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The dominant wave mode within a trailing line vortex
James P. Denier
School of Mathematical Sciences, The University of Adelaide, Adelaide 5005, Australia

Jillian A. K. Stott
Bradford College, The University of Adelaide, Adelaide 5005, Australia

(Received 4 June 2004; accepted 16 September 2004; published online 23 November 2004)

We identify the dominant, or most unstable, wave mode for the flow in a trailing line vortex. This
dominant mode is found to reside in a wavenumber regime between that of inviscid wave modes and
the viscous upper branch neutral wave modes. A reevaluation of the growth rate in the vicinity of
the upper branch of the curve of neutral stability allows us to predict the neutral value of the
azimuthal and axial wavenumber as a function of the imposed swirl within the trailing line vortex.
© 2005 American Institute of Physics. [DOI: 10.1063/1.1814583]

I. INTRODUCTION

We consider the instability of the flow within a trailing
line vortex(herein referred to as a TLV). These vortices arise
whenever a finite lifting surface terminates in a fluid. The
fluid dynamics underlying the generation of these vortices
can best be described via Prandtl’s lifting line theory, an
excellent summary of which can be found in Green.1

Trailing line vortices occur in a wide variety of areas in
industries ranging from the aeronautical industry, with ex-
amples such as the flow over aircraft wings and the rotor
blades of helicopters, to the marine industry, with marine
propellers, boat keels, and sails being the major examples,
through to the energy generation industry with vortices being
manifest in the flow over the blades of horizontal and verti-
cal axis wind turbines. In all these areas the generation of
TLVs is generally considered undesirable. Perhaps the most
important area where TLVs occur and present significant
problems is in the aeronautical industry. Here vortex(or lift )
induced drag presents a significant problem in terms of the
reduced efficiency(and concomitant increased operating
costs) of transport aircraft; approximately 35% of the total
drag encountered by passenger aircraft is lift induced drag.
Given that these vortices persist for a considerable length of
time, coupled with the fact that the circulation within the
vortex is maximal when the aircraft speed is at its minimum
level (that is, during take-off and landing), they pose a sig-
nificant potential hazard to any following aircraft that may
penetrate them(resulting in what is commonly referred to as
a wake-vortex interaction). In order to avoid these potentially
disastrous encounters aviation authorities throughout the
world have prescribed minimum separation distances be-
tween successive aircraft during take-off and landing. A de-
tailed discussion of the implications of TLVs to the aviation
industry can be found in Ref. 1.

Due to the technological importance of this family of
fluid flows the question as to their stability2 has received
considerable attention in the last two decades. There have
been two main approaches to the question of flow stability.
The first is based upon the numerical solution of the equa-
tions governing the growth of infinitesimally small distur-

bances to the basic, laminar vortex. The second approach
revolves around the asymptotic analysis of these equations in
a number of physically relevant(and important) limits. In the
majority of the work on this problem, the structure of the
laminar vortex is taken to be a similarity form derived by
Batchelor.3 This similarity form was derived under the as-
sumption that the distance from the trailing edge of the wing
is large. It is therefore of relevance to the flow regime several
chord lengths from the trailing edge of the aerofoil. We will
exploit this similarity solution as the basic velocity profile
for the stability analysis to be presented in this study. To fix
ideas in what follows we define a cylindrical coordinate sys-
tem sr ,u ,zd in which z measures the distance downstream of
the trailing edge of the lifting surface,rr measures distance
radially outwards from the centre of the vortex, andu mea-
sures the azimuthal angle(defined so thatu positive is in the
direction of the swirl).

