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K-matrices for non-Abelian quantum Hall states
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Two fundamental aspects of so-called non-Abelian quantum Hall stdiesy-Pfaffian states and more
general are a(generalizefpairing of the participating electrons and the non-Abelian statistics of the quasihole
excitations. In this paper, we show that these two aspects are linked by a duality relation, which can be made
manifest by considering thi€-matrices that describe the exclusion statistics of the fundamental excitations in
these systems.

[. INTRODUCTION the collection of all multie, multi-¢ states spans a basis of
the chiral Hilbert space of all edge excitations. In mathemati-
In the description of low-energy excitations over Abelian cal terms, this is expressed by a formula that expresses the
fractional quantum HallFQH) states, an important role is partition sum for the edge excitations as a so-called universal
played by the so-callek-matrices, which characterize the chiral partition function(UCPP (see, e.g., Ref. 4 and refer-
topological order of the FQH stafeee Ref. 1 for a reviely ~ ences thereinbased on the matrix
These K-matrices act as parameters in Landau-Ginzburg-
Chern-SimongLGCYS) field theories for bulk excitations and m 0
in the chiral conformal field theorie€CFT’s) that describe Ke@K¢=< 0 1/m)'
excitations at the edge. At the same time, #enatrices
provide the parameters for the fractional exclusion statisticgyve refer to Ref. 3 for an extensive discussion of these re-
(in the sense of Haldafeof the edge excitations over the syits, and to Ref. 5 for an extension (tbelian) FQH states
FQH states. For a simple example of this, consider theyith more generahxn K-matrices.
Laughlin FQH state at filling fractiom= 1/m, with K-matrix Turning our attention to non-Abelian quantum Hall states,
equal to the numbem. Following the analysis in Ref. 3, one we observe that the chiral CFT’s for the edge excitations are
finds that the parametegg andg,, that characterize the ex- not free-boson theories. This implies that for these states the
clusion statistics of the edge electrof@ chargeQ=—€)  notion of aK-matrix needs to be generalized. In this paper,
and edge quasiholeQ) +e/m), respectively, are given by we shall show that the exclusion statistics of the fundamental
edge ‘“quasihole” and “electron” excitations over non-
—K=m :K*lzi (1.1) Abelian quantum Hall states_give_ rise to mgtrices that are
e Yo m’ ' closely analogous to thi€-matrices in the Abelian case, and
we therefore refer to these matrices as Exenatrices for
In this paper, we shall denote these and similar parametefon-Abelian quantum Hall states. We present results for the
by Ke andK , respectively. g-Pfaffian staté, for the so-called parafermionic quantum
The (e, ¢) basis for edge excitations is natural in view of Hall states, and for the non-Abelian spin-singlet states re-
the following statements about duality and completenesszently proposed in Ref. 8. A more detailed account, includ-
The particle-hole duality between the edge electron and ing explicit derivations of the results presented here, will be
quasihole excitations is expressed through the relaign given elsewherd.
=K * and through the absence of mutual exclusion statistics
between the two. It leads to the following relation between
the one-particle distribution functiong(e) andn ,(e):

1.3

Il. PFAFFIAN QUANTUM HALL STATES
FOR SPINLESS ELECTRONS

1 € The so-calledg-Pfaffian quantum Hall states at filling
mng(e)=1- a%( - E)- (12 fraction »=1/q were proposed in 1991 by Moore and Réad
and have been studied in considerable dé?af? The
In physical terms, the duality implies that the absence otharged spectrum contains fundamental quasiholes of charge
edge electrons with energies<0 is equivalent to the pres- e/2q and electron-type excitations with chargee and fer-
ence of edge quasiholes with positive energies, and vicenionic braid statistics. The edge CFT can be written in terms
versa. By thecompletenessf the (e, ¢) basis we mean that of a single chiral boson and re@ajorana fermion, leading
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to a central charge= 2. The exclusion statistics of the edge WV, of charge— 2e has its origin in the fundamental electron
guasiholes were studied in Refs. 13, 14. In Ref. 14, it wagairing that is implied by the form of the Pfaffian wave func-
found that the thermodynamics of the edge quasihole can b#n.
described by the equations As before, there is no mutual exclusion statistics between
the e and ¢ sectors. In Ref. 9, we show that the conformal
characters of the edge CFT can be cast in the UCPE form
with matrix Ke&K ;. The valuec=3 of the central charge
follows as a direct consequentée.

