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Risk-Sensitive Filtering and Smoothing for
Continuous-Time Markov Processes

W. Paul Malcolm, Robert J. Elliott, and Matthew R. James, Fellow, IEEE

Abstract—We consider risk sensitive filtering and smoothing
for a dynamical system whose output is a vector process in 2.
The components of the observation process are a Markov process
observed through a Brownian motion and a Markov process
observed through a Poisson process. Risk-sensitive filters for the
robust estimation of an indirectly observed Markov state processes
are given. These filters are stochastic partial differential equations
for which robust discretizations are obtained. Computer simula-
tions are given which demonstrate the benefits of risk sensitive
filtering.

Index Terms—Change of measure, martingales, risk-sensitive fil-
tering.

I. INTRODUCTION

I N this paper, we consider robust nonlinear filtering and
smoothing in the presence of model uncertainties. To derive

filters robust to model uncertainties, we use the so-called
risk-sensitive criterion [1]. The dynamical models considered
involve indirect observations of a continuous-time Markov
process. For a general model, we consider a vector observa-
tion process, where the two components of this vector are
different observations of the same Markov state process. The
two observation processes are: i) the Markov process observed
through a Brownian motion, ii) the Markov process observed
through a Poisson process. This particular model has also been
considered in [2].

The paper is organized as follows. In Section II, the signal
models for the state process and the observation process are de-
fined. In Section III, we give a definition of risk-sensitive fil-
tering and present risk-sensitive filters for our stochastic model.
In this section, we derive versions of our risk-sensitive filters
which are robust to time discretization. We obtain these versions
by adapting the transformation techniques introduced by Clark
[3]. In Section IV, we provide a corresponding robust smoothing
algorithm. Finally, in Section VI, we present a simulation study
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to show the performance benefits in a counting process obser-
vation scenario.

II. SIGNAL MODELS

In this section, we describe dynamics for an indirectly ob-
served state process and dynamics for two scalar-valued ob-
servation processes, each influenced by the same state process.
All signal models are defined on the fixed probability space

.

A. State Process

For our state variable, consider a Markov process in contin-
uous time whose state space is a countable finite set. Our repre-
sentation for this process follows that used in [4], whereby one
can, without loss of generality, take the state space to be the set

, whose elements are column vectors in
; has unity in the th position and zero elsewhere. The es-

sential point of this representation is the state process dynamics
can then be written down in a semimartingale form (see [4])

(2.1)

Here is a martingale with respect to the sigma field generated
by the process and is an rate matrix for . Suppose
that our Markov chain in fact takes real values . Write

. Then with the underlying Markov chain
taking values in , the related real-valued Markov process is just

. We wish to consider the case where are possible
rate parameters of a Poisson process.

B. Observation Processes

We suppose that the Markov process of Section II-A is not
directly observed; instead, there are two scalar-valued observa-
tion processes and . The vector-valued observation process

is a process taking values in , where

(2.2)

Case 1, the -Component of : The process is an obser-
vation of through a Brownian motion, with dynamics

(2.3)

Here, is a vector of the drift coefficients
and is a standard Brownian motion, independent of the
process .
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Case 2, the -Component of : The process is a Markov
modulated Poisson process whose intensity process depends
upon the process . Its dynamics are

(2.4)

Here is a -martingale.

The two main problems we consider in this paper are; the
robust estimation of the filter probabilities ,
for and the robust estimation of the smoother
probabilities , for and .
Here the term robust is taken in the risk sensitive sense [1], [5].

