analysed by the

Multisizer. The solution was then filtered (0.22 pm), the filter paper thoroughly washed
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with filtered, distilled water and dried at 37°C. The drying temperature was well below that
necessary to cause any phase change or decomposition of the crystals. The dried filter paper
with the crystals was then weighed and compared with the weight of the filter paper alone to

determine the mass of crystals present.

Batch experiments as described in Section 3.3.3 were also performed and allowed to run to
equilibrium. CSDs and solid samples were collected after 24 hours. No samples were taken

prior to these.

The results from these experiments are presented in Table 3.1. The values of the solids
content reported are the mean plus-or-minus one standard error in the mean. A two sided -
test was used to test the null hypothesis that the solids contents determined from the
Multisizer data are the same as those from weighing the crystals, against the alternative that

they are different. At the 5% level the null hypothesis was accepted for both sets of data.

Table 3.1 Assessment of the accuracy of Multisizer measurements of crystal mass.

Experiment Type Solids content determined  Solids content determined by

from samples analysed by ~ drying and weighing crystals

Multisizer (grams/litre) (grams/litre)
Seeds added to saline 1.61x107% + 4x107* 1.59x1072 + 4x107*
Batch experiment 3.94x1072 + 8x107 3.89x1072 + 7x107*

The results in Table 3.1 show that the Multisizer can be used to determine accurately the
crystal mass in the batch experiments. Further, they demonstrate that the sampling
procedure used in the experiments is representative. If the samples taken were not
representative then it is most likely that larger crystals would not be collected. If this were
the case then the solids content determined from the Multisizer data would be lower than that
obtained from drying and weighing the crystals. However, the solids content determined by
both methods are not statistically different indicating that the sampling procedure is

representative.

3.2.3 Other experimental techniques

Scanning electron microscopy
In various experiments samples of the crystals produced were taken and examined by

scanning electron microscope (SEM). The technique for preparing and viewing these

samples is described in Appendix 4.
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Atomic absorption Spectroscopy

Calcium ion concentrations in the metastable solutions used were verified using atomic
absorption spectroscopy (AA). The technique for preparing the samples for analysis by AA
is reported in Appendix 4.

3.3 EXPERIMENTAL

3.3.1 Background

Robertson and Peacock
The seeded, batch crystallisation of calcium oxalate in inorganic solutions using the Coulter
Counter to monitor the CSD, was first performed by Robertson and Peacock (1972). Their
metastable solution initially contained calcium (1 mM), oxalate (0.2 mM), sodium chloride

(0.15 M) and was buffered to pH 6 with sodium cacodylate (10 mM).

In an experiment 10 ml of a calcium oxalate seed suspension (containing 1 gram/litre calcium
oxalate crystals) was added to 500 m! of the metastable solution. The Coulter Counter was
used to measure variations in the CSD with time. No mention is made of how the solutions

were agitated, or how samples were collected for Coulter Counter analysis.

Ryall et al.
A similar approach was used by Ryall et al. (1981Db). They investigated, among other things,

the choice of buffer. Two metastable solutions were used, one buffered with sodium
cacodylate, the other with 2,N—morpholinoethane-sulphonic acid (MES). They found
significantly better reproducibility of the CSDs in the absence of sodium cacodylate. These

authors recommend the use of MES as a buffer.

The composition of the metastable solution used by Ryall et al. was 1 mM calcium chloride,
0.2 mM sodium oxalate and 0.15 M sodium chloride buffered to pH 6 with MES (10 mM).
The seeds used were calcium oxalate mono-hydrate ground with a pestle in a mortar then
suspended in distilled water, the final solids concentration being 1 gram/litre. The seed

suspension was kept at room temperature and stirred with a magnetic stirrer.

In an experiment 7 ml of seed suspension was added to 350 ml of metastable solution.
Aliquots of 40 ml were withdrawn for analysis by the Coulter Counter at appropriate times.
Soda-glass flasks were used as Ryall et al. report that the crystals stick to borosilicate glass.
The experiments were performed using a shaking water bath at 37°C, oscillating at 90 cycles

per minute.
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This protocol has been used by Ryall ef al. (1981c) to investigate the effect of urine and
various other inhibitors respectively on crystal growth and aggregation. Hounslow et al.
(1988a) use the same protocol to obtain data to model growth and aggregation kinetics. Itis
also the protocol to be used in the experiments reported in this Chapter, but with some

modifications, that will be described in Section 3.3.3.

3.3.2 Solutions

Chemicals
All chemicals used were analytical grade. Calcium and sodium chloride were obtained from
Ajax Chemicals, Sydney, Australia. Calcium and sodium oxalate were obtained from BDH
Laboratory Supplies, Poole, England. MES was obtained from Sigma Chemical Company,
Saint Louis, USA.

Distilled water

Distilled water used in the preparation of all solutions was from a “Hi-Pure” model water
purification system fitted with a 0.2 pum pore size filter, supplied by Permutit Australia,

Sydney, Australia.

Stock Solutions

Stock solutions of distilled water, calcium chloride, sodium oxalate and sodium chloride
were kept at 37°C. When the solutions were prepared they were filtered (0.22 pm) using
GS Millipore filters.

The Standard Metastable Solution

For each batch experiment one litre of metastable solution was required. To avoid the risk of
primary nucleation, the solution was prepared no more than one hour before use. The

method used to prepare the solution is as follows.

MES (2.05g) was dissolved in 800 ml of distilled water. To this 105 ml of 1.5 M sodium
chloride solution was added. Then 10.5 ml of 0.1 M calcium chloride solution followed by
10.5 ml of 0.02 M sodium oxalate solution were added. To avoid nucleation, these
solutions were added dropwise using volumetric pipettes. The pH was adjusted to 6 by
dropwise addition of a 5 M sodium hydroxide solution. The solution was made up to one
litre by the addition of distilled water. The solution was magnetically stirred throughout.
After filtration (0.22 pm) the solution was kept at 37°C until required. This solution is
referred to as the stock metastable solution and has the composition given in Table 3.2 in

Section 3.3.3.
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Seed Suspension

Calcium oxalate mono-hydrate (1 gram) was added to a mortar and wet ground with a pestle
in a 0.15 M saline solution. The wet ground crystals were added to a 0.15 M saline
solution, the final volume of the seed suspension was one litre. The seed suspension was
stored at room temperature and was stirred by a magnetic stirrer. This is similar to the seed
suspension used by Ryall et al. (1981b), the difference being that the seeds were kept in
0.15 M saline rather than distilled water.

The CSDs and actual solids concentration of the seed suspension were determined using the
Multisizer. Prior to commencing many of the batch experiments 4 ml of the seed suspension
was added to 200 ml of a 0. 15 M saline solution, saturated with respect to calcium oxalate.
Samples were taken and analysed by the Multisizer, typical CSDs, by number and volume,

of the seed suspension used in the batch experiments are displayed in Figures 3.1 (a) and

(b).

The CSDs shown in Figures 3.1 (a) and (b) are histograms of the number and volume of
crystals in each size interval or channel respectively, rather than density functions as defined
in Section 1.3.2. The number and volume of crystals in each channel is plotted against the
average size of the channel. The Multisizer divides the entire size range into channels with a
geometric discretisation in which the ratio of the upper and lower sizes in each channel is
2150 More details on this and the operation of the Multisizer are given in Section 3.6 and
Appendix 4. All the CSDs presented in this thesis will be of the same form as those in
Figures 3.1 (a) and (b).

The actual solids concentration in the seed suspension was found to be 0.82+0.01
grams/litre. The solids concentration was calculated from the third moment of the CSD
using eq 3.1. The uncertainty indicated is plus-or-minus one standard error in the mean.

The data and method used to calculate the solids concentration are given in Appendix 5.

Although the seeds were made by wet grinding one gram of calcium oxalate and adding it to
one litre of 0.15 M saline the actual solids concentration is less than 1 gram/litre. There are
two reasons for this: firstly, any very coarse calcium oxalate that remained after wet grinding
was not added to the saline and secondly, some of the calcium oxalate will dissolve as the

saline was not saturated with respect to calcium oxalate.

Samples of the seed suspension were also examined under SEM. Figure 3.2 is a SEM
micrograph of the crystals in the seed suspension used in the batch experiments, it can be

seen that the seeds are clearly not individual crystals but rather loose aggregates of crystals
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Figure 3.1 Typical CSDs by (a) number and (b) volume for the seed suspension used in the

batch experiments.
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Figure 3.2 SEM micrograph of calcium oxalate crystals in the seed suspension used in the

batch crystallisation experiments.
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approximately 1-2 pm in size. This is consistent with the findings of other workers such as
Nancollas and Gardner (1974) who observed the calcium oxalate mono-hydrate seed crystals

used in their study of crystal growth appeared as aggregates when viewed under SEM.
3.3.3 Method

In each experiment four replicates were conducted. The vessels used were 1 litre EMIL or
Exelo Permagold soda-glass volumetric flasks. Soda-glass flasks were used to avoid crystal
sticking as described by Ryall ez al. (1981b). Prior to each experiment the flasks were
cleaned by rinsing at least three times with each of tap, de-ionised and distilled water. After

each experiment the flasks were washed and stored, filled with dilute hydrochloric acid.

To each flask, 190 ml of stock metastable solution and 10 ml of a 0.15 M saline solution
were added. The flasks were then placed in a reciprocating shaking water bath (Paton
Industries Model RW1812) at 37°C. Before starting the experiment the temperature of the
solution in each flask was measured to ensure it was 37°C. The absence of particulate matter

was confirmed by analysis of a sample with the Multisizer.

Crystallisation was initiated by the addition, using a volumetric pipette, of 4 ml of seed
suspension to each flask. At time intervals of 5 or 10 minutes, aliquots of approximately 10
ml were taken from each flask and analysed by the particle size analyser. After analysis each
aliquot was returned to the flask from which it was taken. Samples were obtained by
pouring the contents of the flask into a sample vial. As shown in Section 3.3.2 this method
gave representative sampling without the problems of isokinetic sampling that may be
introduced by withdrawing a sample with a pipette. Samples were collected for between 60
and 90 minutes depending on the experimental conditions. The primary experimental data
consists of a series of timed CSDs recorded as the seed crystals grew and aggregated in a

solution of decreasing supersaturation.

The composition of the metastable solution used in the batch experiments is different from
that of the stock solution. Firstly, the stock metastable solution, 190 ml, is added to each
flask, along with 10 ml of a 0.15 M saline solution, the resulting solution is referred to as
the pre-crystallisation solution. Secondly, at the start of an experiment 4 ml of the seed
suspension is added to each flask, giving the metastable solution referred to as the

crystallisation solution. The composition of each of these solutions is given in Table 3.2.
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Table 3.2 Metastable solution compositions.

Component Stock metastable Pre-crystallisation Crystallisation
solution solution solution
Ca** 1.05x10> M 1.0x10° M 9.81x107* M
ox*~ 2.11x10* M 2.0x1074 M 1.96x107* M
Na* 1.584x10°' M 1.58x107' M 1.578x10°' M
CI- 1.6x107' M 1.596x107' M 1.594x10~' M
MES 1.05x1072 M 9.98x10> M 9.78x10> M

3.4 PARAMETERS INVESTIGATED

There are a number of studies of the growth and aggregation of calcium oxalate in a batch
system reported in the literature. Many have focused on chemical inhibitors of growth and
aggregation rather than the kinetics of these processes. In this work the growth and
aggregation Kinetics are of more interest. In this respect the work of Hounslow et al.
(1988a) is most relevant. They find, using experiments similar to those in this work that
both the growth rate and the aggregation rate constant are directly proportional to
supersaturation. However, their observations are restricted to a limited range of
supersaturation. Only one initial solution composition was used. Also they did not explore

the effect of different agitation rates on the growth and aggregation rates.

The aim of this work is to obtain growth and aggregation rates over a wider range of
supersaturation than that considered by Hounslow et al. (1988a). Also the effect of the

agitation rate, which has been largely ignored, will be investigated.
3.4.1 Supersaturation

Initially experiments were conducted using the standard stock metastable solution described
in Section 3.3.2. The crystallisation solution prepared from this stock metastable solution
has the same composition as that used by Hounslow et al. (1988a). The standard stock
metastable solution was then modified by the addition of variable quantities of sodium
oxalate. This allowed both the initial supersaturation and the calcium to oxalate ratio to be
varied. Solutions were used in which the oxalate concentrations were 1.5, 2 and 2.5 times

that of a standard stock metastable solution.
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A further modification of the standard stock metastable solution was also considered.
Solutions with the same initial supersaturation as a standard stock metastable solution, but
different calcium to oxalate ratios were used. The oxalate concentration was increased by
factors of 1.5 and 2. The calcium and oxalate concentrations in each of the metastable
solutions used are given in Table 3.3. The concentrations are those in the crystallisation
solution (containing 190 ml stock metastable solution, 10 ml 0.15 M saline and 4 ml of seed

suspension) rather than the stock solutions.
In all these experiments an agitation rate of 90 oscillations per minute (OPM) was used.

Table 3.3 Calcium and oxalate concentrations in metastable crystallisation solutions with

different initial supersaturations.

Solution Calcium to Oxalate Calcium Initial Relative
Description Oxalate Ratio concentration concentration  Supersaturation
AP
M) M) o=
Ky
Standard 5 1.96x1074 9.81x1074 4.31
metastable
1.5xStd Oxalate, 3.33 2.94x107% 9.81x107* 6.39
Std Calcium
2xStd Oxalate, 2.5 3.92x1074 9.81x107% 8.42
Std Calcium
2.5xStd Oxalate, 2 4.90x107% 9.81x107% 10.41
Std Calcium
1.5xStd Oxalate , 2.22 2.94x107* 6.54x107% 4.45
Std Calcium/1.5
2xStd Oxalate, 1.25 3.92x107% 4.91x1074 4.49

Std Calcium/2

3.4.2 Agitation rate

The effect of agitation rate was investigated by simply altering the speed at which the flasks
were shaken in the water bath. The agitation rate was increased in increments of 10 OPM

from 80 to 110 OPM. In all these experiments a standard metastable solution was used.

The slowest agitation rate used was 80 OPM, as at slower rates it was observed that during
an experiment the crystals were settling. The fastest agitation rate used was 110 OPM, as at
faster rates there was a change in the fluid motion in the flasks. Between 80 and 110 OPM

the fluid was moved backwards and forwards in the flask; the fluid motion was lateral. At
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rates faster than 110 OPM the fluid was swirled around the flask. To keep the fluid motion

the same in all the experiments agitation rates above 110 OPM were not used.

3.5 CALCULATING THE GROWTH AND AGGREGATION RATES

The difficult problem of calculating the rates for simultaneous growth and aggregation has
been studied for the batch system. Hounslow (1990) describes a computer program, Batch,
written for the analysis of batch calcium oxalate crystallisation experiments. In this section
details of the program, the method by which it calculates the rates and its use in this work are
described.

3.5.1 The program Batch

Batch is a program written in FORTRAN for use on the Apple Macintosh brand of personal
computer. It is capable of performing three main tasks; the extraction of kinetic coefficients
from experimental data, fitting models to the coefficients and simulating changes in a crystal
size distribution during an experiment. Its principle use in the current work was for

extracting kinetic coefficients from experimental data.

3.5.2 Determining the rates

Method
Batch uses a differential technique to calculate the rates. From experimental data the rates of
change of crystal number and volume are obtained, then the moment form of the population
balance is used to calculate the growth rate and aggregation rate constant. Egs 1.20 and 1.22

can be re-arranged to give

-2m
Bo=—7" (3.2)
my
m;
G=—— (3.3)
3m2

A problem often encountered with particle size analysers, such as the Multisizer, is that
during the course of an experiment a number of crystals grow into its field of view. This
has been observed for calcium oxalate by Ryall et al. (1986) and Hartel and Randolph
(1986). Hartel and Randolph suggest that growth into the field of view be accounted for by
a source function, B,, which is the rate of appearance of crystals in the first interval of the

size range covered by the particle size analyser.
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The differential method must be modified to allow for this extra mechanism. In Batch
another time derivative is introduced, the rate of change of the crystal number in the first size
interval, Nl _ As Hounslow (1990) points out the source function has a bigger influence on
the number of crystals than any other measured parameter. Four new parameters are
defined: the rate of change of the first moment and the rate of change of the number of
crystals in the first size interval, for aggregation and growth occurring alone. For

aggregation only,

@, = ’;1‘;';38 (3.4)

@, = iv._}[fgé (3.5)
For growth only,

@, = 5%;_ (3.6)

@, = ié_g (3.7)

Eqs 3.2 to 3.7 may be written as three equations in terms of the three unknown rate

constants.

mg = PoPo + By (3-8)
ty = G®y + B, L} (3.9)
N, = G®, +Bo®, + B, (3.10)

The values of g, ™3, Z\.ll, ®,, P, P, and P; can all be calculated from the

experimental CSDs. The above equations can then be solved to obtain the rate constants.

Calculating the parameters and kinetic coefficients

The rates of change of the first and third moments and the number of crystals in the first size
interval are calculated from the experimental CSDs supplied to Batch. These time derivatives

are calculated using a three point difference scheme adapted from the Turbo Pascal toolbox.
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The parameters in eqs 3.4 to 3.7 are calculated using the discretized population balance of
Hounslow et al. (1988a). Those authors develop equations for the rate of change of crystal
number in each size interval for aggregation alone, and growth alone. The parameter D, is
calculated from the equation for aggregation alone for the first size interval only, the
parameter @, by summing the change in crystal number for each size interval. Similarly
@, is obtained from the equation for growth alone by considering only the first size interval,
the parameter @3 by summing the product of the change in crystal numbers and the average

size cubed for each size interval,

Egs 3.8 to 3.10, a set of linear equations, are solved for the kinetic coefficients using a
routine developed from Carnahan et al. (1969) which calculates the solution to an augmented

matrix.

Calcium and oxalate concentrations

The other useful data reported by Batch are the total calcium and oxalate concentrations.
These are calculated by a mass balance. If wg is the initial concentration of seeds, in mass
per unit volume, at time, ¢, the number of moles of calcium oxalate deposited, per unit

volume, An, is given by

w, —Wp
Mr

An

(3.11)

where Mr is the molecular weight of calcium oxalate, 146.1 gmol‘l, and w, is the solids
concentration, in mass per unit volume, at time, ¢, which can be calculated from eq 3.1. The

concentrations at time £, are

Tcaz+=Tga2+—An and T 2_=T0x —An (3.12a and b)

3.5.3 Running Batch

Input
To run Batch, the user must supply: experimental data, the experimental set-up and finally

which mechanisms of nucleation, growth, aggregation and source function are active.
Using this information Batch returns the moments of the experimental CSDs, the total
calcium and oxalate concentrations, supersaturation, and the rate constants for each active

mechanism at each time interval.

The experimental data are entered as CSDs in a tabular form, one row per time interval, with

the time at which each sample was taken in the first column. This is convenient as data from
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a spreadsheet package, such as Microsoft Excel, can be copied directly into Batch in the

correct format. An example of this format is given in Figure 3.3 (a).

The set-up used in the experiments must also be entered before Batch can be run and the
experimental CSDs analysed. The following data are required: the initial seed concentration,
the initial total calcium and oxalate ion concentrations and the ionic strength of the
crystallisation solution. The set-up of the Coulter Counter must be entered as well, giving
the number of size intervals, the lower limit of the first size interval and the volume of the

samples analysed to obtain the experimental CSDs.

In addition to choosing which mechanisms are active, it is possible to select different
functional forms of the aggregation kernel. This allows the inverse problem, that of the
selection of an appropriate aggregation kernel to model the experimental data, to be

investigated.

Output
The output from Batch is conveniently displayed in separate windows, one for the rate

constants of the active mechanisms, another for the moments of the CSDs and total calcium
and oxalate concentrations in the crystallisation solution. Both are in tabular form, one row
per time interval, as shown in Figures 3.3 (b) and (c). This is very convenient as the output

can be copied directly into a spreadsheet for further analysis.
3.6 DATA ANALYSIS

Perhaps the only restricting feature of the program Batch is that it uses a geometric
discretisation for the particle size domain with a 2 progression. This means that the lower
limits of consecutive size intervals are related by

L.
i 2 (3.13)

i

This is restricting as many particle size analysers, such as the Multisizer used in this work,
do not use a geometric discretisation for the size domain with a 2 progression. The
Multisizer divides the size domain into 256, 128, 64 or 32 intervals or channels. When 256
channels are used the geometric progression is such that the size doubles every 50 channels,
(Multisizer IT Users Manual, 1987). That is the ratio of the upper limits in adjacent channels

is
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Experimental CSDs for batch experiment 16/7

0 11794 15673 18270 17406 12070 5027 1035 181 50 15
5 9135 11655 13698 14571 12589 7500 2217 352 68 17
10 7993 10079 12183 13644 12753 8501 2895 462 88 19
20 7432 9179 11199 12901 12942 9384 3658 645 96 22
30 6781 8355 10250 11990 12566 9765 4107 768 107 23
40 6218 17833 9607 11575 12437 10027 4489 861 131 24
50 5912 7444 9291 11197 12397 10401 4810 966 134 28
60 5592 7078 8876 10885 12186 10604 5104 1081 152 25
70 5237 6572 8482 10652 12033 10639 5251 1144 158 34
80 4874 6391 8203 10417 12089 10582 5448 1225 163 29
90 4653 6122 8122 10312 11913 10739 5525 1267 171 34

o JdJooauoaRNDN
AR WWNDNNRDNDE
[eRl=ReRelelecNoloNoNaie)

(a) An example of the experimental data window from Batch.

Growth rates, aggregation rate constants and source functions for
the batch experiment 16/7

Experimental Results for

t S* Sm Bo or Bu G 20
.0000 1.3304E-08 1.3304E-08 5.319 7.6686E-02 7.9096E-04
5.000 1.0457E-08 1.0457E-08 2.264 4.9921E-02 4.6968E-04
10.00 8.7719E-09 8.7719E-09 1.096 3.1030E-02 2.1467E-04
20.00 7.0212E-09 7.0212E-09 L4427 1.3287E-02 9.1535E-05
30.00 6.2921E-09 6.2921E-09 .2303 8.2161E-03 7.8295E-05
40.00 5.5141E-09 5.5141E-09 .2038 8.6120E-03 5.2163E-05
50.00 4.7137E-09 4.7137E-09 L1797 7.7173E-03 4.3572E-05
60.00 4.0880E-09 4.0880E-09 9.9421E-02 4.8347E-03 4.4445E-05
70.00 3.8189E-09 3.8189E-09 3.7436E-02 3.1956E-03 3.5008E-05
80.00 3.5058E-09 3.5058E-09 4.7846E-02 3.9248E-03 2.5730E-05
90.00 3.1038E-09 3.1038E-09 8.8760E-02 4.8670E-03 2.5630E-05

(b) Output window from Batch showing values of the growth rate, aggregation rate constant

and source function calculated for the data from the experimental window.

Total calcium and oxalate concentrations and moments of the CSDs
for batch experiment 16/7

Experimental Results for
t Cox Cca m0 ml m2 m3

.000 1.743E-04 9.593E-04 163.0 665.6 3107. 1.6700E+04
5.00 1.486E-04 9.336E-04 143.6 639.5 3317. 1.9954E+04
10.0 1.328E-04 9.178E-04 137.2 638.0 3471. 2.1955E+04
20.0 1.160E-04 9.010E-04 134.9 649.7 3674. 2.4097E+04
30.0 1.087E-04 8.937E-04 129.4 639.4 3717. 2.5011E+04
40.0 1.010E-04 8.860E-04 126.4 637.6 3786. 2.6000E+04
50.0 9.284E-05 8.778E-04 125.2 641.7 3874. 2.7035E+04
60.0 8.637E-05 8.713E-04 123.2 641.3 3933. 2.7855E+04
70.0 8.356E-05 8.685E-04 120.4 635.1 3942. 2.8211E+04
80.0 8.027E-05 8.652E-04 118.9 633.5 3969. 2.8628E+04
90.0 7.601E-05 8.610E-04 117.7 632.8 3998. 2.9168E+04

(c) Output window from Batch showing total calcium and oxalate concentrations and

moments calculated for the data from the experimental window.

Figure 3.3 (a) Input and (b) and (c) output windows from the program Batch.
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When less than 256 channels are used the upper limit of any channel, Ly can be calculated

from

Ly =Losgi” (3.15)

where Ljsg is the upper limit of the last channel, i is the log step ratio defined in eq 3.13

and U is given by

X
U:256(——1j (3.16)
J
where J is the total number of channels, i.e. 256, 128, 64, or 32.

From eqgs 3.15 and 3.16 it follows that the ratio of the upper limit in adjacent channels is

given by

%ﬂ — 9256/50J (3.17)

12

For each possible value of J, the ratio of the upper limits in adjacent channels are calculated
by eq 3.17 as
L i+1

il o0 =256
L.

2

Lit _pi2s j=128
L.

!

L _p2ns j-e4
L.

i
Lin _pus j=m
L;

Therefore it is not possible to get an exact 2 progression in size from the Multisizer.
However the CSDs must be in a 2 progression in size if they are to be used as input for

the program Batch. Further, the CSDs must be number rather than volume distributions.

The CSDs obtained from the Multisizer were converted so they have a 2 progression in

size. Over the size domain used in this work, 2 to 32 pm, the channels in which the size
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corresponding to an exact value ofa 32 progression were identified. The data from all the
channels between those containing the exact sizes were summed. In the channels that
contained an exact value, linear interpolation was used to distribute the counts in these

channels between adjacent channels in the 2 progression.

The Multisizer reports CSDs by number and volume, the volume distribution being
calculated from the number distribution as the average size for each channel is known. The
CSDs from the Multisizer have a much finer discretization than a 2 progression. The
conversion of a number CSD from the Multisizer format to a 3/2 progression conserves the
total number crystals. However, a discretization error is incurred in properties, such as
crystal volume, calculated from the converted CSDs, as crystals from a large number of
small intervals, each with an average size, are allocated to one larger interval with one

average size.

Two different approaches are available: the first is to convert the Multisizer number
distribution into a CSD with a 2 progression and from it calculate the corresponding
volume distribution with a 2 progression. The second to convert the Multisizer volume
distribution into a CSD with a 2 progression and from it calculate the corresponding
number distribution. In the first case the discretization error is in the volume distribution
with a 32 progression, in the second the error is in the number distribution with a 2

progression.

It was found that if the number CSDs were converted the implied volume in each channel
was overestimated and the total volume was in error by approximately 9%, compared to the
volume distribution from the Multisizer. If the volume CSDs were converted the implied
number in each channel was underestimated and the total number of crystals was in error by

approximately 4%, compared to the number distribution from the Multisizer.

As the total crystal volume is used to calculate solution concentrations, and supersaturation,
it is important that the error in the crystal volume be as small as possible. For this reason the
volume distributions from the Multisizer were converted to CSDs with a 2 progression.
An example of the conversion of the CSDs from the format reported by the Multisizer to a

2 progression is given in Appendix 6.
3.7 CONCLUSIONS

The experimental materials, methods and analysis techniques used to study the batch

crystallisation of calcium oxalate have been described. The reasons for conducting batch
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experiments are that well established experimental protocols exist, as does a computer

program that calculates the growth and aggregation rates from experimental data.

The effect of supersaturation and agitation rate on the growth and aggregation rates was
investigated. The supersaturation was varied by changing the calcium and oxalate
concentrations in the metastable solution. The agitation rate was varied by changing the

shaking rate in the water bath.

The computer program Batch , which allows growth and aggregation rates to be determined
from experimental data, has been described. Batch was used to analyse the data from the
experiments reported in this chapter. The dependence of the growth and aggregation rates

on supersaturation and agitation rate is investigated in the next chapter.
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centration (Ca:Ox = 2:1).

(ii) Metastable solution with 2.5 times the standard oxalate con

Figure 4.3 (a) SEM micrographs of calcium oxalate crystals from different batch

experiments at ¢ =0 minutes.
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(ii) Metastable solution with 2.5 times the standard oxalate concentration (Ca:Ox = 2:1).

Figure 4.3 (b) SEM micrographs of calcium oxalate crystals from different batch

experiments at ¢t = 5 minutes.
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(ii) Metastable solution with 2.5 times the standard oxalate concentration (Ca:Ox = 2:1).

Figure 4.3 (c) SEM micrographs of calcium oxalate crystals from different batch

experiments at ¢ = 10 minutes.
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(ii) Metastable solution with 2.5 times the standard oxalate concentration (Ca:Ox = 2:1).

Figure 4.3 (d) SEM micrographs of calcium oxalate crystals from different batch

experiments at ¢ = 60 minutes.
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the higher oxalate concentration. From the SEM micrographs displayed in Figures 4.3 (b) to
(d) it can be seen that at each time interval the crystals in the samples taken from the solution
with the higher oxalate concentration are much larger and more aggregated than those from

the standard solution.
4.4 THE GROWTH RATE

Mullin (1993) points out there are many mechanisms proposed for crystal growth and many
reviews of the historical development of these theories. Nielsen and Toft (1984) observe
that the growth rate may be controlled by transport of ions through the solution by
convection and diffusion, by various processes on the crystal surface or a combination of the
two. Nielsen (1984) states that for sparingly soluble salts, such as calcium oxalate, the

growth rate is normally surface controlled in which case the following rate expressions

G=k(S-1) (4.2)
G=k(S-1)° 4.3)
G =k, S"8(S-1)**(InS)"® exp(-K, /(InS)) (4.4)

are appropriate for the following rate determining mechanisms respectively: ion transport or
adsorption, surface spiral growth and surface polynucleation. In the above expressions, S is

a relative supersaturation, which for calcium oxalate is given by

" /2
S:[K j (4.5)

sp

A detailed discussion of the mathematical analysis used to obtain the rate expressions for the

various growth mechanisms is given for example by, Sohnel and Garside (1992).
4.4.1 Analysis of experimental data

In this section the data from the experiments described in Chapter 3 are studied with the aim
of determining which of the growth rate mechanisms outlined above is appropriate for the

batch crystallisation of calcium oxalate.

The details of the conditions for each of the batch experiments are given in Table 4.3. The
CSDs measured by the Multisizer were converted to CSDs with a 2 progression as

described in Section 3.6 and were analysed using the program Batch as described in Section
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Table 4.3 Initial experimental conditions for the batch experiments.

Run Agitation Solution Ca:Ox  Calcium ion Oxalate ion
Rate Description ratio concentration concentration O = o
(OPM) M) M) i

11/7 90 Std Ox 5 9.81x107* 1.96x107* 431
13/7 90 Std Ox 5 9.81x107* 1.96x107% 4.31
14/7 90 Std Ox 5 9.81x107* 1.96x107 431
16/7 90 Std Ox 5 9.81x107 1.96x1074 4.31
1717 90 Std Ox 5 9.81x107* 1.96x107% 431
20/7 90 Std Ox 5 9.81x107* 1.96x10™ 431
23/7a 90 Std Ox 5 9.81x107* 1.96x1074 4.31
23/7b 90 Std Ox 5 9.81x107* 1.96x107* 4.31
18/11 90 Std Ox 5 9.81x107 1.96x107* 4.31
19/11 90 Std Ox 5 9.81x107™* 1.96x10~ 431
3/8a 90 15xStd Ox  3.33  9.81x107 2.94x107 6.39
3/8b 90 15xStd Ox 333 9.81x107* 2.94x1074 6.39
4/8a 90 1.5xStd Ox  3.33  9.81x107* 2.94x107* 6.39
4/8b 90 15xStd Ox  3.33  9.81x107* 2.94x1074 6.39
10/12 90 2xStd Ox 2.5 9.81x107* 3.92x107* 8.42
11/12 90 2xStd Ox 2.5 9.81x107* 3.92x107* 8.42
12/12 90 2xStd Ox 2.5 9.81x107* 3.92x10~* 8.42
13/12 90 2xStd Ox 2.5 9.81x107* 3.92x1074 8.42
22/12a 90 2.5xStd Ox 2 9.81x107* 4.90x10~* 10.41
22/12b 90 2.5xStd Ox 2 9.81x107* 4.90x107* 10.41
23/12 90 2.5xStd Ox 2 9.81x107* 4.90x107* 10.41
24/12 90 2.5xStd Ox 2 9.81x107* 4.90x107* 10.41
25/7 90  1.5xOx, Ca/l.5 222  6.54x107* 2.94x1074 4.45
26/7 90 2%0x, Cal2 125  4.91x10™ 3.92x107* 4.49
29/7 80 Std Ox 5 9.81x107* 1.96x107* 4.31
30/7 80 Std Ox 5 9.81x107* 1.96x107* 431
24/11a 80 Std Ox 5 9.81x107 1.96x107 431
24/11b 80 Std Ox 5 9.81x107* 1.96x1074 431
25/11 80 Std Ox 5 9.81x107* 1.96x107* 4.31
31/7 100 Std Ox 5 9.81x107* 1.96x107* 4.31
22/11a 100 Std Ox 5 9.81x107* 1.96x107* 431
22/11b 100 Std Ox 5 9.81x107* 1.96x1074 431
22/11c 110 Std Ox 5 9.81x107 1.96x107* 4.31
23/11a 110 Std Ox 5 9.81x107 1.96x1074 431
23/11b 110 Std Ox 5 9.81x10™* 1.96x107* 4.31
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3.5. The values of the growth rate and the relative supersaturation for each experiment are
given in Appendix 7. The activity product was calculated, in terms of free ion
concentrations, using the method described in Section 2.4, the relative supersaturation was

calculated from eq 4.5 and the value of K, used was 2.24x107,

Figure 4.4 shows the square root of the growth rates from all the batch experiments plotted
against the relative supersaturation. All the data from experiments using solutions with
different initial supersaturations, solutions with different calcium to oxalate ratios and

agitation rates collapse onto a straight line. The line fitted to the data is
VG =0.277(S-1) (4.6)

where the growth rate is measured in units of pm/min, the error in the constant of

proportionality is 2. 1x10~> and the regression coefficient is 0.968.

There are over 350 growth rates plotted in Figure 4.4 from some 35 different experiments
with a wide range of experimental conditions, yet a parabolic rate law, appropriate for
surface spiral growth, accurately describes all the data. The results also support the

equilibrium calculation, in that they show the growth rate tends to zero when S =1.

There is some scatter in the values of the growth rates, particularly at high supersaturation.
An error analysis is presented in Section 4.6, but the errors calculated are not large enough
to account for this scatter. However, there is another point to consider, Hounslow (1990)
also found some scatter in the growth rates and aggregation rate constants determined from

the program Batch. He observed that:

“Values of the growth and aggregation rate are deduced from estimates of rates

of change, a process which must induce error.”

The error introduced will be greatest at high growth and aggregation rates which would
account, to some extent, for the scatter in the data, particularly the data at a relative

supersaturation of approximately 3.2.

Errors in the relative supersaturation are presented later when the errors in the kinetic rate
constants are discussed in Section 4.6. The values of the concentrations used to calculate the
activity product are inferred from the total crystal volume and initial seed mass. Any error in

calculating the activity product and hence relative supersaturation will be systematic and lead
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to a translation of the data points along the abscissa. In Section 3.2.2 it was shown that the
Multisizer can accurately measure crystal volume, consequently any random errors in the

value of the relative supersaturation will be small.

From the results presented the growth rate can be accurately calculated by eq 4.6 over a wide
range of supersaturation from the relative supersaturation, regardless of the calcium to
oxalate ratio in the metastable solution, or the agitation rate. Using the method described in
Section 2.4 the activity product, in terms of free ion concentrations, can be determined from
total concentrations. The fact that all the growth rates are described by eq 4.6 will be very
useful in Chapter 9 in which the growth and aggregation of calcium oxalate in a tubular
crystalliser is investigated. Rather than having to use experimental data to determine the

growth rate, it can be calculated from eq 4.6 provided the solution composition is known.
4.4.2 Discussion

While the growth rates are well described by eq 4.6 for all the experimental conditions
investigated it is important to compare the results from the current work with those available

in the literature.
The dependence of the growth rate on the agitation rate

The experimental results indicate that the growth rate does not depend on the agitation rate.
This is consistent with the findings of Brecevid et al. (1986) who observe no difference
between growth rates in magnetically stirred and unstirred batch experiments. Meyer and
Smith (1975a) also find that the growth rate is not influenced by the hydrodynamics of the

experimental system.

Nielsen and Toft (1984), state that for crystals larger than 5 um the following criterion may
be used: if the growth rate depends on the stirring rate, growth is transport controlled,
whereas if the growth rate is insensitive to stirring rate, then growth is surface controlled.
The results presented in Section 4.4.1 are consistent with this statement as the growth rate is
not dependent on the shaking rate and is best described by a surface controlled mechanism.
A similar observation is made by Nancollas and Gardner (1974) who find the growth rate in
a batch system does not depend on the mode of stirring and conclude that this rules out bulk
diffusion of ions to the crystal surface as the rate controlling step and suggests a surface

controlled mechanism.
The dependence of the growth rate on supersaturation

The growth rates determined from many studies of the growth of calcium oxalate cannot be

compared with those of this work for two main reasons. Firstly, in many cases the
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supersaturation at which the growth rates were obtained is not reported. This is common in
studies using an MSMPR, in which the growth rate is correlated with the nucleation rate as
both are dependent on the supersaturation in the crystalliser. Rather than calculating the
supersaturation, the composition of the feed solutions is given. For example results are
presented in this manner by Randolph and Drach (1981), Rodgers and Garside (1981) and
Miller et al. (1977). Often it is the effect of an inhibitor on the growth rate that is of primary
interest in which case the growth rates are plotted against the inhibitor concentration, for

example, Springman et al. (1986) and Robertson and Scurr (1986).

Secondly, in some studies the true growth rate is not calculated but rather some empirical
parameter in terms of the change in crystal volume, or ion concentrations is defined to
represent the growth rate. These parameters do not take into account the effect that other
factors such as aggregation have on crystal enlargement. Examples of workers who have
used this approach are Robertson and Peacock (1972), Ryall et al. (1981b) (crystal volume),
Ligabue et al. (1979) and Fellstrom et al. (1982) (ion concentration).

There are also many studies in which a parabolic dependence of the growth rate on some

measure of supersaturation has been found to follow a second order rate law such as eq 4.6.

Nancollas and Gardner

Nancollas and Gardner (1974) study the precipitation reaction by measuring properties of the
fluid rather than the particulate phase. They follow the rate of growth using solution
conductivity measurements to determine the decrease in ion concentrations. They find the
relationship between the depletion of the ion concentration and supersaturation, if the initial
calcium and oxalate concentrations are equal, is

2+
_d[Ca™"] _ k([Ca2+]— [Ca2+]0)2 4.7

where the subscript, 0, refers to equilibrium conditions. If the initial calcium and oxalate

concentrations are different then,

4y

o k' N? (4.8)

where the supersaturation, N, is the number of moles of calcium oxalate that must be

deposited to reach equilibrium and is calculated from

K, = ([Ca** 1= N)([0x*" 1= N) (4.9)

==



The depletion of the ion concentration and the growth rate are related by

_d[Ca“]

o An G 4.10
g T (4.10)

where Aj is the total crystal surface area per unit volume. Clearly for solutions with equal
calcium and oxalate concentrations, [Ca2+] o< /AP, thus eq 4.7 is of the same form as eq
4.6. Also the number of moles of calcium oxalate that must be precipitated to reach

equilibrium will be related to the relative supersaturation, thus eq 4.8 is also consistent with

eq 4.6.

To calculate the growth rate from measurements of the change in ion concentration the total
crystal surface area must be known. It is difficult to determine the total crystal surface area
and also it increases as the crystals grow. As experimental measurements of the total crystal
surface area are not reported by Nancollas and Gardner, actual growth rates cannot be

calculated from their data and compared with those of the current work.

In contrast with the findings of this work, in which the calcium to oxalate ratio had no affect
on the growth rate, Nancollas and Gardner observe the rate constant in eq 4.8 is appreciably
higher in experiments using a solution in which calcium is in excess. This difference can be
accounted for by considering the effect of aggregation, which is ignored in the analysis of
Nancollas and Gardner. In Section 4.5 it is shown that the aggregation rate is dependent on
the oxalate ion concentration. For metastable solutions with a fixed activity product, the
higher the calcium concentration, the lower the oxalate concentration will be. Consequently,
in a solution in which calcium is in excess, the oxalate concentration will be lower and the
aggregation rate will also be lower. A lower aggregation rate, will lead to greater total
crystal surface area and from eq 4.10 the observed rate of depletion of the calcium ion

concentration will be higher.

Meyer and Smith
Meyer and Smith (1975a) determine crystal growth rates from measurements of the change

in the calcium concentration in solution. Their results are consistent with those of Nancollas
and Gardner (1974) and may be described by eqs 4.7 and 4.8. Therefore the results of

Meyer and Smith are consistent with eq 4.6 and the findings of this work.

There are also many other studies in which the kinetics for the growth of calcium oxalate are
found to be of the form of eq 4.6, these include: Gardner (1975) for stirred batch

experiments with equal calcium and oxalate ion concentrations, Singh et al. (1987) using
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conditions of constant composition over a range of supersaturation, Nielsen and Toft (1984)
for batch crystallisation and Sheehan and Nancollas (1980) using a constant composition

method.

Kavanagh (1992) notes that for restricted ranges of conditions, eq 4.6 may be simplified to
the form of eq 4.7, involving calcium concentrations (Ito and Coe, 1977) or oxalate
concentrations (Libague et al., 1979) to describe the growth of calcium oxalate. Further,
Kavanagh shows that more complex expressions such as those used by Blomen et al.
(1983), who describe growth in terms of the uptake of a radioactive tracer from solution,

which is fitted by an orthogonal hyperbola, are also consistent with eq 4.6.

There are also a number of studies in which the growth rate correlation is not the same as eq

4.6, however it can be shown the results are still consistent with eq 4.6.

