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PHYSICAL REVIEW D, VOLUME 58, 125014
Dimensionally regularized study of nonperturbative quenched QED

Andreas W. Schreiber,* Tom Sizer,† and Anthony G. Williams‡

Special Research Centre for the Subatomic Structure of Matter and Department of Physics and Mathematical Physics,
University of Adelaide, 5005, Australia

~Received 27 April 1998; published 16 November 1998!

We study the dimensionally regularized fermion propagator Dyson-Schwinger equation in quenched non-
perturbative QED in an arbitrary covariant gauge. The nonperturbative fermion propagator is solved inD
[422e,4 dimensional Euclidean space for a large number of values ofe. Results forD54 are then
obtained by the extrapolatione→0. The nonperturbative renormalization is performed numerically, yielding
finite results for all renormalized quantities. This demonstrates, apparently for the first time, that it is possible
to successfully implement nonperturbative renormalization of Dyson-Schwinger equations within a gauge
invariant regularization scheme such as dimensional regularization. Here we present results using the Curtis-
Penningon fermion-photon proper vertex for two values of the coupling, namelya50.6 anda51.5, and
compare these to previous studies employing a modified ultraviolet cut-off regularization. The results using the
two different regularizations are found to agree to within the numerical precision of the present calculations.
@S0556-2821~98!05822-6#

PACS number~s!: 12.20.Ds, 11.10.Gh, 11.30.Qc, 11.30.Rd
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I. INTRODUCTION

Strong coupling quantum electrodynamics~QED! has
been extensively studied through the use of the Dys
Schwinger equations~DSE! @1–3#. In such studies it is un-
avoidable that the infinite set of coupled integral equatio
be truncated to those involving Green functions with re
tively few external legs. This truncation has the conseque
that one or more of the Green functions appearing in
remaining equations are no longer determined s
consistently by the DSE’s and so must be constrained,
example, by known symmetries„including Ward-Takahash
identities~WTI! @4#…, the absence of artificial kinematic sin
gularities, the requirements of multiplicative renormalizab
ity ~MR!, and must be in agreement with perturbation the
in the weak coupling limit. Furthermore the gauge dep
dence of the resulting fermion propagator should eventu
be ensured to be consistent with the Landau-Khalatni
transformation@5#.

What makes QED a particularly attractive theory to stu
with DSE techniques is that the coupled integral equati
determining the photon and fermion propagators are c
pletely closed once the photon-fermion proper vertex
specified. Up to transverse parts this proper vertex is in t
determined in terms of the fermion propagator by the co
sponding WTI. Thus, the state of the art for this type
calculation consists of imposing the greatest possible se
constraints and constructing the most reasonable pos
Ansatz for the transverse part of the vertex. While suc
DSE approach to nonperturbative QED can never be an
tirely first-principles approach, such as a lattice gauge the
treatment@6#, it has the advantages that it is at times possi
to obtain some analytical insights, there is no limit to t
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momentum range that can be studied and one is able to c
pare different regularization schemes. This latter prope
will be made use of in this paper.

A number of discussions of the choice of the transve
part of the proper vertex can be found in the literature, e
Refs. @7–15#. We will concentrate here on the Curtis
Pennington~CP! vertex @8–11,16#, which satisfies both the
WTI and the the constraints of multiplicative renormalizab
ity. With a bare vertex~which breaks both gauge invarianc
and MR! the critical coupling of quenched QED differs b
approximately 50% when calculated in the Feynman a
Landau gauge. This should be compared to a difference
less than 2% for these gauges when calculated with
Curtis-Pennington vertex@11#. Even with the CP vertex, the
variation is significantly greater for covariant gauge choic
outside this range, particularly for negative gauges@16#. Ex-
tensions of this work to include nonperturbative renormali
tion were first performed numerically in Refs.@17–19#. In
these latter works an obvious gauge covariance viola
term, arising from the use of cut-off regularization an
present in@11,16# was omitted~see Refs.@12,18# for a dis-
cussion of this!. Without the gauge covariance violating ter
the variation of the critical coupling near the Landau gau
was again found to be rather small~less than 3% when going
from Landau gauge toj50.5 @18#!.

