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Realization of chiral symmetry in the domain model of QCD
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The domain model for the QCD vacuum has previously been developed and shown to exhibit confinement
of quarks, a strong correlation of the local chirality of quark modes, and a duality of the background domain-
like gluon field. Quark fluctuations satisfy a chirality violating boundary condition parametrized by a random
chiral anglea; on the jth domain. The free energy of an ensembleNof>> domains depends ofw; ,]
=1,... N} through the logarithm of the quark determinant. Its parity odd part is given by the axial anomaly.
The anomaly contribution to the free energy suppresses continuoudJgdipldegeneracy in the ground state,
leaving only a residual axial(2) symmetry. This discrete symmetry and the fla8&i(N;), X SU(N;¢)g chiral
symmetry in turn are spontaneously broken with a quark condensate arising due to the asymmetry of the
spectrum of the Dirac operator. In order to illustrate the splitting betweenythfom octet pseudoscalar
mesons realized in the domain model, we estimate the masses of the light pseudoscalar and vector mesons.

DOI: 10.1103/PhysRevD.69.074029 PACS nuniferl2.38.Aw, 12.38.Lg, 14.65.Bt, 14.70.Dj

[. INTRODUCTION of both static(area law and dynamicalpropagators are en-
tire functions of momentupnquarks[3]. It also displays spe-

A mechanism that simultaneously provides for confine-cific chiral properties of quark eigenmodes; namely, as will
ment of color, spontaneously broken chiral symmetry, and &€ discussed in more detail below, the spectrum of the Dirac
resolution of theU,(1) problem remains one of the open operator is asymmetric with respect 10— —\ and zero
problems in QCD today. Partial solutiops] based on spe- quark modes are absent, but the local chirality of all nonzero
cific semiclassical or topologically stable configurations canmodes at the center of domains is correlated with the duality
go some way to manifest this triplet of phenomena, butof the background field4]. This has been observed on the
founder either on generating all three or in allowing for anlattice[5] and is usually considered as an indication of spon-
effective model of the vacuum from which hadron spectrostaneous breakdown of flavor chiral symmetry. The purpose
copy can be derived. In any case, one expects that topologpf this article is to study the details of chiral symmetry real-
cal objects of various dimensions—pointlike, stringlike, andization in the domain model. The nonzero quark condensate
sheetlike—should contributf2], complete with significant and axial anomaly are generated as a result of spectral asym-
quantum fluctuations, in a way that would be difficult to metry and the definite mean chirality of the eigenmodes. We
describe via an interacting microscopic model. In this papersompute the quark condensate, study the degeneracies of the
we continue the exploration of the “domain model” for the minima of the free energy of the domain ensemble with re-
vacuum, originally proposed if8], as a scenario for simul- Spect to chiral transformations, and estimate the spectrum of
taneous appearance of all three phenomena: confinememseudoscalar mesons.
spontaneous chiral symmetry breaking via the appearance of The model is defined by a partition function describing an
a quark condensate, and a continu®Id(N;), XSU(N;)g ~ ensemble of hyperspherical domains, each characterized by a
degeneracy of the vacuum fbl; massless quarks, but with- background covariantly constant self-dual or anti-self-dual
out a U,(1) continuous degeneracy of ground states thagluon field of random orientation. Summing over all orien-
would be indicative of an unwanted Goldstone boson. Thdations and both self-dual and anti-self-dual fields guarantees
purpose of studying a model of this type is to identify theLorentz andCP invariance. Quarks are confined as demon-
typical features of the relevant nonperturbative gluonic constrated in the original work3]. On the boundaries of each
figurations. Such configurations would provide for as manyhypersphere, fermion fluctuations satisfy a chirality violating
gross features of nonperturbative QCD as possible. But theoundary condition
model should preserve simultaneously the well-studied short

distance regime and should be expressed in terms of quark- i (X)€'*Y54(X) = ih(X) 1)
gluon degrees of freedom as well as in terms of colorless
hadron bound states. which is 27 periodic in the chiral angle.. Here 7, is a unit

The model under consideration provides for confinementadial vector at the boundary. Integrating over all such chiral
angles guarantees chiral invariance of the ensemble. As a
consequence of Eql), the spectrum of eigenvaluasof the

*Electronic address: akalloni@physics.adelaide.edu.au Dirac operator in a single domain is asymmetric unaer
TElectronic address: nedelko@thsunl.jinr.ru — —N\. Such asymmetries have been studied in other con-
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texts, for example, by6]. In the case of the domain model, effective # parameter of QCD to zero is discussed in detail in
the above boundary conditions are combined with(trei-) [8] in the context of the stron@P problem.
self-dual gluon field which leads to a strong correlation be- Moreover, the form of Eq(2) means that the free energy
tween the local chirality of quark modes at the centers ofdoes not depend on flavor nonsinglet chiral angles when
domains with the duality of the background gluon fi¢dd. more than one massless quark flavors are introduced. This
In this paper, we study how these aspects contribute to quaidlows for the correct degeneracy of vacua with respect to
condensate formation and the pattern of chiral symmetrgontinuousSU(N;), X SU(N¢)g chiral transformations. This
breaking. vacuum structure implies the existence of Goldstone bosons
The vacua of the quantum problem associated with ain the flavor nonsinglet pseudoscalar channel but not in the
ensemble of domains are the minima of the free energy desinglet channel. To unveil more explicitly the singlet-octet
termined from the partition function. The problem of the splitting, we analyze the structure of pseudoscalar correlation
quark contributions to the free energy requires calculation ofunctions in the context of the domain model and estimate
the determinant of the Dirac operator in the presence ofhe masses of light pseudoscalar and vector mesons. The
chirality violating boundary conditions. For a choice of qualitative conclusion of this analysis is that the area law
boundary condition withe— —id— /2 this problem was (confinement of static quarkand the singlet-octet splitting
tackled in[7] without taking into account the spectral asym- in the model have the same origin: the finite range correla-
metry, where the parity odd part of the logarithm of the de-tions of the background gluon field.

terminant was identified as Indéi{() ~2q9 with g the to- In the next section we briefly review the model, followed
pological charggnot necessarily integeof the underlying by a summary of the properties of the spectrum of the Dirac
gluon field, namely, the axial anomaly. operator in the domainlike gluon field. We then discuss in

Our first goal in this paper is to address the analogousletail the calculation of the logarithm of the quark determi-
problem for the specific gluon field relevant to the domainnant for one massless quark flavor, including the role of
model, taking into account the asymmetry of the spectrumspectral asymmetry in domains in giving the anomaly for the

For the parity odd part we obtain parity odd part. This is followed by an analysis of the sym-
metries of the ground state of the domain ensemble and the
Inde{(id)~2iq(a mod ). (20 computation of the condensate. In Sec. V we generalize the

' . . ' o . result toN; massless flavors in order to verify the spontane-
This result is consistent withY] up to_a contribution coming ~ous breaking ofSU(N¢), X SU(N¢)g in the ensemble. The
from the asymmetry spectral function. However, we obtainjast section is devoted to calculation of meson masses. De-

an additional parity even part which also turns out todde tails of calculations are relegated to the Appendix.
dependent. We consider this to be more an artifact of the

incompleteness of our calculation than an established prop- Il. THE DOMAIN MODEL
erty of the determinant.

In the partition function all possible sets of chiral angles For motivation and a detailed description of the model we
{ay, ...y} are summed, ensuring the chiral invariance ofrefer the reader t8]. The essential definition of the model is
the ensemble. Summation over all degrees of freedom igiven in terms of the following partition function foN
addition to chiral angles defines the free energy as a function>> domains of radius:
of these chiral angles. In the limN— oo the minima of the

N

free energy density iflaq, . .. ,ay} determine the preferred P J’ i)y
chiral angles. More specifically, when self-dual and anti-self- Z_NVILTw II:[l Eda' fiWD'/' Dy
dual configurations are summed, the anomaly &4 .leads '
to a contribution to the free energy of the form : o . o _

. . i)y ) (i) o)
—Incog2garctan(tarr) | which vanishes whena=0,7. X Li DQISID(BY)QV]Ad B,QM]
The minima are degenerate with respect to discZgtehiral Q -
transformations. Each of these minima are characterized by a ) e~ Sy QW+ B0y, ) (3)

qguark condensate of opposite sign, which arises due to the

spectral asymmetry. An infinitesimally small quark mass reswhere the functional spaces of integratim‘b and ]—"w are
moves the degeneracy between the two discrete minima, angbecified by the boundary conditions— z;)°= R?

a nonzero quark condensate is generated with the value

M QY (x)=0, )

(P(x)p(x))=—(237.8 MeV)* _ _ .

