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We define the entrop$ and uncertainty function of a squeezed system interacting with a thermal bath, and
study how they change in time by following the evolution of the reduced density matrix in the influence
functional formalism. As examples, we calculate the entropy of two exactly solvable squeezed systems: an
inverted harmonic oscillator and a scalar field mode evolving in an inflationary universe. For the inverted
oscillator with weak coupling to a bath at both high and low temperat8est, wherer is the squeeze
parameter. In the de Sitter case, at high temperat&eq,1—c)r wherec= y,/H, vy, being the coupling to
the bath andH the Hubble constant. These three cases confirm previous results based omdniooe
prescriptions for calculating entropy. But at low temperatures, the de Sitter er8rel($/2—c)r is noticeably
different. This result, obtained from a more rigorous approach, shows that factors usually ignored by the
conventional approaches, i.e., the nature of the environment and the coupling strength betwen the system and
the environment, are importarf§0556-282(97)06710-6

PACS numbes): 98.80.Hw, 03.65.Bz, 05.48j, 05.70.Ln

[. INTRODUCTION creation of bosons is a consequence of adopting the Fock-
space representation which amounts to a random phase ini-
In discussing the conceptual problems of entropy generaial condition implicitly assumed in most discussions of
tion from cosmological particle creatidii,2] one of us was vacuum particle creatioriThe difference of spontaneous and
confronted in the early 1980s by the following apparent parastimulated creation of bosons versus fermions was first
dox: on the one hand, common sense suggests that entropginted out by Parkefl], and discussed in squeezed state
(S) is given by the number N) of particles produced Ilanguage by Hu, Kang and Mataf|.) The relation of ran-
(S~N? for photong. On the other hand, theoretically, for a dom phase and particle creation was further elaborated by
free field, particle pairs created in the vacuum will remain inKandrup([7].
a pure state and there should be no entropy generation. In- Following these early discussions of the theoretical mean-
quiry into this paradox led to serious subsequent investigaing of entropy of quantum fields, a recent surge of interest in
tions into the statistical properties of particles and fields. Inthis issue was stimulated by the work of Brandenberger,
1983, Hu[3] pointed out that the usual simplistic identifica- Mukhanov, and ProkopeBMP) [8], Gasperini and Gio-
tion of entropy with the number of particles present is validvanni (GG) [9], and others on the entropy content of primor-
only in the thermodynamic-hydrodynamic regime, where in-dial gravitons. The language of squeezed states for the de-
teraction among particles and coarse graining can lead tscription of cosmological particle creation was introduced by
entropy generation. This aspect was discussed later by HBrishchuk and Sidorof10]. Though the physics is the same
and Kandrug4] using a statistical mechanics subdynamics[6,11] as originally described by Parkét] and Zel'dovich
analysis. The more intriguing case of entropy generation fof2], the language brings closer the comparison with similar
free fields was addressed by Hu and Pa{®h They sug- problems in quantum optics, which shares many interesting
gested that an intrinsic entropy of(fiee) quantum field can theoretical and practical issugk2]. BMP suggested a coarse
be measured by the particle numigar a Fock-space repre- graining of the field by integrating out the rotation angles in
sentation or by the variancéin the coherent-state represen- the probability functional, while GG considered a squeezed
tation). The entropy of dfree) quantum field is nonzero only vacuum in terms of new variables which give the maximum
if some information of the field is lost or excluded from and minimum fluctuations, and suggested a coarse graining
consideration, either by choosing some special initial statéy neglecting information about the subfluctuant variable.
and/or introducing some measure of coarse graining. For exkeski-Vakkuri studied entropy generation from particle cre-
ample, the predicted monotonic increase in the spontaneousion with many particle mixed initial statg43]. Matacz
[14] considered a squeezed vacuum of a harmonic oscillator
system with time-dependent frequency and, motivated by the

*Electronic address: dkoks@physics.adelaide.edu.au special role of coherent states, modeled the effect of the en-
"Electronic address: andrewm@maths.su.oz.au vironment by decohering the squeezed vacuum in the
*Electronic address: hu@umdhep.umd.edu coherent-state representation. Kruczenski, Oxman, and Zal-
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darriaga[15] also used a procedure of setting off-diagonalincrease of their variances because of these fluctuations gives
elements in the density matrix to zero before calculating theise to the uncertainty and entropy increase. The time depen-
entropy. Despite the variety of coarse-graining measuredence of the uncertainty function of an open system mea-

used, in the large squeezing limitate times these ap- sures the varying relative importance of thermal and vacuum

proaches all give an entropy &= 2r per mode, where is  fluctuations and their roles in bringing about the decoherence

the squeezing parameter. This result which gives the numbgji the system and the emergence of classical behavior
of particles created at late times agrees with that obtained ifpg4 25,

the original work of Hu and Pavofb]. The entropy function constructed from the reduced den-

Noteworthy in this group of work is that the representa-sity matrix (or the Wigner functionof a particular state mea-
tion of the state of the quantum field and the coarse grainingyres the information loss of the system in that state to the
in the field are stipulated, not derived. What is implicitly environment(or, in the phraseology d26], the “stability”
assumed or grossed over in these approaches is the import@aracterized by the loss of predictive power relative to the
process of decoherence, the diminution of the off-diagonag|assical description One can study the entropy increase for
components of a reduced density matrix in a certain basis. i specific state, or compare the entropy at each time for a
is a necessary condition for realizing the quantum to classicglariety of states characterized by the squeeze parameter. The
transition[16]. The deeper issues are to show explicitly howtjme scale of entropy increase, when entropy arises from
entropy of particle creation depends on the choice of specifigarticle creation from the vacuum, should be comparable to
initial state and/or particular ways of coarse graining, and tghe decoherence time which, for a high temperature bath, is
understand how natural or plausible these choices of thgery short. Interaction with the environment also changes its
initial-state representation or the coarse-graining measure aggnamics from strictly unitary to dissipative, the energy loss
in different realistic physical conditiongl7]." To answer peing measured by the viscosity function, which governs the
these questions, one needs to work with a more basic thegg|axation of the system into equilibrium with the environ-
retical framework, that of statistical mechanics of quantumment. The entropy function for such open systems can also
fields. In recent years we have approached the decoherengg ysed25,26 as a measure of how close different quantum
and entropy or uncertainty issues with the quantum openstates can lead to a classical dynamics. For example, the
system concepft18] and the influence functional formalism coherent state being the state of minimal uncertainty has the
[19,20.. The purpose of this paper is to study the entropy andsmajlest entropy functiof26] and a squeezed state in gen-
uncertainty of quantum fields using the statistical mechanicgrg| has a greater uncertainty functi@]. One can thus use
of squeezed quantum open systems as illustrated by quantuie uncertainty to measure how classical or “nonclassical” a
Brownian motion models. guantum state is.

In the quantum Brownian motion paradigmic depiction of = sing this first-principle approach for the calculation of
quantum field theory studied in the series of papers by Huhe entropy function leads to more reliable results. With re-
Paz, and Zhang21] and Hu and Matac{22], the system gard to the issue of entropy of quantum fields raised at the
represented by the Brownian particle can act as a detésor beginning, we can now ask what is the difference of our
in the influence functional derivation of Unruh and Hawking more vigorous definition and that defined earlier with more
radiation[22,23), a particular mode of a quantum figlslich a4 hocprescriptions?
as the homogeneous inflaton figldr the scale factor of the Foremost, the differences in design are obvious: the en-
background spacetim@s in minisuperspace quantum cos-tropy of [5,8,9 and others refers to that of the field, and is
mology), while the bath could be a set of coupled oscillators,gptained by coarse graining some information of the field
a quantum field, or just the high-frequency sector of the fieldjtself, such as making a random phase approximation, adopt-
asin stochast_ic inflation. The statistical prqperties of the SYSing the number basis, or integrating over the rotation angles.
tem are depicted by the reduced density mali®OM)  The entropy of 24—26 refers to that of the open system and
formed by integrating out the details of the bath. One can usg; gptained by coarse graining the environment. Why is it
the RDM or the associated Wigner function to calculate thenat for certain generic models in some common littate
statistical average of physical observables of the systemime high squeezing both groups of work obtain the same
such as the uncertainty or the entropy functions. The voRegy|t? Under what conditions would they differ? Under-

Neumann entropy of an open system is then standing this relation could provide a more solid theoretical
foundation for the intuitively argued definitions of field en-
S=—trpredNpred- (1.1 tropy.

