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The dominant wave mode within a trailing line vortex

James P. Denier
School of Mathematical Sciences, The University of Adelaide, Adelaide 5005, Australia
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(Received 4 June 2004; accepted 16 September 2004; published online 23 November 2004

We identify the dominant, or most unstable, wave mode for the flow in a trailing line vortex. This
dominant mode is found to reside in a wavenumber regime between that of inviscid wave modes and
the viscous upper branch neutral wave modes. A reevaluation of the growth rate in the vicinity of
the upper branch of the curve of neutral stability allows us to predict the neutral value of the
azimuthal and axial wavenumber as a function of the imposed swirl within the trailing line vortex.
© 2005 American Institute of Physid©OI: 10.1063/1.1814583

I. INTRODUCTION bances to the basic, laminar vortex. The second approach
revolves around the asymptotic analysis of these equations in
We consider the instability of the flow within a trailing a number of physically relevaiand importantlimits. In the
line vortex(herein referred to as a TV These vortices arise majority of the work on this problem, the structure of the
whenever a finite lifting surface terminates in a fluid. The|gminar vortex is taken to be a similarity form derived by
fluid dynamics underlying the generation of these vorticeBatchelor’ This similarity form was derived under the as-
can best be described via Prandtl's lifting line theory, ansymption that the distance from the trailing edge of the wing
excellent summary of which can be found in Gréen. is large. It is therefore of relevance to the flow regime several
Trailing line vortices occur in a wide variety of areas in chord lengths from the trailing edge of the aerofoil. We will
industries ranging from the aeronautical industry, with ex-expjoit this similarity solution as the basic velocity profile
amples such as the flow over aircraft wings and the rotofor the stability analysis to be presented in this study. To fix
blades of helicopters, to the marine industry, with marin€geas in what follows we define a cylindrical coordinate sys-
propellers, boat keels, and sails being the major examplegsm (v, 9, 7) in which z measures the distance downstream of

through to the energy generation industry with vortices beingy,q yrajling edge of the lifting surfacer measures distance
manifest in the flow over the blades of horizontal and Vert"radially outwards from the centre of the vortex, afithea-

cal axis wind turbines. In all these areas the generation of ..« ihe azimuthal angldefined so thap positive is in the
TLVs is generally considered undesirable. Perhaps the mo%ﬁrection of the swir

important area where TLVs occur and present significant Much of the work on the stability of trailing line vortices

problems is in the aeronautical industry. Here vorgexlift) has focused on the numerical computation of the growth

induced drag .presents a S|gn|f|c§1nt prpblem In terms Of. th(?ates of the instability and in determining the curve of neutral
reduced efficiency(and concomitant increased operating

costy of transport aircraft; approximately 35% of the total Stablllt'ty |fn LWaVenUgberr—]Reyrc;ollgs‘“zémber fp?cg-t;'htetﬁarly
drag encountered by passenger aircraft is lift induced dra jesulls of Lessen, Singh, and Fallieemonstrated that the

Given that these vortices persist for a considerable length *OW IS |n\t/)|scu£yl unstabI? t.o v;avz n}odgslwnh a2|mLt1)thaI
time, coupled with the fact that the circulation within the wavenumben=1 over a finite band of axial wavenumbers

