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Information technology applications that support decision-making processes and prob-

lem-solving activities have proliferated and evolved over the past few decades. In the

1970s, these applications were simple and based on spreadsheet software. During the

1980s, decision-support systems incorporated optimization models, which originated 
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in the operations research and management science
communities. In the 1990s, these systems were fur-
ther enhanced with components from artificial intel-
ligence and statistics. 

This evolution led to many different types of deci-
sion-support systems with somewhat confusing
names, including management information systems,
intelligent information systems, expert systems,
management-support systems, and knowledge-based
systems. Because businesses realized that data was
a precious asset, they often based these “intelligent”
systems on data warehousing and online analytical
processing technologies. They gathered and stored
a lot of data, assuming valuable assets were implic-
itly coded in it. Raw data, however, is rarely benefi-
cial. Its value depends on a user’s ability to extract
knowledge that is useful for decision support. Thou-
sands of “business intelligence” companies thus
emerged to provide such services. After analyzing a
corporation’s operational data, for example, these
companies might return intelligence (in the form of
tables, graphs, charts, and so on) stating that, say, 57
percent of the corporation’s customers are between
40 and 50, or product Q sells much better in Florida
than in Georgia.

Many businesses have realized, however, that the
return on investment for pure “business intelligence”
is much smaller than initially thought. The “discov-
ery” that 57 percent of your customers are between
40 and 50 doesn’t directly lead to decisions that
increase profit or market share. Moreover, we live in
a dynamic environment where everything is in flux.
Interest rates change, new fraud patterns emerge,

weather conditions vary, the stock markets rise and
fall, new regulations and policies surface, and so on.
These economic and environmental changes render
some data obsolete and make other data—which
might have been useless just six weeks ago—sud-
denly meaningful. 

We developed a software system to address these
complexities and implemented it on a real distribu-
tion problem for a large car manufacturer. The sys-
tem detects data trends in a dynamic environment,
incorporates optimization modules to recommend a
near-optimum decision, and includes self-learning
modules to improve future recommendations. As fig-
ure 1 shows, such a system lets enterprises monitor
business trends, evolve and adapt quickly as situa-
tions change, and make intelligent decisions based
on uncertain and incomplete information. 

Problem overview
We developed the system for a US-based car man-

ufacturer that has more than 1 million cars returned
from leases or rentals each year. The manufacturer
owns the cars, and the problem is how to best distrib-
ute these cars among hundreds of auction sites around
the United States. The cars vary by make and model,
mileage, options, wear and tear, and so on. These char-
acteristics, along with others, influence the car’s sale
price at each particular auction. Our central challenge
was to achieve the “best” possible distribution among
these auction sites—that is, the distribution that max-
imizes the net proceeds from all sales.

The process of making optimal recommendations
involves many considerations, ranging from price pre-



diction for various car types at different loca-
tions, to price depreciation and volume effects,
to transportation issues. One million cars per
year corresponds to approximately 4,000 cars
per working day. So, each day, a remarketing
team must make 4,000 decisions regarding
which auction site will maximize the sales
price of each car. Further, due to volume
effects, assigning cars to auctions is highly
interrelated, and therefore it’s not possible to
process these cars sequentially.

Say, for example, that a company uses 50
auction sites and processes a mere 1,000
cars per day. This results in a mind-boggling
501,000 distribution choices! No computer
can check out all these possible combina-
tions in a human lifetime. Nevertheless, the
manufacturer requires decisions on all of the
cars today.

Problem complexity 
To illustrate the task, we’ll use a silver, four-

door 2002 Toyota Corolla with 34,983 miles,
a sunroof, automatic transmission, power win-
dows, power seats, and many other options. At
the moment, the car sits at a dealership in Vir-
ginia, and we must decide where to send it. At
first glace, this looks easy. We might be
tempted to simply look up the car’s average
sales price at each auction using one of many
guides, such as the Black Book, Kelley Blue
Book, or Manheim Auction Report. After
adjusting the price based on the car’s mileage,
options, and so on, and estimating transporta-
tion costs—both manageable calculations—
we might simply decide to target the auction
with the highest current average sales price. 

So, what’s the problem? In a word: vol-
ume. Per car, it’s cheaper to ship a truckload
of cars from one place to another than it is to
ship one or a few cars at a time. Assuming
fixed “from” and “to” locations, a typical
transportation cost structure would look
something like this:

• 1–6 cars cost $120 per car. 
• 7–10 cars cost $95 per car.
• 11–14 cars cost $85 per car.

