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Realization of chiral symmetry in the domain model of QCD
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The domain model for the QCD vacuum has previously been developed and shown to exhibit confinement
of quarks, a strong correlation of the local chirality of quark modes, and a duality of the background domain-
like gluon field. Quark fluctuations satisfy a chirality violating boundary condition parametrized by a random
chiral anglea j on the j th domain. The free energy of an ensemble ofN→` domains depends on$a j , j
51, . . . ,N% through the logarithm of the quark determinant. Its parity odd part is given by the axial anomaly.
The anomaly contribution to the free energy suppresses continuous axialU(1) degeneracy in the ground state,
leaving only a residual axialZ(2) symmetry. This discrete symmetry and the flavorSU(Nf)L3SU(Nf)R chiral
symmetry in turn are spontaneously broken with a quark condensate arising due to the asymmetry of the
spectrum of the Dirac operator. In order to illustrate the splitting between theh8 from octet pseudoscalar
mesons realized in the domain model, we estimate the masses of the light pseudoscalar and vector mesons.

DOI: 10.1103/PhysRevD.69.074029 PACS number~s!: 12.38.Aw, 12.38.Lg, 14.65.Bt, 14.70.Dj
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I. INTRODUCTION

A mechanism that simultaneously provides for confin
ment of color, spontaneously broken chiral symmetry, an
resolution of theUA(1) problem remains one of the ope
problems in QCD today. Partial solutions@1# based on spe
cific semiclassical or topologically stable configurations c
go some way to manifest this triplet of phenomena,
founder either on generating all three or in allowing for
effective model of the vacuum from which hadron spectr
copy can be derived. In any case, one expects that topo
cal objects of various dimensions—pointlike, stringlike, a
sheetlike—should contribute@2#, complete with significant
quantum fluctuations, in a way that would be difficult
describe via an interacting microscopic model. In this pap
we continue the exploration of the ‘‘domain model’’ for th
vacuum, originally proposed in@3#, as a scenario for simul
taneous appearance of all three phenomena: confinem
spontaneous chiral symmetry breaking via the appearanc
a quark condensate, and a continuousSU(Nf)L3SU(Nf)R
degeneracy of the vacuum forNf massless quarks, but with
out a UA(1) continuous degeneracy of ground states t
would be indicative of an unwanted Goldstone boson. T
purpose of studying a model of this type is to identify t
typical features of the relevant nonperturbative gluonic c
figurations. Such configurations would provide for as ma
gross features of nonperturbative QCD as possible. But
model should preserve simultaneously the well-studied s
distance regime and should be expressed in terms of qu
gluon degrees of freedom as well as in terms of colorl
hadron bound states.

The model under consideration provides for confinem
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of both static~area law! and dynamical~propagators are en
tire functions of momentum! quarks@3#. It also displays spe-
cific chiral properties of quark eigenmodes; namely, as w
be discussed in more detail below, the spectrum of the D
operator is asymmetric with respect tol→2l and zero
quark modes are absent, but the local chirality of all nonz
modes at the center of domains is correlated with the dua
of the background field@4#. This has been observed on th
lattice @5# and is usually considered as an indication of spo
taneous breakdown of flavor chiral symmetry. The purpo
of this article is to study the details of chiral symmetry re
ization in the domain model. The nonzero quark condens
and axial anomaly are generated as a result of spectral a
metry and the definite mean chirality of the eigenmodes.
compute the quark condensate, study the degeneracies o
minima of the free energy of the domain ensemble with
spect to chiral transformations, and estimate the spectrum
pseudoscalar mesons.

The model is defined by a partition function describing
ensemble of hyperspherical domains, each characterized
background covariantly constant self-dual or anti-self-d
gluon field of random orientation. Summing over all orie
tations and both self-dual and anti-self-dual fields guaran
Lorentz andCP invariance. Quarks are confined as demo
strated in the original work@3#. On the boundaries of eac
hypersphere, fermion fluctuations satisfy a chirality violati
boundary condition

ih”~x!eiag5c~x!5c~x! ~1!

which is 2p periodic in the chiral anglea. Herehm is a unit
radial vector at the boundary. Integrating over all such ch
angles guarantees chiral invariance of the ensemble. A
consequence of Eq.~1!, the spectrum of eigenvaluesl of the
Dirac operator in a single domain is asymmetric underl
→2l. Such asymmetries have been studied in other c
©2004 The American Physical Society29-1
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A. C. KALLONIATIS AND S. N. NEDELKO PHYSICAL REVIEW D 69, 074029 ~2004!
texts, for example, by@6#. In the case of the domain mode
the above boundary conditions are combined with the~anti-!
self-dual gluon field which leads to a strong correlation b
tween the local chirality of quark modes at the centers
domains with the duality of the background gluon field@4#.
In this paper, we study how these aspects contribute to q
condensate formation and the pattern of chiral symme
breaking.

The vacua of the quantum problem associated with
ensemble of domains are the minima of the free energy
termined from the partition function. The problem of th
quark contributions to the free energy requires calculation
the determinant of the Dirac operator in the presence
chirality violating boundary conditions. For a choice
boundary condition witha→2 iq2p/2 this problem was
tackled in@7# without taking into account the spectral asym
metry, where the parity odd part of the logarithm of the d
terminant was identified as ln det(iD” );2qq with q the to-
pological charge~not necessarily integer! of the underlying
gluon field, namely, the axial anomaly.

Our first goal in this paper is to address the analog
problem for the specific gluon field relevant to the doma
model, taking into account the asymmetry of the spectru
For the parity odd part we obtain

ln det~ iD” !;2iq~a mod p!. ~2!

This result is consistent with@7# up to a contribution coming
from the asymmetry spectral function. However, we obt
an additional parity even part which also turns out to bea
dependent. We consider this to be more an artifact of
incompleteness of our calculation than an established p
erty of the determinant.

In the partition function all possible sets of chiral angl
$a1 , . . . ,aN% are summed, ensuring the chiral invariance
the ensemble. Summation over all degrees of freedom
addition to chiral angles defines the free energy as a func
of these chiral angles. In the limitN→` the minima of the
free energy density in$a1 , . . . ,aN% determine the preferred
chiral angles. More specifically, when self-dual and anti-s
dual configurations are summed, the anomaly Eq.~2! leads
to a contribution to the free energy of the for
2 ln cos@2qarctan(tana)# which vanishes whena50,p.
The minima are degenerate with respect to discreteZ2 chiral
transformations. Each of these minima are characterized
quark condensate of opposite sign, which arises due to
spectral asymmetry. An infinitesimally small quark mass
moves the degeneracy between the two discrete minima,
a nonzero quark condensate is generated with the value

^c̄~x!c~x!&52~237.8 MeV!3

with no additional modifications of the two model param
eters after fixing in the gluonic sector of the theory. Th
gives a model with the chiralZ2 discrete subgroup ofUA(1)
being spontaneously broken, and not the continuousUA(1)
itself. In the absence of the mass term the ensemble ave
of c̄c correctly vanishes. A similar argument based on mi
mization of the free energy and thereby a relaxation of
07402
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effectiveu parameter of QCD to zero is discussed in detail
@8# in the context of the strongCP problem.

Moreover, the form of Eq.~2! means that the free energ
does not depend on flavor nonsinglet chiral angles w
more than one massless quark flavors are introduced.
allows for the correct degeneracy of vacua with respec
continuousSU(Nf)L3SU(Nf)R chiral transformations. This
vacuum structure implies the existence of Goldstone bos
in the flavor nonsinglet pseudoscalar channel but not in
singlet channel. To unveil more explicitly the singlet-oct
splitting, we analyze the structure of pseudoscalar correla
functions in the context of the domain model and estim
the masses of light pseudoscalar and vector mesons.
qualitative conclusion of this analysis is that the area l
~confinement of static quarks! and the singlet-octet splitting
in the model have the same origin: the finite range corre
tions of the background gluon field.

In the next section we briefly review the model, followe
by a summary of the properties of the spectrum of the Di
operator in the domainlike gluon field. We then discuss
detail the calculation of the logarithm of the quark determ
nant for one massless quark flavor, including the role
spectral asymmetry in domains in giving the anomaly for
parity odd part. This is followed by an analysis of the sym
metries of the ground state of the domain ensemble and
computation of the condensate. In Sec. V we generalize
result toNf massless flavors in order to verify the spontan
ous breaking ofSU(Nf)L3SU(Nf)R in the ensemble. The
last section is devoted to calculation of meson masses.
tails of calculations are relegated to the Appendix.

II. THE DOMAIN MODEL

For motivation and a detailed description of the model
refer the reader to@3#. The essential definition of the model
given in terms of the following partition function forN
→` domains of radiusR:

Z5N lim
V,N→`

)
i 51

N E
S
ds iEF c

i
Dc ( i )Dc̄ ( i )

3E
F Q

i
DQid@D~B̆( i )!Q( i )#DFP@B̆( i ),Q( i )#

3e2SVi

QCD[Q( i )1B̆( i ) ,c( i ),c̄( i )] ~3!

where the functional spaces of integrationF Q
i and F c

i are
specified by the boundary conditions (x2zi)

25R2

n̆iQ
( i )~x!50, ~4!

ih” i~x!eia ig5c ( i )~x!5c ( i )~x!, ~5!

c̄ ( i )eia ig5ih” i~x!52c̄ ( i )~x!. ~6!

Heren̆i5ni
ata with the generatorsta of SUc(3) in the adjoint

representation and thea i are chiral angles associated wi
the boundary condition Eq.~5! with different values ran-
domly assigned to domains. We shall discuss this constr
9-2
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REALIZATION OF CHIRAL SYMMETRY IN THE . . . PHYSICAL REVIEW D 69, 074029 ~2004!
in detail in later sections. The thermodynamic limit assum
V,N→` but with the densityv215N/V taken fixed and
finite. The partition function is formulated in a backgroun
field gauge with respect to the domain mean field, which
approximated inside and on the boundaries of the dom
by a covariantly constant~anti-!self-dual gluon field with the
field-strength tensor of the form

Fmn
a ~x!5(

j 51

N

n( j )aBmn
( j )q„12~x2zj !

2/R2
…,

Bmn
( j )Bmr

( j )5B2dnr .