Much of the work on the stability of trailing line vortices
has focused on the numerical computation of the growth
rates of the instability and in determining the curve of neutral
stability in wavenumber-Reynolds number space. The early
results of Lessen, Singh, and Paillet4 demonstrated that the
flow is inviscidly unstable to wave modes with azimuthal
wavenumbernø1 over a finite band of axial wavenumbers
a. Moreover, the modes with negative azimuthal wavenum-
ber proved to be the most unstable. This work identified the
curious behavior that the maximum growth rate of the invis-
cid wave modes increased with increasing(negative) azi-
muthal wavenumbern. The value of the axial wavenumber,
at which this maximum growth rate occurs, also increases.
Thus, this early work presents us with the conclusion that the
maximum growth rate corresponds to a short wave(that is,
one which has short wavelength in both the axial and azi-
muthal direction). Lessen and Paillet5 extended their earlier
results to consider the effect of viscosity on the stability of
the flow. They solved the cylindrical polar coordinate
equivalent of the classical Orr–Sommerfeld equation numeri-
cally and were able to determine the parametric curves
FsRe,a ;n,qd=0 in the Reynolds numbersRed-wavenumber
sad plane along which the flow is neutrally stable. Such neu-
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tral curves have the property that both the upper and lower
branches tend to a constant asa becomes large. Subsequent
work by Duck and Foster,6 Khorrami,7 and Mayer and
Powell8 extended the earlier work of Refs. 4 and 5 and pro-
vided a detailed description of the structure of the curve of
neutral stability as a function of both the swirl parameterq
and the azimuthal wavenumbern. These studies also illus-
trated that on the inclusion of viscosity(i.e., at finite Rey-
nolds numbers) the most unstable mode occurs for a finite
negative value of the azimuthal wavenumber. This effect can
be attributed to the interplay between the stabilizing influ-
ence of viscosity and the destabilizing effect of swirl.

In-flight Reynolds numbers are large, values in the range
Os105d to Os106d being typical. Considerable progress in un-
derstanding the dynamics of the flow can be made by em-
ploying an asymptotic analysis based upon the large Rey-
nolds number. Asymptotic theories, valid in the limit of large
Reynolds number, were developed(Stewartson,9 Leibovich
and Stewartson,10 and Duck11). These were, in part, driven
by earlier numerical results that demonstrated that at large
Reynolds number the short wavelength disturbances became
concentrated to within a thin layer situated a finite distance
from the centerline of the vortex(usually referred to as ring
modes). Leibovich and Stewartson10 derived a sufficient(but
not necessary) condition for the existence ofinviscid modes
of instability in a columnar vortex. In the particular case of
the Batchelor vortex, for short wavelength disturbances, this
condition for instability translates to a restriction on the pa-
rameter range given by12nq,a,n/q wheren anda are the
azimuthal and axial disturbance wavenumbers, respectively,
andq is a parameter which measures the level of swirl within
the flow. Stewartson and Capell12 considered modes in the
vicinity of the upper neutral pointsa,n/qd, while Stewart-
son and Leibovich13 considered modes close to the lower
neutral pointsa,nq/2d.

This form of flow structure, exhibiting disturbance local-
ization at a point located within the bulk of the flow, is simi-
lar to that reported by Mureithi, Denier, and Stott14 for the
upper branch stability of Tollmien–Schlichting waves in a
thermally stratified boundary layer and also to that encoun-
tered in the study of centrifugal instabilities in wall bounded
flows as described by Denier, Hall, and Seddougui.15 The
results of Ref. 15 provide the impetus for the present study
whose motivation is to determine the structure and location
of the most unstable wave-like disturbance in a TLV.

To achieve this aim we adopt the following strategy. In
Sec. II we formulate the stability problem and derive the
largesn,ad asymptotic form for the disturbance field. This is
then used in Sec. III to derive the structure of the most un-
stable disturbance mode in the TLV flow. Finally in Sec. IV
we draw some conclusions from our work and comment
briefly on some directions for future work.

II. FORMULATION

In order to determine the structure of the most unstable
linear disturbance within a trailing line vortex we will pro-
ceed in the manner described by Denier, Hall, and
Seddougui.15 In Ref. 15 the wavenumber regime which con-

tains the fastest growing Görtler vortex mode relevant to
boundary-layer flows over(concavely) curved surfaces was
found. The authors found that consideration of near neutral
short wavelength vortices led to the identification of an in-
termediate regime which contained the most unstable vortex
mode. A similar procedure will be adopted in this study.