7 (x)e 75y 00 = y0(x), (5
with no additional modifications of the two model param-
eters after fixing in the gluonic sector of the theory. This E(i)eiawsi ﬁi(x)z—ﬁi)(x). (6)
gives a model with the chird, discrete subgroup dfi5(1)
being spontaneously broken, and not the continudwgl)  Heren,=n?t? with the generators? of SU,(3) in the adjoint
itself. In the absence of the mass term the ensemble averaggpresentation and the; are chiral angles associated with
of i correctly vanishes. A similar argument based on mini-the boundary condition Eq5) with different values ran-
mization of the free energy and thereby a relaxation of thelomly assigned to domains. We shall discuss this constraint
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in detalil in later sections. The thermodynamic limit assumes (B (x1)---B*™ (x,))
MnVn

V,N— but with the densityp "*=N/V taken fixed and #1h

finite. The partition function is formulated in a background N dz

field gauge with respect to the domain mean field, which is = |im E _JJ do-jn(j)al. . .n(J)anB(i)V o
approximated inside and on the boundaries of the domains ViNow T JvV .

by a covariantly constarjainti-)self-dual gluon field with the ' 52 P

field-strength tensor of the form Bﬁjzvna(l—(xl—zj) IR%)- -+ 6(1=(xn=2))"/RY)

N =B"t (X1, oot Xn),

Fa,(x)= > nWaBd 91— (x—z)%R?),
i=1

Mgl =pg2
BBy =B"d,. ay...a :f don®ar. . nag® .. .BW
HVys o v Mvy HKn¥n
Here zj* are the positions of the centers of domains in Eu- o .
clidean space. and can be calculated explicitly using the measure (£qg.
The measure of integration over parameters characterizinghis tensor vanishes for odd In particular, the integral over
domains is spatial directions is defined by the generating formula
1 2 T ;
1 d4zi 27 2w m - d J do: sino. gy
- -4 . . sin 6. ®j j SING; € wrnr
fzda' o 4&T2fv v fo da,J'0 dcp,fo d9; sing, A7 Jo 0
o 345 (2l+1)7 sin \/ZBZ[JWJWijMJW]
X f dg > 8\ &~ —5 — = = :
0 12012 \/282[JWJW¢JWJW]
X Fdwi > S(wi—wk) ..., (7)  The translation-invariant function
0 k=0,1

where @, ,¢;) are the spherical angles of the chromomag-
netic field, w; is the angle between chromoelectric and chro-

1
(X, . Xp) = ;J d*z6(1—(x,—2)%IR?)- - -

momagnetic fields, ang is an angle parametrizing the color 0(1—(x,—2)%/R?) (8)
orientation.

This partition function describes a statistical system of thecan be seen as the volume of the region of overlam of
domainlike structures of density” ! where the volume of a hyperspheres of radiug and centersyg, ... x,), hormal-

domain isv = w2R*/2. Each domain is characterized by a setized to the volume of a single hypersphere m°R*/2,
of internal parameters and whose internal dynamics are rep- _
resented by fluctuation fields. Most of the symmetries of the Ep=1forx;=---=X,.
QCD Lagrangian are respected, since the statistical ensemble ) . o ) )
is invariant under space-time and color gauge transformalt is obvious from this geometrical interpretation tz{ is a
tions. For the same reason, if the quarks are massless thEAntinuous function and vanishes if the distance between any
the chiral invariance is respected. The model involves onlyWo points|x;—x;|=2R; correlations in the background field
two free parameters: the mean field strengtand the mean ~have finite range R. The Fourier transform €, is then an
domain radiusR. These dimensionful parameters break theentire analytical function, and thus the correlations do not
scale invariance present originally in the QCD Lagrangianhave a particle interpretation. It should be stressed that the
In principle, they should be related to the trace anomaly oﬁpatlstlcal ensemble of backgrounq fields is not Gaussian
the energy-momentum tensf®,10] and, eventually, to the Since all connected correlators are independent of each other
fundamental scale\ ocp. Knowledge of the full quantum @nd cannot be reduced to the two-point correlations.
effective action of QCD would be required for establishing a ~ Within this framework the gluon condensate to lowest or-
relation of this kind. der in fluctuations is B?, the absolute value of the topologi-

A straightforward application of Eq3) to the vacuum cal charge per domain reads- BzR4/146,4and ﬂ;e topologi-
expectation value of a product of field strength tensors, cal susceptibility turns out to bg=B"R"/1287°. An area

each of the form law is obtained for static quarks. Computation of the Wilson
loop for a circular contour of a large radiils>R gives a
N string tensiono=Bf(7BR?) where f is given for color

BZV(X):; n(J)aB'(J?}g(l_(X_Z].)Z/RZ), SU(2) andSU(3) in [3]. The area law emerges due to the

finite range of background field correlators E48). On the
other hand, the model cannot account for such a subtle fea-
gives for the connected-point correlation function ture as Casimir scaling: the adjoint Wilson loop naturally
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shows perimeter law, but trivially because of the Abelianbe implemented for the self-dual background. The explicit
character of the domain mean field. form of the spinorsy and ¢ can be found if4], where it is

Estimations of the values of these quantities are knowrmemonstrated that the eigenspinor E%).has definite chiral-
from lattice calculation or phenomenological approaches andy at the center of domains correlated with the duality of the
can be used to fiB andR. As described i3] these param- gluon field. The boundary condition reduces to

eters are fixed to bew/g= 947 MeV, R=(760 MeV) ! _ _

=0.26 fm with the average absolute value of topological x=—e"%, y=¢e*'?® x*=R? (11
charge per domain turning out to lpe=0.15 and the density

of domainsy ~1=42 fm™ 4. The topological susceptibility is where uppeflower) signs correspond tg(x) with chirality
then y= (197 MeV)*, comparable to the Witten-Veneziano =1, which, using the solutions, amounts to equations for the
value [11]. This fixing of the parameters of the model re- two possible polarizations, fok, *:

mains unchanged in this investigation of the quark sector.

The quark condensate at the origin of a domain where angu- 2

lar dependence drops out was estimated in pgglexith the e " *M(k+2— A2 k+2z0)— _O{ M(K+2— A2 k+22z,)
result of — (228 MeV)>. iA

k+2—A?
Ill. DIRAC OPERATOR AND SPECTRUM _ WM(k+3_A2,k+3,ZO) 0, (12)
The eigenvalue problem
D y(X)=Np(X), and forA,
7 (X)€'“Y5y(x) = h(x), Xx*=R? iAz,

e ' *M(— A2 k+2.z0)+ M(1—A?k+3,2,)=0,
was studied in[4]. The dirac matrices are in an anti- k+2
Hermitian representation. Far assumed to be real a bior- (13

thogonal basis has to be constructed. Solutions can be la-

beled via the Casimirs and eigenvalues where z,=BR?%2 and A=\/V2B. For the present work
K Egs.(12), (13 are the starting point, from which we see by
4+ 1), k=0,1, ..., inspection that a discrete spectrum of complex eigenvalues

k
K2=K3— - , _
2 emerges for which there is no symmetry of the foim

2

, — —\. For given chirality and polarization and angular mo-
Kiz2—=M12, mentumk, an infinite set of discretd are obtained labeled

by a “principal quantum numberh.
my o= —k/2, —k/i2+1,...,kl2—1, k/2,

corresponding to the angular momentum operators IV. QUARK DETERMINANT AND FREE ENERGY FOR A
SINGLE DOMAIN

1
K1'2=§(L M) A. Massless case

We consider the one-loop contribution of the quarks to the
with L the usual three-dimensional angular momentum opfree energy densiti (B,R|a) of a single(anti-)self-dual do-
erator andM the Euclidean version of the boost operator.main of volumev = m°R?*/2,

The solutions for the self-dual background field are then
exp{—vF(B,R|a)}

Vi =1 i+ i © |
iD Nen(B) )
wherey and ¢ must both have negative chirality in the self- _deh(ﬁ) " ekmy ( )\K_(O)> =exp{—{'(8)}s-o-
dual field andk is related to the polarization of the field kn
defined via the projector (14)
O,=N.X, +N_3_, (10  The normalization is chosen such that gimyF(B,R|a)

=0. The free energy is theR=v 17’ (0).
In the zeta-regularized determinant an arbitrary sgale
appears, and it is convenient to work with scaled variables

with

21 —(1e3B
Ni—z(l_n [n]), Ei—i(l_ZB B)

B=\2BIn, p=uR, E=N(B)u, =N O)/p,

being respectively separate projectors for color and spin po-

larizations. Significantly, the negative chirality fprande is  and where the dimensionless quantity BR?/2= 8?p?/4 ap-
the only choice for which the boundary condition E§).can  pears prominently. Moreover, it is convenient to analytically
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continuea— —i¥— /2 to guarantee a real spectrum of ei-
genvalues of the Dirac operator for @l We shall regard the
background domain field as being self-dual in the following.
Then, Egs(12), (13) can be recast into a form determining
the rescaled eigenvalugs namely,

il

M(k+2— &%/ 8% k+2,z2)+e? 2%

[M(k+ 2—&%1B?% k+2.2)

k+2— &%/ B2

K+ 2 =0

M (k+3— £%/ 8% k+3,2) (15)

for ¢ and

ép
2(k+1)

M(1— &% 8% k+22)=0
(16)

M(— &% B% k+1z)+e?

for £~ 7. The zeta functiord(s) breaks up into two par{s],
respectively symmetri¢S) and antisymmetri¢AS) with re-
spect toé— —¢:

{(s)={s(s)+ Las(S),

with

1 _
(9= 5 (1+e7 ™) {pa(sl2), 17)

1 _
{as(S)= 5(1—e*'”3) 7(s). (18

PHYSICAL REVIEW D 69, 074029 (2004

1, T T
{'(0)=| 300 +i (0TI 7(0) |, (1)

with the normalization chosen in E§l4) such that{’(0)
vanishes a8—0.

The spectral sums over quantum labblscan be com-
puted using a representation of the sum as a contour integral
of the logarithmic derivative of the function whose zeros
determine the spectrum,

g,

(see[12]), where the zeros of (£)=0 are {=¢y and the
contour is chosen such that all zeros are enclosed. With a real
parameterd, the poles lie on the real axis, and there is no
pole at the origin for anyd. By deforming the contour and
accounting for the vanishing of contributions to the integral
at infinity, the expressions arising from Eg2) can be trans-
formed into real integrals. The following representations for
the two spectral functions are eventually obtained:

1 1
& 2m

dé d

2 és dg

N

Inf(¢) (22

t

J, ¢
0

IZS dt

25 SIN(7S) K1-2s
K

d
{p2(S)=p V(k,t|z,9),

1

L COTSI2)

© dt d
kl—sf
21 0

pa t—sﬁq’(k.ﬂzﬁ),

(23

n(s)=p

i

with ¥ and® being the sums of contributions from the two

The assumption behind these representations is that the spggsjarizations, taking the forms
trum of eigenvalues can be well ordered according to the

magnitude of the eigenvaluég, which is certainly the case
with the solutions to Eqgs(15), (16). However, there is an
ambiguity which can be fixed by specifying whether the

A%(k,t|z)+e*"B2(k,t|2)
A%(k,t)+e?"B?(k,t)

|

V(ktlz,9)= > In

K==

smallest-in-magnitude eigenvalue is either positive or nega-

tive. This determines correspondingly the sign choice in Eqgs.