Nielsen
Nielsen (1960) shows the relationship between the growth rate and the activity product is

given by

G = AP* - K, (4.11)

Which implies the growth rate is fourth order rather than second order. Data are reported in
which the growth rate, dl/dt, where [ is the length of a cube of the same volume as one of
the growing crystals, is proportional to the 3.3rd power of the concentration of the complex
jion, CaOx. From the association equation for the complex formation, eq 2.17, the activity

product and the relative supersaturation can be calculated.

Figure 4.5 shows the data of Nielsen plotted against the relative supersaturation, it can be
seen that the data are well described by an equation of the form of eq 4.6. While these data
show the same dependence of the growth rate on the relative supersaturation as the data from
the current work, the range of the relative supersaturation and growth rate are different.
However, it is difficult to assess the accuracy of the relative supersaturation calculated from
Nielsen’s data, as neither the value for the solubility product, or the temperature at which the
experiments were conducted is given. Also there are no details of other ions that might have
been present in the solutions, for example sodium. As discussed in Section 2.6, the
formation of the complex NaOx~, has a significant effect on the free oxalate ion
concentration, consequently, the values of the relative supersaturation calculated from

Nielsen’s data must remain uncertain.
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Hounslow
Hounslow (1990), summarises the results presented in two earlier papers on the growth and
aggregation of calcium oxalate by Hounslow et al. (1988a) and (1988b). Data from
experiments using the seeded batch technique of Ryall er al. (1981b) are analysed by the

program Batch. If supersaturation is defined by

S*=AP-K,, (4.12)

the growth rate is found to be directly proportional to supersaturation,

G =ks(AP-K,,) (4.13)

The batch experiments described in Chapter 3 are based on the protocol of Ryall et al.
(1981b) and the growth rates were determined using the program Batch. Despite the
similarities in the experimental protocol and method of data analysis, the findings of
Hounslow seem to differ with those of this work, however it can be shown that this is not

the case.

As already discussed in Section 2.6 Hounslow used total rather than free ion concentrations
to calculate the activity product, as a consequence the values of the activity product will be
incorrect. But it is also shown in Section 2.6 that this will only change the value of the

constant in eq 4.13, not the relationship between the growth rate and supersaturation.

The dependence of the growth rate on supersaturation will be different if there is an error in
the growth rate. In the current work and that of Hounslow the growth rates were determined
using Batch, however the CSDs were measured with different Coulter Counters. The
experiments in this work and those reported by Hounslow were conducted in the same
laboratory, in the Department of Surgery at Flinders Medical Centre. The CSDs used by
Hounslow were measured with a Coulter TAIIL, whereas the CSDs in the current work were
measured with a Coulter Multisizer. A batch experiment was conducted in which the same
samples were analysed by both counters and it was found that the crystal volume measured
by the TAII was always greater than that measured by the Multisizer. When the CSDs from
the two counters were analysed by Batch different growth and aggregation rates were

obtained for the same experiment.

The CSDs reported by Hounslow were corrected to allow for the error introduced by the
TAII counter and analysed by Batch, and the correct value of the activity product was

calculated using the method in Section 2.4. Figure 4.6 shows the growth rates calculated
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from the corrected data, it can be seen that they are well described by eq 4.6, and the values

of the growth rates are similar to those obtained in this work.

Finally, there are some studies which find the growth kinetics of calcium oxalate are not
second order but rather fourth order in supersaturation. Two such studies are those of
Skrtid et al. (1984) and Markovic and Fiiredi-Milhofer (1988). Both these authors model

growth using the following equation

‘fi—‘ja‘z/'j = KN (C-C,) (4.14)
where N, is the total number of crystals, C and C, are the calcium concentrations in the
solution and at equilibrium and ¢ is the degree of reaction defined as & = V.|V ax» Where
V, is the volume of material deposited at time, ¢ and V,,, is the maximum possible

precipitate volume.

Skrtic ef al. (1984) find the value of g in eq 4.14 is 3.6£0.3, Markovic and Fiiredi-
Milhofer (1988) find g =3.9+0.1. The experimental protocol used by both authors is to
nucleate crystals, then observe them grow and aggregate. The experiments are divided into
sections in which each mechanism is dominant. The results quoted above are for the period
in which growth dominates and it is claimed that the total number of crystals is constant.
However, the data of Skrtic et al. (1984) reveal that over the time in which the growth rate
is calculated the total number of crystals halves. From the data of Markovic and Fiiredi-
Milhofer (1988), when the growth rate is calculated the total number of crystals decreases by
approximately one third. The significant decrease in the number of crystals is characteristic
of aggregation, which is ignored in the calculation of the growth rates, which must make the

values of g reported questionable.
A concluding remark on growth rates

All the data studied from other investigations of the growth of calcium oxalate are consistent

with the results of the current work, which may be summarised as:

Regardless of the solution composition and agitation rate the growth rate, in pm/min, may be

related to the relative supersaturation by:

G =(0.0767+0.0012)(S - 1)
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4.5 THE AGGREGATION RATE

In contrast to crystal growth, there are few theories and investigations into the dependence of
the aggregation rate on supersaturation. In a batch system Hounslow (1990) finds the
aggregation rate constant is directly proportional to supersaturation defined in eq 4.12,

giving

Bo = kyge (AP - K,p) (4.15)

In a continuous Couette agglomerator Hartel and Randolph (1986b) find that the aggregation
constant is highly dependent on the oxalate concentration. They use the oxalate

concentration to measure supersaturation as the calcium concentration was not known.
4.5.1 Analysis of experimental data

In this section the data from the batch experiments are studied with the aim of determining

the dependence of the aggregation rate constant on supersaturation and agitation rate.

The aggregation rate constants and activity product were calculated from the same
experimental data using the same method of analysis as the growth rates presented in the
previous section. The aggregation rate constants calculated from Batch are given in

Appendix 7. The conditions in each of the experiments are given in Table 4.3.
The dependence of the aggregation rate constant on supersaturation

As the experiments reported in Chapter 3 are similar to those of Hounslow (1990), the
supersaturation is measured by using the activity product. Figure 4.7 shows the aggregation
rate constant plotted against the activity product for the batch experiments conducted using a
standard metastable solution. The data from these experiments are well described by the

following equation:

B, =3.74x10% AP> (4.16)

with the errors in the constant of proportionality and the exponent being 7.03x10%* and

0.10, and the regression coefficient for the fit is 0.979.

Next the data from the other experiments in which the initial supersaturation was increased
by the addition of variable amounts of oxalate to the metastable solution are considered.
However, rather than plotting the aggregation rate constants from every experiment, the data

obtained from experiments with the same initial supersaturation were averaged. A total of 10
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experiments were conducted using the standard metastable solution and 4 experiments with

each of the other initial oxalate concentrations.

The aggregation rate constant is plotted against the activity product for the experiments
conducted using solutions with different initial oxalate concentrations in Figure 4.8. The
errors shown are plus-or-minus one standard error in the mean. It can be seen that over the
complete range of supersaturation studied the aggregation rate constant does not correlate
with the activity product. There is substantial scatter in the data, that cannot be attributed to
either averaging the data from each experiment, or the errors calculated in Section 4.6. For a
given value of the activity product the higher the oxalate concentration the greater the value

of the aggregation rate constant.
The dependence of the aggregation rate constant on oxalate ion concentration

All the metastable solutions used in the experiments had the same initial calcium
concentration, the supersaturation was increased by increasing the oxalate concentration. As
no other parameters were altered this suggests that the aggregation rate may be dependent on

the oxalate concentration rather than the activity product or supersaturation.

The free oxalate ion concentration can be calculated from the total calcium and oxalate
concentrations using the method described in Section 2.4. In Figure 4.9 the aggregation rate
constant is plotted against the oxalate concentration, as in Figure 4.8 the data from each
series of experiments were averaged and the mean, plus-or-minus one standard error is

plotted.

The aggregation rate constants correlate well with the oxalate ion concentration with the
exception of the data at the highest oxalate concentrations. As mentioned in Section 4.4.2
there are errors associated with the method used by Batch to determine the aggregation rate
constant. Even though this error will be greatest at high aggregation rates, it is probably not
enough to account for the deviation observed. However, the correlation between the
aggregation rate constant and the oxalate concentration is much better than that with the
activity product. Therefore to investigate the dependence of the aggregation rate on the
agitation rate the oxalate concentration will be used as the independent variable, even though

the experiments with different agitation rates used a standard metastable solution.
The dependence of the aggregation rate constant on the agitation rate

As with the experiments used to investigate the effect of supersaturation, a number of runs

were conducted at each agitation rate. The data from each series of experiments were

— 80 —



3.0 107
o Std Ox, Ca:Ox =5
o 1.5%Std Ox, Ca:Ox = 3.33
25103
o 2xStd Ox, Ca:Ox = 2.5
s 2.5%Std Ox, Ca:Ox =2 5
2.0 1073 %
=~ -3
3 1.5 10 . H
=
1.0 107 - °
, B
5.0 104 e
K 0
@ ]
B ion O
5 00
0.0 10° T T T T T | T T

0.0 10° 5.0 107 1.0 108 1.5 10 2.0 108 25108
AP

Figure 4.8 The dependence of the aggregation rate constant on the activity product for

metastable solutions with different initial supersaturation and calcium to oxalate ratios.

81—



2.0 107 % —
o StdOx,Ca:Ox=5 o
1.6 107 - ; ¥
o 1.5xStd Ox, Ca:0Ox =3.33 3
!
@ 2xStd Ox, Ca:Ox = 2.5
12 102 s 2.5%xStd Ox, Ca:Ox =2 %
:
R
&
=
o5y ‘
8.0 10 - %%
&
4.0 107 o
HH
B
e
to2
0.0 100 - T T ] T T ' T
0.0 10° 3.0 107 6.0 107 9.0 107 1.2 107* 1.510*
[0x*7] (M)

Figure 4.9 The dependence of the aggregation rate constant on the oxalate ion concentration

for metastable solutions with different initial supersaturation and calcium to oxalate ratios.

— 82—



averaged and it is the mean plus-or-minus one standard error that is used to display the

results.

In Figure 4.10 the aggregation rate constants from the experiments using different agitation
rates are plotted against the oxalate concentration. It can be seen that at each agitation rate the
dependence of the aggregation rate on the oxalate concentration is of the same form, but the
aggregation rate constant is also dependent on the agitation rate. For a given oxalate
concentration the aggregation rate constant increases as the agitation rate decreases, over the
entire range of oxalate concentrations the aggregation rate constant at the lowest agitation rate

is some three times that at the fastest agitation rate.

The dependence of the aggregation rate constant on the agitation rate is further investigated in
Figures 4.11 (a) and (b) in which the aggregation rate constants, from the same time interval
but different experiments are plotted against the reciprocal of the agitation rate. The reason
for plotting data from the same time interval together is that as an experiment proceeds the
oxalate concentration decreases as a result of crystal growth. As a standard metastable
solution was used in all the experiments, then data obtained at a given time corresponds
approximately to a given oxalate concentration, and growth rate. Therefore the data from

each time interval corresponds to data at a constant growth rate.

The aggregation rate constants plotted in Figure 4.11 (a) come from the samples analysed in
the first 20 minutes of the experiment. It can be seen that at each time interval the

aggregation rate constant varies linearly with N7

In Figure 4.11 (b) the aggregation rate constants corresponding to the data collected from 30
to 60 minutes are plotted against the reciprocal of the agitation rate. It can be seen that the
aggregation rate constant no longer varies linearly with N ~1 " As the experiment proceeds
and the growth rate decreases, the variation in the aggregation rate with the agitation rate is

less well defined.
4.5.2 Discussion

In order to understand the factors that might affect the aggregation rate it is important to have
some concept of how aggregation occurs in solution. For a stable aggregate to form from
individual crystals, the crystals have to come into contact, or collide, and then remain
together. The aggregation kernel must take these two events into account: it must describe

the frequency and also the effectiveness of collisions. In solution, the frequency of
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collisions will be determined by the hydrodynamics, and it is to be expected that the growth

rate, and therefore supersaturation, will play a role in the effectiveness of collisions.

It has been observed that the aggregation rate decreases as the agitation rate increases and
correlates with the oxalate concentration rather than with supersaturation. The first
experimental observation can be explained by the brief outline of the aggregation mechanism
given above, however the second cannot. The aggregation mechanism must be considered
in greater detail to find an explanation for the experimentally observed behaviour of the
aggregation rate. This will be the focus of the Chapter 5, in this section the aggregation rate

constants are compared with results from other studies in the literature.

The mathematical complexity associated with solving the population balance for
simultaneous growth and aggregation has meant that there are very few studies in which frue
growth and aggregation rates are reported. Often the effect of an inhibitor on aggregation
has been studied, and an empirical parameter involving the change in the total number of
crystals is used as a measure of the aggregation rate, for example Robertson et al. (1973),
and Ryall et al. (1981c) .

There are, to the knowledge of the author, only two studies that report aggregation rates
rather than an empirical parameter: those of Hartel and Randolph (1986) and Hounslow
(1990).

Hartel and Randolph

Hartel and Randolph use a Couette agglomerator to study the aggregation of calcium oxalate
crystals generated in an MSMPR. As mentioned in Section 4.2 they find that the kernel of
Thompson (1968) best fits their data, which contradicts the findings of this work and of
Hounslow (1990) in which a size-independent kernel is most appropriate. It is also at odds
with Smit et al. (1993) who find that the Thompson kernel is an instantly gelling kernel in a
continuous system. Smit et al. reflect on how a gelling kernel might be used to describe a
non-gelling system. Hartel and Randolph include in their model a breakage function. Smit
et al. point out that this approach is open to some criticism as the breakage rate calculated
may be artificially large in order to stop the occurrence of mathematical gelation when
modelling the experimental CSDs. Consequently the values of the aggregation rate constants
calculated by Hartel and Randolph must be questionable, for this reason the values are not
compared with those from this work. However, a comparison of the qualitative behaviour

of the aggregation rate constant can be made.
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Hartel and Randolph find that the aggregation rate constant is highly dependent on the
oxalate concentration and the dependence is non-linear, which is consistent with the findings
of this work. Also Hartel and Randolph find that at the same oxalate concentration the
aggregation rate constant depends on the rate of rotation of the Couette agglomerator. This
observation is consistent with the finding of the current work that the aggregation rate is
dependent on the agitation rate. Both the rate of rotation in the Couette agglomerator and the

agitation rate must inevitably be related to the shear rate in the fluid.

Hounslow
Hounslow (1990) finds that the aggregation rate constant is directly proportional to the
supersaturation, as given by eq 4.12. The range of supersaturation for which eq 4.12 is
valid is lower than that considered in this work. However, the composition of the standard
metastable solution described in Section 3.3.2 is the same as that used by Hounslow. The
results from the experiments using a standard metastable solution can be compared to those

of Hounslow, provided the data are modified, as described in Section 4.4.2.

In Figure 4.12 the aggregation rate constants obtained from the modified data of Hounslow
are compared with those from this work for the experiments using a standard metastable
solution and different agitation rates. The values of the aggregation rate constant from the
data of Hounslow are higher than those from this work. There is no reason to believe the
modification of the data is responsible for the difference in the values of the aggregation rate
constant, as the same procedure produced growth rates in good agreement with those from
this work. An agitation rate of 90 OPM was used in the experiments reported by Hounslow,
an agitation rate less than 80 OPM would be required for the aggregation rate constants to be

consistent with the results from this work.

It is possible that the state of aggregation of the seed crystals used in the experiments may be
responsible for the observed difference in the aggregation rate constants. The mechanisms
active in the aggregation of colloidal particles in ionic solutions can be described in a semi-
quantitative way by the theory of Derjaugin, Landau, Verwey and Overbeek (DLVO), as
presented, for example by Hiemenz (1986). This theory predicts that increasing the ionic
strength of a solution is favourable for the formation of aggregates. There is a substantial
difference between the ionic strength of the seed suspensions from this work and those of
Hounslow. The seed crystals used in this work were suspended in 0.15 M saline and as
shown in Figure 3.2 were aggregates of crystals approximately 1-2 pm in size. The seed
crystals used in the work of Hounslow were suspended in distilled water. It is likely that the
number of very small crystals less than 2 pm in size in these seeds is much higher than in the

seeds used in this work.
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Figure 4.12 A comparison of the aggregation rate constants using a standard metastable
solution (Ca:Ox = 5) and different agitation rates with those from the modified data of

Hounslow (1990).
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If a very large number of small crystals are present in the seed suspension added to the
metastable solution in a batch experiment then as these crystals grow a large number of them
will appear in the field of view of the particle size analyser. Consequently the value of the
source function used in Batch to model the appearance of crystals in the field of view will be
large. As the growth and aggregation rates are calculated from equations involving the
source function, the magnitude of the source function must affect the values of the growth
and aggregation rates. The source function will have a much more significant effect on the
number of crystals, and hence the aggregation rate, than on the crystal volume and hence the
growth rate. Crystals of a very small size contribute very little to the total volume, but
significantly to the total number of crystals. The source function used in Batch is only an
approximate correction for growth into the field of view of the particle size analyser and thus

if the value of the source function is high results from Batch will be less reliable.

The source functions from this work and that of Hounslow were compared and it was found
the values of the source function from the data of Hounslow were at least double those of the
source function from this work. As the other experimental conditions are the same, a higher

value of the source function will give a higher aggregation rate.
A concluding remark on the aggregation rates

It has been shown that the behaviour of the aggregation rate for the experimental conditions
investigated is much more complex than the growth rate. The dependence of the aggregation
rate on the oxalate ion concentration and agitation rate must inevitably be related to the
aggregation mechanism. A mechanism for the aggregation of calcium oxalate in saturated
and supersaturated solutions to explain the experimental observations is developed in

Chapter 5.
4.6 ERROR ANALYSIS

As described in Section 3.3.3 CSDs were obtained from the four replicates of an experiment
at regular time intervals. At each time interval the CSDs from the replicates were averaged,
and the growth rate and aggregation rate constant were determined from the average CSD.
In Appendix 8 an analysis of the errors associated with the growth rate and aggregation rate
constant is presented. The propagation of error equation, together with some useful results
from mathematical statistics, allow the error in a parameter, which is a function of different
variables, to be estimated. Full details of the mathematical analysis and a sample calculation

of the errors are given in Appendix 8.
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4.6.1 Growth rate and relative supersaturation

The growth rates determined using Batch, from the experiments conducted to determine the
effect of supersaturation on the growth and aggregation rates were used to investigate the

magnitude of the errors in the growth rate and relative supersaturation.

Figure 4.13 is a semi-log plot of the growth rate against the relative supersaturation for
experiments using metastable solutions with different initial supersaturations. The growth
rate is plotted on a logarithmic scale so the magnitude of the error can be assessed as the
growth rate decreases. The errors shown are plus-or-minus one standard error, as calculated

in Appendix 8 from eq A8.16 for growth and A8.34 for relative supersaturation.

It can be seen that the magnitude of the error in the growth rate is quite small over the entire
range of supersaturation used in the experimental investigation. The absolute value of the
error is almost constant during an experiment, and therefore the percentage error is greater at
lower growth rates. This can be explained by considering the form of the expression for the

standard error in the growth rate, from eq A8.16

2 = \2

L
—2 | +|—= (4.17)
My My G

Gﬂlz

The following observations were made from the experimental data: firstly, the ratio of the
standard deviation in the second moment to the second moment was approximately constant
throughout an experiment. This implies the first term on the right hand side of eq 4.17 is
approximately constant. Secondly, i, increased by a factor of approximately 1.5 in each of
the experiments, whereas 3 increased by factors of 1.5 to 4 depending on the initial
supersaturation of the metastable solution. As an experiment proceeds, the increase in my 18
greater than that in 7, , and the growth rate decreases, thus from the second term on the
right hand side of eq 4.17 the standard deviation as a percentage of the growth rate will

increase.

It can also be seen that the error in the activity product is approximately constant, and

relatively small, over the range of supersaturation studied in the experiments.
4.6.2 Aggregation rate constant and oxalate ion concentration

The error analysis already described was also used to determine the error associated with the

aggregation rate constant and the oxalate ion concentration. The expressions for the error in
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the aggregation rate constant and oxalate ion concentrations are derived and a sample

calculation of the errors is given in Appendix 8.

Figure 4.14 shows the aggregation rate constant plotted against the oxalate ion concentration
for the same experiments used to illustrate the error in the growth rate and the activity
product. It can be seen that for each experiment the errors in the aggregation rate constant
are very small. The errors are typically less than 2% of the value of the aggregation rate
constant. The errors are smaller than those for the growth rate as the expression for the error
in the aggregation rate constant, given by eq A8.22, is only dependent on the total number of
crystals, and the aggregation rate. Both these parameters decrease during an experiment, in

contrast to the crystal volume which increases.

As with the relative supersaturation, the error in the oxalate ion concentration is
approximately constant and relatively small over the entire range of conditions considered.
The errors shown are for the total oxalate ion concentration rather than the free ion
concentration. However, as shown in Section 2.4, over the concentration range used in the
experiments the fraction of oxalate present as the free ion is approximately constant, thus the

percentage error in the total and free oxalate ion concentrations will be the same.
4.7 KIDNEY STONE FORMATION

It is generally accepted that human urine is ordinarily supersaturated with respect to calcium
oxalate (Andrews et al., 1955 and Miller et al., 1958). As Robertson and Nordin (1976)
observe the two main factors affecting the saturation of urine with calcium oxalate are the
urinary concentrations of calcium and oxalate. The underlying processes involved in stone
formation are also well understood as crystal nucleation, and enlargement by growth and
aggregation (Finlayson, 1978 and Ryall, 1989). Both hypercalciuria, increased urinary
calcium concentration, and hyperoxaluria, increased urinary oxalate concentration, have been

recognised as risk factors for stone disease (Robertson et al., 1976).

The findings of this chapter raises an important question in the pathogenesis of kidney
stones as well as the assessment of risk factors for stone formation. If the primary crystal
enlargement mechanism is growth, then the traditional characterisation of risk by assessing
the supersaturation of urine is appropriate. However, if the primary enlargement mechanism
is aggregation, supersaturation is not the appropriate measure. Rather, judgement should be

based on the urinary oxalate concentration.
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4.8 CONCLUSIONS

Data from the experimental investigation of growth and aggregation of calcium oxalate in a
batch system has been analysed using the program Batch to determine the dependence of

both phenomena on the agitation rate and supersaturation:

o The experimental data are well described by McCabe’s AL law for growth and a

size-independent aggregation kernel.

« Regardless of the solution composition and the agitation rate the growth rate, in
im/min, in metastable solutions is described by an equation that is second order in

relative supersaturation, viz.

G =(0.0767+0.0012)(S - 1)°

These results imply the growth rate is controlled by surface spiral growth. The
findings of many other studies on the growth of calcium oxalate are consistent

with the results presented in this chapter.

« The observed behaviour of the aggregation rate is more complex: it is found to
depend on the agitation rate and also the oxalate ion concentration, rather than
some measure of supersaturation. The aggregation mechanism is investigated in
more detail, with the aim of explaining the observed experimental behaviour in

Chapter 5.
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Chapter 5:

THE AGGREGATION MECHANISM

In this chapter an aggregation mechanism is developed to explain the dependence
observed in Chapter 4 of aggregation rates on both solute concentration and

agitation rate.

Seeded batch crystallisation experiments in supersaturated and saturated
solutions with various rates and types of agitation reveal that aggregation
proceeds irreversibly in supersaturated solutions, but reversibly in saturated

solutions. In both cases aggregation depends on the agitation rate.

It is proposed that aggregation in supersaturated solutions proceeds as a two
stage process, the first is reversible, the second irreversible and controlled by
crystal growth. Further, a model is developed to explain the dependence of the
aggregation rate on the oxalate ion concentration rather than on supersaturation.
It is proposed that in order for particles to aggregate irreversibly solute must first
diffuse to the point of contact and then deposit on the touching surfaces in order
to “cement” the particles together. It appears that diffusion to the cementing site

is the rate determining step.

5.1 INTRODUCTION

The mechanism by which aggregation occurs is now considered, in particular how the
dependence of the aggregation rate on the oxalate concentration and agitation rate may be

explained.

It has been possible for many years to describe in a semi-quantitative way the mechanisms
active in the aggregation of colloidal particles in ionic solutions. These mechanisms are
summarised by the theory of Derjaugin, Landau, Verwey and Overbeek (DLVO) who
initially brought the diverse elements of the theory together.

However, DLVO theory takes no account of the effects of supersaturation during the
aggregation process, so while aggregation in saturated or undersaturated solutions may be
accounted for in this way, the more immediately relevant issue of how crystals aggregate

while they are growing, is not addressed.

95—



5.2 AGGREGATION MECHANISMS

Finlayson (1978) has proposed that DLVO theory may be used to describe the factors
affecting the aggregation of calcium oxalate crystals. Finlayson et al. (1984) and Nancollas
(1990) also suggest that the stability of aggregates of crystalluria in urine can be described
by DLVO theory. Both authors claim that in urine repulsive electrostatic forces are reduced
because of elevated ionic strength and the effect on the surface zeta potential of urinary

constituents. The reduction of these repulsive forces is favourable for aggregation.
5.2.1 DLVO theory

DLVO theory treats the stability of aggregates in terms of the energy changes which occur
when particles approach one another. The theory involves estimations of the energy of
attraction by London and Van der Waals forces and repulsion from overlapping electrical

double layers.

Van der Waals forces. These weak attractive forces between un-charged molecules

originate from electrical interactions of which there are three types:

1. Dipole-dipole interactions: molecules with permanent dipoles mutually orientate

in such a way that an average attraction results.

2. Dipole induced dipole interactions: a molecule with a permanent dipole may

induce dipoles in other molecules resulting in attraction.

3. Attractive forces may also be induced in non-polar molecules. These are known
as dispersion or London forces and are caused by the fluctuations in the charge
distribution of a molecule inducing polarisation in another. Nearly all Van der
Waals forces are London dispersion forces except in the case of highly polar

molecules.

The electrical double layer. Most substances acquire a surface electric charge when
they are immersed in a polar solvent, which arises from effects such as ionisation, ion
adsorption and dissolution. The surface charge influences the distribution of jons in the
solvent near the surface. Ions of the opposite charge to that at the surface are attracted which
leads to an electrical double layer consisting of two regions, the surface region of absorbed
ions and a diffuse region where ions of the opposite charge are distributed according to the

influence of electrical forces and thermal motion. When two particles come together to form
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an aggregate their double layers must overlap, which produces a repulsive force as the two

diffuse regions of the double layer of like charge come together.

Mathematical expressions for the changes in potential energy that occur when two particles
near each other as a result of Van der Waals and electrostatic forces can be derived. As
shown by Shaw (1980) for Van der Waals forces

V= (5.1)

where A is the Hamaker constant, r the radius of the particles and h the separation between

the particles. For double layer interactions

Ve =2me¥g exp(—xh) (5.2)

where € is the di-electric constant, ¥y is the surface potential and the quantity, k, which is

related to the size of the double layer, is given by

282N, 1)
i = |2l (5.3)
ekT

where N, is the Avogadro number, e the charge of an electron, k the Boltzmann constant, T
the temperature and I the jonic strength of the solution. The quantity 1/x has units of length
and is termed the Debye length.

DLVO theory explains the effect of ionic strength as follows: an increase in the ionic strength
leads to a decrease in the size of the electrical double layer, as seen from eqs 5.2 and 5.3, 80
the repulsive force associated with the double layer acts over a smaller distance, while the
attractive Van der Waals forces are unchanged. Thus the potential barrier to particle

interaction decreases.

It should be noted that hydrodynamic shear forces may be able to bring together particles
with sufficient energy to overcome the repulsive energy barrier and lead to aggregation, or

break up aggregates held together by Van der Waals forces.

DLVO theory predicts that calcium oxalate crystals will aggregate rapidly in urine-like
systems as a consequence of the effect of elevated ionic strength on the electrical double
layer of each crystal. In agreement with this prediction are the experimental results of Sarig
et al. (1989) and Hess et al. (1989), who both observe aggregation in urine-like solutions in

the absence of supersaturation. However, in contrast, Hounslow (1990) reports that in a
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batch system aggregation does not occur in saturated solutions, only supersaturated

solutions.

DLVO theory takes no account of the effects of supersaturation on the aggregation process,
so the influence of growth is not accounted for. The results from Chapter 4 show that in

supersaturated solutions the aggregation rate is dependent on the oxalate ion concentration.

Hounslow (1990) finds that the aggregation of calcium oxalate is dependent on
supersaturation and shows DLVO theory cannot account for the dependence based on the
following argument. In the experiments reported by him, and those in Chapter 4, the ionic
strength is held virtually constant by the substantial concentration of Na™ and CI” ions, yet
the aggregation rate decreases by as much as two orders of magnitude. It is clear that DLVO
theory cannot account for the observed dependence of the aggregation rate on the oxalate ion

concentration in supersaturated solutions.
5.3 AN EXPERIMENTAL INVESTIGATION

An experimental investigation was undertaken to explore the apparent contradiction between
the two sets of results presented in the previous Section. Conventional DLVO theory — and
some experimental observations (Hess et al., 1989 and Sarig et al., 1989) — indicate that
aggregation should proceed rapidly in saturated solutions. Whereas, Hounslow (1990) has
observed that no aggregation takes place in saturated solutions but that it does occur in
supersaturated solutions, at a rate proportional to the supersaturation. The findings of
Chapter 4 and those of Hartel and Randolph (1986), suggest that aggregation is dependent

on the oxalate ion concentration and also the rate of agitation, or shear rate.
5.3.1 Materials and methods

Two stock solutions were prepared: a standard metastable (supersaturated) solution
according to the protocol described in Section 3.3.2 and a saline solution saturated with
respect to calcium oxalate. The saturated solution was prepared from a 0.15 M sodium
chloride solution by the addition of ca 5 grams/litre of calcium oxalate mono-hydrate
crystals. The crystal-saline slurry was allowed to equilibrate for a minimum of 24 hours, at
the temperature of intended use. Immediately before each experiment, the crystals were

removed by filtration (0.22 pm).

Each of the experiments reported entails the addition of 4 ml of a 1 gram/litre seed
suspension, prepared as described in Section 3.3.2, to 200 ml of either the saturated or

supersaturated solution. At various times during each experiment the CSD, the total number
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and the total volume of crystals per unit volume of suspension were determined by a PDI
Elzone 280PC. Experiments were either conducted at room temperature (17.5+2.5°C) or in
a Grant Instruments SS40-D shaking water bath at 37+0.5°C. The experiments described
above were performed in the Department of Chemical Engineering at the University of
Cambridge, which is why some of the equipment used, notably the particle size analyser, is

different from that described in Chapter 3.

5.3.2 Results

Four types of experiment were conducted using either the supersaturated or saturated
solutions described above, with agitation either by the propeller-stirrer supplied with the
Elzone 280PC or by the Grant water bath. The presentation of results is divided, according

to the method of agitation.
Preliminary studies — stirred vessel

The standard result. As described in Section 5.3, the results of Chapter 4 and those of
Hounslow (1990) and Hartel and Randolph (1986) suggest that in the presence of
supersaturation, calcium oxalate seed crystals will grow and aggregate. Further, in the
absence of supersaturation the seed crystals may aggregate or dis-aggregate, depending on

the rate of agitation.

Figures 5.1 and 5.2 present the results of a pair of parallel experiments conducted in
saturated or supersaturated solutions. From Figures 5.1 (a) and (b) it may be seen that in the
supersaturated solution the total volume, Vr, of crystals rises, clearly identifying the
presence of growth, and the total number, N, of crystals falls, identifying aggregation.
Conversely, in the saturated solution, the volume of crystalline matter remains constant and

the numbers slowly rise.

Figure 5.2 shows the CSDs for the same experiments. In Figure 5.2 (a), in the
supersaturated solution the effects of growth and aggregation are clearly visible: the mean
size increases and the CSD broadens. In Figure 5.2 (b), in the saturated solution the CSD
remains static, with some dis-aggregation possibly identified by the gradual narrowing of the

peak.

Figures 5.1 and 5.2 show that under circumstances where aggregation does not occur in

saturated solution, it does occur in the presence of supersaturation.

Saturated solutions — effect of agitation. The results from Section 4.5.1 suggest

that in supersaturated solutions aggregation is dependent on the agitation rate. The agitation
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Figure 5.7 shows the CSDs from an experiment in which the agitation rate for the first 24
hours was 110 OPM!. The agitation rate was then decreased to 90 OPM, inducing
aggregation, indicated by the decrease in number and the shift of the CSD towards larger
sizes. The agitation rate was then increased to 110 OPM, causing dis-aggregation, indicated

by the shift of the CSD back towards the CSD obtained after 24 hours.

Figure 5.7 confirms the observation from the preliminary experiments, that crystals may

aggregate or dis-aggregate in saturated solutions, depending on the agitation rate.

Supersaturated solutions - effect of agitation. In Section 4.5.1 results are
presented that suggest the aggregation rate is dependent on the agitation rate in
supersaturated solutions. A series of experiments was conducted using different agitation
rates to investigate further the effect of agitation. Seeds were added to a supersaturated
solution, samples were taken just after the seeds were added and then again after 24 hours

when the solution was saturated.

Figure 5.8 shows the effect of the agitation rate on the total crystal number and volume after
24 hours. It can be seen from Figure 5.8 (a), that as the agitation rate increases, the total
number of crystals increases, indicating a decrease in aggregation. Figure 5.8 (b) shows
that the agitation rate has no effect on the total crystal volume. This is consistent with the
results from Chapter 4: the agitation rate affects aggregation and has no effect on growth.
The total number and volume of crystals at the start of the experiment are also shown in
Figure 5.8. It can be seen that in each experiment the total number and volume of seeds
added was approximately constant. Therefore it is not the initial condition of the seeds that

is responsible for the results observed but the effect of agitation on aggregation.

The CSDs after 24 hours are presented in Figure 5.9. The effect of the agitation rate on the
CSDs can clearly be seen, as the agitation rate decreases the mean size increases and the

CSD broadens.

Finally, Figures 5.10 (a) to (c) show SEM micrographs of samples taken at the beginning
and after 24 hours for experiments with agitation rates of 75, 90 and 110 OPM. The seeds
added are clearly aggregates and similar in number and size at the beginning of each
experiment. After 24 hours the effect of the rate of agitation on aggregation can be seen by

the difference in the number and size of the crystals.

1 This experiment was conducted using the water bath described in Section 3.3.3, thus the shaking rate is in
OPM rather than Hz.
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Figure 5.9 CSDs by number in a supersaturated solution at different agitation rates: the

effect of agitation.
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(ii) Time, t =24 hours.

Figure 5.10 (a) SEM micrographs of calcium oxalate crystals at different times for a batch
experiment using an agitation rate of 75 OPM.
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(i) Time, t =24 hours.

Figure 5.10 (b) SEM micrographs of calcium oxalate crystals at different times for a batch
experiment using an agitation rate of 90 OPM.
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(ii) Time, t =24 hours.

Figure 5.10 (c) SEM micrographs of calcium oxalate crystals at different times for a batch
experiment using an agitation rate of 110 OPM.
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Supersaturated solutions - reversibility. A two-stage experiment using a
supersaturated solution was conducted over 80 minutes with the agitation rate being

increased from 3 Hz to 3.5 Hz at 60 minutes.

Figures 5.11 (a) and (b) show that at the 3 Hz agitation rate the crystals grow and aggregate
as expected. In Figure 5.11 (a) during this phase the total numbers decrease and from
Figure 5.11 (b) the volume increases. In Figure 5.12 (a) the CSDs show the characteristic
effects of growth and aggregation, the mean size increases and the distribution broadens.
However, when the agitation rate is increased to 3.5 Hz, no dis-aggregation is observed, in
Figure 5.11 (a), the total number of crystals remains constant and in Figure 5.12 (b), the
CSDs are approximately static. This behaviour is in marked contrast to the results shown in

Figures 5.5 and 5.6.
These observations show that in the presence of supersaturation, aggregation is irreversible.
5.4 DISCUSSION

The results presented in the previous section may be summarised as follows:

In supersaturated solutions, crystals grow and aggregate.

In saturated solutions crystals do not grow, however they may aggregate or dis-

aggregate.

In saturated solution crystals can aggregate and dis-aggregate reversibly.

In supersaturated solutions aggregation is irreversible.

« Aggregation rates in both saturated and supersaturated solutions depend on the

agitation rate.

A two-stage mechanism is proposed to account for these observations: in the first,
reversible, stage, crystals collide and form weak aggregates held together by the forces
described by DLVO theory. In the second, irreversible, stage, the loose aggregates are
cemented together by the deposition of new material. The second stage can only occur in
supersaturated solutions, while the first can occur in any solution. This mechanism is

shown schematically in Figure 5.13.
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Figure 5.13 A general mechanism for the aggregation of calcium oxalate crystals in

saturated and supersaturated solutions.

The combination of DLVO theory and the cementing of weak aggregates by growth has been
used before to describe aggregation. Low (1975) has proposed, and found experimental
evidence, for a similar mechanism to explain the aggregation of Al(OH); in caustic aluminate
solutions. Hartel et al. (1986) also suggest that the aggregation of calcium oxalate involves
the formation of weak aggregates which can either be cemented by growth to form stable

aggregates, or disrupted by hydrodynamic conditions.

By means of the proposed mechanism it is possible to explain the apparently contradictory
observations of Sarig et al. (1989), Hess et al. (1989) and Hounslow (1990) — for saturated
solutions — and the dependence of aggregation on supersaturation reported by Hounslow.
Clearly Sarig et al. and Hess et al., who find that aggregation occurs reversibly, were
observing the first stage of the mechanism, while the second stage was not active.
Conversely, results reported by Hounslow were at operating conditions, such as a high
agitation rate, that moved the “equilibrium” position of the first stage far to the left, causing
no aggregation to be observed at zero supersaturation. Only in the presence of
supersaturation was it possible for short-lived loose aggregates to be cemented together to

form stable aggregates.

The dependence of both stages of the aggregation mechanism on the agitation rate is also
readily explained. In saturated solutions only weak aggregates form and shear forces caused
by agitation will have a strong effect on the efficiency of collisions between crystals and
therefore the rate of aggregation. In supersaturated solutions aggregation is controlled by
growth, however the efficiency with which particles are cemented together will still depend

on the agitation rate.
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5.5 AGGREGATION IN SUPERSATURATED SOLUTIONS

One observation that remains unexplained by the mechanism proposed is that the aggregation
rate depends on the oxalate ion concentration. If the second part of the aggregation
mechanism is controlled by growth, then the aggregation rate should correlate with the

growth rate, or the activity product. However, from Figure 4.11 this is clearly not the case.

In this section a model is developed for the aggregation of crystals in supersaturated
solutions. As with aggregation in saturated solutions, the first step is the collision of
crystals, but in supersaturated solutions crystal growth cements the crystals together. It is

this cementing process that is explained now.
5.5.1 A cementing model

Suppose that when two crystals come into contact with each other a pore is formed, and
regardless of how complicated the actual shape of the pore might be, it can be approximated
as a right cylinder of length, L,, with the cementing taking place at a right disc with area,

A, at the end of the pore. This is shown schematically in Figure 5.14.

Z
I
0 L, :
cementing site
z z+dz
Ap
- — =
L,

Figure 5.14. Pore formed when two crystals come in contact

The cementing at the end of the pore will occur as a result of crystal growth according to the

reaction,

Aaq + Baq - ABsolid (54)

Suppose the rate law for the cementing reaction is first order in both reactants, then

r=kab (5.3)
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where a and b are the concentrations of A and B.

By analogy with crystal growth in which ions must diffuse from the bulk to the crystal
surface before precipitation occurs, the ions must diffuse along the pore before cementing
occurs. A pseudo-steady state analysis is performed considering the diffusion of the ions
along the pore and the cementing reaction at the end of the pore. In making the pseudo-
steady state assumption, factors such as growth of the cementing site towards the pore

mouth are neglected.
The general material balance for mass transfer of the reactant A by diffusion, without

reaction, given for example by Westerterp et al. (1984) is

Q)A__: (56)

Where the boundary conditions are that the concentration of A at the entrance to the pore is
equal to the bulk concentration, g, i.e. a=agat z=0 and the concentration of A at the end

of the pore is ay, i.e. a=aga 2= L,. The solution to eq 5.6 subject to these conditions 18

da ag — ay,
D, — = constant = —D 5.7
A Iz AL (5.7
The flux of A may be calculated as
da ag—ar
JA:—DAAP—:—@AAP (58)
dx Lp

At the end of the pore the transfer of the reactants A and B by diffusion is balanced by the

cementing reaction; a mass balance for this process yields

by —b

%~ 0L = L=Apr (5.9)

Dy Ap = Dy Ap

Assuming the diffusivities of A and B are approximately equal, substituting the expression

for the cementing rate, eq 5.5 and simplifying implies

ao—aL=b0—bL Z%LaLbL (510)

Now, the cementing rate, r, is the rate per unit surface area. Tt follows that
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kL
6= g)“o (5.11)

is dimensionless. In reaction engineering terminology, ¢ is a modulus relating the rate of the

cementing reaction to the rate of transfer by diffusion.

If the reactant B is in excess, then the concentration of reactant A is limiting, and the ratio of

the reactants in the bulk is given by

b

(=2 no gzl (5.12)

Further, dimensionless reactant concentrations may be defined by dividing by the bulk

concentrations:
x=2L . 0<x<l (5.13)
ay
b
y=-% . 0<y<l (5.14)
0

Dividing eq 5.10 by a, and writing the resulting expression in terms of the dimensionless

variables gives,

(1-x)=¢(1-y)=Cdxy (5.15)

The following dimensionless cementing rate at the end of the pore may also be defined:

)
pp————y § R 4 s 0<r<l 5.16
= e =0 i (5.16)

Equating eqs 5.15 and 5.16 gives

F=(1-x)=¢(1-y)=Coxy (5.17)

Eliminating the dimensionless concentrations, x and y from eq 5.17 and simplifying gives

the following equation involving the dimensionless cementing rate

072 —(1+9+(9)P+L9=0 (5.18)

As 7 <1 the appropriate solution for the dimensionless cementing rate from eq 5.18 is,
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, 2 a2 72 gl
?=1+¢+c¢—\h+2¢+223¢+¢ 2097+ %0 5,19

Figure 5.15 is a plot of the dimensionless cementing rate calculated from eq 5.19 for various
values of the reactant ratio, §. It can be seen that for large values of the modulus, ¢, the
value of the dimensionless cementing rate is approximately constant. This corresponds to
the cementing rate being limited by diffusion. For small enough values of the modulus, the

cementing rate is proportional to the modulus and the process is reaction limited.

