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Near-thermal radiation in detectors, mirrors, and black holes: A stochastic approach

Alpan Raval and B. L. HJ
Department of Physics, University of Maryland, College Park, Maryland 20742

Don Kokg
Department of Physics, University of Adelaide, Adelaide 5005, Australia
(Received 27 June 1996

In analyzing the nature of thermal radiance experienced by an accelerated ofidaruvéreffect, an eternal
black hole(Hawking effec}, and in certain types of cosmological expansion, one of us proposed a unifying
viewpoint that these can be understood as arising from the vacuum fluctuations of the quantum field being
subjected to an exponential scale transformation in these systems. This viewpoint, together with our recently
developed stochastic theory of particle-field interaction understood as quantum open systems described by the
influence functional formalism, can be used effectively to address situations where the spacetime possesses an
event horizon only asymptotically, or none at all. Examples studied here include detectors moving at uniform
acceleration only asymptotically or for a finite time, a moving mirror, and a two-dimensional collapsing mass.
We show that in such systems radiance indeed is observed, albeit not in a precise Planckian spectrum. The
deviation therefrom is determined by a parameter which measures the departure from uniform acceleration or
from exact exponential expansion. The methodology illustrated here is expected to be useful for the investi-
gation of nonequilibrium black hole thermodynamics and the linear response regime of back reaction problems
in semiclassical gravity.S0556-282(97)07308-9

PACS numbes): 04.62:+v, 04.70.Dy, 05.40tj, 42.50.Lc

I. INTRODUCTION lems of a dynamical nature such as the backreaction of
Hawking radiation on black hole collapse, one needs a new
Particle production[1] with a thermal spectrum from conceptual framework and a more powerful formalism for
black holeg2-4], moving mirrors[5], accelerated detectors tackling nonequilibrium conditions and high-energ@yans-
[6], observers in a de Sitter universg, and certain cosmo- Planckian processes. A new viewpoint which stresses the
logical spacetimef8] has been a subject of continual discus-local, kinematic nature of these processes rather than the
sion since the mid 1970’s because of its extraordinary naturtraditional global geometric properties has been proposed
and its basic theoretical value. The mainstream approaches f81—34 which regards the Hawking-Unruh thermal radiance
these problems rely on thermodyamic argumef@slO, observed in one vacuum as resulting from exponential red-
finite-temperature field theory techniqugkl—13, or geo-  shifting of quantum noise of another. This view puts the
metric constructiongevent horizon as a global property of nature of thermal radiance in the two classes of spacetimes
spacetimg [14] or pairwise combinations theredfThe sta- on the same footin§35] and empowers one to tackle situa-
tus of work on quantum field theory in curved spacetimes ugions which do not possess an event horizon at all, as the
to 1980 can be found ifl5].) The 1980's saw attempts and examples in this and a companion paper will show.
preparations for the back reaction problé€h6] (for cosmo- Such a formalism of statistical field theory has been de-
logical back reaction problems, sgE7]), i.e., the calculation veloped by one of us and co-workers in recent y¢a6-—
of the energy-momentum tens(ee[18] and earlier refer- 40]. This approach aims to provide the statistical mechanical
encey, the effect of particle creation on a black hgla a  underpinnings of quantum field theory in curved spacetime,
box, to ensure quasiequilibrium with its radiatjdd4], and  and strives at a microscopic and elemental description of the
the dynamical origin of black hole entrog¢9]. These in- structure and dynamics of matter and spacetime. The starting
quiries are mainly confined to equilibrium thermodynamicspoint is the quantum and thermal fluctuations for fields, and
or finite-temperature field theory conditiohJo treat prob- the focus is on the evolution of the reduced density matrix of
an open systentor the equivalent Wigner distribution func-
tions); the quantities of interest are the noise and dissipation
*Present address: Department of Physics, University okernels contained in the influence functiorjdl], and the
Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201. Electronic equation of motion takes the form of a master, Langevin,

address: raval@csd.uwm.edu Fokker-Planck, or stochastic Schinger equation describ-
"Electronic address: hu@umdhep.umd.edu ing the evolution of the quantum statistical state of the sys-
*Electronic address: dkoks@physics.adelaide.edu.au tem, including, in addition to the quantum field effects like

IAmong other notable alternatives, we would like to mention
Sciama’s dissipative system appro28], Unruh’s[21] and Jacob-
son’s work on sonic black holé&2], Zurek and Thorne’s degree of theory approach27,28, the views expressed by Stephens, 't Hooft,
freedom countgd23], Sorkin’s geometric or “entanglement” en- and Whiting[29], and most significantly, the string-theoretical ori-
tropy [24,25 (see also[26]), the Bekenstein-Page information gin of black hole entropy30].
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radiative corrections and renormalization, also statistical dyeeleration occurs only for a finite interval of time, it is not
namical effects like decoherence, correlation, and dissipaeasy to deduce the form of Hawking radiation in terms of
tion. Since it contains the caus@chwinger-Keldysheffec-  purely global geometric quantiti€see, however, Walfb3]

tive action [43], it is a generalization of the traditional and Bonadoset al. [54]). The concept of an approximate
scheme of thermal field theory13] and the “in-out”  event horizon, which exists for a finite period of time or only
(Schwinger-DeWitx effective action44], and is particularly asymptotically, is difficult to define and, even if it is possible
suited for treating fluctuations and dissipation in back reac{by apparent horizons, e.455]), rather unwieldy to imple-
tion problems from semiclassical gravi0] to mesoscopic ment in the calculation of particle creation and back reaction
physics[41]. effects.

The foundation of this approach has been constructed re- Technicallyone may think calculations via the thermal
cently based on open system concepts and the quantufield theory are equally possible. Indeed this has been tried
Brownian mode[45,46. The method has since been appliedbefore by one of us and others. One way is to assume a
to particle creation and back reaction processes in cosm@uasiperiodic condition on the Green function, making it
logical spacetime$47—-49. For particle creation in space- near thermal13]. But this is not a good solution, as the
times with event horizons, such as for an accelerated oljeviation from eternal black hole or uniform acceleration
server and black holes, this method derives the Hawkinggisables the Euclidean section in the spacetitWesskal or
Unruh effect{50,46 from the viewpoint of exponential am-  Ringlep, and the imaginary-time finite-temperature theory is
plification of quantum nois¢34]. It can also describe the 4 \yell defined any more. Besides, to deal with the statisti-

linear response regime of back reaction viewed in the context,, dynamics of the system, one should use an in-in bound-
of E%rl:lizdgag(r)?s-(gscséa?itr;ﬂgtiriag?[omfr’Eglrlier WG6,50,53 ary condition and work with causal Green functions. The
pap e lesson we learned from treating the back reaction problems

to presentan approximation scheméo show that near- of particle creation in cosmological spacetime6,47] is
thermal radiation is emitted from systems undergoing near: P 9 P '

uniform acceleration or in slightly perturbed spacetimes. Wéhat one can no longer rely on methods which are restricted

wish to demonstrate the relative ease to treat such problenlig eguilibrium gonditions(like the imaginary-time or th_er-
using quantum field theory methods aided by statisticalMofield dynamics methogisbut should use nonequilibrium

mechanical considerations. This approach also highlights Methods such as the Schwinger-Keldystosed time path
unified viewpointtowards thermal particle creation from effective action[43] for the treatment of dynamical back
Spacetimes Wlth and W|th0ut event horizons based on th@actions. Its close eqUiVaIent, the influence functional
interpretation that the thermal radiance can be viewed as rénethod [42], is most appropriate for investigating the
sulting from quantum noise of the field being amplified by anquantum-statistical dynamics of matter and geometry, like
exponential scale transformation in these systémspecific  the entropy of quantum fields and spacetimes, information
vacuum stateq 34]. In contradistinction to viewing these as flow, coherence loss, etf56].
global, geometric effects, this viewpoint emphasizes the ki- In this paper we shall use these methods to analyze par-
nematic effect of scaling on the vacuum in altering the relaticle creation in perturbed situations whose background
tive weight of quantum versus thermal fluctuatidBs]. spacetime possesses an event horizon, such as an asymptoti-
It may appear that this approximation scheme can beally uniformly accelerated detect¢Bec. ), or one accel-
equally implemented by taking the conventional viewpointserated in a finite time intervalSec. 1)), the moving mirror,
(notgbly the geometric viewpointand th_e perturbative cal- and the asymptotically Schwarzschild spacetiBec. I\).
culation can be performed by other existing methusta- | 5 follow-up papef57] we shall study near-thermal par-
bly the thermal field theory methadBut as we will show  icje creation in an exponentially expanding universe, a slow-

here, it is not as easy as ithappea(mﬁp(_:eptually dt.h_e Q?O' foll inflationary universe, and a universe in asymptotically
metric viewpoint assumes that a sutficient condition for t Cexponential expansion. What ties the problem of thermal ra-
appearance of Hawking radiation is the existence of an eve

