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SUMMARY

Directed expression of SV40largeT antigen (TAg) intrans
genic mice can induce tissue-specific tumorigenesis and
useful cell linesexhibiting differentiated characteristics can
be established from resultant tumor cells. In an attempt to
produce an immortalised mouse hair follicle cortical cell
line for the study of hair keratin gene control, SV40 TAg
expression was targeted to the hair follicles of transgenic
mice using a sheep hair gene promoter. Expression of SV40
TAg in the follicle cortex disrupted normal fiber ultra-
structure, producing a marked phenotypic effect. Affected
hairs were wavy or severely kinked (depending on the
severity of the phenotype) producing an appearance
ranging from a ruffled coat to a stubble covering the back
of the mouse. The transgenic hairs appeared to be
weakened at the base of the fibers, leading to premature

hair-loss and a thinner pelage, or regions of temporary
nudity. No follicle tumors or neoplasia were apparent and
immortalisation of cortical cells could not be established in
culture. In situ hybridisation studies in the hair follicle
using histone H3 as a cell proliferation marker suggested
that cell proliferation had ceased prior to commencement
of K2.10-TAg expression and was not re-established in the
differentiating cortical cells. Hence, TAg was unable to
induce cell immortalisation at that stage of cortical cell
differentiation. However, transgenic mice developed
various other abnormalitiesincluding vertebral abnormal-
ities and bladder, liver and intestinal tumors, which
resulted in reduced life expectancy.
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INTRODUCTION

The hair follicle is a complex and dynamic structure which
provides an interesting model for the study of development,
proliferation and differentiation. The follicle is composed of
severa different cell typeswhich form the various layers of the
outer root sheath and inner root sheath, and the cortical and
surrounding cuticle layers of the hair shaft. Asthefollicle bulb
cells divide and rapidly differentiate into cuticle and cortical
keratinocytes acomplex pattern of gene expression is observed
in the follicle cortex, where different keratin genes are
activated at different stages of cortical cell differentiation, such
that a hierarchy of gene expression is established (Powell et
al., 1991, 1992). Keratins are the structural proteins of the hair
and form the bulk of the protein synthesised in terminally dif-
ferentiating keratinocytes. There are 2 major groups of
proteins: the keratin intermediate filament (IF) proteins and the
keratin-associated proteins (KAP). The keratin IF are
composed of two classes, the type | proteins and the type Il
proteins, which are co-expressed in specific pairs. Four
different pairs are found in the hair cortex and these form 8-
10 nm diameter filamentsin the cells, embedded in a matrix of
KAPs. The KAPs comprise several protein families, each with
many highly related members (Gillespie, 1990; Powell and
Rogers, 1990b). The first detectable hair-specific keratins are

the IF, with the activation of different KAP families occurring
at later stages of differentiation (Powell et al., 1991).

The factors controlling the specificity and timing of keratin
gene expression in the hair follicle are unknown. Comparison
of the promoter regions of sheep hair keratin genes indicates
conserved segquence elements that may have functional signif-
icance (Powell et al., 1991, 1992). In addition, the sheep hair
IF gene promoters also contain sequences identified in epithe-
lial IF genes (Powell et al., 1991), such as AP-2 binding sites,
thought to be involved in general keratin expression (Leask et
al., 1990, 1991; Snape et a., 1991; Byrne and Fuchs, 1993),
AP-1 binding sites and the AARCCAAA binding motif (where
R is a purine nucleotide) (Blessing et al., 1987). Identification
of novel consensus sequencesinthe5' flanking regions of these
genes is useful as an indicator of the possible involvement of
transcription factors and the complexity of transcriptional reg-
ulation. However, the functional importance of these proposed
regulatory sequences must now be confirmed.

