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We present the resolution of a long-standing discrepancy between the moments of parton distributions
calculated from lattice QCD and their experimental values. We propose a simple extrapolation formula
for the moments of the nonsinglet quark distribution u 2 d, as a function of quark mass, which embodies
the general constraints imposed by the chiral symmetry of QCD. The inclusion of the leading nonana-
lytic behavior leads to an excellent description of both the lattice data and the experimental values of
the moments.
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Although historically, deep-inelastic scattering from the
nucleon provided an important test of perturbative QCD,
precision measurements of parton distribution functions
(PDFs) in these experiments now provide crucial, funda-
mental information about the nonperturbative structure of
the nucleon. Recent discoveries that have had a profound
impact on our understanding include the proton spin cri-
sis [1], the Gottfried sum rule violation [2], and to a cer-
tain extent the nuclear EMC effect [3]. Future experi-
ments aimed at testing whether Dū and Dd̄ are equal or
whether s�x� differs from s̄�x� should also serve to deepen
our understanding of the nonperturbative origin of parton
distributions.

A decade or more of rigorous, nonperturbative calcula-
tions of the moments of PDFs in the nucleon within lattice
QCD has so far led to a major impasse. The values of
the first three nontrivial moments typically lie some 50%
above the corresponding experimental data. Since PDF
moments are benchmark calculations of hadron structure
in lattice QCD, an unresolved discrepancy of this order
of magnitude in such fundamental quantities would seri-
ously undermine the credibility of any ab initio calculation
of hadronic properties, and therefore represents a crucial
challenge in hadronic physics. In this Letter we explain for
the first time the physics required to resolve this problem.
We show that inclusion of the nonanalytic chiral behavior
of the moments of u 2 d as a function of quark mass re-
moves the discrepancy.

At first sight, when one thinks of structure functions in
terms of light-cone correlation functions of currents mea-
sured at high energy and momentum transfer, it may appear
remarkable that spontaneous chiral symmetry breaking and
the associated pion cloud could play an essential quantita-
tive role. Indeed, the 50% effects may seem all the more
puzzling when chiral corrections to lattice hadron mass
calculations are known to be far smaller. However, as dis-
cussed below, moments of structure functions correspond
to matrix elements of local operators in the hadron ground
state. Furthermore, by the familiar variational principle in
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quantum mechanics, a first-order error in the wave func-
tion yields a first-order error in matrix elements of gen-
eral operators while producing only a second-order error in
the energy, so much larger errors in operators than masses
should be expected.

Lattice calculations of parton distributions in Euclidean
space-time are based on the operator product expansion —
one calculates the matrix elements of certain local opera-
tors. The results are directly related to the moments of the
measured PDFs:

�xn�q �
Z 1

0
dx xn�q�x, Q2� 1 �21�n11q̄�x, Q2�� , (1)

where the distribution q�x, Q2� is a function of the
Bjorken variable x and the momentum scale Q2. The
operator product expansion relates the moments �xn�q

to forward nucleon matrix elements of local twist-2
operators, which for nonsinglet distributions are given
by O�m1...mn11� � cg�m1

$
Dm2 . . .

$
D mn11�c, where c is the

quark field, Dm the covariant derivative, and �. . .� repre-
sents symmetrization of the Lorentz indices. As a result
of operator mixing on the lattice, all lattice calculations
have so far been restricted to n # 3. Nevertheless, many
features of the PDFs can be reconstructed from just the
lowest few moments [4].

