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Topological Charge Evolution in the Markov-Chain of QCD

Derek B. Leinweberﬂ Anthony G. Williamsﬂ and Jian-bo Zhandﬁ
Department of Physics and Special Research Centre for the Subatomic

Structure of Matter, University of Adelaide 5005, Australia

Frank X. Led]
Center for Nuclear Studies, Department of Physics,
The George Washington University, Washington, D.C. 20052 and
Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606

The topological charge is studied on lattices of large physical volume and fine lattice spacing. We
illustrate how a parity transformation on the SU(3) link-variables of lattice gauge configurations
reverses the sign of the topological charge and leaves the action invariant. Random applications of
the parity transformation are proposed to traverse from one topological charge sign to the other. The
transformation provides an improved unbiased estimator of the ensemble average and is essential in
improving the ergodicity of the Markov chain process.
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I. INTRODUCTION

The Markov chain process is the corner stone of mod-
ern importance-sampling techniques for generating field
configurations in the numerical simulation of quantum
field theories. Central to the process is ergodicity; the
ability to move through configuration space from any
particular field configuration to any other field configura-
tion with finite probability. Vacuum expectation values
of observable operators are estimated from the average of
field configurations selected with a probability given by
the exponentiation of the Euclidean action, exp(—Sg),
governing the quantum field theory.

It is essential that these field configurations are selected
based on the action alone, unbiased by the field configu-
ration used to initiate the Markov chain. In practice this
is done by updating the field configurations for thousands
of sweeps through the lattice, monitoring the autocorrela-
tion of various observables, and selecting a new represen-
tative field configuration only after significant evolution
through configuration space.

The topological charge of a gauge configuration in lat-
tice QCD has already been identified as a particularly dif-
ficult quantity to evolve in the Markov chain process, dis-
playing unusually long autocorrelation times |1, 2, 13, 4].
Some gauge actions such as the renormalization-group
block-transform based DBW2 action [3, ] are notorious
for locking in the topological charge at fine lattice spac-
ings |3, 4]. Difficulties associated with the Iwasaki gauge
action [, |8] are presented here.

In this study we address an aspect of the topological
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charge evolution problem that will present itself for any
gauge field action. In particular, we address a problem
associated with the approach to the infinite-volume con-
tinuum limit in numerical supercomputer simulations of
SU(3) gauge theory and QCD in general.

As the physical volume, V', of the lattice increases, the
average value of the squared topological charge increases,
in accord with the topological susceptibility, given by
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In quenched QCD, y is related to physical hadron masses
via the large N, Witten-Veneziano relation [9, [L(]
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In full QCD, the quark mass dependence of the topolog-
ical susceptibility may be related to pseudoscalar meson
properties via the Gell-Mann—-Oakes—Renner relation as
(1, g, i, 4]

_ f72rm721' 4
=Gy Om). 3)

On a sufficiently large volume lattice, the distribution of
the topological charge is expected to be Gaussian. Re-
gions of non-trivial topological charge density are uncor-
related for sufficiently large separations and a normal dis-
tribution will result. The distribution of Q for the Wil-
son gauge action has been found to be Gaussian to a very
good approximation for both quenched QCD |15, [16] and
full QCD where the Wilson gauge action is complemented
by the Wilson fermion action 1] or the Wilson-clover ac-
tion [17].

Alternate distributions of the topological charge can
occur in a finite volume if the correlation length of the
topological charge density for a particular lattice gauge
action approaches the length of the lattice dimensions.
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FIG. 1: Histogram illustrating the number of configurations in
our ensemble of 250 configurations having a particular topo-

logical charge, Q. A suppression of @@ ~ 0 configurations is
observed.

Figure [ displays a histogram of the topological charge
from an ensemble of 250 quenched Iwasaki [d, |§] gauge
configurations at 5 = 9.1674 on a 283 x 44 lattice, where
the lattice spacing @ is 0.113 fm. The topological charge is
calculated using the highly-improved, three-loop O(a%)-
improved lattice field-strength tensor [1&] on 10-sweep
cooled configurations obtained with a three-loop O(a*)-
improved action. The gauge configurations represented
in Fig.Mare separated by 1000 pseudo-heatbath sweeps in
an attempt to obtain uncorrelated configurations. Fig.
illustrates the time evolution of the topological charge
plotted as a function of simulation time, represented by
the configuration number. Acceptable movement of the
topological charge is indicated by the rapidity and am-
plitude of the oscillations. To the best of our knowl-
edge, this is the first time a double-peaked structure
in the probability distribution of the topological charge
has been revealed for a renormalization-group improved
gauge action. It would be interesting to examine this
distribution for the DBW2 action.

