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We generalize a class of magnetically charged black holes nonminimally coupled to two scalar fields
previously found by one of us to the case of multiple scalar fields. The black holes possess a novel type
of primary scalar hair, which we call a contingent primary hair: although the solutions possess degrees
of freedom which are not completely determined by the other charges of the theory, the charges
necessarily vanish in the absence of the magnetic monopole. Only one constraint relates the black hole
mass to the magnetic charge and scalar charges of the theory. We obtain a Smarr-type thermodynamic
relation, and the first law of black hole thermodynamics for the system.We further explicitly show in the
two-scalar-field case that, contrary to the case of many other hairy black holes, the black hole solutions
are stable to radial perturbations.

DOI: 10.1103/PhysRevD.70.124012 PACS numbers: 04.70.Bw, 04.70.Dy, 11.25.–w
I. INTRODUCTION

In classical general relativity, no-hair theorems [1]
impose strong constraints on the possibility of obtaining
black hole solutions of the Einstein equations coupled to
nontrivial scalar fields. A crucial ingredient for their
proof is that the scalars be minimally coupled to gravity
and other fields. When this condition is relaxed new
possibilities emerge for evading the no-hair theorems.

One of the first investigations was undertaken by
Bekenstein [2], who attempted to show that a nontrivial
black hole solution exists for a conformally coupled
scalar field. Although the scalar field diverges at the
horizon, Bekenstein argued that this solution neverthe-
less admits a physical interpretation. Unfortunately, a
more detailed analysis of the problem casts serious doubt
on this [3]. We will therefore take the view that scalar
fields should be regular at the horizon for genuine black
hole solutions.

Nontrivial scalar hair is possible, however, when black
holes are coupled to scalar fields with nonlinear self-
interactions. Such solutions were first found in the case
of gravity coupled to the Skyrme model [4], and subse-
quently for the Einstein-Yang-Mills-Higgs model [5], and
other generalizations. The large literature on this topic
has been recently reviewed in Ref. [6].What appears to be
characteristic of the class of black holes with nonlinear
self-interactions is that the scalar fields fall off very
rapidly at spatial infinity—e.g., exponentially fast —
and hence the asymptotic scalar charges vanish. The
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scalar hair is characterized instead by nontrivial charges
on the horizon.

A third possibility is that of minimally coupled scalar
fields with potentials, V���, which violate the dominant
energy condition (DEC) [7–9]. In single scalar field mod-
els, the DEC is equivalent to V��� � 0, and thus one must
choose potentials for which V��� < 0 for some field
values. Examples of asymptotically flat black hole solu-
tions have been found for cases in which V��� < 0 every-
where [8], and for cases in which V��� possesses at least
one global minimum at negative values [7,9]. Both ana-
lytic [7,8] and numerical [7,9] examples are known.

A final possibility is to consider black holes with scalar
fields which are nonminimally coupled to gauge fields.
Such models have been extensively investigated because
they arise naturally in Kaluza-Klein theories and in the
effective low-energy limit of string theory, where the
dilaton plays a nontrivial role. In all these models one
can find black hole solutions with nonzero scalar charges
at spatial infinity [10,11]. An analogous phenomenon can
be shown to take place also in the pure dilaton-gravity
sector of effective string theories, when one takes into
account the coupling of the dilaton to gravity via Gauss-
Bonnet terms [12].

For this class of nonminimally coupled models with
nonzero asymptotic scalar charges, however, the scalar
charges in question are not independent parameters, but in
all cases are a given function of the other asymptotic
charges which characterize the solution, namely, the
Arnowitt-Deser-Misner (ADM) mass and the electric
and magnetic charges, etc., As a result such scalar
charges have been called secondary hair by the authors
of Refs. [13,14], to distinguish them from the theoretical
possibility of a primary hair, namely, an asymptotic
scalar charge which is completely independent of the
other charges.
-1  2004 The American Physical Society
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In light of all the known solutions [6] one may there-
fore conjecture [14] that a weaker form of the no-hair
property still holds, namely, that for theories which sat-
isfy the DEC black hole solutions can be classified by a
small number of parameters, which in the case of asymp-
totic charges include only conserved charges such as
mass, angular momentum and gauge charges, but no
asymptotic scalar charges.