vortex is maximal when the aircraft speed is at its minimum®: Moreover, the modes with negative azimuthal wavenum-
level (that is, during take-off and landingthey pose a sig- ber_ proved to _be the most ungtable. This work |dent|f|e_d 'Fhe
nificant potential hazard to any following aircraft that may Curious behavior that the maximum growth rate of the invis-
penetrate thertresulting in what is commonly referred to as ¢id Wave modes increased with increasimegative azi-
a wake-vortex interactionin order to avoid these potentially Muthal wavenumben. The value of the axial wavenumber,
disastrous encounters aviation authorities throughout th@t Which this maximum growth rate occurs, also increases.
world have prescribed minimum separation distances pelhus, this early work presents us with the conclusion that the
tween successive aircraft during take-off and landing. A demaximum growth rate corresponds to a short webeat is,
tailed discussion of the implications of TLVs to the aviation one which has short wavelength in both the axial and azi-
industry can be found in Ref. 1. muthal direction. Lessen and PaillRextended their earlier
Due to the technological importance of this family of results to consider the effect of viscosity on the stability of
fluid flows the question as to their stabifithas received the flow. They solved the cylindrical polar coordinate
considerable attention in the last two decades. There hawequivalent of the classical Orr—Sommerfeld equation numeri-
been two main approaches to the question of flow stabilitycally and were able to determine the parametric curves
The first is based upon the numerical solution of the equaF(Re, @;n,q)=0 in the Reynolds numbeR,)-wavenumber
tions governing the growth of infinitesimally small distur- («) plane along which the flow is neutrally stable. Such neu-
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tral curves have the property that both the upper and lowetains the fastest growing Gortler vortex mode relevant to
branches tend to a constant@avecomes large. Subsequent boundary-layer flows ovegconcavely curved surfaces was
work by Duck and FostéY, Khorrami! and Mayer and found. The authors found that consideration of near neutral
Powelf extended the earlier work of Refs. 4 and 5 and pro-short wavelength vortices led to the identification of an in-
vided a detailed description of the structure of the curve otermediate regime which contained the most unstable vortex
neutral stability as a function of both the swirl parameder mode. A similar procedure will be adopted in this study.
and the azimuthal wavenumbar These studies also illus- First we will briefly reconsider the behavior of those
trated that on the inclusion of viscositye., at finite Rey- wave modes close to the upper branch of the neutral curve;
nolds numbernsthe most unstable mode occurs for a finite we follow closely the methodology of Stewartsokve will
negative value of the azimuthal wavenumber. This effect capresent only those parts of the analysis of Ref. 9 which we
be attributed to the interplay between the stabilizing influ-consider to be crucial for a clear exposition of the structure
ence of viscosity and the destabilizing effect of swirl. of the dominant wave mode. In order to obtain the relevant
In-flight Reynolds numbers are large, values in the rangelisturbance equations we write the total nondimensional flow
O(10°) to O(10P) being typical. Considerable progress in un-field as the sum of a basic flow plus a small amplitude per-
derstanding the dynamics of the flow can be made by emturbation
ploying an asymptotic analysis based upon the large Rey- _ —
nolds number. Asymptotic theories, valid in the limit of large (u,0,w,p) =[u(r),0,W(r), Po]
Reynolds number, were deveIop@tewartsor?, Leibovich + 8[F(r),iG(r),H(r),P(r)/n]JE+ O(6%, (1)
and Stewartsof and Duck?). These were, in part, driven . _ _
by earlier numerical results that demonstrated that at Iarg)@’h_ere _the veIocmeéu,_v,w) are defined W'th_ respect to the
Reynolds number the short wavelength disturbances becan?é,(l,'n_dr'c_al polar coordlinate syste,r,6), dis .taken to be
concentrated to within a thin layer situated a finite distancénf'n'tes'ma"y small,p is the total pressurey is the free-
from the centerline of the vortegusually referred to as ring Stréam(constant pressure, and
modes. Leibovich and Stewartsdhderived a sufficientbut E=exdia(x - cot) +in6+ ct].
not necessabpycondition for the existence afviscid modes o _ )
of instability in a columnar vortex. In the particular case of Herea is the axial wavenumben the azimuthal wavenum-
the Batchelor vortex, for short wavelength disturbances, thi®€r.Co denotes theleading-ordeywave speedandc denotes
condition for instability translates to a restriction on the pa-the (complex growth rate. Substitution of1) into the
rameter range given b%mq< a<n/qwheren and« are the Nawe_r—Stokes_ and continuity equations, in cylindrical polar
azimuthal and axial disturbance wavenumbers, respectivelgoordinates, yields &d(5),
andq is a parameter which measures the level of swirl within o i 111 n2
the flow. Stewartson and Capgliconsidered modes in the (c+ig)F+iu'G+ sz R F(FF')' - <32+ ﬁ)F ,
vicinity of the upper neutral pointe~n/q), while Stewart-
son and Leibovich considered modes close to the lower (29)
neutral point(e~ng/2).
This form of flow structure, exhibiting disturbance local- o 2wH P 1)
ization at a point located within the bulk of the flow, is simi- (C+ih)iG - o 57 E{FUG )
lar to that reported by Mureithi, Denier, and Stdtfor the ) .
upper branch stability of Tollmien—Schlichting waves in a - <32+ n+ 1)iG - 2|nH}, (2b)
thermally stratified boundary layer and also to that encoun- r? r?
tered in the study of centrifugal instabilities in waIlI}abounded . 1 (1 201
flows as described by Denier, Hall, and Seddouguihe . — [ Ny [~ N°F
results of Ref. 15 provide the impetus for the present study CHigH+IWGH FP_ E{F“H )= (a * r2 )H
whose motivation is to determine the structure and location }