At the formal level, supposing we have some system
The uncertainty function measures the effects of vacuum an@hich has been decomposed into two subsystems, it can be
thermal fluctuations in the environmetut zero and finite shown[27] that between the entropi€;, S, of the two sub-
temperaturgon the observables of the syst¢@a%,25. The  systems, and that of the total systeBy;, a triangle inequal-
ity holds:

This includes conditions when, for example, the quantum field is
at a finite temperature or is in disequilibrium, interacting with other |Sl_ 32| SSp<5$+S;. (1.2
fields, or when its vacuum state is dictated by some natural choice,
e.g., in the earlier quantum cosmology regime such as the Hartle-
Hawking boundary condition leading to the Bunch-Davies vacuumin particular, if the total system is closed and in a pure state,
in de Sitter spacetime. then it has zero entropy, so that the two subsystems
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necessarily have equal entropfeldence, asking for the en- Il. SQUEEZED OPEN SYSTEMS
tropy change of a system is equivalent to asking for the en-
tropy change of the environment it couples to, if the overall ) ) o
closed system is in a pure state. Now, consider the case of Consider the general oscillator Hamiltonian
the system as a detect@r a single mode of a fiejdand the a2 at?
environment as the field. The information lost in coarse  H(t)=f(t)—=+f*(t) = +h(t)(a'a+1/2) +d(t)a
graining the field which was used to define the field entropy 2 2
in the above examples is precisely the information lost as +d*(t)at+g(t), (2.0
registered in the particle detector, which shows up in the
calculaton of entropy from the reduced denSity matrix. ThQNhEYEd,f,g,h are arbitrary functions of time. The propaga-
bilinear coupling between the system and the bath as used {8r for this has been calculated [82] and is
the simple quantum Brownian motion models also ensures
that the information registered in both sectors is directly U(t,t,)=S(r,$)R(8)D(p)e" P2 (2.2)
commutable. This explains the commonalities. However, not
all coarse graining and coupling will lead to the same resultsyherep,w are defined in terms of the coefficients appearing
as we shall explicitly demonstrate in some examples. in H, and

Another important feature of the entropy function ob-
tained in our present investigation, which is not at all clear in D(p)=exp—p*a—H.c.),
earlier studies, is that it depends nonlocally on the entire
history of the squeezing parameter. This can be seen from R(0)=exd —i6(ata+1/2)],
the fact that the rate of particle creation varies in time and its
effect is history dependef82]. Existing methods of calcu- S(r,é)=exp(re 2%a2/2—H.c) 2.3
lating the entropy generation give results which only depend

on the squeezing parameter at the time when a particulajre the displacement, rotation, and squeeze operhne-
coarse grainingor dropping the off-diagonal components of spectively. Suppose, we start with a simple harmonic oscil-
the density matrixis implemented. Thesad hocchoices of  |ator with the Lagrangian

coarse graining and the time it is introduced affect the gen-
erality of the earlier results. M .

The plan of this paper is as follows. In Sec. Il we give a L= i(xz—ﬂzxz)- (2.4
brief summary of a squeezed quantum system, using a gen-

eral oscillator Hamiltonian as an example. The notation iS¢ e construct a Gaussian state in the position basis, with
that of[6,22]. This is followed by a brief summary of open- initially the same widthr, as that of the ground state of such
quantum systems in terms of influence functiorjdl8, fol- 4 oscillator, displaced by some arbitrary amount and with a
lowing the treatment of21,22. Readers familiar with these phase proportional ta, we find this to be an eigenstate of
background material can go directly to Sec. I, which con-the lowering operator, and is called a coherent state. Suppose
tains the central material for the derivation of entropy andwe locate the point{k),(p)) in phase space and draw an
uncertainty functions as well as fluctuations and coherencellipse about this point, the lengths of whose axes being the
functions. In Sec. IV we apply these formulas to an oscillatoruncertaintiesAx?,Ap®. Then, as the oscillator evolves this
system, recovering en route the earlier resultf24f25 for ~ uncertainty ellipse revolves about the origin with angular
uncertainty at finite temperature, and [@6] on entropy of speed(}.

coherent states. In Sec. V we apply our result to the consid- A squeezed state is again such a state, but with an arbi-
eration of a scalar field in a de Sitter universe. We show thérary initial width o. We find that as the oscillator evolves
conditions where one recovers tBe=2r result of all previ- the uncertainty ellipse again revolves about the origin, but its
ous work and, more significantly, the cases when they differaxes change length and it can also rotate about its own cen-
We give a short discussion of our findings in Sec. VI. Theter. It turns out that the squeeze parametées related to the
appendices contain details of derivations. width of such a state:

—| Op i fL 2
r= n;, 0o= Vm ( 5)

Hence a coherent state has-0, or zero squeezing. A

2This could be the reason why the derivation of black hole entropyGaussian that initially has a width smaller thary will
(see the recent review of Bekensté8]) can be obtained equiva- €Volve to a squeezed state with some0. We can generate
lently by computing the entropy of the radiatiéerg.,[29]) emitted @ Squeezed state by applyisgr,¢) to the ground state of
by the black hole, or by counting the internal staiéone knows the simple oscillator. Consider the new operator
how) of the black hole(e.g.,[30]). Physically, one can view what
happens to the particle as a probe into the state of the field. The b=UTaU=aa+p*a', (2.6)
application of open-system concepts to black hole entropy is a very
fruitful avenue[31]. where it can be shown that

A. Squeezed states and density matrices
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a=e cosh, Rather than use E@2.8) to calculatex, once we haveX we
can extract from it. This is done by writing, from E¢2.8),

=—e (0 2¥)sjntr . 2.
k St @7 X=a+p,
Going froma to b is then just a Bogoliubov transformation, . ) .
and soa, 8 become Bogoliubov coefficients for our system. X=i(f=h)a+i(h—f*)g, (2.19

Their equations of motion are and solving fora, 8 using Eq.(2.10

a=—iha—if*B, 1 iEM|_ M,
B=ifa+ihg,
We can follow the behavior af, ¢, § by writing Eq.(2.8)
a(tp=1, B(t)=0, (2.8 in terms of the squeeze parameter, with|f|e'®:
wheref,h as defined in the Hamiltoniaf2.1) are calculated r=|f[sin2¢4+s),
from the general system Lagrangian. This Lagrangian has a
time-dependent mass and frequency, and we will also allow ¢=—h+|f|cothrcog2¢+e),
it to have a time-dependent cross term denoté¢t)?
M(D) 6=h—|f|tanlrcog2¢+¢). (2.17
— V2 vv — ()2 2
L= 2 [x“+2E()xx - QA(OX7]. (2.9 These equations are useful for numerical work. They also tell
us of the existence of constant, and so possibly of attractor,
Thenf,h are given by[22] solutions for ¢, 6. If we setr—« then the equations for
¢, 0 become
M K . .
f_i ?(Q +5)_M+2|5’ 6=—¢=h—|f|cog2¢+¢). (2.18

(1) Suppose there exist sonteand ¢ such thatd= ¢=0.

, (210  Then, h=|f|cos(2b+¢), so that|h|<|f|. Thus, sinceh is
real, we haven®<|f|?, and from Eq{(2.10 this inequality is
grue if and only ifQ?<0.

(2) Conversely, suppos€?<0. Then by the previous

Soon we shall find that the quantity of much importance2fdument/h|<|f[, or —1<h/[f|<1. Thus, there must exist
to our work turns out to be the sum of the Bogoliubov coef-S0Me¢ such that cos(@+e)=h/|f|. From Eq.(2.18 we see
ficients X=a+ B. It follows from Eq. (2.8 that X satisfies that for this value ofp, 6=¢=0.
the classical equation of motion for the system: In other words, there will exist constant solutions for
¢, 0 if and only if Q%<0 (the oscillator is “inverted’). Of

h_1|\/| 024 &2 K
=2 WE Ty

and « is an arbitrary positive constant that can be chosen t
simplify the relevant equations.