Even this no-hair conjecture does not appear to be
valid in general, however. In a recent paper by one of us
[15] the properties of magnetically charged black holes
coupled to a dilaton, �, and an additional modulus field,
�, according to the field equations generated by the 4-
dimensional action [16]

S �
1

4

Z
d4x

�������
�g

p
f�R� 2@	�@	�� 2@	�@	�

� 	e�2� � �
2�
2e�2q�
F	F	g; (1)

were studied using techniques from the general theory of
dynamical systems, which have been previously applied
to static spherically symmetric solutions of gravity
coupled to scalar fields in a number of contexts [17]. In
Ref. [15] it was shown that the regular black hole solu-
tions were parametrized by an additional degree of free-
dom in addition to the mass, M, and magnetic charge, Q,
and it was conjectured that this degree of freedom could
be considered to be a ‘‘primary scalar hair’’.

An important issue in this context is that of stability of
the hairy solutions. The physical relevance of the solu-
tions would in fact be spoiled by the presence of insta-
bilities. Instabilities are known to be present in the case of
Einstein-Yang-Mills models [18,19] and the DEC-
violating solutions for which the stability issue has been
most thoroughly studied [9]. Dilaton black holes with a
single scalar do not appear to suffer from instability
problems [20,21]; however, they possess only secondary
hair.

It is the aim of the present paper to clarify and extend
the results of Ref. [15] by determining various relations
satisfied by the charges, and discussing the stability of the
solutions. We will find, in particular, that although the
scalar degree of freedom cannot be considered to be a
primary hair in the strictest sense, since it must neces-
sarily vanish if the electromagnetic field vanishes, the
regular static spherically symmetric black hole solutions
are not completely specified by their mass and magnetic
charge. The solutions therefore are potentially of consid-
erable physical interest as the only known static spheri-
cally symmetric solutions with nontrivial scalar charges
at spatial infinity which are not completely determined by
the other asymptotic charges of the theory, and therefore
provide a counterexample to some forms of the no-hair
conjecture. We will show that the solutions are stable,
adding significance to their interpretation.
124012
Intuitively, one might attempt to understand the physi-
cal basis of the no-hair conjecture as arising from the fact
there is no scalar equivalent of Gauss’s law to give a
conserved charge. The presence of the electromagnetic
field supports the scalar charge in the case of models with
a secondary scalar hair since the scalar coupling enters
into the equivalent of Gauss’s law. In the solutions de-
scribed here the scalar charges are also supported by the
presence of the electromagnetic field. However, they are
not entirely determined by it.

It is quite consistent with past usage to adopt the
terminology ‘‘primary hair’’ for the additional degrees
of freedom which arise in the model [15]. However, the
fact that the scalar charges are not entirely independent of
the electromagnetic field suggests a new terminology
might be appropriate, as a way of capturing the finer
distinctions that the present model has revealed. We will
therefore refer to the scalar charges which could theoreti-
cally exist in the absence of additional nonzero gauge
charges as elementary primary hair, as would be consis-
tent with the original aims of the first ‘‘no-hair’’ theorems
[1]. The additional degrees of freedom which arise in the
present model could by contrast be deemed to be a con-
tingent primary hair.
II. MULTISCALAR BLACK HOLE SOLUTIONS

Rather than restricting our attention to solutions of the
field equations obtained from varying the action (1), we
will instead consider the somewhat more general action
for N scalar fields coupled to a single U�1� Abelian gauge
field according to

S �
1

4

Z
d4x

�������
�g

p
(
�R� 2

XN
a�1

@	�a@	�a

�
XN
a�1

�
a�
2e�2ga�a

F	F	

)
; (2)

where ga � 0, since the problem is not significantly more
complicated. Rather than using the coordinates which
were exploited in [15], we will take static spherically
symmetric solutions with coordinates

d s2 � �e2Udt2 � e�2Udr2 � R2d	2
2; (3)

where U � U�r� and R � R�r�, and d	2
2 is the standard

round metric on a 2-sphere. We take R > 0 without loss of
generality. We are primarily interested in black holes
solutions with at least one regular horizon which are
asymptotically flat as R ! 1.