of the most unstable wave-like disturbance in a TLV.

To achieve this aim we adopt the following strategy. In r
Sec. Il we formulate the stability problem and derive the
large(n, @) asymptotic form for the disturbance field. This is S | R ©

. . aF+-H=-G , (2d)

then used in Sec. Ill to derive the structure of the most un- r r
stable disturbance mode in the TLV flow. Finally in Sec. IV
we draw some conclusions from our work and commen
briefly on some directions for future work.

(20)

e/vhere we have defined

==y +

IIl. FORMULATION and

In order to determine the structure of the most unstable
linear disturbance within a trailing line vortex we will pro-
ceed in the manner described by Denier, Hall, andHere R, is the Reynolds number of the flogaken to be
Seddougu?.5 In Ref. 15 the wavenumber regime which con- large). The basic flow chosen for this study is the similarity

wh=w' +wir.
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FIG. 1. The radial positiom, as a function ofscaled
streamwise wavenumber for values@f0.2, 0.4,...,

1.4,
form, first derived by Batcheldtrelevant to the flow within F=Fo+ R;1/8|:1 + R;1/4|:2 +... (4)
a trailing line vortex a distance from the trailing edge of the
airfoil. In its simplest form it is given by (together with similar expansions for tt&,H, and P). We
also anticipate the result that the complex growth raex-
un=e", win=l1-ev). (3 Pandsas
c=c + R+ e (5)

The parameterg characterizes the intensity of the swirl
within the vortex. By making use af3) for the underlying  Substituting these expansions int®) and equating coeffi-
basic flow we are implicitly assuming that the flow is parallel cients of fractional powers of Reynolds number gives, at
although, in fact, the velocity field within a TLV does de- order O(Ré’z), a system of homogeneous equations for
velop spatially. However, the assumption of parallelism isF,, Gy, Hy, and Py which have a nontrivial solution pro-
justified in the present case since the wavelengths of theided that the leading order wave spegdsatisfies
disturbances we will consider are much shorter tharCitie
scales over which the basic flow evolves. - NoWo
The work of Stewartsdhdemonstrates that the upper ~ @o(Uo~Co) + ro =0, 6)
branch of the curve of neutral stability is located in the wave-
number regimesi=0O(RY?), a=0(RY?). Thus we write wherer, is the position at which the disturbance is localized.
b 1o At next order we again obtain a homogeneous system of
a=aoRe",  n=noR.™". equations for the leading-order wave amplitudes which pos-

. _ sess nontrivial solutions provided that
Furthermore Ref. 9 shows that, in the vicinity of the upper

branch of the neutral curve, the linear disturbances are con- w\’
centrated in a region @(R;*®) centered on a radial position agUg + no(—) =0; (7)
r=ro(#0). Thus we define the scaled radial coordinate o

R=R¥(r - o) this serves to determine the critical locatigyof the distur-

' bance.
where the position of the vortey is to be determined from For given values of the azimuthal and axial wavenum-
the subsequent analysis. Within ti¢R;®) layer centered bers,n, and a, respectivelyr, is found from(7) and the
on r=r, the basic flow velocities expand in the form leading-order wave Speed is d'etern.nr!ed fr(ﬁ?m From the
form of the basic velocity profile&3) it is readily observed
(U, W) = (Ug,Wp) + R;3/8(U6,WO)R+ R;3/4(US,V_V'6)R2+ e that Eq.(7) possess solutions only fop<<0, assumingy is

positive. Conversely ifg is negative then solutions t(r)
where a prime denotes differentiation with respeat smd a  only exist if ng>0; for definiteness we will take to be
zero subscript will be used to indicate that the function is topositive throughout. In order to highlight this fact we define
be evaluated at=r,. In addition, the disturbance to the axial ay=-an, (and thena>0). Equationg6) and(7) can then be
velocity expands in the form rewritten as
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Aa)