The study of hair keratin gene regulation, and other aspects
of hair growth per se, has been hampered by the lack of good
in vitro systems; in particular, afollicle keratinocyte cell line.
The use of cell lines has been a major tool in studying the
molecular and cellular biology of eukaryotic systems but
despite the recent successes of primary follicle culture (Philpott
et a., 1991; Reynolds and Jahoda, 1991), no permanent cell
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lines exist. Naturaly occurring human hair follicle tumors
arising in the follicle matrix and displaying limited differen-
tiation toward hair cortical cells and cells of the inner root
sheath have been described (for review see Gruf3endorf-Conen,
1990), but these tumors are extremely rare and have not been
used to generate cell lines. However, the targeting of oncogene
expression in transgenic mice to produce specific, immor-
talised cell lines which exhibit differentiated phenotypes has
been a considerable breakthrough in many systems, producing
useful cell lines where no naturally occurring cell lines previ-
ously existed (Paul et al., 1988; Efrat et al., 1988a; Nakamura
et a., 1989; Bryceet a., 1993; Lew et a., 1993). In an attempt
to produce cell lines from hair cortical cells to facilitate the
investigation of hair promoter function and other aspects of
hair keratinocyte differentiation, we targeted the expression of
SV40 T antigen (TAQ) to the cortical cells of transgenic mice
using the 5' promoter region of the sheep KRT2.10 (K2.10)
gene (Powell and Rogers, 1990a). The expression of SV40
TAg in the hair follicles disrupted normal fiber ultrastructure,
producing weakened, wavy or kinked hairs, quite unlike those
of the hair-loss mice that resulted from over-expression of the
complete keratin gene (Powell and Rogers, 1990a). Despite
expression of TAg in hair follicle cortical keratinocytes no
follicle tumors were observed and no cortical cell immortali-
sation could be established in vitro. The transgenic mice were
also markedly smaller than their non-transgenic littermates,
had a reduced life expectancy and developed ectopic tumors.

MATERIALS AND METHODS

Production of transgenic mice with K2.10-TAg fusion gene

The K2.10 promoter contains 5' flanking/5' untranslated region (UTR)
sequence from aHindlll site (-2800) to a Kpnl site (+271) in the first
exon (Fig. 1). A 2.7 kb BamHI/Bgll fragment spanning nucleotides
2533-5235 of the SV40 genome was ligated into an engineered Sall
site created by site-directed mutagenesis at +53 of a3 kb Hindll1/Kpnl
fragment of the sheep K2.10 gene promoter (Powell and Rogers,
19904). The resulting 5.7 kb fusion construct, K2.10-TAg, was
microinjected into fertilised mouse oocytes. Microinjection was
performed essentially as described by Hogan et a. (1986) and trans-
genic mice were detected by either dot blot or Southern analysis with
a 2.7 kb BamHI/Bgll TAg probe.

Histology and immunocytochemistry

For histological analysis, mouse dorsal skin was fixed in 4%
paraformaldehyde and embedded in paraffin wax. Sections (7 pum
thick) were stained with the tripartite SACPIC stain (Auber, 1950).
For immunocytochemistry, unfixed dorsal skin was embedded in OCT
compound (Miles Inc., USA.). Cryostat sections (14 um thick) were
air-dried and stained for SV40 TAg using mouse monoclonal antibody
Pab 419 (Harlow et al., 1981), ascites fluid kindly supplied by T.
Adams (University of Melbourne, Victoria), and used at 5-10 mg/ml,
essentially as described by Hanahan (1985). Antigen-antibody
complexes were visualised by fluorescein-labelled sheep anti-mouse
immunoglobulin (Silenus Laboratories, Australia).

Electron microscopy

Hairs were prepared for transmission electron microscopy as
described by Filshie and Rogers (1961) and ultrathin sections were
cut with an LKB ultratome. The sections were post-stained with 2%
uranyl acetate followed by 20% lead citrate solution. Micrographs
were taken using a Philips 300 electron microscope.

Amino acid analysis

Amino acid analyses of washed mouse hair were conducted by
standard procedures. Briefly, the hair was hydrolysed for 22-24 hours
in constant boiling HCI containing 0.1-0.2% (v/v) phenol. Analysis
was performed on a Waters Amino Acid Analyzer by ion-exchange
chromatography using ninhydrin detection with a dual wavelength
detector at 570 and 440 nm.

cRNA probes

The K2.10 probe (Powell and Rogers, 1990a) was a 3' non-coding
Pstl fragment (220 bp) cloned into pGEM-2 (Promega, Madison WI)
and linearised with Hindlll for the production of RNA antisense
probe. The rat histone H3 probe (Chou et al., 1990) was a cDNA
fragment (1.5 kb) cloned into pGEM-3 (Promega) and linearised with
Sall for the production of antisense RNA probe. Probes labelled to
high specific activity using [a-3SJUTP (1000-1500 Ci/mmol;
Bresatec, South Australia) were synthesised with either T7 or SP6
RNA polymerase using a Message Maker kit (Bresatec). The length
of the H3 probe was reduced by treatment with 40 mM NaHCO3/60
mM NaxCOs, pH 10.2, at 60°C following the method of Cox et al.
(1984).