The dependence of the cementing rate on solution composition is now explored. The group
& =D/kLp has the units of concentration. The reactant of interest is the oxalate ion, which
is equivalent to reactant A in the model, as in the experimental work the oxalate ion was the
limiting reactant. The expression for the dimensionless oxalate ion concentration is

)

¢1=¢=(—"=

5.20
D/k Lp) e:20)

G)‘OQ

The dimensionless activity product, a product of the concentrations of the two reactants is

ag b agb
by =9 =20 ="0 (5.21)
(fD/ k Lp)
A dimensionless cementing rate may also be written in terms of ¢ as
P ofg= 4 4 (5.22)

kAp(D/KLy) kApE
5.5.2 Results

Figure 5.16 shows the dependence of the dimensionless cementing rate, 7* on the
dimensionless concentration, and the dimensionless activity product, ¢, for various
values of the reactant ratio, {. From Figure 5.16 (a) it can be seen that for values of the
concentration greater than approximately 1.0, the cementing rate is independent of the
reactant ratio and further the cementing rate 1s equal to the concentration. From Figure 5.16
(b) it can be seen for values of the activity product less than approximately 0.1, the
cementing rate is independent of the reactant ratio and further the cementing rate is equal to

the activity product.

The limits observed in Figures 5.16 (a) and (b) can be verified from eq 5.18, which in terms

of the dimensionless variables defined in egs 5.20 to 5.22, is
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#7514 0y (14 0)) + 92 =0 (5.23)

If the cementing reaction rate is low, the rate constant, k is small, then from eq 5.20 the

value of the concentration, @ is small. In which case ¢,(1+¢ )<< 1 and from egs 5.21 and

w2

522, 7* << ¢, then using eq 5.23 implies = 0,.

. . A 2 ~ . .
When the rate of reaction is fast, 7*“>> 7* and eq 5.23 may be written 1n the form

PP (1) oy S0 =0 (5.24)

The solutions to eq 5.24 are: 7" = ¢; and =00 .

The second root can be ignored because F<lbutas ¢ =1,if ¢ =1 then 7" = =1. Thus

the limits observed in Figures 5.16 (a) and (b) have been verified.
5.5.3 Discussion

The model proposed for aggregation in supersaturated solutions involves two steps, the
diffusion of the reactant ions along a pore and a cementing reaction which takes place at the
end of the pore. Either of these steps may be limiting, if the cementing reaction is very fast,
the reactants will be rapidly precipitated at the end of the pore and the diffusion of reactants
along the pore will be limiting. Conversely, if the cementing reaction is slow, this will be

the limiting step in the process.

Figures 5.16 (a) and (b) show that for solutions of different composition if cementing is
diffusion limited then the cementing rate depends only on the limiting reactant concentration,
¢,, and not on the ratio of the reactants, {. If the process is reaction limited the cementing

rate depends on the activity product of the reactants.

In Chapter 4 the aggregation rate constant in supersaturated solutions of different
compositions is seen to depend only on the oxalate ion concentration, which was the limiting
reactant. Tentatively, this suggests that the aggregation of calcium oxalate in supersaturated
solutions is controlled by the rate of diffusion of oxalate ions to the cementing sites when

crystals collide.

The agreement between the basic model for aggregation and the experimental results are
qualitative, in order to investigate whether a more quantitative agreement can be obtained the

basic model must be modified. The model must incorporate the actual growth kinetics
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determined in Chapter 4 viz. the precipitation reaction is second order in relative

supersaturation and is reversible.
5.6 AN IMPROVED CEMENTING MODEL

The model proposed in the previous section to explain aggregation in the presence of growth

is re-worked with the experimental kinetics for crystal growth determined in Section 4.4.1.
5.6.1 Derivation

From eq 4.6 the growth rate may be described by the following equation

2
[AP
Goc[ E;—l) (5.25)

For these kinetics the cementing reaction rate at the end of the pore is

2
_ apb,
_kL _—Ksp 1] (5.26)

where a; and by, are the oxalate and calcium ion concentrations at the end of the pore.
Using the same definitions for the dimensionless concentrations and cementing rate, given
by egs 5.13, 5.14 and 5.16, the expression equivalent to eq 5.17 using the new equation for

the cementing reaction rate is

2
iDaL aoboxy
) =2 (-y)=k| |1 .
7 (-x) =T y) U K, (5.27)

The variables of interest are the activity product and the oxalate ion concentration,

accordingly the following useful dimensionless groups are formed: a dimensionless activity

product,

* a b
AP =200 (5.28)
K,

a dimensionless oxalate ion concentration,

g = =28 (5.29)

— 125 —



and a dimensionless calcium ion concentration,

(5.30)

Eq 5.27 may be re-arranged to give

f*:a*(l—x)=b*(1—)’)=k*(\/a*b*xy—1)2 (5.31)

where 7* and k* are the dimensionless cementing reaction rate and a dimensionless rate

constant. The expressions for these parameters are

Ak F Lp

rr= 5.32
DKy, (3:32)
3/2
. kL,K
and k =—%‘L (5.33)

Eliminating the dimensionless concentrations, x and y from eq 5.31 gives the following

equation involving the dimensionless cementing rate

e -2k (a4 b7

|-t (-2+ o +aatbt +b7 )|

+[2(a* wbt) 4k (2(1-ab)(a + b*))]f*

t+atb) ke (1-an b (2 a'b*))=0 (5.34)
Eq 5.34 is a quartic and is much more difficult to solve than the same expression from the
simple model, eq 5.18. Rather than solving eq 5.34, which produces truly horrific

equations for the cementing rate, a different approach is taken. It can be seen that eq 5.34 is

a quadratic in a* and the appropriate root is
q pprop

) f*+k*(1—b*?*—?*2)+2 K7
@ = e (5.35)

During an experiment the decrease in the bulk concentration of the calcium and oxalate ions,
as a result of growth, is the same for both species. If the initial bulk calcium and oxalate ion

concentrations are b; and g, it follows that
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*

al —a* =bf - b"* (5.36)

Using the expression for b* from eq 5.36 in eq 5.35 the appropriate solution is

= * * * 2 ':*. o
a*:f*+ai*bi + ai—bi + 1+J; (5.37)
2 2 k

It is convenient to use eq 5.37 as it relates the dimensionless oxalate concentration to two

unknowns, the dimensionless cementing rate and the dimensionless rate constant, k*. For

the experiments conducted the initial calcium and oxalate concentrations are known.

The procedure adopted to investigate the dependence of the cementing rate on the activity
product and oxalate ion concentration is as follows. To consider the different regimes, from
reaction rate to diffusion limited, a range of values of the rate constant were chosen. By
varying the value of the cementing rate, eq 5.37 can be used to calculate the oxalate
concentration, because the initial oxalate and calcium concentrations are known. Then the

calcium concentration and activity product can be determined from eqs 5.36 and 5.28.

In the model for aggregation the formation of complex ions has been ignored, in particular
for diffusion total concentrations were used. In Chapter 2 it was shown that the formation
of complex ions reduces the free calcium and oxalate ion concentrations in the solutions used
in the experiments reported in Chapter 3. Consider the diffusion of an ion, ¢, along a pore,
together with the formation of a complex ion, d. If the rate of complex formation is, r._4
and the reverse rate is ry_,., then at equilibrium the rates are equal, which implies
ry.c=—Fe,q- Fromeq3.6, and including the complex formation reaction
d*c d*d

D—5 ="Vcod and D—7s =T

5.38aand b
dz dz? 56 ( )

Combining eqs 5.38a and b it follows that

d(c+d)

=constant (5.39)
dz

Eq 5.39 implies that from the point of view of mass transfer by diffusion the total and free
jon concentrations are the same, and thus total ion concentrations can be used to calculate the

cementing rate.

Now if total concentrations are used rather than activities the value of the solubility product

will be different. In Section 2.6 it was found that over the range of concentrations used in
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the experiments reported in Chapter 4, the fractions of calcium and oxalate present as free

ions are approximately constant.

As the fractions of calcium and oxalate ions present as free ions are approximately constant

the free ion concentrations may be written in terms of the total ion concentrations as

[Ca®" 1= fea T o [0x*" 1= for Ty o (5.40a and b)

where fc, and fo, are the fractions of calcium and oxalate present as the free ion and have
values of 0.98 and 0.53 respectively. The activity product is defined by eq 2.1, replacing
the free ion concentrations with eqs 5.40a and b, the activity product in terms of total

concentrations is

K&‘.’
T P (5.41)

’
=l 72—
Ox 2 r
Yt fCa f(‘).\'

sp — " ca**
The values of K, and y, are 1 24%10~2 and 0.315 respectively, which implies the value of
K}, is 4.38x107 M*.

Finally, the model has been developed to describe aggregation in supersaturated solutions, in
the presence of growth. In saturated solutions in which there is no growth, the model is not
valid as cementing cannot take place. As such the values of the dependent variables should
be measured relative to their values in a saturated solution. For the activity product this
presents no problem as the modified solubility product defined in eq 5.41 can be used. The
value of the oxalate concentration at equilibrium, a:q, can be determined from eq 5.37, as at

equilibrium the cementing rate, 7* =0, which implies

(5.42)

The values of the oxalate concentration at equilibrium for the experimental data were
calculated using the method developed in Section 2.4.1. The system of equations (2.19 to
2.22 and 2.28) that represent the mass action equations for complex ion formation, the mass
conservation equations and the expression for the solubility product were solved numerically
together with eq 5.36, written in terms of total concentrations. The values of a:q were then

calculated from eq 5.29.
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5.6.2 Results

In Figures 5.17 (a) to (c) the experimental values of the aggregation rate constant, f3,, are
plotted against AP*, a* and a*- a,,- In Figures 5.18 and 5.19 the dimensionless
cementing rate is plotted against AP*, a” and a*— ay, for values of the rate constant, k*
equal to 0.01 and 100. The values of the rate constant were chosen to give reaction rate
limited and diffusion limited regimes. The range of each of the independent variables in
these Figures is the same as the experimental range. The four curves plotted in each Figure
have values of a' and b] corresponding to those in the four metastable solutions reported in

Section 3.4.1.

From Figure 5.19 (b) when the value of the rate constant is large, the cementing rate is a
linear function of the dimensionless oxalate ion concentration. This observation can be
explained by considering eq 5.37. If the rate constant is large, then the cementing reaction

will be fast and the value of #* will be large as well and F*/ k* =1, consequently from eq
5.37,

* * * 2
PO el R [ ./ (5.43)
2 2

Similarly if the rate constant is small, in which case the cementing rate is slow, and the value

of 7* will be small. If #* — 0 in eq 5.36 it can be shown that

P = ak (bt 1) (5.44)

The product of the reactant concentrations is equivalent to the dimensionless activity product,
so eq 5.44 predicts second order dependence of the cementing rate on both the
dimensionless activity product and dimensionless oxalate concentration. These predictions

are confirmed in Figures 5.18 (a) and (b).
5.6.3 Discussion

In Figures 5.18 and 5.19 the relationship between the independent variable and the
cementing rate is determined by whether the cementing reaction rate or reactant transfer by
diffusion is limiting. While there is no expectation that the cementing rate, 7* and the
aggregation rate constant, B, will be identical, instead the patterns of behaviour of these

parameters are investigated to determine whether they are similar.
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Figure 5.19 Model predictions for diffusion limited aggregation. The dependence of the

cementing rate on (a) the dimensionless activity product, (b) the dimensionless oxalate ion

concentration and (¢) a* — a:q with k* =100 and for reactant ratios the same as those for the

metastable solutions used in the batch experiments.
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5.19 (a), with k* =100 have the same appearance as the experimental data in Figure 5.17
(a). Different values of the cementing rate, or aggregation rate are obtained at the same value

of the activity product, for different calcium to oxalate ratios.

For the same value of the rate constant there is correspondence between the plots of the
oxalate concentration and a*— a:q, from the model and the experimental data. As shown in
Figures 5.19 (b) and 5.17 (b) for the oxalate concentration and Figures 5.19 (c) and 5.17 (c)
for a*— a:q. The experimental aggregation rates show more scatter when plotted against
a*— a:q than against the oxalate concentration, the opposite is true for the results from the

model.

The cementing model would better describe the experimental data if the value of the
dimensionless oxalate concentration at equilibrium, az,‘q were smaller than that expected.
Consider an analogy with capillary condensation, for calcium and oxalate ions dissolved in
solution the chemical potential, ft, is given by

n=Gl+RTla (5.45)

a _
Ca** “0ox?

where Gg is the Gibbs free energy in the standard state. On a flat surface the chemical
potential is given by the Gibbs free energy in the standard state, GS . At equilibrium, the
Gibbs free energy of the ions in solution and the surface are equal and the value of the
activity productis Kg,. A flat surface may be thought of as a cylindrical pore of infinite
radius, thus

AG=G? -G =RTInK,,(r=co) (5.46)

In a cylindrical pore, if one mole of calcium oxalate precipitates, the surface area is reduced

by, a=2nrL. Butthe volume occupied by the precipitated material is

nr* L=1/py (5.47)

where p,, is the molar density. Hence, using eq 5.47 in the above expression for the

change in surface area, implies

a=2/pyr (5.48)

The overall change in Gibbs free energy is
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2
AG=G-Go-=1 (5.49)
Pmr

Eq 5.46 can be applied to the left hand side of eq 5.49, but with a finite radius, as well as to
the right hand side, which gives

K a
w(r) exp[ 2y 1) (5.50)
Ksp(r=°°) pMRTr

Eq 5.50 implies that for small values of r, the apparent solubility product in the pore is very
much lower than the actual solubilty product. From Sohnel and Garside (1992), for calcium
oxalate the value of the surface energy is 120x1073 J/m? and the molar density is 15.75
kmol/m?, so at 37°C the value of the constant in eq 5.50 is 5.91x10™° m. Since r is
probably in the order of 10~ m, then from eq 5.50 K,(r) = 0.027K,. This implies the
deposition of material at the cementing site is energetically highly favourable. Combining eq

5.41 for the solubility product with the definition of a:q, implies at equilibrium

ity =R [T 531

Thus as the apparent solubility product in the pore is lower than that in solution, the value of

a, will also be lower than that calculated.

If the dimensionless oxalate concentration at equilibrium is very small, then the results for
the different calcium to oxalate ratios in Figure 5.19 (b) for a diffusion limited process, will

collapse onto one curve which compares reasonably well with the experimental data in

Figure 5.18 (c).
5.7 CONCLUSIONS

In this chapter the mechanism for the aggregation of calcium oxalate crystals in both

saturated and supersaturated solutions has been investigated.

A two-stage mechanism is proposed to account for experimental observations of the

dependence of aggregation on the agitation rate and supersaturation:

« In the first stage, which is reversible, crystals collide and form weak aggregates
held together by the forces described by DLVO theory.

« In the second irreversible stage, the loose aggregates are cemented together by the

deposition of new material.
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The second stage can only occur in supersaturated solutions, while the first can occur in any
solution. By means of this mechanism the experimental observations reported in Chapter 4,

as well as those of other investigations in the literature can all be explained.

A model is proposed to explain the cementing in the second stage of the aggregation
mechanism. It is assumed that in order for cementing to take place, ions must diffuse to a
cementing site and then precipitate. In the model it is proposed that the diffusion resistance
is that of a long thin pore. It is found that this model at least qualitatively predicts the
experimentally observed dependence of the aggregation rate on the activity product and

oxalate concentration and that the transport process is limited by diffusion.
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Chapter 6:

THE IN VITRO STUDY OF UROLITHIASIS

In this chapter a review of the in vitro experimental systems that have been used
to study the crystallisation of calcium oxalate is presented. It is found that
virtually all the experimental systems ignore the geometry of the tubules in the
kidney and the effect that this might have on important factors in stone formation

such as crystal retention and aggregation.

A novel tubular crystalliser is described that will be used to investigate calcium

oxalate crystallisation in long, thin tubes, similar to the tubules of the kidney.

6.1 INTRODUCTION

Without doubt the major reason for the interest in the crystallisation of calcium oxalate is that

the major inorganic constituent of most human kidney stones are crystals of calcium oxalate

(Prien and Prien, 1968).

Because of the difficulty involved in observing crystal growth in vivo (in the kidney itself)
an in vitro experimental system is highly desirable. In this way the mechanisms thought to
be responsible for stone formation and stone disease (urolithiasis) can be studied in great

detail.

One of the most difficult tasks in the investigation of stone formation is the development of
an in vitro experimental system that has all the attributes of an organ as complex as the
kidney. The objective of this chapter is to review the existing in vitro experimental systems,

and describe the tubular crystalliser to be used in the current work.
6.2 IN VITRO EXPERIMENTAL SYSTEMS

Various in vitro experimental systems have been used to study the processes thought to be
important in stone formation, namely crystal nucleation, growth and aggregation; some
differ in technical detail and others at a more fundamental level. By using alternative
techniques each phenomena can be investigated. However, the comparison of results may
be difficult. Different experimental systems have specific features that make them suitable

for investigating one or more of the factors affecting stone formation. Nonetheless inherent
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in each, and perhaps every experimental system, are several critical conditions which prevent

an analogy with the kidney being as close as might be desirable.
6.2.1 Batch crystallisation

Seeded batch crystallisation has been one of the most widely used techniques for studying
factors affecting the growth and aggregation of calcium oxalate. It has been used to study
growth: Nancollas and Gardner (1974), and Meyer and Smith (1975a), growth and
aggregation: Hounslow et al. (1988a) and (1988b) and Will et al. (1983), inhibition of
growth and aggregation: Robertson e? al. (1973), Ryall et al. (1981c) and Kok et al. (1990)
and factors affecting precipitation: Skrtidet al. (1984), Brecevic et al. (1989) and
Babid - Ivanci€ et al. (1985). This is only a short list of the many different investigations

that have used seeded batch crystallisation.

As batch experiments have been widely used to study such a range of phenomena, there are,
not surprisingly, many different methods of monitoring the crystallisation process. The
purpose of this discussion is to point out the advantages and disadvantages of the different in
vitro experimental systems rather than giving a detailed description of each. An excellent

review of batch crystallisation methodology is given by Kavanagh (1992).

The principal virtues of batch crystallisation are the well established experimental protocols
that exist and the ease with which experiments can be conducted. Also as described in
Chapter 3 a computer program has been developed that can calculate the true growth and

aggregation rates from batch experimental data.

However, the main problem with batch experiments is that an agitated vessel on a bench is a
poor representation of the kidney. According to Sheehan and Nancollas (1980) the
supersaturation with respect to calcium oxalate in vivo is relatively constant, whereas in a
batch experiment the supersaturation decreases as a consequence of crystal growth. Also the

flow of urine through the kidney is a continuous rather than a batch process.
6.2.2 Constant composition methods

The problem of supersaturation decreasing during a batch experiment has been addressed by
Sheehan and Nancollas (1980), who use the constant composition method of Tomson and
Nancollas (1978). Constant calcium and oxalate ion concentrations are maintained by the
simultaneous addition of solutions containing these ions, controlled by measurements of the

calcium ion concentration by a calcium ion specific electrode. This method is well suited for
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measuring the growth rate, particularly at low supersaturations, but does not account for

aggregation and is still a batch, rather than a continuous process.
6.2.3 The M.S.M.P.R. crystalliser

The concept of the urinary tract as a biological analogue of a sequence of continuous
crystallisers was first proposed by Finlayson (1972), based on the observation that any
vessel continuously receiving a stream of supersaturated fluid and continuously ejecting a
stream of fluid and suspended crystals is a crystalliser. The renal pelvis continuously
receives urine and suspended crystals from the ducts of Bellini. Therefore the ducts of

Bellini and the renal pelvis may be viewed as a sequence of two MSMPRs.

The main advantage of using an MSMPR to study crystallisation is that an analytical solution
to the population balance exists if only nucleation and growth occur, as shown by Randolph
and Larson (1988). Consequently the MSMPR has been extensively used to study
nucleation and growth kinetics and to examine the effects of various urinary constituents and
other compounds on these processes. For example see Miller et al. (1977), Rodgers and

Garside (1981), Drach et al. (1981), Li et al. (1985) and Kohri et al. (1988) and (1989).

However, there are problems associated with the operation of an MSMPR. Rodgers and
Garside (1981) note that the supersaturation at steady state is often very low and difficult to
measure. Also, more importantly, if aggregation occurs the analytical solution for nucleation
and growth alone is not valid, and the rates calculated will be wrong. Garside et al. (1982),
Robertson and Scurr (1986) and Kohri et al. (1988) all observe the effects of aggregation in
either the CSDs or SEM micrographs of the product crystals from an MSMPR.

The MSMPR is perhaps a more realistic representation of the kidney, it operates at constant
supersaturation at steady state, and is a continuous device. However, it cannot easily be
used to study the most important mechanism in stone formation, crystal aggregation. Also it
does not have the tubular geometry of the kidney, thus the fluid velocity profile and
residence time distributions of the fluid and crystals in an MSMPR will be different from

those in the kidney.
6.2.4 The Couette agglomerator

The addition of a Couette agglomerator in series with an MSMPR - the agglomerator being
fed with fresh seed generated continuously in the MSMPR, has been used to study the
aggregation of calcium oxalate by Springman et al. (1986) and Hartel et al. (1986).
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The problem of simultaneous growth and aggregation is not solved by this modification.
The solutions fed to the agglomerator are still supersaturated, so to determine the effect of
aggregation the growth rate in the agglomerator must be known. Springman ef al. and
Hartel ef al. both assume the growth rate in the agglomerator is the same as that in the
MSMPR. While this might be acceptable when the output of the MSMPR is fed directly to
the agglomerator, Hartel et al. add more oxalate to the solution before it enters the

agglomerator, which must increase the supersaturation and therefore the growth rate.

A further problem with the agglomerator, acknowledged by both authors, is that the shear
rates in the device are much higher than might be expected in the tubules of the kidney.
Finally, as with the MSMPR alone, the fluid velocity profile and residence time distribution

in the Couette agglomerator will be different from those in the kidney.
6.2.5 Reverse osmosis

Azoury et al. (1986) and (1987) use reverse osmosis (RO), or hyperfiltration, to generate
and maintain supersaturation. The RO unit, may be visualised as a shell and tube exchanger,
in which a large number of porous hollow fibres are the tubes. A metastable solution is fed
to the shell, water is driven through the walls of the porous tubes by high pressure then
flows along the tubes. This process produces a concentrated flow that leaves the shell side.

The operation of this device is shown schematically in Figure 6.1.

Feed (metastable)

¢ / Shell

4

— Permeate
t (low supersaturation)

N\
N\

i Hollow porous tubes

Concentrate
(high supersaturation)

Figure 6.1. Reverse osmosis unit (After Azoury et al. (1986))
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Azoury et al. (1986) operate a RO unit with a pressure difference of 8 bar across the hollow
tubes and feed flow rates of 0.5 litre/min and 1.5 litre/min. These conditions give mean
residence times of 3 and 1 minute respectively. Under these conditions the concentrate
supersaturation is sufficient to bring about nucleation, and the mean residence time long

enough for subsequent growth and aggregation of the nucleated crystals to occur.

The RO unit is an attractive in vitro experimental system as it possesses many of the features
of the kidney. It may be operated at constant supersaturation, is a continuous device, and
like none of the other experimental systems discussed has a tubular geometry. However,
some aspects of the operation of this device by Azoury et al. (1986) are not representative of
the conditions in the kidney. An extremely high pressure difference between the shell and
the porous tubes was used, together with fluid flowrates high enough to give plug flow.
Finlayson and Reid (1978) state that the flow in the tubules of the kidney will be laminar and
that approximately 1440 ml of urine is produced per day. Schulz (1987) in a study of the
influence of the fluid flow field on the formation or urinary stones using scale models of the

renal pelvis also finds that the fluid flow is in the laminar regime.
6.3 A NEW TUBULAR CRYSTALLISER

Despite the attractive features of the in vitro experimental system described in the previous
section, it has not been used to further investigate the growth and aggregation of crystals in a
tubular geometry similar to that of the kidney. One of the aims of this work is to consider
the effect that the geometry of the tubules in the kidney has on factors influencing stone
formation, such as aggregation and crystal retention. For this reason a crystalliser similar to

the one used by Azoury et al. (1986) was developed.
6.3.1 The crystalliser

The tubular crystalliser is shown in Figure 6.2. It consists of 262 Amicon H1P10-20
hollow porous fibre tubes each of internal diameter 410 um, and length 45.5 cm contained
as a bundle in a perspex tube of internal diameter 2.0 cm. The porous fibre tubes are
constructed from a polysulfone material and are used for hemodialysis, desalination of salt
water by reverse osmosis and the concentration of proteins by ultrafiltration (Baum et al.,
1976). The fibres are robust, resistant to acid, alkali and detergents, simple to clean and
may be used repeatedly for long periods (Amicon, 1986). A SEM micrograph of the porous

structure of the tubes is shown in Figure 6.3.
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Figure 6.2 A schematic diagram of the tubular crystalliser.
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Figure 6.3 A SEM micrograph of the Amicon H1P10-20 hollow porous fibre tubes in the

tubular crystalliser.
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The tubular crystalliser has two compartments:
« The hollow porous fibre tubes, which will be referred to as the lumen.

o The region surrounding the lumen in the perspex tube which will be referred to as

the jacket.

The fibres are held in place at both ends of the perspex tube by epoxy resin for a length of
1.5 cm. At each end of the perspex tube are four holes, 0.5 cm in diameter, through which

fluid can enter and leave the jacket.

Manifolds are fitted to both ends of the crystalliser to allow fluid to be fed to the hollow
sections of the lumen and the jacket. The manifolds are shown in Figures 6.4 (a) and (b).
The crystalliser fits into the manifolds as shown in Figure 6.5. The crystalliser is held in
place and sealed, so fluid will not leak from it, by two O-rings in both the inlet and outlet
manifolds. However, the crystalliser does not fit flush with the manifolds, there is a dead

volume at both ends, as indicated in Figure 6.5 by the regions A and B.

Devices similar to the tubular crystalliser, known as hollow fibre cartridges (Amicon,1986),
have been used extensively as artificial kidneys and for various processes such as
ultrafiltration. The fluid flow distribution in hollow fibre cartridges has been investigated by
Park and Chang (1986) and they suggest that the geometry and size of the dead volume in
each manifold will affect the fluid flow distribution in the lumen. Under certain conditions it
is possible for fluid to preferentially flow through the lumen in the centre of the cartridge and
leave stagnant regions near the edge. Based on numerical simulations of the fluid flow in the
cartridge, Park and Chang (1986) recommend that for uniform flow distribution, the
manifolds should be shaped such that the dead volumes at the inlet and outlet are cylindrical
and conical respectively. Accordingly implants were made to fit into the manifolds to reduce
the size of the dead volumes and alter their geometry. The implants, and their positioning in

the manifolds are shown in Figures 6.6 (a) and (b).
6.3.2 The seed suspension delivery system

In the continuous crystallisation experiments reported in Chapter 9, a calcium oxalate seed
suspension was mixed with the fluid fed to the lumen just before it enters the crystalliser.
Thus another important part of the apparatus is the seed suspension delivery system, which

is shown in Figure 6.7.
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Figure 6.5 A schematic diagram showing how the crystalliser fits into the manifolds at the
inlet and outlet and the dead volumes at both ends.
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Figure 6.6 A schematic diagram of the implants and their positioning in (a) the inlet

manifold and (b) the outlet manifold.
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Figure 6.7 A schematic diagram of the seed suspension delivery system.
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The seed suspension was stored in a perspex tank with a capacity of 400 ml, in which the
seeds were suspended by the propeller-stirrer supplied with the Multisizer IL. The seed
suspension was fed to the crystalliser, via 5 cm of steel tubing of internal diameter 1 mm,
and 20 cm of polyethylene tubing of internal diameter 1 mm. A peristaltic pump, Pharmacia
Fine Chemicals, model P-1 (Pharmacia Fine Chemicals, Upsala, Sweden) was used to
supply the seed suspension to the crystalliser at flowrates between 0.12 ml/min and 0.55
ml/min. The seed suspension mixes with the fluid fed to the lumen in a three way T-valve,

then enters the crystalliser.

Experiments were conducted to investigate the performance of the seed suspension delivery
system, of particular interest was any yariation in the number of crystals and volume of
particulate material fed to the crystalliser. The results of the experiments are presented in
Chapter 8, but briefly they showed the delivery system was capable of supplying a seed

suspension of constant composition.
6.3.3 Apparatus set-up

The crystalliser is of course the most important part of the apparatus, but it cannot be
operated without other equipment to supply fluid to it. Fluid was supplied to the lumen and
jacket by centrifugal pumps, via head tanks and rotameters, thus ensuring constant flowrates
in both sections of the apparatus during operation. The set-up of the experimental apparatus

is shown schematically in Figure 6.8.

The pumps used were both Iwaki MD-10 magnetic drive centrifugal pumps (All Pumps
Supplies, Adelaide, Australia).

The lumen flowrate was metered by a KDG Flowmeters Series 1100 rotameter, with a DD
ISO tube and DS float, (Bell Automation, Adelaide, Australia) capable of measuring between
1 and 9 ml/min of water at 20°C. The jacket flowrate was metered by a KDG Flowmeters
Series 1100 rotameter, with a EC ISO tube and ES float, (Bell Automation, Adelaide,

Australia) capable of measuring between 2 and 40 ml/min of water at 20°C.

The head tanks were manufactured from perspex and have a capacity of approximately 200
ml. All tubing used to feed solutions to the crystalliser was made of polyethylene, with

internal diameters of either 1.0, 0.5 or 0.25 cm.
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Figure 6.8 Schematic diagram of the experimental apparatus set-up.
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6.3.4 Modes of operation

Fluid can enter and leave the lumen and jacket via the inlets and outlets in the manifolds fitted
to the ends of the crystalliser. The crystalliser can be operated with any of the inlets and
outlets open or closed and consequently a number of different operating configurations are
available. In this work only one configuration was used, which was with both the lumen
and jacket inlets open, the lumen outlet open and the jacket outlet closed. As the jacket outlet
was closed, the fluid fed to the jacket passes through the walls of the porous tubes to mix
with the fluid in the lumen and leaves the crystalliser via the lumen outlet. This

configuration is shown schematically in Figure 6.9.

Fluid fed to
the lumen

Fine jaoket —T——""]
Fluid injected into the
/ lumen from the jacket
Fluid injected into the
lumen from the jacket\
Jacket /Lumen
\ >

Jacket outlet — CLOSED

Fluid outlet — from
the lumen ONLY

Figure 6.9 Schematic diagram of fluid flow in the tubular crystalliser.

The mode of operation just described has two important characteristics of the flow of urine
in the kidney. Firstly, the fluid flow in the lumen is two-dimensional, as a result of the fluid
that passes through the porous walls of the tubes from the jacket to the lumen, there will be
flow in both the axial and a radial directions. Water is continually removed from urine as it

passes through the tubules in the kidney, a process that will also give rise to radial and axial
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fluid flow. Secondly, the fluid passing from the jacket to the lumen provides a method of
maintaining supersaturation in the lumen. In the crystallisation experiments reported in
Chapter 9, seed crystals were fed to the lumen, in a metastable solution, as the crystals pass
through the crystalliser, growth occurs which will lead to a decrease in supersaturation.
However, if the fluid passing from the jacket to the lumen is supersaturated, then the
supersaturation in the lumen will be almost constant, similar to the conditions in the kidney
(Sheehan and Nancollas, 1980).

Although the crystalliser can be operated at constant supersaturation, the method of
generating supersaturation differs from that found in the kidney. In the crystalliser
supersaturation 1is maintained in the lumen by the addition of supersaturated fluid, thus
increasing the total flowrate, whereas in the kidney urine supersaturation in generated by the
removal of water through the walls of the tubules, which decreases the overall flowrate.
From an operational point of view, it is much easier to maintain supersaturation in the

crystalliser by the addition rather than the removal of fluid from the lumen.
6.3.5 Hydrodynamics in the crystalliser

As discussed in the previous section, the fluid flow in the lumen is two-dimensional, having
both axial and radial components. In the crystallisation experiments the crystals pass

through the lumen, so it is important to understand the flow field in the lumen.

The operation of the crystalliser is characterised by the amount of fluid that is injected from
the jacket through the walls of the porous tubes into the lumen. The fluid injection is
characterised by a parameter known as the dilution factor, o, defined as the ratio of the total

flowrate of fluid leaving the lumen, to the fluid flowrate fed to the lumen, or

a=QL+QJ

6.1
0, (6.1)

where Q; and Q; are the fluid flowrates supplied to the lumen and jacket.

The lumen flowrates used in all the experiments were between 2 and10 ml/min and the jacket
flowrate was chosen according to the value of the dilution factor required. The values of the
dilution factor used did not exceed six in any of the experiments conducted. For a lumen
flowrate of 10 ml/min and a value of the dilution factor of six, that is a flowrate of fluid fed
to the jacket of 50 ml/min, the maximum average fluid velocity in the lumen can be
calculated, as the maximum flowrate will be 60ml/min. Hence the Reynolds number can be

determined, and the flow regime in the lumen identified.
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The maximum average velocity in a single porous tube is:

or
2624,

U= (6.2)
where A, is the cross-sectional area of the single porous tube, and the factor of 262 1s

included as it is assumed the fluid fed to the lumen is uniformly distributed between all 262

porous tubes in the crystalliser. The Reynolds number is calculated from

Re =2 ‘;7‘1' (6.3)

As the tube diameter is 410 pm and using values for the density and viscosity of water at
20°C, a value for the Reynolds number of 11.9 is obtained for a flowrate of 60 ml/min.
Thus the fluid flow in the lumen is in the laminar regime for all the experiments described in

this work.

To determine the solute and particle residence time distributions in the crystalliser the
velocity field in the lumen, both in the radial and axial directions, must be known.

Expressions for the axial and radial velocities are derived in Chapter 7.
6.4 CONCLUSIONS

A review of in vitro experimental systems used to study calcium oxalate crystallisation and
the factors influencing stone formation and disease (urolithiasis) has been given. Although
each of the experimental systems have advantages and disadvantages for studying stone
formation, none take into account the tubular geometry in the kidney and the effect it might

have on factors that influence stone formation such as aggregation and retention time.

A tubular crystalliser has been described that will be used to study the growth and
aggregation of calcium oxalate, in a tubular geometry, with continuous fluid flow at almost

constant supersaturation, under well defined hydrodynamic conditions.
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Chapter 7:

THE SOLUTE RESIDENCE TIME DISTRIBUTION
IN THE TUBULAR CRYSTALLISER

In this chapter the residence time distribution of the dissolved solute in the
tubular crystalliser is investigated. The experimental fluid residence time

distributions were determined using a step-change tracer response technique.

A diffusion-advection model is proposed to explain the observed experimental
residence time distributions. This analysis produces a system of coupled partial
differential equations, which are transformed into ordinary differential equations
using the method of moments. The mean and standard deviation of the
residence time distribution are used to compare the experimental results with
those from the diffusion-advection model.

It is found that the mean and standard deviation of the residence time distribution
depend on the solute diffusivity and jacket area. Acceptable values of both these
parameters give a mean residence time and standard deviation in agreement with

the experimental values.
7.1 INTRODUCTION

The residence time is defined as the time it takes for a molecule, or particle, to pass through
the apparatus being considered, which might for example be a reactor, or a length of tube.
The residence time distribution (RTD) is often used to characterise deviations from ideality,
and is largely dependent on the apparatus. Since the initial work of Danckwerts (1953a, b
and 1958) and Zwietering (1959) much work has been done on this topic in the field of
reaction engineering; e.g. s€€ Levenspiel (1972), Westerterp et al. (1984) and Shinnar
(1987).

7.2 THE RESIDENCE TIME DISTRIBUTION
7.2.1 The E and F curves

The RTD is usually represented in one of two different ways, the first is as a frequency

function, often used in statistics and called the E curve when describing RTDs. The value of
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the E curve at time, ¢ represents the differential fraction of material that entered the vessel at
¢ =0 and leaves the vessel between tand  + dt. The E curve is usually normalised, and in

a continuous form is given by

JE(r)dtzl (7.1)
0

Alternatively the RTD may be represented by a cumulative function called the F curve. The
F curve at time ¢ represents the fraction of the material that has a residence time less than .

The E and F curves are related by

t
F(t)= jE(I) dt (7.2)
0

7.2.2 Experimental determination

The RTD may be obtained from response type experiments, in which some property of the
material entering the vessel 1s changed, and the response to this change is measured at the
outlet. For solute RTDs usually the concentration of some inert tracer is changed. There are
two main types of response experiments in which different input changes are used. The first
is a pulse response test in which a sharp pulse of the tracer is injected into the inlet material
in the shortest possible time. The second is a step-change response test, in which the
concentration of the tracer in the inlet material is changed from one value, usually zero to

another.

Both of these input changes can be represented mathematically, and the RTD determined
from a mass balance over the vessel. Smith (1970) shows that for a pulse response the E

curve is given by

E(t)=C() (7.3)

where C(t) is the solute concentration at the outlet at time, ¢ and the expression for the F

curve is

t
F(t)= j C(t)dt (7.4)
0

For a step-change of magnitude, Cy Smith also shows the F curve is
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c@)

F(t)=—— 7.5
(r) Co (7.5)
The results given by egs 7.3 and 7.5 will be used to determine the RTDs in this work. Fora

more complete review of RTD theory, see for example Levenspiel (1972).
7.3 EXPERIMENTAL INVESTIGATION

7.3.1 Method

The solute RTD was determined by a step-change tracer response technique. The crystalliser
was operated as described in Section 6.3.4: that is with the jacket outlet closed and with fluid
fed to both the lumen and jacket. Initially, distilled water was fed to the jacket and no fluid
fed to the lumen. At time =0, a saline solution was introduced to the lumen, and the
response of the saline concentration in the fluid leaving the crystalliser was recorded until a
steady state was achieved. The saline concentration in the fluid was inferred from its
conductivity, which was measured by a purpose built flow-through conductivity cell,
cylindrical in shape, with a volume of approximately 0.07 ml and equipped with a platinum
electrode. The conductivity cell was connected to a Townson and Mercer conductivity meter

Model No. 2101, and chart recorder.

The solute RTD was determined for different values of the dilution factor, o, defined in

Section 6.3.5 as

_OLt 9y
or

o (6.1)
where Q; and Q; are the fluid flowrates fed to the lumen and jacket. Values of the dilution
factor from 1 to 5 were studied. The same lumen flowrate was not used in all the
experiments, rather for each value of the dilution factor a particular lumen flowrate was

chosen. The flowrates used in the RTD experiments are displayed in Table 7.1.

In the experiments the concentration of the saline solution fed to the lumen was such that the
outlet concentration at steady state had a maximum value of 0.15 M. For example, in an
experiment in which the value of the dilution factor was 3, the saline fed to the lumen is
diluted by distilled water from the jacket by a factor of 3, consequently a 0.45 M saline

solution was fed to the lumen.
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Table 7.1. Flowrates used in the solute RTD experiments.

Dilution factor, & Lumen flowrate, Q. Jacket Flowrate, Q;
(ml/min) (ml/min)
1 16 0
2 8 8
3 4 8
4 4 12
5 2 8

7.3.2 Calculating the RTD

As step-change tests were conducted the RTD is most conveniently presented as an F curve
and may be calculated directly fromeq7.5. A step-change in the saline concentration was
used in the experiments, however the response was detected by measuring the solution
conductivity. The solution conductivity is a function of the saline concentration, thus the
RTD calculated from eq 7.5 using values of either the concentration or conductivity will be

the same.
7.3.3 Results

The experimental RTDs are shown in Figure 7.1. As different lJumen flowrates were used
for each value of the dilution factor, a plot of the F curve with time as the independent
variable is mis-leading, as any effect the dilution factor has on the RTD will be masked by
the effect of the different lumen flowrates. Rather than using time as the independent

variable the following dimensionless time is defined:

g=-—-2 (7.6)

where u is the centre-line fluid velocity in the lumen at the inlet of the crystalliser and L is

the length of the crystalliser, 45.5 cm.

The RTD plotted for each value of the dilution factor is the average of four experiments, the
errors shown are plus-or-minus one standard error. It can be seen that the RTDs are highly

dependent on the value of the dilution factor, because the injection of fluid from the jacket
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will increase the flowrate in the lumen and consequently decrease the time it takes for the
fluid to pass through the crystalliser. Qualitatively it appears that the shape of the RTD is
also dependent on the value of the dilution factor, with the RTDs for low values of the
dilution factor being more like an RTD for plug flow than those at higher values of the

dilution factor.

7.4 ANALYSIS
7.4.1 The velocity field in the crystalliser

Before proceeding with an analysis of the RTDs the expressions for the axial and radial
velocities in the lumen of the crystalliser are developed. Without expressions for these

velocities theoretical RTDs cannot be determined.