! o . rHiation in cosmological as well as black hole spacetimes to-
horizon, which is considered as a global property of the 9 P

. . : ther is the exponential le-transformation viewpoint ex-
spacetime or the systefahen the spacetime deviates from Sco o' 'S € exponential scaie-transiormation viewpoint

the eternal black hole or that the trajectory deviates from thé ressed earligl31-33. The stochastic field theory approach

uniformly accelerated one, physical reasoning tells us thallf] capable of mplﬁmen_tm? this view. One can_des;:]nbg a!l
the Hawking or Unruh radiation should still exist, albeit with these systems with a single parameter measuring the devia-

a nonthermal spectrum. But even if an event horizon exist§0n from uniformity or stationarity, and show that the same

for the perturbed spacetime, it may not be so easily descrigR@rameter also appears in the near-thermal behavior of par-

able in geometric terms. And for time-dependent perturba’_[icle creation in all these systems. This result is relevant to

tions of lesser symmetry or for situations where uniform ac-CUr €xploration of the linear-response regime of the back
reaction problem in semiclassical gravity.

2Note that for an extreme Reissner-Nordstr@pacetime this is
not the case, as there exists an event horizon but no radiation. This
example arose in the discussion between Hu and Uxpukate Consider a particle detector linearly coupled to a quantum
communication who shared the somewhat unconventional viewfield. The dynamics of the internal coordinafeof the de-
that the exponential redshifting is a more basic mechanism thatector can be described by Langevin equations of the form
event horizons responsible for thermal radiance. [46]

A. Stochastic approach
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L t detector trajectory. In this approach, the influence kernel is
—— —.—Zf wu(t,5)Q(s)ds=&(1), (1.9 given in terms of the oscillator mode functiokg as
J t

where &(t) is a stochastic force with correlator {(s,s’)=f dkl(k,s,s")X(s)Xg (s"), (1.6
(E(t)é(t"))=rw(t,t'). The overdot denotes a derivative 0
with respect tot. The trajectoryx*(s) of the detector, pa-
rametrized by a suitable paramegewill be denoted simply
by x(s) for convenience. v 2 _

For the special case of linear coupling between a fild Xt @i )X,=0, (.9
and the detector of the forrh;;=eQ¢(x(s)), the kernels
w and v, called thedissipationand noise kernels, respec-
tively, are given by

where theX,’s satisfy the parametric oscillator equations

with initial conditionsX,(t;)=1 anka(ti)z —iwy(t;). The
spectral densitjunction | (k,s,s’) is defined as

e? e’ . R N ck(s)cy(s’)
p(5,8') = GX(9),X(8)=—i = ([HX(9), ()N, l(w,s:8) =2 So-wign Geiqs. (19
2 One may decompose the influence kernel into its real and
e? e? . . imaginary parts, thus obtaining the dissipation and noise ker-
v(s,8") =5 GV(x(s)x(s)= 5 ({s(X(5), ¢X(s")D}),  nels:
1.3

i 0
"N— _ ’ * I yk (ot
where G and G™*) are the Schwinger and the Hadamard p(s,8")= Zfo dki(k,s,8)[Xic ($)Xi(8T) = Xic ()X ()],

functions of the free field operatop evaluated for two (1.9

points on the detector trajectory, angular brackets denote the L

expectation value with respect to a vacuum state at some o * Uk , %/

arbitrarily chosen initial time; , and square and curly brack- v(s,s)= Efo dki(k,s,8IXic (S)Xi(ST) +Xic (S)XLS)]-

ets denote the commutator and anticommutator, respectively. (1.10

This result may be obtained either by integrating out the field

degrees of freedom as in the Feynman-Vernon influenc8y expressing the field as a collection of parametric oscilla-

functional approach40] or via manipulations of the coupled tors, it can be explicitly verified that the two approaches

detector-field Heisenberg equations of motion in the canonimentioned above lead to the same result for the influence

cal operator approach. kernel. For the purpose of calculating it in a specific case,
It will often be convenient to express the kernglsand  we will find it more convenient to use the second approach.

v as the real and imaginary parts of a complex kernel To study the thermal properties of the radiation measured

{=v+iu, called theinfluence kernelFor linear couplings, by a detector, the influence kernel is compared to that of a

it follows from the above expressions thais given by the thermal bath of static oscillators each in a coherent $tile

Wightman functionG *:

g(S,S’):82G+(X(S),X(S’))Eez<(%(X(S))&(X(S’)».(l 4) §= fo dkleﬁ(k,E)[Ck(E)coiA—isir‘kA], (1.11)

. . . where
The influence kernel thus admits the mode function represen-
tation 2=(t+1")/2, A=t—-t',

"= g2 *(x(s’ _ and for a thermal bath at temperatife 8%, the function

Hss')=e Ek Ui (1)), (19 Cy=coth@:k/2kgT). We will show in the specific cases dis-

] ] o ] cussed below that the unknown functi@j indeed has a
the uy’s being the mode functions satisfying the field equa-coth form in the leading order, and can then deduce the tem-
tions _and defining the particular Fock space whose VacUUBerature of the radiation seen by the detector. Here
state is the one chosen above. Note that this method of evalyéﬁ(klg) is the effective spectral density, also to be deter-

ating the kernelg. and » is only applicable for linear cou- mined by formal manipulations of EGL.6). We can always

pling cases. , _ write £ in this way sincev is even inA while u is odd. By
_ An alternative approach6] consists of decomposing the ¢y ating the real and imaginary parts of the two formg of
field Lagrangian into parametric oscillator Lagrangians at the,nq Fourier inverting, we obtain

very outset, thus converting a quantum-field-theoretic prob-

lem to a quantum-mechanical one. Denotingktteparamet- 1 (=
ric oscillator degrees of freedom lay, and their masses and |eﬁCk=;f dAcokAr(Z,A), (1.12
frequencies bym, and wy, respectively, the detector-field *
interaction mentioned earlier is generally given by

Lint=ZCk(S)Qayk, where the coupling “constantst, now | o= — ifw dASinkA u(3,A). (1.13
become time dependent and contain information about the € T —o '
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We will now consider various examples whefés evaluated Urr)=v+ip

and shown to have, to zeroth order, a thermal form. Higher- )

order corrections t@ give anear-thermalspectrum. In prin- _ e xﬂ(efik(t(f)f’[(f’))cog(l:x( 7 —x(7)]
ciple, the real and imaginary parts of the influence kernel 2mw)o K '

may be substituted in the Langevin equatidnl) to yield
stochastic near-thermal fluctuations of the detector coordi-
nateQ. This procedure will be demonstrated in the exampleHeree is the coupling constant of the detector to a massless
of a finite-time uniformly accelerated detect@®ec. Ill be-  scalar field(initially in its ground statg The initial state of
low). the detector is unspecified at the moment and would appear
as a boundary condition on the equation of motion of the
detector. Here, however, we are primarily interested in the
B. Relation to perturbative approach noise and dissipation kernels themselves, as properties of the
field, and not in the state of the detector.
First, we note that the functiodi can be separated into
advanced and retarded parts, in terms of the advanced and

(2.1

The methodology presented above describetoahastic
field theory approactho the problem of detector response, as
opposed _to the usual per.turb.atlon theory apprdmt‘rere the retarded  null  coordinates v(r)=t(r)+x(7) and
perturbation parameter i°) in the calculation of detector u(r) =t()—x(7), respectively:
transition probabilities. It should be emphasized that Eq. ' '

