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PHYSICAL REVIEW D, VOLUME 58, 125014

Dimensionally regularized study of nonperturbative quenched QED

Andreas W. Schreiber, Tom Sizer' and Anthony G. Williams
Special Research Centre for the Subatomic Structure of Matter and Department of Physics and Mathematical Physics,
University of Adelaide, 5005, Australia
(Received 27 April 1998; published 16 November 1998

We study the dimensionally regularized fermion propagator Dyson-Schwinger equation in quenched non-
perturbative QED in an arbitrary covariant gauge. The nonperturbative fermion propagator is soed in
=4-2e<4 dimensional Euclidean space for a large number of values. ®Results forD=4 are then
obtained by the extrapolatios— 0. The nonperturbative renormalization is performed numerically, yielding
finite results for all renormalized quantities. This demonstrates, apparently for the first time, that it is possible
to successfully implement nonperturbative renormalization of Dyson-Schwinger equations within a gauge
invariant regularization scheme such as dimensional regularization. Here we present results using the Curtis-
Penningon fermion-photon proper vertex for two values of the coupling, namel9.6 ande=1.5, and
compare these to previous studies employing a modified ultraviolet cut-off regularization. The results using the
two different regularizations are found to agree to within the numerical precision of the present calculations.
[S0556-282(98)05822-9

PACS numbes): 12.20.Ds, 11.10.Gh, 11.30.Qc, 11.30.Rd

[. INTRODUCTION momentum range that can be studied and one is able to com-
pare different regularization schemes. This latter property
Strong coupling quantum electrodynami¢®@ED) has  will be made use of in this paper.
been extensively studied through the use of the Dyson- A number of discussions of the choice of the transverse
Schwinger equationfDSE) [1-3]. In such studies it is un- part of the proper vertex can be found in the literature, e.g.,
avoidable that the infinite set of coupled integral equation®Refs. [7—15. We will concentrate here on the Curtis-
be truncated to those involving Green functions with rela-Pennington(CP) vertex[8-11,16, which satisfies both the
tively few external legs. This truncation has the consequenc#/TI and the the constraints of multiplicative renormalizabil-
that one or more of the Green functions appearing in thaty. With a bare verteXwhich breaks both gauge invariance
remaining equations are no longer determined selfand MR the critical coupling of quenched QED differs by
consistently by the DSE’s and so must be constrained, foapproximately 50% when calculated in the Feynman and
example, by known symmetridincluding Ward-Takahashi Landau gauge. This should be compared to a difference of
identities(WT]I) [4]), the absence of artificial kinematic sin- less than 2% for these gauges when calculated with the
gularities, the requirements of multiplicative renormalizabil- Curtis-Pennington verteiL1]. Even with the CP vertex, the
ity (MR), and must be in agreement with perturbation theoryvariation is significantly greater for covariant gauge choices
in the weak coupling limit. Furthermore the gauge depen-outside this range, particularly for negative gauges. Ex-
dence of the resulting fermion propagator should eventuallyensions of this work to include nonperturbative renormaliza-
be ensured to be consistent with the Landau-Khalatnikotion were first performed numerically in Refsl7-19. In
transformatior{ 5]. these latter works an obvious gauge covariance violating
What makes QED a particularly attractive theory to studyterm, arising from the use of cut-off regularization and
with DSE techniques is that the coupled integral equationpresent inf11,16 was omitted(see Refs[12,1§ for a dis-
determining the photon and fermion propagators are comeussion of thiz Without the gauge covariance violating term
pletely closed once the photon-fermion proper vertex ishe variation of the critical coupling near the Landau gauge
specified. Up to transverse parts this proper vertex is in turmvas again found to be rather smdéss than 3% when going
determined in terms of the fermion propagator by the correfrom Landau gauge tg=0.5[18)).
sponding WTI. Thus, the state of the art for this type of Clearly, the gauge dependence of lphysica) critical
calculation consists of imposing the greatest possible set afoupling is decreased, but not eliminated, through the use of
constraints and constructing the most reasonable possibée photon-fermion proper vertex which satisfies the WTI. In
Ansatz for the transverse part of the vertex. While such ather words, the choice of a vertex satisfying the WTI is a
DSE approach to nonperturbative QED can never be an emecessary but not sufficient condition in order to ensure the
tirely first-principles approach, such as a lattice gauge theorfull gauge covariance of the Green functions of the theory
treatmen{6], it has the advantages that it is at times possibleand the gauge invariance of physical observables. The ques-
to obtain some analytical insights, there is no limit to thetion that arises is whether the remaining gauge dependence
in the critical coupling is primarily due to limitations of the
vertex itself or whether it is due to the use of a UV cut-off