First we will briefly reconsider the behavior of those
wave modes close to the upper branch of the neutral curve;
we follow closely the methodology of Stewartson.9 We will
present only those parts of the analysis of Ref. 9 which we
consider to be crucial for a clear exposition of the structure
of the dominant wave mode. In order to obtain the relevant
disturbance equations we write the total nondimensional flow
field as the sum of a basic flow plus a small amplitude per-
turbation

su,v,w,pd = fūsrd,0,w̄srd,p0g

+ d fFsrd,iGsrd,Hsrd,Psrd/ngE + Osd2d, s1d

where the velocitiessu,v ,wd are defined with respect to the
cylindrical polar coordinate systemsx,r ,ud , d is taken to be
infinitesimally small,p is the total pressure,p0 is the free-
stream(constant) pressure, and

E = expfiãsx − c0td + inu + ctg.

Here ã is the axial wavenumber,n the azimuthal wavenum-
ber,c0 denotes the(leading-order) wave speed,andc denotes
the (complex) growth rate. Substitution of(1) into the
Navier–Stokes and continuity equations, in cylindrical polar
coordinates, yields atOsdd,

sc + ifdF + iū8G +
iã

n
P =

1

Re
H1

r
srF8d8 − Sã2 +

n2

r2DFJ ,

s2ad

sc + ifdiG −
2w̄H

r
= −

P8

n
+

1

Re
H i

r
srG8d8

− Sã2 +
n2 + 1

r2 DiG −
2inH

r2 J , s2bd

sc + ifdH + iw̄+G +
i

r
P =

1

Re
H1

r
srH8d8 − Sã2 +

n2 + 1

r2 DH

+
2nG

r2 J , s2cd

ãF +
n

r
H = − G8 −

G

r
, s2dd

where we have defined

f = ãsū − c0d +
nw̄

r

and

w̄+ = w̄8 + w̄/r .

Here Re is the Reynolds number of the flow(taken to be
large). The basic flow chosen for this study is the similarity

014101-2 J. P. Denier and J. A. K. Stott Phys. Fluids 17, 014101 (2005)

Downloaded 07 Apr 2011 to 192.43.227.18. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



form, first derived by Batchelor,3 relevant to the flow within
a trailing line vortex a distance from the trailing edge of the
airfoil. In its simplest form it is given by

ūsrd = e−r2
, w̄srd =

q

r
s1 − e−r2

d. s3d

The parameterq characterizes the intensity of the swirl
within the vortex. By making use of(3) for the underlying
basic flow we are implicitly assuming that the flow is parallel
although, in fact, the velocity field within a TLV does de-
velop spatially. However, the assumption of parallelism is
justified in the present case since the wavelengths of the
disturbances we will consider are much shorter than theOs1d
scales over which the basic flow evolves.

The work of Stewartson9 demonstrates that the upper
branch of the curve of neutral stability is located in the wave-
number regimesn=OsRe

1/2d , ã=OsRe
1/2d. Thus we write

ã = ã0Re
1/2, n = n0Re

1/2.

Furthermore Ref. 9 shows that, in the vicinity of the upper
branch of the neutral curve, the linear disturbances are con-
centrated in a region ofOsRe

−3/8d centered on a radial position
r =r0sÞ0d. Thus we define the scaled radial coordinate

R= Re
3/8sr − r0d,

where the position of the vortexr0 is to be determined from
the subsequent analysis. Within theOsRe

−3/8d layer centered
on r =r0 the basic flow velocities expand in the form

sū,w̄d = sū0,w̄0d + Re
−3/8sū08,w̄08dR+ Re

−3/4sū09,w̄09dR
2 + ¯ ,

where a prime denotes differentiation with respect tor and a
zero subscript will be used to indicate that the function is to
be evaluated atr =r0. In addition, the disturbance to the axial
velocity expands in the form

F = F0 + Re
−1/8F1 + Re

−1/4F2 + ¯ s4d

(together with similar expansions for theG,H, and P). We
also anticipate the result that the complex growth ratec ex-
pands as

c = c1 + Re
−1/4c2 + ¯ . s5d

Substituting these expansions into(2) and equating coeffi-
cients of fractional powers of Reynolds number gives, at
order OsRe

1/2d, a system of homogeneous equations for
F0, G0, H0, and P0 which have a nontrivial solution pro-
vided that the leading order wave speedc0 satisfies

ã0sū0 − c0d +
n0w̄0

r0
= 0, s6d

wherer0 is the position at which the disturbance is localized.
At next order we again obtain a homogeneous system of
equations for the leading-order wave amplitudes which pos-
sess nontrivial solutions provided that

ã0ū08 + n0S w̄

r
D

0

8
= 0; s7d

this serves to determine the critical locationr0 of the distur-
bance.