In situ hybridisation analysis

Mouse dorsal skin was fixed in 4% paraformaldehyde and embedded
in paraffin wax. Sections (7 um) were cut and transferred to TESPA
(Sigma) subbed dlides (Rentrop et al., 1986). In situ hybridisations
were performed as described by Powell and Rogers (1990a) with the
following modification. The final post-hybridisation wash stringency
was 0.1x SSPE (for K2.10 probe) or 2x SSPE (for H3 probe) at 60°C
for 10 minutes, then at 52°C for 30 minutes (1x SSPEis0.18 M NaCl,
0.01 M NaHPO4, 0.001 M Na&EDTA, pH 7.7). The sections were
dehydrated, air-dried, dipped in llford L4 emulsion (Rogers, 1979)
and exposed at 4°C. Following development (Rogers, 1979), the
sections were counterstained with SACPIC stain (Auber, 1950).

RESULTS

Generation of K2.10-TAg transgenic mice

A hybrid construct containing the sheep K2.10 5' promoter
sequences fused to the SV 40 early region gene, encoding SV40
large (T) and small (t) tumor antigens (Fig. 1), was microin-
jected into fertilised mouse oocytes. Ten founder (Fo) trans-
genic animals expressing K2.10-TAg were generated. A line of
transgenic mice was established from only one of the ten Fo
mice, Fo-40, as the other mice failed to breed. The copy
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Fig. 1. The K2.10-TAg transgene construct. An SV40 Bgll/BamHI
restriction fragment encoding both small (t) and large (T) tumor
antigens and containing the polyadenylation signals was cloned into
the Sall site of aHindll1/Kpnl promoter fragment from the K2.10
gene. Sequences 5' of the Sall/Bgll fusion and 3' of the BamHI/Sall
fusion are derived from the sheep K2.10 gene as shown. The arrow
depicts the transcription start (+1) site; the hatched boxes depict
K2.10 exon sequences.



number of the transgene in these mice was approximately 50
and was stably inherited over at least six generations.
Expression of the transgene was analysed by immunofluo-
rescent staining of mouse pelage follicles using monoclonal
antibodies directed against SV40 TAgQ. Expression was
directed to the cortex of the transgenic hair follicles (Fig. 2),
following the same pattern observed with the entire K2.10
sheep gene in transgenic mice (Powell and Rogers, 1990a).

Aberrant hair phenotype of K2.10-TAg transgenic
mice

K2.10-TAg transgenic mice exhibited an abnorma hair
phenotype which varied in severity amongst the Fo mice. Mice
expressing the transgene were initially identifiable by wavy
vibrissae, noticeable 2-3 days after birth. Hairs of the pelage
were also affected, producing a ruffled coat in the moderate
phenotype (Fig. 3A) ranging to stubble covering the back of

Fig. 2. Expression of the K2.10-TAg gene in the skin of transgenic
mice as determined by immunofluorescent staining. (A) Specific
staining with anti-SV40 TAg mAb islocalised to the hair follicle
cortex (arrowheads); (B) non-specific background staining to outer
root sheath and muscle is evident when anti-SV40 TAg mAb is
omitted. Note that the skin sections shown are of amoderate
phenotype. Bars: (A) 75 um; (B) 150 pm.
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the mouse in the more severe phenotypes (Fig. 3B,C). Scaling
of the epidermis was also evident in severely affected newborn
mice (Fo-50, Fo-75 and Fo-94) and the skin of these mice was
often wrinkled (Fig. 3C). The transgenic hairs appeared to be
weakened at the base, leading to premature hair loss and

Fig. 3. Aberrant hair phenotype of K2.10-TAg transgenic mice.