*Email address: aschreib@physics.adelaide.edu.au regulator in these calculations.
"Email address: tsizer@physics.adelaide.edu.au Bashir and Penningtofil3,14 have pursued the first of
*Email address: awilliam@physics.adelaide.edu.au these alternatives and have obtained, within a cut-off regu-
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larized theory, further restrictions on the transverse part of S Y u;p)=A(u;p?)p—B(u;p?)

the vertex which ensure by construction that the critical cou- )

pling indeed becomes strictly gauge independent. It is not =Zy(,)[p—mo(€)] =X (1, €;p)

clear that adjusting the vertex to remove an unwanted gauge- . =,

dependence is the most appropriate procedure when using a =B=m(u) =2 (mip), @
gauge-invariance violating regularization scheme. It shoul
be remembered that a cutoff {Euclidean momentum, apart value of the renormalized masspit= 12, my(€) is the bare

from breaking Poincargvariance, indeed also breaks gauge oqs and,(u, ) is the wave-function renormalization con-

invariance. It is precisely because of this lack of gauge ir_]'stant. Due to the WTI for the fermion-photon proper vertex,

variance that UV cut-off regulators have not been used iNve have for the vertex renormalization constan( u, €)

perturbative calculations in gauge theories for many years.. Z,(1u,€). The renormalized and unrenormalized fermion

Rather, the most common perturbative method of regulariza-

tion in recent times has been that of dimensional regulariza§.e”'energies are denoted B¢.;p) andX'(u,€;p) respec-

tion [20] where gauge invariance is explicitly maintained. t|\_/ely. These can be expressed in terms of Dirac and scalar
In this work we report on a DSE study of quenched non-Pi€ces, where for example

perturbative QED using dimensional regularization in the

renormalization procedure. Some early exploratory studies , L« 5 , 5

have been carried out in the p&gi], but to our knowledge 2 (m€p)=2g(p,6p7) Pt g1, €p%), 2)

this work is the first complete nonperturbative demonstration

of dimensional regularization and renormalization. Nonper- _

turbative renormalization is performed numerically, in arbi-and similarly for>, (u;p). We shall for notational brevity not

trary covariant gauge, using the procedure first developeéxplicitly indicate the dependence enof the renormalized

and applied in Refd17-19. In these works the vertex used quantitiesA(u;p?), B(u;p?) and S (u;p), since for these

was that of Curtis and Pennington and so, as it is our aim t@nd other renormalized quantities we will always be inter-

compare to previous results obtained with the use of cut-ofgsted in theire—0 limit. The renormalized mass function

regularization, we also use this vertex in the current work. Inv (p2)=B(u;p?)/A(w;p?) is renormalization point inde-

quenched QED there is no renormalization of the electrompendent, which follows straightforwardly from multiplicative

charge and the appropriate photon propagator is just the bafgnormalizability[ 18].