For any lattice action, the distribution of the topo-
logical charge will broaden as the volume of the lattice
increases, such that

(@) =xV. (4)

As the infinite-volume continuum limit is approached and
correlation lengths diverge, it will become increasingly
difficult to evolve the topological charge over the broad
range demanded by Eq. @). In particular, a symmet-
ric distribution about @ = 0 is required to preserve the
symmetries of QCD.

Recognizing the need for improvement in the evolution
of the topological charge in the Markov chain process,
we present a simple transformation in the following sec-
tion, that may be applied to a gauge-field configuration of
quenched QCD or dynamical-fermion QCD that changes
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FIG. 2: The time evolution of the topological charge plotted
as a function of simulation time as represented by the config-
uration number. 1000 pseudo-heatbath sweeps are performed
between each gauge field sample.

the sign of Q while leaving the action invariant. The
transformation provides an improved unbiased estimator
of the ensemble average and is essential in improving the
ergodicity of the Markov chain process.

II. GAUGE-LINK TRANSFORMATION

The index theorem [19] relates the topological charge
@ to the chirality index of the Dirac operator D on a
continuum 4-torus as

Q =index(D)=n_ —n4. (5)

Here ny and n_ are the number of exact zero eigen-
modes, Dy = 0, with positive, y5¢ = 4+, (right-handed)
and negative, v51 = —, (left-handed) chiralities respec-
tively.

This link between the topological charge and the chi-
rality (or helicity) of zero eigenmodes of the Dirac op-
erator identifies parity as the transformation for chang-
ing the sign of the topological charge while leaving the
action invariant. Helicity transforms as a pseudoscalar
under rotations, whereas the action of QCD, designed to
conserve parity, transforms as a scalar under rotations.
For the improper rotation of the parity transformation,
the right-handed modes will become the left-handed, and
vice versa, changing the sign of Q.

In deriving the transformation of the links under par-
ity, we begin with the transformation of the gauge po-
tential. Under the parity transformation

Az(f, t) — —Ai(—f, t), and 81 — —81' y (6)

for the spatial indices i = 1,2,3 and

A4(f, t) — A4(—£Z", t) N and (94 — (94. (7)



Here the 3 x 3 colour matrix degrees of freedom of A, (z)
are implicit. The non-abelian field strength tensor F),, is

Fu = 0,A, — 0, A +ig [Au, A] . (8)
Under parity transformations
Fyj — Fy, Fyy— —Fy, and Fyy — —Fy. (9)

Hence the action

S = %/d‘ler (Fu(z) Fu(z)) | (10)

is invariant under parity while the topological charge
2
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Q= / d*x € po Tr (Fu () Fop () (11)

changes sign due to the presence of €,,,, ensuring the
presence of one and only one time component in the field
strength tensor product.

The gauge-field links are related to the gauge potential
via

U, (x) = exp (Zg/o A#(x—i-/\ﬂ)d)\) a2

where = (Z,t). Under the parity transformation, the
spatial components, ¢ = 1,2, 3, of the links transform as

PU;(z)PT = exp (—ig/oa Ai(—T — \i) d/\) ,(13)

Ul (=% — ai) (14)

where
—z=(-4,t). (15)

Similarly, the time components transform as

PU(x)PT = exp (ig/a At(—§+)\f)d)\> , (16)
0
= U(-72). (17)

The exact nature of the parity transformation on the
links follows from the fact that parity is an exact sym-
metry on the hypercubic lattice.