Here zj
m are the positions of the centers of domains in E

clidean space.
The measure of integration over parameters characteri

domains is

E
S
ds i . . . 5

1

48p2EV

d4zi

V E
0

2p

da iE
0

2p

dw iE
0

p

dq i sinu i

3E
0

2p

dj i (
l 50,1,2

3,4,5

dS j i2
~2l 11!p

6 D
3E

0

p

dv i (
k50,1

d~v i2pk! . . . , ~7!

where (u i ,w i) are the spherical angles of the chromoma
netic field,v i is the angle between chromoelectric and ch
momagnetic fields, andj i is an angle parametrizing the colo
orientation.

This partition function describes a statistical system of
domainlike structures of densityv21 where the volume of a
domain isv5p2R4/2. Each domain is characterized by a s
of internal parameters and whose internal dynamics are
resented by fluctuation fields. Most of the symmetries of
QCD Lagrangian are respected, since the statistical ense
is invariant under space-time and color gauge transfor
tions. For the same reason, if the quarks are massless
the chiral invariance is respected. The model involves o
two free parameters: the mean field strengthB and the mean
domain radiusR. These dimensionful parameters break t
scale invariance present originally in the QCD Lagrangi
In principle, they should be related to the trace anomaly
the energy-momentum tensor@9,10# and, eventually, to the
fundamental scaleLQCD. Knowledge of the full quantum
effective action of QCD would be required for establishing
relation of this kind.

A straightforward application of Eq.~3! to the vacuum
expectation value of a product ofn field strength tensors
each of the form

Bmn
a ~x!5(

j

N

n( j )aBmn
( j )u„12~x2zj !

2/R2
…,

gives for the connectedn-point correlation function
07402
s

s
ns

-

ng

-
-

e

t
p-
e
ble
a-
en

ly

e
.
f

^Bm1n1

a1 ~x1!•••Bmnnn

an ~xn!&

5 lim
V,N→`

(
j

N E
V

dzj

V E ds jn
( j )a1

•••n( j )anBm1n1

( j )
•••

Bmnnn

( j ) u„12~x12zj !
2/R2

…•••u„12~xn2zj !
2/R2

…

5Bntm1n1 , . . . ,mnnn

a1 . . . an Jn~x1 , . . . ,xn!,

where the tensort is given by the integral

tm1n1 , . . . ,mnnn

a1 . . . an 5E ds jn
( j )a1

•••n( j )anBm1n1

( j )
•••Bmnnn

( j ) ,

and can be calculated explicitly using the measure Eq.~7!.
This tensor vanishes for oddn. In particular, the integral ove
spatial directions is defined by the generating formula

1

4p
E

0

2p

dw jE
0

p

du j sinu je
Bmn

( j ) Jmn

5
sinA2B2@JmnJmn6 J̃mnJmn#

A2B2@JmnJmn6 J̃mnJmn#
.

The translation-invariant function

Jn~x1 , . . . ,xn!5
1

vE d4zu„12~x12z!2/R2
…•••

u„12~xn2z!2/R2
… ~8!

can be seen as the volume of the region of overlap on
hyperspheres of radiusR and centers (x1 , . . . ,xn), normal-
ized to the volume of a single hyperspherev5p2R4/2,

Jn51 for x15•••5xn .

It is obvious from this geometrical interpretation thatJn is a
continuous function and vanishes if the distance between
two pointsuxi2xj u>2R; correlations in the background fiel
have finite range 2R. The Fourier transform ofJn is then an
entire analytical function, and thus the correlations do
have a particle interpretation. It should be stressed that
statistical ensemble of background fields is not Gauss
since all connected correlators are independent of each o
and cannot be reduced to the two-point correlations.

Within this framework the gluon condensate to lowest
der in fluctuations is 4B2, the absolute value of the topolog
cal charge per domain readsq5B2R4/16, and the topologi-
cal susceptibility turns out to bex5B4R4/128p2. An area
law is obtained for static quarks. Computation of the Wils
loop for a circular contour of a large radiusL@R gives a
string tensions5B f(pBR2) where f is given for color
SU(2) andSU(3) in @3#. The area law emerges due to th
finite range of background field correlators Eq.~48!. On the
other hand, the model cannot account for such a subtle
ture as Casimir scaling: the adjoint Wilson loop natura
9-3
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shows perimeter law, but trivially because of the Abeli
character of the domain mean field.

Estimations of the values of these quantities are kno
from lattice calculation or phenomenological approaches
can be used to fitB andR. As described in@3# these param-

eters are fixed to beAB5947 MeV, R5(760 MeV)21

50.26 fm with the average absolute value of topologi
charge per domain turning out to beq'0.15 and the density
of domainsv21542 fm24. The topological susceptibility is
then x5(197 MeV)4, comparable to the Witten-Venezian
value @11#. This fixing of the parameters of the model r
mains unchanged in this investigation of the quark sec
The quark condensate at the origin of a domain where an
lar dependence drops out was estimated in paper@3# with the
result of2(228 MeV)3.

III. DIRAC OPERATOR AND SPECTRUM

The eigenvalue problem

D” c~x!5lc~x!,

ih” ~x!eiag5c~x!5c~x!, x25R2

was studied in@4#. The dirac matrices are in an ant
Hermitian representation. Fora assumed to be real a bio
thogonal basis has to be constructed. Solutions can be
beled via the Casimirs and eigenvalues

K1
25K2

2→ k

2 S k

2
11D , k50,1, . . . ,̀ ,

K1,2
z →m1,2,

m1,252k/2, 2k/211, . . . , k/221, k/2,

corresponding to the angular momentum operators

K1,25
1

2
~L6M !

with L the usual three-dimensional angular momentum
erator andM the Euclidean version of the boost operat
The solutions for the self-dual background field are then

ckm1

2k 5 ih”xkm1

2k 1wkm1

2k , ~9!

wherex andw must both have negative chirality in the se
dual field andk is related to the polarization of the fiel
defined via the projector

Ok5N1Sk1N2S2k ~10!

with

N65
1

2
~16n̂/un̂u!, S65

1

2
~16SB/B!

being respectively separate projectors for color and spin
larizations. Significantly, the negative chirality forx andw is
the only choice for which the boundary condition Eq.~5! can
07402
n
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be implemented for the self-dual background. The expl
form of the spinorsx andw can be found in@4#, where it is
demonstrated that the eigenspinor Eq.~9! has definite chiral-
ity at the center of domains correlated with the duality of t
gluon field. The boundary condition reduces to

x52e7 iaw, x̄5w̄e7 ia, x25R2, ~11!

where upper~lower! signs correspond tow(x) with chirality
71, which, using the solutions, amounts to equations for
two possible polarizations, forLk

21 :

e2 iaM ~k122L2,k12,z0!2
Az0

iL
FM ~k122L2,k12,z0!

2
k122L2

k12
M ~k132L2,k13,z0!G50, ~12!

and forLk
22 :

e2 iaM ~2L2,k12,z0!1
iLAz0

k12
M ~12L2,k13,z0!50,

~13!

where z05B̂R2/2 and L5l/A2B̂. For the present work
Eqs.~12!, ~13! are the starting point, from which we see b
inspection that a discrete spectrum of complex eigenva
emerges for which there is no symmetry of the forml
→2l. For given chirality and polarization and angular m
mentumk, an infinite set of discreteL are obtained labeled
by a ‘‘principal quantum number’’n.

IV. QUARK DETERMINANT AND FREE ENERGY FOR A
SINGLE DOMAIN

A. Massless case

We consider the one-loop contribution of the quarks to
free energy densityF(B,Rua) of a single~anti-!self-dual do-
main of volumev5p2R4/2,

exp$2vF~B,Rua!%

5detaS iD”

i ]”
D 5 )

k,k,n,m1
S lkn

k ~B!

lkn
k ~0!

D 5exp$2z8~s!%s50 .

~14!

The normalization is chosen such that limB→0F(B,Rua)
50. The free energy is thenF5v21z8(0).

In the zeta-regularized determinant an arbitrary scalem
appears, and it is convenient to work with scaled variabl

b5A2B̂/m, r5mR, j5l~B!/m, j05l~0!/m,

and where the dimensionless quantityz5BR2/25b2r2/4 ap-
pears prominently. Moreover, it is convenient to analytica
9-4
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continuea→2 iq2p/2 to guarantee a real spectrum of e
genvalues of the Dirac operator for allq. We shall regard the
background domain field as being self-dual in the followin
Then, Eqs.~12!, ~13! can be recast into a form determinin
the rescaled eigenvaluesj, namely,

M ~k122j2/b2,k12,z!1eq
b2r

2j FM ~k122j2/b2,k12,z!

2
k122j2/b2

k12
M ~k132j2/b2,k13,z!G50 ~15!

for j21 and

M ~2j2/b2,k11,z!1eq
jr

2~k11!
M ~12j2/b2,k12,z!50

~16!

for j22. The zeta functionz(s) breaks up into two parts@6#,
respectively symmetric~S! and antisymmetric~AS! with re-
spect toj→2j:

z~s!5zS~s!1zAS~s!,

with

zS~s!5
1

2
~11e7 ips!zD” 2~s/2!, ~17!

zAS~s!5
1

2
~12e7 ips!h~s!. ~18!

The assumption behind these representations is that the
trum of eigenvalues can be well ordered according to
magnitude of the eigenvaluesuju, which is certainly the case
with the solutions to Eqs.~15!, ~16!. However, there is an
ambiguity which can be fixed by specifying whether t
smallest-in-magnitude eigenvalue is either positive or ne
tive. This determines correspondingly the sign choice in E
~17!, ~18!.

Thus the key quantities devolve into the zeta function
the squared Dirac operator and the asymmetry function,
spectively:

zD” 2~s!5 (
k,n,k

~k11!S 1

@jkn
k ~B!#2s

2
1

@jkn
k ~0!#2sD , ~19!

h~s!5 (
k,n,k

~k11!S sgn@jkn
k ~B!#

ujkn
k ~B!us

2
sgn@jkn

k ~0!#

ujkn
k ~0!us

D .

~20!

It should be stressed that in the presence of baglike boun
conditionszS and zAS do not have the meaning of parit
conserving and parity violating terms since a parity transf
mation in terms of eigenvalues is given byj(q)→2j
(2q) and both spectral functions contain parity conserv
and violating terms. Thus the determinant for a given para
eterq is defined by
07402
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z8~0!5S 1

2
zD” 28 ~0!6 i

p

2
zD” 2~0!7 i

p

2
h~0! D , ~21!

with the normalization chosen in Eq.~14! such thatz8(0)
vanishes asB→0.