Clearly, the gauge dependence of the~physical! critical
coupling is decreased, but not eliminated, through the us
a photon-fermion proper vertex which satisfies the WTI.
other words, the choice of a vertex satisfying the WTI is
necessary but not sufficient condition in order to ensure
full gauge covariance of the Green functions of the the
and the gauge invariance of physical observables. The q
tion that arises is whether the remaining gauge depende
in the critical coupling is primarily due to limitations of th
vertex itself or whether it is due to the use of a UV cut-o
regulator in these calculations.

Bashir and Pennington@13,14# have pursued the first o
these alternatives and have obtained, within a cut-off re
©1998 The American Physical Society14-1
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SCHREIBER, SIZER, AND WILLIAMS PHYSICAL REVIEW D58 125014
larized theory, further restrictions on the transverse par
the vertex which ensure by construction that the critical c
pling indeed becomes strictly gauge independent. It is
clear that adjusting the vertex to remove an unwanted ga
dependence is the most appropriate procedure when us
gauge-invariance violating regularization scheme. It sho
be remembered that a cutoff in~Euclidean! momentum, apart
from breaking Poincare´ invariance, indeed also breaks gau
invariance. It is precisely because of this lack of gauge
variance that UV cut-off regulators have not been used
perturbative calculations in gauge theories for many ye
Rather, the most common perturbative method of regular
tion in recent times has been that of dimensional regular
tion @20# where gauge invariance is explicitly maintained.

In this work we report on a DSE study of quenched no
perturbative QED using dimensional regularization in t
renormalization procedure. Some early exploratory stud
have been carried out in the past@21#, but to our knowledge
this work is the first complete nonperturbative demonstrat
of dimensional regularization and renormalization. Nonp
turbative renormalization is performed numerically, in ar
trary covariant gauge, using the procedure first develo
and applied in Refs.@17–19#. In these works the vertex use
was that of Curtis and Pennington and so, as it is our aim
compare to previous results obtained with the use of cut
regularization, we also use this vertex in the current work
quenched QED there is no renormalization of the elect
charge and the appropriate photon propagator is just the
one. The resulting nonlinear integral equation for the ferm
propagator is solved numerically inD5422e,4 Euclidean
dimensional space. Successive calculations with decrease
are then extrapolated toe50.

The organization of the paper is as follows: The renorm
ized and dimensionally regularized SDE formalism is d
cussed in Sec. II. This is followed by some representa
numerical results in Sec. III. We present conclusions and
outlook in Sec. IV. An appendix details the final form of th
fermion self-energy equations inD-dimensional Euclidean
space.

II. FORMALISM

In this section we provide a brief summary of the imp
mentation of nonperturbative renormalization within the co
text of numerical DSE studies. We adopt a notation sim
to that used in Refs.@17–19#, to which the reader is referre
for more detail. The formalism is presented in Minkows
space and the Wick rotation into Euclidean space can the
performed once the equations to be solved have been wr
down. It is important to note that although we use dime
sional regularization, we can not make use of the popu
perturbative renormalization schemes which are usually u
in connection with this, such as minimal subtraction~MS! or
modified MS (MS̄) schemes. The reason, of course, is t
these schemes can only be defined in a purely perturba
context.

The renormalized inverse fermion propagator is defin
through
12501
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S21~m;p!5A~m;p2!p”2B~m;p2!

5Z2~m,e!@p”2m0~e!#2S8~m,e;p!