(1.1) is exact for linear coupling and does not involve a e? reodk . ,

. . . 9 . ga(T 7_/): . _eflk[u(r)fv(r )]
perturbation expansion ie- (for linear systems, such an ' 4] k '
expansion is, in fact, unnecessary because they are exactly
solvablé. e? (=dk )

However, the relationshifl.4) between the influence ker- [(r,7)= Ef ?e"k[”(ﬂ‘”” Uy
0

nel ¢ and the Wightman functio® ™ allows us to connect

the stochastic approach to usual perturbation theory. In this ) a , r ,
i . . . T )= 7+ 7). 2.2

case, the quantity of interest is tbetector response function frmr)=8(nr)+dn ) 22

F(E) [6], given, to lowest order in perturbation theory, by  In the case when the detector is uniformly accelerated

the Fourier transform of the Wightman function, and henceyith acceleratiors, its trajectory is given by

the function, as

1 1
1 (= * . , v(7)=—€%, u(r)=——e %", (2.3
f(E—EO)=;f dsj ds'e (E-Bolss)(s,s7), a a

— o0

(1.14 Substitution of the above trajectory into Ed&.2) yields a
thermal, isotropic detector response at the Unruh temperature
al(21r) [46,52.
where s,s’ are proper time parameters along the detector
trajectory. The limits of integration in the above equation A. Perturbation increasing with time
should be modified if the detector is switched on for a finite
time. This function is proportional to the transition probabil-
ity of the detector to excited states of eneigyHowever, it
has the disadvantage of being a perturbative result, and fu
thermore, involves an integration over the entire history o
the detector. The stochastic approach, on the other hand, a
leads to the evaluation of detector observalales function h=—, (2.9
of proper time and can be employed to ultimately obtain the a
time-dependent density matrix of the detedi?].

The above analysis is now applied to the case of near-
uniform acceleration by introducing a dimensionlésga-
rameter which measures the departure from exact uniform
icceleration:

where the overdot indicates a derivative with respect to the
proper time. The trajectory of the detector is now chosen to

be
II. ASYMPTOTICALLY UNIFORMLY ACCELERATED

OBSERVER 1
v(7)= ——€X a(r)dr|,
As a starter, we first consider the case of a nonuniformly a(7)

accelerated monopole detector in-1 dimensions. The spe- 1
cial case of trajectories which are asymptotically inertial in u(r)= —ex;{ - f a(r)dr
the far past and asymptotically uniformly accelerated in the a(7)

far future has been analyzed using methods of field quanti- i )
zation in curvilinear coordinates by Coda8] and by Per- One can expand(7) in a Taylor series about the accelera-

. (2.5

coco and Villalbd59]. tion at 7=0:
For a general detector trajectofy(7),t(7)) parametrized .
; ; _ .
?{:ff)l)ifsoper timer, it has been showfb2] that the function a(r)—ag+ nzl magn). 28
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Whereag”) denotes theth derivative ofa at 7=0. We make hence, for arbitrary trajectories, the final results are to be
the assumption of ignoring second and higher derivatives ofonsidered valid over time scalessuch thatr<(hag) *.
a. This implies Alternatively, Eq.(2.7) can be taken to define a family of
trajectories for which this analysis applies.
a(7)=ap+hoa, 2.7) Using the linearized form ad(7), one can now obtain the
. trajectory explicitly, to first order ifh. The result is
wherehy=ay/a3.

Hereafter, we shall also make the further assumption of —a-le 14 h aLT_l
evaluating quantities to first order m,. In this approxima- v(n)=a,"e Tao| 3 :
tion, h=hq to first order inhy. Then there is no distinction
betweenh and hy (h is essentially constaptand we can _1 —an apT
safely drop the subscript and work withalone. It should be u(r)=—a9 e 7 1-hrag| —-+1 (2.8

noted that expanding quantities to first orderhiractually
involves expansion of quantities to first orderhmay, and  One also finds, to first order in,

. , 2ik agA [[agA? agA agA ||

e k(D -v(r)]l = ey — —— e sink —— | |{ 1—ikhe®o¥| | =2— 42,5225 | sinh —— | + A(apS — 1)cosh ——| |1,
2 2 72 2 2 )]

(2.9
. , 2ik agA [[@apA? agA agA | |

e kU —u(r)] = gxg — “— g~ ginH —— | [{ 1+ikhe 2% | >— +a,32+ 23 | sinl| —— | — A(ag3 + 1)cosh — | |1,
a 2 \ 72 2 2 )|

(2.10

whereA=7—7', 3 =3(r+7').
Using the identitie$50,51]

2ik apA
exp{ - —eaozsim( i
ag 2

}: ifocdeZi,,<2—ke3‘02)[cosr(a-rv)cos(vaoA)—isinr(m/)sin( vapA)], (2.11
) a.o

% 1+ p+i 1+ p—i
f dxx“K; (bx)=2#1p~ 1| — £ V) ” V), 2.12
o 2 2
and
N 1 i 8N2—
|F(IV)| _VSInhn_Vl |r(2 +|V)| COSh]TV’ (213
one finally obtains, after some simplification,
a '—eszdk Wk) KA)(1+hT'y) —isin(kA 2.1
Knr)=7- . k| cot P cogkA)(1+hT'y)—isin(ka) |, (2.14
f '—eszdk ™) costka )( 1+ hI,) —isin kA 2.1
drr)=4- . k| cot P cogkA)(1+hI'z) —isin(kA) |, (2.15

with
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ar aoAZ ) aoA aoA
', = —ktan kA )tank| — +ay22—23 |sinh —— | + A(apS —1)cosh ——1 |,
ag 4 2 2
7Tk aoAz 2 ) aoA aoA
I',=ktan(kA)tanif| — +ag32+23 |sinhl ——| —A(apS +1)cosh ——| |. (2.16
ag 4 2 2
|
The advanced and retarded parts of §dfeing unequal, the e? redk
noise is anisotropic. Adding expressiof&s12 and (2.13, (r,7')= =l M
we have 0
Kk o
o & redk X | cot a—o cogkA)(1+al';)—isin(kA) |,
r= ozl K (2.29
7Tk L. 2 mdk
X | coth — | cogkA)(1+hT)—isin(kA) |, r €
ag {(rT )_E K
(2.17
wk .
X cotl-(—)cos(kA)(H—al“z)—lsm(kA)},
where ch
(2.22
polatle with
2
k aoA apA _ 1 (B0 Y)A K
=k3tan(kA)tant? 7;—)(ZSinh02——a0Acosh;— . I'y=—2kay"e "sinh— tan(kA )tant? )’
0
(2.18 N - (agtyA K
I',=—2ka, 'e” "ssinh————tan(kA)tanif| —|.
2 ag
The noise experienced by the detector is thus identical to the (2.23

noise experienced in a heat bath, with a small corredfion
The accelerated detector, therefore, has a near-thermal rghe noise is again seen to be anisotropic. Addifigand
sponse at the Unruh temperatwag/(27) with an orderh ", we have
correction which increases with time.
e? [=dk

(n)=5-| +

B. Perturbation exponentially decreasing with time 0

We will now consider a trajectory for the accelerated de- k
tector which exponentially approaches the uniformly accel- X COtI‘( a_> cogkA)(1+ al')—isin(kA) |,
erated trajectory at late times. This trajectory, in null coordi- 0
nates, has the form (2.29

v(r)=a; '€ (1+ae™?7), where
_ r+r
u(r)=—ay te"207(1+ ae 7). (2.19 = %
In this case, the magnitude of the proper acceleration is, to  _ ok 7le’723inlaOAcosh&tar(kA)tanh’- 7T_k
first order ine, % 2 2 ag/
(2.29
,)/2
a(r)=ap| 1+ae 77| 1+ a2 +0(a®). (220 n this case, the correction to the thermal spectrum is expo-

nentially suppressed at late times. This feature will distin-
guish the behavior of quantum fields in the vicinity of a
The influence kernel is obtained in a manner similar to themoving mirror and a collapsing mass, as shown in later sec-
treatment of the previous subsection. Here, we get tions.
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. FINITE-TIME UNIFORMLY ACCELERATED Another convenient definition is the horizon-crossing proper
DETECTOR time + ry=+(a 1+ 7).