FIG. 2. The real part of the leading-order growth rate as
a function ofr for various values of swirl parametés)
g=0.2, (b) q=0.4, ..., (f) q=1.2 for ny=0.0, 0.2,...,

0.6.
E n0=0 ........
& /\ ;
> 3
W 1({w)’ - 2aWg(Ug + argwy) |12 1
Co=Up— —>, a=:,(—) : (8) Cl:i|: £ OS = O)} -ngl &+ 5, (1D
aro UO r 0 a'r0+1 rO

In Fig. 1 we present a plot of the critical position as a func-where we have made use of our earlier rescaligg—an.
tion of the (scaled axial wavenumberx for a variety of  Note that for the rest of this study we will consider only the
values of the swirl parametex We note that there is a criti- positive sign as it is these modes which are unstable. The
cal value ofa (equal tog/2) at which the critical position first term in expressiofill) corresponds to the leading-order
ro=0. Asro—0, i.e., in the neighborhood of=q/2, the inviscid growth rate, while the second term is due to the
analysis described in this study breaks down and the waveffects of viscosity.
modes become center modes whose properties have been We emphasize here théitl) [and the expressiofi7) for
elucidated by Stewartson and Leibovichmportantly Fig. 1 C,, to be derivefiare as given by Stewartsbim his expres-
clearly demonstrates that the center modes are simply a linsion (27) with only minor differences in notation. In order to
iting form of the ring modes which develop as the critical compare his asymptotic results with the earlier numerical
locationry approaches the vortex centerline. results of Lessen and PailRStewartson chose to use these
Continuing our expansions to next order we obtain results to construct neutral curves in the,R,) plane for
% W finite values of azimuthal wavenumber Although these
P1Fo+iugGy +i OPO =0, i¢$Gy— r—OHO: 0, (9@  asymptotic results are derived under the assumption that the
0

Mo azimuthal wavenumber is large and negative, Stewartson

i 0 found reasonable agreement between computed results and
$iHo+IWgGo+ —Py=0, GoFg+ —Hy=0, (9h)  his asymptotic results. o _

) l'o There is, however, an alternative interpretation of the

leading-order growth rate which allows us to identify the

where we have defined * )
critical values of the parameters at which the two branches of

2 . -
_ ~2 Mo the neutral curve coalesce. To see this we present, in Fig. 2,
¢1=Ci+|ag+ 5 |, (10 . N
rg plots of the leading-order growth rate ®¢ and in Fig. 3
the first-order correction to the wave speeddph versusry
and for a variety of values for the swirl parametgr Three im-
Wy = Wg + Wo/r . portant features are present in Fig. 2. First, for a given value

) o ) ] of swirl g there is a critical value of the azimuthal wave
This system has a nontrivial solution provided that the deterhumberno beyond which the growth rate is negatigfer all
minant of the associated coefficient matrix is identically, 5| es ofr, and hence all values of scaled axial wavenumber

equal to zero. Evaluating this determinant yields @). Second, for values afi, below this critical value there
2aoWo(Uphg — Tl gW5) 12 are two neutral wave modes. The neutral curves inthe)
$1= % %212 4 n2 ' plane andq,ry) plane are presented in Figs. 4 and 5, respec-
0'0 0

tively. For parameter values inside these curves the growth
which, upon substituting foe, from (10), gives the expres- ratec, is positive and hence the flow is unstable. Agsis
sion for theleading-ordergrowth rate, increased the level curves in Figs. 4 and 5 shrink until such
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035 , T ! . :

0.3

0.25

. 02
g FIG. 3. The imaginary part of the, versusr for val-
@ ues of the swirl parameter=0.2, 0.4,..., 1.2. Note that
0.15 the imaginary part o€, is independentf the azimuthal
wavenumbein,,.