It is interesting to examine the manner in which the
lattice action density and lattice field-strength tensor
transform under parity. Consider the product of links
about an elementary plaquette located at space-time
point z, in the p - v plane

Upa() = Un(2) Uy + ) Ul(x + 9) Ul), (1)

and its transformation under parity. For spatially ori-
ented plaquettes, the untransformed plaquette U;;(x)
originates from z, and loops counter-clockwise in the pos-
itive %, 7 direction

Ui(z) Uj(z + ) Ul (z + §) Ul (2). (19)

Under the parity transformation U;;(x) transforms to
UM (=T =) U} (=T=i=]) U= =)=D) Uj(~T~]), (20)

which is the spatial plaquette originating from —z, loop-
ing in a counter-clockwise orientation again, this time in
the negative 2, j direction. The space-time oriented pla-
quettes originating from x and looping counter-clockwise
in the positive 4, ¢ direction

Ui(z) Uz +0) U] (& + ) U} (2), (21)
transform to
UN(-F =) U (~Z - ) Ui(-F — i+ U} (-F), (22)

which is the space-time oriented plaquette originating
from —Z but this time looping clockwise in the negative
i, positive ¢ direction.

The connection between these link products and the
lattice field strength tensor is provided by

9 Ful2) = o | (Oula) — Of, (@)

where O, (x) is the sum of 1 x 1 link paths oriented
about z in the p - v plane
O () =Uu(2) Up(z + ) Ul (x + 2) U (x)
+ U (@) Uiz + 0 = @) Ul (x = p) Up(z — f1)
+ Ulle =) Ul(x = p = 0) Up(x — p = ) U (¢ = D)
+ Uz =) Uz —0)Up(z + p—2)Ul(z).  (24)

Taking the Hermitian conjugate of O, (z) changes the
orientation of the link products from counter-clockwise to
clockwise. Noting further that F},, () is odd under such
transformations, we see that the orientations of the link-
product parity transformations of Eqs. ) and [2) are
precisely those required to recover the continuum trans-
formations of Fj,(x) in Eq. (@). While the topological
charge density undergoes a parity transformation, the
magnitude of the topological charge remains invariant,
as all lattice sites are summed over. Similarly, the lattice
action

S=0Y F T Vul) ~UL@),  (29)

p<v

is even under the orientation transformation Uy, (z) —
U ;‘W(x), and since all sites are summed over, the lattice
gauge action is invariant under the lattice parity trans-

formation.

III. NUMERICAL RESULTS

The parity transformations of the gauge links in
Eqs. (@) and (@) have been coded in Fortran 90 [2(]



and tested on a 123 x 24 lattice with the tadpole-improved
Liischer-Weisz gauge action [21]. We use three methods
to examine the properties of the parity transformed con-
figurations.

The 3-loop improved field strength tensor [18] accom-
panied by the associated 3-loop improved cooling action
are used to provide a determination of the topological
charge @ and action S for a cooled gauge configuration
and its parity transformed partner. The transformed ac-
tion and topological charge magnitude agree to machine
precision.

The low-lying spectral flow of the hermitian Wilson-
Dirac operator Hyy = ~5Dw is examined. Under the
parity transformation, the low-lying eigenvalues of Hy,
change sign such that the slope of the spectral flow (pro-
portional to the topological charge giving rise to the ze-
romode) changes sign. Since Hy is of even dimension
(lattice volume x number of colors x number of Dirac
indices), det(Hy ) = det(7ys) x det(Dw ) is unaffected by
the parity transformation, as required to preserve parity
in dynamical fermion QCD simulations.

Finally, the topological charge is determined by count-
ing the exact zeromodes of the massless overlap Dirac
operator. Under a parity transformation, the number of
exact zeromodes with positive (right-handed) and nega-
tive (left-handed) chiralities exchange as expected.

IV. DISCUSSION AND CONCLUSIONS

The manner in which the parity transformation is used
in practice will depend on the application at hand for

the gauge fields. Often, exact parity can be enforced
during the construction of correlation functions by av-
eraging opposite-sign nontrivial momenta of the lattice
Green’s functions [22]. In other applications, exact par-
ity can be enforced by doubling the number of gauge field
configurations, averaging each field configuration with its
parity transformed partner. Finally, the transform can
be applied in the Markov chain process itself, applying
the transform randomly with a 50% probability prior to
writing the gauge configuration to disk, or equivalently,
following the reading of the configuration to be evolved,
from disk.

Motivated by the lattice index theorem, we have illus-
trated how a parity transformation on the SU(3) link-
variables of lattice gauge configurations reverses the sign
of topological charge while leaving the action invariant.
The transformation provides an improved unbiased esti-
mator of the ensemble average and is essential in improv-
ing the ergodicity of the Markov chain process.
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