. M. . ME course, this does not reveal whether these constant solutions
X+ X+ Q2+ &+ i X=0, (2.1)  are attractors. Numerically, solving E(.17 with Q2<0,
for variousé&, ), and k, shows that, 8 apparently do al-
with initial conditions ways quickly tend toward constants, always accompanied by
one ofr— *oo,
. —ik We note that it is common to eliminate the cross term in
X(t)=1, X(tj)= W—E(ti)- (2.12  the action by adding a surface term:
I
. . o . M . . 1d
With this result, the usual task of finding the Bogoliubov |__>E(x2+ 28xx—02x2)—§&(M€x2)

coefficients o, 8 from two coupled first-order differential
equations is reduced to that of solving one second-order

equation forX. :% x2—| 02+ MV‘(:+5 x2

. (2.19

B. Squeezing an inverted harmonic oscillator Although this leaves the classical equation of motion un-

For an inverted oscillator, i.e., one witi°<0, at late  changed, it will change the squeeze parameters. In this paper
timesr is expected to blow up. In that case we can calculateve leave the cross term in our Lagrangians.
it from Eq. (2.7) as follows:

; C. Open systems
|a|—|B|—€'l2, (213 _ o :

We now let our system, a single harmonic oscillator in a

so that squeezed state, interact with a bath of harmonic oscillators,
resulting in an open squeezed system. The method most ap-

r—In(2|al). (2.149 propriately depicting such an open system under the influ-
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ence of an environment we want to use is the influence funds, time-independent frequencies with no cross jethe dis-
tional (IF) formalism first introduced by Feynman and sipation and noise kernels take the form
Vernon[19]. It was later applied by Caldeira and Leggett
[19] to the high-temperature limit of a model where both , * , ,
system and environment are composed of oscillators with u(s,s’)= fo dol(w,s,s") IM [X()X*(s)],
time-independent frequencies. A comprehensive review is
given by Graberet al.in [19]. o .

In these earlier works, the influence functional for quan- V(S,S,):f dwl(w,s,s’)cothz—_l_ Re[X(s)X*(s')],
tum Brownian motion has only been derived for Markovian 0
processes corresponding to coupling to a high-temperature (2.2

ohmic bath. An exact master equation for non-Markovian . :
processes is recently derived by Hu, Paz, and ZHadg where byT we will always mearkgT/#, X is the sum of the

o . Bogoliubov coefficients for the bath oscillators, ang the
(see als$33,34]). Most work in this area since Feynman and “spectral density,” a function defined by

Vernon has assumed a bilinear system-bath coupling, which
together with a factorizable initial condition, yields an exact c(s)c(s’)
analytic form for the influence functional. Initial conditions l(w,s,8")= —— > Sw—w,), (2.22
with correlations have been considered B§]. Weakly non- K n
linear couplings have also been considered using perturba-, _ ) ) _
tion theory borrowed from field theof1]. More relevant to which encodes information of the action of the_ environment
our work here, Hu and Mataci22] obtained the master on .the system. In geqeral, t]_he spect.ra_l density can be de-
equation for system and bath oscillators with time-dependeriic'ioed by some function ab’, wherej is set by the par-
frequencies, a result readily generalizable to quantum fielgdcular environment being modeled. The casejefl, the
(see, e.9.[36,37). so-called “ohmic” environment, is a borderline between the
In this paper we further develop the work [@2] by con-  Superohmic casej 1), which models weak damping, and
sidering a squeezed system coupled bilinearly to a bath ghe subohmic casg £ 1) modeling strong damping. We can
oscillators with time-independent frequencies, but with ain effect consider both damping extremes by taking an ohmic
time-dependent coupling constant. We also lay out th&nvironment together with some strenggh which can be
groundwork for calculating such quantities as entropy and/téred from zero, for a free system, up to higher values.
uncertainty as well as fluctuations and coherence, for the AISO, by considering the continuum limit of the coupling
purpose of this paper, and a later one on the de Sitter unkonstant, it can be shown that this constant’s independence
verse[38]. of n also leads to an ohmic environment, so we will only
Consider the quantum Brownian motion of an oscillatorconsider spectral densities of the form

(system with time-dependent mass, cross term, and natural
frequency interacting bilinearly with an environment of l(w,8,5')= @wc(s)c(s’) 2.23
oscillators with the same time-dependent parameters. The to- o T ' )
tal Lagrangian is

For a general Lagrangian the sum of the Bogoliubov coeffi-

SIx,q]=S[x]+ Se[q]+ Snd x,4] cients X will be complicated; however, we have simplified
. M(s) our calcullations by taking.the path to bg corr_lposed of un-

:f ds| ——[x%+2&(s)xx— Q?(s)x?] squeezedi.e., coherentstatic oscillators with unit mass. For
t; 2 this type of bath the dissipation and noise can be calculated

for an arbitrary bath temperature; we use the integral form of

+; {mf‘z(s)[q% 26(S)Gnln— ©2(5)q2] the noise as being easier to work with
m(s,s")=2yoc(s)c(s’)d'(s—s'),
2 [—c(s)an]], (220

2y, o w
v(s,8')= 7c(s)c(s’)f0 wcothz—T cosw(s—s’)dw.

where the particle and the bath oscillators have coordinates (2.29
x andq,, respectively.
We wish to start with some initial system density matrix The dissipation is seen to be local for all temperatures, and
ps,dXix 0) assumed to be uncorrelated with the environmenthe noise becomes Whlte3 that is, it tends towagifanction
at timet=0 [Eq. (A4)]. The reduced density matrjx, ob-  in the high-temperature limit.
tained by integrating out the environmental degrees of free-

dom [see Eq.(A5)] is evolved by its propagatal, repre- Ill. ENTROPY AND UNCERTAINTY, FLUCTUATIONS

sented by the influence functionBl, which contains in its AND COHERENCE

exponent the dissipation and noise kerneland v, respec- . .

tively [Eqg. (A11)]. These can be calculated from E¢®.18 A. Initial and final states

and(2.19 [22]. A summary of the influence functional for- Assume the systems are initially in the vacuum state, so
malism can be found in Appendix A. that their density matrix is Gaussian. So we start with an

For an environment of simple harmonic oscillat@tisat  arbitrary Gaussian reduced density matrix
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_ 52 o) gk t2 i —
pr(xiX! 1) e~ & H0ax — €%, (3.1) ;c;ghztslz%gfz)edgwes C/A=1 and hence from Eq(3.4)
and propagate it by using Eq\5) and (A13) to give
C. Fluctuations and coherence
—AA2-2iBAS —4C32 (3.2

pr(xx",t)=Ne A clearer picture of the dynamics of a closed and open

system can be obtained if we rotate the phase-space axes so
that the density matrix can be expressed in terms of the so-
called super- and subfluctuant variabléalternatively, we
N=2\Clx, are .rotatlng the Wigner function in phase. space so as to
eliminate the cross term theyeCall these variables,v, ex-
pressed as real linear combinationgjgb [they have nothing

where we have used the sameB, andC notation of[14],
and with &, ,¢; the real and imaginary parts &f

1
A=a,+ 5{[(2§r+x)/4+ a11]b3+(2£+by)ahs to do with theu,v of Eq. (A12)]. We fix the linear combi-
nations such that one variabla,(the superfluctuahtgrows
—(2§r—)()a§2}, exponentially while the other decays exponentially. In the

case of no coupling to the environment we proceed by ex-
1 pressing(u®),(v?) in terms of (g%),(qp+pa),(p?), and
B=—by/2+ 5[(& +bs/2)bybs— (2, — x)a b1, then substituting for these the standard squeezed state results
[14]. This enables us to write

_ 1 le e—2r
C= 45 (26— x)b3, <u2>=K2 e (3.9

D=4|¢>— x?+4(2¢&— x)an+4 &by+b5. (3.3 These relations fix,v in terms ofg,p, and we now use the

) ) ~same transformation for the case of nonzero dissipation:
These expressions form the basis of our later calculations.

