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Abstract

In treating the relativistic 3–quark problem, a dressed–quark propagator parame-
terization is used which is compatible with recent lattice data and pion observables.
Furthermore 2–quark correlations are modeled as a series of quark loops in the scalar
and axialvector channel. The resulting reduced Faddeev equations are solved for
nucleon and delta. Nucleon electromagnetic form factors are calculated in a fully
covariant and gauge–invariant scheme. Whereas the proton electric form factor GE

and the nucleon magnetic moments are described correctly, the neutron electric
form factor and the ratio GE/GM for the proton appear to be quenched. The influ-
ence of vector mesons on the form factors is investigated which amounts to a 25 %
modification of the electromagnetic proton radii within this framework.

PACS: 11.10.St, 12.39.Ki, 12.40.Yx, 13.40.Em, 13.40.Gp, 14.20.Dh

†Supported by a Feodor–Lynen fellowship of the Alexander-von-Humboldt foundation and the
Australian Research Council.
∗Address after April 30: MPI für Metallforschung, Heisenbergstr. 1, 70569 Stuttgart, Germany

1

http://arXiv.org/abs/hep-ph/0204178v1
http://arXiv.org/abs/hep-ph/0204178


1 Introduction

In tackling the covariant bound state problem in QCD, models based on a combined Dyson–
Schwinger (DS) and Bethe–Salpeter (BS) approach have found widespread application, for
recent reviews see refs. [1, 2]. This approach has been most successful in describing light
pseudoscalar mesons and their electromagnetic properties. Starting from a suitable model for
the gluon and the gluon–quark vertex in the infrared, and using this model consistently for the
q − q̄ scattering kernel in the meson BS equation, these mesons retain their character as both
q − q̄ bound states and Goldstone bosons. Masses [3], decay constants [4] and form factors [5]
are found to be in excellent agreement with experimental data. In these studies the so–called
rainbow–ladder approximation is used which consists in retaining the bare quark–gluon vertex
and a gluon propagator. The latter is modeled with an enhancement at intermediate momenta
which provides enough strength to generate a dynamical quark mass.

Along these lines the nucleon’s bound state amplitude can be obtained by solving a relativistic
Faddeev equation which needs as input the full solution for the q − q scattering kernel. It is
known that in the rainbow—ladder approximation this kernel exhibits diquark poles [6, 7], with
scalar (0+) diquarks (≈ 0.7 − 0.8 GeV) and axialvector (1+) diquarks (≈ 0.9 GeV) having the
lowest masses. Other diquark correlations have much larger masses. Although these poles might
correspond to unphysical asymptotic states (and indeed disappear when going beyond rainbow–
ladder [8, 9, 10]) they give us a hint that 0+–1+ quark–quark correlations are expected to be
dominant in the nucleon. This argument receives support from recent lattice calculations [11]
and also explains the u–d valence quark asymmetry observed in deep inelastic scattering [12, 13].

The full relativistic Faddeev problem is highly involved and has been solved so far only for
a NJL model in lowest order where the q − q interaction is pointlike and therefore separable
[14]. If the q − q scattering (or t) matrix is separable, the Faddeev equations reduce to a
quark–diquark BS equation which can be solved exactly. Inspired by this idea, the t matrix has
been modeled in such a fashion in ref. [15]. Retaining free massive quarks and 0+–1+ diquarks,
electromagnetic, strong and weak nucleon form factors have been calculated, in good agreement
with experiment (except for the magnetic form factors). It is noteworthy that especially the
neutron electric form factor is positive and different from zero which is in contrast to the valence
quark contributions in many non– or semi–relativistic quark models. (Due to the approximate
SU(6) symmetry of these models, it is consistent with zero almost by construction.) Despite
the positive results of the above mentioned models, the assumptions of free massive constituent
quarks and diquarks is certainly too simplistic from a QCD point of view. Another line of
approach has been taken by ref. [16]. In this study, a well–constrained parametrization of the
quark propagator is used which was obtained by fitting it to a number of soft and spacelike
meson observables [17]. It exhibits the basic feature of DS solutions: a mass function M(p2)
which is of the order of 400 MeV in the infrared and which evolves into the perturbative limit
for p2 → ∞. Furthermore this parametrization has no poles thereby mimicking confinement via
the absence of a Lehmann representation. Scalar diquarks and the dominant nucleon Faddeev
amplitude have also been modeled with entire functions (i.e. pole–free) and the electromagnetic
form factors have been calculated. The results (fitted to GE of the proton) show also a positive
neutron GE and enhanced magnetic moments due to the dressed quark propagator which also
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leads, by use of the Ward–Takahashi (WT) identity, to a dressed quark–photon vertex. A
drawback of this study is the lack of manifest electromagnetic gauge invariance. In order to
maintain it the calculation of currents between bound states has to proceed by gauging (i.e.
minimal coupling of the photon) to an interaction kernel and sandwiching the result between
bound states which are solutions to bound state integral equations with exactly the same kernel
[18, 19].

In both studies [15, 16] the parametrization of the q− q t matrix bears no relation to the quark
propagator and thus to the dynamics which causes chiral symmetry breaking. There remains
the possibility that the good results especially for the neutron GE are rather a result of a clever
parametrization of the q − q correlations than they reflect the underlying physics. Besides the
bulk of contributions to observables coming from a quark core, one would also expect corrections
to these mainly coming from the pion cloud. Their non–negligeable magnitude is apparent in
recent lattice extrapolations to small quark (or pion) masses [20, 21], also recent covariant
studies [22, 23] confirm that the nucleon mass shift due to pions is at least −200 MeV, thereby
indicating the percentage level of pionic corrections to nucleon observables.

Therefore, we will present an extension of the quark–diquark picture which, besides covariance
and gauge–invariance, aims to include several constraints which are available through lattice and
other QCD–phenomenological studies. Thus the number of free parameters will be confined, in
fact to one, and we are in the position to explore the limits of a covariant nucleon quark core
picture. We start from the main assumption to neglect three–quark irreducible interactions
to arrive at solvable Faddeev equations. Evidence for this assumption is admittedly scarce,
only in the limit of static quark sources lattice data [24] seem to confirm a picture where
flux–tubes between each pair of the three quarks minimize the free energy of the three–quark
system. Proceeding from this assumption, we employ the above mentioned efficacious quark
propagator parametrization which captures the essentials of the infrared behaviour of quarks
within QCD to calculate separable 0+ and 1+ diquark correlations by summing quark loop
polarization diagrams (Sect. 2). These correlations are employed to solve the nucleon and delta
Faddeev equations (Sect. 3). Parameters are fixed by the masses of nucleon and delta, leaving
only one free parameter which is essentially the extension of the diquarks. Form factors are
calculated in a manifestly gauge invariance preserving scheme. Here, the construction of the
diquark correlations ensures that the photon properly resolves the diquark. The dependence of
the form factors on the diquark width is investigated (Sect. 4). Finally, in Sect. 5, we draw our
conclusions.