We remark that the usual relations between the charge
vectors Qi =(—e,—2e),Q;=(0e/2q), the matricesKe,
K4, and the filling fraction» are satisfied in this non-
Abelian context:

No— 1
Ao

Ao\~ M2=1, A ; 1 )\61/2)\(q+l)/4qz)(, 2.1

with x=ef(#¢~ € Comparing this with the general form of
the Isakov-Ouvry-WYIOW) equations for particles with ex-
clusion statistics matrix,*®

ANa—1
( . )H Np=Xa, 2.2
Na b

Ke=Kz' Qe=—K,"Qy,
one identifies - - (2.7)
V82:Q¢'K¢ 'QqS:Qe'Ke Qe

1 ) These relations, which hold in all examples discussed in this
(2.3  paper, together with the UCPF form of the conformal char-
1 g+l acters, motivate our claim thit, andK , are the appropriate
2 4q generalizations of th&-matrices in this non-Abelian setting.
We shall now proceed and link the composde= —2e
particle in the electron sector to the supercurrent that is fa-
miliar in the context of the BCS theory for superconductiv-
ity. For this argument, it is useful to follow thg-Pfaffian
'state as a function af with 0<q=<2. This procedure can be
interpreted in terms of a flux-attachment transformatfbit.

For g=2 we have the fermionic Pfaffian state &t 3 and

K¢:

as the statistics matrix for particleg, ¢), where ¢ is the
edge quasihole of chargg2q. The other particlep, does
not carry any charge or energy and is callegpsgudopar-
ticle. The presence of this particle accounts for the non
Abelian statistics of the physical particle*1® Eliminating

Ao from Egs.(2.1) gives

_ 12_ 1y — 2y (30— 1)/2q g=1 gives a bosonic Pfaffian state at 1. In the nonmag-
(=D D=x ' @4 netic limit, g— 0, we recognize the Pfaffian wave function as
in agreement with Ref. 13. the coordinate space representation of a specific supercon-

The duality between thes and e excitations over the ducting BCS state with complep-wave pairing'®*? In the
g-Pfaffian state was first discussed in Ref. 13, where it wagmit g—0, the particle¥, has exclusion parametey=0
also shown how the correct spectrum of the edge CFT isind can, as we shall argue, be associated with the supercur-
reconstructed using the and ¢ quanta. Here we present a rent of the superconducting statén fact, the mutual exclu-
discussion at the level df-matrices where, as in Eql.1), sion statistics betweeW, and W, vanishes as well in the

the dual sector is reached by inverting the makix of Eq.  limit g—0.) The exclusion statistics parameter for th@ar-
(2.3. ticle diverges forq—0, meaning that in this limit thep
Starting from the IOW equatior(®.2) and denoting by,  sector no longer contributes to the physical edge spectrum.
and x, the quantities corresponding ' =K1 we have In a quantum state that has all electrons paired, the fun-
the corresponden%e damental flux quantum i&/2e. Piercing the sample with
precisely this amount of flux leads to a quasihole excitation
. Aa , Kt of chargee/2q. This excitation also contains a factor that
)‘a:)\a—_l’ Xa:l;[ Xp (2.5 acts as the spin field with respect to the neutral fermion in
the electron sector; the latter factor is at the origin of the
which leads, among other things, directly to fla@propriate  non-Abelian statisticé!! For q=1,2,... the quasihole
generalization ofEq. (1.2). chargee/2q is the lowest charge that we consider: the exci-
For the g-Pfaffian state, we define th¢-matrix for the  tations of charge-e and —2e correspond to flux insertions
electron sectofe sectoj to be the inverse oK ,, that are a(negative integer multiple of the flux quantum.
However, forq<1, the quasihole charge is larger thgre,
K=Kl q+1 ZQ) 2.6 and we conclude that the fundamental excitations indhe
e ¢ 29 4q)° ' sector correspond to the insertion of a fraction of the flux