0.1

0.05

0
point that a critical value ofy is reached. Beyond this criti- In Table | we present the critical value of (and the

cal value ofn, the leading-order growth ratg is negative  associated values af,r,, and«) together with the limiting
and hence the wave modes described here are stable. In Figumerical results of Mayer and PowdIThe agreement be-
6 we present a plot of position, and the corresponding tween the numerical results of Ref. 8, derived from the nu-
value of swirlg, at which the maximum value @, is iden-  erical solution of (2) for large values ofn, and our
tlcally zero. From thls.plot. t_he global _crmcal_ value of is asymptotic results is excellent.
readily seen. Once this critical value is achieved the curves . N . .

o . At this order of approximation the stability of the flow is
of neutral stability in thé«, R.) plane will become close¢ht .

based upon the sign af;; thus, although the results pre-

large values of the Reynolds numhefhe third feature of . B )
Fig. 2 that warrants comment is the presence of both centsiented in Table | are for the crltllcal Value of, the higher
and ring mode instabilities. The ring mode has a positiorPrder growth rate, [see expressio(l7)] will modify these

ro>0, the center mode has positiog= 0—uwith the reintro-  citical parameters by an amount GH(R;*). We do not
duction of viscosity the center modgvhich is neutrally pursue this matter any further here.

stable with Réc;)=0] becomes stabilized Rg) <0. To continue, systen®) has the solution
8 ! ! ' ' ! ' ! ! !
. . l/
: g
1 J ng=-05
E /, 04
no = —055 flo =~
L “ER TR W .............................. My =08 .
np = =0.593 ng = ~0.2
= : / : \E\ o =—0.1 FIG. 4. Neutral curve, based upon the leading order
N~/ no = 0.0 growth ratec;. Shown are plots of vs « for variousn,.
05k - LS S S S [ N N
0 4 1 1 1 l 1 | 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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FIG. 5. Neutral curve, based upon the leading order
growth ratec;. Shown are plots of| vs r( for various
No-

Ao 2agwWg  Ng
Ho,Gog, Py =| - —, - ———,— — H,= — — + AFg, 13c
(Ho,Go. Po) < Ng ip1Ng Ia/0|: ! aSrS+ ng) dR Ny 1o ( )
5 O
where the amplitude functioRy is yet to be determined. At P,= ZWO—aoroz@ + @( = M’)i 1Fo. (130
next order in our expansion we obtain the inhomogeneous ( +ng dR $1No
system of equations foF,, G,, H;, and P, which can be Finally at next order we obtain
solved to give
o~ 2 , ia
F,= _%@ +AFo, B1F2+iugG, + n_opzzﬁ':o, (143
¢1ng(agrg +ng) dR 0
2i W 2w P;
Glz—ao OAlFo, ih1G,~ ——Hp =~ — +iLGy, (14b
1Mo ro Ny

25 T T T

To0,q

0.5

07

FIG. 6. The position at which the maximum valueogf
is equal to zero. Shown arg vs ng (solid line) andq vs
ny (dashed ling
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TABLE I. The critical values of the azimuthal wavenumber, vortex position,
imposed swirl, and axial wavenumber based upon the leading-order growth
rate termc;. The critical Reynolds number is given B =1/|ng|*

Fo= Hm(R)exp(— %xi’%), (16)

whereH,,, are Hermite polynomials of degree (see Ref. 16

Current study Mayer and Powzll

for details.
Ino| 0.595 32 Again utilizing the scaled axial wavenumber
o 118101 \ a=-ay/ng, we obtain(for the first, orm=0 mode
q 0.540 55 0.54 . 1 1/2r,.2 2 2 /
a 0.455 50 0.456 = (1 +i){| g rges + 3ng(aPrg + DI} (17
Re, 2.8216 2.8376 2(aPra+ 1)M2ng| Y2

®These results are based upon the numerical solution of the stability equ3p deriving(17) we have used the fact thaf) is negative for
TI\(/);]S for a value of the azimuthal wavenumber10 000(see their Table all r,>0 (independent ofj). We are now in a position to
bIn interpreting the results of Mayer and Powell note that they solved thddentify the most unstable wave mode within a trailing line

disturbance equations withpositive andq negative which is equivalent to  vortex flow.
our case o negative andy positive.