5p”2m~m!2S̃~m;p!, ~1!

where m is the chosen renormalization scale,m(m) is the
value of the renormalized mass atp25m2, m0(e) is the bare
mass andZ2(m,e) is the wave-function renormalization con
stant. Due to the WTI for the fermion-photon proper verte
we have for the vertex renormalization constantZ1(m,e)
5Z2(m,e). The renormalized and unrenormalized fermi
self-energies are denoted asS̃(m;p) andS8(m,e;p) respec-
tively. These can be expressed in terms of Dirac and sc
pieces, where for example

S8~m,e;p!5Sd8~m,e;p2!p”1Ss8~m,e;p2!, ~2!

and similarly forS̃(m;p). We shall for notational brevity no
explicitly indicate the dependence one of the renormalized
quantitiesA(m;p2), B(m;p2) and S̃(m;p), since for these
and other renormalized quantities we will always be int
ested in theire→0 limit. The renormalized mass functio
M (p2)[B(m;p2)/A(m;p2) is renormalization point inde-
pendent, which follows straightforwardly from multiplicativ
renormalizability@18#.

The renormalization point boundary condition

S21~m;p!up25m25p”2m~m! ~3!

implies thatA(m;m2)[1 andm(m)[M (m2) and yields the
following relations between renormalized and unrenorm
ized self-energies

S̃d,s~m;p2!5Sd,s8 ~m,e;p2!2Sd,s8 ~m,e;m2!. ~4!

Also, the wavefunction renormalization is given by

Z2~m,e!511Sd8~m,e;m2! ~5!

and the bare massm0(e) is linked to the renormalized mas
m(m) through

m0~e!5@m~m!2Ss8~m,e;m2!#/Z2~m,e!. ~6!

It also follows from MR that under a renormalization poi
transformation m→m8, m(m8)5M (m82) and
Z2(m8,e)5A(m8;m2)Z2(m,e) as discussed in Ref.@18#.

The unrenormalized self-energy is given by the integra

S8~m,e;p!5 iZ1~m,e!@e~m!ne#2E dDk

~2p!D
gl

3S~m;k!Gn~m;k,p!Dln~m;p2k!, ~7!
4-2
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DIMENSIONALLY REGULARIZED STUDY OF . . . PHYSICAL REVIEW D58 125014
wheren is an arbitrary mass scale introduced inD dimen-
sions so that the renormalized couplinge(m) remains dimen-
sionless. Since we are here working in the quenched appr
mation we have Z3(m,e)51, e0[e(m), and the
renormalized photon propagatorDmn(m;q) is equal to the
bare photon propagator

Dmn~q!5S 2gmn1
qmqn

q2
2j

qmqn

q2 D 1

q2
~8!

with j being the covariant gauge parameter. Fina
Gn(m;k,p) is the renormalized photon-fermion vertex f
which we use the CP Ansatz, namely (q[k2p)

Gm~m;k,p!5GBC
m ~m;k,p!1t6~m;k2,p2,q2!@gm~p22k2!

1~p1k!mq” #, ~9!

whereGBC is the usual Ball-Chiu part of the vertex whic
saturates the Ward-Takahashi identity@7#,

GBC
m ~m;k,p!5

1

2
@A~m;k2!1A~m;p2!#gm

1
~k1p!m

k22p2 H @A~m;k2!2A~m;p2!#
k”1p”

2

2@B~m;k2!2B~m;p2!#J , ~10!

and the coefficient functiont6 is that chosen by Curtis an
Pennington, i.e.,

t6~m;k2,p2,q2!52
1

2
@A~m;k2!2A~m;p2!#/d~k,p!,

~11!

where

d~k,p!5
~k22p2!21@M2~k2!1M2~p2!#2

k21p2
. ~12!

The unrenormalized scalar and Dirac self–energies
extracted out of the DSE, Eq.~7!, by taking 1

4 Tr of this
equation, multiplied by 1 andp” /p2, respectively. Note tha
we use the conventions of Muta@22#

gmgm5D ⇒ gmgngm5~22D !gn

Tr@gmgn#54gmn Tr@1#54

gm
m5D

for the Dirac algebra.
The integrands appearing in Eq.~7! only depend on the

magnitude of the internal fermion’s momentumk2 as well as
12501
xi-

,

re

the angleu between the fermion and photon momentu
Hence the D-dimensional integrals reduce to 2-dimensio
ones, i.e.,

E dD k f~k2,p2,k•p!

5E dVD213E
0

`

dk kD21E
0

p

du sinD22u f ~k2,p2,k•p!