The spectral sums over quantum labelsN can be com-
puted using a representation of the sum as a contour inte
of the logarithmic derivative of the function whose zer
determine the spectrum,

(
N

1

jN
s 5

1

2p i RG

dj

js

d

dj
ln f ~j! ~22!

~see @12#!, where the zeros off (j)50 are j5jN and the
contour is chosen such that all zeros are enclosed. With a
parameterq, the poles lie on the real axis, and there is
pole at the origin for anyq. By deforming the contour and
accounting for the vanishing of contributions to the integ
at infinity, the expressions arising from Eq.~22! can be trans-
formed into real integrals. The following representations
the two spectral functions are eventually obtained:

zD” 2~s!5r2s
sin~ps!

p (
k51

`

k122sE
0

` dt

t2s

d

dt
C~k,tuz,q!,

h~s!5rs
cos~ps/2!

ip (
k51

`

k12sE
0

` dt

ts

d

dt
F~k,tuz,q!,

~23!

with C andF being the sums of contributions from the tw
polarizations, taking the forms

C~k,tuz,q!5 (
k56

lnS Ak
2~k,tuz!1e2qBk

2~k,tuz!

A2~k,t !1e2qB2~k,t !
D ,

F~k,tuz,q!5 (
k56

lnS Ak~k,tuz!1 ieqBk~k,tuz!

Ak~k,tuz!2 ieqBk~k,tuz!
D ,

and where

A2~k,tuz!5M S k2t2r2

4z
,k11,zD ,

B2~k,tuz!5
ktr

2~k11!
M S 11

k2t2r2

4z
,k12,zD ,

A1~k,tuz!5M S 2
k2t2r2

4z
,k11,2zD ,

B1~k,tuz!5
2z

ktr FM S 2
k2t2r2

4z
,k11,2zD

2
k111k2t2r2/4z

k11
M S 2

k2t2r2

4z
,k12,2zD G ,
9-5
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A~k,t !5
2kk!

~ktr!k
I k~ktr!,

B~k,t !5
2kk!

~ktr!k
I k11~ktr!. ~24!

The Bessel functionsI k emerge from the limitB→0 with the
normalization of the determinant as specified above. T
next step is to expand the confluent hypergeometric funct
in 1/k, similar to the Debye expansion of Bessel functio
for example,

M S k2t2r2

4z
,k11,zD5C~ tr,k! (

n50

`
Mn~ tr,z!

kn
. ~25!

The forms of the prefactors and theMn(x,z) functions are
given in the Appendix for the various Kummer function
appearing inAk andBk .

Before proceeding with more detail, let us give an ov
view of the subsequent steps. The expansions Eq.~25! are
first inserted inz(s) andh(s). Then the integrals overt can
be evaluated term by term in the series in 1/k. The order of
summation overk andn is then exchanged. This is the mo
subtle step, which we discuss below. But it means that n
the sums overk can be read off in terms of the Riemann ze
function. The resultingzD” 2(s) then has the structure

zD” 2~s!5sr2s
sin~ps!

ip (
n50

`

zR~2s1n21! f ~z2un!1dzD” 2~s!,

~26!

where the termdz denotes those potentially present cont
butions coming from interchange of the order of summatio
over n andk. A similar structure appears for the asymme
spectral function as well. Then we are interested in the
composition of the resulting expressions arounds50. In this
limit the first term in Eq.~26! provides only a contribution
from then52 term and can be calculated with relative ea
since only the lowest coefficientsM1 and M2 in Eq. ~25!
contribute. However, as occurs in even simple problems@13#,
the second term in Eq.~26! is much more difficult to com-
pute. To achieve this one needs to know the coefficie
f (z2un) as a function of the continuous variablen. Below we
will elucidate the contribution from the first term alone, be
ing in mind the necessity of a complete analysis.

Now, in more detail, using expansions of the type Eq.~25!
as given in the Appendix, we arrive at the following expa
sions ofC andF in 1/k:

C~k,tuz,q!5z2FC1~y!

k
1

C2~yuq!

k2 G1O~1/k3!,

F~k,tuz,q!5z2
F2~yuq!

k2
1O~1/k3!,

with the coefficient functions
07402
e
s

,
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w

s

e-

e

ts

-

-

C1~y!52
2

3

y~y21!~3y11!

~y11!2
,

C2~yuq!5
y2~y21!

@y112~y221!2e2q#2

3@~y221!~2y316y217y11!

22~y11!~2y415y315y22y11!e2q

1~y21!~2y416y315y224y21!e4q#,

F2~yuq!522ieqy2A12y2
~12y!2e2q2~11y!2

@11y1~12y!e2q#2
,

with y51/A11t2. We thus get fors!1

zD” 2~s!5z2~112s ln r!sF2
1

2
I11S 1

2s
1g DI2G ,

I15E
0

` dt

t2s

d

dt
C1~y!52s1O~s2!,

I25E
0

` dt

t2s

d

dt
C2~yuq!

52sF2
1

4
2 ln 21 ln~11e2q!G1O~s2!,

and

h~s!52
z2

ip
~11s ln r!

1

s
J2 ,

J252ieqE
0

` dt

ts

d

dt
F2~yuq!

52s
i

2
@p12 arctan~sinh~q!#1O~s2!

upon performing thet ~or y) integrations and where we hav
used that

zR~0!52
1

2
, zR~112s!5

1

2s
1g1O~s!.

The final results for the first term in Eq.~26! and its
analogue in the asymmetry functionh(s) are then summa-
rized in the following equations:

zD” 2~0!50,

zD” 28 ~0!5z2F2
1

4
2 ln 21 ln~11e2q!G ,

h~0!5
z2

2
1

z2

p
arctan@sinh~q!#,
9-6
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and hence

z8~0!5
z2

2 F2
1

4
2 ln 26 i

p

2
1 ln~11e2q!

7 i arctan@sinh~q!#G1dz8~0!. ~27!

Now we can straightforwardly continueq→ ia1 ip/2.
The final result for the free energyF is complex with an
imaginary part of the form

IF562q arctan@ tan~a!# ~28!

whereq is the absolute value of the topological charge in
domain. This charge is not integer here in general but
anomalous term ispn periodic in a. This is the Abelian
anomaly as observed within the context of baglike bound
conditions by@7#. Its appearance here is in the spirit of th
derivation by Fujikawa@14#, where the phase appears as
extra contribution under a chiral transformation on the f
mionic measure of integration.

However, the analytic continuation of Eq.~27! also ex-
poses ana-dependent real part,

F~a!5
z2

2 F2
1

4
1 ln@16cos~a!#G ,

where the signs are according to the prescription in E
~17!, ~18!. There is no reason to expect that anything ot
than the anomaly should appear in the logarithm of the
terminant. Thus the likelihood is that this additional real p
contribution should be canceled by the contributionsdz in
Eq. ~26!, which remains to be verified.

Below we assume that the anomaly Eq.~28! provides the
entire result for thea-dependent part of the free energy
massless fermions in a domain, which leads to intrigu
consequences.

B. Massive fermions

Inclusion of an infinitesimally small fermion mass lea
to a modification of the free energy by a term which is line
in mass to leading order, namely@6#,

F5Fm501 i
m

mv
h~1!. ~29!

Using again the representation Eq.~23! but now in the vicin-
ity of s51, one can find the following representation for t
summed contributions of both polarizations in the self-d
domain to the asymmetry function:

h~s!5 imReia
cos~ps/2!

p~12s! (
k51

`

k12s
k

k11 F211M ~1,k12,z!

2
z

k12
M ~1,k13,2z!G . ~30!
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We next evaluate the asymptotic behavior ink. A singular
term ass→1 can be extracted, which turns out to be ind
pendent of the field~that is,B) and is canceled by the nor
malization. The final expression for the free energy dens
for a self-dual domain, including the contribution linear
mass, is

F (sd)52iq arctan@ tan~a!#2eiam^c̄c&,

where we have used the suggestive notation

^c̄c&5
1

p2R3 (
k51,z5z1 ,z1 ,z2

`
k

k11 FM ~1,k12,z!

2
z

k12
M ~1,k13,2z!21G ~31!

coming fromh(1) with the sum overz corresponding to a
color trace.

Let us summarize the results of this section as follow
The a-dependent part of the free energy of a self-dual d
main for massive quarks is complex with the following re
and imaginary parts:

F5RF1 i IF,

RF52m cosa^c̄c&, ~32!

IF52
q

v
arctan@ tan~a!#2m sina^c̄c&. ~33!

The free energy of an anti-self-dual domain is obtained
complex conjugation.

V. ENSEMBLE FREE ENERGY AND CHIRAL
SYMMETRIES

A. One-flavor case: Quark condensate andUA„1…

Under the assumption that only the anomalous term
pends on the chiral angle, the part of the free energy den
F relevant for the present consideration of an ensemble
N→` domains with both self-dual and anti-self-dual co
figurations takes the form

e2vNF5N )
j

N E
0

2p

da j

1

2
@eivIF(a j )1e2 ivIF(a j )#

5N )
j

N E
0

2p

da je
ln$cos[vIF(a j )] %

5N exp~Nmax
a

ln$cos@vIF~a!#%!.

The maxima ~minima of the free energy density! are
achieved ata15•••5aN5pn.

In the absence of a quark mass, only the anomaly con
bution in the imaginary partI F of the free energy of a single
9-7
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domain appears under the logarithm of the cosine and de
the minima of the free energy density, ln$cos@vIF(a)#%
50. Thus for massless quarks there is no continuousUA(1)
symmetry in the ground states, rather a discreteZ2 chiral
symmetry. The anomaly plays a peculiar role here: selec
out those chiral angles which minimize the free energy
that the full UA(1) group is no longer reflected in th
vacuum degeneracy. It should be stressed here that thi
sidual discrete degeneracy is sufficient to ensure a zero v
for the quark condensate in the absence of a mass ter
some other external chirality violating sources.

Now, switching on the quark mass, we see this discr
symmetry spontaneously broken, and one of the two va
selected in the infinite volume limit according to the sign
the mass. In this case~for these conventions of boundar
condition and mass term!, the minimum ata50 is selected.
The quark condensate can now be extracted from the
energy via

^c̄~x!c~x!&52 lim
m→0

lim
N→`

~vN!21
d

dm
e2vNF(m).