Throughout this paper we work in Euclidean metric (gµν = δµν , {γµ, γν} = 2δµν , γµ† = γµ).

2 Diquark correlations
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Figure 1: The quark mass function (left panel) and the renormalization function compared to
lattice data.

2.1 The quark propagator

Central ingredient to all calculations is the form of the quark propagator,

S(p) = iγ · p σV (p2) − σS(p2) , (1)

= − Z(p2)

ip/ + M(p2)
= −(ip/A(p2) + B(p2))−1 . (2)

For the scalar and vector part we use the algebraic parametrizations:

σ̄S(x) = 2 m̄F(2(x + m̄2)) (3)

+F(b1x)F(b3x) [b0 + b2F(ǫx)] ,

σ̄V (x) =
1

x + m̄2

[

1 − F(2(x + m̄2))
]

, (4)

with F(y) = (1 − e−y)/y, x = p2/λ2, m̄ = m/λ, σ̄S(x) = λ σS(p2) and σ̄V (x) = λ2 σV (p2). The
mass-scale is λ = 0.566 GeV, and the parameter values are given by

m̄ b0 b1 b2 b3

0.00897 0.131 2.90 0.603 0.185
. (5)

In Fig. 1 we show the quark mass function M(p2) and the renormalization function Z(p2) for
spacelike p in comparison with recent lattice data that have been obtained in Landau gauge
[25]. Although the quark propagator fit has been performed to a number of meson observables
within the DS framework [17] and not to lattice data, the chosen parametrization represents the
qualitative behavior of both functions very well. It is still too premature to ask for quantitative
agreement since lattice calculations are not feasible for current quark masses around 10 MeV
yet. We note that the lattice data indicate that the slope of the decreasing mass function is
somewhat less steep than in the parametrization. We will find that this slope has influence on
the ratio GE/GM of the proton.
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Both functions σS and σV are parametrized with entire functions. Thus they have no poles
and reflect confinement. A major drawback, though, are the essential singularities at timelike
infinity (p2 = −∞). Consequently the quark renormalization function blows up for timelike
momenta, and it has been shown in ref. [26] that this has disastrous consequences if one attempts
to describe production processes where timelike momenta O(1 GeV) are deposited onto the
nucleon (Z(−1GeV2) > 105). Nevertheless, for the bound state calculations described here,
the quark propagator is needed at complex momenta where always |Z| < 1. Due to technical
obstacles we will calculate form factors only for Q2 < 2 GeV2, and for these calculations the
quark propagator is sampled at momentum points where |Z| < 1.2. Thus for our calculations
we do not expect artefacts of the parametrization to show up in the numerical results.

2.2 The q − q t matrix

According to the arguments given in the Introduction, we expect scalar and axialvector q − q
correlations to be the most important ones within the nucleon. Thus we model a separable t
matrix by

t(kα, kβ; pα, pβ) ≡ t(k, p, P ) = χ5
αβ(k, P ) D(P ) χ̄5

γδ(p, P ) + (6)

χµ
αβ(k, P ) Dµν(P ) χ̄ν

γδ(p, P ) . (7)

The relative momenta are defined as

k[p] =
1

2
(kα[pα] − kβ[pβ]) , (8)

and the total diquark momentum is

P = pα + pβ = kα + kβ . (9)

We assume that the Dirac structure of the vertices χ5 (scalar diquark) and χµ (axialvector
diquark) is described by their leading components which non–relativistically correspond to
quarks being in a relative s state:

χ5
αβ(p) = g0+(γ5C)αβ F(p2/w0+), (10)

χµ
αβ(p) = g1+(γµC)αβ F(p2/w1+) . (11)

The scalar function F (defined below eq. (4)) describes the extension of the diquarks in their
relative momentum variable, regulated by the widths w0+ and w1+ . Although the choice of this
function is somewhat arbitrary, numerical results depend only on the diquark widths and not
on the specific form chosen as we have checked by employing both monopole and dipole forms.
The constants g0+ and g1+ are normalization constants yet to be determined.

Antisymmetry between the quarks dictates the color and flavor quantum numbers of the vertices
χ. They are both in a color antitriplet representation. As (γ5C) is antisymmetric, the scalar
vertex must also be antisymmetric in flavor space, in contrast to the axialvector vertex which
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Figure 2: The separable t matrix and the definition of the diquark propagator

is symmetric in flavor space due to the symmetric matrices (γµC). We adopt the following
normalizations, restricting ourselves to the isospin subgroup:

(χ5,C)AB
ab =

(τ2)ab√
2

ǫABC

√
2

, (12)

(χµ,C
k )AB

ab =
(τ2τk)ab√

2

ǫABC

√
2

. (13)

Capital letters denote color indices and small letters isopin indices. The τk represent the usual
Pauli matrices. We will suppress color and flavor indices in the following, corresponding traces
will have been worked out.

We model the inverse diquark propagators D−1 and (Dµν)−1 by quark polarization diagrams
as shown in Fig. 2 with an additional constant offset Λ0+ for the scalar diquark and Λ1+ for
the axialvector diquark. This assumption describes the propagation of the quark pair being
determined by an infinite series of loops as in Fig. 2. Similar expressions are obtained in the
bosonized forms of the Global Color Model [27] or in the NJL model [14]. In the latter the
constant Λ corresponds to the inverse strength of the four–quark interaction.

For the scalar channel the inverse propagator reads

D−1(P 2) = −Λ2
0+ − Π(P 2) , (14)

Π(P 2) = −
∫

d4q

(2π)4
Tr χ̄5(q2) S(P/2 + q) χ5(q2) ST (P/2 − q) . (15)

The polarization function Π(P 2) has also an essential singularity at timelike infinity (as the
quark propagator). Typically it evolves from −∞ at P 2 = −∞ monotonically to zero at
P 2 = ∞, save for a tiny bump at around 4 GeV2. The effect of the constant Λ2

0+ is to shift D−1

downwards that it acquires a zero at some −P 2 = m2
0+ . Thus, the propagator has a pole. This

is very similar to the rainbow–ladder truncation of the quark DS eq./diquark BS eq. where
poles do appear in the t matrix. At the pole we demand unit residue,

d

dP 2
Π(P 2)|P 2=−m2

0+

!
= 1 , (16)

thus relating the hitherto unknown constant g0+ to m0+ or, equivalently, Λ0+ .
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For the inverse propagator in the axialvector channel, we employ an ansatz similar to the scalar
channel:

(D−1)µν = −Λ2
ax δµν − Πµν

ax . (17)

The polarization loop

Πµν
ax (P 2) = −

∫

d4q

(2π)4
Tr χ̄µ(q2) S(P/2 + q) χν(q2) ST (P/2 − q) (18)

can be split into longitudinal (P µP ν/P 2 Πax,L(P 2)) and transverse ((δµν−P µP ν/P 2) Πax,T(P 2))
components. We note that Πax,L(0) = Πax,T(0) as it should be (to have no pole in the propagator
at P 2 = 0). Furthermore we see from the numerical results that in the region P 2 ∈ [−0.7, 1.5]
GeV Πax,L(P ) is approximately constant (deviations are ≈ 1 %). Therefore we take the inverse
propagator as

(D−1)µν(P ) = −Λ2
axδ

µν − Πax,T(P )

(

δµν − P µP ν

P 2

)

− Πax,T(0)
P µP ν

P 2
. (19)

This is in accordance with the requirement that the longitudinal part of a spin-1 propagator
not be dressed.