(17), (18).

Thus the key quantities devolve into the zeta function for
the squared Dirac operator and the asymmetry function, re-

A, (kt|z)+ie?B,.(k,t|z)
A, (kt|z)—ie?B,(k,t|z)

|

d(ktlz,9)= 2> In

spectively: and where
1 2t2p2
_ A_(ktlz)=M k+1.z],
pa(s)= > (K+ 1)( p - ) (19 ( 4z
kin.x [&(B)]?  [€6(0)]1%°
ME6(B)] sori £y (0)] B (ktl2)= P p 14 K )
s s _(k,t|]z)= , Z|,
7(s)= >, (k+1)( e i ) 2(k+1) 4z
kin,x |§kn(B)| |§kn(0)|
(20 2422
A (kt z)zM(— ,k+1,—z),
It should be stressed that in the presence of baglike boundary 4z
conditions {5 and {,s do not have the meaning of parity yo o
conserving and parity violating terms since a parity transfor—B K tlz) = z Ml — k°t°p K1 —
mation in terms of eigenvalues is given hk{(®)— — ¢ +(K, Z)_@ 4z T2
(=) and both spectral functions contain parity conserving o 2 5
and violating terms. Thus the determinant for a given param- S Y B L P
eter ¥ is defined by k+1 4z ' ’

07402
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2Kk1
A(k,t)=

ktp),

2kk1
k,t)= —— I, 1(ktp). 2
B(k,t) (ktp)klk 1(Ktp) (24

The Bessel functionk, emerge from the limiB— 0 with the
normalization of the determinant as specified above. The
next step is to expand the confluent hypergeometric functions
in 1/k, similar to the Debye expansion of Bessel functions,
for example,

k2t2 2
Y
4z

,k+1,z)=C(tp K) 2 tp 2 25

The forms of the prefactors and tiv,(x,z) functions are
given in the Appendix for the various Kummer functions
appearing irA,, andB,.

Before proceeding with more detail, let us give an over-
view of the subsequent steps. The expansions(&%g). are
first inserted inZ(s) and %(s). Then the integrals ovdrcan
be evaluated term by term in the series ik.1The order of
summation ovek andn is then exchanged. This is the most
subtle step, which we discuss below. But it means that now
the sums ovek can be read off in terms of the Riemann zeta
function. The resulting p2(s) then has the structure

foa(9)=sp2o S

ZO {r(2s+n=1)f(22|n)+ 6{pa(s),
(26) and

where the term5{ denotes those potentially present contri-
butions coming from interchange of the order of summations
overn andk. A similar structure appears for the asymmetry
spectral function as well. Then we are interested in the de-
composition of the resulting expressions arosrd. In this
limit the first term in Eq.(26) provides only a contribution
from then=2 term and can be calculated with relative ease
since only the lowest coefficientgl; and M, in Eq. (25
contribute. However, as occurs in even simple problgt8§

the second term in E¢26) is much more difficult to com-  ypon performing the (or y) integrations and where we have
pute. To achieve this one needs to know the coefficientgsed that

f(z%|n) as a function of the continuous varialieBelow we
will elucidate the contribution from the first term alone, bear-
ing in mind the necessity of a complete analysis.

Now, in more detail, using expansions of the type &%)

Viy)=-3

W,y )=

D,(y|9)=—2ie’y?*V1-y?

{p2(s)=7%(1+2slnp)s

PHYSICAL REVIEW D 69, 074029 (2004

2y(y—1)(3y+1)
(y+1)?
y2(y—1)
[y+ 1_ (y2_ 1)2621‘)]2
X[(y?—1)(2y3+6y%+7y+1)

—2(y+1)(2y*+5y3+5y2—y+1)e??
+(y—1)(2y*+6y3+5y2—4y—1)e*’],

(1-y)%e®’—(1+y)?

[1+y+(1-y)e??]?’

1+ T
2_5 Y42,

with y=1/y/1+12. We thus get fos<1

1
- EIJ_"‘

= dt d ,
Il=fo 3 gi V1Y) = —s+0(),

» dt d
I,= fo t—ZSa‘Pz(ylﬂ)

=2s +0(s?),

1
—zn 2+In(1+e??)

72 1
7(s)=— G(1+S|n P)gjz.

= dt d
—2ia?
Fr=2ie? |5 Gyl

= SIE[W-F 2 arctargsinh(9) ]+ O(s?)

1 1
RO)==5, Ca(1+25)= 5 +y+O(s).

as given in the Appendix, we arrive at the following expan- The final results for the first term in Ed26) and its
sions of ¥ and® in 1/k: analogue in the asymmetry functiof(s) are then summa-
rized in the following equations:

Wa(y) N Vo(y|9)

” % +0(1Kk3), {p2(0)=0,

‘I’(k,t|z,ﬁ)=22[

1
{po(0)=2% = 2 =In2+In(1+e*) ,

®(k,t|z,9) =2 +O(1/k3)

D,(y| D)
K 7?2 72
with the coefficient functions 7(0)= 2 + ;arctarﬂsmm?)],

074029-6
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and hence We next evaluate the asymptotic behaviorkinA singular
term ass—1 can be extracted, which turns out to be inde-
, 2 T 0o pendent of the fieldthat is,B) and is canceled by the nor-
{0)=5| -z~ In2=i5+In(1+e™) malization. The final expression for the free energy density
for a self-dual domain, including the contribution linear in

mass, is

Fiarctapsinh(3) ]|+ 8¢’ (0). (27)

FED=2iq arctaftan «)]—e'“m({ ),
Now we can straightforwardly continu@—ia+im/2.
The final result for the free energy is complex with an where we have used the suggestive notation
imaginary part of the form

)

= Py = ——IM(1k+2z

JF = +2qarctafitan «)] (28) (i) o kzlzzzzl,zl,zz 1| M( )
whereq is the absolute value of the topological charge in a z
domain. This charge is not integer here in general but the " M(Lk+3-2)-1 (32)

anomalous term isrn periodic in «. This is the Abelian
anomaly as observed within the context of baglike boundar
conditions by[7]. Its appearance here is in the spirit of the
derivation by Fujikawd 14], where the phase appears as an
extra contribution under a chiral transformation on the fer-T
mionic measure of integration.

However, the analytic continuation of EQR7) also ex-
poses amx-dependent real part,

F=RF+i JF,
22 1
F(a)=§ —Z+In[1icos{a)] ,

%oming from z(1) with the sum over corresponding to a
color trace.

Let us summarize the results of this section as follows.
he a-dependent part of the free energy of a self-dual do-
main for massive quarks is complex with the following real
and imaginary parts:

RF = —m cosa( i), (32)

where the signs are according to the prescription in Egs.

(17), (18). There is no reason to expect that anything other 3,:229 arctafitan( a)]—msina(%ﬁ). (33
than the anomaly should appear in the logarithm of the de- v

terminant. Thus the likelihood is that this additional real part

contribution should be canceled by the contributigigsin ~ The free energy of an anti-self-dual domain is obtained via

Eq. (26), which remains to be verified. complex conjugation.

Below we assume that the anomaly E28) provides the
entire result for thew-dependent part of the free energy of V. ENSEMBLE FREE ENERGY AND CHIRAL
massless fermions in a domain, which leads to intriguing SYMMETRIES
consequences.

A. One-flavor case: Quark condensate andJ (1)

B. Massive fermions Under the assumption that only the anomalous term de-
pends on the chiral angle, the part of the free energy density
F relevant for the present consideration of an ensemble of
N—oo domains with both self-dual and anti-self-dual con-
figurations takes the form

Inclusion of an infinitesimally small fermion mass leads
to a modification of the free energy by a term which is linear
in mass to leading order, nam€l§],

m N
F=Fpn=oti—mn(1). 29 2r 1 )
m=0 ) 7(1) (29 eva]-':NH fo dajz[elij(aj)+e—wJF(aj)]

Using again the representation E83) but now in the vicin- NG
ity of s=1, one can find the following representation for the :NH f d o enfcosbIF (a1}
summed contributions of both polarizations in the self-dual i Jo .

domain to the asymmetry function: = NexpgNmaxin{co§vIF(a)]}).

[’

=i Ré“coim/z) > kivs K 1+M(1k+2
7(s)=in m(1—s) k=1 k+1 (1, 2) The maxima (minima of the free energy densjtyare
achieved atv;=- - - = apy=mn.
¢z _ In the absence of a quark mass, only the anomaly contri-
k+2 M(Lk+3=2)]. (30 bution in the imaginary pafi F of the free energy of a single
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1000

strongly chiral modes is growing. We will return to the dis-
. cussion of this feature again in the section on the meson

800 — spectrum.