The quantity we are focusing on is the reduced density ma- u= — ksingq+ cospp,

trix, Eq. (3.2), using the expressions in E.3). These in

turn use Eq(A32), which depends on our obtainir¥, the sing

sum of the Bogoliubov coefficients for the effective oscilla- v=cospq+ ——p. (3.10
tor.

What we wish to do is to take a density matrix in position,
B. Entropy from the reduced density matrix Eq. (3.2), and write it in theu,v basis. Consider first of all

The entropy of a field mode has been calculated by Joogalculatmgp(u,u ):
and Zeh[16]. It can be derived from the reduced density

matrix at timet by using Eq.(1.1), and is given by p(u,u’)zf (ula)p(a,q9’){q’|u’)dqdq . (3.1)
S=_—1[wlnw+(1—w)|n(1—w)]:1—lnw if w—0, We need(u|q). This can be found by solving the partial
w differential equation which follows by quantizing E(.10
34 and applying both sides t@|u):
where u(aluy=(~ ksingq-icospigalu), (312
2\/C/A ; ;
W= _ (3.5 which has solution
1+~vC/A i [ Ksingg?
_ _ _ _ (qluy=f(u)exp —| —=—+qu (3.13
The linear entropy is often more useful to work with owing cosp 2

to its simplicity: _ )
for some functionf(u) to be determinedunrelated to Eg.
Sin=—trp?=—|C/A, (3.6) (2.10]. We determing (u) by redoing this calculation with
the roles ofg andu interchanged; sincev,u]=i, we have
and S=0—x is equivalent toS;,=—1—0, both strictly
increasing. Then i5;,—0, we have

singu
aulg)=| ———+icospd, [(ula).  (3.14
S——1In|Sj|+1-1n2, ie.,S,——-el"%2. (3.7
Solving this determine$(u) and allows us to finally write

As an example, suppose we have a system in an initially pur(sup to a phase

Gaussian statex(=0), so that noise and dissipation are ab-
sent: yo=0. In this case, from Eq92.24 and (A32) we
have

1 i [ ksingg® sin(buz)
(qluy= —cho&bex com| 2 tqut ——] .

ay = app=ax=0, (3.9 (3.19
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Similarly, we find Measures of fluctuations and coherenBeturning to the
general case of dissipation, the fluctuationsuimndv are
calculated from the density matrices:

B K ix [ —cospg? cosdwz)
Av)=N7rsing singl 2 T2 )|

2

(3.16 Au2=(u2>—<u>2=f u?p(u,u)du— f up(u,u)du
Now, suppose we start with a Gaussian density matrix as in o\
Eq. (3.2). We can then easily change bases using B2131), =5C
(3.15, and(3.16 to get, with
g
2____
n2¢ Av =5C (3.23

- [4AC+(B=7)"], (3.17
and both ofzthese are just equal to 1/2 divided by the coeffi-
cient of — 3¢ in their density matrix.
AACH(4yo+B—y)? (3.18 As a measure of coherence we note that a large coefficient
40° ’ ' of —A? means that the density matrix is strongly peaked
along its diagonal, i.e., there is very little coherence in the
C -1 system. A measure of coherence was definef4lij as a
pluu) =\ —~ ex;{(ﬂ>[AAﬁ+2i(4'ya+B—y) squared coherence lengti?, equal to 1/8 divided by the
i 7 coefficient of— A2, so that a largé? means a high degree of
coherence in the system. With this definition bf, Eq.

A=

XAUEU+4C23]} (319) giVeS
N ERL R (3.24)
C ~1 — L=, _

We can also relate the coherence lengths and fluctuations to

5 the entropy of the systeffsee Sec. Il B for definitions We
XA S +4C22]], (319  can write
. . L L , C
where we have used the sum and difference variables, e.g., Al A_ZZS“”:K' (3.29
v

2,=(u+u’)/2,A,=u—u’, andy has no relation toy,.
We can show that in the absence of a bath, these matricga note of caution: linear entropy is negative by definition in

reduce to the expected ones for a squeezed vacuum. First, ¢iider for it to increase wit!s. Then asS;, increasesSZ, will

theq representation the density matrix of a squeezed vacuurgecreasg. Also, the uncertainty relation fou,v becomes,

is known to be[39] from Eqgs.(3.17), (3.18), and(3.23,
-k 1+e?%tanky 1[1 (4yc+B-7y)?
' 2 12 2A 2= |4 0 - 77
p(0.9')% —= 1= zogny (C+aD- (320 ACA =g gt e | (329

For the free field the last term in the square brackets is zero

If we write p(q,q’) in terms of sum and difference coordi- while S, — —1 (sinceS=0). so thatAuAp — 1/2.

nates and compare with the definitions2gB,C in Eq. (3.2),

we find IV. ENTROPY AND UNCERTAINTY
OF OSCILLATOR SYSTEM

K 1—tanifr
A:CZZ 1— 2cos2ptanir + tanffr ’ We can now demonstrate how the previous results are
used. In the simplest cases, such as a static oscillator coupled
: to a thermal bath of static oscillators, with a static ohmic
kSin2¢tantr . ; . .
B= ) (3.21) coupling, the entropy is easily compared with known results
1—-2cos2ptantr +tanifr in equilibrium statistical mechanics. From Sec. A2, we

know that this case has local dissipatifire., u<d8’'(A)],
and atT—o the noise becomes whifere 5(A)].
For thermal equilibrium, the standard statistical mechan-

Substituting these into E¢3.19 gives

e '’ _e—2r . . .
"N 24,12 ics result for the entropy at high temperature is
p(u,u’) meXL{( 5| (UTHU -
S—>1+InE. 4.9

(v2+0v'?)

. (3.22

L — ke?’

plo.v’)= \/;e ex;{( 2 Obtaining this result with this formalism is a good example
of its application. We will leave the details in Appendix B

These are the expected results, as can be seen by the fact that show the numerical results in plots. Figure 1 shows a plot

with p,q replaced byu,v, respectively, they are produced of S versusz for =1, k=1, y,=0.1, T=10. For these

when ¢ is set to zero ip(p,p’) andp(q,q’). numbers, Eq(4.1) givesS—12.513 asz— =, as compared
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(4.5

Note that at early timege.g.,z=0.001), the entropy is mini-

mized for high initial squeezing, as noted[R6], Fig. 1; this

5 is not unreasonable since such a highly squeezed state will
spread with time, becoming indistinguishable at later times

4r ] from states which started out being less highly squeezed. At

2

0

L ] late times the entropy is minimized by starting with small or
zero squeezing, i.e., an initially coherent state is the one
which minimizes entropy at late times. Thus, our approach
agrees wit{26], and may be more useful in that it allows us
to directly calculate the entropy at all times.

The static inverted oscillator is the simplest squeezed sys-
tem. It also models the zero mode of the inflaton field in new
inflation [42]. Its Lagrangian is

z
FIG. 1. Entropy growth over time.

with S—12.514 numerically az=100, a result indicated by
the figure. The relaxation time, defined to be 1.
L(t)= E[x2+ k?x?]. (4.6)

>—=5, 4.2 o _
27 Suppose this is coupled to the usual environment of har-

monic oscillators in a thermal state, with coupling constant

is apparent in the figure as a characteristic time over whick(s)=1. Then the equivalent oscillator we consider has unit
the entropy climbs to its final value, while the decoherencengass, no cross term, and frequency

time scalg41]

&= K= vo=—+?, 4.7
— —5
=2.5%10 4.3 so that from Eq.(2.11) the sum of its Bogoliubov coeffi-
cients is(takingt;=0)

4M yoTo?

is too small to be noticeable. o

Coherent state as the state of least entrope now use X(t)=coslz—isintz. (4.8
our entropy expression to investigate the claim that for large
times the state of least entropy for the static oscillator is théience, from Eq(2.16 we have
coherent one, at least for white noise and local dissipation. .

This was shown i{26] in the small y, limit by using a a=coste, pB=—isintg, (4.9
Wigner function approach.