If we assume that the gauge field is given by a magnetic
monopole configuration with components

F�̂1�̂2
�

Q

R2 ��̂1�̂2
(4)

in an orthonormal frame then the Maxwell-type equa-
-2



MULTISCALAR BLACK HOLES WITH CONTINGENT . . . PHYSICAL REVIEW D 70, 124012 (2004)
tion,

XN
a�1

�
a�
2@		e

�2ga�a �������
�g

p
F	
 � 0; (5)

is satisfied identically, and the remaining field equations
obtained from variation of the action (2) take the form

	R2e2U�a0
0 � �
ga

R2 Q2
ae

�2ga�a
; (6)

R2�e2U�00 � 2RR0�e2U�0 �
2

R2

XN
a�1

Q2
ae

�2ga�a
; (7)

R00

R
� �

XN
a�1

�a02; (8)

	e2U�R2�0
0 � 2�
2

R2

XN
a�1

Q2
ae

�2ga�a
(9)

where

Qa � 
aQ (10)

and a prime denotes d=dr. By virtue of the Bianchi
identity one of Eqs. (6)–(9) can be derived from the
others.

One should note that in contrast to many simpler mod-
els [10,11,22] there is no simple duality relation between
magnetic and electric solutions in the theory, on account
of the multiscalar exponential coupling term which mul-
tiplies the electromagnetic part of the action (2). Thus we
cannot simply read off the properties of solutions with an
electric field in place of the monopole ansatz (4). It might
be tempting to think of the action (2) as a special case of
an alternative model in which each scalar field is associ-
ated with an independent U�1� gauge field. However, (2) is
not a simple truncation of such a model, since such an
increase of the number of U�1� fields would lead to N
independent Maxwell-type equations, each with its own
single scalar coupling, rather than a single equation of the
form (5). Thus the present model can be expected to
display differences in comparison to models in which
moduli and several independent U�1� fields are present,
allowing for the choice of duality-preserving combina-
tions [22,23].

A. Nature of horizons

A straightforward proof by contradiction of the type
used in Refs. [24] may be used to establish that the
solutions of (6)–(9) possess at most one regular horizon.
We first note that the sum of Eqs. (7) and (9) gives

	e2UR2
00 � 2 (11)

which may be integrated to yield
124012
e 2UR2 � r2 � �r � �; (12)

for arbitrary constants � and �. We assume that (12)
possesses at least one real zero in order that there may
exist at least one horizon and thus rewrite (12) as

e 2UR2 � �r � r���r � r��; (13)

where � � r� � r� and � � r�r�, and we may assume
without loss of generality that r� � r�. We substitute
(13) into (6) to obtain

	�r � r���r � r���a0
0 � �
ga

R2 Q2
ae

�2ga�a
; (14)

Let us now suppose that, r� � r�, both values r � r�
correspond to regular horizons, and that ga > 0 for any
one of the scalar fields. Since the scalar is smooth at the
horizon, if we evaluate (14) at r � r� we obtain

�r� � r���
a0�r�� � �

ga

R2�r��
Q2

ae
�2ga�a�r�� (15)

from which it follows that �a0�r�� < 0. Similarly, if we
evaluate (14) at r � r� we see that �a0�r�� > 0. Now
given that �a�r� is assumed to be smooth, it follows
that it must have a maximum at an intermediate value
r � r0 such that r� < r0 < r�. However, if we evaluate
(14) at r � r0 we obtain

�r0 � r���r0 � r���a00�r0� � �
ga

R2�r0�
Q2

ae
�2ga�a�r0�

(16)

from which it follows that �a00�r0� > 0, giving a mini-
mum, which is a contradiction. Thus if �a is regular at
r � r� it cannot also be regular at r � r�. The point r �
r� should thus correspond to a curvature singularity.

Similarly, if we assume that ga < 0, then all the signs
in the above arguments are reversed but we still obtain
contradiction. It therefore follows that the solutions can at
most possess one regular horizon, at r � r�.

It is also useful to note that if ga > 0 then �a must be
monotonically decreasing on the domain of outer com-
munications of regular black hole solutions, since if it
reached a minimum at a finite value r0 > r� then at such a
point Eq. (15) would once again be true, but now with the
implication that �a00�r0� < 0, again giving a contradic-
tion. Likewise if ga < 0 then �a is monotonically in-
creasing for r � r�.