For given values of the azimuthal and axial wavenum-
bers,n0 and ã0, respectively,r0 is found from (7) and the
leading-order wave speed is determined from(6). From the
form of the basic velocity profiles(3) it is readily observed
that Eq.(7) possess solutions only forn0,0, assumingq is
positive. Conversely ifq is negative then solutions to(7)
only exist if n0.0; for definiteness we will takeq to be
positive throughout. In order to highlight this fact we define
ã0=−an0 (and thena.0). Equations(6) and(7) can then be
rewritten as

FIG. 1. The radial positionr0 as a function of(scaled)
streamwise wavenumber for values ofq=0.2, 0.4,…,
1.4.
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c0 = ū0 −
w̄0

ar0
, a =

1

ū08
S w̄

r
D

0

8
. s8d

In Fig. 1 we present a plot of the critical position as a func-
tion of the (scaled) axial wavenumbera for a variety of
values of the swirl parameterq. We note that there is a criti-
cal value ofa (equal toq/2) at which the critical position
r0=0. As r0→0, i.e., in the neighborhood ofa=q/2, the
analysis described in this study breaks down and the wave
modes become center modes whose properties have been
elucidated by Stewartson and Leibovich.13 Importantly Fig. 1
clearly demonstrates that the center modes are simply a lim-
iting form of the ring modes which develop as the critical
location r0 approaches the vortex centerline.

Continuing our expansions to next order we obtain

f1F0 + iū08G0 + i
ã0

n0
P0 = 0, if1G0 −

2w̄0

r0
H0 = 0, s9ad

f1H0 + iw̄0
+G0 +

i

r0
P0 = 0, ã0F0 +

n0

r0
H0 = 0, s9bd

where we have defined

f1 = c1 + Sã0
2 +

n0
2

r0
2D , s10d

and

w̄0
+ = w̄08 + w̄0/r0.

This system has a nontrivial solution provided that the deter-
minant of the associated coefficient matrix is identically
equal to zero. Evaluating this determinant yields

f1 = ± F2ã0w̄0sū08n0 − ã0r0w̄0
+d

ã0
2r0

2 + n0
2 G1/2

,

which, upon substituting forf1 from (10), gives the expres-
sion for theleading-ordergrowth rate,

c1 = ± F− 2aw̄0sū08 + ar0w̄0
+d

a2r0
2 + 1

G1/2

− n0
2Sa2 +

1

r0
2D , s11d

where we have made use of our earlier rescalingã0=−an0.
Note that for the rest of this study we will consider only the
positive sign as it is these modes which are unstable. The
first term in expression(11) corresponds to the leading-order
inviscid growth rate, while the second term is due to the
effects of viscosity.

We emphasize here that(11) [and the expression(17) for
c2, to be derived] are as given by Stewartson9 in his expres-
sion (27) with only minor differences in notation. In order to
compare his asymptotic results with the earlier numerical
results of Lessen and Paillet.5 Stewartson chose to use these
results to construct neutral curves in thesa ,Red plane for
finite values of azimuthal wavenumbern. Although these
asymptotic results are derived under the assumption that the
azimuthal wavenumber is large and negative, Stewartson
found reasonable agreement between computed results and
his asymptotic results.