Using our expression for the entro® we can plotS
versus the initial squeeze parametefor various times in - 4.10
Fig. 2. We have chosek=10,y,=0.1. The squeeze param- ' ’
eterr is related too, the width of the Gaussian wave func-
tion, by

so that from Eq(2.14) at late times £— )

To investigate the dependence of the entropy on the various
guantities in the propagator coefficients, we calculate these
coefficients first for white noise analytically; we then calcu-
r=|n@ _ i late them numerically for zero temperature.
= ' O0= (44) s . .
o 2k The b;’s are independent of the temperature, and using
Eq. (A32) they are found to béwhere here and elsewhere a
or carat will denote division by)

z=0.001 z=0.1 z=1

FIG. 2. Entropy at various
times.
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.-
+ ge™ Yo?

~ — Yo Omax_(~ ~ wK (7 JZ 3 '
— + _ — -~ ! 70({+§)
b{i} K( = cothz— vyy,), b{g} prm— (4.11 an 7TSinhsz0 dwwcothﬁjodg Od§ e
High temperature. White noise is given by v(s,s’) X sinh(z— ¢)sinN(z— ¢’ )cosw({— ')
=4y,T8(s—5s'), or v({,L)=4yyk?*TS((—{"); the rel- ) -
evant quantities are inserted into E#32) with the a;;'s __ 7 f omax 4~ o ot | 41
then becoming 2msintiz), 0@@cotnr i (4.17)
. - . where
a;=————[k?+e?7?— ygsinh2z— y3coshZ],
2k?sinttz 222 5n2yez "2, 72
[1,={k“— w*+2e70°+ (1+ y5+ w*)coshZ
Te 70 - S — 4e797 cosnz(cosE+ yosinte) + wsinwzsinhe
a1y [(1-eF®)coste + (L+670) Yosinte], [cosuz(coste-+ yosinte) + wsinwzsinte]
sinfrz +250sinh2ZH[K4+ 202(1+ Y2) + 0%]. (4.18
Te—Z;/OZ . . ..
By [~ k2e?¥oz—1 Similarly,
2k2sintfz . .
~ - ~ ’)/067 Yo? ‘:)max A WK
+y0€?7%(yocoshz—sinh2z)]. (4.1 2= SN fo dowcothy=l, (419
Note thaty,= yo/k<1; however, if we assume small dissi- where
pation 6/0< 1), we can write down large time limits of these i i
guantities: | 1,={— 2coslz(1+e?70%) — 2y,sinhz(1— e?70?)
T 2Te (1-07 T +e707cosnZ] 3+ Y2+ w2+ (k2— w?)cosh]
a11—>—,\, a12_> ~ ’ a'22_> ~ A " ~ ~ ~ ~ ~
1= 1+ 70 1+ 70 +2we”%sinwzsinh 2z} /[ k*+ 2w?(1+ 3) + w*],
b{éll}—>l<(i1—3/o)r b{g}—>i2xe_<1;;0)z. (4.13 (4.20
and
We can now calculate large time limits of the density matrix
coefficients from Eq(3.3): yoe 2707 J;’maxd“ A h(:ﬁ| -
2 2= sintz), Geecotprla (42D
2
A—a,,, B——-by/2, C— . (4.19
16ay; where

These coefficients are independent of the initial conditions, 2072 "2 "y ng ~
which might be expected since the dissipation is acting tol22= 12+ &7k~ 0+ (1+ y5+ o) coshZ—2y,sinh2z]
damp out any late time dependence on these initial condi-

YOI cosy7( — D i
tions. So we have +4e70’ coswz( — coste+ ygsinte)

— wsinwzsintz]}/[k*+20%(1+ 3) + o*]. (4.22

SO (.15
=2 , ) _ _ _
" A 2yT With T=0 the coth term is set to one. Then in all casgs
starts at zero at=0; for low dissipationa;;,a,, quickly
so that, from Eqs(3.7) and (4.10, climb to similar constant values whike, climbs briefly but
T then rapidly decreases to zero. This behavior quantitatively
Yo matches the large time limits of the white nosg's in Eq.
S—>r+1+|n72—. (4.16 (4.13, even though the two calculations were done quite
differently. The asymptotic value cd,, increases in even

Zero temperatureAt T:O, the environment exerts Only Steps as we increas,\ﬁmax exponentia”y_ So we can make
quantum effects throughy;’s. If we write the noise in its g , arbitrarily large by taking a large enough cutoff, so that it
primitive form as the usual integral over frequency then weyj|| always dominateD.
can leave this frequency integration until last after the time T ; :
integrations have been done. We will follow a more sophis-b_,smir:héIt Casié)wnhy‘)<1 we have, at late times, using the
ticated approach in a later pag@8], but we show it hereto ' q-1&29,
investigate what value it might have. b2

So we refer to EqQ9A32) and(2.24), swapping the limits A—ay, B——by/2, C— 2 (4.23
of integration to write 16a;;
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Again, the coefficients are independent of the initial condi- 1
tions. Sinceb, is unchanged from the high-temperature case Lnew 7)= 2 >
anda;,,a,, tend toward constants, we now can say

2 1
24 Zqq' - 2(k2—7”. 5.6
Q%+ 49"~ q e S

5 We also use a spectral density of the form

— K&~
n— ———— 4.2
Siin N (4.29 2y w
|(am7,71)=—H\/—,, (5.7
and so again from Eqg$3.7) and (4.10 nn
NEWE so thatc(#)=1/J—Hn. This form of spectral density will
Sor+14In—2 (4.25  be justified in a later papdB8], although for now we note
K

that it does not make the equation of motion Xoany harder

to solve than if we had used a static coupling. SipgéH is
V. SCALAR FIELD IN DE SITTER SPACETIME dimensionless, we rewrite it as[not to be confused with
c(#)]. Incorporating the bath gives the equivalent oscillator

We now turn to an example in cosmology, that of an, o M=1£=1/5, and frequency, from EqA24),

inflationary univers¢42]. We want to calculate the entropy

of a massless scalar field minimally coupled to gravity in a 1+c2

de Sitter spacetime by examining the evolution of the density Qgﬁz k?— ——. (5.9
matrix. As we shall see, it is a generally solvable squeezed Y

system.

Also, we choosex=k to simplify the equation of motion.
With z=k# we can write this together with its initial condi-
tions from Eqgs(2.9), (2.11), and(2.12 as

Consider a scalar field of massm, described by the
Lagrangian density

v—49 2 2 2
= _Zrgrv - c
L=—Tg"P,,P,,~(MP+ER)D], (5D X2+ [ 1- 22 )x:o,
—R(A2/a21 A .
coupled by¢ to the curvatureR=6(a“/a“+a/a) of a spa X(z)=1, X'(z)=—i-1/z, 5.9

tially flat Friedmann-Robertson-Walke(FRW) universe

with metric wherez<0. The solution of this equation can be constructed

' using Bessel functions whose index is a functiorcphow-
ds?=dt?—a?(t) >, (dx)2. (5.2)  ever, since we are interested in snallve take the solution
! to be approximately that of the same equation but widet

In conformal timen= fdt/a, the conformally related field to zero. This simplifies things greatly:

x=a®d is described by a Lagrangian density

[ i
— - __f*

. o o2 iy X(2) (1+ 7z f(z)+ zif (2), (5.10
L== '2—2 XZ—Z—Xx'—XZ mla’— — +6&—||.

2|X oa a® a where

(5.3
Decomposing the field into normal modesvith amplitudes f(Z)E(l_ '_) elz—2 (5.11)
gk, the Lagrangian can be expressed as z
1l a’ We can further simplifyX by using a very early initial time,
L(p)=2 79" =249 settingz,— — . We also disregard the phase in the resulting

expression forX, since this is not expected to make any

oo o a'? " difference to physical quantities. In this case we obtain a new
Q| kFmiat- —+66—]1. (54 function which we renami:
i - i .
In5|d2e ,the ,squarg _brackets ,I,f we add_a fs_urfape term of X(z)w<1—— e iz (5.12
6&(g-a’/a)’ to eliminate thea” term (for justification, see z

[22]), we get a new Lagrangian:
The Bogoliubov coefficients can now be found from Eq.