600 - B. Multiflavor case: Spontaneous breakdown ofSU, (N;)

| X SUR(N/)

1/3 (MeV)

400 - The question remains whether any continuous directions

. in the space of vacua are to be expected when the full flavor
_ chiral symmetry is brought into play. For this we must gen-
eralize the analysis. We considdy massless quark flavors.
First, we observe that the fermion boundary condition in Eq.
1 2 3 4 (5) explicitly breaks all chiral symmetries, flavor singlet and
Domain radius RIR, nonsinglet(see alsd7]). Thus the procedure we have used
]here of integrating over alk does not suffice to restore the
full chiral symmetry of the massless QCD action. Rather, the
boundary condition must be generalized to include flavor

domain appears under the logarithm of the cosine and deﬁnensonsmglet angles,

the minima of the free energy density,{¢0ogvIF ()]} a— a+ B3T3,

=0. Thus for massless quarks there is no continudgEl)

symmetry in the ground states, rathgr a discigechiral ~ with T2 the Nfz—l generators 08U(N;). Then integration
symmetry. The anomaly plays a peculiar role here: seIectmgverN? anglesa, 82 [0,27] must be performed for a fully

out those chiral angles which minimize the free energy SQhiral symmetric ensemble. The spectrum of the Dirac prob-

that the dfull Ua(1) glrtouE isldnt()) Iotnger :jefrllecte?hirtw t:}he lem now proceeds quite analogously, except that the bound-
vacuum degenéracy. It should be stressed here that this rSfy condition mixes flavor components; thus an additional

fs'dutﬁl dlscrelze de%enera;cy' |stshuff|ck|)ent to enfsure a zerto Vang{fojection into flavor sectors is required in order to extract
or the quark condensate in the absence of a mass term gr, eigenvalue equation analogous to Ed).

some other_ ext_ernal chirality violating sources. - For N;=2 the boundary condition can be chosen as
Now, switching on the quark mass, we see this discrete

symmetry spontaneously broken, and one of the two vacua _ i(at B-o12) _

selected in the infinite volume limit according to the sign of i (x)e TEY(X) = Y(X), (36)

the mass. In this caséor these conventions of boundary .

condition and mass ternthe minimum ate=0 is selected. where flavors now mix on the boundary. We must now solve

The quark condensate can now be extracted from the fre@€ Dirac spectrum in the presence of this mixing. The
energy via spinorsy and ¢ used in our solutions now become isospin

doublets. We need to project the boundary condition onto
d separate equations for eigenvalues.
<Z(x)z//(x)>= —lim lim (vN) " t——g vNFm), Things proceed mych as beforg in the spin sector with our
m—0N—o dm previous decompositions and projectors. The boundary con-
dition will devolve to the structure

[<yryr>|

200

FIG. 1. Absolute value of quark condensate as a function o
domain radiug Ry= (760 MeV) 1].

Taking the thermodynamic lim\l—cc and therm— 0 gives L
a nonzero condensate xIN]=el(@TB o2\,

<E(X) W(x))= —<E¢>- (34) where theys in the exponent is eliminated via the projection
into chirality eigenspinors. The equation still mixes the fla-
vor components and cannot be solved for an eigenvialue

According to Eq.(31) the condensate is equal to We introduce projectors

() (X)) =~ (237.8 MeV® (35 135

for the values of field strengtB and domain radiu® fixed
earlier by consideration of the pure gluonic characteristics o{N
the vacuum—string tension, topological susceptibility, and
gluon condensate. A nonzero condensate is generated with- CiBaia_ =ilf2
out a continuous degeneracy of the ground states of the sys- P.(B)e =e P.(B).
tem.

Dependence of the condensate on the domain raRliss  Note here the appearance of the magnitude of the tripiet
illustrated in Fig. 1. As expected, the condensate divergethe exponent. Projecting the spinors thereby we obtain sepa-
with R—o0, since in this limit the number of low lying rate equations for eigenvaluas3,+] where we suppress

hich have the property
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all other quantum numbers previously dealt with, 1
B;=a+b3+ —b8,

s 3
XIN[ B, = ]1=e PN B, ]]
It is convenient to define two new angles B,=a—b3+ ﬁbB'
ar=a* |é|/2, 2
_ "8
and in terms of these angles we can calculate the quark de- By=a \/gb '

terminant separately for each flavor projection as before. The
free energy for each flavor is now a function of four con-where evidently
strained angles

Fo.=F.(a,8:,B0.8), Ei B=3a,

where we use this suggestive notation instea@0fB,,83,  reflecting ultimately the tracelessness of the generators. The
and where* denotes the isospin projection for the two free energy for a given domain will be the sum of three terms
quark flavors. For a given self-dual domain the total free
energy will be a sum 3
Fr=2, F(B)
Fr(a,B)=F(a;)+F(a),

with F being the same expression evaluated for the one-
where F is the result from the one-flavor case. Under theflavor case. Once again, the assumption of the anomaly
assumption that the anomaly provides the entire chiral anguneans cancellation of th8*-dependent functionb?, leav-
lar dependence of the determinant, the nonsinglet angfles ing only the @ dependence in the free energy. Once again
drop out due to the form Qarctafitan(a) |=2q(a+2nw).  energy minimization constrains tti, (1) direction, leaving
This expresses the known result that the anomaly dependse SU(3), X SU(3)g directions unconstrained. Thus for
only on the flavor singlet directions or is Abelian. Thus, for N;=3 one expects eight, not nine, continuous directions in
an ensemble of domains, the free energy is identical to thahe space of vacua.
for one massless flavor, namely, it depends only on the Abe- The argument for arbitrarf\; is now evident, the key
lian anglea. Thus, forN¢=2, theU,(1) direction remains  ingredients being the tracelessnesSai(N;) generators and
fixed by energy minimization while th&U(2), X SU(2)g the specific form of the anomaly for the quark determinant.
directions represent degeneracies in the space of ground

states in the thermOdynamiC limit. V1. ESTIMATION OF MESON MASSES
For N;=3 the boundary condition will now involve the
flavor mixing matrix The consequences of the above realization of chiral sym-
metries should be seen in the meson spectrum providing the
ol N2 splitting between pseudoscalar and vector mesons and be-

tween the pseudoscalar octet and
in terms of the Gell-Mann matrices. It is now harder to ex- 1€ source for the difference between the masses of the

plicitly diagonalize and project into flavor sectors. Nonethe-OCtet states ang’ can be recognized in the drastic differ-
less the form of the result is clear. The Cartan subalgebr§NCe between correlators of the flavor od(ix) and singlet
consists of the diagonal generatord and\8. Thus the re- Jr(X) pseudoscalar quark currents as they appear in the do-
sult of a diagonalization of the argument of the exponentiamain model,

will have the form a b e
(JR(x)Ip(y)) =((IB(X)Ip(¥))),

BEN32— Db ANAI2, A=3,8,
(Ip(x)Ip(y)) = ({(Ip(x)Ip(¥)))

= ((IpNNN(Ip(Y)))- (37)

where b'=b'(8%), functions of the original nonsinglet
angles analogous {g| for N;= 2. Thus diagonalization will

amount to Here double brackets denote integration over quantum fluc-
aa - - o = tuation fields and the overbar means integration over all con-

i . / — | — / . . . . .
e A N2, diag e TPV3 @ b TDYNG o= 2b7N3y figurations in the domain ensemble. The second term in the

right-hand side(RHS) of the flavor singlet correlator con-
So projection of the combined (1)xX SU(3) chiral bound- tains two quark loops and is subleading ilNl/compared
ary condition will lead to three sets of equations with thewith the first one-loop contribution. The second term is en-
eigenvalues depending on the combinations of angles tirely determined by the correlation function of the back-
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[17-19, but here with additional correlations of the ty(i®

in Fig. 2. In[17-19, as well as the formulation of the model
based on a homogeneous gluon field, applications to the cal-
culation of the spectrum of light mesons, their orbital exci-
tations, heavy-light mesons, heavy quarkonia, decay con-

a b
stants, and form factors are given.
In the presence of a homogenedasti-)self-dual back-
ground field, the quark condensate emerges due to chiral zero
' . modes, but, since there is a continuum of such modes in the
A .

homogeneous field, “an overkill” occur0,21:

FIG. 2. Diagrammatic representation of two types of contribu- _
tions to the flavor singlet correlatofa) and (b) as in the domain m( iy — B?, m—O0,
model; () and (b) as in full QCD. The gray background {a),(b)
represents the nonperturbative part of the gluon exchange indicatexhd the limitm—0 cannot be defined properly. However,
in diagrams (8),(b’). because of the same zero modes the momentum representa-
tion correlators of scalar, pseudoscalar, vector, and axial vec-

ground gluon fieldB in the ensemblé8) and is proportional  tor currents have the following limits fan—0:
to the quark condensate squared. The analogous two-loop

term in the flavor nonsinglet correlator is equal to zero due to 5 B2
the trace over flavor indices. It should be added that the HP,S—>I—2F1(p2/B),
m

pseudoscalar condensateéysy) naturally vanishes since
parity is not broken in the ensemble of domains. Thus mass- _
less modes can be expected in the nonsinglet channel, but not I1,s— *BF,(p?/B). (39
in the flavor singlet due to the additional term in the cor-
relator. This general structure of correlators is exactly theSuch a qualitatively different behavior of correlators be-
same as in the instanton liquid modi&b] and manifests the comes manifest already ar’/B~0O(1) and leads to a strong
mechanism for eta-prime mass generation proposed by Wisplitting of the masses of the corresponding mesons, ensur-
ten in[11] and appreciated in chiral perturbation theory bying light pions and heavy mesons in particulaf18] (see
[16]. The correspondence between domain model correlato@so[15]). The fitted values of quark masses in the model
to the original QCD diagrams is illustrated in Fig. 2. The correspond to the constituent masses.
gray background denotes averaging over the domain en- The definition of the chiral limit in that model thus cannot
semble and is intended to represent the nonperturbative ifpe given in terms of quark masses. However, as we discuss
termediate range part of the gluon exchange in the origindbelow, it is nonetheless possible to define a regime when the
QCD diagrams (9 and (b). Diagrams(a) and (b) corre-  calculated pion mass vanishes. The curious side of this ap-
spond to the first and second terms in the RHS of (B@). proach to the description of chiral properties of the light
The averaging in diagrantb) relates to both quark loops, mesons is that the zero-mode mechanism of condensate for-
which is the domain model representation of the exchangeation alone is exploited without any use made of a Nambu-
between quark loops in (b by infinitely many gluons in the Jona-Lasinio(NJL) or, more generally, Dyson-Schwinger
original QCD representation. It should be noted that dia-equation(DSE) type mechanismi22]. The inclusion in this
grams(a) and(b) in Fig. 2 are the lowest order contributions model of the additional correlations)fb’) of Fig. 2 for the
in the fluctuation gluon field® which are treated as pertur- flavor singlet channel enables this approach to also work
bations of the background. Higher orders include exchangphenomenologically fomp— " masses with the chiral limit
by gluonic fluctuations in the presence of the domain mearso defined.
field. In the domain model studied in the first part of this paper
Direct calculation of meson masses within the domainthe quark condensate also appears due to specific chiral prop-
model is not available yet. However, we can estimate therties of the(now nonzerp Dirac modes in gluoridomain-
effect of contributions subleading inNY{ in the flavor sin-  like) background fields and not due to a four-fermion inter-
glet pseudoscalar correlator within a calculational schemaction. The chiral properties of these low lying modes
that is quite close to the domain model in this respect. This isesemble the properties of zero modes in the homogeneous
the main purpose of this section. Simultaneously we willfield model. The condensate divergesRas o as shown in
schematically expose the form of the effective action for col-Fig. 1, much as the condensate in the homogeneous field
lective colorless mesonlike modes as are expected to emergeodel diverges as ti. We expect that this dependenceR®n
in the domain model and estimate the value of the typicaln the domain model should have a similar effect on meson
dimensionless parametBiR? but now from the meson spec- correlators and masses as does tha &ingularity in the
trum. The model that will be used for this purpose is basediomogeneous field case. The characteristic scale of higher
on the bosonization of a one-gluon exchange interaction bemodes is defined by the field strendgdhrather than the do-
tween quark currents and in which both quark and gluormain radius forBR?>>1. Thus one would expect that the
propagators are exact solutions in the presence of a backeuristic consideration below should be more consistent with
ground (anti-)self-dual homogeneous gluon field as in the domain model picture BR?>>1.
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The difference is that in the domain model flavor chiral