There is, however, an alternative interpretation of the
leading-order growth rate which allows us to identify the
critical values of the parameters at which the two branches of
the neutral curve coalesce. To see this we present, in Fig. 2,
plots of the leading-order growth rate Resc1d and in Fig. 3
the first-order correction to the wave speed Imsc1d versusr0

for a variety of values for the swirl parameterq. Three im-
portant features are present in Fig. 2. First, for a given value
of swirl q there is a critical value of the azimuthal wave
numbern0 beyond which the growth rate is negative(for all
values ofr0 and hence all values of scaled axial wavenumber
a). Second, for values ofn0 below this critical value there
are two neutral wave modes. The neutral curves in thesq,ad
plane andsq,r0d plane are presented in Figs. 4 and 5, respec-
tively. For parameter values inside these curves the growth
rate c1 is positive and hence the flow is unstable. Asn0 is
increased the level curves in Figs. 4 and 5 shrink until such

FIG. 2. The real part of the leading-order growth rate as
a function ofr0 for various values of swirl parameter(a)
q=0.2, (b) q=0.4, …, (f) q=1.2 for n0=0.0, 0.2,…,
0.6.
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point that a critical value ofn0 is reached. Beyond this criti-
cal value ofn0 the leading-order growth ratec1 is negative
and hence the wave modes described here are stable. In Fig.
6 we present a plot of positionr0 and the corresponding
value of swirlq, at which the maximum value ofc1 is iden-
tically zero. From this plot the global critical value ofn0 is
readily seen. Once this critical value is achieved the curves
of neutral stability in thesa ,Red plane will become closed(at
large values of the Reynolds number). The third feature of
Fig. 2 that warrants comment is the presence of both center
and ring mode instabilities. The ring mode has a position
r0.0, the center mode has positionr0=0—with the reintro-
duction of viscosity the center mode[which is neutrally
stable with Resc1d=0] becomes stabilized Resc1d,0.

In Table I we present the critical value ofn0 (and the
associated values ofq,r0, anda) together with the limiting
numerical results of Mayer and Powell.8 The agreement be-
tween the numerical results of Ref. 8, derived from the nu-
merical solution of (2) for large values ofn, and our
asymptotic results is excellent.

At this order of approximation the stability of the flow is
based upon the sign ofc1; thus, although the results pre-
sented in Table I are for the critical value ofc1, the higher
order growth ratec2 [see expression(17)] will modify these
critical parameters by an amount ofOsRe

−1/4d. We do not
pursue this matter any further here.

To continue, system(9) has the solution

FIG. 3. The imaginary part of thec1 versusr0 for val-
ues of the swirl parameterq=0.2, 0.4,…, 1.2. Note that
the imaginary part ofc1 is independentof the azimuthal
wavenumbern0.

FIG. 4. Neutral curve, based upon the leading order
growth ratec1. Shown are plots ofq vs a for variousn0.
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sH0,G0,P0d = S−
ã0r0

n0
,−

2ã0w̄0

if1n0
,−

n0

iã0
Ff1 −

2ã0ū08w̄0

f1n0
GDF0,

s12d

where the amplitude functionF0 is yet to be determined. At
next order in our expansion we obtain the inhomogeneous
system of equations forF1, G1, H1, and P1 which can be
solved to give

F1 = −
2iw̄0ã0

2r0
2

f1n0sã0
2r0

2 + n0
2d

dF0

dR
+ A1F0, s13ad

G1 =
2iã0w̄0A1

f1n0
F0, s13bd

H1 = −
2iã0r0w̄0

f1sã0
2r0

2 + n0
2d

dF0

dR
−

ã0r0

n0
+ A1F0, s13cd

P1 =
2w̄0ã0r0

2

sã0
2r0

2 + n0
2d

dF0

dR
+

n0

ã0
Sf1 −

2ã0ū08w̄0

f1n0
DiA1F0. s13dd

Finally at next order we obtain

f1F2 + iū08G2 +
iã0

n0
P2 = LF0, s14ad

if1G2 −
2w̄0

r0
H2 = −

P18

n0
+ iLG0, s14bd

FIG. 5. Neutral curve, based upon the leading order
growth ratec1. Shown are plots ofq vs r0 for various
n0.

FIG. 6. The position at which the maximum value ofc1

is equal to zero. Shown arer0 vs n0 (solid line) andq vs
n0 (dashed line).
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f1H2 + iw̄0
+G2 +

iP2

r0
= LH0, s14cd

ã0F2 +
n0

r0
H2 = − G18, s14dd

where we have defined the differential operatorL

L =
d2

dR2 − c2 −
in0f09R

2

2
,

with

f09 = − aū09 + S w̄

r
D

0

9
.