The behavior of the transverse polarization, Πax,T, is very similar to the scalar polarization, Π,
thus upon shifting by Λ2

ax the propagator acquires a pole at a mass which is larger than the
scalar diquark mass if Λ0+ ∼ Λ1+ . At the pole a similar condition to eq. (16) holds:

d

dP 2
Πax,T(P 2)|P 2=−m2

1+

!
= 1 , (20)

We wish to relate the constants Λ0+ and Λ1+ which represent inverse coupling strengths in
the scalar and axialvector channels, respectively. Consider a quark vector current–current
interaction where the currents are color octet and Lorentz diagonal which arises e.g. from
bosonizing a Global Color Model with the gluon propagator in Feynman gauge, ∼ δµν . Upon a
Fierz transformation into the scalar and axialvector diquark channels we find the relation [28]

Λ1+

g1+

= 2
Λ0+

g0+

. (21)

In summary, we have parametrized the q−q correlations close to the rainbow–ladder truncation
scheme which proved to be successful in the meson channels. Yet, scalar and axialvector
diquarks are mainly characterized by an (unphysical) mass which should only be interpreted as
an inverse effective correlation length than as a physical particle’s mass. The composite nature
of the diquarks is reflected by the propagators which are a series of quark loops. We used six
parameters (diquark widths wi, diquark normalization constants gi and quark–quark inverse
coupling strengths Λi, i = {0+, 1+}) which are reduced to three free parameters by using the
relations (16,20,21). In the following, we will impose two more constraints using the masses of
nucleon and delta, fixing essentially the inverse coupling strengths.
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3 Faddeev equations for nucleon and delta

A full derivation of the Faddeev equations for N and ∆ using separable q − q t matrices can
be found in ref. [29]. In the following, we will only introduce the necessary elements. For
the case of separable t matrices, it is convenient to introduce baryon–quark–diquark Faddeev
amplitudes. These Faddeev amplitudes have to be decomposed in Dirac and Lorentz space
after their projection onto positive energy states with spin 1/2 (N) or spin 3/2 (∆).

3.1 Nucleon

The nucleon Faddeev amplitude (or wave functions) can be described by an effective multi-
spinor characterizing the scalar and axialvector correlations,

Ψ(p, P )u(P, s) ≡
(

Ψ5(p, P )
Ψµ(p, P )

)

u(P, s). (22)

u(P, s) is a positive-energy Dirac spinor (of spin s), p and P are the relative and total momenta
of the quark-diquark pair, respectively. The vertex functions are defined by truncation of the
legs,

(

Φ5

Φµ

)

= S−1

(

D−1 0
0 (Dµν)−1

) (

Ψ5

Ψν

)

. (23)

The coupled system of Faddeev equations for the nucleon wave and vertex functions can be
written in the following compact form,

∫

d4k

(2π)4
G−1(p, k, P )

(

Ψ5

Ψµ′

)

(k, P ) = 0 , (24)

in which G−1(p, k, P ) is the inverse of the full quark-diquark 4-point function. It is the sum of
the disconnected part and the interaction kernel.

Here, the interaction kernel results from the reduction of the Faddeev equation for separable
2-quark correlations. It describes the exchange of the quark with one of those in the diquark
and thus the Faddeev equation reduces to an effective quark–diquark BS equation. Thus,

G−1(p, k, P ) = (2π)4 δ4(p − k) S−1(pq)

(

D−1(pd) 0
0 (Dµ′µ)−1(pd)

)

−

1

2

(

−χ5
(p2

2) ST
(q) χ̄5

(p2
1)

√
3 χµ′

(p2
2) ST

(q) χ̄5
(p2

1)√
3 χ5

(p2
2
) ST

(q) χ̄µ
(p2

1
) χµ′

(p2
2
) ST

(q) χ̄µ
(p2

1
)

)

. (25)

Herein, the flavor and color factors have been taken into account explicitly, and χ5, χµ stand for
the Dirac structures of the diquark-quark vertices, see eqs. (10,11). The freedom to partition
the total momentum between quark and diquark introduces the parameter η ∈ [0, 1] with
pq = ηP + p and pd = (1 − η)P − p. The momentum of the exchanged quark is then given by
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q = −p − k + (1 − 2η)P . The relative momenta of the quarks in the diquark vertices χ and χ̄
are p2 = p + k/2− (1− 3η)P/2 and p1 = p/2 + k − (1− 3η)P/2, respectively. Invariance under
(4-dimensional) translations implies that for every solution Ψ(p, P ; η1) of the BS equation there
exists a family of solutions of the form Ψ(p + (η2 − η1)P, P ; η2).

Using the positive energy projector with nucleon bound-state mass Mn,

Λ+ =
1

2

(

1 +
P/

iMn

)

, (26)

the wave function can be decomposed into their most general Dirac structures,

Ψ5(p, P ) = (S1 +
i

Mn
p/S2)Λ

+, (27)

Ψµ(p, P ) =
P µ

iMn
(A1 +

i

Mn
p/A2)γ5Λ

+ + γµ(A3 +
i

Mn
p/A4)γ5Λ

+ (28)

+
pµ

iMn

(A5 +
i

Mn

p/A6)γ5Λ
+ .

In the rest frame of the nucleon, P = (~0, iMn), the unknown scalar functions Si and Ai are
functions of p2 = pµpµ and of the angle variable z = P̂ · p̂, the cosine of the (4-dimensional)
azimuthal angle of pµ. Certain linear combinations of these eight covariant components then
lead to a full partial wave decomposition, see ref. [30] for more details and for examples of
decomposed amplitudes assuming pointlike diquarks. Note that such a decomposition in Dirac
and Lorentz space holds for the vertex function Φ(p, P ) as well.

The Faddeev solutions are normalized by the canonical condition

MnΛ+ !
= −

∫

d4 p

(2π)4

∫

d4 p′

(2π)4
(29)

Ψ̄(p′, Pn)

[

P µ ∂

∂P µ
G−1(p′, p, P )

]

P=Pn

Ψ(p, Pn) .