The function R�r� must be monotonically increasing in
the domain of outer communications for either sign of ga,
since by (8) R00 < 0 at finite r for any solutions with
nontrivial scalars. This leaves a global maximum as the
only possible turning point for the function R�r�, but such
a choice would be inconsistent with asymptotic flatness,
since by (13) R � r as r ! 1, given e2U ! 1.
-3
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B. Constraints on charges

An additional first integral of the field equations may
be extracted as follows: take the difference of (7) and (9),
eliminate terms involving �e2U�00 using (13), and elimi-
nate terms involving e�2ga�a

using (6). Integrating the
resulting equation one obtains

R2e2U
XN
a�1

�a0

ga
� RR0e2U � r � c (17)

where c is an arbitrary constant. In order to obtain
solutions which are regular at the outer horizon, it is in
fact necessary to choose c � r�. With this choice, and
again using (13), (17) may be integrated to yield

A0 exp

"XN
a�1

�a

ga

#
�

R
r � r�

; (18)

where A0 is an arbitrary constant. From (18) we see that
r � r� will correspond to a singularity, as expected from
above.

Unfortunately, it does not appear to be possible to
obtain an analytic solution in closed form to the remain-
ing field equations. Since one of the N scalar Eqs. (6) can
be eliminated with the use of (18), and since the function
e2U is given in terms of the function R according to (13),
we are left with one first order ODE for R, namely 

R02

R2 �
XN
a�1

�a02

!
�r � r���r � r�� � 2

R0

R
�r � M� � 1

�
1

R2

XN
a�1

Q2
ae

�2ga�a
(19)

coupled nonlinearly to N � 1 independent second order
ODEs (14) for the scalars. This is equivalent therefore to a
system of 2N � 1 first order ODEs, which can be solved
numerically.

Much useful analytic information about the solutions
can be obtained in relation to the values of the ADM
mass, M, and the N scalar charges, �a, which correspond
to the O�r�1� terms in the asymptotic expansions at
spatial infinity,

e 2U � 1�
2M
r

�
u2

r2
� . . . ; (20)

�a � �a
1 �

�a

r
�

�a
2

r2
� . . . ; (21)

R2 � r2


1�

R1

r
�

R2

r2
� . . .

�
: (22)

The O�r� coefficient, R1, of the function R2 is a gauge
parameter whose value fixes the choice of origin of the
radial coordinate, r.We will use this gauge freedom to set

R1 � 0:
124012
Expanding Eq. (18) at spatial infinity by use of (21) and
(22) it follows from the leading order term that the
constant A0 is related to the moduli vacuum charges,
�a

1, according to

A0 � exp

"
�
XN
a�1

�a
1

ga

#
: (23)

Furthermore, if we also make use of (20) it follows from
the next to leading order terms in (13) and (18) that the
following relations hold between the constants r� and the
asymptotic charges

r� � M �

 
M �

XN
a�1

�a

ga

!
: (24)

The constraint that r� � r� then yields the inequality

XN
a�1

�a

ga
� M; (25)

which is saturated for the extreme solutions for which the
horizon is degenerate with the inner singularity.

With definitions of the asymptotic charges in hand we
can now integrate various field equations between the
horizon, r � r�, and spatial infinity to obtain constraints
on the charges. If the scalar Eqs. (6) are integrated on this
interval, for example, we find that

�a � gaQ2
a

Z 1

r�
dr

e�2ga�a

R2 : (26)

We note that for solutions which are regular at the hori-
zon, given that the integrand of (26) is positive it follows
that

�a

ga
� 0 (27)

for each scalar charge, and furthermore �a � 0 if and
only if Q � 0. Thus the charges �a do not constitute an
elementary primary scalar hair according to the defini-
tion adopted in the Introduction.

At first sight one might be tempted to assume that
Eqs. (26) provide constraints on all N scalar charges,
and that we are therefore dealing with a system with
purely secondary scalar hair. However, this is not in fact
the case since the lower limit of integration, r�, already
depends on the ADM mass and scalar charges according
to (24).