The function{(7,7') can be found in a standard way. If
th points lie on the inertial sector of the trajectory, it has
the wusual zero-temperature form in two-dimensional
Minkowski space. If both points lie on the uniformly accel-
erated sector, it has a finite-temperature form exhibiting the
Unruh temperature. It is therefore straightforward to obtain
the following. If 7,7 > 7 or 7,7/ <— 7,

In this section, we consider a detector trajectory which isb
. .. . . (o]

a uniformly accelerated one for a finite interval of time
(—tg,tp). Before and after this interval, the trajectory is
taken to be inertial, at uniform velocity. To ensure continuity
of the proper time along this trajectory, the velocity of the
detector is assumed to vary continuously at the junction
+to.

With these constraints, the trajectory is chosen to be

1 e? (»dk .
X(t)=Xg "(@a"“—tot) (t<—tp) g(T,T'):Z ?e'k(f =7, (3.5
0
=(a 2+tH)¥2 (—to<t<ty)
If —ro<m, 7 <7g,
=Xo M@ 2+tot) (t>tg). (3.1
. . . . 2 r=dk wk

The trajectory is symmetric under the intercharige —t. L(r, T'):Z— o coth — |cok(7' —7)
a is the magnitude of the proper acceleration during the uni- 77 a

formly accelerated interval<t,,ty) of Minkowski time and

Xq is the position of the detector at tintg. X, andt, are +isink(7"—7')}. (3.9
related byx3—t3=a 2. Before the uniformly accelerated in-

terval, the detector has a uniform velocityty/Xq (we have Also, if 7<— 1o, >y,

chosen units such that=1; if one keeps factors of, the

velocity is —c?ty/xo), and after this interval, its velocity is e? (»dk

to/Xo. This trajectory thus describes an observer traveling at {(r,1)= Efo T COKL(7' + 7)tanR(az)]
constant velocity, then turning around and traveling with the

same speed in the opposite direction. The “turnaround” in- x gkl —7+2[a” tanh(arg) — o]} (3.7

terval corresponds to the interval of uniform acceleration.

This example could thus be viewed as a quantum descriptioBf int tis this functi luated f int th
of the classical twin paradox scenario in special relativity,. Interest Is this function €valuated for one point on the
where two twins, one on an inertial trajectory and one on dnertlal sectqr and the othgr on the uniformly accelerated
trajectory which is accelerated for a finite amount of time’sector. We will show that this function has a thermal form if

compare their experiences at a future spacetime point wherﬁ%e point on the inertial sector is sufficiently close to

they meet. o,xo_) anq departs smoothly from t.he thermal form away
We may also define null coordinates=t—x and from it. It is also found that the horizons of the uniformly

v=t+x. In terms of these the time at which the trajectoryaccelerated sect@which arenot horizons for the entire tra-

crosses the future horizarn=0 of the uniformly accelerated jectory) are the points where the near-thermal expansion
) L 2 N1 breaks down.
interval isty =~ (au) Consider, for example, the case whemr,< 7' <7, and
If we choose to parametrize the trajectory by the proper - Thén the funcptio’rg“ is expressed aos T="70
time 7, it can be expressed &with the zero of proper time T To- P

chosen at=0) 2 o ,
(T, 7)= e_f ﬂ({e_ik{aﬂeiw Fuola(rt o) =11}
u(7)=6(— 19— nvola(r+ 7o) —1}—a " 1(7o+ 7) 4mJo K
X 0(7g— 7)€ "+ 0(7— 1o)Up{1+a(rg—7)}, + eik{afleaf?uo[a(f+ 70+ 113} (3.9

(3.2
Introducing the Fourier transforms
v(7)=—60(— 19— T)Uugf{a(r+ 7y) + 1}+a_10(70+ 7)

ar (ik/a)e?™ _ 1 ” dwe®T| — o) (k)" Twl2a
X O0(1g— 7)€%+ 0(7— T9)vo{l—a(ro— 1)}, e =5ral . we 2 \3 ,
(3.3
. . . L k>0,
where * 7 is the proper time of the trajectory when it exits
(enters the uniformly accelerated phase. It satisfies the rela- 1 (o | K\ —iela
tions e(* ik/a)e‘aT: dweiwrr e eﬂ'w/Za
2ma) —w all\a '
vo=to+Xxg=a le?",
oo k>0, 3.9

Ug=to—Xo=—a le 2m, (3.4  we obtain, after some simplification,
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I’(Trk
coth —
a

wk
COtI‘(;) O(ty+7)+0(— 14— 7)

1
7+ 70+ aln[l—a(r+ 70)]

,_eszdk o - 1|1 ik
()= M e e n[1-a(r+7)] +isin

1
+cosk( T+ 79— 5In|a( T+ TH)|)

1
+isink 7'/+7'0—a|n|a(T+TH)|)9(TH+T) . (3.10

If we further restrict our attention to the case-— 7 i.e., both points lie inside the Rindler wedge—the above expression
simplifies to

’_ezf*dk {kl 1-a? ) wk & 1I 1 27'+7'0

{(r,r)—z I En[ —a“(7+79)“] || cot | COK| 7'+ T+ 5 In| 1— P
isink| 7'+ g+ —In| 127 3.1
isink| 7/ + 7o+ ——In Tl (3.11

It is clear from this expression that an exact thermal specthus breaks down for<— 7, for which case the two-point

trum is recovered in the limit of— — 75, as expected. Sup- function may be called strictly nonthermal. This is the case

pose we now define+ 7= € as the time difference between when one of the points lies outside the right Rindler wedge

the proper timer and the proper time of entry into the ac- while the other point is still inside it. The two-point function

celerated phase; ;. Thenae will be the appropriate di- in such a situation will contain nontrivial correlations across

mensionless parameter characterizing a near-thermal expaifte Rindler horizon, as was pointed out beffB&].

sion. Note thate<0. The response of the detector is governed by the Langevin
From the above expression f6r we find that there is no equation(1.1). This equation may be formally integrated to

correction to the thermal form of(7,7') to first order in  Yyield

€. This can be understood from the fact that the coordinate

difference between the point=— 75— € and a correspond-

ing point on a globally uniformly accelerated trajectory with , ho(7 T

the sameproper time is of ordee?. Indeed, we may define (Q(NQ(7"))= Q_Zf_wdsj_

Rindler coordinates §, ) on the right Rindler wedge by

'

ds' v(s,s’)e 79

v=¢ tef7 andu= — ¢ e ¢7. Then the Rindler coordinates X e "7 =S sin(r—8)sinQ (7' — '),
for the pointr=— 15— € on the trajectory we consider are
found to beé=a+ O(e?) and = — 75— e+ O(€?), which (3.13

are exactly the coordinates, to order of a corresponding

point with the same proper time on a globally uniformly

accelerated trajectory with acceleratianlt is thus no sur- WhereQ=(Q§—+%)"2 O, is the natural frequency of the

prise that the spectrum is exactly thermal up to oreler internal detector coordinate, ang= e?/4 is the dissipation
Furthermore, it can be shown in a straightforward wayconstant arising out of the detector’s coupling to the field.

from the above expression that the spectrum is also thermdlhe double integral in the above equation may be computed

up to O(€?), although the above-mentioned coordinate dif-by splitting each integral into a part which lies completely in

ference does have terms of ord€r Then the first correction the uniformly accelerated sector and parts which lie in the

to the thermal spectrum is of ordef and has the form inertial sectors. For example, suppose we wish to compute
the above correlation function for the casery<r,7' <7;

i.e., both points lie in the uniformly accelerated sector.