3.2 Delta

The effective multi-spinor for the delta baryon representing the BS wave function can be charac-
terized as Ψµν

∆ (p, P )uν(P ) where uν(P ) is a Rarita-Schwinger spinor. The momenta are defined
analogously to the nucleon case. As the delta state is flavor symmetric, only the axialvector
diquark contributes and, accordingly, the corresponding BS equation reads,

∫

d4k

(2π)4
G−1

∆ (p, k, P )Ψµ′ν
∆ (k, P ) = 0 , (30)

where the inverse quark-diquark propagator G−1
∆ in the ∆-channel is given by

G−1
∆ (p, k, P ) = (2π)4δ4(p − k) S−1(pq) (Dµµ′

)−1(pd) +

χµ′

(p2
2) ST (q) χ̄µ(p2

1). (31)
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Set I II III IV V
w1+ [GeV2] 0.4 0.6 0.8 1.0 1.2
w0+ [GeV2] 0.21 0.27 0.32 0.36 0.39
m1+ [GeV] 0.92 0.91 0.89 0.88 0.87
m0+ [GeV] 0.75 0.77 0.80 0.84 0.86

Table 1: Five parameter sets which describe the physical masses of N , Mn =940MeV, and ∆,
m∆ =1230MeV.

The general decomposition of the corresponding vertex function Φµν
∆ , obtained as in eq. (23)

by truncating the quark and diquark legs of the BS wave function Ψµν
∆ , reads

Φµν
∆ (p, P ) = (D1 +

i

M∆

p/D2) Λµν +
P µ

iM∆

(E1 +
i

M∆

p/E2)
pλ

T

iM∆

Λλν + (32)

γµ(E3 +
i

M∆

p/E4)
pλ

T

iM∆

Λλν +
pµ

iM∆

(E5 +
i

M∆

p/E6)
pλ

T

iM∆

Λλν .

Here, Λµν is the Rarita-Schwinger projector,

Λµν = Λ+

(

δµν − 1

3
γµγν +

2

3

P µP ν

M2
∆

− i

3

P µγν − P νγµ

M∆

)

(33)

which obeys the constraints

P µΛµν = γµΛµν = 0. (34)

Therefore, the only non-zero components arise from the contraction with the transverse relative
momentum pµ

T = pµ − P̂ µ(p · P̂ ). The invariant functions Di and Ei in eq. (32) again depend

on p2 and p̂ · P̂ . The partial wave decomposition in the rest frame is given in ref. [30].

3.3 Numerical solutions

The Faddeev equations for N and ∆ are solved in the baryon rest frame by expanding the
unknown scalar functions in terms of Chebyshev polynomials of the variable p̂ · P̂ [31]. Thus
the equations are reduced to a system of homogeneous one–dimensional integral equations.
Iterating the integral equations yields a certain eigenvalue which by readjusting the parameters
of the model is tuned to one. As remarked earlier, we are left with one free parameter which is
taken to be the width w1+ of the axialvector diquark.

In Tab. 1 we show five parameter sets which lead to a bound nucleon and delta with the correct
physical masses, Mn = 0.94 GeV and M∆ = 1.23 GeV. Instead of the Λ parameters the pole
locations in the diquark propagators are tabulated which have a more intuitive interpretation.

We need always a broader axialvector diquark (in momentum space) to fit both nucleon and
delta. The resulting diquark masses, notably the mass difference m1+ − m0+ , agrees approx-
imately with previous rainbow–ladder results [6, 7] only for the first two sets with smaller
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diquark widths. The lattice results of ref. [11] give m0+ = 0.83 GeV and m1+ = 0.9 GeV,
within the spread of our parameter sets.

As mentioned in the introductory chapter, pions are expected to reduce the nucleon mass by
at least 200 MeV [22]. The corresponding mass shift for the delta will be lower. Therefore we
investigate the Faddeev equations for nucleon and delta core states of mass 1.2 and 1.4 GeV
respectively and present the results in Appendix A.

4 Nucleon form factors

4.1 Electromagnetic gauge invariance

To calculate form factors, we apply the gauging formalism of ref. [18] which basically consists
in coupling the photon to all elements in the kernel G−1 of the nucleon Faddeev equation (24).
Therefore we need the photon vertices with quark, diquarks and the quark exchange kernel.
Each vertex has to satisfy its WT identity.

For the quark–photon vertex Γµ
q = Γµ

q,BC +Γµ
q,T the construction of the longitudinal part, Γµ

q,BC,
which is fixed by the WT identity has been long known [32]. It is given by

Γµ
q,BC(k, p) = −iγµ Ak + Ap

2
− i(p + k)µk/ + p/

2
∆A − (p + k)µ∆B (35)

where ∆X = (Xk − Xp)/(k2 − p2) and Xk = X(k2), (X = {A, B}). The remaining transverse
part, Γµ

q,T is yet undetermined. To ensure multiplicative renormalizibility at the one–loop level,
an ansatz for this part was proprosed in ref. [33] but it modifies our results for form factors only
on the level of one per cent. The transverse part might also receive dynamical contributions
from the ρ − ω meson poles in the q − q̄ vector channel [34]. In Appendix B, we derive a
parametrization of such ontributions which is well–constrained by the pion form factor. It is
given by

Γµ
q,T(k, p) = φµ mρ

fρ

Q2

Q2 + m2
ρ

e
−α

(

1+ Q2

m2
ρ

)

, (36)

φµ =

(

iγµ
T − 1.69

qµ
T

ωρ

) F2(q2/ω2
ρ)

0.139
, (37)

Q = k − p , q = (k + p)/2 vµ
T = vµ − Qµv · Q/Q2 .

The constants appearing herein are: ρ mass and decay constant mρ = 0.77 GeV and fρ = 0.215
GeV (calculated), α = 0.652 and ω2

ρ = 0.35 GeV2. The structure φµ represents a properly
normalized vector meson BS amplitude (see Appendix B). In eq. (36), the combination of the
exponential and the propagator–like denominator parametrizes the effects of the propagation
of an off-shell, composite ρ − ω. For details, see ref. [34].

The diquark–photon vertices Γµ
0+ and Γµ

1+ receive contributions from four different diagrams,
depicted in Fig. 3. Besides the photon coupling to the quarks within the loop we need seagull
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Figure 3: The photon–diquark vertex, here for the scalar diquark. For the axialvector diquark,
χ5 and M5µ have to be replaced by their corresponding counterparts. Note that in actual
numerical calculations the first two diagrams are equivalent if the quarks are identical.

graphs which describe the photon coupling to the vertices χ and χµ to recover the WT identity
(k − p)µΓµ

0+[1+] = (D[µν])−1(k) − (D[µν])−1(p). The functional form of these seagull vertices has

been derived in ref. [19] and they read

(Ma)µ(p′, Q; qα, qβ) = qα
(4p′ − Q)µ

4p′ ·Q− Q2
[χa(p′ − Q/2) − χa(p′)] +

qβ
(4p′ + Q)µ

4p′ ·Q + Q2
[χa(p′ + Q/2) − χa(p′)] . (38)

The photon momentum is denoted by Q = k − p. The relative momentum p′ between the two
quarks with charges qα and qβ has been defined in eq. (8). The conjugated vertex is obtained
by replacing χ → χ̄, Q → −Q and interchanging qα ↔ qβ .

Photon–mediated transitions between scalar and axialvector diquarks are also possible. The
corresponding (anomalous) vertices Γ0+−1+ resp. Γ1+−0+ are described by diagrams like the
first two in Fig. 3. Seagulls give no contributions to these vertices.