symmetry is broken spontaneously, which is not the case in  Z=N1im f Dd,y

the homogeneous field model. So we should expect a mass- Vo

less pion for massless quarks: the current mass and the chiral F{ B h2Q
X ex

limit are well defined, as has been discussed in previous 5
2
9°Co

sections. However, a detailed description of the emergence of
Goldstone modes is a question of detailed study of correla-

1
decbé(x)—; WL @]

tors and the bound state problem in the domain model, which (39)
is still beyond our efforts. 2c
To conclude these preliminary comments, the direct pur- 1= g 5 QF(QZ()Q(_ M2|B), (40)

pose of the following calculations is to demonstrate the
(7,K)-5-7' splitting due to the correlations in Fig(l9. An

auxiliary purpose, justified by the similarity of chiral proper- =2), 2
ties of zero modes in the homogeneous model and nonzeroo :Frgo(p )|p2=*MZQ- (42)
eigenmodes in the domain model, is a demonstration that the
pseudoscalar singlet-octet mass splitting occurs simulta]-.

neously with a correct description of pseudoscalar-vector he effective action in Eq(39) is expressed in terms of
mesonysplitting P P colorless composite meson fieldsy(x) with the massM o

defined by Eq.(40), where the condensed ind&€X denotes
isotopic and space-time indices as well as all possible me-
sonic quantum number@sospin, spin parity in the ground

We shall estimate meson masses within the model destate, total momentum, radial quantum numtzerd k-point
scribed by the following partition function: nonlocal verticesl“(Qki”_Qk:

A. Effective action for colorless composite fields

wk[q>]:Q2Q th-..hQJ dxl.--fdxk%l(xl)--.qngk(xk)rgi,_,gk(xl,...,xk|B),
o

1) _ 1
rg)=6y), (42)

F(921)92=G(921)92(X1,X2)—Ez(xl—xz)G(Ql)ngg, s

3
3 3 = 2
F(Ql)QZQ3: G(Ql)QZQ3(Xl X2,X3) — 5~2(X1— Xs)G(Ql)Qz(X1 ,Xz)G(le)(Xs)

1
5 Ea(X1X2.%5) G5 (X1) G5 (x2) G (xs), (44

4 4 —t 1 3
F(QBQ2Q3Q4= G(Ql)QZQ3Q4(Xl X2,X3,Xg) — 5:2(X1— Xz)G(gl)(Xl)G(gz)g3g4(Xz X3,X4)

1
5 E2(X17X3) G, (X1,X2) GG o, (Xs Xa) + E5(X1,X2 %) G5 (X1) G4 (X2) GG o, (X5 Xa)

1
5 Bl X4)GE)(x1) G (%) GE)(x3) G (xs), (45)

and analogous expressions for the higher vertices. Defining the meson-quark coupling ctnstantsq. (41) provides for
the correct residue of the meson propagators at the poles and is known as a compositeness [@8jdition
The verticed"® are expressed via quark loo@s) with n quark-meson vertices,
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GE o (X1, - X)= LdajTrvgl(xﬂB(i))S(xl,x2|BU)). -V (X BD)S(xy, x4 BD),

G(I) QI(X]_, ..

XI)GQ|+1 Qk(xl+1! ce

Xk)

:f do Tr{V g, (Xa| BD)S(xq %2 BW) - - -V g, (xi[BD) S(x; , x| BI)}
s 1 k

XTr{Vg, (X41/BD)S(X1,%142[BD) - -

'ng(Xk|B(j))S(Xk,X|+1|B(j))}, (46)

where the overbar denotes integration over all configurationand an angular part. In our particular calculation below we

of the background field with measuder; . The quark propa-
gator

i
S(x,y) =e><p( - EX,LB,WVV) H(x—y),

H(p)=

1—-s m2/4y A2
1+s)

J dse p2/2uA2
20A?

paya

iSY5YafapPp

b ip 1+8% i . s
m + I—__ a’ o 5
- 1-g 27wV

is the exact Dirac propagator in the presence of (tii-)
self-dual homogeneous field

R R — 274
B,.,B.,=4v°A"6

L
(X) 'LLVXV 1 Vp 1l

fap=—— 3By, v=diag 1/6,.1/6,113,

where we introduced a scalerelated to the field strength
as

For arbitrary orbital momentunt and radial quantum
numbern the vertex functiorimore precisely, the vertex dif-
ferential operatoris factorized into a radial part

1 <>,
Fo(s)= JO dtt' ""est, s=V?/A2

Vi =&V =&V, &=mi/(me+mg),

V,=3d,+iB,, V,=d,~iB

wr Ypm %u1Pu

(47)

will not deal with the excited states. For the explicit form of
the angular part of the vertex the reader is referrefiL8],
where technical details of the derivation of meson-quark ver-
ticesV g, (x/BY) and discussion of the approximations and

assumptions behind the derivation of the effective action for
composite fields can be found. A simplified scalar field
model allowing exact implementation of the method has
been considered, and a variational procedure for the approxi-
mate solution of realistic problems has been formulated in
[24]. The relation of this method to the Bethe-Salpeter equa-
tion and the nonrelativistic limit are analyzed[i24,25.

Thus then-point vertexI'(™ includes contributions of two
types—the usual one-loop contributiofeveraged over the
background field as diagram(@) in Fig. 3 and products of
two or more such one-loop terms simultaneously averaged
over the background field and multiplied by the correspond-
ing correlatorsZ of the background field, for example as in
diagrams(b) and (c) of Fig. 3 for the three-point vertex. In
the absence of a background field these additional terms
would be just disconnected diagrams and would not appear
in the effective action. For the purely constant fi@dhey
would correspond to infinite length correlations breaking the
cluster decomposition property in the effective actidd,(
=1). The idea of domains is implemented in the above ex-
pressions by means of finite length correlations of the back-
ground field, which ensures cluster decomposition.

The n-point correlation functions,, of the background
field are defined in E¢(8). In particular, the two-point cor-
relator which will be used below can be written in the ex-
plicit form

¢t b

FIG. 3. Diagrammatic representation of the three-point vertex

function FSBQZ%. Diagram(a) corresponds to the first term in the
RHS of Eq.(44), (b) and(c) to the second and third terms, respec-
tively. Solid lines are quark propagatdgdn the background field,
vertices correspond to nonlocal quark-meson vertil:@is and the
dashed lines represent meson fiedels .
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equations for these masses contain terms with an additional
correlationZ,, and this splits them from the remaining light
pseudoscalar mesons.

As follows from Egs.(40) and the second term of Egs.
37 (42) and(46), the simplest quark loops relevant to the calcu-
——3 arcsirip) —3p\1—p? lation of masses are the constants

(x—y)?
4R?

Ho(x— y)——f dzo(x—2)6(y— z)—37_r

#(p%)=

G{H=—Tr A% ysF oo(x|B1)S(x,x|BD), (49)
(48)

—2p(1-p*)V1-p?|.

corresponding to the quark loops in FighR Herea is the
flavor index @=0, . .. ,8). In thasosinglet caseg=0) this
Geometrically, the correlation functidB,(x—y) is equal to ~ duantity is nonzero. If thes-quark mass is not degenerate
the volume of overlap between spherically symmetric four-With the masses ai andd quarks therG is also nonzero.
dimensional regions determined by the characteristic funcEora=1,...,7 theconstants are identically equal to zero.
tion ¢ and central points, y, normalized to the volume of a Calculation ofG{} is quite simple. The result of the ac-
single such region. tion of the vertex operatd?oo(x| B) on the quark propagator
Now all the elements of the effective action H§9) are  can be found as followfin our caseé;=1/2 in Eq.(47)]:

fixed: nonlocal meson-quark verticla@l(xﬂB(J)) and quark

propagatorsS(x,,x;|B1) and background field correlators
are given in explicit analytical form. 1 t - -

It should be noted here that meson-quark vertices are de- =f dtexp{_(vx_vy)zl S(y,xlB)lX:y
termined by the gluon propagator in the presence of the 0 4A?
background field. In momentum representation the quark 4
propagator, meson-quark vertices, and correlators of the :fldtf d’p Fi(p)e A2 (50)
background field are entire functions in the complex momen- (2m)* P '
tum plane, which means that quarks and gluons are absent in
the model as asymptotic states, which is treated as colgfurthermore
confinement. In the momentum representation the vertices

Foo(X[B)S(x,x|B)

'™ have no imaginary parts and the probability of a meson 2im 2nz[ 1S mPlapA® (2
to decay into a quark-antiquark pair is zero. As is shown in TriysH(p)= F— dS seizA 17s 5
[17,18, within the model formulated above and clarified in a vA® 1_5(51)

simplified exactly solvable model ir24], entire propagators

and vertices lead to a Reggg spectrum of excited bounﬂere the sign %" relates to self- and anti-self-dual configu-
states represented by composite fields. rations of the vacuum field.
The only free parameters of the model are the same as in Substitution of Eqs(51) and(50) in Eq. (49) and integra-

the domain model discussed in the first part of this paper: thﬁon over the loop momentum and the parameterieads to
background field strengtB, mean domain radiuR, strong the following integral representation:

coupling constang, and quark massems;. The factorCg in
front of the gauge coupling constagtn Egs.(39) and (40) A3
is known explicitly: GH=~i Py Z AR,

u—n

|+1 1 1
Con=Co———, CS/P:§v CS/P:1_8- E dss (1—5
R,=

mé /4y A2
2'nt(1+n)!
o(2u+sx1 s?)\1+s

. (52

The only place where the gauge coupling constaenters
this scheme is the equation for meson masses(4iy; the
rest of the effective action contains the meson-quark cou-
pling constants calculated by means of E4fl).