62 =gk ok a2éd Then each integral can be split into two part§”(
g(r,r’)zﬁf T[cotl—(? cosk( =T+ 3 =f:;°+f170) and the resulting double integral therefore
° has four terms:
o a263
—isink 7-’—7-+T +0(€%). (3.12

(Q(MQ(7"))=F;+F,+F3+F,. (3.14

The validity of such a near-thermal expansion is charac-
terized by the requirement thite| is small. This translates Writing v=Re(), we obtain, after straightforward manipu-
to —1<a(r+ 7)) or equivalently,r>— 7. The expansion lations,
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2% - - =dk . —
Fi= W—QyZRef 0dsj 0ds’f ?e"‘(s ~Sem VTS NT =S ginQ)(7—s)sinQ (7' —s')
—o0 — 0

h , =gk
— 77(;/ e y(r+ 7 +270)J ?[(,}/2_k2+92)2+472k2]71{(02+,yZ+ kz)COSfl(T— T’)‘l‘(QZ—’yz—kz)
0
Xco)(7+ 7' +275) + 2yQsinQ(7+ 7' +2719) } (3.15

and
2hy (7 (o (K &\ _
Fu= —zRef dsf ds’j —eks = Scoth — e 7Y Y7 ~SsinQ) (7—s)sinQ (7' —s')
() -7 -7 o k a

h , =dk k
= e | ?‘30"(%)[(9472—k2>2+472k2]‘1{<y2+k2+92>cosn<r—r')+<92—72—k2>
0
Xcodd(7+ 7' +279) + 2yQ[SiNQ( 7+ 7'+ 27) — SiNQ( 7+ 7)) — SINQ (7' + 7) ]
—Q?[cod(7+ 7o) + codd (7' + ) — 1]}, (3.16

where “Re” stands for the real part.
The functionsF, and F3, in which one of the integration variables runs over the inertial sector and the other over the

uniformly accelerated sector, are difficult to evaluate. We shall simply express them here in the form

F2— ﬁ(’;’ —y(r+7 )Ref_ dSEySSIrlQ,(T S)f Ik[auOS+uo(l+a70)]Al(k;7_!)+e*ik[avosfvo(lfafo)]Az(k;7_/)],
ar
3.19
hy , 70 ) =dk ) o
F3:We y(r+7 )ReJ' dseySSIn(Z(T/_S)f ?[e Ik[auos+u0(l+a‘ro)]A1(k;T)+elk[avos vo(l aTo)]Az(k;T)],
T — 0
(3.18
|
where the functiong\; andA, are where
k's)= S ds’ ika~leas’ |y’ inQ ’ —iE(r—17") ,
As(k;s)= s'e e” sin)(s—s’), Ti=2 dT T'e {77,
7
S ) —ika~le—as’ vs' i ’ 1 (-7 70 . ,
As(k;s)= Tdse e’ sinQl(s—¢s’). TZZQJ de dr'e E=")¢( 7,77,
-7 -T — T
(3.19 0
Similarly, if one wishes to compute the detector correlation Ta= Zf de dr'e B g(7 7)),
function for two points in the late inertial sector

(7,7'> 1), then one has nine terms similar in form to the

ones displayed above. _
T )

A. Response function for the finite-time accelerated detector

The calculation of the response function for the finite-time 1 (o o _
accelerated detector is very similar to the previous calcula- T5=—2J’ dq-J dr'e B¢ (7,7,
tion of detector correlation functions. We will assume that &J- -
the detector is switched dpeforethe uniformly accelerated
phase, at a proper time= — T<— 14, and switched off after 1 (7 _ ,
the end of this phase, at=T. Then the response function Tezgf de dr'e ' Tr(7,7),
separates into the following nine terms: ST T

9
1 (T — 7 ) ,
.F(E)ZE Til (32@ T7:gf de OdTreflE(T*T )g(T,T,),
=1 T -T
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1 (T 70 , , (straightforward changes of the integration variables shows
T8:EZJ dTJ dr'e & g(r, 1), that Ts is rea). Now we evaluate each of these four terms.

o 277 First, T is easy to evaluate because it involves integrating

the two-point function along the uniformly accelerated sec-

1 (T T ) ,
TQZ;J’ de dr'e B mg(7,7).  (3.2)  tor. We get the result
70 70

_ _ * 1 1 sin275(k—E)
Of all the terms displayed above, onllys is an exact T5=470f dkk KT E) e27Ka_1 —E
thermal response, since it is evaluated on the uniformly ac- 0 ( ) e 7( )
celerated sector. The remaining terms constitute the near- 323
thermal corrections.
We now turn to the simplification of these terms. The
symmetry of the trajectory under reflection about thaxis

As 19—, this contribution reduces to the usual thermal
result:

is expressed in null coordinates as the relation 27, 1
u(—7)=—uv(7), for all 7. This relation leads to the identity T5HE7 2 (3.29

{(—7,—7)=¢*(7,7"). Furthermore,{ always obeys the

: . ’ — ’ i I -

ﬁ:g'%ﬁgﬂg thé;t(tTr’uTas)é Ii\;gnigsni::%vgnégmabsi:g'%gtfo{el dThe terms involvingT, and T involve integration of the

T —TamT*—T* To—T* dTe=T* Th y two-point function over purely inertial sectors of the trajec-
a=l18= 12716, 177 13, aNtlo=1; . 1NUS WE MAY T€- "\, "Therefore, they can also be easily evaluated to yield

write the response function as the sum of four independent

terms: 2 * 1
2ReT =—(T—-7 )f dk———=sin (T—79)(E+k)
F(E)=2R€T,+2ReT3+4ReT,+ T, (3.22 177! % Jo " "K(E+K) (T= 7o) |
(3.2
where “Re” stands for the real part. We have thus mani-
festly shown that the response function is real, as expecteahd
|
2RT—4fwdk ! co§ E(T k(T 2ka™!
€l 3= 0?(E+k)2—k2tanr?(aro)"oi (T+ 79) +k(T—7y) +2ka “tanhary) ]
1 1
XSIFE((T—TO){E-F k[1+tanr(aro)]})sm§((T— 70){E+k[1—tanharg)]}). (3.2

The 2R&; term above represents correlations on each of the inertial sectors. As expected, it vanishes in the limiting cases
T— 19 andT— [in the latter case, we use the identity Jia)/(7a)— &«a) asT—«, and the facE>0]. The second term
above, 2R&;, represents correlatiortetweenthe two asymptotically inertial sectors. As expected, it also vanishes in the
limits T— 79 and T—< (using the same function representation in the latter case, &w0, 7,>0). Thus, if the detector
is switched on for a sufficiently long time, there is no contribution to the response function from the purely inertial sectors of
the trajectory. It should also be noted that the dependence of the two terms above on the proper time differgrmoay be
exploited to develop a near-thermal expansion of the response functionTwitly being a small parameter. This would
correspond to the case of the detector being switchedotf just before(after the uniformly accelerated phase of the
trajectory.

The calculation of the remaining term 4Reis the crux of this analysis. This term represents correlations between the
inertial and accelerated sectors. From the definitioff gfwe can write it as

7 f ’ o *® dk f ’ 2
Tzzf ’ dr’e'ETf Od’Tf me*'ET(exp{—ika*e*aT +ikvg[1—a(r+ 7o) ]} +explika 1™ +ikug[1+a(7+ 7o) ]}).
) -T 0
(3.27

In the above expression, we may explicitly perform the integration ewand rescale the variableg in order to extract the
dependence oil and ry. Then we get

e dk
T2=|Tof_ldyé Oyfo 47Tk

exd —ika e @ —ikvg(ary—1)]

ToatE) {ei(kv0a+E)ro_ei(kvoa+E)T}

exfika ted™+ikug(ary+1)]

(k E) {e—i(kuoa—E)ro_e—i(kuoa—E)T} . (3.28)
Ugad—




55 NEAR-THERMAL RADIATION IN DETECTORS ... 4805

We see from the above expression tiiatvanishes, as expected, in the limitg—0 (because the slope of the trajectory is
stipulated to vary continuously in the setup of the problem, this limit actually corresponds to the everywhere-inertial trajectory
x=a"1) andT— .