System(14) will only have a solution provided that a com-
patibility condition on the inhomogeneous terms is satisfied.
Mathematically this solvability condition is simply the re-
quirement that the inner product of the vector representing
the right-hand-side of(14) with the adjoint eigenvector of the
coefficient matrix(of the homogeneous system) vanish. Ap-
plying this solvability condition, and making use of(13),
yields the differential equation governing the radial structure
of the wave amplitudeF0,

d2F0

dR2 − sl1R
2 + l0c2dF0 = 0, s15d

where we have defined

l0 =
2sã0

2r0
2 + n0

2d
r0

2c1 + 3sã0
2r0

2 + n0
2d

, l1 =
il0n0f09

2
.

In order to ensure that the wave mode is confined to the
viscous layer centered onr =r0 Eq. (15) must be solved sub-
ject to the boundary conditionsF0→0 as uRu→`. Equation
(15) is a (modified) form of the parabolic-cylinder-function
equation(see Ref. 16) which has the requisite solution if

c2 = −
l1

1/2s1 + 2md
l0

, m= 0,1,2,….

The corresponding eigenfunctions are given by

F0 = HmsRdexpS−
1

2
l1

1/2R2D , s16d

whereHm are Hermite polynomials of degreem (see Ref. 16
for details).

Again utilizing the scaled axial wavenumber
a=−ã0/n0, we obtain(for the first, orm=0 mode)

c2 = −
s1 + idhuf09u

1/2fr0
2c1 + 3n0

2sa2r0
2 + 1dgj1/2

2sa2r0
2 + 1d1/2un0u1/2 . s17d

In deriving (17) we have used the fact thatf09 is negative for
all r0.0 (independent ofq). We are now in a position to
identify the most unstable wave mode within a trailing line
vortex flow.

III. THE MOST UNSTABLE WAVE MODE

To determine the most unstable mode we note from(11)
and (17) that, in the limitn0→0, we have

c1 , const +Osn0
2d, c2 , Osun0u−1/2d, s18d

where the constant term in(18) is given by

F− 2aw̄0sū08 + ar0w̄0
+d

a2r0
2 + 1

G1/2

.

Note that the sign of the term in the square brackets is nega-
tive; the constant inc1 then corresponds to the leading-order
growth rate. From(17) we observe that, in the limit of small
(scaled) azimuthal wavenumber, the second-order growth
rate becomes large, of sizeOsun0u−1/2d, whereas the correction
to c1 is small, of sizeOsn0

2d. This suggests that there is a new
distinguished limit forn0 in which these two terms will be of
similar size. Noting, from(5), that the correction to the
growth rate isOsRe

−1/4un0u−1/2d we find that the new distin-
guished limit occurs when

n0
2 = OsRe

−1/4un0u−1/2d,

that is, whenn0=OsRe
−1/10d or n=OsRe

2/5d. Additionally the
axial wavenumberã is now of orderOsRe

2/5d. Thus we define

n = n1Re
2/5, ã = ã1Re

2/5. s19d

In order to determine the correct radial scale for the domi-
nant wave mode we observe from Sec. II that in the limit
n0→0, l1,Osn0

3d and the eigenfunction is given by(16), or
equivalently

F0 = expf− 1
2l1

1/2Re
3/4sr − r0d2g .

This suggests that the dominant mode is confined to a layer
of thicknessOsl1/4Re

3/8d=OsRe
3/10d centered on the location

r =r0. We therefore define

R̃= Re
3/10sr − r0d,

and seek wave-like solutions to(2) proportional to

E = expfiãsx − c0td + inu + ĉ1t + ĉ2Re
−1/5tg,

where the amplitude function expands asF=F0+Re
−1/10F1

+Re
−1/5F2+… (with similar expressions forG, H, and P).