In the next subsection we present results for the masses
pseudoscalar and vector nonets coming straightforwardlg

. . . . . e

from this formalism with a special emphasis on theand

!

n'.

where the summations ovérandv correspond to traces in
the flavor and color spaces. As indicated in E&), v is a
diagonal matrix relating to the direction of the vacuum field
H} color space.

Equation(52) results in the following momentum repre-
ntation of the two-point correlation function E¢2):

AR o(p?) =1 4p(p?) = ap(p?) — ST1ap(P?),

B. The masses and decay constants af and n’ where

With this representation, the calculation of masses of light 8
mesons and weak decay constants, as perform¢igin is ST (p?) = — — (AR)*T3F(p2),
modified only with respect to they and »' masses. The 3t
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2
Tab: )\a)\b/ ,RRI,
; T\ ReRy T¥=—-(2Ry+RI(R,~Ry),

1 1
F(p?)= fo dt\/l—tzf0 dsscog V4p?R?t%s)

1 ~ 1
Hoo=§(2Hu+HS), H88=§(Hu+ 2I1y),

X

3
777—3 arcsin\/g—(S—Zs) \/s(l—s)},

2
HOSZ?(HU_HS)- (53

1 2
00_ — 2 88_ " _ 2
T 3(2R“+RS) T 3(R“ Ro)% The functionII;(p?) has been calculated in R¢fL8],

1 1 1 1 1 1-s m? /4o A2 1-s, m?/4o A2
2y _
IT:(p?) 4172Tr”Jo dtljo dtzfo dslf0 ds, l+sl) 1+s,
3 p_z Fi(ty,t2,81,S) N Efz Fa(s1,S2) 20(1—4v%t1ty)F3(s1,S,)
A? ¢g(t1at2.31,32) A? (1—S§)(1—S§)¢§(t1,tz,Sl,Sz) @g(tl,tz,sl,sz)
p?
Xexp, — o(t1,t5,51,5) [,
opp2 Ptz Sse
|

@1(t1,t5,51,S7) 1 where the angl® is a function of momentum,

o= , @1:§U(t1+tz)[31+52]"“3152,

ea(ty,t2,51,57) ~ - -

s tan 20(p?) = 21T o p?)/[ e p?) ~ Mol p?)].  (55)
The polarization functions ofy and %’ and their derivatives
with respect top? take the forms

(,02:20(t1+t2)(1+5152)+(1+4l)2t1t2)(51+ 52),

Fi=(1+siSo){[s1tv(ty+tp)][Sa+v(ty+t,)]

+U2(t1_t2)25152}, Hn:ﬁ88C0§6+ ﬁ003|nze+ ﬁogsin 20,
Fo=(1+5;5))% F3=2(1+s;3y). I, =T 4oc0€ 6+ [ ggsir? 6— T ggsin 26,
The masses of; and ' can be calculated by means of ' =T1.coo+T1" sirte+Ti’sin 2
Egs. (40), which take the forms 7~ 1ggC0S 0+ LogSin 6+ L ggsin 26,
92 , 92 , I, =T1,cos -+ M ggsir? 06— T ggsin 26, (56)
1+ EH”(—M,I)=O, 1+ EHW,(—MV,)=O.
where for computing derivatives E(5) has been used.
1 With the values of the parameters
— 71 '3 P 7. 1712 172
I, =2 (oot gg V(Lo Tlag) >+ 4TiZg), m,=my=177.85 MeV, my=400.98 MeV,

VB=469.52 MeV, g=8.94, (57)

~ 1 _

I, =g+ Mgg+ \/(ﬁoo—ﬁsa)z""’fﬁ(z)a]’ ,
2 fitted from the masses af, p, K, andK* mesons such that

whereIl1=1I— 11 includes both diagrams in Fig. 2. These M,=140 MeV, Mi=496 MeV,
equations can be written more transparently if we introduce
the mixing angle f,=129.9 MeV, f=150.8 MeV,
7= 1gCOSH+ 1pSin b, M,=M,=770 MeV,
7' = 19C0SO— 1gSin b, (54) Mg+=890 MeV, M,=1035 MeV, (58)
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we find that f =ﬂz flflfl dtds ds,(1+s;S;)
M, =640 MeV, M,,=950 MeV, " an? T JoJoJo[s,+s,+20t(148,5,) T3

h,=4.72, h, =255 (1-57)(1—s,)|mil4n” s S 52 ]
or (Is)(its,) e g
JBR=1.56 59 M*
=1.56. (59 xex% ZUAZ‘I’(t,Sl,Sz)>,
The parameteR was fitted to then' mass. The domain
model value for this dimensionle§s parameter quoted in the S1,+ vt(S;+5y)/2
first part of the paper\/§R=1.24, is close to Eq59). Thus v= it S, 20t(17 5,5))°

we see that all features of the spectrum of light vector and
pseudoscalar mesons usually associated with chiral symm
tries are correctly reproduced by the model quantitatively
The origin of the splitting between the pseudoscalar and ve
tor mesons was discussed in detail18]. The new feature is
the shift in the masses af’ and » with respect to the other
pseudoscalar mesons and their mutual splitting, which occu
here due to the additional contribution of E®3) to their
polarization functions. The momentum-dependent mixin
angle takes different values at the scale of theand »’
masses:

As we have already mentioned, the quark masses here should
be considered as constituent quark masses. The massless
Simit is ill defined due to the contribution of zero modes to
the quark propagator. However, as is discussedl1Bl, a
rpeculiar feature is that all the necessary shifts and splittings
if the meson spectrum occur explicitly due to the strong
(and, for pseudoscalar, scalar, vector, and axial vector states,
g{/ery differeny dependence of the meson masses on the quark
masses, which is driven entirely by the zero modes. In order
to visualize this picture in a quantitative manner, including
0,=0(— ME,): ~19.8°, 0,,=0(— Mi’):%'lo' now also thep and n’ let us co_ns_id?r a regime in the model
(60) which can be called “a chiral limit.

It is notable thatf, coincides with the value of the mixing C. Massless pseudoscalar octet

angle in the naive quark model, whil¢, is completely o , . .
We quote also the result for the weak decay constants of : o
nandz': massless particles. Within the above-formulated meson

theory, this requirement is satisfied if the constituent quark
f9=4.13 MeV, f8=165.7 MeV, f/=154.5 MeV, masses satisfy the relation

M o—m — ¥
12,=288.6 MeV, 2, =23.67 MeV, Ms=Mg=M,=Mm

and the massn* is defined from the equation for the pion

0 _
f,=183.3 MeV. mass withm_=0 substituted, that is,

These constants are defined by the matrix elements )

g
. 1+ —11,.(0)=0. 61
(032,(0)|6(p) =ip,,f3/V2, oz 79 6y
‘]g,u:a'}’ﬂ%taq, t0=\%2, t8=\5/2, Since in this limit the flavolSU(3) becomes an exact sym-
o metry, the kaons are also massless. Furthermore, as follows
andfzS corresponds to the mixings from Egs.(53),
ff]: fiCOSg-F f%sin 0, Tg= 08— T8850,

0 _ ¢0 __£84;
fp = fycos6—1,siné. which means that the meson is degenerate with theand

K. The mixing angle between, and g is equal to zero and
the »' meson corresponds to a pure flavor singlet state. As

seen from EQs(53),

Here
fo=h,[fgcoso+1gsing], f°,=h,[ficoso—fgsing],
S o= TO% (p?) +0,
1 1 2 00 (p*)
fo= E(Zf”+f5)’ f8‘§(fu+2fs)’ fs_?(f”_fS)' and the mass of the singlet state is split from the flavor octet

states. Vector mesons are massive in this regime. Numeri-
The functionf{(—M?) was calculated ifi18], cally, one finds
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m* =168.83 MeV, Z(2) symmetry rather thabd (1) for one massless fermion
flavor. Quark condensation occurs because of the spectral
M,=M_,=M¢=0, M,, =897 MeV, asymmetry coming from the baglike boundary conditions. In
the multiflavor case, the Abelian nature of the axial anomaly
h,=h,=hx=4.28, h,,=0.63, guarantees that the discref€2) symmetry remains sponta-
neously broken in addition to the correct continuous non-
fi: fy="1,=127.76 MeV, f?}, =281.87 MeV, singletSU(N¢) | X SU(N¢)g symmetries. One would thus na-
ively expect onlyN?—1 Goldstone bosons based on the
f%zfi,zo, number of continuous degenerate directions in the space of
ground states of an ensemble of domains.
and On this basis we expect massless pions, kaons, and eta
mesons in the chiral limit. The domain model manifests cor-
M,=Myx=M,=762 MeV, M;=950 MeV. relations Fig. ) in the singlet channel which generates the