In order to examine the limit —«, we first take the real part of the above expression. Then the required limit gives rise
to & functions in theT-dependent terms, which do not contribute to the integral. The remaining terms giVe; as the
nonzero result

dk [ sifErg(1+y)+ka e +ku,] sifEr(l+y)—ka e 2+ky
4ReT2—>70f dyJ [ INETy(1+y) ol SiNE7o(1+y) ol (3.29

m(kupa—E) w(kvga+E)

WhenT is finite, a near-thermal expansion of the term ZRevill be obtained by expressing it as a sum over Rindler
modes, rather than the Minkowski mode sum in 8328. We will therefore take Eq.3.28 and reexpress it in Rindler modes
using the Fourier transform relatio(.9), and then try to perform the integral oweandk. This procedure, after carrying out
they integration, yields

) Pl —1y—iwa!
170 f f ror2aSIME+ @) 7] | Piwa” ") (ka5 " (€l Erotkog) _ gHET+kuglL+a(T=m)lhy
“4n%al . (E+w) (kvga+E)
o1 N
_F( lwa )(ka ) {ei(Ero+ku0)_ei{ET+ku0[lfa(T*TO)]}} ] (33@

(kupa—E)

In order to accomplish the integral over Minkowski modeén the above expression, we will now use the following
integral formulas:

~dk ika(ka_l)_imar1 2, yiwa lz—iwa l-15-i(Elvga)a ioa-1 ima—1 i -1 i
Ore (kvaE):(a Vo) E e e (—jwa H)I'(l—-iwa -, —iE(vea) “(a+ie)), (3.30)

and, similarly,

fwﬂ‘eika—(kal)iwal = (—a?ug) or Eler 1 BT (wa YT (L i waLIE(Upa) Natie)), (332
o k (—kuga+E) 0 ' 0 ' :
wherel(,) is the incomplete gamma function. This function is multivalued in its second argument with a branch cut along the
imaginary axis, which is why it is necessary to introduce a small positive quantiiymake the function well defined. The
equalities in the above expressions therefore hold in the kmiD™.

These formulas may be used to carry out khiategration inT,. One then obtains

i 7o fw do €™  sif(E+w)7]

2"47E) . w0 sinh( rwa™ 1) (E+w)
E —iwa "l ) 1 .
x|\ 52- {eE(0"a T (1—iwa !, —iEa Y(1+ie))—eE?T W' (1—iwa !, —iEa Y1l+iet+a(T—1)])}
0
iwafl_
= eEmI(1+iwa LiEa Y1—ie)-T(l+iwa LiEa {1—ie—a(T—1)])}|. (3.33
- 0

This accomplishes the task of expressingas a sum over Rindler modes. We readily see from the above expression that the
guantities in both curly brackets vanish in the liffit> 75, and hence the entire expression vanishes in that limit. This will
facilitate an expansion of the above quantity in< 7). To do so, however, it will be convenient to consider the limiting cases
of the above exact expression in the high- and low-energy regimes.

Firstly, at high energieEa !, ET>1, we may use the asymptotic reslix,y) ~y* e for large values ofy|. Then
we may simplify the above expression to yield

do 1 SiM(E+ w) 79]

4 R€ET,~ EJ%TM snimeaD  (E+a) [—2co$2wa tIn(Ea 1) ]siM(E+ w) 7]+ SINRET+ (w—E) 7o

—wa ln{(Ea Y1+ a(T—79)]})+SINET+ wry+ wa n{E%a |7y —T|D[0( 74— T)+e™20(T— )11
(3.39
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The last term in the above equation points to a qualitatively different behavior of the response function according to whether
T is less than or greater thapy , i.e., whether the detector is switched on after or before crossing the horizon. This is also seen
at the more primitive level of the Wightman function, E§.10, where theé function dependence or, + 7 is displayed.

The above expression may be simplified even further if one assumes that the detector is switched on after crossing the
horizon, i.e.,7y>T. This is consistent with the limiting near-thermal behaviofTas 7y, which we wish to finally obtain. It
is then convenient to define the dimensionless parametea(T— 79), which is chosen to be small. We thus get the
near-thermal result, to first order i, and at high energies, as

4 Rl * dw 1 SiM(E+ w) 5]
o~ “a) . rw Sinl’(wwafl) (E+w)
E+ 22l S 1+ 2 1- 2] cog (E+ 221 E| |+ (a2 3.3
X cos(E+w)rg— En 3 “E co§ (E+ w)1g]co En 3 (a). (3.35

To obtain the low-energy behavior ©f, we consider the following series representation of the incomplete gamma function

[

1 X+n
P =T0-2, n|())(fn) (3.3

wherel'(x) is the ordinary gamma function. This may be used to express the incomplete Gamma funcligras ifollows:

(_ 1)n(Ea—l)l+ntiwafleii (m/2) (1+ntiwa’1)

. _1_. _1 . — . _1_
I'lxziwa ", FiEa (1xie))=I'(1xiwa™ ") nZO (1 nziead (3.39
and
Il'l+iwa 1, —iEa Y1+ieta(T—1)])
o : -1 : f -1
_ (_1)n{Eafl[1+a(T_7_0)]}1+n+|wa e*l(ﬂ'/Z)(1+n+lwa )
= 71_
T(l+iwa™) ngo nl(l+n+iwa 1) ' (339

I'(l-iwa YLiEa [1-ie—a(T—1)])

( 1)n(E|T TH| 1+n—iwa !

nl(l+n—iwa %)

[ei<7r/2)(1+n—iwa‘1)0( =T+ e—i(w/2)(1+n—iwa‘1) o(T—7)].

=I1l-iwa Y- EO

(3.39

All of the above expressions are exact, and again show a qualitatively different behavior of the response function according to
whether the detector is switched on before or after the horizon crossing-time at all energies.

To extract the low-energy behavior we will keep the leading temm Q) in the above expansions, and substitute back into
the expression foll,, Eq. (3.33. This will yield the low-energy result. However, since this expression is rather lengthy and
not very illuminating, we will further restrict ourselves to the near-thermal approximation. That is, we switch off the detector

before horizon crossingl(< ), and expand to first order im. This procedure yields, after much simplification, the following
result, valid at low energies:

27y ([~ dow 1 SIN(E+w) 1] |1

~y —— - 1'rw/2a . _ -1 -1 1
4 ReT,~a a | 7o snimea D (E+ o) € I'(l-iwa YHYexp[(E+w)7y—Ea wa In(Ea™ )]

+T(1+iwa Hexp—i[(E+w)rp—Ea 1—wa ln(Ea )]} +cog (E+ w)rg]co§Ea 1+ 2wa tin(Ea )]
a—l

- mza—,z{sir[(E+ w)To—Ea '—2wa lIn(Ea )]+ wa lco§(E+w)rp—Ea '—2wa lin(Ea 1]}

+0(a?). (3.40
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To summarize, in this subsection we have simplified eactmirror is static, while the detector moves along some more
term in the response function of a detector accelerated for @omplicated path. Thus the wave equation with boundary
finite time, and expressed the individual terms as appropriateondition can easily be solved to give the mode solutions
mode sums. The most complicated of these terms, % Re

involving correlations between the inertial and accelerated ul(t,x)=sinwxe ', (4.6
sectors of the detector’s trajectory, can be expressed analyti-
cally as a sum over Rindler modg&q. (3.33], and facili- where the mode functions are orthonormal in the Klein-

tates a near-thermal expansion at high and low excitatiosordon inner product. In these barred coordinatess, pro-

energies, in terms of the dimensionless parameteportional to the two-point function in the presence ddtatic

a(T— 7o), which measures how long the detector remaingeflecting boundary at=0.

switched on beyond the uniformly accelerated regime. We Also, in these coordinates, the time-dependent modes of

have displayed results to leading order in this parametethe field are just exponentials. That is, the field can be de-

These results could be used as a starting point towards fuscribed by simple harmonic oscillators with unit mass. This

ther numerical and analytical studies of this system, includ€an be obtained most simply by expanding the field as

ing a more detailed investigation of various limiting cases

offered by the three independent time scales in this problem, - 2 -
\[2' q(t)sinkx 4.7

namely,a™!, 75, andT.