C. Reference Probability

A reference probability is introduced under which the two
components of the observation process are, respectively, a
standard Brownian motion and a standard Poisson process. That
is, under the measure , the dynamics have the form

(2.5)

Of course, under the , the dynamics have the form

(2.6)

III. RISK-SENSITIVE FILTERING

A. Risk-Sensitive Estimation

Risk-sensitive filtering provides a type of robust filtering. The
term “robust” is a relative one with a variety of possible mean-
ings. For example, an estimation scheme could be robust against
assumptions of independence, or robust against the parameters
of a certain distribution. One general definition of robustness is
“robustness signifies insensitivity against small deviations from
assumptions,” [6]. In this paper, we consider robustness against
uncertainties in the parameters of a probabilistic model for a
stochastic dynamical system. We assume that there always ex-
ists a true and fixed, yet possibly unknown, probabilistic model
for the system of interest. We denote the distribution of this true
model by . Since we declare that the model being used may
not necessarily correspond to the true model, we denote the de-
sign model by , where is a label corresponding to the design
probability model.

Suppose we are interested in the estimation of a scalar-valued
function of the Markov process ; let this function be denoted
by . Further, suppose that the function is -measurable.

Definition 1: Suppose and are convex scalar “cost” func-
tions with and , iff . For example,

. Suppose further that there exists a process
which is continuous on the right with limits on the

left (that is, CORLOL) and which satisfies

(3.7)
Then is a risk sensitive estimate of .

Notation: The expectation in (3.7) denotes expectation
under the design distribution , and the parameter is
the so-called risk-sensitive parameter. Quantitatively, the risk-
sensitive parameter determines the degree of “risk.”

Risk-sensitive estimators defined by (3.7) enjoy an estima-
tion error which is upper-bounded. This is in stark contrast to
estimators defined by the minimum mean-square error criterion
for which no such bound exists. The upper error bound corre-
sponding to (3.7) is determined in [1] and is

(3.8)

Here

(3.9)
and denotes the relative entropy between the two
probability models and . This result (due to Boel et al.
[1]) is an important theoretical contribution, as it established
a “precise” meaning for risk-sensitive estimation. The bound
defined by (3.8) tells us that the error in risk-sensitive estimation
has an upper bound given by the sum of two terms. The first
term coincides with a cost if the model were known precisely,
while the second term is a measure of distance between the true
probability and the design probability models for the system.

B. Filtering Equations

Suppose is a cost function, as in Definition 1 and

(3.10)

where

Consider the state variable with state space .
The risk-sensitive unnormalized measure of , given the his-

tory , is defined by

(3.11)

The expectation in this definition is with respect to the reference
measure and denotes the Radon–Nikodym derivative

(3.12)

Write

(3.13)

Theorem 1: The process satisfies the stochastic integral
equation

(3.14)

A proof of Theorem 1 is given in the Appendix.
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Corollary 1: The process , defined by (3.14), is an unnor-
malized measure-valued process. The corresponding normal-
ized measure-valued process has dynamics

(3.15)

Here

(3.16)

(3.17)

and denotes risk neutral expectation, for example,
.

A proof of Corollary 1 is given in the Appendix.

Remark 1: The corresponding risk-neutral form of (3.14),

and (3.15), are recovered by considering the limit, .

C. State Estimation

In the previous subsection, we defined a stochastic integral
equation satisfied by the conditional distribution . We now use
this distribution to write down a risk-sensitive state estimator
for the function . In Definition 1, the risk-sensitive estimate

was defined as an estimate which minimized an expectation
involving an exponential cost. It was shown in [1] that one can
identify a version of the minimum risk-sensitive estimator for
which attains the minimum defined by (3.7). The equation for
the risk-sensitive estimate is

(3.18)

where denotes the vector in whose elements are each unity.
Taken together, the stochastic differential (3.14) and the state
estimator (3.18) comprise a risk-sensitive filter. To implement
such a filter, one needs to first compute the density at time
, then, using this density, determine the estimate defined by

(3.18).

D. Transformed Filtering Equations

Notation: Let be a scalar-valued stochastic process de-
fined by

(3.19)

Let be a matrix exponential, defined by

(3.20)

Notation: Let be a scalar-valued stochastic process de-
fined by

(3.21)

where is the th Poisson rate and is the observation
process defined by the model (2.4). Let be a matrix exponen-
tial defined by

(3.22)

Equation (3.14) can be solved by variation of constants. Con-
sider the two subsidiary equations for the diagonal matrices
and

(3.23)

(3.24)

where is the identity matrix in . The matrices and are
diagonal so we are considering the following scalar equations
for each diagonal entry:

(3.25)

(3.26)

Therefore,

(3.27)

(3.28)

Consequently, and are nonsingular and

(3.29)

(3.30)

Consider the solution of of the ordinary differential equation

(3.31)

with initial condition .