If no fluid is fed to the jacket of the crystalliser, there will be no fluid injection into the lumen
and the value of the dilution factor will be one, in which case the flow in the lumen is
equivalent to Poiseuille flow. If the dilution factor is greater than one, the velocity field in
the lumen is more complicated as there is fluid flow in the axial and radial directions. The
effect of fluid injection at the wall on the two-dimensional steady-state laminar flow of fluid
in a porous tube has been analysed by Yuan and Finkelstein (1956). They find that for
constant fluid injection along the length of the porous tube, the axial and radial velocities are

given by

2
. (1%9%)(1-(%) ) (1.7)
0
2
and v =-2v, (%)(1 - -;-(%) j (7.8)

where uy and v, are the maximum axial and radial velocities, 7, is the radial position, which
varies from O at the centre of the tube to R at the wall, and x is the axial position. The
velocities may be written in terms of the dilution factor by considering the expressions for

the fluid flowrate in the lumen and jacket, which are

Q) = é—uo R (71.9)

and Q;=vg27nRL (7.10)
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Substituting eqs 7.9 and 7.10 into the expression for the dilution factor, eq 6.1, and re-

arranging gives,
Yo _ (o —1)-R
™ (o 1)4L (7.11)

which implies the axial and radial velocities may be written in terms of the dilution factor as

u=uo(l+(a—l)%)(l—(%)2j (7.12)

2
and v:ﬂzﬁ‘;k(l—%(%)} (7.13)

It can be seen from eq 7.12 that the axial velocity increases linearly along the length of the
tube, also as r/R <1, the radial velocity increases almost linearly with the radial distance
from the centre of the tube, except near the wall of the tube. Note that the negative sign
associated with the radial velocity is a result of the convention that the radial position is
measured from the centre of the tube to the wall. As fluid is injected from the wall and

travels towards the centre of the tube, by convention, it is moving in a negative direction.

The laminar flow of fluid in a porous tube and shell module similar to the tubular crystalliser
has been measured using magnetic resonance imaging by Pangrle et al. (1992). They find
that the axial velocity has a parabolic radial profile and the magnitude of the axial velocity is
dependent on the axial position, as predicted by eq 7.12 from the results of Yuan and
Finkelstein (1956). The velocity field determined by Yuan and Finkelstein (1956) has also
been used by Abbas and Tyagi (1987) in their analysis of a hollow fibre artificial kidney

performing simultaneous dialysis and ultrafiltration.
7.4.2 Poiseuille flow

The well known RTD for Poiseuille flow is derived, for example, by Smith (1970). In

terms of the dimensionless time, 8, the F curve is

0 0<06/2
_ —\2
F(6)= 1_%[%] 6>5)2 (7.14)

where 8 is the mean residence time, which in this case is the time taken for fluid travelling

at the flow average velocity to pass through the crystalliser.
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In Figure 7.2 the experimental RTD for o = 1 is plotted together with eq 7.14. Ttis clear
that eq 7.14 does not describe the experimental RTD. Although the break-through time, the
time when the first solute leaves the crystalliser, is approximately correct, the experimental
RTD does not have the characteristic parabolic profile of the RTD for Poiseuille flow. The
RTD is elongated and the fluid is taking longer to pass through the crystalliser than might be

expected for Poiseuille flow.
7.4.3 Taylor dispersion

Taylor (1953) studied the dispersion of a soluble tracer flowing through a tube at low
velocity. By considering convection across a plane moving at the flow average velocity,
Taylor showed that, in the limiting case, the solute is dispersed relative to this plane as
though it were being diffused by a process which obeys the same law as molecular

~

diffusion, but with an axial diffusion coefficient, k, where

2 2
f= Rk (7.15)
192D
The equation governing the axial dispersion is
~9*C _aC
k—s=— 7.16
ERCRRET (7.16)
where Xy =x- Loyt
1 2 0

For a step change in the solute concentration of magnitude, Cy, at a point x =0 from time

t =0, eq7.16 can be solved analytically and as shown by Taylor, the solution is

[ | X
o l+el'f(——~]h—-} x1<0
ap |2\ Ll

Co
—l' 1‘_erf( ] x1>0
2
L

Z
9 2
where erf(z)=——je T dz
T
\/—_ 0

(7.17)

ad
2kt

However, the preceding analysis is for flow in impervious rather than porous tubes and

assumes that the axial velocity is constant. For fluid flow in the lumen, the axial velocity is
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a linear function of the axial position, as shown in eq 7.12. As the axial diffusion coefficient
is dependent on the axial velocity, it will also be a function of the axial position. Under

these circumstances, it can be shown that eq 7.16 becomes

A,azc A(a—l) uo)( x) dC uo(a—l) dC
P9°C (a2 M4 (a-1)E | |G- C== _
8x2+(( L 2 He=DT ) ox 2L T €0

2
where k’:k(1+((x—1)—z—)

Eq 7.18 does not have an analytical solution for a step change in the solute concentration,
and must be solved numerically. However, if the value of the dilution factor is one eq 7.17
can be used. In Figure 7.3 the experimental RTD for a =1 is plotted together with eq 7.17,
at an axial position, x =45.5 which corresponds to the outlet of the crystalliser. It can be
seen that eq 7.17 does not fit the experimental data, the fluid is taking much longer to pass
through the crystalliser than predicted. As the fit is so poor it is unlikely that this model will
be more accurate for other values of the dilution factor. Since eq 7.18 must be solved
numerically, and Taylor dispersion does not describe the experimental RTD for e =1 an

alternative model is proposed.
7.4.4 A diffusion-advection model

In the preceding analysis the possibility that the solute may diffuse from the lumen, where
the concentration is high, to the jacket, where the concentration is Jow, was not taken into
account. The lumen and jacket can be considered as two compartments separated by a

porous membrane, as shown in Figure 7.4.
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Figure 7.4 Compartment model for the tubular crystalliser

— 163 —



1.0

0.8

0.6

0.4

0.2

0.0

0]
(@] 2 ©
o
o)
(@]
O
o}
0]
)
(0]
o}
o Eq 7.17, Taylor (1953)
o
o  Experimental, a.=1
o}
(6]
0
| | ' | 1 | ' l '
250 500 750 1000 1250 1500

Time (s)

Figure 7.3 Comparison of the RTD for Taylor dispersion, eq 7.17, with the experimental

RTD for o =1.

— 164 —



The solute concentration in both compartments is determined by the flux in the axial and
radial directions. Assuming perfect radial mixing in both compartments, mass balances over

the lumen and the jacket give:

a(Q.C aC
——(jo—L)_Z”rNA:AL# (7.19)
_M.{.zﬂrNTNA:AJ& (7.20)
dx dt

where Q, is the flowrate, C, the solute concentration, A, the cross-sectional area, N, is the
solute flux through the tube wall and the subscripts L and J refer to the lumen and jacket.
Finally, N7 is the number of tubes, this term is included in the mass balance for the jacket as
the mass balance over the lumen is for a single tube, and the flux from all the tubes enters the

jacket.

Both the lumen and jacket flowrates are functions of axial position. By considering a mass
balance over the crystalliser and using the definition of the dilution factor given by eq 6.1, it

can be shown that the flowrates in the jacket and the lumen are
QJ=Q2NT(a—1)(1—%) (7.21)

0, =01 (1+(a—1)%) (7.22)

where Qi is the flowrate fed to each tube in the crystalliser, that is the flowrate in a single
tube at the inlet of the crystalliser. The expression for the flowrate in the jacket includes Nt

as the mass balance over the lumen is for a single tube.

Substituting 7.21 and 7.22 into 7.19 and 7.20 and simplifying gives

i C acC aC
(a—1)QLNT(TL—(1—%)a—xf]umNTNA=A,—ati (7.23)
a—1)0 i 9C aC
—(—L)—QLCL—(H(a—l)%) QL—af—szA =ALEL— (7.24)

An expression for the flux through the porous wall may be derived by considering the
transfer by convection and diffusion between the jacket and the lumen as shown

schematically in Figure 7.5.
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Figure 7.5 Solute transfer by convection and diffusion between the jacket and lumen.

Bird et al. (1960) show that the flux of component A in a binary system of A and B is

N, =x4(Ny+Ng)—CDVxy (7.25)

where A is the solute, B the solvent, x the mole fraction and C the concentration of
component A. In cylindrical coordinates and only considering the radial direction, eq 7.25
may be written as

NAr-—-Cvr—Q)ig (7.26)

ar

Applying the appropriate form of the continuity equation it can be shown that at steady state
both N, r and vr must be constant if there is no axial advection or diffusion in the porous
wall, see for example Bird ez al. (1960). The solution to eq 7.26, subject to the boundary

conditions, C=Cy atr=R;and C=Cj atr=R, is

vr(C, RYP - Cy R,'"?)
Rivrf*D _ Rovr,l’fj)

Nyr= (7.27)

To evaluate N, r an expression for vr is required. Assuming fluid from the jacket is
injected uniformly over the entire length of the porous tubes a mass balance over the lumen

implies

QL|X=L—Q£ =27vrL

Using eq 7.22 to evaluate the lumen flowrate at x = L it follows that
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:(a—l)Qi
2rL

vr (7.28)
Eqs 7.27 and 7.28 can be substituted into eqs 7.23 and 7.24, which are two coupled partial
differential equations that describe changes in the solute concentration in the lumen and
jacket with axial position and time. However, these equations do not have an analytical
solution, and must be solved numerically. To obtain the RTDs the axial concentration

profiles in the lumen and jacket must be calculated over a very long period of time.
7.4.5 Moment transforms

When modelling processes involving variables that are distributed, for example particulate
processes in which the size distribution is of interest, the use of short-cut techniques to
reduce the computational intensity has been investigated by Hounslow and Wynn (1993).
These authors show that the use of moment transforms give accurate results with much less
computational effort than techniques such as discretized population balances. A similar
approach is adopted here where the moments of the RTDs are calculated rather than solving

eqs 7.24 and 7.25 repeatedly to obtain the RTD. If the following moments are defined:

oo

m; ;= jtf' C;(x,t)dt (7.29)
0

mj,L th‘] CL(x,t)dt (730)
0

Applying eqs 7.29 and 7.30 to eqs 7.23 and 7.24, and considering a pulse-input of tracer,

the following equations in terms of moments are obtained

dmj,J _ Aijj"].J +(a)1 +a)2)Nij‘J —CO3 Nij,L

7.31
. : . (7.31)
(a-1)Qp Np| 1-=
L
L dm oy A im (@ - 0)my (1.32)
dt Qi[1+(a—1)1)
L
2wvrR? 27vrR,"?

where, @, = (a0 —1)Q /L , 0, = and @5 =

Rivr/i) _ Rgvr/@ Rivr/l) _ Rovr/i)
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Eqs 7.31 and 7.32 are a coupled pair of ordinary, rather than partial, differential equations
and therefore it is much easier to solve these equations numerically. Rather than obtaining
the RTD, the solution of these equations gives the moments of the RTD. Statistical
parameters of the RTD, such as the mean, and standard deviation can easily be calculated

from the moments, as shown in Section 1.3.3.

To investigate whether the diffusion-advection model can be used to describe the
experimental RTDs, the mean and standard deviation obtained from the model must be
compared with those from the experimental RTDs. However, firstly some differences

between the proposed model and the experiments should be considered.

For mathematical convenience a pulse input rather than a step-change at the lumen inlet was
used to derive the differential equations given by eqs 7.31 and 7.32. However, the
experimental RTDs were determined using a step-change response technique. In Section
7.5.2 it is shown how the experimental RTDs may be converted so that the moments and

statistics calculated from them can be compared with those from the model.
7.4.6 End effects

The statistics calculated from the solution to eqs 7.31 and 7.32 are for the region in which
fluid is injected from the jacket to the lumen. As described in Chapter 6 there are also
sections at both ends of the crystalliser in which there is no fluid injection. Thus, the
crystalliser can be divided into three sections in series and the RTD of each section must be
considered. In the field of reaction engineering, the RTD of a cascade of reactors may be
calculated by the use of convolution integrals, however as Westerterp et al. (1984) point out,
this method is only applicable to flow regions that are statistically independent. If open
boundaries exist between the regions, then this procedure cannot be adopted. As there are
open boundaries between the regions in the lumen, the method of convolution integrals
cannot be used to obtain the RTD of the crystalliser. As an alternative, the regions at both

ends of the lumen were characterised by a dead time defined as

t;=L/a (7.33)

where # is the average fluid velocity, which can be calculated from eq 7.12, and L is the
axial length of the region. The three regions in the crystalliser are shown schematically in
Figure 7.6.
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The E curve at the outlet of the crystalliser is given by
E()= E(t -ty — ta2) (7.34)

For a pulse input, from eq 7.3 , E(t) = C(t) and the moments may be written as

m; =J.tj E(t—td1 —td2 dt t+td1+td2 E(t) (7.35)
0

O‘—:S

where E(z) is the E curve for the section with fluid injection. As the pulse is added to the

fluid in the lumen, the moments calculated are for the lumen, therefore from eq 7.35, using

the notation of eq 7.30,

my = Mo, L (7.36a)
my=m+ (tdl + fdz)mo,L (7.36b)

2
and my=myp| +2(tdl +td2)m1’L +(td1 +td2) my |, (736C)

i/ |
or mJ = Z(i)(tdl + td2)]_k mk’L (736d)

k=0

where (g is the binomial coefficient.
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As the RTDs are normalised, the value of my is one and it can be seen from eq 1.5 that the
mean residence time for the crystalliser will be the mean residence time for the section with
fluid injection plus the two dead times. Also it can be shown using eq 1.6, that the standard
deviation of the RTD for the crystalliser is the same as the standard deviation of the RTD for
the section with fluid injection. Both these results are expected, a time delay will not affect

the shape of the RTD, only the time taken for the fluid to pass through the crystalliser.

7.4.7 Parameters in the model

The values of the parameters in the model, namely the internal and external radii of the
lumen, the jacket cross-sectional area, and the solute diffusivity must be determined. The
internal and external radii of the lumen were evaluated from measurements taken from SEM
micrographs of the lumen. The internal radius and wall thickness of the lumen were found

to be approximately 205 pum and 235 pm respectively, which implies the external radius is
440 um.

Values of the solution diffusivity of saline solutions are widely reported, for example Mullin
(1993), and over the concentration range used in the experiments, 0.75 to 0.15 M, the
solution diffusivity is 1.48x10™° m?%s. However, Karel and Robertson (1989) find that in a
hollow-fibre reactor, the effective diffusivity in the fibre membrane, D,, is related to the

solution diffusivity by

Dys =64y D (7.37)

where &, is approximately 0.3. Thus the diffusivity in the walls of the lumen is lower than
the solution diffusivity, and it is possible that the value of 8, will depend on the pore

structure.

A lower limit for the cross-sectional area of the jacket can be calculated as the number and
the dimensions of the lumen are known as well as the diameter of the perspex tube in which
they are contained. The cross-sectional area of the lumen can be calculated and subtracted
from the cross-sectional area of the perspex tube to give an estimate of the jacket cross-
sectional area. The external radius of one of the porous tubes is 440 pm, and as described in
Chapter 6 there are 262 of them in a perspex tube 2.0 cm in diameter. Based on these
dimensions, the minimum jacket cross-sectional area is 1.55 cm?. However, it is possible
that the solute concentration within the porous walls of the tubes will approach that in the
jacket, thus decreasing the apparent wall thickness and increasing the apparent jacket cross-

sectional area. Therefore the upper limit for the jacket cross-sectional area is that of the
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perspex tube, 3.14 cm? less the cross-sectional area of the 262 porous tubes with internal

radius 205 pm, giving a value of 2.79 cm?,

The exact values of the solute diffusivity in the porous walls of the tubes, and the jacket

cross-sectional area are not known, however bounds on their values have been established.
7.5 RESULTS FROM THE DIFFUSION-ADVECTION MODEL

A computer program was written in FORTRAN to solve eqs 7.30 and 7.31 for values of j
from O to 2. The program used the numerical routine, DIVPAG, from the IMSL numerical
library (IMSL Users Manual, 1987), which solves an initial value problem for a system of
ordinary differential equations using Gear’s method. The moments over the crystalliser,
allowing for the sections at each end without fluid injection, were calculated using eq 7.36d.
The mean and standard deviation were calculated from the moments using eqs 1.5 and 1.6.
The values of the mean and standard deviation calculated from the solution to eqs 7.30 and
7.31 must depend on the values of the solute diffusivity and the jacket cross-sectional area.
The dependence of the statistics of the RTD on these parameters is investigated in Section
7.5.3.

7.5.1 Testing the model

The accuracy of the computer program was tested by considering a set of conditions for
which there is an analytical solution for the RTD in the crystalliser. If the diffusivity of the
solute is very low, then the diffusive flux is negligible and the solute concentration in the
jacket will be very low. For a step-change of solute concentration of magnitude, Cj, at the

lumen inlet, a mass balance from the inlet to an axial position x, gives

Cotp Arl,_o = CuL ALl (7.38)

The average axial velocity in the lumen may be calculated from eq 7.22 by dividing by the

lumen cross-sectional area as

=i (1+(a— 1)%) (7.39)

where ﬁ}; is the average axial velocity at the inlet of the lumen, i.e. x=0. Substituting eq

7.39 into eq 7.38 it follows that
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C(x)=—0— (7.40)
1+ (- 1)Z

Eq 7.40 implies that the solute passes through the tube as a step-change of decreasing
magnitude, as a result of the fluid injection from the jacket. At an axial position, x, the
concentration will be zero until a time, £ , at which time the concentration increases to the
value given by eq 7.40, and then remains constant. The concentration may be written as a

function of axial position and time as a Heaviside step function,

C(x,t)z——CO——U(t—t*) (7.41)
l+(a—1)%

The time taken for the concentration step-change to reach an axial position, x , using eq 7.39

for the axial velocity is:

Iiﬁ: (1+(a—1)£j (7.42)
Ou ”L o-1 L

The preceding analysis is for a step-change in concentration, thus C(x,t) represents the F
curve, however the diffusion-advection model was formulated for a pulse-input. From eq

7.2, E=dF/dt and therefore the moments of the RTD are given by

o]

_[tf Edt—j dcc(;: 1) 4y (7.43)

0 0

Using Laplace transforms, it can be shown that

N
_ -y B E (S) (7.44)
s=0
where E(s) is the Laplace transform of E(t) with respect to ¢. Further,
E(s)= LEn-= L @ =sC(s) + C(x,0) (7.45)
and from Abramowitz and Stegun (1960),
_ C e—t*s
C(s) = 0 (7.46)
1+ (- 1)% §
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Substituting eq 7.46 into 7.45 the moments can be calculated from eq 7.42 and the mean

residence time and standard deviation determined. At the outlet of the crystalliser, x =L,

and C(L,0)=0, thus

C
my :—O
o
*
Cot
ml -
o
2
Cyt"
and my = —0_
o

1 * L

f=—=1 =— Inx
mgy g (e —1)
m _ 2 2
and l="2 2 ="-1"=0
my

(7.47a)

(7.477b)

(7.47c)

(7.48)

(7.49)

The preceding analysis is only valid when the dilution factor is not equal to one. In Table

7.2 the values of the mean and standard deviation calculated from the moments generated by

the computer program used to solve the equations from the model are shown as well as the

values calculated from eqs 7.48 and 7.49. The value of the diffusivity given is the one used

in the computer program, and the value of ﬁi is calculated from the lumen flowrates given in

Table 7.1. The cross-sectional area used to calculate the ﬁi from the lumen flowrate is

0.347 cm?, based on 262 tubes each with an internal radius of 205 um.

Table 7.2 Comparison of the mean residence time and standard deviations.

Computer Program

Eqs 7.48 and 7.49

o ﬁi (cm/s) D (cm?/s) f(s) o (s) r(s) o (s)
2 0.38 1x1077 82.5 0.58 82.1 0
3 0.19 1x1077 131.2 0.66 130.1 0
4 0.19 1x1077 111.9 0.2 109.4 0
5 0.095 1x1077 196.4 0.71 190.6 0
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It can be seen that the computer program correctly predicts the mean residence time and the
standard deviation over the range of experimental conditions. For o =1, the program
calculates the mean residence time exactly (correct to 2 significant figures). The standard

deviation for Poiseuille flow is undefined and cannot be computed.
7.5.2 Moments of the experimental RTDs

To determine the mean residence time and the standard deviation of the experimental RTDs
the moments must be calculated. The experimental RTDs were determined using a step-
change and are in the form of F curves, whereas the moments and statistics determined by
the computer program used to solve the equations for the diffusion-advection model are for a
pulse-input which gives the RTD in the form of an E curve. However, as the E and F
curves are related, the moments of the E curve can be calculated from the experimentally
determined F curves. Fromeq 7.2, E= dF/dt, substituting into the definition of the
moment for the lumen, eq 7.30, and integrating by parts for a finite time over which

experimental data was collected, 1, rather than an infinite time, gives

m; =jti dF(t)=1t' F(t) th - J.jtj_l F(r)dt (7.50)
0 max

Eq 7.50 must be evaluated numerically as the experimental data are values of the F curve at
discrete time intervals. Simpson’s method was used to evaluate the integral in eq 7.50, as
noted by Kreyszig (1993), this method is sufficiently accurate for most practical purposes.
The step size used for the integration was the time interval at which data were recorded in the
experiments, which was typically either 15 or 20 seconds. The step size is small compared

to the total time for which data was collected, over 1000 seconds for all the experiments.

The numerical method used to evaluate the moments, given by eq 7.50, was tested using the
RTD for Poiseuille flow, with a mean residence time of 400 seconds. Values of the F curve
for Poiseuille flow were calculated using eq 7.14, with a step size of 15 seconds and a
maximum time, #.,,, of 1500 seconds. The mean residence time determined using eq 7.50
with the integral evaluated using Simpson’s method was 368 seconds, a relative error of
approximately 8%. An error of this magnitude is acceptable given the uncertainty associated

with the experimental RTDs.

Table 7.3 shows the values of the mean residence time and standard deviation of the

experimental RTDs for each value of the dilution factor. The RTDs from all the experiments
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conducted at each value of the dilution factor were analysed, the results reported are the

mean plus-or-minus one standard error.

Table 7.3. Mean residence times and standard deviations of the experimental RTDs.

Dilution factor, & Mean residence Standard
time,  (8) deviation, o (s)
1 379+4 28515
2 37119 28615
3 474112 320110
4 31912 253%10
5 515431 33347

7.5.3 Solute diffusivity and jacket cross-sectional area

The values of the statistics of the RTDs obtained from the diffusion-advection model
proposed are now compared with the experimental values given in Table 7.3. The procedure
adopted is to investigate the effect that the jacket cross-sectional area and the solute
diffusivity have on the statistics calculated using the model. If the diffusion-advection model
describes the processes governing the fluid RTD, plausible values of the jacket cross-
sectional area and solute diffusivity will give statistics in agreement with the experimental

values.

To generate data from the model at each value of the dilution factor, the jacket cross-sectional
area was varied, and for each cross-sectional area a range of solute diffusivities were
considered. Jacket cross-sectional areas from 1.75 cm? to 3.0 cm? were used, and the

diffusivity was varied from 1x10~7 cm¥/s to 1107 cm?/s.

Figures 7.7 (a) and (b) show the sensitivity of the mean residence time and standard
deviation of the RTD to the jacket cross-sectional area and solute diffusivity, for a value of
the dilution factor of three. The dependence of both the mean residence time and the
standard deviation on the jacket cross-sectional area and solute diffusivity can be explained

by considering the effect these parameters have on the convective and diffusive fluxes.

From Figure 7.7 (a) it can be seen that if the jacket cross-sectional area is constant, the mean

residence time increases as the solute diffusivity increases. This increase is a consequence
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of the increase in the diffusive flux from the lumen to the jacket as the solute diffusivity
increases. The solute concentration in the lumen will decrease as the solute diffusivity
increases and it will take solute that diffuses into the jacket longer to pass through the

crystalliser than solute that remains in the lumen.

It can also be seen in Figure 7.7 (a) that if the solute diffusivity is constant the mean
residence time increases as the jacket cross-sectional area increases. The dependence of the
mean residence time on the jacket cross-sectional area can be explained by considering the
effect on the fluid velocity in the jacket. For example, consider solute that diffuses from the
lumen to the jacket, once in the jacket it travels at the local fluid velocity until it is injected
back into the lumen. As the jacket cross-sectional area increases the fluid velocity in the

jacket decreases and the residence time must increase.

From Figure 7.7 (b) it can be seen that if the jacket cross-sectional area is constant, the
standard deviation of the RTD is nearly zero for low values of the solute diffusivity, rapidly
increases as the diffusivity increases, then decreases as the diffusivity becomes large. This
behaviour can be explained by recalling that the standard deviation is a measure of the spread
of a distribution. At very low diffusivities, the solute does not diffuse into the jacket, and
travels as a sharp pulse through the lumen, does not spread axially, and thus the RTD has a
very small standard deviation. As the diffusivity increases, the diffusive flux increases and
solute enters the jacket where the axial velocity of the fluid is lower than in the lumen. As
the solute is returned to the lumen with the fluid injected from the jacket, the pulse is spread
out in the axial direction and the standard deviation of the RTD will increase. As the
diffusivity becomes large the solute concentration in the jacket will approach the lumen
concentration. Thus as the solute passes through the lumen it does not spread out as much

in the axial direction, and the standard deviation of the RTD decreases.

Tt can also be seen in Figure 7.7 (b) that if the solute diffusivity is constant as the jacket
cross-sectional area increases the standard deviation of the RTD increases, which can be
explained by the effect the jacket cross-sectional area has on the fluid velocity in the jacket.
Increasing the jacket cross-sectional area will decrease the fluid velocity in the jacket, thus
solute that diffuses into the jacket will travel more slowly than solute in the lumen.
Consequently the solute is spread out in the axial direction and the standard deviation of the

RTD increases.

From plots such as those in Figures 7.7 (a) and (b) the mean residence time and the standard
deviation of the RTD obtained from the model can be compared with the experimental values

for different values of the solute diffusivity and jacket cross-sectional area. For a given
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value of the jacket cross-sectional area, the values of the solute diffusivity that give a mean
residence time and standard deviation equal to the values from the experimental RTDs can be

determined.

In Figure 7.8 (a), a jacket cross-sectional area of 3.0 cm? is used and the value of the
dilution factor is three. From Table 7.3 the mean residence time and standard deviation of
the experimental RTDs are 474 and 320 seconds respectively. It can be seen that there is one
value of the solute diffusivity that gives the correct mean residence time and two values of
the solute diffusivity that give the correct standard deviation. However, different values of
the solute diffusivity give the correct mean residence time and the correct standard deviation.
What is required is the value of the jacket cross-sectional area at which the same value of the
solute diffusivity gives the correct value of both the mean residence time and the standard
deviation. A jacket cross-sectional area of 2.17 cm? satisfies this criterion as shown in

Figure 7.8 (b).

For a value of the dilution factor of three, if the jacket cross-sectional area is 2.17 cm? and
the solute diffusivity is 3.55x107% cm?/s, then the diffusion-advection model predicts an

RTD with the same mean residence time and standard deviation as the experimental RTD.

In Figures 7.9 (a) and (b) two curves involving the jacket cross-sectional area and the solute
diffusivity are plotted for values of the dilution factor of two and four. Firstly, for each
value of the jacket cross-sectional area used in the diffusion-advection model the value of the
solute diffusivity that gives a mean residence time which is the same as the experimental
value is plotted. Secondly, for each value of the jacket cross-sectional area used in the
model the values of the solute diffusivity that predicts a standard deviation of the RTD which
is the same as the experimental value is plotted. It can be seen from Figures 7.7 (a) and (b)
that there are two values of the solute diffusivity that give the same standard deviation as the

experimental RTD, hence the two curves plotted in Figures 7.9 (a) and (b).

In Figures 7.9 (a) and (b) it can be seen that for each value of the dilution factor there is only
one value of the solute diffusivity and jacket cross-sectional area which give values of both
the mean residence time and standard deviation of the RTD that are consistent with the

experimental values.

Figures 7.10 (a) and (b) are plots of the solute diffusivity and jacket cross-sectional area that
give a mean residence time and standard deviation in agreement with the experimental values
for each value of the dilution factor. The values of the jacket cross-sectional area and solute

diffusivity were determined from plots such as those shown in Figures 7.9 (a) and (b). It
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can be seen that both the jacket cross-sectional area and particularly the solute diffusivity are
not constant but depend on the value of the dilution factor. However, the value of the jacket
cross-sectional area is approximately constant, whereas the solute diffusivity increases as the

dilution factor decreases.
7.6 DISCUSSION

The dependence of the calculated solute diffusivity and jacket cross-sectional area obtained
from the diffusion-advection model on the value of the dilution factor highlights some of the
limitations of the model. Both the jacket cross-sectional area and the solute diffusivity
should be effectively constant, yet the values of these parameters are found to depend on the
value of the dilution factor. It is possible to identify some shortcomings of the model that

are responsible for the results that do not have physical meaning.

It can be seen from Figures 7.5 (a) and (b) that for values of the solute diffusivity greater
than approximately 4.0x107% cm/s, the mean residence time and the standard deviation of
the RTD are insensitive to the value of the diffusivity. At these values of the diffusivity the
mass transfer resistance across the lumen is very small and the lumen and jacket
concentrations will be approximately equal. In this region, a large increase in the solute
diffusivity produces a small change in the mean residence time and standard deviation. For
low values of the dilution factor which require a high value of the solute diffusivity to be
used if the model is to correctly predict the mean residence time and standard deviation of the
RTD, if a lower value is used the error in the mean residence time and standard deviation of
the RTD will be small. Consequently, the variation in the solute diffusivity may not be as

large as that shown in Figure 7.10 (b).

Another assumption in the model proposed is that the lumen and jacket are both perfectly
mixed and thus there is no radial concentration profile. If there is a radial concentration
profile then the value of the solute concentration, particularly in the jacket will be different to
that used in the present model. This is most likely to be the reason for the observed variation
in the values of the jacket cross-sectional area and solute diffusivity which is physically
implausible. By ignoring the radial concentration the problem has been over-simplified,
however, radial variations in concentration significantly increases the complexity of the

diffusion-advection model.

The effect of solute diffusivity and the jacket area must be related, and to fully explain
whether the observed dependence of the jacket cross-sectional area and the solute diffusivity

on the dilution factor is a consequence of the assumptions of the present model a full
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mathematical analysis would be required. However, the values of the jacket cross-sectional
area and solute diffusivity used in the diffusion-advection model to give statistics of the
RTDs that are consistent with the experimental results can still be compared with the

expected range of values given in Section 7.4.5.

The value of the solute diffusivity ranges from 2.35x107% cm?/s to 7.0x107% cm?/s for
values of the dilution factor of five and one. Using eq 7.37 and the value of the solution
diffusivity for the saline solutions used in the experiments, 1.48x107° cm?/s, the values of
&) range from 0.16 to 0.47. The mean diffusivity for all values of the dilution factor is
4.1x10~8 cm?/s, which implies the value of Jy is 0.28, which is in good agreement with

the value of 0.3 quoted by Karel and Robertson (1989).

The variation in the jacket cross-sectional area is small, the mean for all the values of the
dilution factor is 2.11 cm?, which is well within the range of plausible values based on the
dimensions of the porous tubes and the perspex tube they are contained in given in Section

7.4.5.

The diffusion-advection model proposed can be used to describe the solute RTD as provided
appropriate values of the solute diffusivity and the jacket cross-sectional area are used, it

correctly predicts the mean residence time and standard deviation.

To validate fully the model the complete RTD, rather than the statistics, should be calculated
and more importantly the effect of radial variations in concentration should be considered.
However, the computational effort required to solve the partial differential equations that
arise from the model is too demanding. The mechanisms governing the solute transport
through the crystalliser have been identified, and it is more important to consider the RTD of
the crystals. It is the time that the crystals take to pass through the crystalliser that will
determine how long they have to grow and aggregate, which is of much more interest in this

work.
7.7 CONCLUSIONS

In this chapter the RTD of the dissolved solute in the crystalliser has been investigated. The
theory used to describe RTDs and experimental methods of determining the RTD have been
discussed. Step-change tracer response experiments were conducted to determine the effect

of the dilution factor on the solute RTD.

It was found that the solute RTDs may be described by a diffusion-advection model, in

which the crystalliser can be considered as two compartments separated by a porous
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membrane. Solute is transported from the lumen to the jacket by diffusion, and from the
jacket to the lumen by the fluid injected from the jacket. Also it is assumed that there is no
radial variation in solute concentration in both the lumen and jacket. The model correctly
predicts the mean residence time and standard deviation of the experimental RTDs, however

the complete RTDs were not obtained.

The mechanisms governing the fluid transport in the crystalliser have been identified, which
is sufficient, as the crystal RTD is much more important than the solute RTD for studying

crystal growth and aggregation.
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Chapter 8:

THE PARTICLE RESIDENCE TIME
DISTRIBUTION IN THE TUBULAR
CRYSTALLISER

In this chapter the particle residence time distribution in the tubular crystalliser is
investigated. Experimental particle residence time distributions were determined
using both step-change and pulse-input tracer response techniques. A mass
balance over the crystalliser using results from the step-change tests revealed
particle mass was not conserved, which may be explained by the particles

sticking to the walls of the lumen.

An extensive experimental program investigated the effect of particle size, lumen
flowrate and the dilution factor on the particle residence time distribution. A

second crystalliser with lumen of different diameter and length was also used.

It was found that the residence time distributions are well described by a model
in which it is assumed that the particles maintain a constant radial position in the

lumen, rather than following the fluid streamlines.

8.1 INTRODUCTION

A background to the theory and methods of representing RTDs was given in Chapter 7 in
which the solute RTD was studied. In this chapter similar experimental techniques and
analyses are used to investigate the particle RTD in the tubular crystalliser. The particle RTD
is more important than the fluid RTD, and as shown by Brucati et al. (1992), even in a
device such as a stirred tank the particle and fluid residence times can be different. In his
review, Tavare (1986) tabulates what little work there is on the effects of mixing and RTDs
in the field of crystallisation. Studies on the effect of various non-ideal RTDs on continuous
crystallisers, for example Becker and Larson (1969) and Abegg and Balakrishnan (1971)
consider the fluid phase rather than the particulate phase. Smit ef al. (1994) consider the
effect of the state of mixing, including various RTDs, on aggregation and gelation in batch

and continuous modes of operation. They show that the particle RTD can affect crystal
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aggregation, which highlights the importance of the particle residence time for the

crystalliser.
8.2 PRELIMINARY EXPERIMENTS
8.2.1 Testing the particle suspension delivery system

The particle suspension delivery system is described in Section 6.3.2. Before conducting
the experiments to determine the particle RTDs it was important to test the performance of
the particle suspension delivery system. Of particular interest was the ability to supply a

particle suspension with a constant number of particles and volume of particulate material.

A suspension of calibration standard latex rather than a calcium oxalate seed suspension was
used to test the performance of the delivery system. The reason for using latex particles is
that unlike calcium oxalate seeds they will not aggregate or dis-aggregate. Thus, if the
number and volume of particles in the suspension that is fed to the crystalliser is not constant

it is because of problems with the delivery system.

To test the delivery system, samples of the particle suspension, after it had mixed with the
lumen feed solution, were collected every 3 minutes for a period of 30 minutes. The total
number and volume of the particles in each sample was determined using the Multisizer.
Figures 8.1 (a) shows the variation in the total number, N and volume, Vr of particles in
the samples. Clearly both the total number and volume of particles are constant over a time
period much longer than that required to conduct an experiment to determine the particle
RTD.

A second test was conducted to determine whether the delivery system could produce a step-
change. Of particular interest was the time taken for the particle number and volume to reach
a constant value, if this time was too long then rather than a step-change a “ramp” input is
obtained which will affect the RTD. In the test the lumen feed solution was supplied to the
T-valve, and at time, ¢ = 0, the flow of the particle suspension was started and samples of

the fluid leaving the T-valve collected at 30 second intervals.

Figure 8.1 (b) shows the variation in the total number and volume of particles with time. It
can be seen that both the total number and volume are approximately constant after 30
seconds. Thus, there is no time lag between starting the flow of the particle suspension and

a constant number and volume of particles being supplied to the fluid entering the lumen.
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8.2.2 Step-change tests

Prior to conducting each step-change test, samples of the fluid fed to the lumen were
collected and analysed by the Multisizer. The total number and volume of particles per unit
volume represent the particle concentration by number and volume in the fluid fed to the

crystalliser.

For the step-change tracer response tests the crystalliser was operated as described in Section
6.3.4, that is with the jacket outlet closed and with fluid fed to both the lumen and jacket.
Initially, a filtered (0.22 um), 0.15 M saline solution was fed to the lumen and the jacket, at
time, ¢ = 0, the flow of the latex particle suspension was started, and all the fluid leaving the
crystalliser was collected in separate samples. The total number and volume of particles per
unit volume in each sample was determined with the Multisizer. As the volume of fluid
collected in each sample was relatively small, approximately 4 ml, when the samples were
analysed rather than taking a single 500 pl count at least four separate 100 pl counts were
taken. The advantage of this method was that if the orifice became blocked during a count, it
could be cleared and another count taken. If a 500 pl count was taken and the orifice
blocked towards the end of the count there would not be enough fluid in the sample for
another count to be taken. Consequently, the number of particles in that sample would not

be known, and the RTD could not be determined.
8.2.3 Particle mass balance

The expressions for the E and F curves given in Section 7.2.2 are derived on the basis of a
mass balance. For a step-change, from eq 7.5 the expression for the F curve is
F(t) = C(1)/C, . For the particulate phase the concentration, C; may be written in terms of
the total number, Nr o or volume, V7 of particles per unit volume in the fluid fed to the
crystalliser, thus

Py =210 - ¥rl) (8.1)

Nrpo  Vro

With the crystalliser operating at steady state the number and volume of particles in the fluid
at the outlet were compared with those in the fluid at the inlet. However, the number and
volume of particles measured by the Multisizer must be corrected, to account for the effect of
the fluid injected from the jacket to the lumen. Firstly, the dilution factor defined in Section
6.3.5 must be modified to take into account the flowrate of the particle suspension. The

modified dilution factor, &’ is defined as
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Os + 0L
where Qs is the seed suspension flowrate. A mass balance over the crystalliser gives
NT(t) o a’NT’M(t) and VT(t) =ao VT,M(t) (833. and b)

where Ny (t) and Vi (1) are the total number and volume of particles in the samples

analysed by the Multisizer at time, .

Figures 8.2 (a) and (b) show the total number and volume of particles fed to the crystalliser
and the response at the outlet to the step change for a value of the dilution factor of one.
After approximately 300 seconds the total number and volume of particles in the fluid at the
outlet is constant, indicating a steady state has been reached. However, the steady state
values of the total number and volume of particles at the outlet are lower than the values at

the inlet.

The apparent loss of particle mass in the crystalliser can be explained if the particles are
sticking to the walls of the lumen. Most of the particles pass through the crystalliser,
however a small, but significant fraction stick to the walls of the lumen. The dilution factor
affects the fraction of particles that stick to the walls of the lumen, as shown by the data in
Table 8.1 in which the total number of particles in the fluid at the inlet and outlet of the

crystalliser are compared for values of the dilution factor of one and two.

Table 8.1. The effect of the dilution factor on particle sticking.

Dilution factor, o Nro Np(tmax) Nr(tmax)/Nr.0
(per 100pl) (per 100ul) (%)
1 2057451 1690+53 8243
1 2123150 1825+15 8612
2 4409492 4026194 9143
2 4409192 3934+62 89+2

The sticking process will be investigated in Chapter 9, here the particle RTD is of interest.
Before proceeding to investigate the RTDs there is one further point to consider. By
equating the expressions for the F curve, eq 8.1, in terms of particle number and volume, it

is assumed that both give the same F curve. As the latex particles are effectively mono-
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disperse this should be a reasonable assumption.

Figure 8.3 shows the F curve calculated using both the particle number and volume for the
data used in Figure 8.2. The F curves are in good agreement, suggesting that for the latex
particles used in the RTD experiments either number or volume can be used to calculate the
RTDs. It is convenient to calculate the RTD from the number data, as it is easier to obtain

from the Multisizer than the volume data.
8.3 RESIDENCE TIME DISTRIBUTION EXPERIMENTS

The factors affecting the particle RTDs were investigated using pulse-input tests. The main
reason for using pulse-input tests was that it is much easier to inject a pulse of particles into
the fluid entering the crystalliser than it is to continuously supply a suspension of particles,

of constant composition, to the crystalliser.
8.3.1 Materials

In all the experiments the solution fed to both the lumen and jacket was filtered (0.22 pm)
0.15 M saline. The particles used were calibration standard polystyrene divinyl benzene
(PDVB) latex, (Coulter Electronics Ltd., England). Three different size particles were used
with number modes of 5.9 um, 8.8 um and 13.7 pm.

In addition to the crystalliser described in Chapter 6, a second tubular crystalliser, similar in
design to that shown in Figure 6.2, was used in some of the RTD experiments. This
crystalliser consists of 50 Amicon HIMP01-43 hollow porous fibre tubes of internal
diameter 1100 pm, and length 20 cm contained as a bundle in a perspex tube 2.0 cm in
diameter. The porous tubes are held in place at each end of the perspex tube by epoxy resin

for a length of 2.0 cm.
8.3.2 Method

The crystalliser was operated as described in Section 6.3.2, that is with the jacket outlet
closed, and fluid fed to both the lumen and jacket. A 0.15 M saline solution was fed to both
the lumen and the jacket, and at time, ¢ =0, a 50 pl pulse of the particle suspension was
added to the fluid entering the lumen. After the addition of the pulse all the fluid leaving the
crystalliser was collected in separate samples. In all the experiments the volume of each
sample collected was approximately 4 mi. The total number of particles per unit volume in
each sample was determined using the Multisizer. As in the step-change tests when the

samples were analysed, several 100 pl counts were taken rather than a single 500 pl count.
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8.3.3 Parameters investigated

The effect of the following parameters on the particle RTD was investigated:

Dilution factor: this parameter was varied from 1 to 5 for both the crystallisers.

Lumen flowrate: two lumen flowrates were used at each value of the dilution

factor.

Particle size: latex with sizes of 5.9 pm, 8.8 um and 13.7 um were used.

Crystalliser geometry: & second crystalliser with lumen of different diameter, pore

structure, and length was used.
8.3.4 Calculating the RTDs

The particles in a sample collected from time, f to ¢ + At are the fraction that have a residence
time between f and ¢+ At and hence represent the E curve. The F curve can be calculated

from the E curve using the discrete form of eq 7.2, which is

F(t,)=E— (8.4)

where t, is the time at the end of the k** sample, and Nr is the total number of particles in
all the samples collected. As mentioned in the previous section when the samples were
analysed several 100l counts were taken. In Figures 8.4 (a) and (b) the RTDs calculated
from the separate counts taken are shown for values of the dilution factor of one and five. It
can be seen that the RTDs calculated from the separate counts are virtually identical, thus
averaging the counts reduces the error associated with calculating the RTD. The RTDs
presented in the next section are calculated from the average of the counts taken from each

sample.
8.4 EXPERIMENTAL RESULTS

As different lumen flowrates were used to investigate the effect of the parameters listed in
Section 8.3.3, a dimensionless time, the same as that used for the solute RTDs is used as the
independent variable in the results presented, i.e.