~13!

where

E dVD5
2pD/2

G~D/2!
~14!

is the surface area of a D-dimensional sphere. Furthermor
is possible to express all the angular integrals in terms o
single hypergeometric function so that it is only necessary
do one integral numerically. The final form of the regula
ized self-energies is presented in the Appendix.

The momentum integration is done numerically on a log
rithmic grid and the renormalized fermion DSE solved
iteration. Note that the momentum integration extends to
finity, necessitating a change in integration variables. A c
venient choice of transformation is

y5yloS 2

12t D
1/e

, ~15!

whereylo is some lower integration bound and the integ
tion variablet ranges from21 to 1. The infinite range of the
integration also requires an extrapolation ofA(m;p2) and
B(m;p2) above the highest gridpoint. We check insensitiv
to this extrapolation by comparing results obtained with
number of different extrapolation prescriptions. In additio
we use grids which extend some 20–30 orders of magnit
beyond what is usually used in cut-off studies. In summa
we believe that we have verified that the effect of the e
trapolation to infinity is well-controlled.

III. RESULTS

We present here solutions for the DSE for two values
the couplinga5e0

2/4p, namelya50.6 anda51.5. These
were chosen so that they correspond to couplings res
tively well below and above the critical coupling found
previous UV cut-off based studies. The gauge paramete
set atj50.25, the renormalization point which we used
m25108 and the renormalized mass is taken to bem(m)
5400. Note that all results are quoted in terms of dimensi
less units, i.e., all mass and momentum scales can be si
taneously multiplied by any desired mass scale.

Figures 1 and 2 show a family of solutions with the reg
lator parametere decreased from 0.08 to 0.03 for the tw
values of the coupling. We see that the mass function
creases in strength in the infrared and tails off faster in
ultraviolet ase is reduced ora is increased.

Furthermore, it is important to note the strong depende
4-3
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SCHREIBER, SIZER, AND WILLIAMS PHYSICAL REVIEW D58 125014
on e, even though this parameter is already rather small.
one would expect, the ultraviolet is most sensitive to t
regulator, however even in the infrared there is considera
dependence due to the intrinsic coupling between these
gions by the renormalization procedure. This strong dep

FIG. 1. The finite renormalizationA(p2) and mass function
M (p2) for various choices of the regulator parametere. These re-
sults have couplinga50.6, gauge parameterj50.25, renormaliza-
tion point m25108, renormalized massm(m)5400 and scalen
51. In the low p2 region the smalleste has the largest value o
M (p2).

FIG. 2. Same as Fig. 1 fora51.5.
12501
s
s
le
e-
n-

dence one should be contrasted with the situation in cut-o
based studies where it was observed that already at ra
modest cut-offs (L2'1010) the renormalized functionsA
and M had reached their asymptotic limits. At present it
not possible to decreasee significantly below the values
shown in Figs. 1 and 2 because of limitations due to num
cal noise. In order to extract the values ofA andM in four
dimensions we therefore need to extrapolate toe50. More
sophisticated numerical techniques are being investiga
and will hopefully allow explicit calculations at smallere
values in the future.

An extrapolation such as this always involves an add
uncertainty in the final result. It is fortunate that it is possib
to estimate this uncertainty by making use of the fact tha
the limit e→0 the renormalized quantities should becom
independent of the arbitrary scalen, which was introduced to
keep the couplinga dimensionless inD dimensions. In Fig.
3 we show A(p2) and M (p2) evaluated witha5e0

2/4p
51.5 in the infrared~at p251) as a function ofe for a range
of values ofn. The results ate50 are extracted from cubic
polynomial fits in e. As may be observed, the agreeme
between the different curves ate50 is excellent, being of
the order of 0.2%.