Taking the thermodynamic limitN→` and thenm→0 gives
a nonzero condensate

^c̄~x!c~x!&52^c̄c&. ~34!

According to Eq.~31! the condensate is equal to

^c̄~x!c~x!&52~237.8 MeV!3 ~35!

for the values of field strengthB and domain radiusR fixed
earlier by consideration of the pure gluonic characteristics
the vacuum—string tension, topological susceptibility, a
gluon condensate. A nonzero condensate is generated
out a continuous degeneracy of the ground states of the
tem.

Dependence of the condensate on the domain radiusR is
illustrated in Fig. 1. As expected, the condensate diver
with R→`, since in this limit the number of low lying

FIG. 1. Absolute value of quark condensate as a function
domain radius@R05(760 MeV)21#.
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strongly chiral modes is growing. We will return to the di
cussion of this feature again in the section on the me
spectrum.

B. Multiflavor case: Spontaneous breakdown ofSUL„Nf…

ÃSUR„Nf…

The question remains whether any continuous directi
in the space of vacua are to be expected when the full fla
chiral symmetry is brought into play. For this we must ge
eralize the analysis. We considerNf massless quark flavors
First, we observe that the fermion boundary condition in E
~5! explicitly breaks all chiral symmetries, flavor singlet an
nonsinglet~see also@7#!. Thus the procedure we have use
here of integrating over alla does not suffice to restore th
full chiral symmetry of the massless QCD action. Rather,
boundary condition must be generalized to include fla
nonsinglet angles,

a→a1baTa,

with Ta the Nf
221 generators ofSU(Nf). Then integration

overNf
2 anglesa,baP@0,2p# must be performed for a fully

chiral symmetric ensemble. The spectrum of the Dirac pr
lem now proceeds quite analogously, except that the bou
ary condition mixes flavor components; thus an additio
projection into flavor sectors is required in order to extra
the eigenvalue equation analogous to Eq.~11!.

For Nf52 the boundary condition can be chosen as

ih” ~x!ei (a1bW •sW /2)g5c~x!5c~x!, ~36!

where flavors now mix on the boundary. We must now so
the Dirac spectrum in the presence of this mixing. T
spinorsx and w used in our solutions now become isosp
doublets. We need to project the boundary condition o
separate equations for eigenvalues.

Things proceed much as before in the spin sector with
previous decompositions and projectors. The boundary c
dition will devolve to the structure

x@l#5ei (a1bW •sW /2)w@l#,

where theg5 in the exponent is eliminated via the projectio
into chirality eigenspinors. The equation still mixes the fl
vor components and cannot be solved for an eigenvaluel.

We introduce projectors

P6~b![
16b̂•sW

2

which have the property

P6~b!e2 ibW •sW /25e6 i ubW u/2P6~b!.

Note here the appearance of the magnitude of the tripletbW in
the exponent. Projecting the spinors thereby we obtain se
rate equations for eigenvaluesl@b,6# where we suppress

f

9-8
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all other quantum numbers previously dealt with,

x†l@b,6#‡5ei (a6ubW u/2)w†l@b,6#‡.

It is convenient to define two new angles

a65a6ubW u/2,

and in terms of these angles we can calculate the quark
terminant separately for each flavor projection as before.
free energy for each flavor is now a function of four co
strained angles

F65F6~a,b1 ,b0 ,b2!,

where we use this suggestive notation instead ofb1 ,b2 ,b3,
and where6 denotes the isospin projection for the tw
quark flavors. For a given self-dual domain the total fr
energy will be a sum

FT~a,bW !5F~a1!1F~a2!,

where F is the result from the one-flavor case. Under t
assumption that the anomaly provides the entire chiral an
lar dependence of the determinant, the nonsinglet angleba

drop out due to the form 2q arctan@ tan(a)#52q(a12np).
This expresses the known result that the anomaly depe
only on the flavor singlet directions or is Abelian. Thus, f
an ensemble of domains, the free energy is identical to
for one massless flavor, namely, it depends only on the A
lian anglea. Thus, forNf52, theUA(1) direction remains
fixed by energy minimization while theSU(2)L3SU(2)R
directions represent degeneracies in the space of gro
states in the thermodynamic limit.

For Nf53 the boundary condition will now involve th
flavor mixing matrix

eibala/2

in terms of the Gell-Mann matrices. It is now harder to e
plicitly diagonalize and project into flavor sectors. Noneth
less the form of the result is clear. The Cartan subalge
consists of the diagonal generatorsl3 andl8. Thus the re-
sult of a diagonalization of the argument of the exponen
will have the form

bala/2→bAlA/2, A53,8,

where bi5bi(ba), functions of the original nonsingle
angles analogous toubW u for Nf52. Thus diagonalization will
amount to

eibala/2→diag~eb31b8/A3,e2b31b8/A3,e22b8/A3!.

So projection of the combinedU(1)3SU(3) chiral bound-
ary condition will lead to three sets of equations with t
eigenvalues depending on the combinations of angles
07402
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B15a1b31
1

A3
b8,

B25a2b31
1

A3
b8,

B35a2
2

A3
b8,

where evidently

(
i

Bi53a,

reflecting ultimately the tracelessness of the generators.
free energy for a given domain will be the sum of three ter

FT5(
i 51

3

F~Bi !

with F being the same expression evaluated for the o
flavor case. Once again, the assumption of the anom
means cancellation of theba-dependent functionsbA, leav-
ing only thea dependence in the free energy. Once ag
energy minimization constrains theUA(1) direction, leaving
the SU(3)L3SU(3)R directions unconstrained. Thus fo
Nf53 one expects eight, not nine, continuous directions
the space of vacua.

The argument for arbitraryNf is now evident, the key
ingredients being the tracelessness ofSU(Nf) generators and
the specific form of the anomaly for the quark determina

VI. ESTIMATION OF MESON MASSES

The consequences of the above realization of chiral s
metries should be seen in the meson spectrum providing
splitting between pseudoscalar and vector mesons and
tween the pseudoscalar octet andh8.

The source for the difference between the masses of
octet states andh8 can be recognized in the drastic diffe
ence between correlators of the flavor octetJP

a(x) and singlet
JP(x) pseudoscalar quark currents as they appear in the
main model,

^JP
a~x!JP

b~y!&5^^JP
a~x!JP

b~y!&&,

^JP~x!JP~y!&5^^JP~x!JP~y!&&

2^^JP~x!&&^^JP~y!&&. ~37!

Here double brackets denote integration over quantum fl
tuation fields and the overbar means integration over all c
figurations in the domain ensemble. The second term in
right-hand side~RHS! of the flavor singlet correlator con
tains two quark loops and is subleading in 1/Nc compared
with the first one-loop contribution. The second term is e
tirely determined by the correlation function of the bac
9-9
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ground gluon fieldB in the ensemble~8! and is proportional
to the quark condensate squared. The analogous two-
term in the flavor nonsinglet correlator is equal to zero due
the trace over flavor indices. It should be added that
pseudoscalar condensate^c̄g5c& naturally vanishes since
parity is not broken in the ensemble of domains. Thus ma
less modes can be expected in the nonsinglet channel, bu
in the flavor singlet due to the additional term in the co
relator. This general structure of correlators is exactly
same as in the instanton liquid model@15# and manifests the
mechanism for eta-prime mass generation proposed by
ten in @11# and appreciated in chiral perturbation theory
@16#. The correspondence between domain model correla
to the original QCD diagrams is illustrated in Fig. 2. Th
gray background denotes averaging over the domain
semble and is intended to represent the nonperturbative
termediate range part of the gluon exchange in the orig
QCD diagrams (a8) and (b8). Diagrams~a! and ~b! corre-
spond to the first and second terms in the RHS of Eq.~37!.
The averaging in diagram~b! relates to both quark loops
which is the domain model representation of the excha
between quark loops in (b8) by infinitely many gluons in the
original QCD representation. It should be noted that d
grams~a! and~b! in Fig. 2 are the lowest order contribution
in the fluctuation gluon fieldsQ which are treated as pertu
bations of the background. Higher orders include excha
by gluonic fluctuations in the presence of the domain m
field.

Direct calculation of meson masses within the dom
model is not available yet. However, we can estimate
effect of contributions subleading in 1/Nc in the flavor sin-
glet pseudoscalar correlator within a calculational sche
that is quite close to the domain model in this respect. Thi
the main purpose of this section. Simultaneously we w
schematically expose the form of the effective action for c
lective colorless mesonlike modes as are expected to em
in the domain model and estimate the value of the typ
dimensionless parameterBR2 but now from the meson spec
trum. The model that will be used for this purpose is bas
on the bosonization of a one-gluon exchange interaction
tween quark currents and in which both quark and glu
propagators are exact solutions in the presence of a b
ground ~anti-!self-dual homogeneous gluon field as

FIG. 2. Diagrammatic representation of two types of contrib
tions to the flavor singlet correlator:~a! and ~b! as in the domain
model; (a8) and (b8) as in full QCD. The gray background in~a!,~b!
represents the nonperturbative part of the gluon exchange indic
in diagrams (a8),(b8).
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@17–19#, but here with additional correlations of the type~b!
in Fig. 2. In @17–19#, as well as the formulation of the mode
based on a homogeneous gluon field, applications to the
culation of the spectrum of light mesons, their orbital ex
tations, heavy-light mesons, heavy quarkonia, decay c
stants, and form factors are given.

In the presence of a homogeneous~anti-!self-dual back-
ground field, the quark condensate emerges due to chiral
modes, but, since there is a continuum of such modes in
homogeneous field, ‘‘an overkill’’ occurs@20,21#:

m^c̄c&}2B2, m→0,

and the limit m→0 cannot be defined properly. Howeve
because of the same zero modes the momentum repres
tion correlators of scalar, pseudoscalar, vector, and axial v
tor currents have the following limits form→0:

P̃P/S→7
B2

m2
F1~p2/B!,

P̃V/A→7BF2~p2/B!. ~38!

Such a qualitatively different behavior of correlators b
comes manifest already atm2/B;O(1) and leads to a strong
splitting of the masses of the corresponding mesons, en
ing light pions and heavyr mesons in particular@18# ~see
also @15#!. The fitted values of quark masses in the mod
correspond to the constituent masses.