0=—+ (8.5)
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samples for (a) a =1 and (b) ox=35.
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where 1, is the centre-line fluid velocity based on the fluid flowrate at the inlet of the lumen,

and L is the length of the crystalliser.

For each value of the parameters being investigated, a number of experiments were
conducted, the RTDs plotted are the average of all the experiments. The uncertainty
associated with averaging the data from the experiments is expressed as a standard error, the

errors shown in all the plots of the RTDs are plus-or-minus one standard error.

Firstly, the results from the pulse-input tests are compared with those from the step-change
tests. In Figure 8.5 the RTDs determined from step-change and pulse-input experiments are
presented for values of the dilution factor of one and two. The agreement between the RTDs
is good for both values of the dilution factor. The uncertainty for the step-change
experiments is larger than those for a pulse-input as fewer step-change experiments were

conducted.

Dilution factor
Figure 8.6 shows the effect of the dilution factor on the RTD. It can be seen that as the
dilution factor increases, the time taken for the particles to pass through the crystalliser

decreases as a result of the increase in the fluid flowrate in the lumen.

Particle size
The effect of the particle size on the RTDs is shown in Figures 8.7 (a) and (b). It can be
seen that for the three different sizes used, the RTD is independent of the particle diameter
for all the values of the dilution factor. The latex particles are almost neutrally buoyant,
having a specific gravity relative to water of 1.05, which implies that the single particle
settling velocity for the largest particle used, 14 pm, is 5.34x107% m/s. The settling velocity
may be compared to the fluid velocity in the lumen, at the lowest flowrate used, 2 mi/min,
the average axial velocity is 9.6x10~* my/s, which is two orders of magnitude greater than the
settling velocity. Considering the difference between the particle settling velocity and fluid

velocity there is no reason for the RTD to be size dependent.

Lumen flowrate
Figures 8.8 (a) and (b) show the effect of the lumen flowrate on the RTD for different values
of the dilution factor. It can be seen that when plotted against the dimensionless time, that if
the dilution factor is constant, the RTD does not depend on the lumen flowrate, except
perhaps for values of the dilution factor of one and two. For both these values of the
dilution factor it can be seen that the time taken for the particles to pass through the
crystalliser increases as the lumen flowrate increases. As a dimensionless time is used the

RTD should not depend on the lumen flowrate. Further, if the RTD were to depend on the

— 195 —



1.0

; ]
_ @
0.8 +
%'P
' ¢
0.6
2 o ao=1,Step
* [} e o =1,Pulse
047 + o o=2, Step
i\ % s o =2, Pulse
0.2 - *%
¢
S L0
0.0 ‘4'&"[3—"@ I T T ' T |
0 1 2 4

Figure 8.5 Comparison of particle RTDs calculated from step-change and pulse-input tests

for ¢ =1and ox =2.

— 196 —




1.0

0.8

0.6

0.4

0.2

0.0

R LT e ¢ ¢ *
..zz.é.zgﬁé 3 3 > $ 3 <}D - O
® i s a O 5 Q
® % a é
Qé ¢ Q
PR :
_ r}n <}
¢
s © 0
+ )
| .t
+ o o=1
| ° o o=2
s 0 3
=] o o=
o ?
A o=4
¢ e o0=5
- o
¢
Q
‘!““A—E’r r ' I ' | v |
0 1 2 3 4

Figure 8.6 The effect of the dilution factor on the particle RTD.

— 197 —




1.0

i
g 2R
22§ L g °°
ox ks 6‘ o) A
7 i o o=1dp=14um
i ;3 é‘ 5 g o o=1dp=9%m
0.6 - @* A  a=1,dp=6um

o=3,dp= 14pm

0.4 = @ é ] a=3, dp=9l.l.m
& A o=3,dp=6um

|
B
—
-G
>}
HH
[ ]

8 a=S5,dp = 14pm

02 — @
i X 0L=5,dp=9|,Lm
¥ © + a=5,dp=6um
0.0 ‘#’mh_‘%‘_ !:l]ﬁ T l L] | ] I T
0 1 2 3 4 5
0
(a)
1.0 —('—'-P—K.T.’g A & 5o |
ap® a g § o°g © o
- -'A.‘ A Q % CD) 8 B
'A A O %
0.8 - . 8
] 2
3 i o o=2,dp=14um
0.6 — L % o a=2,dp=9um
2 g a o=2,dp=06um
O = e oa=4,dy=14um
0B, o i‘oé s a=4,dp,=9m
| a » o=4,dp=6um
0.0 pomo— ' | ! | ; 1
0 1 2 3 4 5
0
(b)

Figure 8.7 The effect of particle size on the RTD for (a) a =1, 3 and 5 and (b)
a=2and 4.

— 198 —




1.0 OMQQGWAWZ ‘¢‘ a2 A W ) BE & A&

o.
| e(‘000 i % g Py * i é é é
0.8 - 1
A
% % ) 5 o  Q=16ml/min, o= 1
0.6 -
° ¢ . * e Q=8ml/min, a=1
H—i -
04 ¢ s Q=4ml/min, o0 =3
4 Q
% ; 4 »  Q_=8ml/min, 00 =3
024 4 | + o Q=4ml/min, 00=5
] { o ¢ Q=2ml/min,00=5
0-0 _M_‘ I ¥ | T | T | T
0 1 2 3 4 5
)
(@)
= gaﬂ““:‘: 5 g IR
B , ak . ® o © o
o)
0.8 - PRI
oo’
0.6 — 4 ? .
. * o  Q =8ml/min, o0 = 2
- o | 5 5 ° QL=4ml/min,OL=2
' % s Q=4ml/min, =4
i ° .
09 *4 . s+ Q=2ml/min, o= 4
0.0 Luio , . : . , : 1 :
0 1 2 3 4 5
)
(b)

Figure 8.8 The effect of the lumen flowrate on the particle RTD for (2) & =1, 3 and 5 and
(b) a=2 and 4.

— 199 —



lumen flowrate, increasing the lumen flowrate should decrease the residence time, which is

not supported by the experimental results.

The experimental observations may be explained by considering the effect the lumen
flowrate has on particles sticking to the walls of the lumen. As the lumen flowrate decreases
it is possible that more particles stick to the walls of the lumen, particularly those nearer to
the walls where the fluid velocity is lower. In this situation, most particles that pass through
the crystalliser would be nearer to the centre of the lumen, where the fluid velocities are
higher. Consequently the particles that pass through the crystalliser appear to have a shorter

residence time.

Crystalliser geometry
Figures 8.9 (a) and (b) show the effect of the crystalliser geometry on the RTDs. In both

Figures the abbreviation, “Std.”, refers to the standard crystalliser used in all the other
experiments and “Short”, refers the crystalliser described in Section 8.3.1. The RTDs for
the two crystallisers are in good agreement, except for when the dilution factor is five. A
possible explanation for the difference when o =5 is that for the “shorter” crystalliser as a
result of the high flowrates few data points were collected around the break-through time.
Over half the particles counted appeared in the first two samples after break-through. Any

error in these samples will significantly affect the RTD calculated from the experimental data.

The results presented in Figures 8.6 to 8.9, clearly show that the particle RTDs are re-
producible and relatively insensitive to the effects of particle size, lumen flowrate and

crystalliser geometry, but dependent on the value of the dilution factor.
8.5 ANALYSIS

To determine a theoretical expression for the particle RTD the velocity profile of the particles
must be known. As the latex particles are almost neutrally buoyant it is reasonable to
assume that they travel at the local fluid velocity. If there is no fluid injection through the
walls of the lumen, the dilution factor is one and the velocity field is described by the usual
results for Poiseuille flow. For other values of the dilution factor, the fluid flow is two-
dimensional having both axial and radial components, in which case the velocities in both

directions are given by egs 7.12 and 7.13.
8.5.1 Poiseuille flow

The RTD for Poiseuille flow is given by eq 7.14. Figure 8.10 shows the RTD calculated

from eq 7.14 and the RTDs from the experiments in which the value of the dilution factor
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was one. It can be seen that the experimental RTDs are well described by the RTD for
Poiseuille flow. Both the break-through time, i.e. the time at which the first particles leave

the crystalliser and the shape of the RTD are correct.
8.5.2 Streamline model

In this model it is assumed that the particles follow the fluid streamlines and travel at the
local fluid velocity in both the axial and directions. Consequently, as the particles pass
through the lumen they are swept towards the middle of the lumen by the fluid which is
injected from the jacket. According to Yuan and Finkelstein (1956) for constant fluid
injection through the porous wall of a tube the stream function for steady laminar flow in the

tube is

R? X 2
T:—z—(uo +4VOE)(T‘I—%) (86)

where n=(r/ R)2 and vy is the radial velocity through the porous wall. Atx=0and =1,

the stream function is

Uy R2
4

Y= (8.7)
Dividing eq 8.6 by eq 8.7, substituting eq 7.11 for the ratio of the radial and axial velocities

and simplifying, a dimensionless stream function, ¥ is defined as:

A _ _ l— _ 2
‘P—[H(a 1)Li](2n n ) (8.8)
Where L; is the length in the axial direction over which fluid is injected. The fraction of

material between ¥ and ¥+d ¥ is equivalent to the fraction of material between r and

r + dr, thus the stream function gives the F curve as a function of radial position, therefore

_ _nNx —n?
F—‘I’—Ll+(a 1)Ll)(2n n) (8.9)
However, the F curve is required as a function of time rather than radial position. Eq 8.9
may be transformed to a function in time by considering the velocity along a streamline. Eq
7.12, gives the axial velocity along a streamline, and the time taken to travel an axial

distance, dx, is

— 203 —



dr=x dx (8.10)
u X
u0(1+(a—1)L—) (1-1n)

12

From the appropriate solution to eq 8.9, 1 may be written in terms of the F curve,

substituting this expression into eq 8.10 yields

d

dt = > = 8.11)

uo(l'f'(a—l)iJ 1——7x

L 1+(a=1)—=

L

If the following parameter is defined,
Y:—l— I+(Oc~l)i then dY=a_1dx (8.12 a and b)
F L; FL,

Substituting into eq 8.11 yields

_ L; dYy
(—Dug y/y2—y

Integrating eq 8.13 the time, ¢, taken for a particle to travel the axial distance from x = 0 to

dt

(8.13)

x = L; (which is equivalent to the parameter Y varying from ¥ =1/Fto Y=a/F)is

L; 111{205—F+2\[a2 —aF:l

(o= 1)uy 2-F+241-F

t= (8.14)
From eq 8.14 the F curve can be calculated as a function of time. If the dilution factor is
one, eq 8.14 should give the RTD for Poiseuille flow. If o =1, the right hand side of eq
8.14 is of the form, 0/0, in which case L’Hospitals rule can be used to evaluate the fraction.

Applying L’Hbspital’s rule it can be shown that

L.

[

Ug VI—F

t= (8.15)

As the flow average velocity is half the centre-line velocity, the mean residence time is
t=—ro (8.16)

Substituting eq 8.16 into eq 8.15 and re-arranging gives the following result as required.
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le_%(‘?) 8.17)

The crystalliser can be divided into three separate regions: one at each end in which there is
no fluid injection through the walls of the lumen, and a region in which there is fluid
injection. The RTD for the region at the entrance of the crystalliser is given by eq 7.14 for
Poiseuille flow, and the RTD for the section in the middle by eq 8.17. The RTD in the final
region of the crystalliser can be determined by the same approach used for the region with
fluid injection. At the end of the region in which fluid is injected, the integrated form of eq

8.11 with x=L; is

L,

-
Ug a‘-oF

where L, is the length of the region at the end of the crystalliser. As with eq 8.17, using

(8.18)

L’ Hbspital’s rule, it can be shown that eq 8.18 gives the correct RTD for Poiseuille flow if

the value of the dilution factor is one.

The RTD for the crystalliser can now be determined for the streamline model. A schematic

diagram of the crystalliser is shown in Figure 8.11.

Crystalliser: length, L = 45.5cm

IR
o

No fluid Fluid injection No fluid
injection (1-2¢)L= 42.5cm injection
eL=15cm eL=15cm

Figure 8.11. Schematic diagram of the crystalliser.

The regions in the crystalliser in which there is no fluid injection are characterised by a
parameter, € where €= 1.5/45.5=0.03297. The reason for defining the length of each
region in terms of the total length of the crystalliser is that the dimensionless time used as the
independent variable is defined in terms of total length of the crystalliser. In terms of the

parameter, £ the lengths of each region in the crystalliser are:
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Li=Ly=¢eL and L;=(1-2¢)L (8.19a and b)

Substituting these lengths into the appropriate expressions for the RTD in each region, eqs

8.17, 8.14 and 8.18, and writing in terms of dimensionless time,

g £ (l~2£)ln\:2a—F+2-\fa2—aFi\+ £

(8.20)

Figure 8.12 shows the RTD for the streamline model as well as the experimental RTDs for
values of the dilution factor of two and five. It can be seen that the streamline model does
not describe the experimental data at all well. The break-through time is correctly predicted,
but a significant fraction of particles take much longer to pass through the crystalliser than
predicted by the model. It seems likely that the streamline model cannot describe the RTDs
as some particles stick to the walls of the lumen and therefore, do not follow the fluid

streamlines.
§.5.3 Constant radial position model

In this model it is assumed that the particles maintain a constant radial position in the lumen
as they pass through the crystalliser. That is the fluid being injected through the walls of the

lumen does not cause the particles to move in the radial direction.
The fraction of material at the inlet of the crystalliser between a radial position r and r+dr is

JF- ulx:027rrdr
Q

(8.21)

where Q is the fluid flowrate. Using the usual expression for the fluid flowrate, evaluating

the axial velocity from eq 7.12 and integrating, the F curve in terms of 1is

F=2n-1° (8.22)

The time taken for a particle to traverse the length over which fluid is injected is obtained

from the integrated form of eq 8.11, using eq 7.12 for the axial velocity and the appropriate

root of eq 8.22 for 1 as
L; Ino
i 8.23
o 1-F (@-1) (8.23)

If the dilution factor is one, eq 8.23 should give the RTD for Poiseuille flow. Using
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Figure 8.12 Comparison of experimental particle RTDs for o = 2 and 5, with the RTD

predicted by the streamline model, eq 8.20.
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L’ Hospitals rule it can be shown that for a=1 eq 8.23 is equivalent to eq 7.14 for

Poiseuille flow.

At the ends of the crystalliser, where there is no fluid injection, the RTD is given by eq 7.14
for Poiseuille flow. However, after fluid injection the axial velocity in the lumen is ¢ times
the axial velocity at the inlet. Using the appropriate lengths for each region, given by eqs
8.19a and b, the dimensionless time taken for a particle to travel through the crystalliser in

terms of the F curve is

9:[£+(1—28)(—%+—§) \/Tl—_f (8.24)

The following dimensionless group may be defined:

¢=[ lna €
g+(1-2¢) +—

(8.25)
(a-1) aj

From eq 8.24 it follows that for the constant radial position model:

1
_ ? (8.26)

F=1
Eq 8.26 gives a unique relationship between the parameter, ¢ and the F curve, for all values
of the dilution factor. Figure 8.13 (a) shows the experimental F' curves from the
experiments conducted with different values of the dilution factor, and different lumen
flowrates, plotted against the parameter, ¢ together with eq 8.26. All the experimental data
collapse onto one curve, and are well described by eq 8.26. Figure 8.13 (b) shows the F
curves for the experiments conducted using 9 pum latex particles and those from the short
crystalliser plotted against the parameter, ¢ together with eq 8.26. The data are described by
a single curve in good agreement with eq 8.26. There is some scatter, particularly for the
experiments in which the value of the dilution factor was one, but the experimental data are

generally well described by the model.

It seems unlikely that the particles actually maintain a constant radial position as they pass
through the crystalliser and do not acquire some radial velocity as a result of the fluid
injected through the walls of the lumen. However, the RTD predicted by the constant radial
position model is the one that best fits the experimental data. In this case it is better to use a
model, that while physically implausible, accurately represents the experimental data, rather

than one that is physically plausible but inaccurate. Also the fact that the particles stick to the
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walls of the lumen may explain why the constant radial position model can be used to

describe the experimental RTDs.
8.6 DISCUSSION

The findings of the experimental investigation into the particle RTD in the crystalliser are
important for two reasons: firstly, the RTD will be used in the analysis of the crystallisation
experiments to be reported in Chapter 9 and secondly, they have implications for

understanding the mechanism by which kidney stone formation occurs.

In most in vitro experimental systems used to study the factors affecting stone formation, the
tubular geometry of the kidney has largely been ignored, despite both human autopsy,
(Haggitt and Pitcock, 1971) and animal models, (Jordan et al., 1978 and Khan et al., 1979)

indicating that the kidney tubules are the initial site of stone formation.

The results of the particle RTD experiments show that a tubular geometry has a significant
effect on the residence time of the crystals. The implications of this cannot be overlooked:
the ultimate size that a crystal attains must depend on the length of time that it remains in the
tubules of the kidney. The author is aware of only one other study that addresses the

influence of the residence time on the formation of kidney stones.

Finlayson and Reid (1978) consider two mechanisms for stone formation that of free and
fixed particles. The free particle mechanism assumes that crystals do not become attached to
the tubules of the kidney whereas the fixed particle mechanism allows for sticking.
Finlayson and Reid state that there is insufficient time for free crystals to grow to a size large
enough to obstruct flow in the tubules. This conclusion is based on the assumption that
crystals travel under plug flow conditions, that is all crystals travel at the flow average
velocity, and therefore all spend the same length of time in a tubule. From the results of the
RTD experiments the assumption that all crystals travel at the flow average velocity is clearly
not true. A small fraction of crystals take very much longer than the mean residence time to
pass through the crystalliser, which must call into question the conclusion of Finlayson and
Reid that a free particle mechanism cannot be responsible for stone disease in the renal

tubules.

Further evidence that the flow in the kidney is laminar is provided by Schulz and Schneider
(1981). Based on hydrodynamic studies, they find the Reynolds number in the tubules of
the kidney is less than 500. A study using scale models of the renal pelvis by Schulz

(1987), finds that the flow is mainly laminar, but that vortices and dead-zones can also
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appear, depending on the fluid flowrate. These two studies both provide evidence that
suggest the findings of Finlayson and Reid (1978), based on plug flow in the kidney, are
unreliable. They also suggest that the hydrodynamics in the kidney must be considered
when studying the factors affecting stone formation, which is in agreement with the findings

presented in the current work.
8.6 CONCLUSIONS

Step-change and pulse-input tracer response tests have been used to investigate the particle
RTD in the tubular crystalliser. A mass balance over the crystalliser, using the data from the
step-change tests, suggested that some of the particles were sticking to the walls of the
lumen. An extensive investigation of the factors affecting the particle RTDs revealed the

following:
1. The same RTD is obtained from step-change and pulse-input tests.

2. If a dimensionless time scale is used, the RTD is independent of:
 Particle size
 Crystalliser geometry

e Lumen flowrate

3. The RTD is dependent on the value of the dilution factor, because the flow field

in the crystalliser is dependent on the dilution factor.

A model that assumes the particles follow the fluid streamlines does not describe the
experimental RTDs. However, all the experimental RTDs are well described by a model in
which it is assumed that the particles maintain a constant radial position. Although
physically implausible, this model provides a mathematical expression that accurately
predicts the RTDs.

The effect of the particle RTD in kidney stone formation has largely been ignored in the past.
Finlayson and Reid (1978) have assumed that all crystals have the same residence time in the
kidney, as they travel at the flow average velocity. The findings of the current work show
that a small but significant number of particles have a residence time very much longer than
the average. Thus, the particle RTD may be an important factor in stone formation, as the

ultimate size that a crystal attains depends on the time it remains in the tubules of the kidney.
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Chapter 9:

CRYSTALLISATION IN A CONTINUOUS
SYSTEM

This chapter describes an experimental investigation and the modelling of the
seeded crystallisation of calcium oxalate in the tubular crystalliser. It is found
that in addition to growth and aggregation, two other phenomena, sticking and

breakage occur.

Using a population balance, it is shown that sticking is size-independent and
irreversible and that breakage can be modelled by assuming that crystals of all
sizes are equally likely to form. Both phenomena are found to depend on the

fluid shear rate in the crystalliser.

A similar analysis is used to model simultaneous, aggregation, growth, sticking
and breakage in metastable solutions. It is found that the aggregation rate is
dependent on both the shear rate and the supersaturation. The aggregation rate
in supersaturated solutions is orders of magnitude lower than in the batch

experiments reported in Chapter 4.

9.1 INTRODUCTION

As described in Chapter 6, the MSMPR crystalliser has been widely used to study the
crystallisation of calcium oxalate in a continuous system. However, normally only
nucleation and growth are considered in this device and aggregation is ignored. The
findings of the batch crystallisation study reported in Chapter 4 reveal important and
interesting aspects of the aggregation of calcium oxalate crystals in supersaturated solutions
which should not be ignored. The purpose of this chapter is to study the aggregation of
calcium oxalate crystals in a continuous system, and in particular to investigate the

dependence on supersaturation and shear rate in laminar flow using the tubular crystalliser.
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9.2 PRELIMINARY EXPERIMENTS

Prior to commencing the experimental program, preliminary experiments were conducted to
determine whether calcium oxalate seed crystals stick to the walls of the lumen. As outlined

in Section 8.2.3 the latex used in the RTD experiments stuck to the walls of the lumen.
9.2.1 Method

A calcium oxalate seed suspension was fed to the crystalliser using the particle suspension
delivery system described in Section 6.3.2. The fluid fed to both the lumen and jacket of the
crystalliser was a filtered (0.22 pm), 0.15 M saline solution, saturated with respect to

calcium oxalate. The seed suspension was prepared by the method in Section 3.3.2.

At the beginning of each experiment samples of the seed suspension fed to the lumen of the
crystalliser were collected and analysed by the Multisizer. The crystalliser was then operated
as described in Section 6.3.4, that is with the jacket outlet closed and with fluid fed to both
the lumen and jacket. Initially, the saturated saline solution was fed to both the lumen and
the jacket, at time =0, the flow of the seed suspension was started. When the crystalliser
was at steady state, after approximately five mean residence times, samples of the fluid

leaving the crystalliser were collected and analysed by the Multisizer.

A lumen flowrate of 8 ml/min was used and values of the dilution factor from 1 to 4 were
considered. In each run the maximum value of the dilution factor was considered first, then
by decreasing the jacket flowrate, while keeping the lumen flowrate constant, lower values
of the dilution factor were obtained. For all values of the dilution factor, samples of the fluid

leaving the crystalliser were not collected until the crystalliser was operating at steady state.
9.2.2 Results

A mass balance over the crystalliser, using the number and volume of crystals in the fluid at
the inlet and outlet of the crystalliser, was performed. As described in Section 8.2.3, the
number and volume of crystals in the fluid leaving the crystalliser must be corrected to allow

for the fluid injected from the jacket to the lumen. A mass balance gives

VT=OC'VT,M 9.1)

where o is the modified dilution factor, defined in eq 8.2, and Vrp p is the total crystal

volume in the samples analysed by the Multisizer.
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Any change in the total number or volume of crystals can be quantified by calculating the
ratio of the total number or volume of crystals in the fluid at the outlet to that at the inlet.

These ratios, denoted fy and fy, are:

Ny

_ Vr
NT.irri’e!

VT,inler

In and fv

(9.2a and b)

Figure 9.1 (a) shows the variation in fy and fy for one of the preliminary experiments.
For all values of the dilution factor the calcium oxalate crystals are sticking to the walls of the
lumen as fy is always less than one. Also for all values of the dilution factor fy is greater
than fy, and at higher values of the dilution factor, there are more crystals leaving the
crystalliser than were fed to it, as fy is greater than one. As the saline solution used in the
experiments was saturated with respect to calcium oxalate, the only mechanism that can

explain the observed increase in crystal number is breakage.

Further evidence of breakage is obtained from the CSDs, by number, at the inlet and outlet
in Figure 9.1 (b). It can clearly be seen that the CSDs at the outlet are shifted towards

smaller sizes as a result of breakage.
9.2.3 Discussion

The tendency of calcium oxalate crystals to stick to surfaces during crystallisation
experiments has been documented for other experimental systems. For example, Ryall et al.
(1981b) observed that calcium oxalate crystals stuck to boro-silicate glass flasks in batch
experiments and Randolph and Drach (1981) found fouling on the walls of an MSMPR
crystalliser to be a major problem. Finally, Hartel et al. (1986) observe a loss of crystal
mass in a Couette agglomerator due to fouling of the agglomerator walls at high

supersaturations.

Hartel et al. (1986) also observe the breakage of aggregates of calcium oxalate crystals in
their system. Those authors propose an aggregation mechanism for calcium oxalate similar
to that developed in Chapter 5 and suggest that under certain operating conditions the
aggregates are weakly bonded together and are subject to disruption, particularly at high

shear rates and low supersaturation.

From the SEM micrograph of the seeds used in the current work shown in Figure 3.2, they
are clearly aggregates composed of primary crystals approximately 1 um in size. In a saline
solution with an ionic strength of 0.15 M, the crystals will be loosely held together by

DLVO type forces as explained in Section 5.2. In the crystalliser it is possible shear forces
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in the fluid will exceed the DLVO forces and consequently breakage will occur. Breakage is
highly undesirable as it is another mechanism which must be included in a model of the

crystallisation experiments.
9.2.4 Seed preparation

An alternative method of preparing the seeds was devised with the aim of stopping or at least
decreasing breakage. The seeds were prepared by wet grinding calcium oxalate
monohydrate (1 gram) in 10 ml of 2 0.15 M saline solution. The wet ground crystals were
then added to a stock metastable solution as described in Section 3.3.2, except the final
volume of the seed suspension was 950 ml. Calcium ions are in excess in the metastable
solution, to consume these ions, 42 ml of a 0.05 M sodium oxalate solution was added. The
sodium oxalate was added in two aliquots, the first 6 and the second 12 hours after the
crystals were added to the metastable solution. Throughout the process the seed suspension

was stored at room temperature and stirred by a magnetic stirrer.

The seed suspension contains calcium oxalate crystals that have undergone three stages of
growth and aggregation. The final solution is effectively a 0.15 M saline solution, saturated
with respect to calcium oxalate, as equal quantities of calcium and oxalate were added during
preparation. The stages of growth and aggregation will produce aggregates in which the
primary crystals are cemented rather than weakly bound together and thus should be more

stable under the influence of fluid shear in the crystalliser.

An experiment the same as that reported in Section 9.2.1 was conducted with these new pre-
grown seeds. Figure 9.2 (a) shows the variation in the parameters fy and fy. The pre-
grown seeds stick to the walls of the lumen as fy is less than one for all values of the
dilution factor. Comparison with Figure 9.1 (a) reveals that a similar fraction of both the

standard and pre-grown seeds stick to the walls of the lumen.

It can also be seen that for all values of the dilution factor fy is greater than fy indicating
that breakage is still occurring, or that it is size-dependent. However, the amount of
breakage has been significantly reduced, for example at the highest value of the dilution
factor, fy has been reduced from 1.39 to 1.08. The CSDs, by number, for various values
of the dilution factor, shown in Figure 9.2 (b) also indicate breakage has decreased.
Although the CSDs are shifted towards smaller sizes the effect is not as pronounced as it is
in Figure 9.1 (b).
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9.3 EXPERIMENTAL INVESTIGATION
9.3.1 Materials

The batch crystallisation experiments reported in Chapter 3 were conducted at 37°C. To
compare the results from the batch experiments with those using the crystalliser it must be
operated isothermally at 37°C. The crystalliser was modified to the form of a simple double
pipe heat exchanger. These devices are essentially two concentric pipes with one fluid
flowing through the centre pipe while the other fluid moves cocurrently in the annular space.

Here the centre pipe is the tubular crystalliser.

The crystalliser was enclosed in a perspex tube, 4.5 cm in diameter and 41 cm in length,
which was sealed at each end by O-rings fitted to the top and bottom manifolds. Hot water
was pumped through the perspex tube via inlets at the top and bottom using an Iwaki MD-

10 magnetic drive centrifugal pump (All Pumps Supplies, Adelaide, Australia).

During operation the solutions were fed to the lumen and jacket of the crystalliser via tubing,
head tanks and rotameters, which were not insulated. As the fluid flowrates used were quite
low considerable cooling may take place during this process. Tests were conducted to
determine an appropriate temperature at which to store the solutions. It was found that if the
initial temperature of the solutions being fed to the crystalliser and the water used to heat the
crystalliser were 45°C, then over the entire range of operating conditions, the temperature of
the solutions leaving the crystalliser was 37°C. The solutions were stored at 45°C in a water
bath (Paton Industries, Model RW 1812).

9.3.2 Method

The experiments may be divided into three stages. The first two were the same as those for
the preliminary experiments described in Section 9.2.1, namely to analyse samples of the
solution fed to the crystalliser and conduct a run with saturated saline at different values of
the dilution factor. After completing the run with saturated saline, the crystalliser was rinsed
with a 0.15 M saturated saline to remove the crystals stuck to the walls of the lumen. A

peristaltic pump was used to supply saturated saline to the crystalliser at flowrates of up to
80 ml/min.

Finally, a metastable solution was fed to both the lumen and jacket, with the values of the
dilution factor considered being the same as those for the saturated saline. At the end of the

run using the metastable solution the crystalliser was again rinsed with saturated saline.
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9.3.3 Parameters investigated

The two parameters of most interest were the supersaturation of the metastable solution and
the shear rate in the crystalliser. Also the effect of the angle of inclination of the crystalliser

was considered.

Supersaturation. Solutions of different supersaturation were prepared by changing the
calcium to oxalate ratio in the metastable solution. As the same metastable solution was fed
to both the lumen and jacket, the crystalliser operates at very nearly constant supersaturation.
This was verified by measuring the calcium ion concentration in samples of the fluid at the
inlet and outlet of the crystalliser with an Atomic Absorption spectrophotometer, using the

method described in Appendix 4.

The total calcium and oxalate ion concentrations and the relative supersaturation, calculated
from free ion concentrations using the method described in Chapter 2, for the different
metastable solutions used are given in Table 9.1. The range of supersaturation covered is
lower than that in the batch experiments for two reasons. Firstly, solutions with a high
relative supersaturation were found to nucleate during an experiment, possibly because of
secondary nucleation caused by a build up of background particles with time. Secondly, as
the crystalliser operated at constant supersaturation and samples were only collected when
the system was at steady state, the time required to prepare metastable solutions of different
supersaturations and then perform the experiments was prohibitive. Consequently, several
metastable solutions with different supersaturations were used in only one experiment,

experiment 18/7, and only two values of the dilution factor were considered.

Shear rate. The shear rate was varied by using different lumen flowrates. For each lumen
flowrate the same jacket flowrates were used, giving different values of the dilution factor in
each experiment. The lumen flowrate was varied from 4 to 10 ml/min, and jacket flowrates
of 0 to 20 ml/min were used. Complete details of the combinations of flowrates and the

corresponding dilution factors for all the experiments are given in Table 9.2.

Angle of inclination. Experiments were conducted in which the crystalliser was inclined
at a small angle to the vertical, mainly to investigate the effect on sticking. The crystalliser
was inclined at angles of 2.5° and 5°, the flowrates and solutions used in these experiments

were the same as those for the experiment 18/7.
9.4 RESULTS

The results from the experiments outlined in the previous section are given in Appendix 9.
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Table 9.1 Details of the metastable solutions used to investigate the effect of supersaturation

on aggregation.

Experiment Calcium ion Oxalate ion Relative Values of
concentration, concentration,  supersaturation  dilution factor,
T, 2 (M) T, (M) o= 2_: o
18/7 5.27x1074 2.1x107 2.62 All
5.27x1074 1.05x1074 1.48 2 and 3.5
5.27x107 3.16x107 3.74 2 and 3.5
2.1x1073 1.05x1074 4.79 2 and 3.5
5.27x1074 4.2x107 4.82 2 and 3.5
1.05x1073 2.1x107* 4.87 2 and 3.5
20/7 5.27x1074 2.1x107 2.62 All
21/7 5.27x1074 2.1x1074 2.62 All
22/7 5.27x107* 2.1x1074 2.62 All
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Table 9.2 Details of fluid flowrates and dilution factors used to investigate the effect of

shear rate on aggregation.

Experiment Lumen flowrate, Jacket flowrate, Seed flowrate, Dilution factor,
QO (ml/min) Q; (ml/min) Qg (ml/min) a
2077 4 0.19 I
4 0.19 2
4 8 0.19 3
4 12 0.19 4
4 16 0.19 5
4 20 0.19 6
2117 6 0.19 1
6 0.19 1.67
6 8 0.19 2.33
6 12 0.19 3
6 16 0.19 3.67
6 20 0.19 4.33
18/7 8 0.25 1
8 0.25 1.5
8 8 0.25 2
8 12 0.25 2.5
8 16 0.25 3
8 20 0.25 3.5
22/7 10 0 0.25 1
10 4 0.25 1.4
10 8 0.25 1.8
10 12 0.25 2.2
10 16 0.25 2.6
10 20 0.25 3

— 221 —



The analysis described in Section 9.5 uses the moment form of the population balance,
consequently, the moments of the CSDs rather than the CSDs for the different operating

conditions in each experiment are reported in Appendix 9.
9.4.1 Size distributions

Figures 9.3 (a) and (b) show product CSDs by number and volume for the experiment 18/7,
for one value of the dilution factor, & =2, and different metastable solutions. In Figure 9.3
(a) as the supersaturation increases the CSDs clearly broaden, which is characteristic of
aggregation. Figure 9.3 (b) shows translation of the CSDs towards larger sizes, which is
characteristic of growth. In addition these Figures suggest both growth and aggregation are

dependent on supersaturation.

The effect of the shear rate on both mechanisms is revealed in Figures 9.4 (a) and (b) which
show the variation in the parameters, fy and fy for different metastable solutions in
experiment 18/7. For all operating conditions aggregation occurs in metastable solutions as
the values of fy are lower than those for saturated saline (¢ =1). The spread in the values
of fy increases as the total flowrate increases, suggesting the mechanisms that affect crystal
number, namely aggregation and breakage, are dependent on the shear rate in the
crystalliser. Figure 9.4 (b) indicates that growth occurs for all operating conditions as for
metastable solutions the values of fy are greater than those for saturated saline. However,
there seems to be less dependence of the growth rate on shear rate as the spread in the data is
approximately the same for all flowrates. Finally, for all solutions and all values of the
dilution factor fy is less than one, indicating sticking occurs at all operating conditions. To
assess whether breakage occurs in metastable solutions the parameters fy and fy, cannot

be used, a more rigorous analysis, such as a population balance model, is required.
9.5 ANALYSIS
9.5.1 Introduction

As noted in Chapter 4 the most difficult task in the modelling of a process with simultaneous
growth and aggregation is the identification of mathematical formulation for each. The
presence of two additional mechanisms, sticking and breakage, further complicates this

problem as a mathematical formulation for each of these must also be developed.

The problem here is simplified by the results of the batch crystallisation experiments reported

in Chapter 4. In those experiments it was found that the growth of calcium oxalate was well

— 222 —



| Expt 18/7, QL=8m1/min and oL =2
800 - \ c=1
\ — — o0=148
3 600 \ - -- 6=262
S | Js o, L\ c =487
b |
(=7
~_. 400 -
Z

0=—= | ! | ‘ | 1 ' | r
2 4 6 8 10 12 14
Size (pm)
(@)
1.0 10° i - _
] !N\ Expt 18/7, Q =8ml/min and 0.=2
8.0 10% ! A =1
]
= 1 //;’ A ’ — — o=148
3 4 :
g 6:0.10%< b 2 .- =262
v A \
o ! \
= / T c=4.87
2 40 10* , \
>... / AN
il / \
! \\
2.0 10* - /) \\\
/ s
_ 7 §
% 2 S~ " ¥oa
0.0 10° — — — BEEES.,
2 4 6 8 10 12 14
Size (um)
(®)

Figure 9.3 The effect of relative supersaturation on CSDs at the outlet of the crystalliser by
(a) number and (b) volume for experiment 18/7 with o = 2.

— 223 —



1.2

J o O=
114 o o0=148 o ®
1] (@]
o 0=2.62
1.0 - ©
I s ©0=4.387 5 o N o
(o] (o
0.9 °
Iy ] ¢
0.8
- Q@
A
0.7 —
0.6 -
A
0.5 T '| 1 I I | T ] T
5.0 10.0 15.0 20.0 25.0 30.0
QT (ml/min)
(a)
1.0
° [+]
]
0.9 - o
(@]
] O
m] O
< A
0.8 — o
fv 1 5 o 6=
0.7 o o=1.48
(o
i o 0=2.62
0.6 o s o0=4.87
0-5 L l T | T I ] ] L]
5.0 10.0 15.0 20.0 25.0 30.0
Qq (ml/min)

(b)

Figure 9.4 Variation in the parameters (a) fy and (b) fy with the total fluid flowrate for

metastable solutions of different relative supersaturation for experiment 18/7.

— 224 —



described by a size-independent formulation and further the dependence of the growth rate

on relative supersaturation is given by eq 4.6.

The results of the runs using saturated saline, are used to identify mathematical formulations
for sticking and breakage, as it is assumed that growth and aggregation do not occur under
the conditions in these experiments. Then as a correlation has been produced to calculate the
growth rate in metastable solutions, the results from the experiments using metastable

solutions are used to determine the aggregation rates.

The analysis is further simplified by firstly considering a batch process, then later
incorporating the particle RTD to obtain an analysis appropriate for a continuous device

operating at steady state.
9.5.2 Sticking

Although a number of other workers have observed sticking when studying the
crystallisation of calcium oxalate, none have tried to model it. The approach adopted here is
to postulate that sticking may be either size-independent or size-dependent. The simpler of
these is a size-independent formulation, in which a crystal sticking to the walls of the lumen
is a random event. Assuming that sticking is an irreversible, first-order process with a rate
constant, kg, then for sticking alone, from eq 1.9, the batch form of the population balance
is

—=—-k 93
It sh (9.3)

The moment form of the population balance is obtained by applying eq 1.4 to eq 9.3.
9.5.3 Breakage

Breakage has been widely studied in the literature, particularly in the area of modelling
comminution processes. Randolph and Larson (1988) note that the population balance
approach has been productive in modelling crystallisation and comminution processes as
well as areas where these overlap such as modelling a CSD in a crystalliser with significant

crystal breakage.

Breakage, in a similar fashion to aggregation, results in simultaneous birth and death events
at different crystal sizes. From eq 1.9 the batch form of the population balance for breakage

alone, with volume as the internal coordinate, is:
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d
g’f = Bp(v) - Dp(v) (9.4)

where Bg(v) and Dg(v) are the birth and death rates. There are various different
mathematical formulations for breakage, the one most commonly used assumes that when a
crystal breaks two crystals of equal-volume are formed, and further that the breakage rate
has a power law dependence on size. This formulation has been used to model breakage in
soy bean precipitation by Grabenbauer and Glatz (1981), flocculation formation by Chen et

al. (1990), and significantly calcium oxalate crystallisation by Hartel and Randolph (1986).

In view of the structure of the seed crystals used in the experiments in the current work a
different approach is adopted. From SEM micrographs of the seeds it is clear that they are
aggregates composed of primary particles approximately 1 um in size. It seems unlikely that
when an aggregate breaks only crystals of the same volume will form, instead it is proposed

that the aggregate can break at a random point and thus crystals of any size may form.

The birth and death rates for this formulation can easily be derived. A birth event at volume

v occurs when:
1. A crystal of volume € breaks into crystals of volume v and €-v.
2. A crystal of volume €& breaks into crystals of volume & —v and v.

The probability of a crystal of volume € breaking to form a crystal of volume v is given by
the breakage probability density function, p(e,v). Assuming an equal probability for both
events mentioned above, i.e. the breakage probability density function is symmetrical, and

summing over all possible values of €, the expression for the birth rate is:

co

By(v) = j p(£,v) Dyle)de + j p(e,6—v) Dp(€)de = 2j p(e,v) Dyle)de (9.5)

v

When breakage at all sizes is equally likely, then the breakage probability density function is

independent of v. As the breakage probability density function is normalised then,

£

jp(e)dv=1 (9.6)

0

from which it follows that p(g)=1/¢. Further, assuming the breakage of crystals is

proportional to their population, the death rate is given by
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Dp(e) = kpn(e) ©.7)

Substituting eq 9.7 into eq 9.5 the birth rate is,
BB(v)=2j@;(—"3—)de (9.8)
v

Applying eq 1.4 to eqs 9.7 and 9.8, the moment forms of the birth and death rates can be

determined.
9.5.4 Simultaneous sticking and breakage

As demonstrated in Section 7.5, moment transforms give accurate results with much less
computational effort than techniques which determine all the values of a distributed variable.
The moment transforms of eqs 9.3 and 9.4 are used to determine whether the formulations
proposed for sticking and breakage can be used to model the experimental results.
However, the moments, as defined by eq 1.4, cannot be calculated from the experimental
data. The CSDs obtained from the Multisizer have a size threshold of 2 pm, crystals smaller
than this size are not counted. Consequently, the moments calculated from the experimental
CSDs are only partial moments. The partial moment of a CSD, m i with volume as the

internal coordinate, is defined as:

oo

;= jvj n(v)dv (9.9)

Yo
where v, is the size of the smallest particle counted by the Multisizer cubed, which is

8 um3.