' (2.19:

1 a
Loeo 7)=2 5|0'*+2(66-1)—qq’

12

az(l—'—)eiZ, B= ;—'e*‘Z, (5.13
k2+m2a2+ (6£— 1)?”. (5.5 z

27

_q2
and so from Eq(2.14) at late times

For a massless minimally coupled scalar field in de Sitter
space, r——In|z. (5.19
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This result was also obtained [i4] using a different for- Im [X(z)X* ()] .
malism. T(Z)=cos§—sm§/§+ O(%)=f,(0)+0(Z?),
First, we calculate thb;’s. Since we are only interested in
late times we can work to leading orderzn(although with Im [X(£)]
hindsight we include some next higher order terms which sz(cos{/pr sing)=zf,({), (5.21)
will be needed later Using Eq.(A32) we find mX(2)
by=ckiz+kz+0O(23), while if both z,{~0, then to leading order
o1 Im [X(2)X*({)] m[X({)]
=5 klz|17¢|z | x¢ ~(— 2453 - v
b= +klz|**z|**, XD (—2+2310)13, XD 2/¢.
5 (5.22
by=(c+1)k/z+kZI3+0(2%), (5.15
We are now in a position to write
and for thea;;’s we need the following expressions, calcu-
lated from Eq.(5.12): A P
q a;<cT f dg]¢| 727 5(0)
Im [X(2)X*(§)] (1-2{)cod¢—2)—(z+ LYsin{—2) B
= - , z
ImX(2) cog+ zsinz +fxd§|§|_2°_1(—§2+23/§)2/9
co +si 74 2c+5
— SIn, = —zC =
ImX(z) cog + iz ' ' since we have takeo to be small. A similar approach gives
z the following results fora;,,a,, (details can be found in
Appendix Q:
~ (%) _
ex 79[ v 9¢" | =(lz) ‘ a;p,=cTO|z|°"t, a,=cTO(1). (5.24
Z
) SinceT is large,a;; dominatedD while a,, dominatesA; so
~ [zc=(¢") we have
w%—m Y ﬂ=u@ﬁ (5.17)
4 :
High temperatureWe begin by writing A—8z, B—=bif2, C— 16a,;’ (529
—4ck?T These, of course, have the same form as for the static oscil-

v=4cc’(s)To(s—s')= 7 3(¢—¢'). (5.189  Jator case, although it is by no means clear whether such a

fact could have been deduced from the general expressions
We calculatea,; here and leave the details af,,a,, to  for thea;’s. We now have
Appendix C. First, Eq(A32) gives

—|by| e
_ 1z (2 £) 70 ImIX(2)X* (9)] 4ckiT Sn— i man oA (5.26
a“‘ﬂ?Lﬁgﬁdg(Z) Xz ¢ e

and using Egs(3.7) and(5.14) we can write

¢\ Im[X(2)X* ()]
xX6({—=¢' )( ) ImX(2) S—(1—c)r+const. (5.27
z [ ¢\ 72 Im[X(2)X*(O)]\? 1 Fin?te temperatureHere we leave t_he fre_quency inte_gration
=20TJ dg| = x| =z (5.19 until last as was done for the static oscillator. The integrals
4 Z mX(2) 4 can then be done in the same way as in the last section,

although some subtleties are present in this ¢sse Appen-

We wish to investigate the dependence of #es on z as o?ix C). We finally obtain

z—0, and so we now separate each integral into a sum
two parts. The first is obtained by integrating in to some 5 =ckO(1), a;,=ckO|z|Y2 a,=ckO(z). (5.28
constant\ close toz, while the second integral contains the

2 upper imit Again, since we integrate oves, a,, will be large and so
~261 1m [X(2)X*(O)]\2 1 dominateD, leading to
ap;;=2cT j f d{ = X | —¢ 2, :
(|
(5.20 A—>a22_H11, B——by/2, C— Tear,' (5.29

It is only necessary to work to leading orderanWe need and so
the following expressions. When onk~0, we have the
dependence in the integrands as Sin—0lz|Y27¢. (5.30
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Then, with Egs(3.7) and (5.14) we have rest at the foundation of statistical and quantum mechanics.
(For a discussion of the deeper meaning of the dependence of
S—(1/2—c)r +const. (5.31)  persistent structures on coarse graining, [468.)

In the last two sections we calculated the entropy of two D.K. thanks the Australian Vice Chancellors’ Committee

physical and exactly solvable squeezed systems: an invertd@r itS financial support. B.L.H. acknowledges support from
harmonic oscillator and a scalar field mode evolving in a déh€ U.S. National Science Foundation under Grant No.
Sitter inflationary universe. Our aim was to compare thes&HY94-21849, and the General Research Board of the
results, based on our rigorous quantum open-system fram&raduate School of the University of Maryland. B.L.H. and
work, with that of the previous morad hocapproaches de- A.M. enjoyed the hosp!tallty of' the Physics Department of
scribed in the introduction. We must bear in mind that thesdn® Hong Kong University of Science and Technology where
previous results referred to a field mode that could be spliP@rt of this work was done.

into two independent sine and cosifeanding wavecom-

ponents. We should, therefore, expect a resuB-ef (rather APPENDIX A: INFLUENCE FUNCTIONAL THEORY

than 2) if we are to compare with previous work.

For the inverted oscillator, in both temperature regimes ) ) ) o ]
with low coupling, we obtaine&—r + const. In the de Sitter The primary obj_ect we \_leh to consider |s_the evolution of
case, the high-temperature result $-(1—c)r+const. the redu_ced density matrix of our system via the Feynma_n-
These three examples certainly do confirm #t hoc ap- Vernon influence functlonal met_hod. Since this hgs been dis-
proaches to calculating entropy that have been used by otffussed at length if22] we will just state the main results
ers. However, at lower temperatures the de Sitter entropy i¢ithout showing much derivation. o _
S—(1/2—c)r+const. This last result requires us to look  Consider our system described kywhich interacts with
more closely atA andC which together give the entropy. its gnv!ronmentq through some interaction. The combined

From Egs.(3.6) and(3.7), and neglecting the added con- action is
stants which are always implied, we find that in the high

1. Propagator for the density matrix

squeezing limit the entropy behaves as Sx,q]=x]+ Se[a] + Snd x,a]. (A1)
1 1 We require the reduced density matrix of the system at time
S—5InA—=3InC. t. This is found by tracing out the environment:

When the system-environment coupling is small, all of the

above cases give 1/2InC—r, which is the expected result. , * ,

The dominant contribution t€ always comes fromb, in the pr(Xx't)= fﬁdeP(Xq,X q.t). (A2)
high squeezing limit. This parameter is determined by the

squeezing of the system and is essentially independent of thene full density matrixp(xq,x’q,t) evolves unitarily. Sup-

nature of the environment and its coupling to the system. Weose, we expand it using completeness relations and then
can, therefore, conclude that theClicontribution to the en-  path integrals:

tropy represents entropy intrinsic to the squeezed system it-

self. This is in agreement with the previous results andp(xa,x’q,t)=(xaq,t|p|x"q,t)

should also be true quite generally for squeezed systems.