The definition of the chiral limit in that model thus cann
be given in terms of quark masses. However, as we disc
below, it is nonetheless possible to define a regime when
calculated pion mass vanishes. The curious side of this
proach to the description of chiral properties of the lig
mesons is that the zero-mode mechanism of condensate
mation alone is exploited without any use made of a Nam
Jona-Lasinio~NJL! or, more generally, Dyson-Schwinge
equation~DSE! type mechanism@22#. The inclusion in this
model of the additional correlations (b),(b8) of Fig. 2 for the
flavor singlet channel enables this approach to also w
phenomenologically forh2h8 masses with the chiral limit
so defined.

In the domain model studied in the first part of this pap
the quark condensate also appears due to specific chiral p
erties of the~now nonzero! Dirac modes in gluon~domain-
like! background fields and not due to a four-fermion inte
action. The chiral properties of these low lying mod
resemble the properties of zero modes in the homogene
field model. The condensate diverges asR→` as shown in
Fig. 1, much as the condensate in the homogeneous
model diverges as 1/m. We expect that this dependence onR
in the domain model should have a similar effect on mes
correlators and masses as does the 1/m singularity in the
homogeneous field case. The characteristic scale of hig
modes is defined by the field strengthB rather than the do-
main radius forBR2@1. Thus one would expect that th
heuristic consideration below should be more consistent w
the domain model picture ifBR2@1.

-

ted
9-10



ra
e
a
h
ou
e
el
ic

u
th

r-
ze
t t
lt
to

d

f

me-

REALIZATION OF CHIRAL SYMMETRY IN THE . . . PHYSICAL REVIEW D 69, 074029 ~2004!
The difference is that in the domain model flavor chi
symmetry is broken spontaneously, which is not the cas
the homogeneous field model. So we should expect a m
less pion for massless quarks: the current mass and the c
limit are well defined, as has been discussed in previ
sections. However, a detailed description of the emergenc
Goldstone modes is a question of detailed study of corr
tors and the bound state problem in the domain model, wh
is still beyond our efforts.

To conclude these preliminary comments, the direct p
pose of the following calculations is to demonstrate
(p,K)-h-h8 splitting due to the correlations in Fig. 2~b!. An
auxiliary purpose, justified by the similarity of chiral prope
ties of zero modes in the homogeneous model and non
eigenmodes in the domain model, is a demonstration tha
pseudoscalar singlet-octet mass splitting occurs simu
neously with a correct description of pseudoscalar-vec
meson splitting.

A. Effective action for colorless composite fields

We shall estimate meson masses within the model
scribed by the following partition function:
07402
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Z5N lim
V→`

E DFQ

3expH 2
B

2

hQ
2

g2CQ
E dxFQ

2 ~x!2(
k

1

k
Wk@F#J ,

~39!

15
g2CQ

B
G̃QQ

(2) ~2MQ
2 uB!, ~40!

hQ
225

d

dp2
G̃QQ

(2) ~p2!up252MQ
2 . ~41!

The effective action in Eq.~39! is expressed in terms o
colorless composite meson fieldsFQ(x) with the massMQ
defined by Eq.~40!, where the condensed indexQ denotes
isotopic and space-time indices as well as all possible
sonic quantum numbers~isospin, spin parity in the ground
state, total momentum, radial quantum number! andk-point
nonlocal verticesGQ . . . Q

(k) :

1 k
Wk@F#5 (Q1•••Qk

hQ1
•••hQk

E dx1•••E dxkFQ1
~x1!•••FQk

~xk!GQ1•••Qk

(k) ~x1 , . . . ,xkuB!,

GQ1

(1)5GQ1

(1), ~42!

GQ1Q2

(2) 5GQ1Q2

(2) ~x1 ,x2!2J2~x12x2!GQ 1

(1)GQ2

(1), ~43!

GQ1Q2Q3

(3) 5GQ1Q2Q3

(3) ~x1 ,x2 ,x3!2
3

2
J2~x12x3!GQ1Q2

(2) ~x1 ,x2!GQ3

(1)~x3!

1
1

2
J3~x1 ,x2 ,x3!GQ1

(1)~x1!GQ2

(1)~x2!GQ3

(1)~x3!, ~44!

GQ1Q2Q3Q4

(4) 5GQ1Q2Q3Q4

(4) ~x1 ,x2 ,x3 ,x4!2
4

3
J2~x12x2!GQ1

(1)~x1!GQ2Q3Q4

(3) ~x2 ,x3 ,x4!

2
1

2
J2~x12x3!GQ1Q2

(2) ~x1 ,x2!GQ3Q4

(2) ~x3 ,x4!1J3~x1 ,x2 ,x3!GQ1

(1)~x1!GQ2

(1)~x2!GQ3Q4

(2) ~x3 ,x4!

2
1

6
J4~x1 ,x2 ,x3 ,x4!GQ1

(1)~x1!GQ2

(1)~x2!GQ3

(1)~x3!GQ4

(1)~x4!, ~45!

and analogous expressions for the higher vertices. Defining the meson-quark coupling constantshQ by Eq. ~41! provides for
the correct residue of the meson propagators at the poles and is known as a compositeness condition@23#.

The verticesG (k) are expressed via quark loopsGQ
(n) with n quark-meson vertices,
9-11
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GQ1•••Qk

(k) ~x1 , . . . ,xk!5E
S
ds jTr VQ1

~x1uB( j )!S~x1 ,x2uB( j )!•••VQk
~xkuB( j )!S~xk ,x1uB( j )!,

GQ1•••Ql

( l ) ~x1 , . . . ,xl !GQl 11•••Qk

(k) ~xl 11 , . . . ,xk!

5E
S
ds jTr$VQ1

~x1uB( j )!S~x1 ,x2uB( j )!•••VQk
~xl uB( j )!S~xl ,x1uB( j )!%

3Tr$VQl 11
~xl 11uB( j )!S~xl 11 ,xl 12uB( j )!•••VQk

~xkuB( j )!S~xk ,xl 11uB( j )!%, ~46!
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where the overbar denotes integration over all configurati
of the background field with measureds j . The quark propa-
gator

S~x,y!5expS 2
i

2
xmB̂mnynDH~x2y!,

H̃~p!5
1

2vL2E0

1

dse2p2/2vL2S 12s

11sD
m2/4vL2

3F paga6 isg5ga f abpb

1mS P61P7

11s2

12s2
2

i

2
ga f abgb

s

12s2D G
is the exact Dirac propagator in the presence of the~anti-!
self-dual homogeneous field

B̂m~x!52
1

2
n̂Bmnxn , B̂mnB̂mr54v2L4dnr ,

f ab5
n̂

vL2
Bmn , v5diag~1/6,1/6,1/3!,

where we introduced a scaleL related to the field strengthB
as

L25
A3

2
B.

For arbitrary orbital momentuml and radial quantum
numbern the vertex function~more precisely, the vertex dif
ferential operator! is factorized into a radial part

Fnl~s!5E
0

1

dttl 1nest, s5¹J 2/L2,

¹J f f 85j f¹Q 2j f 8¹
W , j f5mf /~mf1mf 8!,

¹Q m5]Qm1 iBm , ¹W m5]Wm2 iBm ~47!
07402
sand an angular part. In our particular calculation below
will not deal with the excited states. For the explicit form
the angular part of the vertex the reader is referred to@18#,
where technical details of the derivation of meson-quark v
ticesVQk

(xkuB( j )) and discussion of the approximations a

assumptions behind the derivation of the effective action
composite fields can be found. A simplified scalar fie
model allowing exact implementation of the method h
been considered, and a variational procedure for the appr
mate solution of realistic problems has been formulated
@24#. The relation of this method to the Bethe-Salpeter eq
tion and the nonrelativistic limit are analyzed in@24,25#.

Thus then-point vertexG (n) includes contributions of two
types—the usual one-loop contributions~averaged over the
background field! as diagram~a! in Fig. 3 and products of
two or more such one-loop terms simultaneously avera
over the background field and multiplied by the correspo
ing correlatorsJ of the background field, for example as
diagrams~b! and ~c! of Fig. 3 for the three-point vertex. In
the absence of a background field these additional te
would be just disconnected diagrams and would not app
in the effective action. For the purely constant fieldB they
would correspond to infinite length correlations breaking
cluster decomposition property in the effective action (Jn
[1). The idea of domains is implemented in the above
pressions by means of finite length correlations of the ba
ground field, which ensures cluster decomposition.

The n-point correlation functionsJn of the background
field are defined in Eq.~8!. In particular, the two-point cor-
relator which will be used below can be written in the e
plicit form

FIG. 3. Diagrammatic representation of the three-point ver
function GQ1Q2Q3

(3) . Diagram~a! corresponds to the first term in th
RHS of Eq.~44!, ~b! and~c! to the second and third terms, respe
tively. Solid lines are quark propagatorsS in the background field,
vertices correspond to nonlocal quark-meson verticesVQi

, and the
dashed lines represent meson fieldsFQi

.

9-12
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J2~x2y!5
N

VEV
dzu~x2z!u~y2z!5

2

3p
fS ~x2y!2

4R2 D ,

f~r2!5F3p

2
23 arcsin~r!23rA12r2

22r~12r2!A12r2G . ~48!

Geometrically, the correlation functionJ2(x2y) is equal to
the volume of overlap between spherically symmetric fo
dimensional regions determined by the characteristic fu
tion u and central pointsx, y, normalized to the volume of a
single such region.

Now all the elements of the effective action Eq.~39! are
fixed: nonlocal meson-quark verticesVQ1

(x1uB( j )) and quark

propagatorsS(xk ,x1uB( j )) and background field correlator
are given in explicit analytical form.

It should be noted here that meson-quark vertices are
termined by the gluon propagator in the presence of
background field. In momentum representation the qu
propagator, meson-quark vertices, and correlators of
background field are entire functions in the complex mom
tum plane, which means that quarks and gluons are abse
the model as asymptotic states, which is treated as c
confinement. In the momentum representation the vert
G (n) have no imaginary parts and the probability of a mes
to decay into a quark-antiquark pair is zero. As is shown
@17,18#, within the model formulated above and clarified in
simplified exactly solvable model in@24#, entire propagators
and vertices lead to a Regge spectrum of excited bo
states represented by composite fieldsFQ .