Considering breakage first, applying eq 9.9 to eq 9.8 gives

By = _[vfzjkB—"(e—)dedv (9.10)
’ £

Vo \4
Reversing the order of integration and noting that vy < v < € eq 9.10 may be integrated and

simplified to give

= 2k :
B, =B (m. —vitlm_ 9.11
B,j j+1( Yo ml) 9.11)

Similarly applying eq 9.9 toeq 9.7 gives
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oa

Dy, = J.z-:j kgn(g)de =kgm; (9.12)

Yo

Applying eq 9.9 toeq 9.3 for sticking, combining with eqs 9.11 and 9.12, and simplifying,

the moment form of the population balance for simultaneous sticking and breakage in a batch

dm 1- - 2 il
—kg +| —= 1= kg mj—ﬁvg+‘m_l (9.13)
dr 1+j j+1

The analytical solution. Eq 9.13 forms a system of differential equations for different

system is:

values of j. For j=-1 the right hand side of eq 9.13 is of the form, O /0, in which case

L Hbspital’s rule can be used to show

-‘%‘;—1=—(ks+kB(1+21nv0))m_1 (9.14)

The solution to eq 9.14 is

m_, = m? exp(—{ks + kg +2kp Invg)?) (9.15)

where the superscript, ¢, represents the feed. Substituting eq 9.15 into 9.13 and solving,
the expression for 7; is

¢J
. __ miyVg
+J)

™ = T+ (1+ ) Invg

) A .
+(fz&j?+ 2 }exp(kB(l J) "f“””t) 9.16)

14 (14 j)Invg (1+j)

exp(—(ks +kg+2kgln vo)t)

A best fit procedure could be used to determine the values of the sticking and breakage rate
constants that give partial moments in agreement with those from the experimental CSDs at
the outlet of the crystalliser. However, Acton (1970) states that a series of exponential
functions can be extremely ill conditioned, as there may be many combinations of the
parameters that fit the experimental data quite well. Rather than using the analytical solution,

an approximate method for determining the values of the rate parameters can be developed.

An approximate method. Dividing eq 9.13 by 7, and re-arranging implies:
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dinm; - o1 M
j =—ks+k3(1—i_——_2——v{)+1 ﬂ-—l) 9.17)
J

which may be integrated to give

In; — Inm? =i 2 T
e By __f..ﬁ__‘ vé*'__”f—l (9.18)
t 1+j j+l1 m;
where the ratio —- is assumed constant and is given by — =~ —"—“p- +—|.

The time chosen is the mean residence time, 7, which may be calculated as

oo

f=m= JtE(t)dt (9.19)

tp

where, 1, is the break-through time, the time at which the first crystals leave the crystalliser.
The E curve can be calculated from eq 8.24 for the F curve of the particle RTD using eq 7.2.
The break-through time is determined from eq 8.24 by setting F=0.

This analysis suggests a plot of the left hand side of eq 9.18, denoted, Y, against the
parameter on the right hand side, denoted X, involving the partial moments, should be a
straight line of slope, kp and intercept —kg. Figures 9.5 (a) and (b) show the data from
experiments 20/7 and 22/7 for various values of the dilution factor, plotted in the manner of
eq9.18. The experimental moments were calculated for values of j from —2/3 to 2 in steps
of 1/3. It can be seen that all the data are well described by straight lines as predicted by the

preceding analysis.

The partial moments of the experimental CSDs were calculated using the following formula
- —J
it =2L,- N (9.20)
i

where L; is the arithmetic average of the upper and lower sizes of channel i and N; is the

number of crystals in channel i.

Accuracy of the approximate method. The accuracy of the values of the sticking and

breakage rate constants determined from the approximate analysis can be investigated by
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using these values to calculate the partial moments from the analytical solution, eq 9.16.

These values can then be compared with the partial moments of the experimental CSDs.

Figures 9.6 (a) and (b) show the partial moments calculated from eq 9.16, plotted against the
experimental partial moments for the experiments 18/7 and 21/7. It can be seen that apart
from when j=—2/3 the experimental and analytical moments are virtually identical. Thus,
only a small error is introduced by using the approximate analysis to evaluate the sticking

and breakage rate constants.
9.5.5 The effect of the particle residence time distribution

Smit et al. (1994) show that for aggregation alone the state of mixing, ranging from
completely segregated to maximum mixedness, has little effect on aggregation. However,
those authors also show that departures from ideal RTDs affect aggregation. In the
preceding analysis plug flow has been assumed, with all the crystals travelling through the

crystalliser at the flow average velocity, the effect of the particle RTD is now considered.

By analogy with reaction engineering, for a device operating at steady state with an arbitrary

RTD, the moments of the product CSD are given by

oo

me™ = jm?mh E(t)dt (9.21)
0

Here E(t) is valid for t>1,, and m?‘mh is given by eq 9.16, which is derived from the

batch form of the population balance. From eq 8.24, the expression for E(t) is

dF 2L2( Ina 8)2
E(f)==—="—|e+(1-2¢ +— 9.22
() dt u(2)t3 ( )Ot—l o ( )

Also from eq 8.24, with F =0 the break-through time is

tb=£(£+(l—2£) i +3) (9.23)
Uy a-1 o

Substituting eqgs 9.16, 9.22 and 9.23 into 9.21 and re-arranging gives

~ CON T 2t2
mso™ (1) = jt—;’(AeXp(—ax) + Bexp(-bt))dt (9.24)
tp
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where A, B, a and b are constants that can be determined from eq 9.16. Making the

following substitutions, x; = af and x, = bt, eq 9.24 may be written as

oo oo

r-h]qont =2tl% Aa2 j exp(:xl)dxl +Bb2 jﬂ;x_ﬂdxz (9.25)
X X3
aty, : bty :

Further, it can be shown that

co

a

where Ei(a) is the exponential integral. It follows that

w1 =265 (Aa® I{a,) + Bb2 I(b1)) (9.27)

Figure 9.7 shows the partial moments calculated from eq 9.27 plotted against the
experimental partial moments for experiments 18/7 and 21/7. It can be seen that the values
of the partial moments calculated when the RTD is taken into account are in good agreement
with the experimental partial moments. The results presented in Figure 9.6 suggest the
partial moments calculated from the analytical solution are consistent with the experimental

moments. Both these findings imply that the plug flow simplification is satisfactory.
9.6 SATURATED SOLUTIONS

The runs from the experiments with saturated saline solution are now examined using the
analysis developed in the previous section to investigate the dependence of sticking and

breakage on the operating conditions in the crystalliser.
9.6.1 Independent variables

The sticking and breakage rate constants may be related to the jacket or lumen flowrates or
some combination of these. However, it seems likely that both mechanisms will depend on

the shear induced by fluid flow in the lumen.

Sticking. Assuming the sticking rate is inversely proportional to the shear rate and hence

fluid flowrate then from eq 9.3,
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Figure 9.7 Comparison of the experimental partial moments with those calculated allowing
for the RTD, eq 9.27 using the sticking and breakage rate constants determined from the
approximate analysis for (a) experiment 18/7 and (b) experiment 21/7.
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dn dt
— o — 9.28
2 9.28)

As the axial fluid velocity varies with axial position because of fluid injection from the jacket
to the lumen, an average shear rate must be calculated. An average shear rate, Vs, is

defined such that

L
J'dx
s s
u

0

To determine an expression for the average shear rate the correct formulation of the shear

(9.29)

O ey
\<

rate is required. A crystal stuck to the walls of the lumen will experience forces due to the
following: wall shear stress, axial and radial drag. The force due to the wall shear stress is

given by

du(x,r) 2 —H uo(x)ﬂ:dz

w=TwASTH=— 2 Y T 2R
r=R

(9.30)

where the axial velocity, u(x,r) is obtained fromeq 7. 12.

Bird et al. (1960) provide the following equation for the drag force on a sphere of diameter,

d, in a fluid of viscosity, A, flowing at velocity, u ,

Fp=3npudu (9.31)

To evaluate the radial drag force, the radial velocity given by eq 7.13 is used with r = R.
For the axial drag force, eq 7.12 is used to determine the axial velocity at the centre of the

crystal, one radius from the edge of the lumen, that is at r = R—0.5d.

Figure 9.8 shows the variation in the three forces acting on a particle 6 pm in diameter for a
lumen flowrate of 8ml/min and a dilution factor of 4. It can be seen that the forces due to
axial drag and the wall shear stress are much greater than the force due to radial drag,
consequently it is to be expected that sticking will be dominated by axial shear. The

expression for the axial shear is given by

du(x,r)l _ 2u(x)
dr lr=R_ R

Vs = (9.32)

Using eq 7.12 for the axial velocity, it can be shown the right hand side of eq 9.29 is
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Figure 9.8 Variation with axial position of the forces acting on a 6 um particle in the
crystalliser for a lumen flowrate of 8 ml/min and o =4.
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- dx _ 72hna
o X\ up(a—1)
— 1+(a—1)z 0

0 2

and the left hand side is

L
Yedx J‘Zuo ) 2dx _4L
0 u(x) uy(x) R

from which it follows that

- 2u01na

5= Ra—1) (9.33)

Breakage. As with sticking, breakage will depend on axial shear in the fluid. However,
for breakage the radial as well as the axial variation in the shear rate must be considered in
the definition of an appropriate average shear rate. Assuming a constant radial position, r, at

that radial position, the following average shear rate may be defined such that

L L
— J‘ dx [ Vg(r,x)dx

Y = 9.34
5(r) u(r,x) u(r,x) -39
0 0
Using eq 7.12 for the axial velocity the left hand side of eq 9.34 is
L
— dx 2LIno
7/B(r)J‘u p Y 2
i1+ (-1 —) 1—(~) a-1 1—(—)
L1 @-n3 )| 1=(5) | (@1 (7
The shear rate 1s
Y(rx)—m—u (1 (a—1)= )2’ (9.35)
B ar L) R '

and therefore the right hand side of eq 9.34 is

j MOLH(O‘ L ]22 N P— L -
)G ()
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from which it follows that

2?'“0(05 = l)

Yp(r)= 9.36
B( ) R*Ine ( )
Similarly in the radial direction, an average shear rate may be defined such that
R
QYp= j 5(r)u(r,0)dA (9.37)
0

substituting for the flowrate and area, in terms of the fluid velocity and lumen radius, as well

as the above expression for 7g(r), integrating and simplifying yields

-~ 16u0(0t—1)

Y= 9.38
B~ |5RIna (9.38)

9.6.2 Experimental results

In Figure 9.9 the sticking rate constant, kg, is plotted against the average shear rate
calculated from eq 9.33 for all the experiments conducted; also shown are curves fitted
assuming kg is inversely proportional to the shear rate (as proposed in Section 9.6.1). It
can be seen that the data from each of the experiments are well described by the fitted curves.

In Table 9.3, the details of the curves fitted to the experimental data are presented.

Table 9.3. Details of the curves fitted to the experimental data in Figure 9.9.

Experiment Lumen flowrate, Constant of  Error in constant Regression

Q; (ml/min) proportionality ~ of proportionality  coefficient, R

20/7 4 0.141 0.005 0.979
2177 6 0.234 0.019 0.903
1877 8 0.322 0.007 0.983
22717 10 0.345 0.023 0.897

A plot of the constant of proportionality against the lumen flowrate reveals that they are

directly proportional to each other. The preceding observations may be written as

k= KL (9.39)
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Figure 9.9 The dependence of the experimental sticking rate constants in saturated solutions
on the shear rate in the tubular crystalliser. Also displayed are curves fitted to the data

assuming the sticking rate constant is inversely proportional to the shear rate.
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where K is a constant. Substituting the expression for the lumen flowrate, in terms of the
axial fluid velocity and lumen cross-sectional area, and eq 9.33 for the shear rate and

simplifying gives

KR Ina
4 o-1

kg = (9.40)
Eq 9.40 implies that for all the experiments kg should be proportional to the group
In ot /(o — 1), which is confirmed in Figure 9.10. No particular physical significance can be
assigned to the dependence of kg on the dilution factor, however it is more convenient to
calculate the sticking rate using only one parameter, the dilution factor, rather than having to
use a different equation for each experiment. The result of physical significance is that the

sticking rate decreases as the shear rate in the crystalliser increases.

The dependence of the breakage rate constant, kg, on the shear rate calculated from eq 9.38
is displayed in Figure 9.11. It can be seen that the data are reasonably well described by a
curve which assumes kjp is directly proportional to the shear rate. The uncertainty in the
constant of proportionality of the curve fitted to the data is 3.03x107% and the regression

coefficient is 0.77.
9.6.3 Discussion

The results presented in Figure 9.6 show that the sticking and breakage rate constants
determined from the experimental data can be used to calculate partial moments that are in
excellent agreement the experimental partial moments. The results presented in the previous
section provide physically meaningful evidence that the formulations for sticking and
breakage proposed in Section 9.5 can be used to model these phenomena in the tubular
crystalliser. As the shear rate in the crystalliser increases, the forces acting to remove
crystals stuck to the walls of the lumen and those acting to break crystal aggregates that are
loosely bound together both increase. Consequently, as the shear rate increases the sticking
rate will decrease and the breakage rate will increase. These trends are consistent with those

observed experimentally.
9.7 METASTABLE SOLUTIONS

As with the runs using saturated saline, those with metastable solutions are modelled using
the moment form of the population balance. In Section 9.4 evidence that growth,
aggregation and sticking occur in metastable solutions was presented, the question that

remains unanswered, is whether breakage also occurs.
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9.7.1 Identifying breakage

The moment form of the population balance for simultaneous growth and sticking in a batch
system is now developed. Sticking, is described by the formulation proposed in Section
9.5.2. For growth alone, eq 1.22 cannot be used directly as growth into the field of view of
the Multisizer must be included. With volume as the internal coordinate, eq 1.9 is

on_ d(G, n)

AR —0 41
8t+ dv ©.41)

where the definition of G, is

Gv:ﬂi)zg,[?fii:

- — 313G (9.42)

Substituting eq 9.42 into eq 9.41 and applying eq 9.9

% = —]:vj a’(3v2/3 Gn)
dt
Yo

Integrating by parts and simplifying yields

dn;

. 3G(v§ T nlve) + iy ) (9.43)

where n(vo) is the value of the number density function with volume as the internal
coordinate, at the size threshold. Now, consider the moment form of the population balance
for j =0 which gives the rate of change of the total number of particles. For sticking and

growth, the moment form of eq 9.3 and eq 9.43 give

diing

e —kg iy +3G v nlvy) (9.44)

If the value of 7 in the feed is denoted, rhg’ , the solution to eq 9.44 is

g () = (17§ ks +3Gv5 n{vo ) (exp(ks F) - 1))ks" exp(—ks ) (9.45)

In Figure 9.12, experimental values of 77, are compared with those calculated from eq 9.45
for the experiments 20/7 and 18/7 using a metastable solution with a relative supersaturation,

o =2.62. The values of the sticking rate constant were determined from the run with
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Figure 9.12 Comparison of the experimental values of 7y with a metastable solution of

relative supersaturation, ¢ = 2.62 and those calculated from the model assuming no

aggregation occurs, eq 9.45, for (a) experiment 20/7 and (b) experiment 18/7.
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saturated saline, values of n(vo) were obtained from the experimental CSDs, the growth rate

was calculated using eq 4.6 and the time used was the mean residence time.

Almost all the values of iy, calculated from eq 9.45, which does not include aggregation,
are less than the experimental values. Aggregation causes the total number of crystals to
decrease, so these results show that breakage must occur in metastable as well as saturated
solutions. It is possible the breakage rate will depend on supersaturation, as in the presence
of growth, crystals will be cemented rather then loosely bound together. However, the
experimental data from the runs with saturated saline only give the dependence of the
breakage rate constant on the shear rate. Therefore in the following analysis, it is assumed
the breakage rates in saturated solutions are the same as those in saturated solutions for the

same shear rate.
9.7.2 Simultaneous growth, aggregation, sticking and breakage

Assuming a size-independent aggregation kernel, the moment forms of the population
balance for the total number and volume of crystals are given by eqs 1.20 and 1.21.
Considering volume, j=1, eq 1.21 together with the appropriate equations for the other

mechanisms gives

dry

L =0~ ks —kp Vg iy +3G(v) n(vg) + iy (9.46)

which can be integrated and re-arranged to give

In(m /g o Fiorn
ks _ In{d /) 0_/ )—kB vgﬂ:l+3G(v8/3 () +—f/3J (9.47)
t m y m
- ~ O ~
where for example, @ = L %}- + —’@ and the superscript ¢ denotes the feed.
nmy 2 H’I] nmy

Eq 9.47 is used to determine values of the sticking rate constant, kg for metastable
solutions, in which growth occurs. It was found that the values of kg in saturated and
metastable solutions were approximately equal for most operating conditions in the
crystalliser. This observation is illustrated in Figure 9.13 in which values of kg from the
runs with a metastable solution, o =2.62, are plotted against the values of kg from the runs

with a saturated solution for experiments 20/7 and 21/7.
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For crystal number, j =0, eq 1.20 together with the appropriate equations for the other

mechanisms gives

dmo =

1, . i i
== m + (kp — k) g — 2kp v iy +3G v n(vy) (9.48)

Integrating and simplifying

= 2[ tan™ (ks — kg + Bo g ) /) ~ tan™ (ks — ks + By mo)/A)]/A (9.49)

Where, A= J:(ks "'kB)2 — 6ﬂ0 Gn(Vo)V§/3 +4ﬂ0 kB ﬁ'l_] Vo

Eq 9.49 was solved numerically to find the value of the aggregation rate constant, subject to
the values of the rate constants for the other mechanisms and using the experimental partial

moments for the operating conditions in the crystalliser.
9.7.3 Results

Figure 9.14 shows the aggregation rate constant plotted against the shear rate in the
crystalliser. The appropriate shear rate is that used for breakage given by eq 9.39, as both
radial and axial variations in the shear rate will affect aggregation. It can be seen that the
aggregation rate constant is dependent on the shear rate, but does not otherwise appear to
depend on the lumen flowrate; the data from experiments with different lumen flow rates are

described by a single curve.

Figure 9.15 shows the dependence of the aggregation rate constant on the oxalate ion
concentration for values of the dilution factor of 2 and 3.5 from the experiment 18/7. Also
plotted are the data from the batch experiments reported in Chapter 4. The values of the
aggregation rate constants from the continuous experiments are at least two orders of
magnitude lower than those from the batch experiments at the same oxalate ion
concentration. Also the aggregation rate constants for the continuous experiments do not

appear to correlate with the oxalate ion concentration.
9.7.4 Discussion

Two clear results emerge from the experiments using metastable solutions: firstly, the
aggregation rate constant increases as the shear rate increases, and secondly the aggregation
rate constant does not seem to depend on the oxalate ion concentration. Both of these results

differ from those obtained from the batch experiments reported in Chapter 4.
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oxalate ion concentration in the crystalliser for experiment 18/7. Also plotted are the

aggregation rate constants from the batch experiments reported in Chapter 4.
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The dependence of the aggregation rate on shear rate

The aggregation rate constants reported in the previous section were obtained assuming a
size-independent aggregation kernel. As shown in Table 4.1, a kernel has been derived for
aggregation in laminar flow, however, the shear kernel is size-dependent. The analysis
presented in Section 9.7.2 cannot be re-worked for the shear kernel as the population
balance is not amenable to the moment transformation, however an alternative approach is
available. The aggregation rates obtained from the preceding analysis can be compared with
the aggregation rate for the shear kernel by defining an apparent size-independent

aggregation rate constant, [y 4 such that:

. 1 2

110 hear = ~ 5 Po.A M0 (9.50)
That is the rate of change of crystal number by aggregation for the shear kernel at any instant
is given by an aggregation rate constant which is size-independent. This approximation may
be used for the experimental data as from the CSDs in Figure 9.3 it can be seen the increase

in crystal size in the crystalliser is reasonably small.

It is possible to define an average diameter, the shear diameter, by

Boa=Kd’ (9.51)

This mean diameter is chosen so that the apparent size-independent aggregation rate constant
can be determined from Smoluchowski’s result, in which the appropriate shear rate is, g,

which implies:

Bos=-Ld (9.52)

6
Combining egs 9.50 and 9.51 and re-arranging gives

_ | -2m
=3 Ol.s.z__hear (9.53)
K my
The program Batch was used to simulate data from which d was calculated. The CSD of
the feed for experiment 18/7, in which my is 135.6 pl -1 was used in the simulations. For
this CSD, n'10|shear/K was found to be —89.8x10° s™!. Using these values in eq 9.53

implies the value of the shear diameter is 9.92 pum. This value can be compared with the

mean size, Z3,O, of the crystals from the experimental CSD which is 5.27 pm. These
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results suggest that if the shear kernel is used to model aggregation in laminar flow in the

crystalliser, the mean size of the crystals must be almost double the observed value.

At his point it is worth considering the assumptions made in deriving the expression for the
shear kernel. In the context of the results of the current work the most important
assumptions are that the crystals are spheres and that micro-lubrication and inter-particle
force effects can be neglected (van de Ven and Mason, 1977). From SEM micrographs of
the aggregates it is clear that they are not spherical. If the crystals are not spherical then the
collision diameter, that diameter which measures whether two crystals will collide or not,

may be underestimated.

Preliminary investigations into different methods of sizing calcium oxalate aggregates
provide some insight into this problem. A sample of a seed suspension, prepared using the
protocol in Section 9.2.3, was sized in three different ways. Firstly, using an Elzone 280
PC (which operates on the same principle as the Multisizer and reports volume equivalent
diameters) and secondly using a Galai CS-1. The Galai is able to size particles by two
different methods, either by a laser scattering technique or by video monitoring, in which
video images are analysed by computer and crystals sized from the video images. The
diameter determined from the video image is the Feret’s diameter. The mean size, Z3,0, for

the same sample of calcium oxalate seeds obtained from each method were as follows:

* Elzone 280 PC: 4.47 pm
* Galai CIS-1 (laser): 6.29 pm
» Galai CIS-1 (video): 9.93 um

Assuming each of these mean sizes is the shear diameter, an apparent size-independent

aggregation rate constant can be calculated from eq 9.52.

Figure 9.16 shows the experimental aggregation rate constants together with the aggregation
rates constants calculated from eq 9.52 using the Z3,0 mean sizes determined by the Elzone
280 PC and Galai CIS-1. It can be seen that the experimental aggregation rate constants lie
between the aggregation rate constants calculated using the volume equivalent mean size
obtained from the Elzone 280 PC and the mean Feret’s diameter obtained from the Galai
CIS-1. This finding highlights the importance that crystal shape may have on aggregation.
The shape of the crystals will influence the size of the collision diameter as well as the fluid
hydrodynamics in the region surrounding the crystal, both of which will in turn affect the

aggregation rate.
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Figure 9.16 Aggregation rates constants calculated using eq 9.52, with mean sizes
determined by different particle size analysers together with the experimental aggregation rate

constants.
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The dependence of aggregation on supersaturation

The results from the continuous experiments are at odds with those of the batch experiments.
The aggregation rates in the tubular crystalliser are at least two orders of magnitude lower
than those in the batch experiments and do not appear to correlate with the oxalate
concentration. However, these observations can be explained by comparing the conditions

in the crystalliser with those in the batch experiments.

While it is difficult to calculate the fluid shear rates in the batch experiments, they are likely
to be much higher than those in the tubular crystalliser. The difference in the magnitude of
the fluid shear rates can be used to explain the behaviour of the aggregation rate constant.
Fluid shear affects aggregation in two ways,; firstly, as the shear rate increases the number of
collisions between crystals increases which promotes aggregation. Secondly, as the shear
rate increases, the forces acting to disrupt aggregates prior to cementing, increase, which

might decrease the aggregation rate.

At low shear rates the effect on the aggregation rate of the increase in the frequency of
collisions will be greater than that of the increase in the forces acting to disrupt aggregates.
Particularly in supersaturated solutions where crystal growth acts to “cement” crystals
together. As the shear rate in the tubular crystalliser is lower than in the batch system, the
collision frequency and hence the aggregation rate will also be lower. Also as the shear rate
in the crystalliser increases the collision frequency and aggregation rate will also increase,

which is consistent with the experimental results shown in Figure 9.14.

The analysis presented in Chapter 5 suggests the aggregation rate depends on the oxalate ion
concentration as a consequence of the mechanism for aggregation. Once two crystals
collide, if a stable aggregate is to form, they must be in contact long enough for ions to
diffuse to and react at the point of contact. Further, the results in Chapter 5 suggest

diffusion to the point of contact is limiting in this process.

By contrast in the crystalliser collisions are nearly always successful in forming an
aggregate. The shear forces are not strong enough to disrupt the aggregates during the

cementing process.
9.8 THE EFFECT OF INCLINATION

The effect of the angle of inclination of the crystalliser can be seen from Figure 9.17 (a)
which shows the variation of the parameter fy for experiments 18/7, 29/7 and 26/7 in

which the crystalliser was inclined by 0°,2.5° and 5° respectively. It can be seen that as the

— 253 —



0.9

| PR
m} A
0.8 — . N
= o O
0.7 - . R
‘*i 0.6 - ) o Expt18/7,6=0
. o Expt29/7,0= 2.5°
0.5
s Expt26/7,6=5
0.4
0.3 I | ] I
1.0 1.5 2.0 2.5 3.0 3.5
ol
(@)
7.0 10*
Expt 18/7,8 =0’
6.0 10 - ]
. "R Expt 29/7,0 = 2.5
4 AN
R 5.0 10* - K U Vs Expt 26/7,0 = 5°
= g %
S 4.0 10* A
5 3.0 10% - ‘.
> // TN
2.0 10* - Y Yoo
/ T E
4 ..‘ // h',. A N\
1.0 10* e S
00100 P e
2 4 6 8 10 12
Size (um)

(b)

Figure 9.17 The effect of inclination of the crystalliser from vertical on (a) the parameter fv
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angle of inclination increases the fraction of crystalline material sticking to the lumen
increases for all operating conditions. This observation is confirmed by the CSDs, by
volume, for the same experiments with o =1, shown in Figure 9.17 (b). It can be seen that
as the angle of inclination increases a higher fraction of the larger crystals is retained in the
crystalliser. Also it can be seen in Figure 9.17 (b) that as the angle of inclination increases
the fraction of larger crystals lost increases, suggesting that sticking may be size-dependent

under these conditions.

The increase in the loss of crystal mass can be explained by considering the effects of
settling. With the crystalliser inclined from the vertical the lateral component of the settling
velocity will carry crystals towards the walls of the lumen. The importance of the angle of
inclination can be investigated by considering the analysis of gravitational settling in a
horizontal pipe with laminar flow of Pich (1972). This author derives an expression for the
fraction of material lost by considering the appropriate form of the particle continuity
equation. For a horizontal tube of length, L, and radius, R, with fluid flowing at an average

velocity, & , containing particles with a Stoke’s settling velocity, v, the fraction of material

lost, 77, is:
1/2 12
n= 3[23(1- 52/3)/ -5 (1- 52/3)/ +sin”! (S1/3)] (9.54)
19
where S= 3vj L
8uR

Here two modifications must be made to the expression for the parameter, S. Firstly, the
crystalliser is inclined to the vertical, not horizontal, and secondly the average fluid velocity
in the lumen is dependent on the axial position due to fluid injection from the jacket. With
the appropriate component of the settling velocity and using eq 7.12 for the fluid velocity,

the expression for S is:

z(1+(a-1)x/L) 8RE (a-1) (9.55)

S:j‘ 3v,sinOdx 3y, Lsin@ Ino
8R

0
Figure 9.18 shows the experimental values of the parameter fy together with those
predicted by eq 9.54 (fy is equivalent to 1—1). In calculating the value of fy from eq
9.54, the Z3,0 mean size was used to calculate the Stoke’s settling velocity. It can be seen
that the data from the experiments fall between the two theoretical curves. An explanation

for this might be that only the inclination of the crystalliser as a whole can be measured.
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Figure 9.18 Experimental values of the parameter fy and those calculated from the analysis

of Pich (1972), eq 9.54, for different crystalliser inclinations.

— 256 —



Close examination reveals that each of the fibres follows a slightly “kinked” path and so will
have sections that are not quite aligned with the axis of the jacket. It is not possible to
estimate the angle of inclination of all parts of the fibres and so the amount of material lost is

underestimated by eq 9.54.

The size dependence of sticking can also be investigated. Rather than using the ratio of the
total volume of crystals in the fluid at the outlet to that at the inlet, the volume of crystals in
each size interval of the CSD, fy ;, is considered. The parameter, S is proportional to the
mean crystal size squared, as the crystals in each size interval have a different Stoke’s
settling velocity. In Figure 9.19 (a) the parameter fy ; is plotted against S for the CSD for
o = 1 from the experiment 26/7 in which the crystalliser inclination was 5°. The effects of
breakage can be seen at small values of S, and therefore small crystal sizes, as the value of
fv,i is greater than 1. At larger values of S there is reasonable agreement between the
values of fy ; calculated from eq 9.54 and the experimental values. However in general eq
9.54 does not describe the size dependence of the sticking. This is confirmed in Figure 9.19
(b) in which the data for o =3 from the same experiment are considered. Again the effects
of breakage can be seen at small crystal sizes, and at larger sizes eq 9.54 does not describe

the size dependence of sticking.

As the sticking mechanism is size-dependent, but cannot be described by eq 9.54, no further
attempt is made to determine the sticking, breakage and aggregation rates using the analysis
in Section 9.7.2. However, the CSDs for the runs with metastable solution exhibit the same
behaviour as the runs with saturated solution displayed in Figure 9.17 (b), suggesting that
even small deviations from the vertical have a significant effect on the retention of large

crystals in the crystalliser.
9.9 STONE FORMATION

The findings of the experiments using the tubular crystalliser have important implications for
stone formation. Above all they underline the importance of the geometry of the kidney and

the effect it has on fluid hydrodynamics.

The results of Figures 9.14 and 9.15 show that under conditions of constant
supersaturation, as might be found in the kidney (Sheehan and Nancollas, 1980), the shear
rate may be as, or more important as a risk factor than supersaturation. Further the results of
Figure 9.15 suggest that aggregation rates determined using in vitro models such as batch

systems are likely to be much higher than those found in the kidney. A tubular crystalliser
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Figure 9.19 Comparison of the parameter, fv.;» calculated from the analysis of Pich

(1972), eq 9.54, with the experimental values for experiment 26/7 for (a) o =1 and (b)
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such as that used in the current work may provide more relevant information about

aggregation in hydrodynamic conditions similar to those in the kidney.

Finally, the results of Section 9.8 suggest that in the kidney tubules calculii must spend
nearly all their time in contact with the tube walls and not free in the stream of flowing
liquid. Thus, while possibly for the wrong reasons, the conclusions of Finlayson and Reid
(1978), which were called into question in Chapter 8 are correct, it may be a fixed rather

than a free particle mechanism that leads to stone formation.

The importance of crystals becoming attached to the walls of the lumen is illustrated in
Figure 9.20, which is an SEM micrograph of a crystal aggregate rinsed from the crystalliser
after a run using metastable solution as described in Section 9.3.2. The crystal shown is
highly aggregated and much larger than the crystals fed to the crystalliser, in fact it is
approximately one quarter of the diameter of the lumen. It is possible to envisage a situation
where if the crystalliser was run for a long period of time, such a crystal could block the

lumen; an in vitro stone formation event.
9.10 CONCLUSIONS

In this chapter the aggregation of calcium oxalate in a continuous system, the tubular

crystalliser described in Chapter 6 has been studied.

In addition to growth and aggregation, sticking and breakage also occur in the crystalliser in
both saturated and supersaturated solutions. The results of experiments conducted using

solutions saturated with respect to calcium oxalate suggest:

« Sticking is irreversible, size-independent, and the sticking rate is inversely

proportional to the fluid shear rate in the crystalliser.

« When breakage occurs crystals of any size may be formed, and the breakage rate is

directly proportional to the shear rate in the crystalliser.

Using these formulations for sticking and breakage and eq 4.6 to describe the growth rate,
the dependence of the aggregation rate on supersaturation and shear rate in the crystalliser

were investigated. It was found that:

« The aggregation rates in the crystalliser were much lower than those in the batch

experiments at the same relative supersaturation.
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Figure 9.20 SEM micrograph of a calcium oxalate aggregate rinsed from the tubes of the

crystalliser after a run using a metastable solution.
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» The aggregation rate increases as the shear rate in the crystalliser increases and is

relatively insensitive to the oxalate ion concentration.

These two observations, which are in contrast to the behaviour of the aggregation rate in a

batch system, can be explained by the difference in the shear rate between the two systems.

Finally, it is shown that even small inclinations of the crystalliser from the vertical increases

the fraction of crystalline material that sticks to the lumen in the crystalliser.

The findings of this chapter suggest that the tubular crystalliser may be a useful in vitro
experimental system for studying factors that affect calcium oxalate aggregation under

hydrodynamic conditions similar to those found in the kidney.
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Chapter 10:

CONCLUSIONS AND RECOMMENDATIONS

In this chapter an overview of the findings of this thesis are given, as well as

some recommendations for future work.

10.1 THE CRYSTALLISATION OF CALCIUM OXALATE

This thesis has focused on the simultaneous growth and aggregation of calcium oxalate
mono-hydrate in metastable saline solutions. The mechanism and kinetics of growth and
particularly aggregation have been investigated in batch and continuous systems. The main
reason for interest in the crystallisation of calcium oxalate is that it is the principal inorganic
constituent of human kidney stones. More importance is placed on aggregation as despite
being the only mechanism that can cause crystals to increase in size rapidly enough to block

the tubules of the kidney it is probably the least well understood.
10.2 WORK PRESENTED IN THIS THESIS

The work in this thesis may be divided into four parts: (i) an investigation of states of
supersaturation of calcium oxalate in aqueous solutions (Chapter 2), (ii) batch crystallisation
experiments and analysis (Chapters 3 and 4), (iii) an investigation of the aggregation
mechanism for calcium oxalate (Chapter 5) and (iv) the development and characterisation of
a novel in vitro experimental system, and the continuous crystallisation of calcium oxalate in

this system (Chapters 6 to 9).
10.2.1 Supersaturation

Supersaturation is a key variable in any precipitation reaction and despite an extensive
Jiterature on the crystallisation of calcium oxalate there is no generally accepted definition of
supersaturation. Three physico-chemical factors complicate the definition and calculation of
supersaturation, namely, the reversibility of the precipitation process, two ionic species

reacting to form a crystal and the formation of ion complexes.

In Chapter 2, a simple method is developed for calculating relative supersaturation in terms

of free ion concentrations from total ion concentrations. This method solves the mass action
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equations for complex ion formation together with mass conservation equations for each ion
in solution. It is demonstrated that this simple method, is as accurate, but much easier to use

than other more complicated models that exist in the literature, such as EQUILS89d.
10.2.2 Batch crystallisation

Two factors make batch crystallisation appealing; firstly there are well established
experimental protocols and secondly a numerical method has been developed to determine

growth and aggregation rates from experimental data.

A seeded technique, based on the protocol of Ryall et al. (1981b), was used to investigate
the effect of agitation and supersaturation on growth and aggregation. A wide range of
supersaturation was considered by increasing the oxalate ion concentration while keeping the
calcium ion concentration constant. The full details of the metastable solutions used are

given in Table 3.3.

The program Batch, which uses the discretised population balance of Hounslow (1990), to
extract the growth and aggregation rates from changes in crystal size distributions with time

was used to analyse the experimental data. It was found that:

o The growth rate is well described by McCabe’s AL law, in which growth is size-

independent.

« The data from some 35 experiments, over 350 different growth rates, conducted at
different agitation rates and using metastable solutions with different calcium to

oxalate ion ratios are all described by the following equation:

G =(0.0767+0.0012)(S —1)°

where the growth rate is measured in m/min and the relative supersaturation, S is
givenby S = ,}AP/KSP .

» Aggregation is well described by a size-independent aggregation kernel.

« The aggregation rate constant is dependent on the agitation rate; the aggregation rate

decreases as the agitation rate increases.

o The aggregation rate is found to correlate with the oxalate ion concentration rather

than supersaturation.
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The most interesting of these points concern the description of aggregation. Firstly, the
decrease in the rate of aggregation as supersaturation decreases is much greater than
conventional electrical double-layer (DLVO) theory would predict, and secondly the

dependence on the oxalate ion concentration is surprising.
10.2.3 The aggregation mechanism

In Chapter 5, the experimental resuits of an investigation conducted with saturated and
supersaturated solutions and different types and rates of agitation are used to develop a

mechanism for calcium oxalate aggregation.

A two-stage mechanism is proposed to account for the experimental observations: in the
first, reversible stage, crystals collide and form weak aggregates held together by the forces
described by DLVO theory. In the second, irreversible stage, the loose aggregates are
cemented together by the deposition of new material. The second stage can only occur in

supersaturated solutions, while the first may occur in any solution.

Further, a model is developed for aggregation in supersaturated solutions. It is proposed
that in order for crystals to aggregate irreversibly, solute must first diffuse to the point where
the crystals are in contact, and then deposit on the touching surfaces in order to “cement” the
crystals together. A basic analysis of the diffusion-cementing process suggests that the
experimentally observed dependence of the aggregation rate constant on the oxalate ion
concentration and activity product reported in Chapter 4, are predicted by the model. This
analysis suggests that diffusion of the solute ions to the cementing site is the rate determining

step.
10.2.4 The tubular crystalliser

In Chapter 6 a review of in vitro experimental systems for studying kidney stone formation
is presented. It is observed that none of the commonly used experimental systems take into

account the tubular geometry of the kidney and the effect it might have on aggregation.

A novel tubular crystalliser is described as is its use in a study of the growth and aggregation

of calcium oxalate in laminar flow in long, thin tubes, similar to the tubules in the kidney.

The solute residence time distribution.

Chapter 7 reports an investigation into the solute residence time distribution (RTD) in the
crystalliser. A diffusion-advection model is proposed to explain the solute RTD which is not

described by the RTD for Poiseuille flow. A moment transform analysis is used to evaluate
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the mean and standard deviation of the RTD. It was found that provided appropriate values
of the solute diffusivity and crystalliser cross-sectional area are used the results from the

model are in agreement with those from the experiments.

The particle residence time distribution
The effect of the dilution factor (defined in Section 6.3.5), the lumen flowrate, particle size
and crystalliser geometry on the particle RTD was investigated using pulse-input response
tests reported in Chapter 8. It was found that the RTD is independent of the particle size,
lumen flowrate and the geometry of the crystalliser, but depends on the dilution factor. The
RTDs are well described by a model in which it is assumed that the particles maintain a

constant radial position in the tubes as they pass through the crystalliser.

Step-change tests conducted imply that mass of particles that leave the crystalliser is less than
that fed to it. This apparent loss of mass can be explained if the particles are sticking to the
walls of the lumen. It also explains how the RTD may be described by a model which is

physically implausible.
10.2.5 Continuous crystallisation

In Chapter 9 the growth and aggregation of calcium oxalate in a continuous system, the
tubular crystalliser, is investigated. Calcium oxalate seeds were fed to the crystalliser
together with either a saline solution, saturated with respect to calcium oxalate, or a
metastable solution. The shear rate in the crystalliser was varied by using different lumen
and jacket flowrates. Solutions with different calcium to oxalate ion ratios were used to
study the effect of supersaturation. Full details of the conditions in each of the experiments

are given in Tables 9.1 and 9.2.

Preliminary experiments revealed that the calcium oxalate crystals were sticking to the walls
of the lumen in the crystalliser, and that breakage was also occurring. The experiments
using saturated saline were used to investigate sticking and breakage. A moment form of the

population balance was used to determine the sticking and breakage rates. It was found that:

« Sticking is well described by a size-independent formulation, and is a first order,

irreversible process.

« The sticking rate constant is inversely proportional to the fluid shear rate in the

crystalliser.
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« Breakage is modelled by assuming that when breakage occurs crystals of any size

may be formed.

« The breakage rate constant is directly proportional to the shear rate in the

crystalliser.

The simultaneous growth, aggregation, sticking and breakage of calcium oxalate in the
crystalliser was also analysed using a moment form of the population balance. The growth
rate law determined in Chapter 4 was used to describe growth and the formulations
mentioned above were used for sticking and breakage. Assuming a size-independent

aggregation kernel it was found that:

« The aggregation rates in the crystalliser were at least two orders of magnitude

lower than those in the batch system at the same supersaturation.
« The aggregation rate increased as the shear rate in the crystalliser increased.
« The aggregation rate did not depend strongly on the oxalate ion concentration.

These observations, which contrast with the results from the batch experiments reported in
Chapter 4, can be explained by the aggregation mechanism proposed in Chapter 5. These
findings highlight the effect of hydrodynamic conditions on aggregation. An analysis of the
results using an aggregation kernel of the form of the shear kernel suggests that crystal shape

may also have a significant effect on aggregation.

Finally, it is shown that even small inclinations of the crystalliser from the vertical increases
the fraction of crystals that stick to the walls of the lumen in the crystalliser. This is
significant for stone formation as it implies that in the kidney most crystals must spend

nearly all their time in contact with the walls of the tubules.

These findings show that the tubular crystalliser may be a useful in vitro experimental
system for studying the factors that affect calcium oxalate aggregation under conditions

similar to those in the kidney.
10.3 RECOMMENDATIONS FOR FUTURE WORK

There are a number of opportunities for future work that arise from the findings of this
thesis, in the areas of batch crystallisation, the aggregation mechanism and developing in

vitro experimental systems for studying stone formation.
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10.3.1 Batch crystallisation

Most studies of growth and aggregation in a batch system in the literature use some empirical
parameter to measure growth and aggregation, rather than obtaining the rates of both
mechanisms. This has led to some confusion in the literature as it is often difficult to
compare these parameters. If the true rates of growth and aggregation are obtained then it is
much easier to compare results from different experimental systems. The program Batch is a

useful tool for extracting growth and aggregation rates from experimental data.

The batch experimental technique described in Chapter 3 could be used to further investigate
the growth and aggregation of calcium oxalate. For example, all the experiments in this
thesis used metastable solutions in which calcium was in excess. Similar experiments could

be done with metastable solutions in which oxalate is in excess.

In the current work it was found that the aggregation rate was dependent on the oxalate ion
concentration, is this simply because it is the limiting reactant or is there some other reason ?
Experiments such as those described above could answer this question, if the aggregation
rate is dependent on the limiting reactant it will now depend on the calcium ion

concentration.