one. The resulting nonlinear integral equation for the fermion  The renormalization point boundary condition

propagator is solved numerically l=4—2e¢<4 Euclidean

dimensional space. Successive calculations with decreasing

are then extrapolated to=0. S Y(u;p)| o2 2= Pp—m(p) 3
The organization of the paper is as follows: The renormal-

ized and dimensionally regularized SDE formalism is dis-

cussed in Sec. Il. This is followed by some representativgmplies thatA(u; u?)=1 andm(ux)=M (u2) and yields the

numerical results in Sec. Ill. We present conclusions and af|lowing relations between renormalized and unrenormal-
outlook in Sec. IV. An appendix details the final form of the jzed self-energies

fermion self-energy equations iD-dimensional Euclidean

QNhere,u is the chosen renormalization scafa(u) is the

space. Sasuip) =3 6p) -2 meud. (4
Also, the wavefunction renormalization is given by
Il. FORMALISM
— ’ .2
In this section we provide a brief summary of the imple- Zo(p,€)=1+Zg(p € 1%) ®)

mentation of nonperturbative renormalization within the con- o )

text of numerical DSE studies. We adopt a notation simila@d the bare massy(e) is linked to the renormalized mass
to that used in Ref§17—19, to which the reader is referred M(x) through

for more detail. The formalism is presented in Minkowski

space and the Wick rotation into Euclidean space can then be mo(€)=[m(p) =2 g, € %) Zo(p,€). (6)
performed once the equations to be solved have been written

down. It is important to note that although we use dimen-It also follows from MR that under a renormalization point

sional regularization, we can not make use of the populafransformation — u—u’, m(u')=M(u'?) and
perturbative renormalization schemes which are usually use@2(u'.€)=A(u'; 1) Z,(u,€) as discussed in Reff18].
in connection with this, such as minimal subtractid4s) or The unrenormalized self-energy is given by the integral
modified MS (MS schemes. Thg reason, of course, is thqt Pk
Lr;iségx.:,.(:hemes can only be defined in a purely perturbative 2’(,u,e;p)=i21(u,6)[e(,u)ve]2f — 2

The renormalized inverse fermion propagator is defined (2m)
through XS(ui k)T (u;k,p)Dy(u;p—k),  (7)

125014-2
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where v is an arbitrary mass scale introducedDndimen-  the angle# between the fermion and photon momentum.
sions so that the renormalized couplie@:) remains dimen- Hence the D-dimensional integrals reduce to 2-dimensional
sionless. Since we are here working in the quenched approxénes, i.e.,
mation we have Zs(w,e)=1, ey=e(u), and the
renormalized photon propagat®*”(u«;q) is equal to the dP Kf(K2.02.k

( P p)
bare photon propagator

a“q” g“q”|1 =JdQD‘1><fmdkkD‘1jwd i ~26 f(k2,p2 k-
DF(a)=| —g""+ b )—2 ®) 0 o A0S 8 Tlc.p%k-p)
q qQ” /q
(13
with ¢ being the covariant gauge parameter. Finally,
I'"(u:;k,p) is the renormalized photon-fermion vertex for Where
which we use the CP Ansatz, namely=£k—p) 2012
D_
f dQ “T(0R) (14)

W _TH . + L2 n2 A2\ A A2 12
ko) =Tl ik p)+ 7e(psil P 0L YA (p=k0) is the surface area of a D-dimensional sphere. Furthermore, it
+(p+k)“q], 9 is possible to express all the angular integrals in terms of a
single hypergeometric function so that it is only necessary to
do one integral numerically. The final form of the regular-
WhereFBc is the usual Ball-Chiu part of the vertex which ized Se|f-energies is presented in the Appendix_
saturates the Ward-Takahashi idenfity, The momentum integration is done numerically on a loga-
rithmic grid and the renormalized fermion DSE solved by
1 iteration. Note that the momentum integration extends to in-
W _ - 1,2 N finity, necessitating a change in integration variables. A con-
Tec(wik.p)= Z[A(’“’k ) APy ven%/ent choice of ?ransforn?ation is ’