Substitution of these expansions into(2) gives, at the first

TABLE I. The critical values of the azimuthal wavenumber, vortex position,
imposed swirl, and axial wavenumber based upon the leading-order growth
rate termc1. The critical Reynolds number is given byRe0

=1/un0u2.

Current study Mayer and Powella

un0u 0.595 32 …

r0 1.181 01 …

q 0.540 55 0.542b

a 0.455 50 0.456

Re0
2.821 6 2.8376

aThese results are based upon the numerical solution of the stability equa-
tions for a value of the azimuthal wavenumbern=10 000(see their Table
IV ).
bIn interpreting the results of Mayer and Powell note that they solved the
disturbance equations withn positive andq negative which is equivalent to
our case ofn negative andq positive.
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two orders of approximation, the leading-order wave speed
and critical position as

c0 = ū0 −
w̄0

ar0
, a =

1

ū08
S w̄

r
D

0

8
, s20d

where againa is the ratio of the axial and azimuthal wave-
numbers,a=−ã1/n1. This scaled axial wavenumber can be
considered to be unchanged from its value in the previous
section and correspondingly the functional relationship be-
tween the critical positionr0, the wave-speedc0, anda are as
found in Sec. II(see Fig. 1)

Proceeding to the next order in our expansion we obtain
the homogeneous system

ĉ1F0 + iū08G0 − iaP0 = 0, s21ad

iĉ1G0 −
2w̄0

r0
H0 = 0, s21bd

ĉ1H0 + iw̄0
+G0 +

i

r0
P0 = 0, s21cd

− aF0 +
1

r0
H0 = 0. s21dd

As in Sec. II, system(21) has a nontrivial solution provided
that the determinant of the coefficient matrix is identically
zero. Evaluating this determinant gives

ĉ1 = F−
2aw̄0sū08 + aw̄0

+d
a2r0

2 + 1
G1/2

, s22d

where we have chosen the positive root as it is that which
yields unstable modes. This is precisely the leading-order
(constant) term which appears in the smalln0 expansion for
c1 from Sec. II; it is real and positive.At next order, we
obtain an inhomogeneous version of(21) which when solved
for F1, G1, H1, andP1 yields

F1 = −
2iw̄0a2r0

2

ĉ1n1sa2r0
2 + 1d

dF0

dR̃
+ A1F0,G1 =

2iaw̄0A1

ĉ1

F0,

H1 = −
2iar0w̄0

ĉ1n1sa2r0
2 + 1d

dF0

dR̃
− ar0A1F0,

P1 =
2w̄0ar0

2

n1sa2r0
2 + 1d

dF0

dR̃
+

i

a
Sĉ1 −

2aū08w̄0

ĉ1
DA1F0.

Note that this system yields no information regarding the
eigenvalueĉ2. Finally at next order we obtain

ĉ1F2 + iū08G2 + iaP2 = LF0, s23ad

iĉ1G2 −
2w̄0

r0
H2 = −

P18

n1
+ iLG0, s23bd

ĉ1H2 + iw̄0
+G2 +

i

r0
P2 = LH0, s23cd

aF2 +
1

r0
H2 = −

G18

n1
, s23dd

where

L =
d2

dR̃2
− ĉ2 −

in1f09R̃
2

2
− n1

2sa2 + 1/r0
2d

andf09 retains its earlier definition. Applying the solvability
(or compatibility) condition to the right-hand side of(23)
yields the differential equation

d2F0

dR̃2
−

2n1
2sa2r0

2 + 1dfsĉ2 + in1f09R̃
2/2d − n1

2sa2 + 1/r0
2dg

r0
2ĉ1

F0

= 0,

which when solved subject to condition that the wave ampli-

tude decays asR̃→ u`u yields the eigenvalue

ĉ2 = −
1

2
H iĉ1r0

2uf09u
2

a2r0
2 + 1

J1/2

un1u−1/2 −
un1u2

r0
2 sa2r0

2 + 1d. s24d

From (24) we note that

ĉ2 ,H− un1u−1/2 as n1 → 0−

− un1u2 as n1 → − `,
J

and henceĉ2 possesses a global maximum which occurs at

n1 = nmax= − F ĉ1r0
6uf09u

2

128sa2r0
2 + 1d3G1/5

. s25d

At this point it is useful to briefly summarize the results
above. The fastest growing wave mode in the large Reynolds
number flow within a trailing line vortex has been identified.
It has axial wavenumberã=−anmaxRe