Generally, while the results from this work expand the region of supersaturation over which
growth and aggregation rates have been studied the use of solutions with different ratios of

reactants and supersaturation remain an avenue for future work.
10.3.2 The aggregation mechanism

A model has been proposed for the aggregation of calcium oxalate in supersaturated
solutions which assumes that for crystals to aggregate, firstly solute must diffuse to the point
of contact and then deposit on the touching surface to cement the crystals together. A
number of assumptions were made in this model, for example that the pore formed when the
crystals are in contact is a right cylinder and also the effect of precipitation on the size of the

pore was neglected.

The effect of a different geometry could be examined, for example the pore formed when
crystals are in contact could be described as a cone. Also the effect of precipitation on the
size of the pore could be studied. This will decrease the length and width of the pore, and
will make the mathematical analysis of the diffusion and reaction processes more

complicated, but will make the model more realistic.
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Finally, the preliminary experiments mentioned in Chapter 9 using different particle size
analysers to size aggregates of calcium oxalate crystals suggest that crystal shape may be an
important factor in aggregation. It was shown in Chapter 9 that by “pre-growing” seed
crystals it is possible to alter the size and presumably the shape of the aggregates. Seed

crystals of different sizes could be used to investigate the effect of shape on aggregation.
10.3.3 In vitro experimental systems

The results from the experiments reported in Chapter 9 highlight the difference between in
vitro experimental models. Using metastable solutions with the same relative
supersaturation, the aggregation rate in the tubular crystalliser is some two orders of
magnitude lower than that in the batch experiments. The tubular crystalliser is attractive as
an in vitro experimental system as it has a tubular geometry, hydrodynamics similar to those
in the kidney (and thus similar shear rates and RTDs), and can be operated at almost constant

supersaturation.

Experiments similar to those described in Chapter 9, but over an extended range of shear
rates and supersaturation could be conducted. This would lead to a more complete
understanding of the dependence of aggregation on these parameters under conditions

similar to those in the kidney.

Finally, other mechanisms and phenomena thought to be important in stone formation could
be studied. For example, crystals could be nucleated in the crystalliser, the effect of
different inhibitors could be quantified, and the crystalliser could also be operated with an
“artificial” urine, an inorganic solution with many of the ions present in urine, or with

human urine.
10.4 A CONCLUDING COMMENT
1 conclude this thesis by describing how this work proceeded and why it is useful.

The work commenced as a study of the growth and aggregation of calcium oxalate in a new
in vitro experimental system, the tubular crystalliser. Before commencing the crystallisation
experiments in the crystalliser the batch experiments were conducted with the aim of
generating data to compare with those to be obtained from the crystalliser. However, the
initial batch experiments revealed the very interesting aggregation behaviour of calcium
oxalate crystals documented in this thesis. Based on the success of these experiments a
more comprehensive experimental program was performed with the aim of investigating the

mechanism by which aggregation occurs. The final crystallisation experiments in the
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crystalliser were complicated by the presence of sticking and breakage. However, these
experiments still produce interesting and useful results, which can be compared with those

from the batch system.

As mentioned elsewhere in this thesis, the size enlargement of calcium oxalate crystals by
growth and aggregation has been widely studied as an important factor in human kidney
stone formation. However, scant attention has been paid to understanding the mechanisms
of growth and particularly aggregation. Similarly few studies have reported the kinetics of

these mechanisms.

The main virtue of this study is that it investigates the mechanisms and reports the kinetics of
the growth and aggregation of calcium oxalate in metastable saline solutions over a wide

range of supersaturation and shear rates.
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Appendix 1:

ROMAN

eq

a a

Ca2+ ’ 0x2‘

a,b,c
a,b
ai,b-

ar.by

a*,b*

a0 QO > x W %

0

NOMENCLATURE

Surface area

Dimensionless oxalate ion concentration at equilibrium
Activities of calcium and oxalate ions

Hamaker constant

Cross-sectional area

Surface area of cementing site

Tube cross-sectional area

Total crystal surface area

Activity product

Dimensionless activity product, eq 5.28

Constants in eq 2.30

Reactant concentrations, eq 5.5

Initial bulk oxalate and calcium concentrations
Reactant concentrations at the cementing site, eq 5.9
Dimensionless oxalate and calcium concentrations, egs 5.29 and 5.30
Birth rate

Moment form of the birth rate, eq 1.11

Source function

Dimensionless concentration

Mass concentration of Drach et al. (1978),eq 2.4
Solute concentration, eq 7.25

Calcium ion concentration, eq 4.14

Mass concentration at equilibrium of Drach et al. (1978), eq 2.4
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= x x N~

Calcium ion concentration at equilibrium, eq 4.14
Solute concentration as a function of time

Coefficient of variation

Diameter

Shear diameter, eq 9.52

Tube diameter

Death rate

Moment form of the death rate

Diffusivity

Effective diffusivity, eq 7.37

Charge of an electron

Normalised differential residence time distribution curve
Fractions of total calcium and oxalate concentrations present as free ions
Fraction of crystals by number or volume that pass through the crystalliser
Cumulative residence time distribution curve

Drag force

Force due to wall shear stress

Exponent of growth rate law, eq 4. 14

Growth rate, frequently the linear rate of growth

Gibb’s free energy, eq 5.45

Volume rate of growth

Separation between particles, eq 5.1

Ratio of the upper limit of adjacent size intervals
Degree of inhibition, eq 1.23

Ionic strength

Total number of size intervals, eq 3.16

Flux of reactant

Integereq 1.9

Boltzmann’s constant

A constant
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kg Breakage rate constant

kg Sticking rate constant

k* Dimensionless cementing rate constant, eq 5.33

Kcaox Association constant for the complex ion, CaOx

K NaOx™ Association constant for the complex ion, NaOx™

K;, Association constant

K Solubility product

K;p Solubility product in terms of total concentrations, eq 541

k; kg, k, Shape factors

k,k’,lE,IG’ Constants

kagg K, ki ko Constants

k. kn.kG Constants

K.K, Constants

L Particle size

L Axial length

L Laplace transform

L, Pore length

Ly Upper size limit of channel X

Lysg Upper size limit of last channel in a size range

m; j’h moment

m; Rate of change of the j” moment

m; Partial j* moment, eq 9.9

Mr Molecular weight

My Solids concentration

n Population number density function

N Number of particles

N Supersaturation of Meyer and Smith (1975 a and b) and Nancollas and
Gardner (1974), eqs 2.6, 2.7 and 2.9

N Agitation rate

N Flux of material, eq 7.25
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Number of particles in the i** size interval

Total number of particles, eq 4.14

Avogadro’s number

Total number of particles

Number of lumen, eq 7.20

Total number of particles in a sample analysed by the Multisizer, eq 8.3
Rate of change of particle number in the first size interval

Breakage probability density function

Volumetric flowrate

Volumetric flowrate of the seed suspension

Volumetric flowrate per lumen at the inlet of the tubular crystalliser, eq
7.21

Radial position

Particle radius

Cementing rate

Dimensionless cementing rates, egs 5.16 and 5.22
Rate of complex ion formation, eq 5.38

Tube radius

Experimental result, eq 1.23

Reynolds number

Internal tube radius, eq 7.27

External tube radius, eq 7.27

Supersaturation of Drach et al. (1978),eq 2.4
Laplace domain variable

Supersaturation of DeLong and Briedis (1985), eq 2.10
Relative supersaturation, defined in eq 4.5
Parameter, eq 9.54

Supersaturation of Hounslow (1990), eq 2.14
Sum of square error, as defined in eq 4.1

Time
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r Mean residence time

t* Critical time, 7.41

t, Break-through time, eq 9.23

tiatan Time delays, eq 7.34

ty Time at the end of the k™ sample, eq 8.4

T Temperature

T a2t T o Total concentration of calcium and oxalate ions

u Velocity vectors of phase space, eq 1.8

u Axial velocity

Uy Centre-line (maximum) axial velocity

7 i Average axial velocity per lumen at the inlet of the tubular crystalliser, eq

7.39

U Parameter, eq 3.16
v Particle volume

% Radial velocity

Vo Maximum radial velocity

Vo Volume of smallest particle counted by the Multisizer
Vs Stoke’s settling velocity

Vv Volume

Va Attractive potential energy, eq 5.1

Vi Repulsive potential energy, eq 5.2

Vr Total particle volume

Vrum Total particle volume in a sample analysed by the Multisizer
w Solids concentration

X Size

b Axial position

x Dimensionless reactant concentration, eq 5.13

x Mole fraction, eq 7.25

X Mean of a variable x

X Channel number for the Multisizer size channels
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X Parameter, eq A8.26

y Dimensionless reactant concentration, eq 5.14
Y Parameter, defined in eq 8.12
Z Length

GREEK LETTERS

o Degree of reaction, eq 4.14

a Dilution factor, defined in eq 6.1

o’ Modified dilution factor, defined in eq 8.2
Aggregation kernel

Bo Size-independent part of the aggregation kernel

Bo.a Apparent size-independent aggregation rate constant, eq 9.52

Y Surface energy

Y, Activity coefficient

71; Average shear rate for breakage, eq 9.34

Y Average shear rate for breakage, eq 9.38

T Average shear rate for sticking, eq 9.33

Oum Constant, eq 7.37

AC Supersaturation of Hounslow et al. (1988)

AG Change in Gibb’s free energy

An Number of moles deposited

£ Particle volume

£ Di-electric constant

£ Fraction of length at the ends of the tubular crystalliser, eq 8.19

£ Uncertainty in a variable, eq A3.3

4 Reactant ratio, eq 5.12

n Fluid viscosity

n Dimensionless radial position, eq 8.6

n Fraction of material lost, eq 9.54

0 Dimensionless time, defined in eq 7.6

0 Dimensionless mean residence time
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T E ®'BE O > A

Wy, Wy, 03

Parameter, eqs 2.24 to 2.27

Parameter, eq 5.3

Particle length

Parameter, eq 9.50

Chemical potential

Fluid viscosity

Density

Solids density

Molar density

Relative supersaturation

Population standard deviation of a variable x
Standard deviation in estimates of the mean of a variable x
Wall shear stress

Dimensionless modulus, defined in eq 5.11
Dimensionless time, eq 8.25

Dimensionless oxalate concentration, eq 5.20
Dimensionless activity product, eq 5.21
Parameters, egs 3.4 to 3.7

Stream function, eq 8.6

Surface Potential

Constant, eqs A8.15 and A8.21
Dimensionless stream function, eq 8.8

Constants, egs 7.31 and 7.32

SUPERSCRIPTS AND SUBSCRIPTS

ags

A

B
Ca®t

CaOx

Aggregation
Component A
Component B
Calcium ion

Calcium oxalate complex ion
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cont Control conditions, eq 1.23

cont Continuous operation, eq 9.21

eq Equilibrium conditions

expt Experimental values

ext External coordinates of phase space
g Growth

i Size interval

int Internal coordinates of phase space
J An integer, for example j * moment, or j'h derivative
J Jacket

L Lumen

max Maximum

NaOx™ Sodium oxalate complex ion

Ox*~ Oxalate ion

pred Predicted values

t Time, ¢

test Test conditions

0 Initial or inlet conditions

] Relating to the feed
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Appendix 3.

SOLUBILITY PRODUCT EXPERIMENTAL DATA

In Section 2.5.2 the results from batch crystallisation experiments were used to determine a
value for the solubility product. In this appendix the data from these experiments are
presented. Also the statistical method used to compare the experimental value of the

solubility product with the one from EQUIL89d is explained.
A3.1 EXPERIMENTAL DATA
The experimental data are presented in Table A3.1.

Table A3.1 Crystal volume at equilibrium for solubility product experiments.

Experiment Mean crystal volume Standard deviation
(Lm3/500p1) (Lm>/500u1)

25/6 8.95x10° 1.97x10°
28/6 8.42x10° 1.30x10°
29/6 8.55x10° 3.25x10°
30/6 8.62x10° 1.79x10

1/7 8.55x10° 1.57x10°
11/7 8.76x10° 1.66x10

The data reported are the mean total crystal volume from samples analysed using the
Multisizer. There were a number of samples analysed from each flask in each experiment,
however only the mean and standard deviation of all the samples are given. These were

calculated using

x:i"_ ax:\] lli(x,.—x)2

n=1liz

where x is the crystal volume in a sample and n is the number of samples analysed.
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A3.2 CALCULATING THE SOLUBILITY PRODUCT

The solubility product as a function of the total calcium and oxalate concentrations is given

by eq 2.33, re-produced here as

7
7+ KCanKNuOt_ Ca 2+T
x2_ ) + KCan( TNaJr yi i KNan_ )

K. =
PVIK, o (T

Ca2+

(A3.1)

The computer package Microsoft Excel was used to produce a spreadsheet to calculate the
values of the solubility product from eq A3.1. The total calcium and oxalate concentrations
at equilibrium were determined by a mass balance. As described in Section 3.5.2, the total

calcium and oxalate concentrations at any time are

(P Tga2+ ~An and T, = Tgxz_ - An (A3.2a and b)

where the superscript, 0, refers to initial conditions and An is the number of moles of
calcium oxalate deposited. The mass of the crystals in the samples at equilibrium can be
calculated from the CSDs using eq 3.1. As the solids concentration of the seeds added at the
start of the experiment is known (see Appendix 5) the mass of solid deposited can be

determined, from which An can be evaluated.
A3.3 UNCERTAINTY IN THE SOLUBILITY PRODUCT

As the solubility product is not a product or a sum of the total concentrations, its standard
deviation cannot be calculated using the methods outlined in Appendix 8. Instead an

analysis based on a first order Taylor series for the solubility product was used.

The total concentrations may be written as

T+ = T o TE T, = T o2 TE (A3.3a and b)

where T 2+ and T 2- are the mean total concentrations and £ is an uncertainty. For both
concentrations the uncertainty may be expressed as a standard deviation. By the central limit
theorem the standard deviation in estimates of the mean, 03 and the population standard

deviation, o, fora variable, Z, are related by
(03
. —ﬁ (A3.4)
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where n is the population size. For the total concentrations

(o} O
TCa2+ TOXZ_

e=—f—=—1p (A3.5)

Substituting eqs A3.3a and b into A3.1 gives K, asa function of the uncertainty in the total

concentrations. The first order Taylor series for K, about € =0 is

oKy,
Kp(e)= Ky +—=F| ¢ (A3.6)

e=0

Now KSP(O) is the value of K, from eq A3.1, evaluated with the mean total
concentrations. The mean total concentrations can be evaluated from egs A3.2a and b when
£ =0. Thus the uncertainty in K, is given by the second term on the right hand side of eq

A3.6. As the uncertainty may be written as a standard deviation

| T
Ko = oe | £=0 \n

(A3.7)

A3.4 A STATISTICAL COMPARISON

The mean experimental value for the solubility product was compared with the value used by
the program EQUIL89d. To test the mean, g, of a normally distributed variable with an

unknown variance, 0'2, the z-distribution is used.

In this case the normally distributed variable is the experimental value of the solubility
product. A two sided test at the 5% significance level was used to test the hypothesis that
the experimental mean and the value from EQUIL89d, 2.24x107, are the same against the

alternative that they are different. If the hypothesis is true, the random variable, T, where

K, —2.24x 107

GK sp

has a z-distribution with n—1= 5 degrees of freedom (as there were six experiments). From

Tables of the t-distribution, for example Kreyszig (1988), the critical value of T'is 2.57.

From Table 2.2 the mean experimental value of K, is 2.01x10™. The standard deviation
of Ksp is determined from eq A3.7. As the derivative of Ksp with respect to €, at €=0, is

quite complicated it was evaluated using the mathematical package, Mathematica. A value of
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4.52x10’5 was obtained. From Table 2.2 the standard deviation in the total calcium

concentration is 2.31x10° M. The value of Ok,, is

5.65%x107°

aKs | T 2+
PR, . o’ _ 452107 x =1.04x101°
Ko ™ 9e £=0 \n V6
and the value of T'is
T -2.24x10°| |2.01x107° -2.24x10~°
T =|=%2 L ' =2.21

1.04x1071°

ox,,

This value is less than the critical value and the hypothesis that the values of the solubility

product are the same is accepted.
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Appendix 4:

EXPERIMENTAL ANALYSIS PROCEDURES

A4.1 PARTICLE SIZE ANALYSIS

Nearly all the crystal size distributions (CSDs) reported in this thesis were obtained using a
Coulter Multisizer 11, the features that make this unit attractive are its high resolution, ability
to determine the CSD by number and volume, and ease and speed of operation. Some CSDs
reported in Chapter 5 were obtained using an Elzone 280 PC, however this unit works on

the same principal as the Multisizer.

To obtain meaningful data from the Multisizer care must be taken to ensure it is operated
correctly. For example, electrical noise, impure electrolyte, high levels of coincidence and
many other factors may cause the Multisizer to give a CSD that is not representative of the
sample analysed. Complete knowledge of the operation of the Multisizer comes only from
experience, the purpose of this section is to outline some of the more important

considerations.

Orifice tube selection and maintenance
An orifice tube can measure a size range from approximately 1 to 60% of the orifice
diameter. The actual size range depends on the set-up chosen as outlined below. In the
current work the size range of interest was 2 to 32 pm, which was easily be covered by a

single 70 pm orifice.

During operation the orifice must be kept very clean to obtain the most accurate results.
After use the orifice and sampling system of the Multisizer were thoroughly rinsed with
filtered (0.22 pm) 0.15 M saline. Periodically the orifice was cleaned by soaking in

concentrated hydrochloric acid.

Size span
The number and progression type, arithmetic or geometric, of the channels and the size

range spanned are determined by the set-up chosen. The size range spanned is determined
by setting the aperture current and gain on the electrodes in the orifice. While various
combinations of aperture current and gain will give a desired size range, it is recommended

that the current should not be too high, as this can cause electrical noise.
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Calibration
Each orifice must be calibrated before it can be used to determine CSDs. The calibration
procedure is well documented in the Multisizer Users manual, and makes use of latex
particles of a known size with a narrow distribution. Calibrations were checked using latex

of a size different to that used for calibration.

Electrolyte
The main function of the electrolyte is to provide good electrical conductivity. The solutions

used in the current work were all basically 0.15 M saline solutions. A saline solution of this
jonic strength is a satisfactory electrolyte according to the Multisizer Users manual. The
electrolyte was prepared using analytical grade chemicals and distilled water only. As

previously mentioned the electrolyte was 0.22 um filtered before use.

Noise

There are three main sources of noise in the Multisizer. The first is due to external factors,
such as dust and other contaminants in the electrolyte, loose electrical connections, or the
presence of air bubbles. The second source is due to the internal electronics, and the final is
due to external electro-magnetic sources, such as other instruments. All these sources were
negligible in the current work as verified from background counts. An electrolyte that has
been filtered many times will still register counts on the Multisizer, which arise from
contaminants and electrical noise. In the current work, background counts were regularly

taken and were always low and reproducible.

Coincidence

If the concentration of particles in a sample is too high, two or more particles may pass
through the sensing zone in the orifice at once and be counted as one large particle. The
Multisizer has a coincidence correction feature, which can be used when the count is by
sample volume. This feature was utilised, and all counts taken were of a volume of 500 pl.
However, the Multisizer Users manual recommends that coincidence correction is only valid
at low levels of coincidence. The level of coincidence in the samples analyzed in the current

work were below the acceptable level.
A4.2 ATOMIC ABSORPTION SPECTROSCOPY

Calcium ion concentration was determined by atomic absorption spectroscopy, this
technique utilises the characteristic absorption at 422.7 nm of calcium jons in a flame. All

analysis were performed using a Varian AA-875 Atomic Absorption Spectrophotometer.
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The samples were prepared for analysis as follows. A sample of approximately Sml was
0.22 um filtered, to remove an calcium oxalate crystals, and then acidified by the addition of

one drop of concentrated (10 M) hydrochloric acid, to prevent any further precipitation.

Prior to analysis all samples must be diluted in a Lanthanum Chloride diluent, nominally a
1:100 dilution. The purpose of this is to ensure all calcium ions are present in their free state

rather than being bound with other 1ons.
A4.3 SCANNING ELECTRON MICROSCOPY

The method used to prepare samples for examination under the electron microscope are as
follows. A 5 ml aliquot of the solution was filtered (0.22 pm) and the filter paper rinsed
with 2 ml of filtered (0.22 pum) distilled water. The filter paper was dried in air, mounted on
an aluminium stub and coated with gold (200 s; SEM Autocoating Unit E5200, Polaron
Equipment Ltd.). The stubs were examined using an ETEC Autoscan electron microscope

(Siemens AG) at an operating voltage of 20 kV.
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Appendix 5:

SEED SUSPENSION DATA

In this appendix the data and method used to determine the solids concentration of the seed
suspension used in the batch crystallization experiments described in Chapter 3 are

presented.
A5.1 EXPERIMENTAL DATA

As outlined in Section 3.3.2, before starting many of the batch experiments a small volume
of the seed suspension was added to 0.15 M saline, saturated with respect to calcium
oxalate, and samples analysed by the Multisizer. The values of the total crystal volume
obtained from each experiment, as well as the mean and standard error in the mean are given

in Table AS5.1, on the following page.
A5.2 CALCULATING THE SOLIDS CONCENTRATION

The mass of crystals per unit volume of sample is given by,

My =pVr (AS.1)

where the density of calcium oxalate monohydrate is 2200 kg/m3 and V7 is the total crystal
volume obtained from the Multisizer, which has units of um3/500 pl. Using the above value
for the density of calcium oxalate it can be shown that multiplying Vr by 4.4x107° will give
the solids concentration in units of g/litre. Further, as described in Section 3.3.2, in the
experiments 4 ml of the seed suspension was added to 200 ml of saturated saline, thus the
solids concentration of the seed suspension may be calculated from Vj as measured by the

Multisizer using the following expression

My =Vypx4.4%107 x204/4 (A5.2)
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Table A5.1 Total crystal volume in samples of the seed suspension.

Experiment Total crystal volume (um3/500 ul)
11/7 3.52x10%
13/7 3.61x10°
14/7 3.86x10°
16/7 3.61x10°
1717 3.86x10°
20/7 3.50%10°

23/7a 3.74x10°
23/7b 3.53x10°
4/8a 3.73x10°
4/8b 3.40%10°
5/8a 3.82x10°
5/8b 3.70x10°
Mean 3.66x10°
Standard deviation 4.4x10*
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Appendix 6:

CONVERSION OF SIZE DISTRIBUTIONS TO
CSDs WITH A 32 PROGRESSION

In this appendix the method used to convert the CSDs from Multisizer format to CSDs with

ai2 progression is described.
A6.1 CONVERTING THE CSDs

As outlined in Section 3.6 the method used to convert the CSDs from the Multisizer format
to CSDs with a 3/2 progression was to identify the channels which contained an exact value
in the ¥/2 progression. The Multisizer was set-up such that the lower and upper limits of
the size domain were 2 |Lm and 64.286 pm respectively and there were 256 channels. Table
A6.1 gives the values of a 2 progression, starting at 2 pm, and the Multisizer channels

that span these values.

The upper and lower limits of each channel were calculated from eq 3.15 with Lys¢ being

64.286 um. For example for channel 25, X =25, and from eq 3.16
U= 256(—}£ - 1) = 256(2—5-— 1) =-231
J 256

Then from eq 3.17 the upper size limit is

-231
Lys = Lysgi¥ =64.286%(2/%) 7 =2.533um
The lower limit of channel 25 is the upper limit of channel 24, from eq 3.14

Lys 2.533

L24 = —2T/5—0 = EVST = 2498um

To convert the Multisizer size distribution to a CSD with a 32 progression, the data from
channels 9 to 24 were summed. Channel 25 contains the exact value of the /2 progression.
Linear interpolation was used to allocate the particles in this channel between the first and

second intervals in the /2 progression. The size range of channel 25 is 3.5x1072 pm. The
p B
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Table A6.1  Multisizer channels containing a value in a 2 progression.

2 Progression Channel spanning Lower size limit Upper size limit
45) (Lm) (um)
2.0 9 2.0 2.029
2.52 25 2.498 2.533
3.17 42 3.162 3.206
4.0 58 3.947 4.002
5.04 75 4.996 5.066
6.35 92 6.324 6.412
8.0 108 7.894 8.004
10.08 125 9.992 10.132
12.70 142 12.948 12.825
16.0 158 15.789 16.009
20.16 175 19.985 20.264
25.40 192 25.296 25.649
32 208 31.578 32.019

difference between the exact value for the 2 progression, 2.52 pm and the lower limit of

channel 25, 2.498 pm is 2.2x1072 um. Thus the fraction of crystals in the first channel of
the 32 progression is

-2
po 223107 o

T 3.5%1072

and the fraction in the second channel is 0.37. A similar calculation can be done for each of

the channels that contains an exact value of the 2 progression.
A7.2 CONVERSION ERRORS

The Multisizer reports CSDs by number and volume, the number distribution can be
calculated from the volume distribution, or vice versa as the average size in each channel is
known. It is possible to convert either the number or volume CSDs from the Multisizer
format to a /2 progression using the method described in the previous Section. The
conversion of the CSDs from the Multisizer format to a 2 progression conserves the
parameter that the CSD describes. However, there will be a descretization error in other

properties calculated from these converted CSDs as crystals from a large number of small
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intervals, each with an average size, are allocated to one larger interval with one average

size.

There is a discretization error in the volume distribution, with a 2 progression, which is
calculated from the Multisizer number distribution that has been converted to a 2
progression. Similarly there is a discretization error in the number distribution, with a 2
progression, which calculated from the Multisizer volume distribution that has been

converted to a 3/2 progression.

The relative error in the number CSD with a 2 progression, is obtained by comparing the
number CSD calculated from the volume distribution, which has been converted from
Multisizer format to a 3/2 progression, with the number distribution which has been
converted from Multisizer format to a 2 progression. The same argument can be used to

calculate the relative error in the volume CSDs.

Figure A6.1(a) shows the relative error in each channel for the number distribution
calculated from the volume distribution which was converted from Multisizer format to a 2
progression. Figure A6.1(b) shows the relative error in each channel for the volume
distribution calculated from the number distribution which was converted from Multisizer
format to a 32 progression. The data are from the batch experiment 11/7 at 0 and 90

minutes.

It can be seen that the errors are larger when the number distribution is used to calculate the
volume distribution. Also the errors are greatest at the larger sizes, as there are fewer
particles in these channels. As explained in Section 3.6, the number distributions were
calculated from the volume distributions which had been converted from Multisizer format to
aif2 progression. There were two reasons for this, firstly the errors were lower using this
method and secondly the ion concentrations and supersaturation were calculated from the

crystal volume, so it is important to have as small an error as possible in the crystal volume.
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Figure A6.1 The relative error in each channel for (a) a number CSD calculated from the

converted Multisizer volume CSD and (b) a volume CSD calculated from the converted

Multisizer number CSD
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Appendix 7:

BATCH CRYSTALLISATION EXPERIMENTAL
DATA

In this appendix the growth rates and aggregation rate constants calculated from the batch
crystallisation experimental data are reported. The results are from the batch experiments

described in Chapter 3 and analysed in Chapter 4.

The growth rates and aggregation rate constants were calculated from Batch as documented

in Chapter 3. Details of the conditions in each experiment are given in Table 4.3.

The values of the relative supersaturation and oxalate ion concentrations were calculated

from free ion concentrations using the method described in Chapter 2.

The units of the parameters reported are as follows: Time, minutes; growth rate, G, pm/min;

By, W/min; [Ox], M and the relative supersaturation, S is dimensionless.

Expt 11/7 Expt 13/7
Time G RO [Ox] S Time G B30 [Ox] S
0 1.06E-01 7.75E-04 9.01E-05 1.83 0 9.23E-02 6.71E-04 8.83E-05 1.91
5 5.20E-02 3.86E-04 7.49E-05 1.74 5 4.34E-02 3.19E-04 7.45E-05 1.73
10 2.40E-02 2.32E-04 6.87E-05 1.65 10 2.20E-02 1.83E-04 6.97E-05 1.67
20 1.68E-02 1.91E-04 6.24E-05 1.67 20 1.74E-02 1.45E-04 5.98E-05 1.63
30 1.30E-02 1.37E-04 5.41E-05 1.45 30 1.07E-02 8.99E-05 5.35E-05 1.44
40 7.09E-03 9.45E-05 5.07E-05 1.40 40 B8.14E-03 6.32E-05 4.96E-05 1.38
50 7.29E-03 6.85E-05 4.76E-05 1.35 50 8.41E-03 6.08E-05 4.57E-05 1.32
60 7.12E-03 4.15E-05 4.40E-05 1.29 60 6.83E-03 4.69E-05 4.13E-05 1.25
70 6.10E-03 2.27E-05 4.10E-05 1.24 70 5.00E-03 3.32E-05 3.88E-05 1.21
80 5.48E-03 3.38E-05 3.83E-05 1.20 80 4.56E-03 3.60E-05 3.63E-05 1.17
90 4.92E-03 5.36E-05 3.57E-05 1.16 90 3.73E-03 4.05E-05 3.42E-05 1.18
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Expt
Time
(o]
5
10
20
30
40
50
60
70
80
90

Expt

Time

10
20
30
40
50
60
70
80
90

Expt

Time

10
20
30
40
50
60
70
80
90

Expt

Time

10
20
30
40
50
60
70
80
90

14/7
G

1.13E-01
4.96E-02
2.24E-02
1.93E-02
1.21E-02
7.73E-03
6.02E-03
3.51E-03
4.45E-03
3.63E-03
1.18E-04

17/7

G
1.17E-01
5.04E-02
2.09E-02
1.45E-02
9.54E-03
9.32E-03
8.14E-03
6.55E-03
5.34E-03
4.06E-03
2.59E-03

23/7a

G
9.14E-02
4.18E-02
1.95E-02
1.50E-02
1.40E-02
1.12E-02
7.63E-03
7.18E-03
4.94E-03
4.84E-03
7.17E-03

18/11
G

9.22E-02
5.00E-02
2.80E-02
1.64E-02
8.75E-03
6.38E-03
7.12E-03
7.91E-03
7.18E-03
5.57E-03
5.66E-03

30
6.71E-04
3.18E-04
1.93E-04
1.19E-04
7.41E-05
6.22E-05
4.44E-05
2.12E-05
2.85E-05
3.85E-05
2.87E-05

B30
8.74E-04
4.05E-04
1.79E-04
1.01E-04
7.03E-05
4.88E-05
5.20E-05
5.96E-05
4.71E-05
3.03E-05
8.35E-06

B0
6.86E-04
3.05E-04
1.50E-04
9.61E-05
6.62E-05
4.33E-05
6.33E-05
6.65E-05
3.69E-05
4.47E-05
5.74E-05

B30
7.39E-04
4.63E-04
2.98E-04
1.19E-04
4.71E-05
4.92E-05
4.71E-05
5.01E-05
5.67E-05
4.73E-05
2.31E-05

[0x]
8.89E-05
7.21E-05
6.69E-05
5.70E-05
4.B4E-05
4.49E-05
4.06E-05
3.87E-05
3.70E-05
3.40E-05
3.31E-05

[Ox]
9.03E-05
7.26E-05
6.77E-05
5.85E-05
5.38E-05
4.91E-05
4.45E-05
4.08E-05
3.78E-05
3.52E-05
3.35E-05

[Ox]
.84E-05
.55E-05
13E-05
37E-05
81E-05
10E-05
75E-05
.36E-05
05E-05
87E-05
57E-05

(Ox]
9.43E-05
8.04E-05
7.37E-05
6.49E-05
5.93E-05
5.69E-05
5.34E-05
5.02E-05
4.59E-05
4.32E-05
4.05E-05

T S A (U U Qi G e Y 4 h ek ek A ed A A ek a =

Y S

S

.92
.70
.63
.49
.36
.31
.24
.21
.18
.13
11

.93
.71
.64
.51
.44
.37
.30
.24
19
.16
12

.91
.75
.69
.59
.51
.40
.35
.29
.24
.21
.15

.98
.81
72
.60
.52
.49
.44
.39
.32
.28
.24

Expt
Time
0
5
10
20
30
40
50
60
70
80
90

Expt

Time

10
20
30
40
50
60
70
80
90

Expt

Time

10
20
30
40
50
60
70
80
20

Expt

Time

10
20
30
40
50
60
70
80
90
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16/7

G
7.67E-02
4.99E-02
3.10E-02
1.33E-02
B.22E-03
8.61E-03
7.72E-03
4.83E-03
3.20E-03
3.92E-03
4.87E-03

20/7

G
1.06E-01
5.47E-02
2.73E-02
1.44E-02
1.13E-02
1.01E-02
8.56E-03
6.76E-03
6.17E-03
3.80E-03
7.70E-04

23/7b
G

7.08E-02
4.02E-02
2.59E-02
1.64E-02
1.03E-02
9.82E-03
5.68E-03
4.32E-03
5.837E-03
6.14E-03
7.21E-03

19/11
G

5.74E-02
4.01E-02
2.50E-02
1.37E-02
1.156E-02
8.53E-03
7.60E-03
7.15E-03
4.74E-03
3.20E-03
3.00E-03

B30
7.91E-04
4.70E-04
2.15E-04
9.15E-05
7.83E-05
5.22E-05
4.36E-05
4.44E-05
3.50E-05
2.567E-05
2.56E-05

B30
8.41E-04
4.31E-04
2.20E-04
1.16E-04
8.80E-05
8.44E-05
7.60E-05
6.87E-05
6.91E-05
4.84E-05
1.09E-05

B0
7.20E-04
3.65E-04
1.70E-04
1.02E-04
8.11E-05
7.11E-05
6.58E-05
4.86E-05
4.71E-05
4.22E-05
2.88E-05

30
7.73E-04
4.59E-04
1.8BE-04
1.10E-04
8.55E-05
7.40E-05
7.05E-05
5.73E-05
3.79E-05
2.53E-05
2.14E-05

[Ox]
9.07E-05
7.76E-05
6.94E-05
6.07E-05
5.70E-05
5.29E-05
4.87E-05
4.53E-05
4.38E-05
4.21E-05
3.99E-05

[Ox]
9.07E-05
7.53E-05
6.83E-05
6.15E-05
5.565E-05
5.11E-05
4.61E-05
4.30E-05
3.96E-05
3.69E-05
3.58E-05

[Ox]
8.76E-05
7.66E-05
7.11E-05
6.01E-05
5.62E-05
5.06E-05
4.68E-05
4.52E-05
4.27E-05
3.99E-05
3.65E-05

{Ox]
8.91E-05
7.78BE-05
7.06E-05
6.37E-05
5.73E-05
5.22E-05
4.86E-05
4.44E-05
4.11E-05
3.93E-05
3.77E-05

A 4 A h e b A A A - A A A e ek b el A =

- e A o A ek ek = = = =

S

.94
77
.66
.54
.49
.43
.37
.31
.29
.26
.23

.94
.74
.65
.55
47
.40
.33
.28
.22
.18
.16

.90
.76
.69
.54
.48
.40
.34
.31
.27
.23
A7

.92
.78
.68
.59
.49
.42
.36
.30
.25
.22
19
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3/8a
G

1.90E-01
8.98E-02
4.43E-02
2.60E-02
1.83E-02
1.43E-02
1.01E-02
7.96E-03
7.40E-03
4.69E-03
1.63E-03

4/8a
G

1.95E-01
1.09E-01
6.10E-02
2.62E-02
1.72E-02
1.37E-02
9.26E-03
6.28E-03
6.51E-03
6.93E-03
8.79E-03

10/12
G

2.91E-01
1.47E-01
6.83E-02
4.99E-02
4.42E-02
1.70E-02
1.48E-02
1.35E-02
1.12E-02
8.88E-03
6.62E-03
1.05E-03

12/12

G
2.80E-01
1.44E-01
7.36E-02
5.22E-02
4.39E-02
2.05E-02
1.42E-02
1.22E-02

30
.75E-03
.08E-03
.11E-04
.46E-04
.34E-04
.85E-04
.32E-04
.29E-05
.40E-05
.31E-05
.53E-05

pre

- O ® o = = N 0 N -

B0
.82E-03
.32E-03
.37E-04
.03E-04
.48E-04
.76E-04
.26E-04
L12E-04
.61E-05
.36E-05
.06E-05

- =

[ T ST S C O S <]

B30
.16E-03
.71E-03
.53E-03
.02E-03
.00E-04
17E-04
.40E-04
.55E-04
.31E-04
.03E-05
.00E-05
.30E-04

O ]

4 b N = = N BN

B30
.10E-03
.60E-03
.49E-03
.09E-03
7.71E-04
3.70E-04
2.03E-04
1.66E-04

a A - N

[Ox]
1.40E-04
1.12E-04
1.01E-04
8.55E-05
7.64E-05
6.76E-05
6.20E-05
5.73E-05
5.37E-05
4.95E-05
4.87E-05

[Ox]
1.42E-04
1.12E-04
9.48E-05
7.99E-05
7.01E-05
6.32E-05
5.65E-05
5.37E-05
5.01E-05
4.70E-05
4.29E-05

[Ox]
1.93E-04
1.44E-04
1.19E-04
1.09E-04
9.35E-05
8.45E-05
7.54E-05
6.84E-05
6.04E-05
5.57E-05
5.02E-05
4.79E-05

[0x]
.92E-04
.44E-04
.19E-04
.06E-04
.15E-05
.74E-05
.90E-05
6.15E-05

O N O = = s

- e A e e A a2 NN

G e o A A A A - o= NN

A e e - =2 NN

S

.39
.08
.96
77
.66
.55
.47
.41
.36
.30
.29

.41
.08
.88
.70
.58
.49
.40
.36
.31
.26
.20

.79
.30
.04
.93
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.65
.54
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.30
.22
.19
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.30
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.89
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.57
.47
.37
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3/8b

G
1.63E-01
9.67E-02
5.73E-02
2.91E-02
2.11E-02
1.22E-02
7.11E-03
6.98E-03
4.71E-03
6.32E-03
1.13E-02

4/8b
a

1.65E-01
9.21E-02
5.32E-02
2.62E-02
1.36E-02
9.71E-03
1.36E-02
1.01E-02
2.30E-03
3.87E-03
1.04E-02

11/12

G
3.06E-01
1.39E-01
7.12E-02
5.58E-02
4.08E-02
1.87E-02
1.41E-02
1.19E-02
8.37E-03
5.84E-03
5.53E-03
4.06E-03

13/12
@

3.00E-01
1.46E-01
8.13E-02
5.42E-02
3.33E-02
1.80E-02
1.34E-02
1.15E-02
1.02E-02
8.21E-03
7.49E-03
4.97E-03

B30
1.69E-03
1.25E-03
8.44E-04
4.22E-04
2.59E-04
1.42E-04
1.19E-04
9.40E-05
5.36E-05
3.47E-05
4.18E-05

B30
1.61E-03
1.04E-03
6.35E-04
3.60E-04
2.43E-04
1.57E-04
1.15E-04
8.56E-05
7.14E-05
4.13E-05
2.80E-05

B0
2.18E-03
1.58E-03
1.43E-03
1.02E-03
6.55E-04
3.97E-04
2.24E-04
8.86E-05
6.59E-05
3.88E-05
3.61E-05
6.29E-05

B0
2.26E-03
1.66E-03
1.55E-03
1.06E-03
7.16E-04
4.22E-04
2.43E-04
1.48E-04
9.43E-05
4.83E-05
1.19E-05
4.38E-05

{Ox]
1.37E-04
1.09E-04
9.30E-05
7.58E-05
6.40E-05
5.42E-05
5.10E-05
4.65E-05
4.34E-05
4.14E-05
3.65E-05

[Ox]
1.38E-04
1.11E-04
9.65E-05
7.98E-05
7.05E-05
6.60E-05
6.06E-05
5.19E-05
4.97E-05
4.94E-05
4.55E-05

[Ox]
1.91E-04
1.40E-04
1.18E-04
1.02E-04
8.78E-05
7.58E-05
6.66E-05
5.95E-05
5.27E-05
4.95E-05
4.56E-05
4.27E-05

[Ox]
1.95E-04
1.45E-04
1.21E-04
1.03E-04
9.22E-05
8.19E-05
7.27E-05
6.71E-05
5.98E-05
5.54E-05
5.03E-05
4.66E-05

h A A ok e e a2 NN

h e A m = = = NN

4 dh A A o A s NN

S

.36
.05
.86
.65
.50
.37
.32
.26
.21
.18
.10

.36
.07
.90
.70
.59
.53
.45
.38
.30
.30
.24
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.25
.02
.85
.69
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.44
.35
.26
.21
.16
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22/12a
G

3.71E-01
1.78E-01
8.80E-02
5.15E-02
4.51E-02
2.63E-02
2.16E-02
1.38E-02
1.03E-02
8.63E-03

23/12
G

3.97E-01
1.77E-01
8.56E-02
4.99E-02
4.23E-02
2.52E-02
1.80E-02
9.99E-03
5.39E-03
5.94E-03

25/7

G
1.04E-01
6.90E-02
4.43E-02
2.30E-02
1.61E-02
1.19E-02
1.16E-02
1.37E-02

29/7

G
1.01E-01
4.99E-02
2.59E-02
1.71E-02
1.04E-02
1.24E-02
1.15E-02
6.91E-03
4.29E-03
3.53E-03
4.79€E-03

B0
.18E-03
.52E-03
2.09E-03
1.46E-03
1.23E-03
5.72E-04
4.07E-04
2
1
1

- N

.79E-04
.78E-04
.30E-04

B30
.37E-03
.41E-03
.93E-03
.40E-03
.19E-03
.60E-04
.64E-04
.66E-04
.48E-04
.28E-04

a = = = N

N = = N b

B0
.10E-03
.80E-04
.05E-04
.80E-04
.45E-04
.86E-04
.58E-04
.42E-04

T I I T

B30
1.10E-03
5.94E-04
2.95E-04
1.64E-04
1.19E-04
1.22E-04
1.14E-04
9.05E-05
7.81E-05
7.41E-05
7.37E-05

2
1
1
1
1
9
8

6

4.