However, these results cannot but fail to take into account :f dXiinf dx/ da/ (xa,t|x;q;, 0)
the contributions to the entropy from theAlerm. This con-

tribution is determined by the;; factors which strongly de- . . Il Al
pend on the nature of the environment and its coupling to the X {xidi Olplxia; O)x/ a7, 0x"a.)

system. There isa priori, no reason to expect this contribu- C X q iSx.q]
tion to be small, a point illustrated by our finite-temperature :f dXiinf dxidg LDXJ' Dge™>*d

de Sitter example for which we found 1/2p-—r/2. This ' a

highlights the danger in using the previoasl hoc ap- ., X' [N s ']
proaches to entropy of squeezed systems. The critical point X p(Xi; i 0 ,0) Jx, Dx j ,Da’e 4
is that the entropy of a system depends not only on the sys- i 4

tem itself but also on the nature of the environment it is

coupled to. Ef dXiinf dx/dg/ J(xa,x"q,t[xq;.x/q ,0)
In conclusion, approaching the problem of entropy and

uncertainty from the open-system viewpoint as we have X p(xi9i,%{ i ,0), (A3)

demonstrated improves on the earlier work in that it makes

explicit how their dependence on the coarse graining of thavhereJ is seen to be an evolution operator for the entire
environment and on the system-environment couplings. I8ystem plus bath. We make the assumption that the system
also clarifies the relation between quantum and classical dénd bath are initially uncorrelated, i.e.,

scriptions, it is through decoherence that the quantum field

becomes classic7,44). These issues are important as they p(Xi0; X di ,0) = psyd XiX{,0) pe(; G/, 0).  (A4)
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In this case we are able to rearrange the order of integratiop, (x,x’,t|x; X t)
to write the reduced density matrix in the following way:

b i
_ | 2| eXF{—(ble_bZEAi+b32iA_b42iAi)
pr(XX',t):f dXidXi,Jr(XX,a”XiXi,'O)psyéxixi,'o)’ e '
— 7 (AnAi+apAid+aA%) | (A13)

where the evolution operator for the reduced density matrix
is defined by
The functionsh;—b, can be expressed as

X ’ ) o,
Jr(xx’t|xixi'0)zf Dxfxr Dx’ eSS x x'7,
Xj Xi

andF[x,x'] is the so-called influence functional: bo(t,t) =M (t;)Us(t,)
(| I 1/

q . .
F[x,x']= | dgdagdg’ . !,of D qe'Selal +iSindx.d] .
[x,x"] f qdddd; pe(q;d; ,0) . q ba(tt) = M (D) (1),

X JqDq’e—isE[q'1—isim[x’vqﬂ. (A7)

q ba(tt) =M(t)us(t) +M(t)EL),  (AL4)

We can also write the influence functional in a basis-yhile the functionsa;; are defined by
independent form as follows. First, we write the path inte-
grals as propagators

ai-(t,ti)=Lftdsftds’ui(s)v(s,s’)v4(s’).
] — ! ! J 1+5” ti ti l
F[x,x ]—f dqdgddg; pe(aiq,0(alU(t)]a;) (A15)

x(qi|U"T(t)[q), A8 : , ,
(ailu(ola) (A8) The functionsu;—uv, are solutions to the following equa-
whereU(t),U’(t) are the propagators f@[q]+S.{x,q] tions(dropping subscripts on,v):
and Sg[q]+ Snd x’,q], respectively. Then upon integrating
over g,q; and writing the remaining integral as a trace, we

btai ¥ +M'+ Qz+£€+M£ T Fd’ u(s’
obtain u(s) Mu i u W . s u(s,s")u(s’)
FIx,x']= trU(t)pg(0)U"T(t). (A9) o (AL6)
Using this form to calculate the influence functional was
done earlier if22]. Here we just list the result: if we use the M 2 ‘
sum and difference coordinates defined by v(s)+ Mi)+ Q2+ &+ Mg v_mf ds’ u(s,s")v(s)
S)Js
S=(x+x")2, A=x-—x', (A10)
=0, (A17)

then the influence functional can be written in terms of two

new quantities, the “dissipation”u(s,s”) and "“noise”  gypject to the boundary conditions
v(s,s’):

—1(t s Ui(t)=v1(t) =1, us(t)=v,(1)=0,
F[x,x’]=exp7f0dsfods’A(s)[v(s,s’)A(s’)

Fiu(ss)25()]. (ALD) Up(t) =va(t) =0, Uux(t)=v,(t)=1. (A18)

Thus the influence of the environment is completely invested

in the dissipation and noise. 2. Propagator J, for an Ohmic environment
Using the sum and difference coordinates defined in Eq.

(Al10), the classical paths followed by the syste¥y,,A,

can be written in terms of more elementary functions:

To proceed further we need explicit expressions for
a;—b,. These are expressed in termsugf—v,, which in
turn come from solving Eqs(A16) and (Al17). To solve

Sa(s)=Zg(tus(s) +Za(t)uy(s), these equations we need to know the dissipajioof the
environment, which is determined by the coupling and the
Ag(S)=Ay(t)v1(S)+Agy(t)vo(S). (A12) spectral density function of the environment. We consider an

Ohmic bath with a spectral function of the fort@.23 in the
It can be shown that the superpropagatois equal to following derivation.
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a. Calculating y—v, sc? Im [X(t)X*(s)]
First, consider E [ ul(s)=exr{ B 70[ —ds’} :
, g(Al16). We treat the integral of & y M ImX(t)
function and its derivative in the following way. Use a
smooth step functiohi.e., 6(0)=1/2] to write (X;>Xg)

tc? } ImX(s)
s (A26)

. Uz(s):exr{’}/o Smd ImX(t)
flf(x)a(x—a)dxzf(a)0(x1—a)a(a—x0), (A19)
X0

This tying in of the propagator formalism to the language of
squeezed statesuch as Bogoliubov coefficientswill be

fX1f(x)5’(x—a)de—f’(a) 6(x;—a)f(a—Xxo). very useful for relating the entropy of a field mode to its
Xo squeeze parameter
(A20) In the same way that we solved EEA16), Eq. (A17)
becomes

These relations can easily be proved by checking the five
cases individually, ofa<xy, a=Xq, Xg<a<x,, etc. Note

. ) : .
that treating thes function in this “smoothed” way elimi- i;(S)JF(M_ 2yoC )l'hL 02+ M_€+g_ 27ocC v=0
nates the need for the frequency renormalizatior{4f). M M M M

This smoothing essentially just defing§s(x)dx=1/2 (see, (A27)

e.g.,[43] for a discussion of this
Hence Eq(A16) together with Eq(2.24 becomegwith Now write
u being eitheru; or u,)

2
~ SC ,
. M 2y,c?|. , ME . 2ycc UEUeXF{_VOJt_MdS ' (A28)
LI(S)+ M'i‘ M u+| Q +V+g+ M =
(A21) :
and, just as for the case af we have
Now definet by ) .
srs (a2 MEL g %" 7=0. (A29
_ Fcz(sr) EAavE ™ ez [r=0. (A9
u=uex ———ds’ |, A22
Yo f M(S ) ( )
So, nowv, andv, can also be written as combinations of
. . -
in which case it follows that X an_dX . Including the boundary conditions, we eventually
obtain
.. M o ME . 7(2)04 — 2 *
Ut g U+ QZ+V+5—W U=0. (A23) vy(8)=ex fsc_ JIm [X(H)X*(9)]
1 )M ImX(t)

Comparing with Eq{(2.11), we recognize this as just the

equation of motion of an oscillator with mah, cross term (s)=exq — tC_ZdS, ImX(s) (A30)
&, and an effective frequency v2lS)= Yol m ImX(t)
’yZC4
0%=02- #_ (A24) b. Calculating a,—b,

To facilitate our calculations we introduce dimensionless

. . . ) parameters for time
So, we are in a position to describe our system in terms of

an equivalent system. Hence, we know a solutiorui@), it B B
is the sumX of the Bogoliubov coefficients for this new z=xt,  {=kS,
system. So we writéwith g, ,g, constants to be determined

X(z)=X(t), etc. (A31)

[91X(8) +gX* () ].