IV. MOVING MIRROR AND COLLAPSING MASS whereX, indicates that the summation is restricted to modes

A. Moving mirror in Minkowski space k>0, and identifyingg, as the oscillator degrees of freedom

The relation bet di f . . dof the field. o
€ refation between radiance from a moving mirror and —yqe hen fing thatX,(t) is a solution to the oscillator

a black hole is well known. As a warm-up preparation, let us equation (1.4, and by satisfying the initial conditions
first study the motion of a mirror following a trajectory X(0)=1, X.(0)= — ik we obtain

z(t) in Minkowski space. A massless scalar fietfl is 7k
coupled to the mirror via a reflection boundary condition. It

1) — a—ikt
obeys the Klein-Gordon equation Xi(t)=e""". (4.8
Pd PP We now consider a detector placed in the vicinity of the
Sz (9—)(2-=0, (4.1)  mirror. The spectral density functidnis determined by the
path of the detector and its coupling to the field. Denoting
subject to the boundary condition the detector position by(t) and the field modes byj(t)
and assuming the monopole interaction
¢(t,z(t))=0. 4.2
For a general mirror path this equation is difficult to solve; Lint= _J eQa(t,x) &(r —x)dx
however, we can exploit the invariance of the wave equation __
under a conformal transformation to change to simpler coor- =—eQa(t,r)
dinates. We follow the treatment ¢6]. To this end, we
introduce a tra}nsformation between the null coordinates \/>J' eQq (1)sinkrdk, (4.9
u,v andu,v defined as
u=t—x, v=t+x, we have
u=f(u), v=v. (4.3

N dk,
I(k,t,t’)=f 5(k K,)€e%sink r(t)smk ( )
The functionf is chosen such that the mirror trajectory is

mapped taz=0. To do this, we relate the two sets of coor- e?
dinates as follows: = —kSInkr(t)sw‘kr( . (4.10
t=3[v+f(u)l, Definingu=t—r(t) andv=t+r, we can now express the
function  as
x=3[v—f(w]. (4.4) 2 -
; R — . gz_e_ [eik(?—ﬁ_eik(ﬁ—ﬁ_eik(ﬁ—m
On the mirror path, setting=0 means that the trajectory can 41y k
be expressed as R
+elkvimv)], (4.11

[t=f(]=z(z[t+ (D)D), (4.9 _ _ _
Since only the outgoing modes have reflected off the mirror,
which allowsf to be implicitly determined. In the new co- only the outgoing part of the correlatiogswill give appro-
ordinates the wave equation is unchanged; however, it noyriate thermal behavior. Thus, from now on, we focus on the
has a time-independent boundary condition, meaning theorrelation
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e? (»dk T ) Thus a thermal detector response, at the temperailze,
—€ .

W=~ 7| K (4.12  Doppler shifted by a factor depending on the speed of the
0 detector, is observed, with a correction that exponentially

It remains to evaluate the above function. To do this, wef€Cays to zero at late times.
specify the functionf by considering a specific mirror tra- . . . .
jectory. A convenient choice of the mirror path is B. Collapsing mass in two dimensions

We now study radiance from a collapsing mass, using the
analogy of the moving mirror model. We essentially follow
for A, B, x positive. This path possesses a future horizon ir1th.e.melfh°d.°t15]’ bu.t using stochastlc.analyss,_and gener-

Iahzmg it to include higher-order terms in the various Taylor

the sense that there is a last ingoing ray which the mirror wil ) . o
reflect; all later rays never catch up with the mirror and sooXPansions involved, thus exhibiting the near-thermal prop-
’ ies of detector response.

are not reflected. It is this aspect which enables the movin&rt . . . .
We will exploit the conformal flatness of two-dimensional

mirror to emulate a black hole. Equati@4.5 can now be _ . i .
solved to give quatica.5 spacetime in the subsequent analysis. Outside the body the
metric is expressed as

z(t)=—t—Ae 2'+B (4.13

(4.14) ds?=C(r)dudv, (4.21)

. L — 1 . whereu, v are the null coordinates,
In the late time limit (=B), f ~~ has the behavior

u=t—r*+R%,
f i (x)=B—Ae "B 14, (4.19
. . — + * + * .
whereqa is taken to be small in the sense that terms of order v=tET 4R (4.22
a? are ignored. In this approximation, one finds andr* is the Regge-Wheeler coordinate:
a= _KAze_ZK(B+X) (416) ; dr’
rr= f ca (4.23
and the transformation from barred to unbarred coordinates (r')
becomes with R§ being a constant. The metric outside the body is thus
U=B—Ae <(BTU_  A2e~2x(B+u) (4.17) assumed to be static in order to mimic the four-dimensional
' spherically symmetric caséor which Birkhoff's theorem
p|us terms of h|gher powers " K(B+U). hOldQ The pOint at which the conformal fact@=0 repre-

We now need an explicit form for the detector trajectory:?:ents the horizon, and the asymptotic flatness condition is
u(t) since this is what appears in the functionChoosing it ~ imposed byC—1 asr— .
to be inertial, we haver(t)=r,+wt, which gives On the other hand, the metric inside the ball is for now
u(t)=t(1—w)—r, . In terms of the proper time of the de- assumed to be a completely general conformally flat metric:
tector, this becomes(7)=ry[(1—w)/(1+w)]—r, .

- ) L ds’=A(U,V)dudy, (4.24)
Defining the sum and differenc&= 5 (7+7') and
A=7—7", andz=\[(1—w)/(1+w)], we obtain with
W—u_:—erK(B+r*+EZ)SinI'< KZA) U:T_F-FR(),
V=r71-1—Ry, (4.25

—2kA2e 2(BI T Dgink kzA).  (4.18 .
andR, andR{ are related in the same way mandr*. The

This is substituted i, and, after some simplification we surface of the collapsing ball will be taken to follow the

obtain the near-thermal form world line r =R(7), such that, forr<0, R(7)=R,. Thus, at
the onset of collapses=t=0, U=V=u=v=0 on the sur-
. € (=dk face of the ball.
ol 7,7 = 47 o k We will let the two sets of coordinates be related by the
transformation equations
K
X cotl-(E cos{kA)(1+F)—isin(kA)}, U=a(u),
(4.19 v=B(V). (4.26
with The functionsa and 8 are not independent of each other

because one coordinate transformation has already been

. specified by the definition af* in Eq. (4.23.

tarkAsinh(«z4). Without as yet determining the precise form efand
(4.20 B, we will consider a massless scalar fiegbddpropagating in

['=—2kz lAe xBFr« +3gnp? :—:
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this spacetime subject to a reflection condition To determinex and B we match the interior and exterior
#(r=0,7)=0. Such a field propagates in a similar fashion tometrics at the collapsing surface= R(7). Then we havé
the field in the vicinity of a moving mirror. To make this

explicit, we introduce a new set of barred coordinates du (1-R) AC R
a' (W)= =-C—F—|1+ 1+ —[1-R?] ,
U= pBla(u)~2Ro], ! R R
(4.33
v=v. (4.27) R AC 172
’ = _c~—1___ " _ T Tr1_p2
In terms of these, we also define the coordinates B (V)= d C 1+R 1 <1+ R2 [1-R ]> '
r=3(v—u), andt= 3 (v+u). (4.39

These new coordinates have the propertiés) ]
r=0=r=0 and(b) the field equations have incoming mode whereR=dR/d .
solutions of the forme'*”. Thus the left-moving parts of the Now we expand these quantities about the horizon. We
correlation functions of the “in”” vacuum defined in terms of recall the definition of the horizon radil®, as C(R;)=0.
barred coordinates are identical to those of the vacuum déA/e may further define, asR(r,) =R;,. Then we obtain the

fined with respect to unbarred coordinates. Taylor expansions
Keeping these properties in mind, we may expand the

field in terms of standard modes obeying the reflection R(T)=Ry+v(mh— 1)+ B(my— 1)+, (439

boundary conditioriby conformal invariance of the massless . )

scalar field equationas wherev=—R(7,), B=3 R(7,), and

(r,0); \F > q(t)sirkr, (4.28 C R—Rpy)+ 1re R—Ry)%+
, —3 — | s . = — — — P
¢ L2, G ar | ( Wt 552 ] ( h)

h h

just as in the moving mirror case. =2kv(1h— 1)+ (2 B+ yv?)(Th— 72+ - - -,
We now consider a detector placed outside the collapsing
ball at fixedr (or r*), namely,r=rq (or r*=r§). The in-

teraction between detector and field is described by the in- 1 .
teraction Lagrangian where k=3 aC/arth, the surface gravity, and

(4.36

y= 3 9°Clar?|g . Since the ball is collapsing;>0.