The nature of the relations (26) is more readily under-
stood if we rewrite them in terms of functions ~�a �
�a � �a

1, a � 1 . . .N, which have the leading order be-
havior ~�a�r� � �a=r � . . . at spatial infinity. We then see
that Eqs. (26) can be rewritten as

�a
1 �

1

2ga
ln

"
gaQ2

a

�a

Z 1

r�
dr

e�2ga
~�a

R2

#
(28)
-4
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for �a � 0. Since the bounds of integration are indepen-
dent of the moduli vacuum charges, we see that the
relations (26) or (28) are constraints which determine
the �a

1 in terms of Q, M and �a.
Let us turn to the question of whether there exist any

constraints on the scalar charges �a. In fact, there ap-
pears to be only one additional constraint on the asymp-
totic charges. This may be determined by noting that if
one multiplies each of the scalar Eqs. (6) by 2R2e2U�a0

and then takes the sum of the resulting N equations plus
1
2 R2�e2U�0 times the difference of Eqs. (9) and (11), one
obtains the expression

d

dr

(
1

4
	R2�e2U�0
2 �

XN
a�1

	�R2e2U�a0�2


)

�
d

dr

(
e2U

XN
a�1

Q2
ae

�2ga�a

)
(29)

We may integrate Eq. (29) from r � r� to spatial infinity,
and use (13) and (24) to obtain the following constraint
on the charges

XN
a�1

�2
a � 2M

XN
a�1

�a

ga
�

 XN
a�1

�a

ga

!
2

� �Q2; (30)

where

�Q 2 �
XN
a�1

�Q2
a (31)

with

�Q a � e�ga�a
1Qa � 
ae

�ga�a
1Q: (32)

The quantity �Q can be thought of as the magnetic mono-
pole charge normalized by the weighted sum of the
moduli vacuum charges. On account of the possibility of
different vacuum moduli charges, the individual scalars
can effectively ‘‘see’’ different magnetic monopole
charges, �Qa.

Using Eq. (30) we obtain the following expression
equivalent to (24)

r� � M �

"
M2 �

XN
a�1

�2
a � �Q2

#
1=2

; (33)

and �Q2 is bounded above according to

�Q 2 � M2 �
XN
a�1

�2
a: (34)

The constraint (30) reduces the number of independent
scalar charges to N � 1. Do any further constraints re-
main to be found? In the N � 2 case of two scalar fields
this cannot be the case, given the numerical results of
Fig. 1 and the results of the dynamical systems analysis
of Ref. [15]: any further constraints would mean we no
124012
longer had a primary hair in contradiction with the results
derived there. We will argue that no further constraints
exist for N > 2 either. In particular, if further constraints
exist on the charges then it would be possible to extract
them from the field equations. If we consider the field
equations at spatial infinity, then solving order by order in
inverse powers of r no constraints on the charges �a are
found, though we do find that all coefficients of terms
O�r�n�, n � 2, in the asymptotic series (20)–(22) are
completely determined. At the next order, for example,

u2 � �Q2; (35)

�a
2 � M�a �

1

2
ga

�Q2
a; (36)

R2 � �
XN
a�1

�2
a: (37)

Solutions with the asymptotic expansions (20)–(22) in-
clude many which correspond to naked singularities
rather than black holes. The requirement that solutions
also have a regular horizon leads to the further con-
-5
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straints (28) and (30) found upon integrating the inde-
pendent field equations from r � r� to spatial infinity, as
above. However, we can obtain no more than one con-
straint for each independent field Eq. (14) and (19), and
the relations (28) and (30), which give one constraint for
each equation, exhaust the possibilities. Thus we find that
there are N � 1 independent parameters among the N
scalar charges, �a.