The quark exchange kernel, as given in eq. (25), consists of expressions
∼ χa ST χ̄b (a, b = {5, ν}). Complete gauging leads to a diagram where the photon couples to
the exchange quark and two diagrams where the photon couples to the vertices χa and χ̄b. The
latter couplings are described by the vertex as given in eq. (38). The proof that the gauged
quark exchange kernel obeys its WT identity can be found in ref. [29].

In summary, to obtain the complete nucleon current matrix element, we have to calculate the
diagrams shown in Fig. 4. We remark in passing that the normalization condition for the
nucleon Faddeev amplitudes, eq. (29), is only compatible with the correct nucleon charges, i.e.
GE(0) = 1 (proton) and GE(0) = 0 (neutron), if all diagrams of Fig. 4 are taken into account.
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Figure 4: Nucleon current matrix elements: (a) Impulse approximation diagrams. The photon–
diquark vertex consists of the elements given in Fig. 3. (b) Exchange kernel diagrams.

4.2 Numerical calculations

We extract the Sachs electromagnetic form factors from the current matrix elements by the
following traces:

GE(Q2) =
Mn

2P 2
Tr 〈Pf | Jµ |Pi〉P µ , (39)

GM(Q2) =
iM2

n

Q2
Tr 〈Pf | Jµ |Pi〉(γµ)T ,

(

(γµ)T = γµ − P̂ µP̂/
)

. (40)

Here, P = (Pi + Pf)/2, and the initial and final states |Pi〉 and 〈Pf | are given by the numerical
solutions for the matrix valued wave functions Ψ(p, Pi) and Ψ̄(k, Pf), cf. eqs. (22,27,28).

Due to the complicated singularity structure of the single diagrams and due to limited computer
resources we obtained fairly accurate numbers for the form factors only up to momentum
transfers of Q2 = 2 GeV2. These technical obstructions do not interfere with the conclusions
we will draw, though. A detailed discussion of the technicalities is deferred to Appendix C.

We have calculated the form factors for the five sets tabulated in Tab. 1. The results for the
electric form factors of proton and neutron are shown in Fig. 5. The proton GE (left panel)
becomes steeper with decreasing diquark widths w1+ and w0+ . This is in agreement with
intuition since the scalar diquark correlations give the most important contributions to this
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Figure 5: Depicted are the electric form factors of proton and neutron. Experimental data for
the proton are taken from the analysis in ref. [35]. For the neutron, data are from ref. [36]
(diamond), from ref. [37] (square), from ref. [38] (triangle up) and finally from ref. [39] (triangle
down).

form factor, and with decreasing width also m0+ decreases, so that these correlations become
wider in the “center–of–mass” position variable as in the relative position variable. However,
we also observe for Set I an interesting deviation of the form factor from the dipole shape which
will be discussed below.

Let us turn to the results for GE of the neutron (right panel in Fig. 5). All data sets predict a
positive form factor which is slowly falling for larger Q2 > 1 GeV2. No data set can reproduce
the experimental neutron charge radius or come close to it. This is in remarkable contrast to the
results in refs. [15, 16] where rather simple parametrizations of the q−q t matrix were employed.
As for ref. [15], the good description of GE was mainly a result of the cancellation between
quark and diquark impulse approximation diagram. The former contribute negatively, the latter
positively and by virtue of the simple approximation of the q−q t matrix by free spin–0/spin–1
particles and the corresponding free photon vertices, the diquark contributions fall slower and
thus render GE positive. In this study, we have resolved the diquarks (see Fig. (3)) and the effect
of diquark contributions falling more slowly is almost absent, thus the charge radius becomes
very small. Only with a proper resolution of the diquarks an asymptotically correct description
for the form factors is possible at all, thus we conclude that the neutron charge radius must
be accounted for by other mechanisms such as a neutron dressing by pions. Nevertheless the
positivity of GE for higher momentum transfers is a result of the fully relativistic treatment.

Set I II III IV V
µp [n.m.] 3.05 2.94 2.86 2.79 2.73
µn [n.m.] −1.78 −1.65 −1.55 −1.47 −1.40

Table 2: The magnetic moments of proton (µp) and neutron (µn) for the five parameter sets
given in table 1.

14



0 0.5 1 1.5 2
Q

2
 [GeV

2
]

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

GM

I
III
V

proton

neutron

0 0.5 1 1.5 2
Q

2
 [GeV

2
]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

The Ratio µGE / GM (Proton)

I
II
III
IV
V

Figure 6: Magnetic form factors and GE/GM . Experimental data for proton’s GM are from
ref. [35] and data for GE/GM have been reported in ref. [40].

Fig. 6, left panel, shows the nucleon magnetic form factors and Tab. 2 the corresponding
magnetic moments. Also the magnetic radii become larger with decreasing diquark widths, as
well as µp and |µn/µp|.

Our results for the ratio µpGE/GM , currently under intensive experimental scrutiny, are shown
in the right panel of Fig. 6. Although the results consistently put that ratio below 1, the
available experimental data are underestimated considerably. Even worse, as going towards
more realistic electromagnetic radii (with decreasing set number) the ratio becomes smaller
and smaller. Before giving a reason for the underestimation of µpGE/GM , we will examine the
influence of the vector mesons in the quark–photon vertex.

Full vertex vs. Ball–Chiu vertex

Since the resonance contribution is ∼ Q2 near Q2 = 0, it does not give any contributions to
the magnetic moments, thus these are accounted for by the Ball–Chiu vertex alone. As for the
pion form factor, to which the resonant vertex was fitted, it does give sizeable contribution to
the charge radii. It amounts to 21–23 % in the case of (rp)

2
el for all data sets and is therefore

of the same relative size as the contribution of the resonance to the pion charge radius, see
Appendix B. The neutron charge radius is usually a bit smaller, as the electric form factor is
quenched a bit more when the full vertex is employed, nevertheless the differences are small
and can not account for the discrepancy with the data.

In Fig. 7 we show the influence of the resonance term on proton’s GE and the ratio GE/GM

for set II. We investigated two cases of resonance contributions, the full vertex which includes
the transverse terms as in eq. 36 and a transverse vertex which includes only the leading γµ

T

term. In both cases, the vector meson amplitude is normalized and the damping constant α
has been fitted to the pion form factor. For small Q2, both resonance parametrizations lead
to a GE falling more quickly, with almost no quantitative difference. For intermediate Q2, the
subleading vector meson amplitude ∼ qT leads to a slightly enhanced GE. This effect is visible
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Figure 7: Comparison between results for the full vertex, the Ball–Chiu (BC) vertex plus a
dominant resonance term, and the pure Ball–Chiu vertex. In the first two cases, the resonance
terms have been fitted to the pion form factor.

more clearly in the ratio GE/GM . The subleading amplitude also quenches GM a bit such
that the ratio comes out more than 10 % larger than for the BC vertex in the intermediate Q2

domain.