(A) A 4-month-old transgenic mouse of the no. 40 line showing the
moderate transgenic phenotype with a ruffled coat and some hair-
loss; (B) mouse Fo-119 at 1 month of age showing the stubble
typical of a strong transgenic phenotype; (C) mouse Fo-94 (right)
along with non-transgenic littermate at 11 days old.
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Fig. 4. Hair fiber phenotypes observed by light microscopy.
Comparison of hairsfrom anormal mouse (A) with hairs from the
moderate phenotype Fo-40 mouse (B) and the severe phenotype mice
Fo-49 (C) and Fo-50 (D). Arrowhead in (B) shows broken fibers
typica of plucked hairs from these transgenic mice. The ends of
plucked hairs from normal mice are usually encased in a capsule.
Bar, 2 mm.

resulting in a thinner pelage or regions of temporary nudity,
depending on the severity of the phenotype. When viewed by
light microscopy, plucked hairs from K2.10-TAg mice show
deformities which are absent in normal mice (Fig. 4A). This
varies from a slight crookedness along the fiber shaft in some
hairs of the moderate phenotype (no. 40 line, Fig. 4B) to a
noticeable kinkiness and fiber deformation in the more severe
phenotypes such as Fo-49 and Fo-50 (Fig. 4C,D).

Skin sections from transgenic mice showed that many
follicles from mice with a moderate phenotype appeared
virtually normal (Fig. 5A,B), with few malformed hair shafts.
Skin sections from Fo-49 and Fo-50 mice (Fig. 5C,D), which
exhibited severe phenotypes, show extensive follicle abnor-
malities and deformed, folded hairs, many of which appear
encysted and unable to pierce the epidermis. An inflammatory
response was aso evident in dermis of these severely affected
mice.

Electron micrographs of the transgenic hairs show that the
fibers are composed of a mixed population of normal cortical
cells and abnormal cells in which the cellular ultrastructure
appears grossly atered (Fig. 6A,B). Normal cortical cells

Table 1. Amino acid compositions of hair from K2.10-TAg
transgenic mice and normal mice

Normal* K210t  Fs-403f  F3-40368  Fo-1271
A 5.2 73 6.2 6.7 6.1
Thr 47 45 46 45 46
Ser 96 8.1 8.7 8.0 8.6
Glu 13.0 16.1 15.0 162 145
Pro 6.8 46 6.0 5.9 6.0
Gly 104 8.7 9.0 8.3 9.3
Ala 42 6.3 5.0 5.2 48
Cys 136 79 102 9.2 109
va 4.2 5.2 46 47 44
Met 058 11 1.0 11 1.0
lle 2.3 32 27 2.9 27
Leu 6.2 8.2 71 77 7.0
Tyr 5.0 3.2 41 38 45
Phe 27 29 29 30 29
His 11 11 13 14 12
Lys 3.0 49 38 43 37
Arg 7.0 6.5 7.7 6.9 7.7

*Normal littermate of F3-40.36.

TK2.10 hair-loss transgenic mouse from Powell and Rogers (1990a).
}Fs mouse from no. 40 line (heterozygous for K2.10-TAg).

8F3 mouse from no. 40 line (homozygous for K2.10-TAg).

Fo-127, severe phenotype.

exhibit a ‘fingerprint pattern’ characteristic of the closely
packed ordered arrays of IFs and densely staining KAPs. This
pattern is less obvious or completely absent in the abnormal
cells, appearing instead as adensely stained structurel ess mass.
Clearly, keratin assembly and packing is disrupted in these
abnormal cortical cells.

To further investigate the abnormal ultrastructure of the
cortical cells of the transgenic hairs amino acid analyses were
carried out on transgenic hair samples. Table 1 shows the
amino acid composition of hair from 2 mice of the no. 40 line,
a severe phenotype Fo mouse (Fo-127) and a K2.10 hair-loss
transgenic mouse (Powell and Rogers, 1990a), and a normal
mouse sample. There are significant differences in the compo-
sition of many amino acids between the K2.10-TAg transgenic
and normal mouse hair sample, the most dramatic differences
being in hairs from F3-40.36 which is homozygous for K2.10-
TAg. Large, notable changes are an increase in glutamic
acid/glutamine and a decrease in glycine and cysteine levels.