For more than 14 cars, we usually calculate
transportation costs by determining the fee
for transporting 14 cars (or multiples of 14
cars), then calculate the remainder at the
applicable rate. For example, transporting 20
cars would cost us $85 per car for the first 14
cars, and then $120 per car for the remain-
ing 6 cars, for a total cost of $1,910.

Beyond transportation costs, we must also

address other considerations, such as the vol-
ume effect, auction and transportation sched-
uling, depreciation, and insurance and risk
factors (cars might be damaged or stolen in
transit). The volume effect kicks in as the
number of similar cars for sale grows. If we
send many similar cars to a single auction
site—which is reasonable, assuming it offers
the best net price—the volume will result in
less money per car (see figure 2). 

Say, for example, the current average sale
price for a 2002 Toyota Corolla on a partic-
ular auction site is $7,200. We would likely
get this price if we ship up to seven cars to
that location. However, transporting 30 sim-
ilar cars to that site would drop the average
price to $6,900. To complicate this further,
“similar” doesn’t mean the same make,
model, and color. Even though the makes and
models might differ, shipping 30 silver

sedans to the same auction gives buyers more
options, thereby depressing the average sales
price per car. Also, the volume effect’s curve
is different for different types of cars. With
Toyota Corollas, for example, the volume
effect is significant, whereas for Porsche
911s, it is moderate.

Scheduling is also a major issue. Every
auction has a typical sales day, such as at 11
a.m. every second Friday. So, let’s say we
have 20 cars that we’d like to ship to an auc-
tion site, the transport time is 10 days, and
the next auction is 11 days away. If there is
even a slight delay in the delivery of these 20
cars, then we might miss the auction. The
cars would then have to sit in the auction’s
parking lot for almost two weeks. This is
bad—not only because the company wants
them sold as soon as possible, but because
the cars would lose value each day. The price
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Figure 1. Adaptive business intelligence. This diagram shows the flow from data 
acquisition to recommended action, including an adaptive feedback loop. 
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Figure 2. The volume effect. Past a certain point, selling many similar cars at the same
auction reduces the price per car.



depreciation for the average car is around
$10 per day. 

Another thing that complicates our job is
that the market price for cars changes fre-
quently—sometimes slightly and sometimes
dramatically (following the terrorist attack
on 11 September 2001, for example, car
prices dropped significantly; major hurri-
canes in Florida have a similar effect on car
prices). So, on top of all the other issues, we
must stay on top of the changing car prices.
Finally, car prices often reflect a seasonality
effect depending on the geographic region.
It’s not easy to sell a convertible Corvette in
Boston in October, for example, but Florida’s
temperature at that time of year is perfect for
such vehicles. 

Endgame 
This problem requires a distribution deci-

sion at the end of each workday, regardless of
whether the decision is “optimal” and max-
imizes company profits, or if another distri-
bution exists that would increase net sales by
$150 per car (which, with 4,000 cars per day,
would increase total net sales by $600,000). 

Figure 3 shows a distribution example.
The green circles indicate the return of leased
cars: the bigger the circle, the larger the
return volume (clearly, most cars were
returned in the eastern US on this particular

day, though the next day might look entirely
different). Yellow circles indicate 50 possi-
ble auction sites. The auction site locations
are fixed, regardless of the car-return volume
(however, companies occasionally change
the auction sites they do business with—by
dropping some and adding others—which
raises important issues that we discuss later).
The blue lines illustrate the transportation
connections between the cars’ current loca-
tions and auction sites. The thicker the line,
the more cars are shipped.

Clearly, this is not a trivial problem. Any
decision must consider the details of each
car; many different potential auctions, their
timetables, and inventories; complex trans-
portation costs; volume effects; nationwide
vehicle inventories en route to auction; price
depreciations; dynamic price changes at each
auction; sale price predictions up to two
months ahead of time; and so on. Every leas-
ing company therefore has an entire remar-
keting team dedicated to distributing returned
cars. These teams face the formidable task of
recommending the best possible distribution
for each day’s carload, day after day, week
after week, month after month. As we noted
earlier, a small mistake or an inferior recom-
mendation might result in a net loss of “only”
$150 per car, but this can translate into hun-
dreds of thousands of dollars in a single day,

depending on distribution volume. In contrast,
if a smart decision-support system improves
the daily car distribution and thereby lifts net
sales by, say, $200 per car (which is only a
1.33 percent increase in the price of an aver-
age $15,000 off-lease car), the leasing com-
pany would increase its annual profits by hun-
dreds of million of dollars. Exploring this
possibility is clearly worthwhile.