We see that the vector meson resonance has a sizeable influence on the proton charge radius
(of the order 1/4), and subdominant amplitudes of the vector meson can influence GE/GM by
10–15 %. Nevertheless for this observable a discrepancy remains, and a reason can be found
by analyzing the Ball–Chiu quark–photon vertex. This vertex always appears with quark legs
attached, i.e. in the combination Γ̃µ

q = S(k)Γµ
q,BCS(p). We rewrite Γ̃µ

q in the following way:

Γ̃µ
q = Γ̃µ

q,BC + Γ̃µ
T . (41)

The vertex with legs fulfills the WT identity QµΓ̃µ
q = S(p) − S(k) (note that the propagator

and not its inverse appears on the r.h.s.). The term Γ̃µ
q,BC is constructed via the Ball–Chiu

technique to satisfy this identity:

Γ̃µ
q,BC(k, p) = −iγµ σV k + σV p

2
− i(p + k)µ k/ + p/

2
∆σV + (p + k)µ∆σS . (42)

The remainder, Γ̃µ
T, is transversal, and after some Dirac algebra one finds

Γ̃µ
T =

[

Qµ − γµQ/ + i∆M(γµ(k2 − p2) − Q/(k + p)µ)
] ip/ − Mp

p2 + M2
p

σV k

2
−

σV p

2

ik/ − Mk

k2 + M2
k

[

Qµ − Q/γµ + i∆M(γµ(k2 − p2) − Q/(k + p)µ)
]

. (43)

Due to the running mass function, the terms proportional to ∆M = (M(k2)−M(p2))/(k2−p2)
are non–zero. Precisely these terms give a fairly large negative contribution to the proton’s
GE , thus causing a deviation from the dipole shape. This effect is absent for GM . Of course, a
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Figure 8: Left panel: lattice data from ref. [45] for the quark mass function, extrapolated to
the chiral limit. Right panel: the ratio GE/GM for calculations with modified transverse part
of the quark–photon vertex.

dynamic quark mass function of the kind depicted in Fig. 1 is phenomenologically required and
thus, as in the case of the neutron electric form factor, the effect of other contributions besides
the quark valence core should be sizeable for this observable. Nevertheless, some parts of the
discrepancy (though not all) could be attributed to a stronger influence of the subdominant
vector meson amplitudes. This amounts to a shift of the off–shell vector meson contributions
between the Ball–Chiu vertex and the transverse contributions and thus between the quark
propagator and the off-shell vector meson amplitudes.

To get a first estimate how a change in the quark mass function might influence the ratio
GE/GM , we recalculated the form factors using the wave functions from parameter set II, but
replaced all occurences of ∆M in the expression for Γ̃µ

q , eq. (43), by (a) zero (corresponding to
a momentum–independent quark mass), and (b) by a fit to the most recent lattice data [45].
Since we are using wave functions calculated with the quark propagator parametrization from
eqs. (3,4), this procedure is somewhat inconsistent, but may give qualitative indications to the
behavior of GE/GM . Nevertheless, gauge invariance remains intact since the ∆M terms only
appear in the transversal part of the vertex. We remarked earlier that the quenched–QCD
(Landau gauge) lattice data seem to suggest a somewhat broader quark mass function than
the parametrization employed here. This can be seen from Fig. 8 (left panel) where chiral limit
extrapolations of the data and a fit from ref. [45] are given. Since the functional form used in
the lattice fit, M(p2) = cΛ1+2α/(p2α +Λ2α) with α = 1.52, has a cut along the negative p2 axis,
it is not well suited for our calculations. We chose to re–fit the data to the entire function

M(q2) = c1

(

1 − exp(−q2 − c2
2)

q2 + c2
2

)2

, [q2 = p2/(1 GeV2)]. (44)

For the choice of parameters c1 = 0.4 GeV and c2
2 = 0.45 our fit is also depicted in Fig. 8.

We remark here that both fits, lattice and entire one, lead to a 20 % underestimation of the
pion decay constant fπ (using the formula from ref. [17]), reflecting the uncertainties in lattice
extrapolations and the shortcomings of the quenched approximation.
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Results for the ratio GE/GM are plotted in Fig. 8 (right panel). The ratio is lowest for the
consistent calculation. If eq. (44) is used in the vertex Γ̃µ

q , the curve is shifted upwards and
the proton magnetic moment is somewhat smaller. Surprisingly the simple constituent quark
assumption ∆M = 0 delivers the best results compared to the experimental data, though
employing the approximate wave functions prevents us from drawing precise quantitative con-
clusions. Nevertheless we see that the ratio GE/GM is sensitive to the precise form of the
running quark mass. Furthermore we note that nearly the whole effect comes from the quark
impulse approximation diagram (the second one in Fig. 4).

Clearly more precise QCD lattice data for the quark propagator and/or DSE/BSE studies of
the three–quark and quark–photon systems are desirable.

Form factor results for nucleons with higher quark–diquark core mass are presented in Ap-
pendix A. There we find that the neutron electric form factor does not change, and that the
even steeper mass function in the time–like domain deteriorates the ratio GE/GM even further.

5 Summary and conclusions

In a step towards the solution of the full covariant Faddeev equations for baryons, we have mod-
eled two–quark correlations by assuming them separable and by summing quark polarization
loop diagrams. In this case, the Faddeev equations reduce to a Bethe–Salpeter equation which
has been solved exactly. The technique employed in calculating the two–quark correlations
effectively reduced the number of model parameters to one, the diquark width.

The nucleon form factors have been calculated in a scheme which preserves the Ward–Takahashi
identities for the basic two–point function, the quark propagator, for the four–point function,
the quark–quark scattering kernel and finally for the quark–diquark kernel of the Faddeev
equations. Consequently the current is conserved. Constrained by the pion form factor, effects
from vector mesons have been included in the quark–photon vertex.

Results reveal two effects. If the proton electric and magnetic radius is to be described correctly,
the ratio GE/GM is severely underestimated. This is a consequence of the parametrization of
the dynamic mass function of quarks in accordance with results from Dyson–Schwinger and
lattice studies. Furthermore the substructure of the two–quark correlations which is resolved
by the photon renders the neutron form factor positive, but quite consistently for all parameter
sets the corresponding charge radius cannot be described. Assuming core nucleon states with
higher mass does not alter the above findings.

Certainly the precise shape of the form factors is expected to vary if the technical simplifi-
cations can be rendered obsolete, such as the separability of the two–quark correlations and
the treatment of the vector meson contributions to the quark–photon vertex. Nevertheless it
seems possible that the qualitative features will remain valid, i.e. the quenched neutron electric
form factor for a correctly resolved q − q matrix and the underestimation of GE/GM due to
the quark–photon vertex with running mass function. As described, the vector meson contri-
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butions cannot compensate this effect. The running quark mass and vector mesons are usually
not considered in non– or semirelativistic quark models and urge us to a cautious interpretation
of corresponding results, see e.g. ref. [41]. Thus the investigation presented in this paper point
towards the necessity to incorporate non–valence quark physics into the description. Covariant
studies of the effect of e.g. the pion cloud within covariant bound–state perturbation theory
are clearly desirable.
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A Results for core nucleon and delta states with higher

mass

Pion cloud corrections will lower the mass of the nucleon by more than 200 MeV. The corre-
sponding mass shift of the delta will be somewhat lower as the nucleon–delta mass difference is
partly also a consequence of pionic dressing. For exploring effects of this shift on observables,
we fix the core masses to Mn,c = 1.2 GeV and M∆,c = 1.4 GeV. Possible parameters which lead
to a solution of the Faddeev equations are given in Tab. 3. We note that less than half of the
mass difference between core and physical nucleon state can be attributed to the shift in the
diquark masses which are about 100 MeV larger than those in Tab. 1. If one assumed pointlike
diquarks, the scalar diquark would not be changed by pionic corrections at all, but the quark
substructure allows for pion dressing [42].