The only free parameters of the model are the same a
the domain model discussed in the first part of this paper:
background field strengthB, mean domain radiusR, strong
coupling constantg, and quark massesmf . The factorCQ in
front of the gauge coupling constantg in Eqs.~39! and ~40!
is known explicitly:

CJnl5CJ

l 11

2ln! ~ l 1n!!
, CS/P5

1

9
, CS/P5

1

18
.

The only place where the gauge coupling constantg enters
this scheme is the equation for meson masses Eq.~40!; the
rest of the effective action contains the meson-quark c
pling constants calculated by means of Eq.~41!.

In the next subsection we present results for the masse
pseudoscalar and vector nonets coming straightforwa
from this formalism with a special emphasis on theh and
h8.

B. The masses and decay constants ofh and h8

With this representation, the calculation of masses of li
mesons and weak decay constants, as performed in@18#, is
modified only with respect to theh and h8 masses. The
07402
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equations for these masses contain terms with an additi
correlationJ2, and this splits them from the remaining ligh
pseudoscalar mesons.

As follows from Eqs.~40! and the second term of Eqs
~42! and~46!, the simplest quark loops relevant to the calc
lation of masses are the constants

GaP
(1)52Tr laig5F00~xuB( j )!S~x,xuB( j )!, ~49!

corresponding to the quark loops in Fig. 2~b!. Herea is the
flavor index (a50, . . . ,8). In theisosinglet case (a50) this
quantity is nonzero. If thes-quark mass is not degenera
with the masses ofu andd quarks thenG8P

(1) is also nonzero.
For a51, . . . ,7 theconstants are identically equal to zero

Calculation ofGaP
(1) is quite simple. The result of the ac

tion of the vertex operatorF00(xuB) on the quark propagato
can be found as follows@in our casej f51/2 in Eq.~47!#:

F00~xuB!S~x,xuB!

5E
0

1

dt expH t

4L2
~¹
←

x2¹
→

y!2J S~y,xuB!ux5y

5E
0

1

dtE d4p

~2p!4
H̃~p!e2tp2/L2

. ~50!

Furthermore,

Tr ig5H̃~p!57
2im

vL2E0

1

dse2sp2/2vL2S 12s

11sD
m2/4vL2

s2

12s2
.

~51!

Here the sign ‘‘7 ’’ relates to self- and anti-self-dual configu
rations of the vacuum field.

Substitution of Eqs.~51! and~50! in Eq. ~49! and integra-
tion over the loop momentump and the parametert leads to
the following integral representation:

GaP
(1)56 i

L3

2p2 (
f

l f f
a Rf ,

Rf5(
v

v
mf

L E
0

1 dss

~2v1s!~12s2!
S 12s

11sD
mf

2/4vL2

, ~52!

where the summations overf and v correspond to traces in
the flavor and color spaces. As indicated in Eq.~47!, v is a
diagonal matrix relating to the direction of the vacuum fie
in color space.

Equation~52! results in the following momentum repre
sentation of the two-point correlation function Eq.~42!:

L22G̃aP,bP
(2) ~p2!5P̃ab~p2!5Pab~p2!2dPab~p2!,

where

dPab~p2!52
8

3p4
~LR!4TabF~p2!,
9-13
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Tab5(
f f 8

l f f
a l f 8 f 8

b RfRf 8 ,

F~p2!5E
0

1

dtA12t2E
0

1

dsscos~A4p2R2t2s!

3F3p

2
23 arcsinAs2~522s!As~12s!G ,

T005
1

3
~2Ru1Rs!

2, T885
2

3
~Ru2Rs!

2,
of

e
uc

07402
T085
A2

3
~2Ru1Rs!~Ru2Rs!,

P005
1

3
~2Pu1Ps!, P̃885

1

3
~Pu12Ps!,

P085
A2

3
~Pu2Ps!. ~53!

The functionP f(p2) has been calculated in Ref.@18#,
P f~p2!52
1

4p2
TrvE

0

1

dt1E
0

1

dt2E
0

1

ds1E
0

1

ds2S 12s1

11s1
D mf

2/4vL2S 12s2

11s2
D mf

2/4vL2

3F2
p2

L2

F1~ t1 ,t2 ,s1 ,s2!

w2
4~ t1 ,t2 ,s1 ,s2!

1
mf

2

L2

F2~s1 ,s2!

~12s1
2!~12s2

2!w2
2~ t1 ,t2 ,s1 ,s2!

1
2v~124v2t1t2!F3~s1 ,s2!

w2
3~ t1 ,t2 ,s1 ,s2!

G
3expH 2

p2

2vL2
w~ t1 ,t2 ,s1 ,s2!J ,
t

w5
w1~ t1 ,t2 ,s1 ,s2!

w2~ t1 ,t2 ,s1 ,s2!
, w15

1

2
v~ t11t2!@s11s2#1s1s2 ,

w252v~ t11t2!~11s1s2!1~114v2t1t2!~s11s2!,

F15~11s1s2!$@s11v~ t11t2!#@s21v~ t11t2!#

1v2~ t12t2!2s1s2%,

F25~11s1s2!2, F352~11s1s2!.

The masses ofh and h8 can be calculated by means
Eqs.~40!, which take the forms

11
g2

9
Ph~2Mh

2 !50, 11
g2

9
Ph8~2Mh8

2
!50,

Ph5
1

2
@P̃001P̃882A~P̃002P̃88!

214P̃08
2 #,

P̃h85
1

2
@P̃001P̃881A~P̃002P̃88!

214P̃08
2 #,

whereP̃5P2dP includes both diagrams in Fig. 2. Thes
equations can be written more transparently if we introd
the mixing angle

h5h8cosu1h0sinu,

h85h0cosu2h8sinu, ~54!
e

where the angleu is a function of momentum,

tan 2u~p2!52P̃08~p2!/@P̃88~p2!2P̃00~p2!#. ~55!

The polarization functions ofh andh8 and their derivatives
with respect top2 take the forms

Ph5P̃88cos2u1P̃00sin2u1P̃08sin 2u,

Ph85P̃00cos2u1P̃88sin2u2P̃08sin 2u,

Ph85P̃888 cos2u1P̃008 sin2u1P̃088 sin 2u,

Ph8
8 5P̃008 cos2u1P̃888 sin2u2P̃088 sin 2u, ~56!

where for computing derivatives Eq.~55! has been used.
With the values of the parameters

mu5md5177.85 MeV, ms5400.98 MeV,

AB5469.52 MeV, g58.94, ~57!

fitted from the masses ofp, r, K, andK! mesons such tha

Mp5140 MeV, MK5496 MeV,

f p5129.9 MeV, f K5150.8 MeV,

M r5Mv5770 MeV,

MK* 5890 MeV, Mf51035 MeV, ~58!
9-14
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we find that

Mh5640 MeV, Mh85950 MeV,

hh54.72, hh852.55

for

ABR51.56. ~59!

The parameterR was fitted to theh8 mass. The domain
model value for this dimensionless parameter quoted in

first part of the paper,ABR51.24, is close to Eq.~59!. Thus
we see that all features of the spectrum of light vector a
pseudoscalar mesons usually associated with chiral sym
tries are correctly reproduced by the model quantitativ
The origin of the splitting between the pseudoscalar and v
tor mesons was discussed in detail in@18#. The new feature is
the shift in the masses ofh8 andh with respect to the othe
pseudoscalar mesons and their mutual splitting, which oc
here due to the additional contribution of Eq.~53! to their
polarization functions. The momentum-dependent mix
angle takes different values at the scale of theh and h8
masses:

uh5u~2Mh
2 !5219.8°, uh85u~2Mh8

2
!546.1°.

~60!

It is notable thatuh coincides with the value of the mixing
angle in the naive quark model, whileuh8 is completely
different fromuh in both sign and magnitude.

We quote also the result for the weak decay constant
h andh8:

f h
054.13 MeV, f h

85165.7 MeV, f h
u 5154.5 MeV,

f h8
0

5288.6 MeV, f h8
8

523.67 MeV,

f h8
u

5183.3 MeV.

These constants are defined by the matrix elements

^0uJ5m
a ~0!uf~p!&5 ipm f f

a /A2,

J5m
a 5q̄gmg5taq, t05l0/2, t85l8/2,

and f f
u corresponds to the mixings

f h
u 5 f h

8cosu1 f h
0sinu,

f h8
u

5 f h
0cosu2 f h

8sinu.

Here

f h
a5hh@ f 8

acosu1 f 0
asinu#, f h8

a
5hh8@ f 0

acosu2 f 8
asinu#,

f 0
05

1

3
~2 f u1 f s!, f 8

85
1

3
~ f u12 f s!, f 8

85
A2

3
~ f u2 f s!.

The functionf f(2M2) was calculated in@18#,
07402
e

d
e-
.
c-

rs

g

of

f f5
mf

4p2 (
v
E

0

1E
0

1E
0

1 dtds1ds2~11s1s2!

@s11s212vt~11s1s2!#3

3F ~12s1!~12s2!

~11s1!~11s2!G
mf

2/4vl2F2vt1
s1

12s1
2

1
s2

12s2
2G

3expS M2

2vL2
C~ t,s1 ,s2!D ,

C5
s1s21vt~s11s2!/2

s11s212vt~11s1s2!
.

As we have already mentioned, the quark masses here sh
be considered as constituent quark masses. The mas
limit is ill defined due to the contribution of zero modes
the quark propagator. However, as is discussed in@18#, a
peculiar feature is that all the necessary shifts and splitti
in the meson spectrum occur explicitly due to the stro
~and, for pseudoscalar, scalar, vector, and axial vector sta
very different! dependence of the meson masses on the qu
masses, which is driven entirely by the zero modes. In or
to visualize this picture in a quantitative manner, includi
now also theh andh8, let us consider a regime in the mod
which can be called ‘‘a chiral limit.’’

C. Massless pseudoscalar octet

This limit can be defined in terms of composite mes
fields as the condition that thep and K mesons become
massless particles. Within the above-formulated me
theory, this requirement is satisfied if the constituent qu
masses satisfy the relation

ms5md5mu5m*

and the massm* is defined from the equation for the pio
mass withmp50 substituted, that is,

11
g2

9L2
Pp~0!50. ~61!