In Fig. 4 we show the results extrapolated toe50 as a
function of the momentum~again fora51.5). Also shown,
although hardly distinguishable, is the result for these cur
as obtained in the modified UV cutoff based studies, wh
used a gauge-covariance fix to remove an obvious part of
gauge dependence induced by the cutoff@18#. Again the

FIG. 3. The finite renormalizationA(p2) and mass function
M (p2) evaluated atp251 for various values of the regulator pa
rametere and extrapolated toe50 by fitting a polynomial cubic in
e. Shown are results for three scalesn51, 10 and 100. All other
parameters are those of Fig. 2. The different scales coincidee
50 to an accuracy of approximately 0.2%.
4-4
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DIMENSIONALLY REGULARIZED STUDY OF . . . PHYSICAL REVIEW D58 125014
agreement is very good for a wide range inp2 andn. Only in
the ultraviolet region~above sayp251012) do differences
between the curves become discernible. We see in Fig. 4
the UV cutoff result is almost indistinguishable from then
5100 result at essentially all momenta. The discrepan
for the n51 and 10 cases are greater in the UV due to
fact that in this region the errors introduced by the extra
lation procedure ine become comparable~for a cubic fit! to
the functions’ values there. This is supported by the follo
ing two observations. First, from Fig. 3 we see that t
e-dependence is almost linear forn5100, whereas it clearly
deviates from linearity for the other cases. Secondly, ther
little change in then5100 extrapolation as we change th
order of the fit polynomial up to ordere6, whereas then
51 and 10 results show greater variation. We conclude
the n5100 results in Fig. 3 provide the most reliablee→0
extrapolation. It should also be noted that the oscillatory
havior in the mass function first noticed in@17# is reproduced
in this work, and the results for the unmodified UV cuto
disagree with those from dimensional regularization.

Finally, we present in Tables I and II the bare massm0(e)
and the wave-function renormalization for the two cas
studied as a function of the regularization parametere and
the gauge parameterj. It should be noted that these tw
quantities are by their very nature sensitive to the behavio
A(p2) andB(p2) in the ultraviolet. In particular, while any
renormalized quantities were found to have a negligible
pendence on the precise form of the extrapolation of
integrands beyond the highest gridpoint, it was found t

FIG. 4. The finite renormalizationA(p2) and mass function
M (p2) extrapolated toe50 at every momentum point for thre
different scalesn51, 10 and 100. They were calculated by fitting
cubic polynomial ine at each momentum point. All other param
eters are those of Fig. 2. Also shown is the result obtained usi
modified UV cutoff. The UV cutoff and extrapolatedn5100 results
are indistinguishable in these plots.
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Z2(m,e) and m0(e) do show some small dependence
(,1%) in our calculations. The values for these quantit
listed in Tables I and II were obtained by assuming a sim
power-behavior of the integrands beyond the highest g
point. As was seen in the UV cutoff studies, the wavefun
tion renormalization~for j.0) actually decreases as th
regularization is removed. In the same way the behavio
Z2 as a function of the gauge parameter is qualitatively
same as observed in the cut-off studies, i.e. at fixede it
decreases as one moves from the Landau towards the F
man gauge. The bare massm0 , on the other hand, appears
show a different behavior to before, at least for large co
plings: while in the present work it decreases as the ga
parameter is increased for alle, in cut-off studies it only did
this for moderately small cut-offs. It is quite possible th
this different qualitative behavior reflects the fact the ev
the loweste ’s which have been reached here ‘‘correspon
to rather modest cut-offs. In connection with this note tha
the values ofe shown in Tables I and II the mass functions
Figs. 1 and 2 are still positive everywhere, the oscillatio
only setting in as one extrapolates towarde→0.

IV. CONCLUSIONS AND OUTLOOK

We have reported here the first detailed study of the
merical renormalization of the fermion Dyson-Schwing
equation of QED through the use of a dimensional regula
rather than a gauge invariance-violating UV cut-off. The in
tial results presented here are encouraging. First, we h
explicitly demonstrated that the approach works and is in
pendent of the intermediate dimensional regularization sc

a

TABLE I. Renormalization constantZ2(m,e) and bare mass
m0(e) as functions of regularization parametere for a50.6 in vari-
ous gaugesj. All solutions are with renormalization pointm2

51.003108 and renormalized massm(m)5400.0.