The proton magnetic moments are slightly reduced compared to the results for nucleons with

Set I II III IV V
w1+ [GeV2] 0.4 0.6 0.8 1.0 1.2
w0+ [GeV2] 0.21 0.27 0.32 0.37 0.41
m1+ [GeV] 1.02 1.01 1.01 1.00 0.99
m0+ [GeV] 0.89 0.90 0.91 0.92 0.94

Table 3: Five parameter sets which describe core masses of nucleon and delta, Mn,c = 1.2 GeV
and M∆,c = 1.4 GeV.
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Mn [GeV] Set I II III IV
µp [n.m.] 0.94 3.05 2.94 2.86 2.79

1.2 2.88 2.80 2.73 2.69
µn [n.m.] 0.94 −1.78 −1.65 −1.55 −1.47

1.2 −1.79 −1.69 −1.61 −1.56

Table 4: Nucleon magnetic moments, compared betweens sets with physical nucleon mass and
core mass. For each pair of these sets, w1+ is equal and w0+ differs by at most 5 %.
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Figure 9: Form factor results compared for data sets describing nucleons with physical mass
(full line) and core mass 1.2 Gev (dashed line). Left panel: proton’s GE and µGE/GM . Right
panel: neutron’s GE.

physical mass whereas the neutron magnetic moments come out larger by a few percent, see
Tab. 4. We present exemplary results for the form factors GE and proton’s GE/GM in Fig. 9,
comparing Set III from Tabs. 1 and 3. The characteristics found here apply to the other
data sets as well. The proton electric form factor becomes steeper thereby approaching the
experimental curve and at the same time the ratio GE/GM moves even further away from the
data. Since for higher core mass the quark–photon vertex tests the running mass function
deeper in the timelike domain, its steeper derivative there leads to this effect. The neutron
electric form factor remains unchanged.

B Resonance contribution to the quark–photon vertex

In this section we describe shortly the procedure to fix a ρ − ω resonance term in the quark–
photon vertex. A somewhat longer discussion of the subject and the techniques used herein
can be found in ref. [2].

The transverse part of the quark–photon vertex, Γµ
q,T will certainly receive resonance contribu-
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tions from the ρ− ω mesons. Assuming isospin symmetry and neglecting the decay width, the
full vertex Γµ

q is dominated near the resonance by the term

Γµ
q (k, p) = fρmρ

φµ(q; Q)

Q2 + m2
ρ

(45)

Q = k − p q = (k + p)/2 . (46)

Here, mρ = 0.77 GeV and fρ = 0.216 GeV are the mass and electromagnetic decay constant of
the ρ meson. The BS amplitude φµ(q; Q) of the ρ meson is transversal (Q · φ = 0) and obeys
the canonical normalization condition

2Qµ =
1

3
3 Tr

∫

d4q

(2π)4
φ̄µ(q; Q) S(−Q/2 + q) φµ(q; Q)

∂S(Q/2 + q)

∂qµ
, (47)

if we assume that an interaction kernel for the corresponding BS equation is independent of Q
(as e.g. a dressed gluon exchange between the quarks). The factor 1/3 comes from the sum
over the three ρ polarizations, and the factor 3 is the result of the combined flavor and color
trace. In color space, both ρ and ω amplitudes are the unit matrix δAB, in flavor space we have
(τ 3)ab/

√
2 (ρ) and (τ 0)ab/

√
2 (ω).

Away from the resonance mass–shell the corresponding contribution to the quark–photon vertex
is not fixed uniquely. The most thorough study of it is ref. [34], which calculates the (gluon–
ladder) dressed quark–photon vertex for the evaluation of the pion’s form factor. The findings
of ref. [34] may be neatly summarized by the following points:

• φµ(q; Q) ≈ iγµ
T V1(q

2) + 2qµ
T V5(q

2) represents a good approximation to the BS solution
for the ρ meson ( vµ

T = vµ −Qµv ·Q/Q2). It reproduces the mass and decay width within
5 %.

• The Dirac structure iγµ
T accounts also for the bulk of the resonance contribution to the

pion form factor, whereas terms ∼ qµ
T provide corrections to these contributions on the

level of 10 %. Using the ρ BS amplitude off its mass shell in the manner of eq. (45) gave
a good approximation to the quark–photon vertex resonance contributions.

• The Dirac structure (qµ
T−γµ

Tq/T)Q/ becomes more important for intermediate Q2 in the pion
form factor but the off shell extrapolation of the corresponding BS amplitude structure
proved to be difficult. Thus we neglect this term.

We therefore adopt an off-shell parametrization of the resonance term in the quark–photon
vertex,

Γµ
q,T = φµ(q)

mρ

fρ

Q2

Q2 + m2
ρ

e
−α

(

1+ Q2

m2
ρ

)

. (48)

Near the ρ mass shell, Q2 = −m2
ρ, eq. (48) reduces to eq. (45). The exponential ensures that

for high spacelike Q2 the resonance term vanishes and the quark–photon vertex reduces to the
Ball–Chiu vertex, eq. (35). The resonance term vanishes also for Q = 0 as it should be, since at
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this kinematical point the quark–photon vertex is completely fixed by the (differential) Ward
identity.

We model the ρ BS amplitude close to the results of refs. [34, 43] by employing the one–
parameter form

φµ =

(

iγµ
T − 1.69

qµ
T

ωρ

) F2(q2/ω2
ρ)

Nρ

(49)

The normalization constant Nρ is implicitly given by eq. (47) and the width parameter ωρ will
be fixed by the experimental value for the decay constant, whose theoretical expression is

fρ =
1

mρ

Tr

∫

d4q

(2π)4
(−iγµ) S(−Q/2 + q) φµ(q) S(Q/2 + q)

∣

∣

∣

∣

Q=(~0,imρ)

. (50)

The only unknown parameter which remains in eq. (48) is the constant α which describes the
damping of the off–shell resonance contribution. We fit it to the pion form factor in the range
Q2 = [0, 1.6] GeV2 where the experimental data are well described by the monopole fit [44]

Fπ(Q2) =
1

1 + Q2

0.529 GeV2

. (51)

In impulse approximation, the pion form factor is given by

Fπ(Q2) =
3

P 2
Tr

∫

d4k

(2π)4
φ̄π(k2

f) S(k1) φπ(k2
i ) S(k+) Γµ

q (k+, k−) S(k−) (52)

k+ = P/2 + k + Q/2 , kf = k + Q/4 ,

k− = P/2 + k − Q/2 , ki = k − Q/4 ,

k1 = −P/2 + k ,

Q = (0, 0, |Q|, 0) , P = (~0, i
√

m2
π + Q2/4) .