3
3
3

9
7
7
6.
5
5
4

(0x]
.43E-04
.77E-04
.40E-04
.26E-04
.11E-04
.52E-05
.01E-05
.94E-05
.33E-05
.67E-05

[Ox]
.47E-04
.75E-04
.39E-04
23E-04
.09E-04
10E-05
78E-05
82E-05
48E-05
12E-05

[Ox]
.45E-04
.27E-04
14E-04
01E-04
19E-05
52E-05
98E-05
.32E-05

10x]
.09E-05
.65E-05
.11E-05
12E-05
.65E-05
.22E-05
.55E-05
17E-05
.91E-05
.77E-05
.68E-05

- ek e —a s = =k

S

10
.48
A1
.98
.82
.65
.49
.37
.29
.21

14
.47
.10
.95
.80
.61
.46
.35
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.79
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22/12b

G
4.23E-01
1.75E-01
8.44E-02
5.59E-02
4.18E-02
2.29E-02
1.83E-02
2.18E-02

24/12
G

4.84E-01
1.79E-01
7.47€-02
5.07E-02
3.67E-02
2.85E-02
2.32E-02
1.07E-02
5.60E-03
4.18E-03

26/7
G

1.66E-01
8.31E-02
4.30E-02
3.03E-02
2.09E-02
1.08E-02
9.99E-03
1.39E-02

30/7
G

9.34E-02
5.11E-02
2.76E-02
1.96E-02
1.63E-02
1.07E-02
6.45E-03
4.73E-03
5.38E-03
4.40E-03
1.83E-03

2
1
1
1
9
5
2
1

1
5
2
1
1

1
8
6
6

OO S AR .

1]
.69E-03
.53E-03
.87E-03
.44E-03
.46E-04
.48E-04
.86E-04
.03E-04

B30
.12E-03
.57E-03

.68E-03

.41E-03

.04E-03
.26E-04
.87E-04
.60E-04
.02E-04
.58E-04

B30
.60E-03
.10E-04
64E-04
22E-04
.39E-04
.74E-04
.55E-04
.77E-04

BO
.01E-03
.79E-04
.97E-04
.82E-04
.66E-04
.2BE-04
.93E-05
.95E-05
.70E-05

7.03E-05
5.02E-05

[Ox]
2.46E-04
1.73E-04
1.42E-04
1.23E-04
1.09E-04
9.11E-05
8.11E-05
6.85E-05

{Ox}
2.47E-04
1.65E-04
1.37E-04
1.19E-04
1.06E-04
9.11E-05
7.10E-05
6.11E-05
5.69E-05
5.36E-05

10x]
2.05E-04
1.79E-04
1.68E-04
1.562E-04
1.37E-04
1.30E-04
1.26E-04
1.19E-04

(Ox]
9.29E-05
7.86E-05
7.19E-05
6.36E-05
5.47E-05
4.87E-05
4.47E-05
4.26E-05
4.02E-05
3.74E-05
3.59E-05

h s A A NN W

O O

S

13
.45
14
.95
.80
.61
.50
.35

14
.36
.08
.90
a7
.61
.38
.27
.21
A7

.99
7
.67
.54
.41
.35
.31
.25

.97
.79
.70
.58
.46
.37
.30
.27
.23
.19
.16
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24/11a

G
9.67E-02
5.47E-02
2.99E-02
1.62E-02
1.09E-02
8.33E-03
7.36E-03
6.88E-03
5.14E-03
4.16E-03
4.22E-03

25/11

G
7.03E-02
4.91E-02
3.02E-02
1.40E-02
1.19E-02
1.00E-02
7.60E-03
5.18E-03
4.14E-03
4.35E-03
6.60E-03

22/11a

G
6.85E-02
4.17E-02
2.35E-02
1.49E-02
1.16E-02
8.37E-03
6.44E-03
5.58E-03
4.55E-03
2.96E-03
1.59E-03

22/11c
G

8.49E-02
4.47E-02
2.34E-02
1.37E-02
1.11E-02
8.63E-03
6.19E-03
4.37E-03
4.01E-03
3.35E-03
2.90E-03

B0
1.05E-03
6.46E-04
3.45E-04
2.03E-04
1.46E-04
1.32E-04
1.19E-04
9.70E-05
8.45E-05
7.27E-05
3.89E-06

B0
7.93E-04
5.38E-04
3.22E-04
2.10E-04
1.39E-04
1.06E-04
1.13E-04
1.01E-04
7.93E-05
9.36E-05
8.56E-05

B0
7.00E-04
3.45E-04
1.35E-04
9.25E-05
6.30E-05
5.28E-05
3.75E-05
2.31E-05
1.90E-05
2.22E-05
1.96E-05

1]
3.23E-04
1.39E-04
9.41E-05
5.37E-05
3.33E-05
3.50E-05
2.50E-05
1.10E-05
9.96E-06
8.16E-06
1.15E-05

[Ox]
9.47E-05
7.89E-05
7.13E-05
6.23E-05
5.67E-05
5.23E-05
4.89E-05
4.54E-05
4.25E-05
4.06E-05
3.86E-05

(0x]
9.48E-05
19E-05
33E-05
69E-05
05E-05
.59E-05
.11E-05

8
7
6
6
5
5
4.86E-05
4.62E-05
4.46E-05
4.20E-05
(Ox]

27E-05
98E-05
31E-05
51E-05
80E-05
29E-05
90E-05
59E-05
29E-05
08E-05
.95E-05

R N

[(Ox]

2BE-05
82E-05
11E-05
36E-05
.65E-05
5.12E-05
4.65E-05
4.40E-05
4.13E-05
3.91E-05
3.72E-05

[ G G e

 d e ek e e = = A

S

.89
.79
.69
.57
.49
.42
.37
.32
nil
.24
.20

.99
.83
.72
.63
.54
.47
.40
.36
.33
.30
.26

.96
.80
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24/11b

G B30
7.88E-02 1.07E-03
5.02E-02 7.39E-04
2.93E-02 3.97E-04
1.48E-02 2.72E-04
1.22E-02  2.02E-04
9.61E-03 1.80E-04
6.59E-03 1.61E-04
6.06E-03 1.13E-04
6.36E-03  7.2BE-05
5.96E-03 6.78E-05
3.48E-083 6.02E-05

31/7
G B0
1.05E-01  4.54E-04

4.67E-02  1.95E-04
2.18E-02 1.31E-04
1.62E-02 6.78E-05
1.17E-02 5.76E-05
7.96E-03 4.18E-05
5.55E-03 3.53E-05
5.80E-03 4.16E-05
6.61E-03  3.48E-05
4.90E-03 2.58E-05
1.55E-03 1.86E-05

22/11b

G 1Y)
6.40E-02 6.37E-04
4.00E-02 3.47E-04
2.48E-02 1.61E-04
1.51E-02 9.55E-05
1.03E-02 6.85E-05
8.42E-03 4.44E-05
7.39E-03 3.36E-05
5.76E-03  2.45E-05
5.19E-03 2.45E-05
4.05E-03 2.49E-05
1.08E-03 1.19E-05

23/11a

G B0
8.78E-02 2.99E-04
4.10E-02 1.16E-04
1.98E-02 7.04E-05
1.48E-02  4.49E-05
1.16E-02 3.88E-05
7.66E-03 3.07E-05
4.95E-03 1.87E-05
4.55E-03 1.51E-05
5.04E-03 1.70E-05
4.64E-03  1.48E-05
2.68E-03 1.24E-05

[Ox]
9.27E-05
7.86E-05
7.09E-05
6.29E-05
5.77E-05
5.20E-05
4.91E-05
4.61E-05
4.36E-05
4.03E-05
3.82E-05

[Ox]
9.20E-05
7.74E-05
7.24E-05
6.39E-05
5.74E-05
5.27E-05
4.96E-05
4.71E-05
4.38E-05
4.03E-05
3.86E-05

[Ox]
9.02E-05
7.84E-05
7.18E-05
6.27E-05
5.67E-05
5.22E-05
4.79E-05
4.43E-05
4.16E-05
3.85E-05
3.71E-05

[0x]
9.36E-05
7.98E-05
7.47E-05
6.64E-05
5.95E-05
5.40E-05
5.11E-05
4.84E-05
4.59E-05
4.26E-05
4.04E-05

. ek ek A ek ek ok b e

a e ek e A A e e = =

4 h ek b e = = = =

S

.96
.79
.68
.57
.50
.42
.37
.33
.29
.23
.20

.95
T7
.70
.59
.50
.43
.38
.34
29
.23
.21

.83
.78
.70
.57
.49
.42
.35
.30
.25
.20
.18

.97
.80
.73
.62
.53
.45
.40
.36
.32
.27
.24
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23/11b
G

5.34E-02
4.50E-02
3.20E-02
1.36E-02
9.61E-03
7.81E-03
6.74E-03
5.68E-03
4.94E-03
3.65E-03
7.59E-04

B0
3.68E-04
1.76E-04
7.48E-05
4.40E-05
3.86E-05
3.08E-05
2.43E-05
1.78E-05
1.13E-05
1.02E-05
1.57E-05

10x]
9.21E-05
8.12E-05
7.14E-05
6.27E-05
5.71E-05
5.22E-05
4.83E-05
4.45E-05
4.17E-05
3.86E-05
3.73E-05

S

.96
.82
.69
.57
.49
.42
.36
.30
.26
.20
.18
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Appendix 8:

ERROR ANALYSIS FOR GROWTH AND
AGGREGATION RATES

In Chapter 4 growth rate and aggregation rate constants from batch crystallisation
experiments are reported. As described in Section 3.3.3 CSDs were obtained from the four
replicates of an experiment at regular time intervals. At each time interval, the CSDs from
the replicates were averaged. The growth rate and aggregation rate constant were calculated
from the averaged CSDs. In this appendix the errors associated with these parameters are
calculated as is the error in the principal independent variables, the activity product and the

oxalate ion concentration.
A8.1 ERROR ANALYSIS

Estimates of the uncertainty for a parameter Z which is a function of i different variables, X;

may be obtained using the propagation of error equation

2
672 = Z(-gg) 5x? (A8.1)

i

When the error, 08X is equated to the standard deviation, Oy, then the methods of

mathematical statistics can be used to obtain some useful results.

Let X and Y be un-correlated random variables and Z be dependent on X and Y. These
variables take on values x, yand z , have mean values ¥, ¥ and z and have variances O'f,

0'3 and 0'22. From eq A8.1 it follows that

if Z=XY then Z=%y (A8.22)
2 2 2
and G _Ox 2y (A8.2b)
Z b y
if Z =X then =% (A8.3a)



and %2 =4% (A8.3b)

Z X
if Z=kX then z=kx% (A8.42)
and o’ =k*o? (A8.4b)
if Z=X+Y then Z=X+y (A8.52)
and ol =0’ +o0, (A8.5b)

In general the uncertainty in the best estimate of Z is required. By the central limit theorem

the standard deviation in estimates of the mean, and the population mean are related by

p— (A8.6)

z \/E
where 7 is the sample size, in this case the number of replicates.

Growth rate analysis

From eq 1.22 the growth rate may be calculated from

1 d
=20 (A8.7)
3m2 dt
Averaging over a set of replicates (i.e. at a constant time)
G = _1__% (A8.8)
3m2 dt
For two un-correlated variables from eq A8.2a
T =ty
3my (A8.9)
Then from eq A8.2b

O_E 2 O-F 2 0',—;,‘ 2
[T) = ==| +| = (A8.10)
G my ms
where the standard errors in the mean of the second moment, O and the rate of change of

the third moment, o are calculated from eq A8.6.

3
— 310 —



The mean and variance in m, can be calculated directly from the experimental data. By re-
arranging eq A8.9, 3 can be calculated from values of G . The standard error, O, » 18

more difficult to calculate and is determined as follows. An approximation for r; is

o Am3 m3l[:[l~+1 —m3|[=t,.

Pla = = A8.11
T At At (AEsy
From eq A8.4b
2 | )
g: =——=0 (A8.12)

m3 A t2 (m3|t=!,'+|_ m3|r=t,' )

Assuming the variance in m; is the same at each time interval

=0, 2, =20, (A8.13)

(e} + O =
m], iy L M3, 3,

Substituting into eq A8.11

202
oF =—t

T AR (A8.14)

The variance in the rate of change of mj is now related to the variance in m;. The variance,
0',2,,3 in this context is, in the language of analysis of variance, the within group variance,
that would be seen by taking successive samples from a flask in which the CSD is not

changing. This is denoted as Gr%u,w-

Data from the experiments conducted to investigate the value of the solubility product
reported in Section 2.5.2 were used to determine 0',2”%w. In these experiments CSD’s were
obtained after 24 hours, when the system was at equilibrium. Under these conditions the

CSD measured should be approximately constant as there is no growth or aggregation.

If a constant relative error is attributed to the samples collected with the Multisizer, the

standard deviation in m; can be written in terms of its mean as

Oy, = Vimy ms (A8.15)

where y,,. is a constant. From the CSDs obtained from each long-time sample the mean
and standard deviation in m; were calculated. The values from all the experiments were

then averaged giving a value for v, of 0.02. The data used are in Appendix 3.
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Substituting eq A8.15, A8.14 and the expression for the standard errors in m; and 7 into

eq A8.10 and re-arranging gives,

2 — \2
— o ma M
O = G l( 2 j + 2 (_uj A(8.16)

n\ 7, ) n|3m;GAt

Aggregation rate analysis

A similar analysis can be used for the aggregation rate constant. From eq 1.20 the mean
value of the aggregtaion rate constant is
a _ -2 dmo

Bo=—

A8.17

Uncertainty in my, arises largely from variation between replicates, the uncertainty in i,
arises from variations in consecutive measurements of m, from each replicate. Assuming

these are not correlated

— 2dmy -2

Using eqs A8.2b and A8.3b,

O 2 05— : O=— )
(_ﬁﬁo_] :4Lmi°j + [ "'1"0} (A8.19)
0 0 0

The mean and variance in mj are obtained from the experimental data. By re-arranging eq

AB.18 ;h_o can be calculated from [7(;. The standard errors, 0'm—0 and 05— can be calculated
0
from eq A76. Egs A8.11 to A8.13 may also be written for my rather than ms giving

202
2 mo w
. = a A8.20
%y T AR (820

The standard deviation o, ~ was determined from the same data that were used to evaluate

Oy, - WWritten in the same form as eq A8.15

Oy = Vimy My (A8.21)

From the experimental data the value of ,, is 0.033.
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Substituting into eq A8.19 and re-arranging gives

2 2
g || A ome ), 2 2V
Op; =By [n( m_o} + n(ﬁgm—oAt] ] (A8.22)

Relative supersaturation analysis

The relative supersaturation depends on the value of the activity product, thus the error in the

activity product nust first be determined. Fromeq 2.1 the activity product is

AP =V2[Ca**][0x*"] (A8.23)

In Section 2.6 it is shown that the fraction of both calcium and oxalate present as free ions

was almost constant throughout an experiment, thus

APo<T

Ca2+

T

o (A8.24)

The total calcium and oxalate concentrations can be related to the initial concentrations by a
mass balance
0 0
APe<(T = X) (75 o - X)

ca (A8.25)

_70 0 _ (70 0 2
- TCa2+ T0x2_ (TCa2+ + T0x2_ )X +X

where X is the change in the calcium and the oxalate ion concentrations. X can be calculated

from the change in the third moment

x=b ”k'6(";43r_ ) = k(g — m3) (A8.26)

where k is a constant that converts the third moment from um3/500 ul to a concentration in
mol/dm®. The value of k is 1.58x107'1.

If Tga2+ and Tgxz_ are denoted as C and O, then eqs A8.2a and b give
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2 2
2 Oc _ % |(7p)
055 =| =5 t+=5 |\CO
2 2 2 2
O-Y O-E ——\2 O"X 0’5 ——\2
+| A2 +=[XC) + | =5 += || XO (A8.27)
% % wof (G- B wo)
+6?}E2

From eq A8.26 it can be seen that X 2 is not an un-correlated variable, and thus eq A8.3b

cannot be used for the variance of X 3

To evaluate the variance in AP, the mean and variance of X 2, X, C and O are required. X
can be calculated directly from the experimental data. The values used for C and O were

the initial concentrations, as the same metastable solution was used for all the replicates.

The standard error in the mean of X is calculated from eq A8.6 and the variance in X, using
A8.4b and A8.5Db, is

0% =0° - kz(agh + ofn%,) (A8.28)

= T k(ma—m3)
Similarly the variance in X s using egs A8.2b, 3b and 5b, is given by

O_2 2

=0
x? (k2 (m32—2m3mg) +m§)2 ))
4 2 2 2 2
=k (40’,"3 +2(O’m3 + O'mg)+40'mg) (A8.29)

_ 14 <2 2
=6k (cm3+omg)

The value of Oy » which is equivalent to the within group standard deviation, Op, ,» Can be
calculated from eq A8.15. The value of ¢ , was determined from CSDs of the seed

m3 w
suspension used in the batch experiments. In the same form as eq A8.15

O o =Y omy (A830)

From the seed suspension data in Appendix 3 values for Vo and mg of 0.047 and
3
6.98x106um3/500u1 were obtained.

The variances 0 and o5 were estimated from the uncertainty associated with the addition
of the correct volume of calcium and oxalate solutions to the metastable solution. The
uncertainty was estimated at 2% and may be written in terms of the standard deviation and

mean as
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_y. % _% _gm (A8.31)
Ve=V5 = C O . :

Now from eq 4.5,

AP=K,, S (A8.32)

Using eq A8.1,

2 _ Ak 2
o5p = 4K, 0% (A8.33)
Re-arranging eq A8.33 implies

O

AP
O= = A8.34
§ 4K, ( )

Oxalate ion concentration analysis

From Section 2.6, the fraction of oxalate present as a free ion is approximately constant,
thus an analysis using total oxalate concentrations can be used to determine the error. The

total oxalate ion concentration is given by

T, = Tgxz_ -X (A8.35)

where X is given by eq A8.26. Using eqs A8.28 for the error in the initial oxalate

concentration, yields

or— =1/(0.020)" + 0% (A8.36)

ox2”

A8.2 SAMPLE CALCULATION

The values of mg, m, and my from each flask for the samples collected after 5 minutes
from the batch experiment 11/7 are given in Table A8.1. The values of the mean and

standard deviation of the variables in Table A8.1 were calculated using

n n
. x,- 1 —
x= )y —*+ and o, = X;—X
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Table A8.1 Data from batch experiment 11/7 5 at £ =5 minutes.

Replicate my (Number/S00ul)  m, (Lm?*/500pl) ms (Wm3/500ul)
1 64320 1.59%10° 1.01x108
2 61549 1.61x10° 1.04x10%
3 63856 1.61x10° 1.01x108
4 65016 1.67x10° 1.07x108
mean 63685 1.62x10° 1.03x10%
standard deviation, & 1502 3.29x10* 2.81x10°

From the data in Appendix 7 the growth rate obtained from the program Batch at 5 minutes

is 0.052 um/min. The standard error in the growth rate is calculated from eq A8.16

2 = \2
— 1 O-mz 2 I:Vm-,,, ?n3
O~ = — Bm— + - ——
& n\ m n\ 3m, G At

2
=0.052x 1 M +_2_ 0.02%1.03x10’ 2
' 41 1.62x10% ) 4(3x1.62x10%x%0.052%5

=0.006 pm/min

The standard error is approximately 11% of the growth rate.

From the data in Appendix 7 the value of 3, obtained from the program Batch is 3.86x107
wl/min. From eq A8.22 the standard error in B is

alon ¥ 2 -2V :
g |2 me | L2 Mo
o-ﬁO Bo n(m—o) n(ﬁoﬁaAt

2 2
=3.86x10‘4x\[f1‘_(1_502_) +2( —2x0.033 )
4\63685) 4386107 X 63685x 5

=9.11x10~°ul/min

The standard error is approximately 2.4% of the value of Bo-

For the activity product, eq A8.27 is used together with egs A8.28 to A8.31. Firstly, X% is
calculated from eq A8.26
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X = k{5 -l
=(1.58x 107112 x (1.03 %107 - 6.98 x 106)2
=2.75%107°(mol/dm?)*

Substituting eqs A8.15, A8.28 and A8.30, into eq A8.6,

kz(( Vi 75) (0 m_é’jzj

n

(1.58 x10711)? x ((0.02 %1.03%107)? +(0.047 x 6.98 X 106)2)
- 4

2 _
O'y—

=9.33%x 1072 (mol/dm?)?

Substituting eqs A8.15, A8.29 and A8.30 into eq A8.6 gives

o {(vmmS +{ngn?]

x? n

6 % (1.58 % 10‘“)4 ((0.02 x1.03 X 107)2 + (0.047 X 6.98 X 10")2)

4

=1.39 %1072 (mol / dm>)*

As a standard metastable solution was used in experiment 11/7 from Table 3.2 the values of

the initial calcium and oxalate concetrations are 9.81x10™ and 9.81x10 M. Then from eq
A8.27

2 - 2 L
ci_P = (2 w%)(f‘(_))2+ (%+ w%J(X C)2+ [%+ y/%](xo)z + 0%
= (2%0.022)x(9.81x107* x1.96 x 107~

(9.33>< 10712
+

——F +0.022]>< (9.33%10712 x9.81x 107
IOX

9.33x 10712
t| =
2.75%10

+0.022J><(9.33>< 10712 x1.96 x 1074)?

+1.39x107?
= 4.0%x 107 (mol/dm>)*

Taking the square root of this result
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o5 =6.33X 10~% (mol/dm?)?

From eq A8.34, and using the value of K, for total ion concentrations (see eq 5.41),
q g sp q

C—s ~9
op = ZE o _633XI07 ¢ o
4K, 4x4.39x10

which is approximately 2.1% of the value of S, which from Appendix 7 is, 1.74.

Finally, from eq A8.36

or , = \M).OZ o)+
=\@02><1.96><10“‘)2 +9.33x10712

=4.97x10°M

which is approximately 3.5% of the value of the oxalate ion concentration.
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Appendix 9:

CONTINUOUS CRYSTALLISATION
EXPERIMENTAL DATA

In this appendix the experimental data from the continuous crystallisation experiments
described in Chapter 9 are reported. The data given are the moments of the CSDs measured
by the Multisizer as calculated from eq 9.20. The conditions in each of the experiments are

given in Tables 9.1 and 9.2.

The values of the rate constants and independent variables were calculated from the
experimental moments using the methods described in Chapter 9. The units and

abbreviations used for the rate constants in the data are:
o, dilution factor
mj, jth moment, um*/500 pl
tbar, mean residence time, seconds

kB, breakage rate constant, s

gammaB, shear rate for breakage, s

kS, sticking rate constant, s
gammaS$, shear rate for sticking, gt
S, relative supersaturation

G, growth rate (Lm/s)

B30, aggregation rate constant, m’/s
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Expt 20/7, QL=4ml/min

Feed
o
1

m-1
1.54E+03 5.03E+03

m-2/3

Saturated saline
m—1

o

o O A W N =

o 0 b W N =Q

1.20E+03
1.68E+03
1.93E+03
2.05E+03
2.11E+03
2.26E+03

2.26E+02
1.60E+02
1.28E+02
1.09E+02
9.60E+01
8.63E+01

tbar

m-2/3
3.60E+03
5.14E+03
5.92E+03
6.26E+03
6.47E+03
6.87E+03

gammaB
2.08E+01
2.896E+01
3.71E+01
4.40E+01
5.04E+01
5.66E+01

m-1/3
1.89E+04

m-1/3
1.21E+04
1.76E+04
2.05E+04
2.16E+04
2.24E+04
2.36E+04

kB
2.25E-083
2.47E-03
2.62E-03
2.98E-03
3.42E-03
4.10E-03

Metastable solution, S=1.61
m-—1

o

O W N =

o> v oA W NN =R

- b =k ah A =

- s A = 4

.18E+03
.71E+03
.87E+03
.94E+03
.92E+03
.85E+03

.61
.62
.62
.62
.62
.62

m-2/3
3.54E+03
5.10E+03
5.66E+03
5.90E+03
5.84E+03
5.60E+03

tbar
2.26E+02
1.60E+02
1.28E+02
1.09E+02
9.60E+01
8.63E+01

m—-1/3
1.19E+04
1.72E+04
1.95E+04
2.05E+04
2.03E+04
1.95E+04

G
5.33E-04
5.49E-04
5.55E-04
5.58E-04
5.60E-04
5.62E-04

mO
8.16E+04

moO
4.59E+04
6.89E+04
8.08E+04
8.54E+04
8.85E+04
9.29E+04

gammas
3.76E+01
5.36E+01
6.72E+01
7.97E+01
9.13E+01
1.02E+02

moO
4.58E+04
6.60E+04
7.79E+04
B8.22E+04
8.20E+04
7.94E+04

kB
2.25E-03
2.47E-03
2.62E-03
2.98E-03
3.42E-03
4.10E-03

m1/3 m2/3
4.00E+05 2.17E+06

mi/3 m2/3
1.99E+05 9.71E+05
3.06E+05 1.52E+06
3.63E+05 1.83E+06
3.85E+05 1.94E+06
3.99E+05 2.01E+06
4.16E+05 2.09E+06

kS
4.01E-03
2.73E-03
1.83E-03
1.55E-03
1.43E-03
1.21E-03

m2/3 m1
1.01E+06 5.59E+06
1.44E+06 7.89E+06
1.85E+06 1.05E+07
1.96E+06 1.12E+07
2.01E+06 1.17E+07
2.00E+06 1.18E+07

kS RO
3.94E-03 4.15E-15
3.32E-03 3.82E-15
1.83E-03 3.82E-15
1.49E-03 5.29E-15
1.25E-03 1.18E-14
1.23E-03 2.25E-14
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mi m4/3 m5/3 m2
1.28E+07 8.15E+07 5.55E+08 4.05E+09

m1 m4/3 m5/3 m2
5.23E+06 3.07E+07 1.95E+08 1.34E+09
8.34E+06 4.97E+07 3.22E+08 2.26E+09
1.01E+07 6.13E+07 4.01E+08 2.85E+09
1.08E+07 6.56E+07 4.30E+08 3.06E+09
1.12E+07 6.77E+07 4.43E+08 3.14E+09
1.15E+07 6.96E+07 4.54E+08 3.23E+09

m4/3 m5/3

3.38E+07 2.22E+08
4.72E+07 3.06E+08
6.48E+07 4.30E+08
6.97E+07 4.66E+08
7.36E+07 5.02E+08
7.51E+07 5.12E+08

gammaB
2.08E+01
2.96E+01
3.71E+01
4.40E+01
5.04E+01
5.66E+01



Expt 21/7, QL=6ml/min

Feed
o m-1 m-2/3 m-1/3 mo mi/3 m2/3 m1 m4/3 m5/3 m2

1 1.29E+03 4.10E+03 1.49E+04 6.17E+04 2.91E+05 1.52E+086 8.72E+06 5.38E+07 3.58E+08 2.56E+09

Saturated saline
o m-1 m-2/3 m-1/3 mo m1/3 m2/3 m1 m4/3 m5/3 m2

1 1.05E+03 3.15E+03 1.05E+04 3.93E+04 1.66E+05 7.80E+05 4.05E+06 2.30E+07 1.42E+08 9.55E+08
1.67 1.52E+03 4.58E+03 1.54E+04 5.83E+04 2.49E+05 1.19E+06 6.26E+06 3.60E+07 2.25E+08 1.54E+09
2.33 1.59E+03 4.83E+03 1.65E+04 6.34E+04 2. 76E+05 1.34E+06 7.16E+06 4.17E+07 2.64E+08 1.83E+09

3 1.82E+03 5.46E+03 1.82E+04 6.87E+04 2.93E+05 1.40E+06 7.36E+06 4.24E+07 2.67E+08 1.83E+09
3.67 1.94E+03 5.81E+03 1.93E+04 7.23E+04 3.05E+05 1.44E+06 7.52E+06 4.31E+07 2.69E+08 1.85E+09
4.33 1.96E+03 5.87E+03 1.95E+04 7.31E+04 3.09E+05 1.47E+06 7.70E+06 4.44E+07 2.81E+08 1.96E+09

o tbar gammaB kB gammaS kS

1 1.53E+02 3.12E+01 3.26E-03 5.64E+01 5.10E-03
1.67 1.18E+02 4.04E+01 3.60E-03 7.31E+01 2.87E-03
2.33 9.90E+01 4.85E+01 3.46E-03 8.79E+01 2.05E-03

3 8.62E+01 5.60E+01 5.03E-03 1.01E+02 2.01E-03
3.67 7.71E+01 6.31E+01 6.15E-03 1.14E+02 1.94E-03
4.33 7.01E+01 6.98E+01 6.37E-03 1.26E+02 1.69E-03

Metastable solution, S=1.61
o m—1 m-2/3 m-1/3 mo m2/3 m1 m4/3 m5/3

1 1.203E+03 3.70E+03 1.24E+04 4.74E+04 9.94E+05 5.35E+06 3.15E+07 2.02E+08
1.67 1.41E+03 4.29E+03 1.46E+04 5.65E+04 1.22E+06 6.59E+06 3.90E+07 2.51E+08
2.33 1.41E+03 4.33E+03 1.50E+04 5.98E+04 1.3BE+06 7.77E+06 4.76E+07 3.16E+08

3 1.52E+03 4.59E+03 1.57E+04 6.20E+04 1.42E+06 7.91E+06 4.79E+07 3.13E+08
3.67 1.59E+03 4.80E+03 1.65E+04 6.50E+04 1.49E+086 8.34E+06 5.10E+07 3.40E+08
4.33 1.45E+03 4.42E+03 1.53E+04 6.07E+04 1.41E+06 7.93E+06 4.85E+07 3.22E+08

o S tbar G kB kS B30 gammaB
1 1.61 1.53E+02 5.44E-04 3.26E-03 3.46E-03 8.38E-15 3.12E+01
1.67 1.62 1.1BE+02 5.53E-04 3.60E-03 2.63E-03 7.65E-15 4.04E+01
2.33 1.62 ©.90E+01 5.57E-04 3.46E-03 1.43E-03 1.94E-14 4.85E+01
3 1.62 8.62E+01 5.59E-04 5.03E-03 1.38E-03 2.84E-14 5.60E+01
3.67 1.62 7.71E+01 5.61E-04 6.15E-03 8.09E-04 3.97E-14 6.31E+01
4.33 1.62 7.01E+01 5.62E-04 6.37E-03 1.5BE-03 4.48E-14 6.98E+01

— 321 —



Expt 18/7, QL=8ml/min

Feed
o m-1 m-2/3 m-1/3 mo m1i/3 m2/3 m1 m4/3 m5/3 m2

1 1.36E+03 4.36E+03 1.59E+04 6.66E+04 3.16E+05 1.68E+06 9.72E+06 6.10E+07 4.12E+08 3.00E+09

Saturated saline
o m—1 m-2/3 m-1/3 mo m1/3 m2/3 m1 m4/3 m5/3 m2

1 {.24E+03 3.78E+03 1.29E+04 5.00E+04 2.19E+05 1.07E+06 5.79E+06 3.42E+07 2.20E+08 1.55E+09
1.5 1.58E+03 4.82E+03 1.64E+04 6.28E+04 2.73E+05 1.33E+06 7.13E+06 4.20E+07 2.69E+08 1.89E+09
2 1.67E+03 5.11E+03 1.74E+04 6.70E+04 2.91E+05 1,42E+06 7.63E+06 4.50E+07 2.90E+08 2.05E+09
25 1.75E+03 5.36E+03 1.83E+04 7.09E+04 3.10E+05 1.52E+06 8.18E+06 4.83E+07 3.11E+08 2.19E+09
3 1 84E+03 5.60E+03 1.90E+04 7.32E+04 3.18E+05 1.55E+06 8.33E+06 4.93E+07 3.20E+08 2.29E+09
35 1.81E+03 5.54E+03 1.90E+04 7.36E+04 3.23E+05 1.58E+06 8.59E+06 5.11E+07 3.32E+08 2.36E+09

= S SRR T T X

o tbar gammaB kB gammaS kS

1 1.15E+02 4.15E+01 3.05E-03 7.52E+01 4.57E-03
1.5 9.38BE+01 5.10E+01 4.07E-03 9.22E+01 3.36E-03
2 8.07E+01 5.94E+01 4.57E-03 1.08E+02 3.02E-03
2.5 7.15E+01 6.73E+01 4.92E-03 1.22E+02 2.48E-03
3 6.47E+01 7.47E+01 5.60E-03 1.35E+02 2.31E-03
3.5 5.93E+01 8.18E+01 5.51E-03 1.48E+02 2.06E-03

Metastable solution, S=1.61
o m-1 m-2/3 m-1/3 mo m2/3 mt m4/3 m5/3

1 1.19E+03 3.63E+03 1.25E+04 4.97E+04 1.15E+06 6.49E+06 3.98E+07 2.64E+08
1.5 1.42E+03 4.38E+03 1.53E+04 6.07E+04 1.40E+06 7.90E+06 4.84E+07 3.22E+08
2 {.39E+03 4.31E+03 1.52E+04 6.15E+04 1.47E+06 8.34E+06 5.16E+07 3.44E+08
25 1.48E+03 4.58E+03 1.61E+04 6.48E+04 1.54E+06 8.74E+06 5.39E+07 3.58E+08
3 1.31E+03 4.11E+03 1.47E+04 6.12E+04 1.55E+06 9.06E+06 5.72E+07 3.89E+08
3.5 1.18E+03 3.76E+03 1.38E+04 5.87E+04 1.55E+06 9.17E+06 5.86E+07 4.01E+08

Metastable solution, $=2.20
o m-1 m-2/3 m-1/3 mo m2/3 m1 m4/3 m5/3
o  9.8B8E+02 3.04E+03 1.0BE+04 4.54E+04 1.27E+06 7.94E+06 5.42E+07 3.98E+08
3.5 1.25E+03 3.78E+03 1.31E+04 5.37E+04 1.45E+06 9.04E+06 6.18E+07 4.57E+08

Metastable solution, S=1.93
o m-1 m-2/3 m-1/3 mo m2/3 m1 m4/3 m5/3
2  8.51E+02 2.63E+03 9.43E+03 4.02E+04 1.17E+06 7.62E+06 5.42E+07 4.17E+08
3.5 1.02E+03 3.13E+03 1.12E+04 4.77E+04 1.40E+06 9.06E+06 6.45E+07 4.99E+08

Metastable solution, S=2.20
o m-—1 m-2/3 m-1/3 mo m2/3 mi ma4/3 m5/3
2 8.62E+02 2.60E+03 9.10E+03 3.82E+04 1.15E+06 7.87E+06 6.04E+07 5.15E+08
3.5 9.35E402 2.89E+03 1.04E+04 4.50E+04 1.37E+06 9.07E+06 6.55E+07 5.11E+08

Metastable solution, S=1.21
o m~1 m-2/3 m-1/3 mo m2/3 m1 ma4/3 m5/3
2 1.48E+03 4.56E+03 1.59E+04 6.33E+04 1.46E+06 8.18E+06 4.99E+07 3.30E+08
3.5 1.42E+03 4.42E+03 1.57E+04 6.42E+04 1.56E+06 8.94E+06 5.55E+07 3.71E+08

Metastable solution, $=2.21
o m-1 m-2/3 m-1/3 mo m2/3 m1 m4/3 m5/3
2  8.14E+02 2.50E+03 8.94E+03 3.83E+04 1.17E+06 7.91E+06 5.88E+07 4.76E+08
3.5 1.06E+03 3.25E+03 1.15E+04 4.84E+04 1.39E+06 8.95E+06 6.31E+07 4.82E+08

_ A ek ek =
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Expt 18/7, QL=8ml/min

Metastable
o S
1 1.61
1.5 1.62
2 1.62
2.5 1.62
3 1.62
3.5 1.62
Metastable
o S
2 2.19
3.5 2.20
Metastable
o S
2 1.93
3.5 1.93
Metastable
o S
2 2.20
3.5 2.20
Metastable
o S
2 1.21
3.5 1.22
Metastable
o S
2 2.21
3.5 2.21

solution, S=1.61
tbar G

1.15E+02 5.44E-04
9.38E+01 5.51E-04
8.07E+01 5.55E-04
7.15E+01 5.57E-04
6.47E+01 5.59E-04
5.93E+01 5.60E-04
solution, $=2.20
tbar G
8.07E+01 2.04E-03
5.93E+01 2.07E-03
solution, S=1.93
tbar G
8.07E+01 1.26E-03
5.93E+01 1.27E-03
solution, S$=2.20
tbar G
8.07E+01 2.08E-03
5.93E+01 2.0BE-03
solution, S=1.21
tbar G
8.07E+01 6.69E-05
5.93E+01 6.99E-05
solution, S$=2.21
tbar G
8.07E+01 2.11E-03
5.93E+01 2.12E-03

kB
3.05E-03
4.07E-03
4.57E-03
4.92E-03
5.60E-03
5.51E-03

kB
4.57E-03
5.51E-03

kB
4.57E-03
5.561E-03

B
4.57E-03
5.51E-03

kB
4.57E-03
5.51E-03

kB
4.57E-03
5.51E-03

kS
3.77E-03
2.46E-03
2.14E-03
1.73E-03
1.32E-03
1.22E-03

kS
3.50E-03
2.22E-03

kS
3.60E-03
1.77E-03

kS
3.59E-03
2.14E-03

kS
2.13E-03
1.40E-03

kS
3.55E-03
2.40E-03

B30
1.57E-14
1.95E-14
3.03E-14
2.91E-14
6.02E-14
7.74E-14

B0
8.84E-14
9.23E-14

B30
1.21E-13
1.43E-13

B30
1.40E-13
1.62E-13

[]0]
2.19E-14
4.34E-14

B0
1.40E-13
1.28E-13
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gammaB
4.15E+01
5.10E+01
5.94E+01
6.73E+01
7.47E+01
8.18E+01

gammaB
4.57E-03
5.51E-03

gammaB
4.57E-03
5.51E-03

gammaB
4.57E-03
5.561E-03

gammaB
4.57E-03
5.51E-03

gammaB
4.57E-03
5.51E-03



Expt 22/7, QL=10ml/min

Feed
[0
1

m-1 m-2/3
1.34E+03 4.14E+03

Saturated saline

m-1/3
1.45E+04 5.76E+04

mO

o m—1 m-2/3 m-1/3 mo

1 1.26E+03 3.78E+03 1.26E+04 4.73E+04
1.4 1.38E+03 4.16E+03 1.40E+04 5.34E+04
1.8 1.54E+03 4.63E+03 1.55E+04 5.83E+04
2.2 1,56E+03 4.71E+03 1.59E+04 6.01E+04
2.6 1.56E+03 4.75E+03 1.61E+04 6.12E+04
3 1.62E+03 4.87E+03 1.64E+04 6.21E+04
o tbar gammaB kB gammaS

1 9.24E+01 5.19E+01 3.43E-03 9.40E+01
1.4 7.81E+01 6.15E+01 3.16E-03 1.11E+02
1.8 6.86E+01 7.03E+01 4.11E-03 1.27E+02
2.2 6.16E+01 7.84E+01 4.70E-03 1.42E+02
2.6 5.62E+01 8.62E+01 4.67E-03 1.56E+02
3 5.20E+01 9.36E+01 4.38E-03 1.70E+02

Metastable solution, S=1.61

o m—1 m-2/3 m-1/3 mo

1 1.12E+03 3.40E+03 1.16E+04 4.51E+04
1.4 1.28E+03 3.91E+03 1.35E+04 5.30E+04
1.8 1.41E+03 4.27E+03 1.45E+04 5.63E+04
2.2 1.36E+03 4.16E+03 1.44E+04 5.66E+04
2.6 1.24E+03 3.81E+03 1.33E+04 5.33E+04
3 1.25E+03 3.86E+03 1.35E+04 5.41E+04
o S tbar G kB

1 1.61 9.24E+01 5.48E-04 3.43E-03
1.4 1.62 7.81E+01 5.53E-04 3.16E-03
1.8 1.62 6.86E+01 5.56E-04 4.11E-03
2.2 1.62 6.16E+01 5.58E-04 4.70E-03
2.6 1.62 5.62E+01 5.59E-04 4.67E-03
3 1.62 5.20E+01 5.60E-04 4.38E-03

m1/3 m2/3
2.61E+05
m1i/3 m2/3
2.00E+05
2.29E+05
2.48E+05
2.57E+05
2.62E+05
2.66E+05
kS
4.36E-03
3.06E-03
2.45E-03
2.43E-03
2.07E-03
1.37E-03
m2/3 mi
9.98E+05 5.50E+06
1.20E+06 6.68E+06
1.24E+06 6.79E+06
1.28E+06 7.09E+06
1.24E+06 6.97E+06
1.26E+06 7.08E+06
kS B30
3.40E-03 3.12E-14
1.50E-03 3.05E-14
1.42E-03 2.67E-14
8.35E-04 4.36E-14
1.21E-03 5.97E-14
9.84E-04 5.66E-14
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m1 m4/3

mi m4/3

m4/3 m5/3

3.31E+07 2.16E+08
4.06E+07 2.68E+08
4.06E+07 2.64E+08
4.30E+07 2.84E+08
4.26E+07 2.83E+08
4.33E+07 2.89E+08

gammaB
5.19E+01
6.15E+01
7.03E+01
7.84E+01
8.62E+01
9.36E+01

m5/3

m5/3

9.45E+05 4.94E+06 2.83E+07 1.78E+08
1.10E+06 5.79E+06 3.36E+07 2.13E+08
1.18E+06 6.23E+06 3.60E+07 2.27E+08
1.22E+06 6.41E+06 3.67E+07 2.30E+08
1.26E+06 6.62E+06 3.81E+07 2.40E+08
1.28E+06 6.79E+06 3.96E+07 2.55E+08

m2

1.32E+06 7.35E+06 4.45E+07 2.92E+08 2.08E+09

m2

1.23E+0¢
1.50E+09
1.58E+09
1.58E+09
1.65E+09
1.82E+09