This result displays a typical chiral limit picture with both splitting in 7-7' masses via the Witten mechanism. The con

. tribution Fig. 2b) is entirely driven by the correlators of the
flavor SUR(3)XSUL(3) and Ua(1) symmetries correctly background field Eq(48). Simultaneously, the background
implementedde facto while the masses of octet states are

drasticall duced f their phvsical val A th “field correlators are also entirely responsible for the area law
rastically reduced from their physical values 1o zero e'r3]. Thus the origin of both mechanisms is identical. In the

decay constants are subject to only minor change. Simult N limit the 7' is massless since the contribution of Fig

/ H “ ” .
neogsly. we sge that the' does not look I|é<e a Goldgtone 2(b) is 1N, suppressed with respect to Figap
particle: both its mass and decay constiptare practically We have seen that the calculational scheme does work
unchanged. The vector states are subject to minor changge|l phenomenologically, but the dimensionless parameter
also. For completeness we mention that the scalar and axigrns out to beB RZ~0(1) such that for a self-consistent
vector particles as ground state mesons are absent in th@nsjderation of meson physics one needs to use the propa-
spectrum in this model, but they appear in the hyperfingyators of the domain background field: neglecting boundary
structure of orbital excitations of vector mesons with quan-:gnditions inside quark loops is not consistent WRIR2
tltatlve_ly co_rrt_act mas_se[§.8], which also stays unchanged in ~0O(1). There is no clear separation of two scales as has
the chiral limit desirlbed here. already been observed in the consideration of static param-

In this picturem* looks like the condensate part of the eters of the vacuum—the quark and gluon condensates, the
constituent quark mass. This impression can be enhanced Rying constant, and the topological susceptibility within the
estimating the current quark masses and their ratio, domain model.

Nevertheless, the calculations presented in the final sec-
tion resemble two features of the domain model we ad-
dressed in the first part of the article. The first feature is quite
obvious: in both cases the additional contributions to the

The ratio, which is the only meaningful quantity, almost co-Correlators(polarization functions for »" and, if m,#ms
incides with the generally accepted valug/ u,= 25. also for#, are crucial for their splitting from the other pseu-
doscalar mesons, thus resolving this aspect of Whg¢l)

problem. Certainly, the successf(But not self-consistepnt
quantitative description provided by the purely homogeneous
We have shown that the correlation between the chiralitypackground field need natd hocbe equally successful in
of low lying Dirac modes and the duality of the domainlike the domain model, and verification of this is one of our first
background field indeed drives the spontaneous breakdowpriorities. The second feature is not quite so obvious. The
of flavor chiral symmetry, as was hinted at [id], and as splitting between pseudoscalar and vector meson masses in
indicated in lattice calculatiori$]. We have also shown that the case of the purely homogeneous field is determined by
the mechanism generating thg%»’ mass splitting is the the singular behavior of the quark condensatenfiex-0 (as
same as that causing area law confinement in the domaimentioned, the condensate diverges in the massless limit due
model, namely, the finite range correlations induced by théo a continuum of zero mod¢80,21)). This singular behav-
domain mean field. In more detail, we have extracted théor is not present in the domain model—zero modes do not
parity odd part of the logarithm of the quark determinant andexist at all and the limitm— 0 is regular. However, a quark
seen that the axial anomaly is recovered. The chirality propeondensate is generated in the domain model by the asym-
erties of the Dirac modes in domains generate the anomaly imetry in the spectrum of the Dirac operator, and this conden-
this context. We see, however, that in this formulation withsate diverges foR—« as follows from Eqs(31) and (34)
domains with baglike boundary conditions, both the symmetand as shown in Fig. 1, as discussed above. This divergence
ric zeta and the asymmetric eta functions are necessary ie expected to play the same role for correlators of the do-
obtain this result. We then explored the consequences of th@ain model asn— 0 in the homogeneous field, thus gener-
anomaly for the realization of chiral symmetry in the domainating strong pseudoscalar-vector splitting. The value of the
model. The contribution of the anomaly to the free energy ofquark condensate given in E35) corresponds tdR/R,
an ensemble of domains leads to a spontaneous breaking ofl in Fig. 1. But, unlike the model based on a purely ho-

py=m,—m*=9.02 MeV, pus=mg—m*=232.15 MeV,

msl m,=25.73.

VIlI. CONCLUSIONS AND DISCUSSION
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mogeneous field, the domain model manifests spontaneoyshysical Minkowski space. Quark and gluon fluctuations in
breaking of flavor chiral symmetry and hence has the potenthis approach are localized in both space and time: no
tial to reproduce a genuine picture of the chiral limit. This isasymptotic particlelike states can be associated with them.
only mimicked in the homogeneous field considerationsThe model requires substantial use of methods of nonlocal
above, although in a surprisingly successful manner. quantum field theory. Various issues related to quantization,
The zeta function calculation nonetheless remains incomunitarity, causality, Froissart-type bounds at high energies,
plete, where the contributions that should eliminate thend interpetation of nonlocal fields as fluctuations localized
chiral-angle-dependent parity even part of the quark determi SPace and time can be found|i23,24,28—-30 The non-
nant's logarithm need to be calculated. The observation ofec@lity appears here primarily due to the presence of strong
lack of separation of scales, mentioned above, also mear@ckground gluon fields, which eliminate the pole in the mo-
that a more careful study of collective modes within the do-TMentum space quark propagafdf7,18,31, rendering it an
main modelper seis necessary to put the phenomenologicale”“re analytical function. The nature of colored fluctuations
results above on a sound footing. In the same context, x2S localized in space and time prohibits a straightforward
plicit correlation functions in the domain model would en- resolution in the domain model of the manifestation of such
able a study of théanomalous Ward identities and issues interesting features as baryon number fractionalization in
[26] related to the realization of Goldstone’s theor¢an  Chiral bags32]. This phenomenon appears due to asymme-
otherwise in the U (1) sector. try (and a corresponding invariany in the spectrum of the
There are two issues naturally related to this work andPirac Hamiltonian, rather than the Euclidean Dirac operator,
requiring at least some preliminary comment within the con-2fter a rearrangement of energy levels in the solitonic back-
straints of the calculations realized thus far. ground chiral bag. There is no automatic one-to-one corre-
At first superficial glance, the mechanism of quark con-SPondence between phenomena in the domain model and

densate generation through the asymmetry in the spectrum §10Se of the chiral bag model for the nucleon. In particular,
the Dirac operator looks to be different from the approach of€ answer to the question of baryon number is intimately
Banks and Cashé27], where the spectrum is symmetric and connected to the analytical properties of the propa_ga{fors
the condensate arises due to a finite density of chiral zer§*@mple, se¢33]) and thus to the mode of dynamical con-

modes. However, these seemingly different formulations irfin€ment and the realization of hadrons as propagating exci-
fact have more in common. In particular, in the thermody-tat'ons in the domain ensemble, the subject of further work.

namic limit the system is characterized by a finite density of
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are purely chiral; rather, they can be characterized by their
average chirality with a definite sign correlated with the du- APPENDIX: EXPANSION OF KUMMER FUNCTIONS
ality of the mean gluonic field in the domain: the lower the
Dirac operator eigenmode the closer this average chirality t
+1. Thus, we would take the liberty of saying that the do-
main model gives a “smeared” realization of the Banks- We use the representati¢84]
Casher scenario.

Another interesting question inspired by the chiral bound- k!
ary condition used in the model is the manifestation or oth-M(a/4z.k+12)= F(a/4z)f
erwise of features seen in chiral bag models of the nucleon.
How much is in common here beyond the similar boundary . . . e/—_ -
condition? There is no simple answer to this question yet. w&nd change the integration variablg’2t=s, giving
recall that the domain model is formulated in Euclidean four-
dimensional space, colorless hadrdifiny) are not associ- M (a/dz,k+12)=
ated with domains themselves but are anticipated to arise as ' ’
collective excitations of quantum fluctuations of quéakd .
possibly gluon fields in the domain ensemble. The descrip- Xf ds@/2z—k-1g-s4z (3).
tion of colorless hadrons requires analytical continuation to 0

& Asymptotic form of Kummer function M (k?x%(42) ,k+1,2)
for k>1, z,x fixed

. dtta/4Z— 1(Zt)—k/2e—t| k(z\/Z)

k! Zfa/422k+ 1-al2z

T (al4z)

074029-17



A. C. KALLONIATIS AND S. N. NEDELKO

The asymptotic behavior of

Mk: fo d5§/22_k_16_52/4z| k(s)

at axk?, k=1 can be found by the saddle point method.

Denoting a=al2z, {=2z, and f(s)=[1—(k+1)/a]In(s)
—S2a, we arrive at

Mk:f dset’®)],(s)
0

with f(s) having a maximum at

So= \/é’(a—k—l)

Expanding the exponent about the saddle point and using the

addition theorem

it -
(Zzlz—ze) (@)= 3 (=12l yin(z0)€™,
1

_Zzel('b n=-—ox

w=\Z2+ 22— 22,2,c04 ¢)

PHYSICAL REVIEW D 69, 074029 (2004

Decomposition of the factors in front of the sum in Eq.
(A1) atk>1 gives

k! Zfa/422k+ 1-al2z

[a_ 22(k+ 1)]a/4z—(k+ 1)/2
I'(al4z)

X e—a/4z+ (k+ 1)/2ez/4 /2772
ki2k

oo

2
24+ 7/2x2 Z( 3x“+ Z)
1+ ——

3x%k

2(3x8+27x%z+ 12222+ 2°)
+ +0(1/k3) |.
18x8k?