. ) ] ) guantum, in other words, to a situation where the boundary
Inspecting the right-hand sides of the duality-transformedongitions for the original “electrons” have been twisted.
IOW equations, we findx;=y and x;=y? with y For definiteness, let us pgt= 1/N with N a large integer.
=eflre <) where €' =—2qe and po=—2qu, (e, y A ¥, quantum state of charge 2e then corresponds to a
=x"29), indicating that the two particles in theesector carry ~ flux insertion of —2qh/e=—2h/Ne. In the absence of any
chargeQ=—e andQ= —2e, respectively. We shall denote ¥, quanta, this quantum state for thie, particle can be
these particles by, andW¥,. The first particle is quickly filled up to a maximum ofn™®*=1/4q=N/4 times. (This
identified with the edge electron, with self-exclusion param-follows from the self-exclusion parametge4q and the re-
eter equal tag+ 1. The presence of a “composite” particle sult that in Haldane’s statistice"®=1/g.) The amount of
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flux that corresponds to this maximal occupation equaldave self-exclusion parameter approachipgl, and by

—(2h/Ne)(N/4)= —h/2e, which is precisely the flux quan- themselves cannot screen more than an amount of flux equal

tum. to h/Ne. However, due to the strong negative mutual exclu-
Summarizing, we see that the insertion of a single fluxsion statistics, an excitation that is effectively a pair of one

quantumh/2e gives rise to a quasihol@p) excitation, while ¥, and one¥ | particle can screen a much larger amount of

(negative fractions of the flux quanturtbetween—h/2e and  flux.

0) give rise to multiple occupation of th&, modes. To formalize this consideration, we introduce a particle
In the description of a BCS superconductor, the excitatior¥';, defined as a pair¥,¥ ). Following the general con-

that is induced by the insertion of a fraction of the flux quan-struction presented in Ref. 9, we derive a néwnatrix for

tum h/2e is precisely the supercurrent that screens the imthe extended systemi{; , ¥ ,¥3),

posed flux. Comparing the two pictures, we see that in the

limit g—0, theW, excitations in theg-Pfaffian state reduce qgtl a 29

to supercurrent gxcitations in the Iimiting. BQS supercon- Re: q g+l 2q|, 3.2
ductor. In an earlier stud}’,the neutral fermionic excitation 5 5 4

over the g-Pfaffian state[which is not elementary in our q q q

(e,¢) description, in the limit g— 0, has been identified with [This choice ofK-matrix guarantees an equivalence between
the pair-breaking excitation of the superconducting state. the (¥,, V) and (¥, , ¥ ,¥;) formulations] On the basis

A similar reasoning applies to the Laughlin stateiat f the extended matrik ., we identify the supercurrent ex-
=1/m, where it links the charge- e excitations at finitento  jiations as before: a singl#’, quantum requires flux

the supercurrent of the limiting superfluid boson statenat o /Ne. and with a maximal filling o™= 1/4q=N/4, we

=0. ) ) ) . see that the?'; quanta can “absorb” an amount of flux
In a somewhat different physical picture, the edge particlg,q 4 toh/2e. In the limitq—0, theW ; quanta are identified
W, is the one that is excited in the process of Andreev rey it the supercurrent quanta, which have the ability to

flection off the edge of a sample in tliePfaffian state. It . L~
will be interesting to explore in some detail such processe%ﬁigienn a full quanturh/2e of applied flux. Inverting<,, we

for the q=2 Pfaffian state.