Since in this limit the flavorSU(3) becomes an exact sym
metry, the kaons are also massless. Furthermore, as fol
from Eqs.~53!,

P085T085T88[0,

which means that theh meson is degenerate with thep and
K. The mixing angle betweenh0 andh8 is equal to zero and
the h8 meson corresponds to a pure flavor singlet state.
seen from Eqs.~53!,

dP00}T00F~p2!5” 0,

and the mass of the singlet state is split from the flavor o
states. Vector mesons are massive in this regime. Num
cally, one finds
9-15
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A. C. KALLONIATIS AND S. N. NEDELKO PHYSICAL REVIEW D 69, 074029 ~2004!
m* 5168.83 MeV,

Mh5Mp5MK50, Mh85897 MeV,

hh5hp5hK54.28, hh850.63,

f h
85 f K5 f p5127.76 MeV, f h8

0
5281.87 MeV,

f h
05 f h8

8
50,

and

M r5MK* 5Mv5762 MeV, Mf5950 MeV.

This result displays a typical chiral limit picture with bot
flavor SUR(3)3SUL(3) and UA(1) symmetries correctly
implementedde facto: while the masses of octet states a
drastically reduced from their physical values to zero th
decay constants are subject to only minor change. Simu
neously we see that theh8 does not look like a ‘‘Goldstone’’
particle: both its mass and decay constantf h8

0 are practically
unchanged. The vector states are subject to minor cha
also. For completeness we mention that the scalar and a
vector particles as ground state mesons are absent in
spectrum in this model, but they appear in the hyperfi
structure of orbital excitations of vector mesons with qua
titatively correct masses@18#, which also stays unchanged
the chiral limit described here.

In this picturem* looks like the condensate part of th
constituent quark mass. This impression can be enhance
estimating the current quark masses and their ratio,

mu5mu2m* 59.02 MeV, ms5ms2m* 5232.15 MeV,

ms /mu525.73.

The ratio, which is the only meaningful quantity, almost c
incides with the generally accepted valuems /mu525.

VII. CONCLUSIONS AND DISCUSSION

We have shown that the correlation between the chira
of low lying Dirac modes and the duality of the domainlik
background field indeed drives the spontaneous breakd
of flavor chiral symmetry, as was hinted at in@4#, and as
indicated in lattice calculations@5#. We have also shown tha
the mechanism generating theh-h8 mass splitting is the
same as that causing area law confinement in the dom
model, namely, the finite range correlations induced by
domain mean field. In more detail, we have extracted
parity odd part of the logarithm of the quark determinant a
seen that the axial anomaly is recovered. The chirality pr
erties of the Dirac modes in domains generate the anoma
this context. We see, however, that in this formulation w
domains with baglike boundary conditions, both the symm
ric zeta and the asymmetric eta functions are necessar
obtain this result. We then explored the consequences o
anomaly for the realization of chiral symmetry in the doma
model. The contribution of the anomaly to the free energy
an ensemble of domains leads to a spontaneous breakin
07402
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Z(2) symmetry rather thanUA(1) for one massless fermio
flavor. Quark condensation occurs because of the spe
asymmetry coming from the baglike boundary conditions.
the multiflavor case, the Abelian nature of the axial anom
guarantees that the discreteZ(2) symmetry remains sponta
neously broken in addition to the correct continuous no
singletSU(Nf)L3SU(Nf)R symmetries. One would thus na
ively expect onlyNf

221 Goldstone bosons based on t
number of continuous degenerate directions in the spac
ground states of an ensemble of domains.

On this basis we expect massless pions, kaons, and
mesons in the chiral limit. The domain model manifests c
relations Fig. 2~b! in the singlet channel which generates t
splitting in h-h8 masses via the Witten mechanism. The co
tribution Fig. 2~b! is entirely driven by the correlators of th
background field Eq.~48!. Simultaneously, the backgroun
field correlators are also entirely responsible for the area
@3#. Thus the origin of both mechanisms is identical. In t
Nc→` limit the h8 is massless since the contribution of Fi
2~b! is 1/Nc suppressed with respect to Fig. 2~a!.

We have seen that the calculational scheme does w
well phenomenologically, but the dimensionless parame
turns out to beBR2'O(1) such that for a self-consisten
consideration of meson physics one needs to use the pr
gators of the domain background field: neglecting bound
conditions inside quark loops is not consistent withBR2

'O(1). There is no clear separation of two scales as
already been observed in the consideration of static par
eters of the vacuum—the quark and gluon condensates
string constant, and the topological susceptibility within t
domain model.

Nevertheless, the calculations presented in the final s
tion resemble two features of the domain model we
dressed in the first part of the article. The first feature is qu
obvious: in both cases the additional contributions to
correlators~polarization functions! for h8 and, if mu5” ms
also forh, are crucial for their splitting from the other pseu
doscalar mesons, thus resolving this aspect of theUA(1)
problem. Certainly, the successful~but not self-consistent!
quantitative description provided by the purely homogene
background field need notad hocbe equally successful in
the domain model, and verification of this is one of our fi
priorities. The second feature is not quite so obvious. T
splitting between pseudoscalar and vector meson mass
the case of the purely homogeneous field is determined
the singular behavior of the quark condensate form→0 ~as
mentioned, the condensate diverges in the massless limit
to a continuum of zero modes@20,21#!. This singular behav-
ior is not present in the domain model—zero modes do
exist at all and the limitm→0 is regular. However, a quar
condensate is generated in the domain model by the as
metry in the spectrum of the Dirac operator, and this cond
sate diverges forR→` as follows from Eqs.~31! and ~34!
and as shown in Fig. 1, as discussed above. This diverge
is expected to play the same role for correlators of the
main model asm→0 in the homogeneous field, thus gene
ating strong pseudoscalar-vector splitting. The value of
quark condensate given in Eq.~35! corresponds toR/R0
51 in Fig. 1. But, unlike the model based on a purely h
9-16
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mogeneous field, the domain model manifests spontane
breaking of flavor chiral symmetry and hence has the po
tial to reproduce a genuine picture of the chiral limit. This
only mimicked in the homogeneous field consideratio
above, although in a surprisingly successful manner.

The zeta function calculation nonetheless remains inc
plete, where the contributions that should eliminate
chiral-angle-dependent parity even part of the quark dete
nant’s logarithm need to be calculated. The observation
lack of separation of scales, mentioned above, also me
that a more careful study of collective modes within the d
main modelper seis necessary to put the phenomenologi
results above on a sound footing. In the same context,
plicit correlation functions in the domain model would e
able a study of the~anomalous! Ward identities and issue
@26# related to the realization of Goldstone’s theorem~or
otherwise! in the UA(1) sector.

There are two issues naturally related to this work a
requiring at least some preliminary comment within the co
straints of the calculations realized thus far.

At first superficial glance, the mechanism of quark co
densate generation through the asymmetry in the spectru
the Dirac operator looks to be different from the approach
Banks and Casher@27#, where the spectrum is symmetric an
the condensate arises due to a finite density of chiral z
modes. However, these seemingly different formulations
fact have more in common. In particular, in the thermod
namic limit the system is characterized by a finite density
low lying ~but nonzero! modes which are strongly chira
Even if for a given fixed domain the spectrum is asymmet
as indicated by the spectral asymmetry functionh, on aver-
age all positive and negative nonzero eigenvalues appe
the ensemble in a symmetric way, and neither left nor ri
chirality modes prevail in the ensemble. This can be see
the symmetric distribution of the local chirality paramet
given in our previous work@4#. The chiral condensate arise
due to the existence of a finite density of strongly chi
eigenmodes both in the Banks-Casher formulation and in
model under consideration. The difference is that, in the
main model the corresponding eigenvalues are nonzer
the thermodynamic limit and none of the fermionic mod
are purely chiral; rather, they can be characterized by t
average chirality with a definite sign correlated with the d
ality of the mean gluonic field in the domain: the lower t
Dirac operator eigenmode the closer this average chiralit
61. Thus, we would take the liberty of saying that the d
main model gives a ‘‘smeared’’ realization of the Bank
Casher scenario.

Another interesting question inspired by the chiral boun
ary condition used in the model is the manifestation or o
erwise of features seen in chiral bag models of the nucle
How much is in common here beyond the similar bound
condition? There is no simple answer to this question yet.
recall that the domain model is formulated in Euclidean fo
dimensional space, colorless hadrons~if any! are not associ-
ated with domains themselves but are anticipated to aris
collective excitations of quantum fluctuations of quark~and
possibly gluon! fields in the domain ensemble. The descr
tion of colorless hadrons requires analytical continuation
07402
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physical Minkowski space. Quark and gluon fluctuations
this approach are localized in both space and time:
asymptotic particlelike states can be associated with th
The model requires substantial use of methods of nonlo
quantum field theory. Various issues related to quantizat
unitarity, causality, Froissart-type bounds at high energ
and interpetation of nonlocal fields as fluctuations localiz
in space and time can be found in@23,24,28–30#. The non-
locality appears here primarily due to the presence of str
background gluon fields, which eliminate the pole in the m
mentum space quark propagator@17,18,31#, rendering it an
entire analytical function. The nature of colored fluctuatio
as localized in space and time prohibits a straightforw
resolution in the domain model of the manifestation of su
interesting features as baryon number fractionalization
chiral bags@32#. This phenomenon appears due to asymm
try ~and a correspondingh invariant! in the spectrum of the
Dirac Hamiltonian, rather than the Euclidean Dirac opera
after a rearrangement of energy levels in the solitonic ba
ground chiral bag. There is no automatic one-to-one co
spondence between phenomena in the domain model
those of the chiral bag model for the nucleon. In particu
the answer to the question of baryon number is intimat
connected to the analytical properties of the propagators~for
example, see@33#! and thus to the mode of dynamical co
finement and the realization of hadrons as propagating e
tations in the domain ensemble, the subject of further wo
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APPENDIX: EXPANSION OF KUMMER FUNCTIONS

1. Asymptotic form of Kummer function M „k2x2Õ„4z…,k¿1,z…
for kš1, z,x fixed

We use the representation@34#

M ~a/4z,k11,z!5
k!

G~a/4z!
E

0

`

dtta/4z21~zt!2k/2e2tI k~2Azt!

and change the integration variable 2Azt5s, giving

M ~a/4z,k11,z!5
k!z2a/4z2k112a/2z

G~a/4z!