2/5, azimuthal wave-
numbern=nmaxRe

2/5 wherenmax is given by expression(25).
The growth rate is

c = ĉ1 + Re
−1/5Refĉ2snmaxdg, s26d

whereĉ1 is given by expression(22). From (24) and (25) it
can be shown that

Refĉ2snmaxdg = gĉ1
2/5,

where g is a function of r0, a, and q. Noting that ĉ1 is
precisely the leading-orderinviscid growth rate, we have

ĉ1 = 0 whenHa = q/2 the lower neutral point

a = 1/q the upper neutral point
J

(see then0=0 results of Fig. 4 and Ref. 10). Thus in the
vicinity of the upper and lower neutral points Refĉ2snmaxdg
→0 and the fastest growing mode is, on this basis, stabilized.
However, in the limit ĉ1→0 the location(in wavenumber
space) of the most unstable mode changes. Indeed, from(25)
we see thatnmax→0 in this limit and so a new distinguished
limit that will arise. We will not explore the details of this
additional complication here.
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Finally, we emphasize that the analysis presented above
is only applicable to the ring modes of instability(i.e., those
for which r0.0). The most unstable centre mode(with r0

=0) has yet to be determined.

IV. CONCLUSION

We have derived the values of the critical Reynolds
number, azimuthal wavenumber and swirl parameter for
short waves within a trailing line vortex, i.e., through the use
of a large wavenumber theory we can predict the asymptoti-
cally correct value of the swirl parameter beyond which all
short wave modes are stabilized. These values provide excel-
lent agreement with the numerical result of Mayer and
Powell.8 Furthermore the most unstable mode for the flow
within a trailing line vortex has been described. This mode is
found to lie in a wavenumber regimen=OsRe

2/5d and a
=OsRe

2/5d. Our description of this most unstable mode cor-
rects the earlier conjecture by Stewartson9 that the most un-
stable wave mode hasn=OsRe

3/5d.
What then, is the physical relevance of these short waves

and, in particular, the most unstable mode? As noted in the
introduction, in-flight Reynolds numbers are typically large
and so, in order to accurately model the flow within a TLV
we must necessarily develop an understanding of the behav-
ior of disturbances to the flow in the large Reynolds number
limit. Here we have identified both the characteristics length
scale and structure of the dominant short wave in a typical
TLV flow. It is possible to describe a general scenario
whereby an otherwise random disturbance to a TLV will
grow according to the temporal growth rates of its individual
Fourier components. The linear development of such a ran-
dom disturbance will be dominated by the most unstable
mode whose structure has been described in Sec. IV; ulti-
mately, however, this mode will reach an amplitude at which
nonlinear terms cannot be ignored and a linear analysis is no
longer applicable.

Experimental evidence for the ring modes of instability
can be found in Bisgood,17 Sarpkaya,18 and Sarpkaya and
Daly19 where the phenomenon of “core bursting” or “core
bulging” is discussed. Although it is not possible to obtain
any useful information regarding the wavelength of the
modes associated with this core bursting it is, as first noted
by Khorrami,7 possible to identify these modes as ring
modes(at least in the initial linear stages of their develop-
ment). The “bursting” results in a spatially localized break-
down of the flow; Sarpkaya18 demonstrates that this phenom-
ena is different from the classical “vortex breakdown”
encountered in closed flows. It is however a nonlinear phe-
nomenon which, as noted above, appears to emanate from
the ring modes(that is, a mode that originates a finite dis-
tance from the vortex core) which then grow and serve to

affect the structure of the flow within the vortex core. The
close relationship between the ring modes and the center
modes presented here suggest that the nonlinear development
of the ring modes may have a role to play in understanding
this phenomenon. Now that we have identified the most un-
stable mode within a TLV flow we are in a position to con-
sider their nonlinear development and thus their effect upon
the mean flow component within the TLV. This will be the
subject of future work.
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