e Z2(m,e) m0(e)
j50 j50.25 j50.5 j50 j50.25 j50.5

0.08 1.000 0.957 0.917 2.303102 2.293102 2.283102

0.07 1.000 0.944 0.891 1.913102 1.903102 1.893102

0.06 1.000 0.924 0.854 1.463102 1.453102 1.443102

0.05 1.000 0.896 0.802 9.753101 9.663101 9.573101

0.04 1.000 0.851 0.725 5.073101 5.003101 4.943101

0.03 1.000 0.779 0.606 1.593101 1.563101 1.533101

TABLE II. Same as Table I, but fora51.5.

e Z2(m,e) m0(e)
j50 j50.25 j50.5 j50 j50.25 j50.5

0.08 1.000 0.897 0.805 9.203101 9.063101 8.923101

0.07 1.000 0.865 0.749 5.513101 5.403101 5.283101

0.06 1.000 0.821 0.674 2.583101 2.513101 2.443101

0.05 1.000 0.759 0.576 7.943100 7.603100 7.283100

0.04 1.000 0.669 0.447 1.103100 1.023100 9.5431021

0.03 1.000 0.535 0.286 2.6331022 2.2731022 1.9631022
4-5
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SCHREIBER, SIZER, AND WILLIAMS PHYSICAL REVIEW D58 125014
(n) as expected. Secondly, we have seen the interestin
sult that our calculations using dimensional regularizat
agree with modified UV cut-off calculations within the cu
rent numerical precision, but disagree with the unmodifi
UV cutoff ones.

A significant practical difference between the dimensio
ally and UV cut-off regularized approaches is that in t
former it is at present necessary to perform an explicit
trapolation toe50 whereas in the latter it was found that f
a sufficiently large choice of UV cut-off the results becam
independent of the cut-off. This need to extrapolate, toge
with the high precision that one needs to attain in order
make meaningful comparisons with cut-off based stud
makes numerical dimensional regularization and renorm
ization of Schwinger-Dyson equations a rather formida
task. Nevertheless, although we are presently investiga
whether it is numerically possible to extend the studies
even smaller values ofe in order to improve the precision o
the e→0 extrapolation, the extrapolation appears to be w
under control, at least for values of the fermion moment
away from the ultraviolet region.

Having demonstrated the numerical procedure of ren
malization using dimensional regularization, we now plan
study chiral symmetry breaking and in particular hope
extract the critical coupling as a function of the gauge
rameter. Results of this ongoing work will be presented e
where. The eventual aim is to extend this treatment to
case of unquenched QED and to a systematic study
electron-photon proper vertices.
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APPENDIX A: FINAL FORM FOR THE REGULARIZED
FERMION SELF-ENERGIES

In the quenched approximation, all angular integrals
the Dirac and scalar regularized self-energies defined by
Euclidean analogue of Eq.~7! may be expressed in terms o
the integrals
12501
re-
n

d

-

-

er
o
s,
l-
e
g

o

ll

r-
o

-
-
e
of

n
he

I n
D~w!5

GS D

2 D
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z D n

sinD22u

for n521,1,2 ~A1!

where we have defined dimensionless quantitiesx5p2/n2,
y5k2/n2, z5q2/n25x1y22Axy cosu andw5y/x. Simi-
larily, we shall for convenience define dimensionless v
sions ofA(m2;p2) andB(m2;p2), namelya(x)5A(m2;p2)
and nb(x)5B(m2;p2) ~we suppress the dependence onm
here in order to make the notation less cumbersome!. Ex-
plicit evaluation~for 0<w<1) yields

I 21
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and forw>1 one may use
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„and similarly forDb̃(x,y)… the regularized self-energies i
the quenched approximation become
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It should be remembered that the equivalent expressions in cut-off regularized quenched QED suffer from an ambig
to the lack of gauge invariance in those calculations: one obtains different results at this stage depending one wheth
one has made use of the Ward-Takahashi identity in the initial stages of the calculation@12,13#. The difference shows up in th
terms multiplied bya2(y) andb2(y). Readers may readily convince themselves that no such ambiguity exists in the p
work. In order to do this, the following identity is of use:
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