Early calculations of structure functions within lattice
QCD were performed by Martinelli and Sachrajda [5].
The data used in the present analysis, shown in Fig. 1 for
the n � 1, 2, and 3 moments of the u 2 d difference at
next-to-leading order (NLO) in the MS (modified mini-
mal subtraction) scheme, are taken from the more recent
and extensive calculations by the QCDSF [6–8] and MIT
[9] groups. The data include results from quenched simu-
lations at b � 6.0 for several values of k, which for a
world average lattice spacing of a � 0.1 fm correspond
to quark masses ranging from 30 to 190 MeV. In addi-
tion, we include unquenched data from the MIT group,
which has also performed the first full QCD calculations at
© 2001 The American Physical Society 172001-1
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b � 5.6 (corresponding to the same a as for the quenched
data with b � 6.0) using the SESAM configurations [10].
The unquenched results are consistent with the quenched
data, indicating that internal quark loops do not appear
to play an important role at the quark masses considered.
Rather than show the moments versus the scale and renor-
malization scheme dependent quark mass, we plot the data
as a function of the pion mass squared, m2

p ~ mq. For
the n � 1 moment we retain only the data correspond-
ing to the statistically most accurately determined operator
O44 2 1	3

P3
i�1 Oii [6–9]. To avoid finite volume effects

[11], we exclude points at the lowest quark masses from
the data sets of Refs. [7] and [9]. The moments correspond
to a momentum scale of Q2 � 1	a2 
 4 GeV2.

Note that matrix elements of the operators O�m1...mn11�
include both connected and disconnected diagrams, corre-
sponding to operator insertions in quark lines which are
connected or disconnected (except through gluon lines)
with the nucleon source. Since the evaluation of discon-
nected diagrams is considerably more difficult numerically,
only exploratory studies of these have been completed [12]
and the present work will treat only connected diagrams.
However, because the disconnected contributions are flavor
independent (for equal u and d quark masses), they cancel
exactly in the difference of u and d moments. Therefore
it is appropriate to compare connected contributions to lat-
tice u 2 d moments with moments of phenomenological
PDFs [13].

To compare the lattice results with the experimentally
measured moments, one must extrapolate the data from the
lowest quark mass used ��50 MeV� to the physical value
��5 6 MeV�. Naively one extrapolates to the physical
quark mass assuming that the moments depend linearly on
the quark mass. However, as shown in Fig. 1 (long-dashed
lines), a linear extrapolation of the world lattice data for
the u 2 d moments overestimates the experimental values
by some 50% in all cases. This suggests that important
physics is still being omitted from the lattice calculations
and their extrapolations. It is crucial, if one is to have
confidence in lattice calculations of hadronic observables,
that the origin of this discrepancy is identified.

Indeed, one knows on very general grounds that a lin-
ear extrapolation in mq � m2

p must fail because it omits
the crucial nonanalytic structure associated with chiral
symmetry breaking. Even at the lowest quark mass ac-
cessed on the lattice, the pion mass is over 300 MeV.
Earlier studies of chiral extrapolations of lattice data
for hadron masses [14], magnetic moments [15], and
charge radii [16] have shown that for quark masses above
50–60 MeV, hadron properties behave very much as one
would expect in a constituent quark model, with rela-
tively slow, smooth behavior as a function of the quark
mass. However, for mq & 50 MeV one typically finds
the rapid, nonlinear variation expected from the nonana-
lytic behavior of Goldstone boson loops [17]. The transi-
tion occurs when the pion Compton wavelength becomes
172001-2
FIG. 1. Moments of the u 2 d quark distribution. The
straight (long-dashed) lines are linear fits to the data, while
the curves have the correct LNA behavior in the chiral limit.
For each moment, the best fit to the lattice data using Eq. (3)
is shown by the solid curve (with m � 550 MeV), while the
inner envelope about this represents the statistical errors in the
data. The best fit parameters are the following: a1 � 0.1427,
b1 � 20.0624 GeV22, a2 � 0.0459, b2 � 20.0245 GeV22,
a3 � 0.0184, b3 � 20.00666 GeV22, which give a x2 per
degree of freedom of 0.98, 0.60, and 0.60 for n � 1, 2, and 3,
respectively. The effect of the uncertainty in the parameter m
is illustrated by the outer lower (upper) short-dashed curves,
which correspond to m � 450 �650� MeV. The small squares
are the meson cloud model results [24], and the dashed curve
through them best fits using Eq. (3). The star represents
the phenomenological values taken from NLO fits [13] in the
MS scheme.

larger than the pion source, essentially the size of the ex-
tended nucleon.