1/e
: (15

(k+p)*
k2_p2

2

+ _—
1-t

K+
[[A(,u;kz)—A(,U«;pz)]T'b y=y|o<

L2 ") wherey,, is some lower integration bound and the integra-
~[B(w k) =B(uip )]]' (10 tion variablet ranges from—1 to 1. The infinite range of the
integration also requires an extrapolation Afu;p?) and
B(u;p?) above the highest gridpoint. We check insensitivity
and the coefficient functiong is that chosen by Curtis and to this extrapolation by comparing results obtained with a
Pennington, i.e., number of different extrapolation prescriptions. In addition,
1 we use grids which extend some 20—30 orders of magnitude
2 n2 42y _ 2y _ ‘12 beyond what is usually used in cut-off studies. In summary,
7o K% P%07) = Z[A(’U“’k )= Al Jfdkp), we believe that we have verified that the effect of the ex-
(1)  trapolation to infinity is well-controlled.
where Ill. RESULTS
(K?—p?)2+[M?(k?) + M?(p?)]? .
d(k,p)= I . (12 We present here solutions for the DSE for two values of
k“+p the couplinga=e3/4m, namelya=0.6 anda=1.5. These
were chosen so that they correspond to couplings respec-
ﬁvely well below and above the critical coupling found in
previous UV cut-off based studies. The gauge parameter is
set at¢é=0.25, the renormalization point which we used is
w?>=10° and the renormalized mass is taken to rbgu)
=400. Note that all results are quoted in terms of dimension-
less units, i.e., all mass and momentum scales can be simul-

The unrenormalized scalar and Dirac self—energies ar
extracted out of the DSE, Ed7), by taking 1 Tr of this
equation, multiplied by 1 an@/p?, respectively. Note that
we use the conventions of Mufa2]

Yy, =D=y*y"y,=(2-D)y"

T y*y"]=4g** Ti{1]=4 taneously multiplied by any desired mass scale.
Figures 1 and 2 show a family of solutions with the regu-
g“,=D lator parametefe decreased from 0.08 to 0.03 for the two
values of the coupling. We see that the mass function in-
for the Dirac algebra. creases in strength in the infrared and tails off faster in the
The integrands appearing in Ef) only depend on the ultraviolet ase is reduced o is increased.
magnitude of the internal fermion’s momentikhas well as Furthermore, it is important to note the strong dependence

125014-3



SCHREIBER, SIZER, AND WILLIAMS PHYSICAL REVIEW D58 125014

0=0.6 solutions for different € 0=1.5 extrapolation to =0 at p2= 1

1.40 — 118
— | » & £=.08 = : ‘ ‘ O ;100
a _ _ " v
=z :H =10 e :—-gg g +v=10

1.20 | _ =0 <
S 0 | —— =05 <
IS : —-— =04 %
g 100 =
O E
5 S
@ 0.80 @
9 I
= 2
[ 3 s

10 £
W; ‘ﬁ
S o
P =
© ) 2
= 10 o] .
3 £ gr
S &
S RS o
g € 9000 | 9%0% Tl
> d '
a < <

A <>
01 5 - el 218 27 L 3 36 , 42 , 48 700.0 © K
o 0 0 I I I I I I I
107 10° 107107 10" 107 107 107 10™ 10 "0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
p °[Euclidean] €
FIG. 1. The finite renormalizatiom(p?) and mass function FIG. 3. The finite renormalizatiom(p?) and mass function

M(p?) for various choices of the regulator parameteiThese re- M (p2) evaluated ap?=1 for various values of the regulator pa-
sults have coupling:= 0.6, gauge parametér=0.25, renormaliza-  rametere and extrapolated te=0 by fitting a polynomial cubic in
tion point u?=10°, renormalized mass(x)=400 and scaler ¢ Shown are results for three scales 1, 10 and 100. All other
=1. In the low p? region the smallest has the largest value of parameters are those of Fig. 2. The different scales coincide at
M(p?). =0 to an accuracy of approximately 0.2%.

on €, even though this parameter is already rather small. A?ﬂence ore should be contrasted with the situation in cut-off

one would expect, the u'Itravio.Iet is most se.nsitive .to thiSbased studies where it was observed that already at rather
regulator, however even in the infrared there is conSIderablﬁ1odest cut-offs £2~101% the renormalized functions

dependence due to the intrinsic coupling between these re- . o L
gions by the renormalization procedure. This strong depen"Zlnd M hqd el as_ym.p.totlc limits. At present it is
not possible to decrease significantly below the values

) ] shown in Figs. 1 and 2 because of limitations due to numeri-
a=1.5 solutions for different € cal noise. In order to extract the valuesAandM in four

1.40 - ‘ p dimensions we therefore need to extrapolate+d0. More
€=,

sophisticated numerical techniques are being investigated
and will hopefully allow explicit calculations at smaller
values in the future.