3E
0

`

dssa/2z2k21e2s2/4zI k~s!.
9-17
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The asymptotic behavior of

Mk5E
0

`

dssa/2z2k21e2s2/4zI k~s!

at a}k2, k@1 can be found by the saddle point metho
Denoting a5a/2z, z52z, and f (s)5@12(k11)/a# ln(s)
2s2/2az, we arrive at

Mk5E
0

`

dsea f (s)I k~s!

with f (s) having a maximum at

s05Az~a2k21!.

Expanding the exponent about the saddle point and using
addition theorem

S z12z2e2 if

z12z2eif D n

I n~v!5 (
n52`

`

~21!nI n~z2!I n1n~z1!einf,

v5Az1
21z2

222z1z2cos~f!

with f50 andp, one obtains the following representatio

M ~a/4z,k11,z!

5A2pz
k!z2a/4z2k112a/2z

G~a/4z!

3@a22z~k11!#a/4z2(k11)/2e2a/4z1(k11)/2ez/4

3 (
n52`

`

I 2n1k~s0!I n~z/4!

3@11W1~x,z,n!/k1W2~x,z,n!/k2#

1 (
n52`

`

I 2n1k11~s0!I n~z/4!
W3~x,z!

k
, ~A1!

W15
z~z22n13!

6x2
,

W25
z

72x4
@~27z28zn1z3115z214zn2!A11x218zn2x2

212x2115z229zx212z2nx218n3x21z3x214z2x2

256zn127z248n2x2146nx2126znx214zn21z3#,

W35
z~z13!

6x
,

s05Aa22z~k11!, a5k2x2, x5tr,

and calculation of the asymptotic form ofM is reduced to the
asymptotic decomposition ofI 2n1k(s0) and I 2n1k11(s0) for
k@n.
07402
.

he

Decomposition of the factors in front of the sum in E
~A1! at k@1 gives

k!z2a/4z2k112a/2z

G~a/4z!
@a22z~k11!#a/4z2(k11)/2

3e2a/4z1(k11)/2ez/4A2pz

5
k!2k

~kx!k
ez/41z/2x2F11

z~3x21z!

3x4k

1
z~3x6127x4z112x2z21z3!

18x8k2
1O~1/k3!G .

The representation

I n~s0!5
1

Ap

s0
n

2nG~n11/2!
E

21

1

dte2s0t~12t2!n21/2

is now suitable for determining an asymptotic decomposit
of theI 2n1k(s0), again by means of the saddle point appro
mation. With

g1~x,n,z!

52
8z214x2z~214n1z!1x4~21116n218z!

8x4A11x2
,

g2~x,n,z!

5
@8z214x2z~214n1z!1x4~21116n218z!#2

128x8~11x2!

2
1

24~11x2!3/2x6
$32z3148x2z2~11n1z!

1x6@2116n232n323z148n~11n!z124z2#

112x4z@z~61z!1n~416z!#%,

and

h1~x,n,z!5
2~x222!A11x225

24~11x2!3/2
,

h2~x,n,z!5
1

1152~11x2!3
@28268x22720z1480n

2960x2n!A11x21172144x21276x4

152x61384n2576x2n21152x4n2192x6n

2576zx22576z],

we obtain the following full expression for the asymptoti
of the Kummer function up toO(1/k2):
9-18
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M ~a/4z,k11,z!5
k!2k

~kx!k

1

A2pk

1

~11x2!1/4
expH kAx2111k lnS x

11Ax211
D J expH z/41z/2x22z

Ax211

x2 J
3F11

z~3x21z!

3x4k
1

z~3x6127x4z112x2z21z3!

18x8k2
1O~1/k3!G (

n52`

`

I n~z/4!S x

11Ax211
D 2n

3H F11
2z1124n

4~11x2!k
1

16n2~322x2!18n~2x223210z!116zx2136z22x2120z213

32~11x2!2k2 G
3F11S 1

24
22n2D 1

k
1S 1

1152
2

n

12
2

n2

12
1

4n3

3
12n4D 1

k2G
3F11

16n221

8k
1

768n42512n3296n2196n213

384k2 GF11
g1~x,n,z!

k
1

g2~x,n,z!

k2 G
3F11

h1~x,n,z!

k
1

h2~x,n,z!

k2 GF11
W1~x,n,z!

k
1

W2~x,n,z!

k2 G
1

z~z13!

6k~11A11x2!
F11

2z2124n

4~11x2!k
G F11S 1

24
22~n11/2!2D 1

k
GF11

16~n11/2!221

8k
G

3F11
g1~x,n11/2,z!

k
GF11

h1~x,n11/2,z!

k
G1O~1/k3!J .

The series overn can now be resummed in terms of the generating function of Bessel functions and its derivatives,

(
n52`

`

vnI n~u!5expH u

2 S v1
1

v D J ,

(
n52`

`

nlvnI n~u!5Fv
d

dvG l

expH u

2 S v1
1

v D J ,

where

u5z/4, v5S x

11Ax211
D 2

, l 50,1,2,3,4.

Moreover, the presence of the factor

expH z/41z/2x22z
Ax211

x2 J
allows further simplification,

expH z/41z/2x22z
Ax211

x2 J (
n52`

` S x

11Ax211
D 2n

I n~z/4!5expH z

2

Ax21121

Ax21111
J .

The remaining formulas required can be obtained by differentiation. The final result is then
074029-19
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M ~a/4z,k11,z!5
k!2k

~kx!k

1

A2pk

1

~11x2!1/4
expH kAx2111k lnS x

11Ax211
D J

3expH z

2

Ax21121

Ax21111
J F11

M1~x,z!

k
1

M2~x,z!

k2
1O~1/k3!G ,

where

M1~x,z!52
y~5y41~212z110!y31~12z212224z!y21~28z2112z26!y124z24z223!

24~y11!2

and

M2~x,z!5
y2

1152~y11!4
@385y81~2840z11540!y71~18481840z223360z!y61~230813040z224584z2480z3!y5

1~144z42230621152z313304z221200z!y41~21408z22192z413336z215241768z3!y31~24232z4

11344z314128z24456z2!y21~21632z2132412088z164z42288z3!y116z41432z2192z31312z2181#

with

y5
1

Ax211
.

For the particular casez50 we get

M1~x,0!52
y~5y223!

24

and

M2~x,0!5
y2

1152
@385y42462y2181#,

which reproduce the known asymptotic formulas@35#. This, as well as cancellation of powers ofy in the denominators ofMi ,
gives a quite reliable criterion for correctness of the expression obtained.

2. Asymptotic form of the Kummer function M „k2x2Õ4z¿1,k¿2,z… for kš1, z,x fixed

Computations analogous to those of the previous section lead to the result

M ~k111a/4z,k12,z!5
k!2k

~kx!k

1

A2pk

1

~11x2!1/4
expH kAx2111k lnS x

11Ax211
D J

3expH z

2

Ax21121

Ax21111
J FM0~x!1

M1~x,z!

k
1

M2~x,z!

k2
1O~1/k3!G ,

where

M0~x!5
2y

11y
,

M1~x,z!52
y@5y51~212z122!y41~248z138112z2!y31~236z1628z2!y21~23924z2!y224#

12~y11!3

and
074029-20
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M2~x,z!5
y2

576~y11!5
@385y91~2840z12380!y81~25040z160481840z2!y71~212744z176362480z314480z2!y6

1~9160z21144z4216896z21728z313478!y51~236602192z416272z2210296z!y41~27440232z4

21192z211728z311008z!y31~21728z225892164z41480z314680z!y21~1728z116z4224391408z2!y

24321192z2#

with y51/Ax211.

3. Asymptotic form of Kummer function M „Àk2x2Õ4z,k¿1,Àz… for kš1, z,x fixed

Use of previous calculations can be maximized by writing the function to be decomposed as

M ~2a/4z,k11,2z!5e2zM ~a/4z1k11,k11,z!

5
k!z2a/4z2k112a/2z

G~a/4z!

~4z!2k21G~a/4z!

G~a/4z1k11!

3e2zE
0

`

dssa/2z1k11e2s2/4zI k~s!.

The final result is

M ~2a/4z,k11,2z!5e2zM ~a/4z1k11,k11,z!

5
k!2k

~kx!k

1

A2pk

1

~11x2!1/4
expH kAx2111k lnS x

11Ax211
D J expH 2

z

2

Ax21121

Ax21111
J

3F11
M1~x,z!

k
1

M2~x,z!

k2
1O~1/k3!G

where

M1~x,z!52
y@5y41~12z110!y31~12z212124z!y21~28z2212z26!y224z24z223#

24~y11!2

and

M2~x,z!5
y2

1152~y11!4
@385y81~840z11540!y71~840z21184813360z!y61~230813040z21480z314584z!y5

1~1152z32230611200z1144z413304z2!y41~21408z22192z423336z215242768z3!y31~2424456z2

21344z3232z424128z!y21~22088z13241288z3164z421632z2!y116z41192z31811312z22432z#

with y51/Ax211.

4. Asymptotic form of Kummer function M „Àk2x2Õ„4z…,k¿2,Àz… for kš1, z fixed

The relation ofM „2k2x2/(4z),k12,2z… to M „2k2x2/(4z),k11,2z… is analogous to that ofM „k2x2/(4z)11,k12,z… to
M „k2x2/(4z),k11,z…; thus the calculation is similar to that in Sec. A 3. The result is
074029-21
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M ~2a/4z,k12,2z!5e2zM ~k121a/4z,k12,z!

5
k!2k

~kx!k

1

A2pk

1

~11x2!1/4
expH kAx2111k lnS x

11Ax211
D J

3expH 2
z

2

Ax21121

Ax21111
J FM0~x!1

M1~x,z!

k
1

M2~x,z!

k2
1O~1/k3!G

where

M0~x!5
2y

11y
,

M1~x,z!52
y@5y51~12z122!y41~48z112z2138!y31~628z2212z!y21~24z2248z239!y224#

12~y11!3
,

and

M2~x,z!5
y2

576~y11!5
@385y91~23801840z!y81~5040z160481840z2!y71~4480z217636112264z1480z3!y6

1~347811728z318008z21144z4113152z!y51~22376z21792z221152z32192z423660!y4

1~219056z232z4211560z222112z327440!y31~22880z21672z3213032z25892164z4!y2

1~384z3224391864z12712z2116z4!y24321192z212304z#

with

y5
1

Ax211
.
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