Following the earlier work on chiral extrapolations of
physical observables, we expand the moments �xn�q at
small mp as a series in m2

p . Generally the expansion co-
efficients are (model-dependent) free parameters. On the
other hand, the pion cloud of the nucleon gives rise to
unique terms whose nonanalyticity in the quark mass arises
from the infrared behavior of the chiral loops. Hence they
are generally model independent. In fact, the leading non-
analytic (LNA) term for the u and d distributions arising
from a one-pion loop behaves as [18]

�xn�LNA
q � m2

p logmp . (2)
172001-2
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Experience with the chiral behavior of masses and mag-
netic moments shows that the LNA terms alone are not suf-
ficient to describe lattice data for mp * 200 MeV [14,15],
so that extrapolation of lattice data to mp � 0, through the
chiral transition region, requires a formula which is consis-
tent with both the heavy quark and chiral limits of QCD.

In order to fit the lattice data at larger mp , while preserv-
ing the correct chiral behavior of moments as mp ! 0, the
moments of u 2 d are fitted with the form

�xn�u2d � an 1 bnm2
p 1 ancLNAm2

p ln

µ
m2

p

m2
p 1 m2

∂
,

(3)

where the parameters an and bn are a priori undetermined,
and the mass m essentially determines the scale above
which Goldstone boson loops no longer yield rapid varia-
tion, typically at scales �500 MeV. (In fact, the mass m
corresponds to the upper limit of the momentum integra-
tion if one applies a sharp cutoff in the pion loop integral
[19].) The coefficient cLNA � 2�3g2

A 1 1�	�4pfp �2 has
been calculated in chiral perturbation theory [20]. In the
limit mp ! 0 the form in Eq. (3) is therefore the most
general expression for moments of the PDFs at O �m2

p�
which is consistent with chiral symmetry. At larger mp

values, where chiral loops are suppressed, the argument of
the logarithm in Eq. (3) ensures that the effects of this term
are switched off.

Having motivated the functional form of the extrapola-
tion formula, we next apply Eq. (3) to the lattice data from
Refs. [6–9]. In principle, Eq. (3) is only strictly applicable
to full (unquenched) QCD, and quenched chiral perturba-
tion theory should be used to extrapolate quenched data at
small quark masses where the effects of pion and spuri-
ous h loops will dominate the mp dependence. However,
at the large quark masses where lattice calculations are
currently performed, chiral effects are strongly suppressed
and, as shown in Fig. 1, quenched and unquenched results
are statistically indistinguishable and have therefore been
combined to improve overall statistics.

While the current lattice data are at values of mp too
high to display any deviation from constituent quark be-
havior, it is not a priori obvious why a lowest order form
should be able to fit data at mp � 1 GeV. Hence, it is
useful to note that studies based on chiral quark mod-
els suggest that Eq. (3) can indeed provide a very good
parametrization of the mp dependence of PDF moments.
We illustrate this by taking a simple meson cloud model
of the nucleon, based on the MIT bag with pion cloud
corrections introduced perturbatively in an expansion in
the infinite momentum frame [21] about “bare” nucleon
states — analogously to the cloudy bag model (CBM) [22].
Earlier studies of the N and D masses [14] and the nucleon
magnetic moments [15] established that the CBM gives a
good description of the lattice data over a wide range of
quark mass. The details of structure function calculations
172001-3
in the meson cloud model are well known and can be found
in the literature [23,24] (see also [25]). Since the model is
not our main focus here, we simply show the results for the
n � 1, 2, and 3 moments (for a bag radius of 0.8 fm and a
pNN dipole vertex form factor mass of 1.3 GeV [23,24]).
These are denoted in Fig. 1 by the small squares, and the
x2 fits to these using the form (3) are represented by the
dashed curves through them. Clearly, Eq. (3) provides an
excellent fit to model data, which are also in qualitative
agreement with the calculated lattice moments. These re-
sults give us confidence that a fit to the lattice data based
on Eq. (3) should be reasonable.