The solution
To address this problem, we developed an

intelligent system comprising several build-
ing blocks, including prediction, optimiza-
tion, and adaptation modules. All three mod-
ules involve research challenges, which we
briefly review in the “Research Issues in
Dynamic Optimization” sidebar.

Prediction module
The prediction module consists of several

components. After the default base price is
set, the remaining modules adjust this price
to create a final predicted price.

• Default base pricing. Using regularly
updated Black Book data, this component
specifies the price based on region, make,
model, year, and mileage. 

• Zip-code-based make/model adjustment.
This component uses historic data, such
as sales records, to adjust the price of the
specific make and model. 

• Zip-code-based color and group adjust-
ment. This component specifies adjust-
ments based on the car’s color and group
(luxury, midsized, compact, and so on).

• Mileage adjustment. This adjustment is
based on the vehicle’s make, model, mileage
category, and model-year age—that is,
when the 2006 model comes out (say, in
September 2005) the 2005 model’s year age
is one. Mileage adjustments are broken
down according to the following categories:
0–10,000, 10,001–30,000, 30,001–60,000,
60,001–90,000, 90,001–120,000, 120,001–
150,000, and over 150,000.

• Seasonality adjustment. This component
adjusts the price based on the car’s model
year, make, model, and region. It is not
zip-code specific. The module calculates
the seasonality adjustment using a daily
depreciation rate, which is defined each
month. The module calculates the total
adjustment by combining the daily
adjustments from the date of the default
base pricing through the predicted sales
date.

T r a n s p o r t a t i o n  a n d  L o g i s t i c s
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Figure 3. Example distribution. The green circles indicate leased car returns, with the
circle size indicating the return volume. The yellow circles indicate the fixed auction
sites, and the blue lines illustrate the transportation between car locations and auction
sites, with line thickness indicating the shipping volume.



• Universal Vehicle Code adjustment. The
UVC provides a more detailed vehicle
specification than the Vehicle Identification

Number (VIN); when the UVC is available,
adjustments are made accordingly.

• Other pricing adjustments. This module sup-

ports additional adjustments if more infor-
mation is available, such as auction-specific
sales data from various auction sites.
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Most data-mining and optimization algorithms assume static
data and a static objective. Typically, they search for a snapshot
of “knowledge” and a near-optimum solution with respect to
some fixed measure (or set of measures), such as profit maxi-
mization or minimization of task-completion time. However,
real-world applications operate in dynamic environments,
where it’s often necessary to modify the current solution due to
changes in the problem setting, such as machine breakdown
or employee illness; or the environment, such as consumer
trends or changes in weather patterns or economic indicators.

It’s therefore important to investigate adaptive algorithms
that don’t require restart every time a change is recorded. In
many commercial situations, such restarts are not an option.

Evolutionary techniques 
An obvious starting point here is evolutionary computation

techniques,1 which are optimization algorithms inspired by the
continuously changing natural environment. However, it’s
important to investigate which evolutionary algorithm exten-
sions are actually useful in business scenarios. Unfortunately,
most current approaches ignore dynamics and assume that re-
optimization should occur at regular intervals. However, signif-
icant benefits can be realized when researchers explicitly
address dynamism.

Many researchers have proposed various benchmarks for
studying optimization in dynamic environments.2 Among the
proposals are the moving peaks benchmark, the dynamic
knapsack problem, dynamic bit-matching, scheduling with
new jobs arriving over time, and the greenhouse control prob-
lem. Researchers have also proposed various measures, includ-
ing offline error, percentage of covered peaks, and diversity.2

Among the partial conclusions reached in this research:

• standard evolutionary algorithms get stuck on a single peak; 
• diversity preservation slows down the convergence; 
• random immigrants introduce high diversity from the begin-

ning, but offer limited benefits; 
• memory without diversity preservation is counterproductive;

and
• nonadaptive memory suffers significantly if peaks move.

What’s missing?
However, several essential points are seemingly missing in

the key research on optimization in dynamic environments.
Most researchers emphasize an ultimate goal of approximat-
ing real-world environments, but they fail to address several
key issues for successful adaptive-system development. The fol-
lowing issues, which constitute the conceptual research frame-
work, are essential for creating a methodology for building
intelligent systems.