C. Thermodynamic quantities

Even in the absence of complete analytic solutions,
some thermodynamic relations may be obtained, given
that the black hole temperature and entropy are defined at
the horizon, r�, which is related to the mass by (24). In
particular, let us evaluate the derivative of (13) at the
horizon. In terms of the surface gravity, " � 1

2 �e
2U�0jr�r� ,

the horizon area AH � 4#R2�r��, and substituting for
r� from (24) we then find

M �
"AH

4#
�
XN
a�1

�a

ga
: (38)

We now define a magnetostatic potential, $�r�, according
to

�@r$ �

"XN
a�1

�
a�
2e�2ga�a

#
�Ftr (39)

�

"XN
a�1

�
a�
2e�2ga�a

#
Q

R2 : (40)

We integrate (40) from r � r� to r � 1, and use (26) to
find that the magnetostatic potential of the horizon is
given by

$H � $�r�� �
1

Q

XN
a�1

�a

ga
: (41)

It then follows that (38) is equivalent to the Smarr-type
relation

M �
"AH

4#
� Q$H : (42)

For completeness, we also note that according to (24),
the mass M is a homogeneous function of degree 1

2 in
AH , and of degree one in each �a. The appropriate first
law of black hole mechanics for the system is therefore

dM � TdS �
XN
a�1

d�a

ga
(43)

where we have identified the temperature, T � "=�2#�,
and entropy, S � 1

4AH , in the usual fashion. There is no
independent variation dQ in (43), since Q is related to the
scalar charges via the constraint (30). Indeed, for adia-
batic variations
124012
dQ �
1

$H

XN
a�1

d�a

ga
(44)

Interestingly enough, given the form of Eq. (24) for r�,
there is no further contribution to the first law from
independent variations of the vacuum moduli charges,
�a

1, as there is in the case of other theories such as those
of Refs. [25]. In view of the relations (28) this is to be
expected.

III. LINEAR STABILITY

In many cases hairy black holes are unstable. In this
section we examine whether this is the case also for our
solutions. It turns out that our solutions are stable against
linear radial perturbations. The general perturbations of
the solutions in the case of a single scalar field (dilaton)
has been studied in great detail in [20], using the methods
of Ref. [26], and there stability has been proved. The
calculations were, however, already very involved in
that relatively simple case, and hence, following most
of the literature on the subject [18,19], we prefer to limit
ourselves to the study of radial perturbations. Moreover,
we shall consider only the case of two scalar fields.

We consider the action (1), and for simplicity we put
q � 1, 
2 � 1, since considering the more general set of
coupling parameters in the N � 2 case of Eq. (2) does not
affect our conclusions.

For the discussion of stability, it is convenient to use
coordinates in which the metric takes the form

d s2 � �e��R;t�dt2 � e��R;t�dR2 � R2d	2
2; (45)

with

� � ��t; R�; � � ��t; R�; (46)

and the magnetic field is given in an orthonormal basis by

F�̂1�̂2
� Q��̂1�̂2

(47)

In these coordinates, the field equations read

�00 �



�0 ��0

2
�

2

R

�
�0 � e���



���

_�� _�

2
_�
�

� �
Q2

R4 e
��2�; (48)

�00 �



�0 ��0

2
�

2

R

�
�0 � e���



���

_�� _�

2
_�
�

� �
Q2

R4 e
��2�; (49)

�0 � R	�02 ��02 � e���� _�2 � _�2�
 �
1� e�

R

�
Q2

R3 �e
��2� � e��2��; (50)
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�0 � R	�02 ��02 � e���� _�2 � _�2�


�
1� e�

R
�

Q2

R3 �e
��2� � e��2��; (51)

_� � 2R� _��0 � _��0�; (52)

�00 �



�0

2
�

1

R

�
��0 ��0� � e���



���

_�� _�

2

�
_�

� 2	e���� _�2 � _�2� � ��02 ��02�


�
2Q2

R4 �e��2� � e��2��; (53)

where the prime and the dot denote differentiation with
respect to R and t, respectively.

We perturb the field equations by time-dependent lin-
ear perturbations of the form

��R; t� � ��R� � &��R; t�ei!t;

��R; t� � ��R� � &��R; t�ei!t;

��R; t� � ��R� � &��R; t�ei!t;

��R; t� � ��R� � &��R; t�ei!t;

where the perturbations are assumed small and the func-
tions ��R�, ��R�, ��R� and ��R� denote the time-
independent unperturbed solutions of the field equations.
We did not perturb the Maxwell field since the elec-
tromagnetic Bianchi identities imply that the monopole-
like solution (47) must be independent of the radial
coordinate.