1
I1l. PSEUDOSPIN-TRIPLET PFAFFIAN 1 0 2
QUANTUM HALL STATES 1
As a generalization of the results in the previous section, R¢,= 0 1 R E (3.3
we consider ag-Pfaffian state for particles with an internal
(double-layer or pseudospimlegree of freedom. The wave 1 1 2q+1
function of this state is the Halperin two-layer state with 2 2 4q
labels @+1,+1,—1). This state ha&-matrices i ,
with associated parameters
g+l gq—1
o= , X ﬂ 1/2 _ﬁ_ ﬁ 1/2
g-1 g+1 == y v Xp= = y ,
3.1) 1 1 ! !
+1 —qg+1 _
K=t[ T Xa=(xyx) 2= (y;y )14, (3.4
49\ -gq+1 q+1

wherey,  =exdB(u;,—€)]. The fact thak, , do not depend

describing excitations¥, , ¥ ) of charge—e and (¢, , ;) on the energy parametes makes clear that these are
of chargee/2q, respectively. There are no pseudoparticlespseudoparticles. As such they account for degeneracies in
and these states are Abelian quantum Hall states. states that contain more than othg quantum. Despite this

We shall now argue that, based on the analogy with theppearance, by construction it is clear that the braid statistics
g-Pfaffian states for spinless electrons, for these states waf these degenerate excitations are Abelian.
can identify supercurrent-type excitations in thgector and, At the level of the edge CFT, the two different formula-
by duality, reformulate thep sector in terms of one physical tions of the §+1,0+1,—1) theory are easily understood.
quasihole and two pseudoparticles. We stress that this refotn the usual Abelian formulation, the edge CFT is written in
mulation does not change the physical interpretation; in parterms of a(charge boson¢. plus a Dirac fermion, whose
ticular, although the new formulation employs two (dimensions) spin field has Abelian statistics. The alterna-
pseudoparticles, it still refers to an Abelian quantum Halltive formulation employsp. plus two real fermiongcalled
state. e and iy, in Ref. 12. The two pseudoparticles that we ob-

In the limit g—0, the @+149+19g—1) paired wave tained describe the non-Abelian statistics of the spin fields of
function reduces to a form that can be interpreted &om-  the real(Ising) fermions ¢, and ¢, separately. The actual
plex) p-wave pseudospin-triplet staté.Taking g=1/N as  chiral Hilbert space of the edge CFT is, however, a subspace
before, we can look for excitations in theesector that de-  of the Hilbert space of thésing)? CFT, and the braid statis-
scribe the response to the insertion of fractional flux, and thatics in this subspace are all Abelian.
will smoothly connect to the supercurrentgat 0. Inspecting The various phase transitions described in Ref. 12 are
the matrixK,, we see that the two quant®, and¥ | each easily traced in the statistics matrices. The transition obthe
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spins into the strong-pairing phase decouples one row of the V. NON-ABELIAN SPIN-SINGLET
matrices(3.2) and(3.3), turning them into the matricg2.6) QUANTUM HALL STATES
and(2.3) corresponding to thg-Pfaffian state. A subsequent
transition of thee spins into the strong-pairing phase leaves
only the edge excitation¥ 3 and further reduces the matrix
to Kc=4q, appropriate for a Laughlin state of chargee
particles at fillingry=1/q.

In Ref. 8, two of the present authors introduced a series of
non-Abelian spin-singlefNASS) states. The states are la-
beled as(k,M) and have filling fractionv=2k/(2kM+ 3)
=1/g with q=M+3/2k. The wave functions, which are
constructed as conformal blocks of higher raftkepney
parafermions, have a BCS-type factorized form, where the
IV. PARAFERMIONIC QUANTUM HALL STATES: factors describe &-fold Spin-polarized ClUStering of elec-

GENERALIZED PAIRING trons of given spin and the formation of a spin singlet with
2k participating electrons(See Ref. 8 for an example and

In Ref. 7 Read and Rezayi proposed a series of nonRref. 9 for general and explicit expressions for the wave func-
Abelian quantum Hall states based on orlerustering of  tjons)

spinless electrons. The wave functions for these states are For k=1 the spin-singlet states are Abelian with
constructed with help of the well-knows, parafermions. K-matrices given by
The general state of Ref. 7, labeled @&s M), has filling
fraction v=k/(kM+2)=1/q with q=M +2/k. Fermionic q+
guantum Hall states are obtained fdran odd integer|For Ke—(
M =0 we have a bosonic state with &) symmetry] For q
k=1,2 these new states reduce to the Laughtin=(M + 2) (5.2
and g-Pfaffian (@=M + 1) states, respectively. q+i —qg+1
In Ref. 14, the matriceK , were identified for generdk, K¢:_( ) ]
M). Here we illustrate th&-matrix structure fok= 3, where 2q
we have
We remark that, as for the Laughlin series, there is a self-
duality in the sense tha€,(M)=K ,(M") with