Other aspects of the K2.10-TAg phenotype

The K2.10-TAg transgenic phenotype was not restricted to the
hairs. Transgenic mice were generally smaller than non-trans-
genic littermates and some showed severely retarded growth
rates (Fig. 3C). The vertebrae were al so affected. Four Fo mice,
including Fo-40, had kinks in the tail, as did many but not all
of the transgenic progeny of line no. 40. X-ray analysis of
mouse Fo-40 showed malformed vertebral discsin the tail and
curvature of the spine (data not shown). Mice with spinal
abnormalities often devel oped partial paralysis of the hind legs.
All transgenic mice had areduced life expectancy ranging from
a few days to 9 months (Table 2), which generally correlated
with the severity of the hair phenotype. Many of the mice
developed tumorous growths in the bladder or intestine (data
not shown). Despite the occurrence of these abnormalities,
none of the transgenic mice developed tumors in the skin or



Table 2. Mortality of K2.10-TAg mice

Mouse Copy number* Lifespant Phenotype

Fo-49 25-50 3 months Severe; paralysis of hind legs

Fo-50 10-25 24 days Very severe

Fo-75 5-10 17 days Very severe

Fo-94 25-50 11 days Very severe

Fo-119 10-25 5 months Severe

Fo-127 50 25months  Severe

Fo-131 10-25 4 months Moderate

Fo-138 1-5 6 months Moderate

Fo-144 10-25 3 months Severe

Fo-40 25-50 5.5 months Moderate; paralysis of hind legs

F1-40.2 25-50 5 months Moderate

F1-40.3 25-50 6 months Moderate

F1-40.9 25-50 9 months Moderate; intestinal tumor; liver
secondaries

F2-40.5 25-50 5 months Moderate; bladder tumor

F3-40.6 25-50 3.5months Moderate; bladder tumor

* Approximate K2.10-TAg gene copy number.
TApproximate lifespan; mice were killed when they became sick or
severely stressed.

hair follicles and microscopic inspection of hair follicle
sections failed to show neoplastic lesions in any of the mice.

Comparison of the zones of cell proliferation and
differentiation in the hair follicle bulb

To determine whether the absence of neoplasia in the follicle
was due to targeting TAg expression too late in the differen-
tiation pathway of the cells the expression patterns of histone
H3 and K2.10 were examined using in situ hybridisation to
mMRNA. Histone H3 mRNA is synthesised during S phase of
the cell cycle but is present in G1 and G2 and can therefore be
used to detect cycling cells (Chou et al., 1990). A comparison
of histone H3 with K2.10 expression was performed on con-
secutive whisker follicle sections taken from mice transgenic
for the sheep K2.10 gene (Powell and Rogers, 1990q). K2.10
transgenic mice were used because the high level of transgene
expression allowed easy detection as we were unable to detect
TAg mRNA by this technique in K2.10-TAg transgenic
follicles (although immunostaining did show the presence of
TAgQ; see Fig. 2).

Expression of histone H3 was seen in the bulb region of the
follicle up to the top of the dermal papilla (Fig. 7A,C). K2.10
MRNA was detected in the cortex of the follicle, appearing
above thetip of the dermal papilla, 2-3 cells above the level of
histone H3 expression (Fig. 7B,D,E). Histone H3 expression
in K2.10-TAg transgenic follicleswasidentical to that observed
in K2.10 transgenic follicles, i.e. expression did not appear
above the dermal papilla (Fig. 7C,F). Despite the expression
of TAg protein in cells higher up in the follicle no histone H3
expression and, by inference, no cellular proliferation was seen
in those cells.

DISCUSSION

Expression of SV40 TAg

The expression of the sheep K2.10 gene, used to target SV40
TAQg expression to the follicle cortex in the present study, has
previously been analysed in transgenic mice (Powell and
Rogers, 1990a). The gene encodes an |- type || keratin protein
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and high level expression in mice produces a hair-loss
phenotype. The 3 kb K2.10 gene promoter fragment encom-
passing the immediate 5' flanking/5' UTR sequence is suffi-
cient to direct the expression of SV40 TAg to the hair follicle
cortex (see Fig. 2), maintaining the localisation and timing of
expression of the endogenous K2.10 gene in the sheep follicle
and the expression of the larger transgene seen in the K2.10
hair-loss transgenic mice.