The perturbed equations then read

&�00 �



�0 ��0

2
�

2

R

�
&�0 �

�0

2
�&�0 � &�0� � e���& ��

� �
Q2

R4 e
��2��&�� 2&��; (54)

&�00 �



�0 ��0

2
�

2

R

�
&�0 �

�0

2
�&�0 � &�0� � e���& ��

� �
Q2

R4 e
��2��&�� 2&��; (55)

&�0 � 2R��&�0 ��&�0� �
e�

R
&�

�
Q2

R3 	e
��2��&�� 2&�� � e��2��&�� 2&��
;

(56)
124012
&�0 � 2R��&�0 ��&�0� �
e�

R
&�

� �
Q2

R3 	e
��2��&�� 2&�� � e��2��&�� 2&��
;

(57)

& _� � 2R��0& _���0& _��; (58)

&�00 �



�0 �

�0

2
�

1

R

�
&�0 �



�0

2
�

1

R

�
&�0 � e���& ��

� �4��0&�0 ��0&�0� �
2Q2

R4 	e��2��&�� 2&��

� e��2��&�� 2&��
: (59)

Equation (58) can be immediately integrated. With
suitable boundary conditions it yields

&� � 2R��0&���0&��: (60)

The problem of stability can then be reduced to the
study of the perturbation of the scalar fields � and �
[18,19]. After long manipulations of the perturbed equa-
tions, one can obtain a coupled system of second order
linear equations for &� and &�:

&�00 �



�0 ��0

2
�

2

R

�
&�0 � A�R�&�� C�R�&�

� e���& ��; (61)

&�00 �



�0 ��0

2
�

2

R

�
&�0 � C�R�&�� B�R�&�

� e���& ��; (62)

where

A�R� � �2R
�
2�0�00 �



�0 ��0

2
�

3

R

�
�02



� 2
�
�00 �



�0 ��0

2
�

2

R

�
�0


; (63)

B�R� � �2R
�
2�0�00 �



�0 ��0

2
�

3

R

�
�02



� 2
�
�00 �



�0 ��0

2
�

2

R

�
�0


; (64)

C�R� � �2R
�
�0�00 ��00�0 �



�0 ��0

2
�

3

R

�
�0�0


:

(65)

In Schwarzschild coordinates (45) the previous equa-
tions are not regular at the horizon. Therefore, it neces-
sary to define new ‘‘tortoise’’ coordinates, given by [19]
-7
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FIG. 2. The potentials V1 and V2 for the exact solution, with
different values of b=a, and hence of the horizon. The extremal
case corresponds to horizon at R � 0.
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R� �
Z

e�����=2dR:

Defining new fields

u � R&�; v � R&�;

and using the explicit time-dependence of the perturba-
tive modes, one can finally put the stability Eqs. (61) and
(62) in the Schrödinger form

d2u
dR�2

� !2u � Au; (66)

where u is the vector of components �u; v� and A is a
symmetric matrix with entries

A11 � �



A �

�0 ��0

2R

�
e���; A12 � A21 � �Ce���;

A22 � �



B �

�0 ��0

2R

�
e���:

The matrix A can be diagonalized, and has eigenvalues

V1;2 �
1

2
	�A11 � A22� �

������������������������������������������
�A11 � A22�

2 � 4A2
12

q

:

The classical solutions are stable under linear perturba-
tions if the potentials V1;2 are everywhere positive.
This can be proved by generalizing the arguments of
Chandrasekhar [26]. In fact, (66) can be written as

@2u
@t2

�
@2u
@R�2 �Au � 0: (67)

Multiplying (67) by @uy=@t and integrating over R�, one
gets

Z 
@uy

@t
@2u
@t2

�
@uy

@t
@2u
@R�2 �

@uy

@t
Au

�
dR�:

After integrating the second term by parts, and adding
the complex conjugate equation, one obtains the energy
integral

Z 
��������@u
@t

��������2
�

�������� @u
@R�

��������2
�uyAu

�
dR� � const: (68)

If the last two terms in the integral are bounded and
positive definite, it follows that the integral of j@u=@tj2

is also bounded, ruling out any exponential growth of the
perturbations. In our case, it is sufficient to show that
uyAu is positive. This can be easily checked by diago-
nalizing the matrix A. If the eigenvalues V1;2 are non-
negative functions, then uyAu is clearly positive.