Nonstationary constraints 
Here, the task is to optimize a non-stationary objective func-

tion f(x, t), subject to nonstationary constraints, ci(x, t) 0 (i =
1, 2 , … , k). We have applied this approach successfully in the
context of a collision situation at sea.3 By accounting for par-

ticular maneuvering-region boundaries, along with informa-
tion on navigation obstacles and other moving ships, we re-
duced the collision-avoidance problem to a dynamic optimiza-
tion task with static and dynamic constraints. The proposed
algorithm computed a safe and optimum ship path in both
static and dynamic environments. 

Prediction component
Environmental changes are seldom random. In a typical real-

world scenario—where constraints change over time—it’s pos-
sible to calculate some failure probabilities by analyzing past
data, and thus predict a possible environmental change. Our
work on collisions at sea offers a good example here as well.3

We based a ship’s safe trajectory in a collision situation on pre-
dicted speeds and the other ships’ directions. Studying dynamic
environments where change is somewhat predictable is im-
portant, but so far, little work exists along these lines.

Parameter adaptation
In nonstationary environments, researchers must study para-

meter control, particularly when the adaptive system includes
predictive methods.4

Solution robustness
Research into robustness concentrates on questions such as,

What constitutes flexibility in the specific context? How can we
integrate a flexibility goal into the algorithm? To answer these
questions, we must take into account a predictive model (for
environmental changes) and the prediction’s estimated error.
This has yet to occur. Many researchers have recognized the
importance of solution robustness.1,2 Existing approaches vary,
from techniques to “disturb” individuals in the population to
those using search history. Some researchers have considered an
aspect of robustness—sometimes called flexibility—in which the
problem requires sequential decision-making under an uncer-
tain future, and the decision influences the system’s future
state. In such situations, the decision-making process should
anticipate future needs. That is, rather than focusing ex-
clusively on the primary objective function, it should try to
move the system into a flexible state.
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All these components include parameters,
which we adjust at regular intervals to capture
the changing trends in the used car market. 

Optimization module
The optimization module’s job is to rec-

ommend the best distribution of cars to auc-
tion sites. Because this recommendation is
based on prediction, there is a strong rela-
tionship between the prediction and opti-
mization modules. Generally, the optimizer
produces a possible solution, which becomes
the input to the prediction module. The opti-
mizer then uses the prediction module’s result-
ing output to evaluate the solution (in terms
of the total value of the proposed distribution).

For the car distribution system, our opti-
mization module implementation uses an
evolutionary algorithm to represent each
solution as a vector of 4,000 values that pro-
vide—for each car separately—auction site
indices from 1 to 60. The optimizer’s initial
distributions are produced by combining ran-
domly generated solutions, built from ran-
dom numbers (from 1 to 60) for each entry,
and heuristic-based solutions, based on cal-
culating the distance between cars and vari-
ous auction sites.

A vector of all 1s would indicate that each
car is scheduled for transport to the closest
auction site. The optimizer’s evaluation func-
tion provides the proposed distribution’s total
value because a solution vector specifies each
car’s exact destination. For each distribution,
the optimization module

• calculates the expected total of all sales (at
specified locations and at specified time
intervals, including seasonal effects);

• modifies the total to include price depre-
ciation and volume effect; and

• subtracts costs related to the given distri-
bution (transportation costs, auction fees,
and so on).

Finally, we designed the module to output
the given distribution’s expected net pro-
ceeds. For this representation, we apply stan-
dard operators of various mutations and
crossovers, which we proposed and experi-
mented with for integer vectors.1 In this case,
however, we extend the algorithm with an
additional local search routine. We also
designed a problem-specific decoder to deal
with problem-specific constraints (such as
excluding all red cars from an auction site in
Austin, Texas, or excluding all cars more
than four years old from all California auc-
tions). We also use the so-called elitist strat-
egy, which forces the best solution from one
generation to the next. 

The population of solutions in the evolu-
tionary algorithm consists of approximately
2,000 solutions (this number is a function of
the number of cars processed on a particular
day). We process the solutions in the evolu-
tionary loop. The system evaluates 2,000
individuals, selects parents, applies crossover
and mutation operators to create offspring,
creates the next generation, and so on. The
system repeats this simulated evolutionary

process until the generation counter t hits a
threshold (again, this number—around
150,000—is a function of the number of cars
processed that day). At this stage, the system
applies a local search method. It thereby
locates many quality solutions within the
final population and reports back the best
individual solution. 