The results of the best x2 fit to the lattice data for each
moment are given by the central solid lines in Fig. 1. The
inner envelopes around these curves represent fits to the
extrema of the error bars. For the central curves, the value
of the mass parameter m that is most consistent with all ex-
perimental moments is m � 550 MeV. This value of m

is comparable to the scale at which the behavior found in
other observables, such as magnetic moments and masses,
switches from smooth and constituent quarklike (slowly
varying with respect to the current quark mass) to rapidly
varying and dominated by Goldstone boson loops. The
similarity of these scales for the various observables sim-
ply reflects the common scale at which the Compton wave-
length of the pion becomes comparable to the size of the
hadron (without its pion cloud). We also note that this is
similar to the scale predicted by the x2 fits to the meson
cloud model in Fig. 1.

At present, all of the lattice data are in a region where the
moments show little variation with m2

p . This, together with
the relatively large errors, means that one cannot distin-
guish between a linear extrapolation and one that includes
the correct chiral behavior, as Fig. 1 illustrates. Conse-
quently, it is not possible to determine m from the current
lattice data. In fact, with the current errors it is possible
to consistently fit both the lattice data and the experimen-
tal values with m ranging from �400 to 700 MeV. The
dependence on m is illustrated in Fig. 1 by the difference
between the inner and outer envelopes on the fits. The for-
mer are the best fits to the lower (upper) limits of the error
bars, while the latter use m � 450 (650) MeV instead of
the central value of m � 550 MeV. Data at smaller quark
masses are therefore crucial to constrain this parameter and
guide an accurate extrapolation.

These results have significant implications for lattice
calculations. Unlike heavy quark systems, where it may
be acceptable to work in a reasonably small volume, cal-
culations of the nucleon require an accurate representation
of the pion cloud. Hence the volume must be sufficiently
large that the pion Compton wavelength of a reasonably
light pion fits well within the volume. Even though one
need not calculate at the physical pion mass, the pion
must be light enough that the parameters of a system-
atic chiral extrapolation are well determined statistically.
Specifically, from Fig. 1 it is clear that 5% measurements
172001-3



VOLUME 87, NUMBER 17 P H Y S I C A L R E V I E W L E T T E R S 22 OCTOBER 2001
down to m2
p � 0.05 GeV2 [requiring a spatial volume of

order �4.3 fm�3] would provide data for an accurate chi-
ral extrapolation. This will require Terascale calculations
[26], first in the quenched approximation with chiral fer-
mions and eventually in full QCD, which is necessary to
produce the full pion cloud and the correct chiral behavior
embodied in the leading nonanalytic structure. While this
is demanding, with the hybrid Monte Carlo algorithm of
Ref. [27] requiring 8 Teraflops-years for full QCD, since
the total computational cost of this algorithm varies as
m27.25

p , we note that this is still a factor of 26 less than
that necessary for a brute force evaluation at the physical
quark mass. Indeed, the discovery reported here brings
reliable calculations of hadronic properties within the ca-
pability of the next generation of computers that will be
available in the next 2–3 years.

In summary, we have investigated the quark mass depen-
dence of moments of quark distribution functions, with em-
phasis on both the physics in the chiral limit and the scale
at which the pion Compton wavelength corresponds to the
intrinsic size of the nucleon. We proposed a low order for-
mula for the mp dependence of moments, which embodies
the leading nonanalytic behavior expected from the chiral
properties of QCD, and used it to extrapolate the available
lattice data to the physical region. The applicability of a
low order expansion for the lattice data is also supported by
phenomenological chiral quark model studies. Compared
with linear extrapolations, which drastically overestimate
the experimental values, we find that within the current
errors there is no evidence of a discrepancy between the
lattice data and experiment once the correct dependence
on quark mass near the chiral limit is incorporated. This
observation resolves an important long-standing problem
with ab initio calculations of hadron structure in QCD
which has persisted for more than a decade. It not only
removes a serious threat to the credibility of current lattice
calculations, but also provides the foundation for quantita-
tive calculation of hadron observables with the next gen-
eration of Terascale computers.
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