lll. THE MOST UNSTABLE WAVE MODE

To determine the most unstable mode we note ftf

iP
dHy + WG, + r_2 = LH,, (140  and(17) that, in the limitn,— 0, we have
0
c1 ~ const+0(nd), ¢, ~ O(|ng|™*?), (18)
WoF,+ ?sz -G}, (149 ~ Where the constant term {f18) is given by
0

{ ~ 2aiWg(Up + o W) ] 12

where we have defined the differential operafor a2+ 1
C= @ o inggR* Note that the sign of the term in the square brackets is nega-
drR 2 2 tive; the constant irc; then corresponds to the leading-order

with

A\
w

¢6:—aag+<—) .
r

growth rate. Fron{17) we observe that, in the limit of small
(scaled azimuthal wavenumber, the second-order growth
rate becomes large, of sig¥|ny|~*/?), whereas the correction
to ¢, is small, of sizeO(ng). This suggests that there is a new

0 distinguished limit fomg in which these two terms will be of
System(14) will only have a solution provided that a com- similar size. Noting, from(5), that the correction to the
patibility condition on the inhomogeneous terms is satisfiedgrowth rate iSO(R;**no| ™?) we find that the new distin-
Mathematically this solvability condition is simply the re- guished limit occurs when

quirement that the inner product of the vector representing  2_ O(R;¥ng| 212

the right-hand-side aflL4) with the adjoint eigenvector of the 0 0 ’

coefficient matrix(of the homogeneous systewanish. Ap-  that is, whenn,=0(R;**9 or n=0(RZ®). Additionally the
plying this solvability condition, and making use ¢£3),  axial wavenumbe® is now of orderO(RZ®). Thus we define
yields the differential equation governing the radial structure _ 205 ~ _~ 2/5

of the wave amplitudé, N=mR"  a=aRe™ (19

2
dFo _ (MRZ+N\oCp)Fo=0, (15)  nant wave mode we observe from Sec. Il that in the limit
drR ny— 0, \;~O(ny) and the eigenfunction is given k§¥6), or
equivalently

Fo=ext - AV2R¥(r - rg)?].

where we have defined

\ - 2@gr5+ng _ Noodss
0~ ric,+3(agra+n3)’ 1= 2 This suggests that the dominant mode is confined to a layer

of thicknessO\Y*R¥®)=0(R¥*Y) centered on the location
In order to ensure that the wave mode is confined to the=r . We therefore define

viscous layer centered arrry Eq. (15) must be solved sub-
ject to the boundary conditiors,— 0 as|R|— . Equation
(15) is a(modified form of the parabolic-cylinder-function
equation(see Ref. 1pwhich has the requisite solution if

R=RIMr - 1),
and seek wave-like solutions {@) proportional to
E = exgia(x - cot) +inf+ &yt + SRV,
__)\1/2(1_'_2“) d ( O) 1 ZRe ]

= , m=0,1,2....
2 )\0

where the amplitude function expands BsFq+R;Y*%,
+RYSF,+... (with similar expressions foG, H, and P).

The corresponding eigenfunctions are given by Substitution of these expansions in®) gives, at the first
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two orders of approximation, the leading-order wave speed 1 G;
and critical position as aF,+ f_on =- ' (23d
W 1({w)’
Co=lUp— —2, a:_—,(—) : (200 where
al’o UO r 0
L . . . d? iny 6’&2
where againx is the ratio of the axial and azimuthal wave- L=— 8- —0 (o + 1hD)

numbers,a=-a,/n,. This scaled axial wavenumber can be iR 2
considered to be unchanged from its value in the previous

section and correspondingly the functional relationship beand ¢y retains its earlier definition. Applying the solvability
tween the critical position,, the wave-speed,, anda are as  (0r compatibility condition to the right-hand side a3)