Adaptation module
Although intelligent software systems

require a prediction module and optimizer,
by themselves they’re insufficient for today’s
rapidly changing environment. The predic-
tion module must be adaptive and learn from
environmental changes, as today’s accurate
prediction might not be accurate tomorrow. 

We accomplish adaptability by slightly
altering the learned relationship between input
and output as needed. This alteration might be
required every second, minute, hour, day,
week, or month, for example, depending on
how quickly the environment changes. Some
classic forecasting methods—such as expo-
nential smoothing methods2—approach this
problem by emphasizing recent data. An ideal
adaptive solution can decide the update fre-
quency for itself by continuously measuring
its own prediction errors and adjusting its para-
meters accordingly. Hence, the adaptive sys-
tem adapts its own speed of adaptation.

Our adaptation module takes recent input
and output from very recent history, using his-
toric data to construct and train the prediction
module. The whole system then makes regu-
lar (daily) recommendations on where to send
cars. The system also provides a sales price
prediction for each car, adjusted for volume
effect. All this is recorded in the company’s
database. Once the cars are actually sold a
few weeks later, it can compare the predicted
and actual sale prices and, for example, detect
new price trends. In any case, the actual prices
constitute recent output, and the auction sites,
dates, and car information constitute the
recent input. The adaptation module uses
both, and, if necessary, adapts the prediction
module’s parameters to decrease the predic-
tion error based on environmental changes.

Solution context
The prediction, optimization, and adapta-

tion modules are the foundation of our adaptive
solution. To address basic user needs, the sys-
tem also features an intuitive graphical user
interface, a database to store information, and
a report module for easy information access. 

Figure 4 shows a diagram of the system.

T r a n s p o r t a t i o n  a n d  L o g i s t i c s

48 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

Graphical user interface

Database Optimization module Report module

Input data Prediction module Predicted output

Recent input Adaptation module Recent output

Figure 4. The intelligent decision-support system. The prediction, optimization, and
adaptation modules feed information into the user interface, the information
database, and the report module. 



Comparing it with figure 1 shows that the
adaptation module in figure 4 is responsible
for the loop from “data” to “information,”
while the optimization module converts
“knowledge” into “action,” and so on.

Our system can support intelligent decisions
in many domains, from fraud detection to rout-
ing to portfolio management and beyond. In
most cases, specific problem characteristics
boil down to prediction, optimization, and
adaptation. Because we can design and build
the first two modules independently—then
tune them to the problem at hand—the system
is widely applicable in many domains.

System implementation
Our system runs on a Pentium 4 1-Ghz PC,

and the car manufacturer has used the sys-
tem on a daily basis since 2002. The total
running time for optimization is around 1.5
hours, though additional time is required to
load all the necessary input files. 

The client’s inventory management system
generates the inventory of cars to be distributed,
which our system automatically downloads
from the FTP server and processes early in the
morning. The files include data about the cars,
current, up-to-date inventory of cars at the auc-
tions, and information about cars that have been
sold (to tune the price prediction module).

The optimization process starts automati-
cally once the input files have been loaded
and processed. Once this process is complete,
a proposed solution is ready by the start of the
business day. However, the system imple-
ments the solution only after a remarketing
officer checks the results and (possibly)
makes small adjustments. Less than 1 percent
of the recommended cars are changed manu-
ally; these changes typically correspond to
last-minute actions based on new informa-
tion. Once the checking process is finalized,
the system sends the final output files to the
transportation-management system.

Results and future work
We measured the system’s performance in

two ways. First, we divided a daily sample of
4,000 cars into two sets of 2,000 cars each, with
an almost identical distribution of make and
models. We then distributed one set of cars
using the “old” system and compared results
with the cars that were distributed through our
system. Second, we used the old system on
selected days (Mondays,Wednesdays, and Fri-
days) and our new system on the remaining
days (Tuesdays and Thursdays), and again
compared results after the cars were sold. Based

on these comparisons, we estimate that, since
its implementation in 2002, our intelligent deci-
sion-support system has generated a multimil-
lion dollar sales lift per year. 

In future versions of our system, we might
include several additional features, includ-
ing the ability to

• make adjustments based on current weather
conditions,

• change the destination of cars en route to
a specific auction site, and

• account for new body styles on particular
makes and models.

More information on this system and
other applications of adaptive software for
business problems is available at www.
solveitsoftware.com.
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