Theorem 2: The process is a unique solution of
the stochastic integral equation

(3.32)

Proof of Theorem 2: Note that the matrices , , ,
and are all diagonal and, therefore, commute. Setting

, we see that

(3.33)

Therefore, is a solution of (3.14). Since solutions of this
equation are unique, the result follows.

The importance of Theorem 2 is that it identifies a process
which satisfies an ordinary differential equation. From this
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process, the process can always be determined. Further, to
implement equations such as (3.14) on a digital computer, a dis-
cretization of continuous time must be used. Discretising (3.31)
provides a robust discretization. Here the term “robust” refers
to the sensitivity of with respect to variations in the model
parameters .

Remark 2: The obvious special cases are obtained when ei-
ther or .

E. The Risk Sensitive Duncan–Mortensen–Zakai Equation

We now write down a robust (to discretization) form of the
Duncan–Mortensen–Zakai equation for the risk-sensitive filter
of Theorem 2. The interesting point is that the observation
process appears as a parameter, and to update the estimate at
the next time point only the new observation is used.

From Theorem 2, the transformed process satisfies the
linear ordinary differential equation

(3.34)

To discretise this equation, we consider a regular partition in
time

(3.35)

where is a constant time step, denoted by . We make
the following approximation of (3.34) between the sampling in-
stants and :

(3.36)

For the values in the subinterval we
choose . This choice leads to an explicit
approximation scheme

(3.37)

Finally, multiplying both sides of (3.37) by we
determine a robust version of the risk-sensitive Duncan–
Mortensen–Zakai equation for

(3.38)

Note that the stochastic processes and
now appear as parameters in the matrix product

of (3.38) rather than as stochastic integra-
tors in the martingale terms of (3.14).

IV. RISK-SENSITIVE SMOOTHERS

For smoothed state estimates, we wish to evaluate the expec-
tation , where .

By a version of Bayes’ rule

(4.39)

The Radon–Nikodym derivative in the right member of (4.39)
can be written as a product due to its exponential form, that is,
we may write, . This representation proves
convenient in establishing smoother dynamics.

Notation: The Radon–Nikodym derivatives and
are defined, respectively, by

(4.40)

(4.41)

(4.42)

Using the derivatives above and the version of Bayes’ rule
at (4.39), it is routine to compute robust smoother dynamics.
Examples of similar calculations for risk-neutral dynamics are
given in [7], . The following theorem is therefore stated without
proof.

Theorem 3: Suppose the process satisfies dynamics given
by (2.1) and a vector-valued process is observed, as is de-
scribed by (2.2)–(2.4). For any , , the risk-sensi-
tive normalized conditional probability of , given the obser-
vations , is given by

(4.43)

Here satisfies the forward linear ordinary differential equa-
tion

(4.44)

and satisfies the backward linear ordinary differential equa-
tion

(4.45)
The corresponding discrete-time recursions for the processes
and are, respectively,

(4.46)
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Fig. 1. Estimation error performance comparison for the risk-sensitive and the risk-neutral filters over a family of nominal models. In this study, each of the
nominal models is a perturbation of the true model.

and

(4.47)

V. EXAMPLE

The example we consider here is a Markov process observed
through a Poisson process where the stochastic system is the
combination of (2.1) and (2.4).

A. Simulation Models

The True and Fixed Model: The true model used to simulate
the observation process is a Poisson process with a
jump stochastic rate function defined by

(5.48)

where . For the infinitesimal characteris-
tics of the Markov process we define the rate matrix by

(5.49)

The values taken by the process are ascribed expected so-
journ times of: 20 s for the states and 30 s for
states . These sojourn time statistics correspond to

and .