found in Sec. li(see Fig. 1 yields the differential equation
Proceeding to the next order in our expansion we obtain o o - ) )
the homogeneous system d’Fg  2ni(a’rg+ D(E; +iny¢pR%2) — ni(a® + 1irp)] F
~ 24 0
&1Fo +iUyGo - iaPy =0, (219 dR foc1
[— = 0’
a 2wy
i€;Go~ r_OHO =0, (21D which when solved subject to condition that the wave ampli-
tude decays aB— || yields the eigenvalue
. . [ a2 2 | 12 2
&1 Ho +iW3Ge + —Po =0, (210 . 1]icirglel L N,
CG==2)""%2 . ( In - —(aT5+1). 24
lo 2 5 a2r3+1 Ny rg (@T5+1) (24)
1 F 24 h
—aF0+r—H0:O. (21d) rom (24) we note that
0 ) -|nJ™* as n;—0
As in Sec. I, systeni21) has a nontrivial solution provided Co~ ) _ 2 as n,— -,
that the determinant of the coefficient matrix is identically
zero. Evaluating this determinant gives and hence, possesses a global maximum which occurs at
o o | _ 2aWo(Uo + awg) v 22 ez ]
1= ang +1 ’ N1 = Npax= — ]-Zaaz—rg-'-l)g . (25)

where we have chosen the positive root as it is that whichy; yhis point it is useful to briefly summarize the results
yields unstable modes. This is precisely the leading-ordegy,, e The fastest growing wave mode in the large Reynolds
(constant term which appears in the smaiy expansion for  n,mper flow within a trailing line vortex has been identified.
c; from Sec. II; it isreal and positive. At next order, we |+ has axial wavenumbeti=—an ~RZ5, azimuthal wave-
obtain an inhomogeneous version(@f) which when solved .\ .oherm=n ngls wheren.... is given iay expressiof25)

. ma: max :
fOI’ Fl’ Gl’ Hl' and Pl yle|dS The growth rate is

2iwga’rs  dF, 2i aw T
Fim-oedTo SR, p k6= 20N 0= &, + ReSRE G Ny, 26
Cihi(arg+1) gr (o
wherec; is given by expressio22). From (24) and (25) it
2iargw,  dF, can be shown that
le—mT—aroAlFo, ) -
amieor S dR R E,(Nmad] = ¥,
2v_voar§ dFy i(. 2auw, Wher_e vis a fum_:tion of_ro,_a,_and g. Noting that¢, is
1= 22 B 1Fo precisely the leading-ordenviscid growth rate, we have
n(arg+l) Jqp @ ¢

Note that this system yields no information regarding the
eigenvaluec,. Finally at next order we obtain

&iF, +iUlG, +iaP, = LF,, (233 (s_e_e_thenO:O results of Fig. 4 and Ref. J__OThus in the
vicinity of the upper and lower neutral points [R&Nyay |
— 0 and the fastest growing mode is, on this basis, stabilized.

. a=q/2 the lower neutral point
¢, =0 whe .
a=1/q the upper neutral point

W P . S o
iéle—%HZ: -1 +iLGy, (23b However, in the limitc;— 0 the location(in wavenumber
fo My space of the most unstable mode changes. Indeed, 25
_ we see thah,,,— 0 in this limit and so a new distinguished
. . i imi ill ari i i -
& H, + WGy + r—P2=£Ho, (230 limit that will arise. We will not explore the details of this
0

additional complication here.

Downloaded 07 Apr 2011 to 192.43.227.18. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



014101-9 The dominant wave mode within a trailing line vortex Phys. Fluids 17, 014101 (2005)

Finally, we emphasize that the analysis presented abovaffect the structure of the flow within the vortex core. The
is only applicable to the ring modes of instabiliiye., those close relationship between the ring modes and the center
for which ry>0). The most unstable centre modsith r, modes presented here suggest that the nonlinear development

=0) has yet to be determined. of the ring modes may have a role to play in understanding
this phenomenon. Now that we have identified the most un-
IV. CONCLUSION stable mode within a TLV flow we are in a position to con-

We have derived the values of the critical Reynololssider their nonlinear development and thus their effect upon
number, azimuthal wavenumber and swirl parameter fthe mean flow component within the TLV. This will be the

short waves within a trailing line vortex, i.e., through the useSUbJeCt of future work.
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