An extrapolation such as this always involves an added
uncertainty in the final result. It is fortunate that it is possible
to estimate this uncertainty by making use of the fact that in
the limit e—0 the renormalized quantities should become
independent of the arbitrary scalewhich was introduced to
keep the couplingr dimensionless i dimensions. In Fig.

3 we showA(p?) and M(p?) evaluated witha=e3/4

! =1.5 in the infraredat p?=1) as a function ot for a range

E—— of values ofv. The results ae=0 are extracted from cubic
O polynomial fits ine. As may be observed, the agreement

_ between the different curves at=0 is excellent, being of
"""""" the order of 0.2%.

In Fig. 4 we show the results extrapolatedds 0 as a
function of the momentunfagain fora=1.5). Also shown,
although hardly distinguishable, is the result for these curves

1.20

1.00

0.80

0.60

Finite Renormalization A(p2)

0

Dynamical Mass M(p’)
>

6

10° 10° 10” 10" 10®* 10% 10* 10* 10®

107 ; . " ; )
o 2 [Euclidean] as obtained in the modified UV cutoff based studies, which
used a gauge-covariance fix to remove an obvious part of the
FIG. 2. Same as Fig. 1 fag=1.5. gauge dependence induced by the cufdf8]. Again the
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o=1.5 solutions extrapolated to €=0 TABLE I. Renormalization constanf,(u,e) and bare mass
—— . . . . mg(€) as functions of regularization parametefor «=0.6 in vari-
1.40 | I, — v=100 - ous gaugest. All solutions are with renormalization point?
1.20 L :” =10 el ] =1.00x 10° and renormalized mass( ) =400.0.

--- val

o

<

S — - - cutoff

= 1.00 :

I € Zy(p,€) mo(€)

s 080 £=0 ¢=0.25 £=05| ¢=0  ¢=025 ¢=05

5 060

5 0.40 0.08| 1.000 0.957 0.917 2300 2.29x10% 2.28x 10

i : 0.07| 1.000 0.944 0.891 1.81C¢° 1.90x10 1.89x 107

£ 020 0.06| 1.000 0.924 0.854 1.4Gl(F 1.45<1CF 1.44X1CP
1600 0.05| 1.000 0.896 0.802 9.7¥810' 9.66x10" 9.57x 10

~ 1400 0.04| 1.000 0.851 0.725 5.6710' 5.00<10" 4.94x 10"

g 1200 0.03| 1.000 0.779 0.606 1.5910' 1.56x10"' 1.53x10'

w 1000

8

g zoo

8 423 Z5(w,e) and mg(e) do show some small dependence

§ 200 (<1%) in our calculations. The values for these quantities

Y 0 I listed in Tables | and Il were obtained by assuming a simple
200 l , ] power-behavior of the integrands beyond the highest grid-
- 6 12 30 36

10% 10" 10* 10° 10 point. As was seen in the UV cutoff studies, the wavefunc-
p ?[Euclidean] tion renormalization(for ¢>0) actually decreases as the
regularization is removed. In the same way the behavior of
Z, as a function of the gauge parameter is qualitatively the

same as observed in the cut-off studies, i.e. at fixed

10° 10

FIG. 4. The finite renormalizatio\(p?) and mass function
M(p?) extrapolated toe=0 at every momentum point for three

different scalesy=1, 10 and 100. They were calculated by fitting a decreases as one moves from the Landau towards the Feyn-