This can be readily checked for the exact solutions. In
the other cases, one has of course to resort to numerical
calculations. Let us consider for example the solution
with � � � [15]. This can be written as
124012
ds2 � �
�r � r���r � r��1=3

r4=3
dt2 �

r4=3dr2

�r � r���r � r��
4=3

� r2=3�r � r��
4=3d	2; (69)

e�2� � e�2� �



1�

r�
r

�
2=3

: (70)

In terms of the coordinate R such that the metric takes the
form (45), one has

e � �
�a2 � 2a�� �2�1=3�a � b�� �2�

�a2 � �� �2�4=3
; (71)

e � �
R�a2 � �2�2�a2 � a�� �2�1=3

�R3 � 4a3��2�a2 � 2a�� �2�1=3�a2 � b�� �2�
;

(72)

e�2� � e�2� �



a2 � 2a�� �2

a2 � a�� �2

�
2=3

; (73)

where a � r�=3, b � r� � r�=3, and

� �

���������������������������������������������������������
R3 � 2a3 �

����������������������������
R3�R3 � 4a3�

q
3

r
: (74)
-8



20 40 60 80 100 120
R

0.05

0.1

0.15

0.2

V1

20 40 60 80 100 120
R

0.05

0.1

0.15

0.2

V2

FIG. 3. The potentials V1 and V2 for numerical solutions with
fixed values of r� and r�, and variable third independent
parameter. The height of the peak increases with the value of
the ratio between the scalar charges. The lowest one corre-
sponds to �� � ��.
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In these coordinates, the singularity is located at R � 0,
and the horizon at R � �b � a�2=3�b � 2a�1=3.

One can now substitute the metric functions in (66).
The analysis is greatly simplified by the fact that for this
solution � � � and hence A�R� � B�R�. The equations
readily separate into two independent equations for u � v
and u � v, with potentials V1 � A11 � A12 and V2 �
A11 � A12, respectively.

The potentials are plotted for different values of the
ratio r�=r� in Fig. 2. They vanish at the horizon and at
infinity and are regular and positive in the interval. We
can hence deduce the stability of the solution with
� � �.

In the general case, numerical calculations show that
the behavior of V1;2 is qualitatively the same as for exact
solutions. Some examples are given in Fig. 3. We can
conclude that all the classical solutions are stable against
radial linear perturbations.

IV. DISCUSSION

We have generalized the solutions previously found in
Ref. [15] for magnetically charged black holes nonmini-
mally coupled to two scalar fields, to the case of multiple
124012
scalar fields nonminimally coupled to a single magnetic
monopole. Even though the complete analytic solu-
tions have not been derived, we have succeeded in inte-
grating enough of the field equations that constraints on
the masses and charges can be derived. This analysis
supports the claim made in Ref. [15] that the solutions
possess a primary hair. In the case of N scalar fields there
are N � 1 independent parameters among the scalar
charges.

We have further shown that in the case of two scalar
fields, the black hole solutions are classically sta-
ble to radial perturbations, a feature which is absent in
the case of a number of other hairy black hole solu-
tions. We have no reason to expect that the case of mul-
tiple scalar fields as given in Sec. II would be any
different.

Our present analysis indicates that the primary hair of
the multiscalar black holes has quite novel features as
compared to the case of other hairy black holes. In
particular, while the black hole is characterized by new
independent degrees of freedom which are defined at
spatial infinity, these charges must necessarily vanish if
the magnetic field is turned off. To distinguish such scalar
hair from the case of elementary primary scalar hair,
which would theoretically exist even in the absence of
gauge charges, we identify this new form of hair as
contingent primary scalar hair. This suggests a further
refinement of the no-hair theorems by the statement: In
theories satisfying the DEC, black holes do not possess
elementary primary scalar hair.

Our analysis of the thermodynamic properties of the
solutions has been limited to the derivation of a Smarr
formula, and of the first law. A further step would be the
thorough study of the thermodynamical properties of the
solutions using explicit numerical solutions.

We also remark that solutions with properties analo-
gous to those of the model studied in this paper have been
obtained in the case of Gauss-Bonnet gravity nonmini-
mally coupled to two scalar fields [27]. It would be
interesting to investigate if our results can be extended
also to that case.
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