Lin= — €Qa(s,r), (4.29 Substituting the above expansions in the expression for
a'(u), we obtain, to order %,— 7)?,

where
J— du 2
r= %{U_B[a(u)_zRo]} m=a(R0—Rh+ Th_U)+b(RO_Rh+ Th_U) y
4.3
= 3{t+1§—Rs — Ala(t—15 +R5)~ 2Rl}, (439
where
s= 3 {t+rg —Ry +Bla(t—r5 +R5) —2Ro]},
(4.30 a=(v+1)x, (4.38
andQ is the internal detector coordinate. K y? 1 )
__The influence kernet, due to a reflection condition at ~ P= 7| (3F »)B+(1+v)5==5Ak(1=v9)(1+v)/.
r=0, has the same form as the moving mirror case, in (4.39

barred coordinates. Its outgoing part is therefore given by
Note that, for a slowly collapsing balk<<1, and hencea

_ €% [=dk (@) 43 reduces to the surface graviky
wZar ), k€ ' (4.3D Also, to order ¢,— 7),
dv
where d—\/:C+d(Th+Rh_R0_V)y (44@

u=s—r=gla(t—r§ —R})—2R,] (4.32
where
andu’ is the same function df’.
We will now determine the functions and 8 and show
that, to zeroth order in an appropriate parametets an 3Note that the formulas for’ and 8’ do not agree with the
exponential function of, and thus¢,, has a thermal form. corresponding formulas in Reff15] [Egs.(8.17) and (8.18]. The
The correction to the exponential form, obtained by includ-formulas in[15] have sign errors for the quantities within square
ing higher-order terms, will lead to a near-thermal spectrumbrackets.
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A(l+v) 2bk o ak )
c=—(F—), (4.41) I'=— —5e?c2 > To)tantf| — | tarkAsinhaA.
2v a a
(4.50
A Ak )
d=—3| B~ (1=v)(1+v) ). (442 The functionI" vanishes at late timesS(—=). Thus the

exact thermal spectrum is recovered at the Hawking tempera-
ture redshifted by the velocity of the surface of the ball, on a

We consider a regime in whichr{— 7)d<<c so that we may time scale defined by the surface grawity

ignore the second term in E.40. Then we can integrate
this equation to give
V. DISCUSSION

= =cq+ )
v(V)=AV)=crteV, (443 We now summarize our findings and discuss their impli-

cations. There are four main points made or illustrated here
(1) This paper gives stochastic field theoretical deriva-

the appropriate dimensionless parameter describing devidon of particle creationin the class of spacetimes which

tions from exact exponential scaling or exact thermal behayPOSSESS an event _horlzon in some limit. This ?proaCh gen-
ior), we integrate Eq(4.37 to give eralizes the established methods of quantum field theory and

thermal field theory(in curved spacetimeso statistical and
U(u)=a(u) stochastic field theory. The exact thermal radiance cases aris-
ing from an exact exponential scale transformation such as is
b found in a uniformly accelerated detector, the Schwarzschild
1+—eau=c) | black hole and the de Sitter universe, have been treated in the
a stochastic theoretical method befdw6,50. Here we give
(449 the treatment of the moving mirror and the collapsing mass
as further examplegThermal radiation in certain classes of

¢, being another integration constant. cosmological spacetimes including the inflationary universe
We are now in a position to obtain explicitly the transfor- i\ pe studied in a following papei57].)

mation between barred and unbarred coordinates, to lowest (2) We have shown that in all the examples considered in
order inb/a?. Thus we have

wherec; is an integration constant.
Similarly to lowest order irb/a® (which turns out to be

= RO_ Rh+ Th+ aileia(uicz)

this class of spacetimes, i.e., accelerated observers, moving
mirrors, and collapsing masséblack holeg, those which
yield a thermal spectrum of created particles all involve an

b exponential scale transformationThermal radiance ob-
=M+ Mzea<“°2)( 1+ —zea(”°2)), (4.45  served in one vacuum arises from the exponential scaling of

a the quantum fluctuationgnoise in another vacuum. This
view espoused by one of y81-39 is illustrated in the
examples treated here.

(3) A practical aim of this paper is to show how one can
use quantum field theory techniques aided by statistical-
mechanical concepts to calculate particle creation in the

M= ¢ (4.47) near-exponential cases, yielding near-thermal spectra. These
2 ar ' cases are not so easy to formulate conceptually using the
traditional methods: The geometric picture in terms of the
At the positionr} of the detectoru=t—r} . Therefore, de- properties of the event horizons as global geometric entities
fining A=u’—u andS =1 (u’+u)+r%, we may perform works yvell for .e.qumbrlum thermodynqmlcsictually ther-
the above transformation to obtain mostatic$ c_or1_d|t|o_n§, so does thermal fle_l_d theory Whlch as-
sumesa priori a finite-temperature conditiofe.g., periodic
aA boundary condition on the imaginary timeHowever, they
W_U_Z_ZMzeaCz{ e aE -5 ginh— cannot be easily generalized to nonequilibrium dynamical
2 conditions. In the stochastic theory approach we used, the

u=pla(u)—2R]

where

M1:C1_C(R0+Rh_7h), (446)

b . starting point is the vacuum fluctuations of quantum fields
+ —2e‘2""(2‘r0‘°2’2>sinmA]. (4.48  subjected to kinematical or dynamical excitations. There is

a no explicit use of the global geometric properties of space-

) ) - ) times: The event horizons arise from exponential scaling.
Invoking the identitie2.11) and(2.13), the function{,,can  (Thys, for example, this method can describe the situations

now be simplified to yield the near-thermal form where a detector is accelerated only for a short duration,

) whereas one cannot easily describe in geometric terms the

‘ :e_f“ﬂ‘ COﬂ'(ﬂ-—k> cokA(1+T) —isinkA scenario of an event horizon appearing and disappearing.
“Wedm o k a ' There is also na priori assumption of equilibrium condi-

(4.49  tions: The concept of temperature is neither viable nor nec-
essary, as is expected in all nonequilibrium conditions. Ther-
where mal or near-thermal radiance is a result of some specific
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conditions acting on the vacuum fluctuations in the systemfluctuations alone requires a self-consistent treatrabrini-

(4) We restrict our attention in this paper to near-thermailtio), there are no conceptual pitfalls or intrinsic shortcom-
conditions because of technical rather than conceptual limiings.
tations. In the near-thermal cases treated here, we want to
add that the stochastic theoretical method is not the only way
to derive these results. One can alternatively approach with
the global geometric or thermal field methods, say, by work- This work was supported in part by the U.S. National
ing with generalized definitions of event horizons or quasip-Science Foundation under Grant No. PHY94-21849. B.L.H.
eriodic Green functions. However, we find it logically more acknowledges support from the General Research Board of
convincing and technically more rigorous to use the stochaghe Graduate School of the University of Maryland and the
tic field theory method to define and analyze field theoreticalnstitute for Advanced Study, Princeton. Part of this work
and statistical concepts like fluctuations and dissipation, corwas done while he visited the Newton Institute for Math-
relation, and coherence. We believe that in the fully dynami-ematical Sciences at the University of Cambridge during the
cal and nonequilibrium cases, such as will be encountered iGeometry and Gravity program. B.L.H. and A.R. enjoyed
the full back reaction problerfnot just confined to the linear the hospitality of the physics department of the Hong Kong
response regimethis method is more advantageous than theUniversity of Science and Technology when this work was
existing ones. Even though the technical problems will likelynear completion. D.K. thanks the Australian Vice Chancel-
be grave(just the built-in balance between dissipation andlors’ Committee for its financial support.
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