cubic polynomial ine at each momentum point. All other param- man gauge. The bare m on the other hand. appears to
eters are those of Fig. 2. Also shown is the result obtained using a gauge. asg, » app

modified UV cutoff. The UV cutoff and extrapolated= 100 results show a dlffergnt behavior to befo!'e, at least for large cou-
are indistinguishable in these plots. plings: while in the present work it decreases as the gauge

parameter is increased for &ll in cut-off studies it only did
agreement is very good for a wide rangqgﬁ']and V. On|y in this for mOderately small cut-offs. It is quite pOSSible that
the ultraviolet region(above Sayp2: 1012) do differences this different qualitative behavior reflects the fact the even
between the curves become discernible. We see in Fig. 4 thite loweste’s which have been reached here “correspond”
the UV cutoff result is almost indistinguishable from the tO rather modest cut-offs. In connection with this note that at
=100 result at essentia”y all momenta. The discrepancieﬂqe values ok shown in Tables | and Il the mass functions in
for the y=1 and 10 cases are greater in the uv due to thé:|gs 1 and 2 are St|” pOSitive eVeryWhere, the OSCi||ati0nS
fact that in this region the errors introduced by the extrapoOnly setting in as one extrapolates toware0.
lation procedure ire become comparablgor a cubic fi) to
the functions’ values there. This is supported by the follow- IV. CONCLUSIONS AND OUTLOOK
ing two observations. First, from Fig. 3 we see that the
e-dependence is almost linear for= 100, whereas it clearly
deviates from linearity for the other cases. Secondly, there i
little change in thev=100 extrapolation as we change the
order of the fit polynomial up to orde¢®, whereas thev

We have reported here the first detailed study of the nu-
gwerical renormalization of the fermion Dyson-Schwinger
equation of QED through the use of a dimensional regulator
rather than a gauge invariance-violating UV cut-off. The ini-
=1 and 10 results show greater variation. We conclude thatéal res ults presented here are encouraging. First, we have

explicitly demonstrated that the approach works and is inde-

the v=100 results in Fig. 3 provide the most reliakde-0 d fthe i diate di ional larizati |
extrapolation. It should also be noted that the oscillatory bePe" ent of the intermediate dimensional regularization scale

havior in the mass function first noticed[ih7] is reproduced
in this work, and the results for the unmodified UV cutoff
disagree with those from dimensional regularization. E Z,(,€) mo(€)

Finally, we present in Tables | and Il the bare magge) £=0 £=025 £=05 £=0 £=0.25 £=05
and the wave-function renormalization for the two cases
studied as a function of the regularization parametend  0.08/ 1.000 0.897 0.80
the gauge paramete¥. It should be noted that these two 0.07| 1.000 0.865 0.74
guantities are by their very nature sensitive to the behavior 06.06| 1.000 0.821 0.67
A(p?) andB(p?) in the ultraviolet. In particular, while any 0.05{ 1.000 0.759 0.57
renormalized quantities were found to have a negligible dep.04| 1.000 0.669 0.44
pendence on the precise form of the extrapolation of the.03| 1.000 0535 0.28
integrands beyond the highest gridpoint, it was found that

TABLE Il. Same as Table |, but forr=1.5.

9.2010" 9.06x10' 8.92x 10
5.5110' 5.40<10' 5.28x10'
2.5810" 2.51x10' 2.44x10
7.940° 7.60x10° 7.28<1C°
1.300° 1.02x10° 9.54x10°*!
2.6310°2 2.27x1072 1.96x10 2

OO N O B © 01
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(v) as expected. Secondly, we have seen the interesting re- D

sult that our calculations using dimensional regularization F(f) 7 [x+y\"

agree with modified UV cut-off calculations within the cur- ID(w)= f de(—) sin’~2¢
rent numerical precision, but disagree with the unmodified F(D_l) J7 0 z