Growth retardation, tumor formation in the bladder and
intestine, and vertebral abnormalities in K2.10-TAg mice
appear to be a consequence of TAg expression as different Fo
mice show the same phenotype, and TAg mRNA has been
detected in an intestinal tumor from one of these mice (data
not shown). In the K2.10-TAg mice it is not known whether
TAg expression in the tumors is promiscuous or whether low
level expression of hair keratins normally occurs in these
tissues or subsets of cellswithin them. Non-follicular transgene
expresson may be due to the lack of tight controlling
seguences, gene silencers for example, which lie outside of the
3 kb K2.10 gene promoter fragment used to drive TAg
expression. Interestingly, there are reports of novel expression
patterns of several chimeric genes in transgenic mice where
expression occurs in tissues in which the targeting promoter is
normally inactive (Behringer et al., 1988; Lew et a., 1993). In
growth hormone factor-1/TAg mice (Lew et a., 1993),
expression of TAg occursin resultant intestinal tumors but not
in the adjacent nontumorous intestinal tissue, suggesting that
only a subset population of cells was affected. In mouse
protamine-1 (mP1)/SV 40 mice (Behringer et al., 1988) ectopic
expression was thought to be due to novel regulatory elements
generated by the juxtaposition of the mP1 promoter and TAg
sequences.

Hair-like keratins have been found in hoof, claw and nail in
severa species (Marshall and Gillespie, 1977; Lynch et a.,
1986; Heid et al., 1988), and in tongue and thymus (Heid et
al., 1988), although no abnormalities in those tissues were seen
in K2.10-TAg mice (data not shown).

Effects of SV40 TAg on hair and follicle morphology

Expression of SV40 TAginthecortical cellsof the hair follicle
has obvious effects on the morphology of the hairs and
whiskers of mice (Figs 3, 4). In transgenic mice with a
moderate phenotype the pelage fibers were crooked and the
whiskers were distinctly curly, but follicle morphology
appeared virtually normal. In the more severe phenotypes (Fo-
49 and Fo-50) the follicles, fibers and skin were grossly
affected. Many hairs appeared so weakened and malformed
that they could not penetrate the epidermis, producing ingrown
hairs. The follicles themselves were grossly altered in their
morphology and an inflammatory response in the skin was
evident.

The expression of several transgenes in mouse follicles has
been shown to affect hair and follicle morphology (Powell and
Rogers, 1990a; Blessing et al., 1993; Missero et al., 1993),
producing wavy fibers and hair-loss. Unlike the overexpression
of sheep K2.10in themousefallicle, cyclic hair-lossisnot seen
in the K2.10-TAg mice. In the less severe phenotypes it appears
that the limited hair-loss is due to abrasion, as hair-loss occurs
predominantly on the underside of the mice (especialy on
suckling mothers) and around the snout and head where
scratching is more frequent. This suggests an increased brit-



962 R. Keough, B. Powell and G. Rogers

Fig. 5. Histology of the skin of K2.10-TAg transgenics. (A-C) Skin from a
normal 27-day-old mouse (A), Fo-40 at 4 months (B) and Fo-50 at 24 days
old (C). Note the decreased thickness of the epithelium in the severely
affected phenotype, Fo-50 (C), compared with the moderate phenotype, Fo-
40, and normal mouse skin of approximately the same age (A). (D) Higher-
power magnification of skin from a severe phenotype mouse, Fo-49, which
clearly shows malformed, encysted fibers. Note the presence of abnormal
follicles and fiber deformation in al transgenic mice. Bars: (A-C) 100 um;
(D) 50 pm.

tleness or susceptibility to breakage but not as severeasinthe  wool follicles of wheat-fed sheep given methionine supple-
K2.10 hair-loss mice. Similar phenomena occur in follicles of ments (Chapman and Reis, 1978), where poor keratinisation of
mice carrying the naked (N) gene (Raphael et a., 1982) andin  the cortical cells produces weakened fibers and limited hair-