The representation

1

| (s S
(%0 \/_2Vr v +1/2)

f dte” Sot(l 2)1/ 1/2

is now suitable for determining an asymptotic decomposition
of thel,,, «(Sp), @again by means of the saddle point approxi-

with =0 andr, one obtains the following representation: mation. With

M(a/dz,k+1,2z)

o T'(al4z)

X [a_ 22(k+ 1)]a/4z—(k+ 1)/Ze—a/4z+(k+ 1)/2ez/4

a/412k+ 1-al2z

oo

X D lonsi(So)ln(2/4)

n=-—ow

X[ 14 W;(x,z,n)/k+W,(x,z,n)/k?]

oo

W;(X,2)
+ 3 e a(So)l (@A) — . (A1)
z(z—2n+3)
127,

z
W,=——1[(27z—8zn+ 22+ 1522+ 4zr?) V1 + X2+ 8zx?
72X

— 122+ 1522 — 92X%+ 222nx2+ 8n3x?+ 23x% + 472°%?
—56zn+27z— 48n%x%+ 46n x>+ 26zn X+ 4zrP+ 2°],
z(z+3)

6x '

so=Va—2z(k+1), a=k?x?,

and calculation of the asymptotic form bfis reduced to the

asymptotic decomposition o6, «(Sp) andlsn k1 1(Sg) for
k>n.

W3:

X=tp,

gl(xrnaz)

822+ 4x%z(2+4n+z) + x*(—1+16n%+8z)

8x*\1+x2

g2(X,n,z)
_ [82°+4x%2(2+4n+2) +x*(— 1+ 16n*+82)]?
1288(1+x?)

- m{3223+48x222(1+ n—+ Z)

+x8[ —1+6n—32n%—3z+48n(1+n)z+24z%]
+12x*2[2(6+2)+ n(4+62)]},

and
2(x°—2)Vy1+x%>-5
hy(x,n,2)=
24(1+x2)%2
1
hy(x,n,z)= —————[—8—68>— 720z+ 48
11521+x?)3

—960%N) V1+x2+ 17— 144>+ 276¢*
+52¢8+384n—576x°n— 115%*n— 19X°n
—57&x—5767],

we obtain the following full expression for the asymptotics
of the Kummer function up t@®(1/k?):
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ki2k 1 1 X Vx2+1
M(aldz,k+1z)= expl kVx?+1+kin| ————| { exp{ z/4+2z/2x*~z ”
1+

(kx)® 2k (1+x2)14 Vx2+1 X

2(3x%+2z)  z(3x8+27x*z+ 12x°Z%+ 2°) , i X an
X + +0(1K3) I(2/4)| ———
3x%k 18x%K? = 1+ +1
2z+1—4n 16n%(3—2x%)+8n(2x?>—3—10z) + 162X°+ 36z— 2x>+ 202+ 3
X 1+ +
4(1+x%)k 32(1+x?)%k?
[ 1 1 1 n n? 4nd 1
X|1+|=—-2n?| —+| ——-—— —+ —+2n*|—
24 k (1152 12 12 3 K2
16n°—1 76*—51n3—96n°+96n—13 91(x,n,2)  ga(x,n,z)
x| 1+ + 1+ +
8k 384? k k2
hl(xynvz) hZ(X!n!Z) Wl(xlnlz) WZ(Xlnlz)
x| 1+ + 1+ +
k k2 k k2
2(z+3) 2z—1—4n ( 1 2) 1 16(n+1/2)2—1}
+ 1+ 1+ —-2(n+1/2?| || 1+ —————
Bk(1+\1+x?) 4(1+x%)k 24 k 8k

h,(x,n+1/2z7)
+

+0(1Kk3)

0:1(x,n+1/2z2)
X |1+

The series oven can now be resummed in terms of the generating function of Bessel functions and its derivatives,

> v, (u)=ex . v+E
n 2 v

where

X
u=z/4, v=|——/——
(1+v%+1

Moreover, the presence of the factor

2
) , 1=0,1,2,3,4.

exp{ 2/4+ 2/2x%— 7

M}

X2

allows further simplification,

exp[ 2/4+ 2/2x%— 7

Vx2+1 200: X 2n z Vx?+1-1
——| I (Zh)=exp| = —.
x| e b)) 2 x2+1+1
The remaining formulas required can be obtained by differentiation. The final result is then
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ki2k 1 1 vy X
M(aldz,k+1z)= expy kyxc+1+kIn| ———
(k)X V2mk (1+x2)4 1+Vx%+1
z Vx°+1-1 Mi(X,2) My(x,2)
X expl — + +0(1Kk3) |,
2 \x?+1+1 k
where
Ma(x.2) y(5y*+ (— 122+ 10)y3+ (12224 2—24z)y?+ (— 82+ 122— 6)y + 24z— 47°— 3)
X,Z)= —
! 24(y+1)2
and
y2
M,(X,z)= —————[385/8+ (— 840z + 1540y’ + (1848+ 84(r?— 336(z) y® + ( — 308+ 304(r> — 4584 — 480z°) y°
1152y+1)4
+(1442%— 2306- 11522°+ 3304% — 120Q) y* + ( — 14082 — 1927* + 333& — 1524+ 768%)y3+ (24— 327*
+ 134473+ 412& — 44567%)y?+ (— 16322+ 324+ 2088+ 64z* — 2887°)y + 1624+ 4322 — 19273+ 31272+ 81]
with
1
y:
x°+1
For the particular case=0 we get
_ y(5y*-3)
Ml(X!O)_ - 24
and
2
M,(x,0)= y—[385y4—462yZ+ 81]
21152 ’

which reproduce the known asymptotic formul[&8]. This, as well as cancellation of powersyoih the denominators dfl;,
gives a quite reliable criterion for correctness of the expression obtained.

2. Asymptotic form of the Kummer function M (k?x?/4z+1k+2,z) for k>1, z,x fixed

M(X,2)  My(X,2) ]
M o(X) + + +0(1/k3) |,
k k2

Computations analogous to those of the previous section lead to the result
kigk 1 1
(kx)k 27k (1+x3)14

z Vx°+1-1
Xexpl = ———
2 x2+1+1

X

1+Vx2+1

M(k+1+aldz,k+2z)=

exp[ kyx2+1+kln

where
2y
y[5Y°+ (— 122+ 22)y*+ (— 482+ 38+ 122%)y>+ (— 362+ 6 — 82%)y?+ (— 39— 47%)y — 24]
M(X,2)=—
12(y+1)3
and
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2
M, (X,2)= ﬁ[sssy%r (—840z+2380Yy8+ (— 5040+ 6048+ 840z%)y " + ( — 12744+ 7636— 48025 + 448(¢?) y®
y
+ (9160 + 1447* — 16896 — 172&°+ 3478 y°+ (— 3660 1922* + 6272%— 10296&) y*+ (— 7440 322*

—11927%+ 172&%+ 1008&)y®+ (— 17282 — 5892+ 64z* + 480z° + 468(0r) y° + (172& + 162* — 2439+ 40&°)y
— 432+ 1927%]

with y=1/\x?+1.

3. Asymptotic form of Kummer function M(—k?x?%4z,k+1,—z) for k>1, z,x fixed
Use of previous calculations can be maximized by writing the function to be decomposed as

M(—aldz,k+1,—z)=e *M(aldz+k+1k+12)

k! Z—a/422k+ 1-al2z (42)—k—11"(a/4z)
I'(a/4z) I'(al4z+k+1)

I )
X e ZJO dssa./22+k+1e s /4z| k(s)-
The final result is

M(—aldz,k+1,—z)=e *M(aldz+k+1k+12)

ki2k 1 1 X z Vx3+1-1

(koK 2k (1+x) V4 1+ X2+ 1 2 21141
Mi(x,2) My(X,2)

X| 1+ + +0(1/k3)
k k2
where
Mo(x.2) y[5y*+ (1224 10)y3+ (1222+ 2+ 24z)y*+ (— 822 — 122— 6)y — 24z— 47°— 3]
X,Z)=—
! 24(y+1)2
and
y2
M,(X,2)= m[SSSySJr (840z+ 1540y’ + (840z%+ 1848+ 336(Qz) y® + (— 308+ 3040:% + 480> + 4584)y®°
y

+ (115223 — 2306+ 1200+ 144z*+ 33042%) y* + (— 14082 — 1927* — 333& — 1524 7682°) y >+ (24— 445672
— 1344733274 — 412&)y?+ (— 208& + 324+ 2887°+ 64z* — 16322%)y + 162*+ 19273+ 81+ 31272 — 4327]

with y=1/y/x?+1.

4. Asymptotic form of Kummer function M(—k?x?/(4z),k+2,—z) for k>1, z fixed

The relation ofM (—k?x?/(4z) k+2,—z) to M(—k?x?/(4z),k+1,—z) is analogous to that d¥l (k®x?/(4z) + 1k+2,2) to
M (k?x?/(4z) ,k+ 1,2); thus the calculation is similar to that in Sec. A3. The result is
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M(—aldz,k+2,—z)=e *M(k+2+aldz,k+2,z)

kigk 1 1

z Vx?+1-1

= expl kyx?+1+kin
(kx)* 2k (1+x2)14 p{ (1+
M(X,2)
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—|

Ms(X,2)

Mo(X) +

2y
1+y’

2 x2+1+1

where

Mo(X) =

+0(1k3)

y[5y°+ (12z+22)y*+ (482+ 1222+ 38)y>+ (6 — 822 — 122)y?+ ( — 42° — 48z— 39)y — 24]

M (X,2)

and

y2

O Sy

12(y+1)3

[385/°+ (2380+ 84z)y8+ (5040 + 6048+ 840z%)y " + (4480w + 7636+ 12264+ 480z%)y®

+(3478+ 172&°+800&2+ 144z*+ 13152)y°+ (— 237& — 17927°— 11522°— 1927* — 3660 y*
+(— 19056 — 3274 — 115602 — 21123 — 7440 y3+ (— 28802+ 6722°— 13032 — 5892+ 64z%)y?
+ (38423 — 24394+ 864z+ 271222+ 162%)y — 432+ 1927°+ 2304]

with
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