UV cutoff ones. 2

A significant practical difference between the dimension-
ally and UV cut-off regularized approaches is that in the for n=-1,1,2 (Al)
former it is at present necessary to perform an explicit ex-
trapolation toe=0 whereas in the latter it was found that for Where we have defined dimensionless quantitiep?/»?,

a sufficiently large choice of UV cut-off the results becamey=Kk?/v?, z=q?v?=x+y—2/xy cosd andw=y/x. Simi-
independent of the cut-off. This need to extrapolate, togethdarily, we shall for convenience define dimensionless ver-
with the high precision that one needs to attain in order tesions ofA(u?p?) andB(u?p?), namelya(x) = A(u?;p?)
make meaningful comparisons with cut-off based studiesand vb(x)=B(u?p?) (we suppress the dependence @n
makes numerical dimensional regularization and renormalbere in order to make the notation less cumbergorg-
ization of Schwinger-Dyson equations a rather formidableplicit evaluation(for 0<w=1) yields

task. Nevertheless, although we are presently investigating

whether it is numerically possible to extend the studies to o

even smaller values af in order to improve the precision of 1Z3(w)=1 (A2)
the e—0 extrapolation, the extrapolation appears to be well

under control, at least for values of the fermion momentum

away from the ultraviolet region. I?(w)=(1+w) SF1(1,€;2—€;wW)

Having demonstrated the numerical procedure of renor-
malization using dimensional regularization, we now plan to
study chiral symmetry breaking and in particular hope to
extract the critical coupling as a function of the gauge pa- 2(W)=2
rameter. Results of this ongoing work will be presented else-
where. The eventual aim is to extend this treatment to the
case of unquenched QED and to a systematic study fnd forw=1 one may use
electron-photon proper vertices.

1+w
1-w

2 1-2¢ b
- [7(w)+1—¢€],

IP(w)=12(w™1). (A3)
ACKNOWLEDGMENTS
Defining
This work was partially supported by grants from the
Australian Research Council. - de(x,y)
de(X,y)= Xy (A4)
APPENDIX A: FINAL FORM FOR THE REGULARIZED
FERMION SELF-ENERGIES . a(x)—a(y)
I . . Aa(x,y)=Z——m (A5)
In the quenched approximation, all angular integrals in (1-w)/(1+w)

the Dirac and scalar regularized self-energies defined by the _
Euclidean analogue of E¢7) may be expressed in terms of (and similarly forAb(x,y)) the regularized self-energies in

the integrals the quenched approximation become
L @0 Zi(p,€) (= y ¢ a(x)+a(y) b
Silmex) =4 (4m T o | yyaz(y)+b2(y)w[a( ) 51— -12(w)
“Aa(x,y)| (1 3-2¢ [1-w\?\ 26w
+aly)— §+(1—§)(1—€)—m(m )('1(W)—1)+(1+—W)2|1(W)
b(y)_ 1
+ 2By §+(1—§)(l—e))(l?(W)—1)+%@(W)H (A6)

and
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a(x)+

b(y) 2a(y)

, L %o Za(pe) (= yt e 1 I
Fll = g T 2=g )0 Yy Ty x|

(3—2e+&)1D(w)

&w
—a(y)Ab(x,y)

1 D D
§+(1—§)(1—6))(|1(W)—1)+ 1—|1(W)
3—2¢

+w

2
—_ D
2de(x.y) ) r

It should be remembered that the equivalent expressions in cut-off regularized quenched QED suffer from an ambiguity due
to the lack of gauge invariance in those calculations: one obtains different results at this stage depending one whether or not
one has made use of the Ward-Takahashi identity in the initial stages of the calc[d&ib§. The difference shows up in the
terms multiplied bya?(y) andb?(y). Readers may readily convince themselves that no such ambiguity exists in the present

+b(yjAa(x,y)

1-w

X —_
1+w

)

] . (A7)

£y
2

1 D
5T(L-9(1-6)|(Pw) 1)+

work. In order to do this, the following identity is of use:

0=

2¢e—1 1

fwd l‘6(21_6+
o Yy y—x

| ?(w)) : (A8)

y—X
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