Fig. 6. Electron micrograph of follicle cortical cells from Fo-49 transgenic mouse. (A) Transgenic fibers contain a mixture of both normal (n)
and abnormal (ab) cells. (B) Higher magnification of cortical cells showing the distinct ultrastructure of normal cortical cells (n) and the
abnormal cells (ab), which appear devoid of structure. Bars: (A) 300 nm; (B) 100 nm.
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Fig. 7. Comparison of histone H3 expression with expression from the K2.10 promoter in the hair follicle by in situ hybridisation. Consecutive
whisker follicle sections from K2.10 transgenic mice were probed for H3 expression (A, D) and K2.10 expression (B, E). Note that expression
of K2.10 isfirst detectable in cells 2-3 cell layers above the top of the dermal papilla and above follicle bulb cells showing H3 expression (D;
broken line). (C, F) H3 expression in K2.10-TAg transgenic pelage follicles. Note that H3 expression does not continue past the top of the
dermal papilla. Expression is shown as dark grains under brightfield microscopy (A-C) and as white grains under darkfield (D-F). Also note
regions of H3 expression in the ORS (0) of the follicle (arrowhead). dp, dermal papilla; o, outer root sheath; i, inner root sheath; c, cortex and

cuticle. Bar, 100 pm.

loss in moderate phenotypes, whilst severe phenotypes show
grossfollicle deformation similar to that seen in the skin of Fo-
49 and Fo-50 mice (Fig. 5).

SV40 TAg expression altered the ultrastructure of the cortical
cdls, and affected cellslack the ordered arrays of |F, appearing
as a drructureless mass in electron micrographs (Fig. 6), sug-
gesting that macrofibril formation is incorrectly organised or
retarded. The amino acid anaysis data show changes in the

levels of many amino acids, most notably cysteine, glycine and
glutamine/glutamic acid. These changes are not consistent with
the composition of TAg and thereforeit isunlikely that the dis-
ruption of celular ultrastructure is due to high-level overex-
pression of TAg. This was borne out by the inability to detect
TAQg by Western blotting of crude transgenic follicle extracts or
TAg mRNA by in situ hybridisation (data not shown). These
data suggest that the expression of the transgene dters the
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norma protein composition of the cortica cells. The decrease
in the content of cysteine, glycine and tyrosine in the transgenic
hairs is consistent with a decrease in the cysteine-rich KAP
families and the glycine/tyrosine-rich KAP families. It should
also be noted that a decrease in cysteine-rich proteins was aso
seen in transgenic mice in which K2.10 was overexpressed (see
Table 1). Thiswas attributed to competition for common tran-
scription factors and/or steric hindrance of the increased
amounts of |IF protein, preventing trandation of later KAP
mMRNAs (Powell and Rogers, 1990a).

The expression of aforeign protein per sein thefollicle (for
example, B-galactosidase) will not necessarily produce mor-
phological changesin thefollicle or fiber (unpublished results).
Itisnot known how TAg is effecting the change in hair protein
composition and it is possible that the hair phenotype of these
transgenic mice is an indirect consequence of the systemic
effect of TAg in various internal organs. The protein itself is
present in the abnormal cortical cells and therefore the nuclear-
localised TAgQ could be acting at the level of gene transcrip-
tion, as it is known to bind transcription factors such as AP-2
(Mitchell et al., 1987), which may be involved in the
expression of hair keratin genes (Powell et al., 1991).

The presence of fibers composed of normal and abnormal
cortical cellsin the K2.10-TAg miceis an interesting phenom-
enon. It is possible that severa Fo mice may have been
chimeras (no offspring could be obtained to determine this)
and, given the polyclonal nature of hair follicle origin (Schmidt
et al., 1987), it would then be possible to obtain fibers
composed of mixed cortical cell populations. However, this
does not explain the stable, heritable mosaic pattern of
abnormal and normal cortical cellsin the no. 40 line. A similar
heritable mosaic pattern of reporter gene expression was seen
in the intestinal villi of a pedigree of L-fatty acid binding
protein-human growth hormone (L-FABP-hGH) transgenic
mice (Roth et al., 1991). In these mice, polyclonal villi
comprised both hGH-positive and hGH-negative enterocyte
populations. It was postul ated that this expression pattern arose
from ‘position-effect variegation’ (Karpen and Spradling,
1991) associated with the mosaic expression of transgenes
inserted adjacent to a junction between euchromatin and hete-
rochromatin. We have observed hair follicle mosaicism in at
least 2 Fo K2.10-TAg mice (e.g. Fo-40 and Fo-50), and in
several other transgenic mice using a shorter K2.10 promoter
fragment or a hair follicle KAP gene promoter (unpublished
results). These genes may be predisposed to insertion at
euchromatin/heterochromatin junctions or this phenomenon
may be more frequent than is reported.