1 -1 0
3M'+4 1
_1 1 _1 - - =
Ky=| 2 2, M=-om+3 (q 4q’)' (5.2
1 3g+1
-3 ~9q One of the self-dual points =M'=—-1(q=q'=3), cor-
responding to two decoupleg=1 systems for spin up and
(4.0) down.
. In a forthcoming pap&rwe present a detailed derivation
Qy= O’O'E ) of the K-matrix structure for the general NASS states, where

we obtain “minimal” K-matrices of size RX2k. The ma-

_ _ ) trix K, describes fully polarized compositésf both sping
for two pseudoparticles and a physical quasihole of charggs 1 2 ... k quasielectrons, while the matrig,, describes

e/3q. Inverting this matrix gives a spin doublet of physical, fractionally charged quasiholes
(Q=el4q) and a collection of 2(—1) pseudoparticles that

q+2 2q+2 3q take care of the non-Abelian statistics. The simplest non-
3 3 trivial example is the result fok=2 (M=q— %),
Ke=| 29+% 4q+3% 69|,
4 2 _2 _1
3q 6q gq 3 3 3 3
(4.2 S
Qi=(—e,—2e,—3e). Ky=| _2 _1 28a+3  4g-3|
° 3 48 48q
Again puttingg=1/N, with N large, we can repeat the pre- 1 2 49—-3 28q+3
vious arguments. Clearly, th¥; quanta of charge- 3e act -3 T3 ~ W 484
as the “supercurrent” for the three-electron clustering. One
such quantum requires a flux of3h/eN, and with n™ T
=N/9 the total flux that can be absorbed equalk/3e, as Q,=(0.0£/4q,e/4q),
expected. (5.3
We remark that, fog— 0, the excitationsV'; , have frac- qg+3 09— 29+3 29-3
tional exclusion statistics parameters, in agreement with the 3 5 1 .
fact that thek=3 state afj=0 hasM = — 2 and is thus not 9—2 9+i 20-; 20+;

L : X B > K.=
fermionic. What one has instead is an “anyonic” supercon- ¢

ductor with Cooper clusters of charge3e and cluster-
breaking excitations with fractional exclusion statistics. 20—3% 2q+3 49-1 4q+1

2q+% 2q—-% 4q+1 4g9-1
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le(—e,—e,—Ze,—Ze). quantum Hall states to the non-Abelian case. Note, however,

_ ) ~ that the torus degeneracy for the non-Abelian case is not
In ar_walogy with the reasoning fqr the pseudosp_ln-trlpletgiven by the Abelian resuldetK )|, but that a further re-
Pfaffian state, one may now consider the composite of thgyction is necessary due to the presence of the pseudopar-
k-spin-up and thek-spin-down components, and determinetjcles. (Compare with Ref. 17, where such a reduction was
an extendedK -matrix [cf. Eq. (3.2]. Forq—0 one finds  giscussed in the context of the parton construction of non-
that all statistical couplings of this composite vanish, and weapelian guantum Hall states.
identify it with the supercurrent corresponding to the \ye expect that these neMrmatrices can be used to for-
2k-electron spin-singlet clustering. The extendegmatrix  my|ate effectiveedge and bulktheories for the non-Abelian
is invertible and gives a redefined sector with a single quantum Hall states. Until now, effective field theories for
spinless¢ quantum and R pseudoparticles. For obtaining a pylk excitations(of the LGCS typghave been obtained only
formulqﬂon with manifest S_(JZ) spin symmetry, a further for some very special cas&sand it will be most interesting
extension oK, can be considered. to find more systematic constructions.
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