SC2
u(s)=ex;{—y0 —ds .
M and a carat will denote division by, e.g., yo=vo/«. Note
(A25) thatt is the Lagrangian time, which is not necessarily cos-
mic.
By including the boundary conditions far; and u,, we Now, we are able to calculate the propagator. Making use
obtain of Egs.(A15) and(Al14), we obtain
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Loz o (7o, [ (e N IMX@XO] (e ) IMIX(2)XR ()]
all(Z,Zi)—ﬁLidZLidé’ exp( Vonimdi )WV(§.§ )ex YoLi v d¢ ImX(2) :
¢c? Im [X(2)X* ()] , | IMmX(Z")
ap= _zf d(J d¢’ exr{ Yo d( ) ImX(2) v({,{")ex Yof 7 dg mX2)
1 fzd fzd , R fzc a4 mX({) J’ ImX({")
A2=52 3 4 . f'exp —vo M N e @ v(.lhexg —vo | W(z)
A, mX’(z)
b1(z,z)) = — yorc(2) + kM(2) W(Z)+ M(2)&(2),
.~ _c?
x KeX% + ’yOfsi Mdg)
bz ImX(z) :
b y eX(2) M(z)E A32
4=~ YokC () KW(Z)JF (z)&(z). (A32)
|
APPENDIX B: ENTROPY OF A STATIC OSCILLATOR Then,a;;—b, follow:
IN A THERMAL BATH A
2Y07_ 1 _ 2 ain9y_ 2201 _
The Lagrangian for the static oscillator with unit mass is = _T el 705”12{ 7o(1 0052)1
given by sinz 2(1+ )
L= %(kz—kzxz). (B1) 2 ?T — coxsinhygz+ y,sinzcoshyyz
sirfz 1+ 2 :
From Eq.(A24) with M=c=1, the effective frequency is . R R
2 a2 T —e 2724+ 1—yysin2z+ y5(1— cos)
Qop=k"— y5= (B2 A= = )
eff sin‘z 2(1+ 73)
Then the equation of motion foX is, from Eq.(2.11) with .
Q— O, + ge™ Yo?
eff 3 b{l}—K( )/0 cotz), b{g}: W (Bg)
X+ k?X=0, (B3
_ To evaluateS, we needA andC; in turn for these we need
X(0)= X(0)=—ix, (B4)  a;;—b,. These are calculated from E32).2
The oscillator is assumed to be initially in its ground state
which leads to
. —x2
X(z)=e" 7, (B5) z!f(x,O)oceXp( P) : (B10)
with z=«t. Then, so that its density matrix is
Im[X(2)X*({)] 3 sin(z—¢) ImX(¢) 3 sing —x2—x'2
ImX(z)  siz ' ImX(z) sinz’ p(xx’,0)xex —407), (B11
(B6)
(2 and in Eq.(3.1), we have
- - n| — ;Og
eXF()’oLiM d¢g ) evos,
) SVarious notations exist describing these results; see, for example,
~ [%C v [14,26,24. To compare with24], Eq. (2.2.7) is a matter of care-
_ _ "\ — )
exp( 70L M d¢ ) =e 70l (B7) fully transcribing the notation; key things to note are tat3,

with noise forT—o being white:

v(£,0")=4kyTo(l~L"). (B8)

=—A; here we have takery=py=0; [24], Eq. (2.2.69 should
have ama,; in place of thea,,; theb;’s in [22] are written explic-
itly in [24] via [22], Eq. (3.1D; [22], a;, equals[24], a;,+ay;;
[22], v, equals[24], vo/2.
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1
fzm, x=0. (B12)

The reduced density matrix evolves into E§.2), with

1([ 1 ) a2,
A:a22+5 W+a11 b3+a12b3b4—r._2 ,
—b; b, ajgp
572 T PP )
b5
" 8Dg?’
1 2a;

(B13)

Im[X(2)X* ()] #°
ImX(z)

ImX(¢) #°
ImX(z)

First,
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It is by no means trivial to show that the entropy calculated
using these expressions does indeed tend toward 41,

and in particular the cgcterms in thea;;’s and b;’s mean

their values can diverge depending on the time. But this di-
vergence cancels out when physical quantities are measured,
as we can see by verifying numerically that our entropy re-
ally does tend toward the usual asymptotic value at late times

(Fig. 1.

APPENDIX C: CALCULATION OF &;’'S IN SEC. V
1. de Sitter with high temperature

Here we evaluate tha;;’s leading to Eq.(5.24. We are
using the following smalk,{ approximations:

z,{—0

cos —singl {+0(22)=f,({)+0(2%) —— (— 2+ 221 0)13,

z,{—0

—— z(cog/{+sinl)=zf({) —— Z/¢. (C1

1z, (2. ()7 Im[X(2)X*({)] 4ck’T 2\ ImX(¢")
e e e ool e

ImX(z)

ImX(z)

=4chdg(§) ImX(@)X* ()] 1

Zj

ccT|z|®

providedc<1/2. Finally,

1 [z (2, ,[Z\°ImX(Q) 4ck’T ,
azzszidéLdf (Z) ImX(z) —¢ o(L—¢ )(

f}\dg|§|72cflfg(§)22+ J’Zd§|§|72C7122/§2
Z A

xcT|z|?°

A z
[Lacte = ozt + [Cade = -2

z\ % ImX(¢{)
Z) ImX(z)

z

_ c+1
3¢ cTOlz|°*Y, (C2

z\¢ ImX(Z") z [z\%/ ImX({)\? 1
?) ImX(2) ZZCTL‘“(Z) (Imxm) =2

=cTO(1). (C3

2. de Sitter with finite temperature

We leave the frequency integration until last:

2C 1 ) t w ( ’)d 2C k3 Jocd,\n t (:) A( ,) (C4)
=— — co COsw(S—S =— co CoOsw(s—¢ ).
v T \Jsg Jo @ h2_T @ T wlgg' 0 @ hZ_T g g

Thea;’s are
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® 3 z z * 2)X*(L
o dbieomsz [ ac | agjgmemn R EEIOL gy oo IEELD)

au=zi | dwwcothy TmX(2) SO

v~

=l

A

k (> A A k z z T X X* . III].X({I)
a;p=(z;2)°¢ :T fo dwwcoth% Jz.ng'Zbdg"gl—c—l/ZrII[I—(m;)(Z)(_é)_].COSw(g_gl)lgrl—c—l/Z O
=Ip
k(e .. ok [z z ImX . ImX(¢'
a22=zzc-0;fo dwwcoth;’—T J'.dZJ'Z‘dZ'|§|_C_U2-—cImX§g osw({—{')|{'[‘°'1/2———ImX((i)) .
) i 7 (CH)
=Ipn

Using the expressions from Eq€1) and(5.17), the first of  the frequency integral versusdecreasing in time. Suppose
the inner integrals becomes then, we use a frequency cutaff,,,. In that case we can

approximate cas({—{") for £,¢' ~0 by choosingw ., such

N N ) that cosﬁ(g—g’)wl in the fourth integral. This will be true
lyy= f dzlél‘“”zfl(o[ J d¢’coso(¢{—¢") provided
g Zj

z ~ ~
><|§’|“"1’2f1(§’)+Ldg’comélé’I‘H’2 Omax — 1IN (C7)

5 However, now we do not expect our result to necessarily
+J de|z| = YA -2+ 281013 agree with the higT result found in Eq(5.23, since there
A

we had takeriomaxﬂoc, which was made possible by the use
) R of the 6 function.
J dZ'coswl' || M4 y(L) At this point we refer to the discussion of the high-
4 temperature limit in[45]. There it is shown that the high-
z R temperature § function regime is that for whichw,,,<T
+J df'cosw({— L[|V =2+ 221 13)|. and wma—©. This absence of a cutoff in the high-
» temperature limit is usually not stressed, but it forms the
(Co) most relevant fact here. In general, we must impose a cutoff
o for all finite T values, otherwise the frequency integral is not
We now have a Q|ff|c1_JIty. In order to get a reasonably usefulq| defined, unles§ — . So, we conclude that the regime
anaJyuc result, it will be an advantage to replace the,, \vhich our analysis is valid here = w, .
cosw(f—¢") term in the fourth integral above by something  with the last cosine set equal to 1 as before, these inte-
simpler. We will have competition between increasing in  grals are all of order 1 and, therefore, saig. Next,

X(={"* 42313

X

N A ~ z ~
l1o= Ldils“lC1”&(5){Ldi’co&)(g—é’)lé’l°1’2f2(§’)2+ Ldz’cosvs“lfl’“l’zz/{’

¥ f Zd§|§|°l’2<—§2+z3/§>/3{ f “4¢ cosn!| 'S Y2y )2k f " coso(¢- £)|E g, (co)
A Z; A

Evaluating these integrals givég,=O|z| ¢*¥? so thata;,=0O|z|*2 Last,
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N
l2o= Jz.d§|§|_°_1’zf2(§)z

+ J dglglme g
A

so thata,,=0(2).

f dzcosa( (- £ )z J "4 cosht] |l
z; A

fhdz'cos&é'|z’|‘°‘1’2f2<z')z+ JZdé'cos&(z—z')|£’|‘°‘“2z/£'
z A

:O|Z|_2C+l, (Cg)
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