Lack of follicle cell immortalisation

Immortalisation of many different cell types has been achieved
through the targeted expression of SV40 TAg in transgenic
mice (for example, Behringer et al., 1988; Paul et al., 1988;
Yamada et al., 1990; Bryce et al., 1993; Cartier et al., 1993),
with many of the resultant cell lines maintaining differentiated
characteristics. We reasoned that, in using the sheep K2.10
promoter to drive TAg expression in the cortical cells of the
follicle, the differentiation-dependent expression of TAg
would enable us to obtain useful cell lines with cortical cell
characteristics. However, despite the occurrence of tumors in
various tissues of the transgenic mice, no hyperplasia or
neoplasia was detected in the hair follicles.

Although rare, tumors containing differentiated hair cells do
occur (for review, see GrufRendorf-Conen, 1990). Benign
pilomatricomas, arising from cells of the follicle matrix and
exhibiting some limited differentiation toward cortical and
inner root sheath cells, do not become vasculated and undergo
spontaneous involution. It has been suggested that the duration
of growth of the matrix cells in the tumor mimics the normal
anagen time of the follicle from which it was derived (Head-
ington, 1976). In the case of the K2.10-TAg mice it was
possible that the rapid cellular differentiation, keratinisation
and migration of cortical cells up the follicle would not allow
sufficient time for immortalisation to occur before the cells
were extruded with the mature hair without access to nutrients.
It isknown that cell immortalisation is a multistep process and
may require several months to occur, whilst the growing phase
of a mouse hair follicle is 14 days (Hardy, 1949). To alow
time for cell immortalisation to occur, intact hair follicles were
isolated from 2-4-day-old transgenic mice (according to
Rogers et a., 1987) and maintained in culture. Other than
fibroblasts, no cell proliferation was evident after prolonged
culturing (2-3 months) and TAg protein was no longer
detectable in follicles after 5-6 days in culture (data not
shown).

TAg protein expression in responsive cells generally results
in an increased proliferative capacity and extension of lifespan,
even in pre-immortal cells (for review see Hanahan, 1988), as
it appears that TAg can overcome proliferation controls which
operatein the G1 phase of the céll cycle and can stimulate DNA
synthesis in quiescent and senescent cells (Dobbelstein et d.,
1992; Rubelj and Pereira-Smith, 1994). Given the potent effect
of TAg on celular proliferation, the lack of hyperplasiain the
follicle suggested that the cortical cells in which TAg was
expressed were no longer capable of undergoing cell division
and had permanently exited from the cell cycle. The in situ
hybridisation study of sheep K2.10 expression patterns in
transgenic mouse follicles compared with the cell proliferation
marker, histone H3, showed that cell proliferation had ceased
before K2.10 expression was detectable and was not re-estab-
lished in hair cortica cells expressing the K2.10-TAg
transgene. Therefore, it seems likely that TAg is unable to
induce re-entry into the cell cycle at this point in the hair ker-
atinocyte differentiation pathway.

Targeting of TAg expression in transgenic mice using a
promoter which is active only in post-mitotic cells has
produced immortalised cell lines (Suri et al., 1993). However,
despite normally being post-mitotic, cells at this stage of devel-
opment must still be ‘competent’ to undergo cell division such
that TAg can stimulate re-establishment of proliferation. The
same cell population has not been able to be immortalised
when TAQ expression is targeted to a later stage in the devel-
opment of these cells (Efrat et al., 1988b). In order to produce
afollicle-specific cell line through targeted transgenesis, TAg
expression must be targeted earlier in follicle differentiation
where cell division is still possible.
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