The Design Models: We consider a family of design models
where each model is a continuous perturbation of the true model
defined by

(5.50)

where the scaling parameter varies in the interval
and as .

B. Results

Fig. 1 shows the results of a comparison between the risk-sen-
sitive and the risk-neutral filter over a family of design models.
At each from a list of the values of , the risk-sen-
sitive and the risk-neutral filters were given an observation re-
alization generated by the true model, yet configured with pa-
rameters from a perturbed model according to the value of .
The error between the true and the estimated rate functions was
calculated by

(5.51)

where 3000 s. Note that this is a time integral of the squared
error, not an expectation of the squared error.

Error performance curves such as those in Fig. 1 provide an il-
lustration of the possible benefits of risk-sensitive filtering. The
robust filter used to generate the curve in Fig. 1 demonstrates
an estimation error which degrades more gracefully that the
corresponding risk-neutral filter. The comparison of the curves
in Fig. 1 shows the a risk-sensitive filter can offer robustness
against model uncertainties.

In Fig. 2, we show the error defined by (5.51) calculated as a
function of the parameter for a fixed value of . The
minimum of this curve marks the best risk-sensitive parameter
for this specific scenario. In Fig. 3, we show a family of error
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Fig. 2. Estimation error for the risk-sensitive filter as a function of the risk-sensitive parameter � in the scenario � = 1:5.

Fig. 3. Risk-sensitive filter error curves as a function of both the parameter � and the number�. Here the number� quantifies the degree of difference between
the true and design probability models. � = 1 corresponds to a scenario where the true and design probability models coincide.
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Fig. 4. The optimal value � as a function of the number�. This curve shows the value of � that is required to achieve the best performance for a given scenario
depending upon �.

curves such as the single curve shown in Fig. 2. Each curve in
Fig. 3 represents a particular scenario, where the degree of dif-
ference between the true and design probability models is de-
termined by the number . In simulation studies to generate
families of curves such as those in Fig. 3, it was observed that
the local curvature about the minima changed with , such that
choosing a “good” value for became increasingly difficult as
the true and design models became more distinct. It should be
further noted, that although the curves in Fig. 3 suggest the exis-
tence and uniqueness of optimal values for , these curves were
determined via complete knowledge of the true Markov state
process. Perceivably, one could estimate the location of the op-
timal if an equation for the state estimator error variance were
available. In Fig. 4, the optimal (risk-sensitive parameter cor-
responding to the minima of the curves in Fig. 3) is plotted for
values of shown in Fig. 3.

VI. CONCLUSION

In this paper, we presented risk-sensitive filters and smoothers
for an observation process whose components represent the ob-
servation of Markov process through a Brownian motion and
the observation of a Markov process through a Poisson process.
Using a gauge transformation, a robust (to discretization) ver-
sion of the Duncan–Mortensen–Zakai equation corresponding
to our risk-sensitive filter was obtained. A simulation study for
an example of counting process observations was provided.

APPENDIX

A. Proof of Theorem 1

The proof of this Theorem has two parts. In the first part,
we use the Ito product rule to determine the semimartingale

. In the second part, we condition this semimartingale
under the reference probability .

The semimartingale satisfies the stochastic integral equa-
tion (see [8])

(A52)
First we note that

(A53)

(A54)

(A55)

then

(A56)
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By using Fubini’s theorem ([8]) on (A56), noting that under
the reference measure , both and have independent
increments, and

(A57)

then the result follows.

B. Proof of Corollary 1

Proof: Note that . To prove
Corollary 1, we follow the method in [9] in which one uses the
special semimartingale and the Ito rule to write down the
the product . This, by definition is the process . The
semimartingale decomposition for the process reads [8]

(A58)

Note that the terms , , and in (A58) are pro-
jections under different probability measures: where

(A59)

(A60)

Now

(A61)

Therefore,

(A62)

Writing we see

(A63)

With simple rearrangement, Corollary 1 follows.
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