For the region of momentum transfer in consideration, the truncation of the pion’s BS amplitude
to the leading amplitude which is determined by chiral symmetry,

φπ(p2) =
B(p2)

Nπ
γ5 , (53)

is an excellent approximation. Indeed, the quark propagator used herein has been fitted to just
give Nπ = fπ = 93 MeV, as expected physically1.

As a result, we obtain ρ BS amplitude width of w2
ρ = 0.35 GeV2 which in turn gives fρ = 0.214

GeV. The damping factor α = 0.652 results in a pion form factor as shown in Fig. 10, compared
to the result obtained with only the Ball–Chiu vertex. We remark that the latter yields a pion
charge radius of r2

π = 0.31 fm2, whereas with the resonance contribution we obtain r2
π = 0.44

fm2, in acordance with the experimental value. Thus, about 30 % of the charge radius is

1We normalize the pion BS amplitude in color space by δAB and in flavor space by (τk)ab
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Figure 10: The pion form factor, calculated with the Ball–Chiu vertex (thin line) and the
vertex including the vector meson resonance (thick line). Experimental data are from ref. [46]
(diamonds) and ref. [44] (filled circles).

attributed to the vector mesons. This contribution is only half of the value obtained in ref. [34]
and thus reflects the model dependence of the off–shell extrapolation: The parametrization
for the quark propagator used here has a steeper Z(p2) = 1/A(p2) than the corresponding
renormalization function of the quark propagator obtained in ref. [34]. The Q2−variation of
the scalar function multiplying the dominant Dirac structure ∼ γµ

T in the quark–photon vertex
is therefore already rather steep for the BC vertex used in this work and the resonance part is
seen too influence the form factor only up to Q2 = 1 GeV2.

C Singularity structure of the form factor diagrams

Singularities in the diagrams are present through the quark–photon vertex Γµ
q , see eq. (35). It

contains the scalar functions A and B which are defined by

A(p2) =
1

σV (p2)

1

p2 + M2(p2)
, (54)

B(p2) =
M(p2)

σV (p2)

1

p2 + M2(p2)
, (M(p2) = σS(p2)/σV (p2)) . (55)

We see that these functions have poles whenever σV or p2 + M2 have zeros. The poles in 1/σV

do not matter since in the current matrix element diagrams, Γµ
q always appears with quark

legs, SΓµ
q S, and these legs cancel the pole. Such a mechanism is not present for the poles in

1/(p2 +M2). A numerical search revealed the following poles, being closest to the origin in the
complex p2 plane:
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Re p2 Im p2

GeV2

−0.067 ± 0.207
−0.167 ± 1.116
−0.224 ± 1.360
−0.293 ± 0.742

We see that the pole locations appear in complex conjugate pairs. It is only the first pair of
poles in the list which will have an impact on our calculations. To see that, let us consider the
single form factor diagrams.

We calculate the form factors in the standard Breit frame where

P = (0, 0, 0, i
√

M2 + Q2/4)

Pi = (0, 0,−|Q|/2, i
√

M2 + Q2/4) (56)

Pf = (0, 0, +|Q|/2, i
√

M2 + Q2/4)

We start with the current matrix elements of the impulse approximation (diagrams (a) in
Fig. 4). The quark diagram (where the diquark is spectator) is given by

〈Jµ
q 〉 =

∫

d4k

(2π)4
Ψ̄(pf , Pf)

(

D−1 0
0 (Dµν)−1

)

(kd)Γ
µ
q (kq, pq)Ψ(pi, Pi) (57)

pi = k − (1 − η)Q/2 , kq = ηP + k + Q/2 ,

pf = k + (1 − η)Q/2 , pq = ηP + k − Q/2 ,

kd = (1 − η)P − k .

The loop momentum k is real, but the quark momenta kq and pq at the vertex are not. Since
their imaginary part, ηP grows with increasing Q2, the integration domain will cross the pole
locations p2

pole. The limit for Q2 such that the integration domain will be free of these poles is

Q2 < 2
|p2

pole| − Re p2
pole

η2
− 4M2

n . (58)

Beyond this limit, the integration path in the variable k4 has to circumvent the poles or, alterna-
tively, the sum of a principal value integral with the original path and a closed contour integral
encircling the singularities must be calculated. This fact has been overlooked in ref. [16]. While
this procedure has been carried out for real poles in ref. [19], for complex poles the knowledge
of the wave function at complex relative momenta between quark and diquark is required. To
obtain the wave function at these points is in principle possible, but the implementation in a
current matrix element code is at present not feasible.

Choosing small momentum partitioning parameters η shifts the limit (58) to larger values.
Due to the presence of the diquark pole, solutions of the Faddeev equation are restricted by
η > 1 − m0+/Mn, in practice we have to restrict ourselves to η = 0.32 to have the Chebyshev
expansion of the wave function converge for both the Faddeev solution and the calculation of
the current matrix elements. This yields the limit Q2 < 2 GeV2, by virtue of eq. (58).
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In the diquark diagram (with the quark being spectator), singularities occur only where the
photon resolves the quark loop, i.e. in the integrals

〈Jµ
0+〉 =

∫

d4k

(2π)4
Ψ̄5(pf , Pf)S

−1(kq)Γ
µ
0+(kd, pd)Ψ

5(pi, Pi) (59)

pi = k + ηQ/2 , kd = (1 − η)P − k + Q/2 ,

pf = k − ηQ/2 , pd = (1 − η)P − k − Q/2 ,

kq = ηP + k

Γµ
0+(kd, pd) = Tr

∫

d4q

(2π)4
χ̄5(q+Q/4)S(q2)Γ

µ
q (q2, q1)S(q1)χ

5(q−Q/4)ST (q3)

(60)

q1 = (pd + kd)/4 + q − Q/2 , q2 = (pd + kd)/4 + q + Q/2 ,

q3 = (pd + kd)/4 − q .

While these equations describe the contribution of the scalar diquark, similar expressions hold
for the axialvector diquark and the scalar–axialvector transitions. The imaginary part of the
quark momenta q1 and q2 which enter the quark–photon vertex is given by (1−η)P/2, therefore
we can apply eq. (58) for a pole–free integration domain upon the replacement η → (1 − η)/2.
If we want to calculate pole–free up to Q2 = 2 GeV2, we find η > 0.36. Thus the Faddeev
solutions and these diagrams have to be calculated with a different momentum partitioning
parameter than the Faddeev solutions for the quark diagram. This is of course possible since
the Faddeev solutions have been obtained fully covariantly, i.e. the full dependence of the wave
function on p2 and p · P has been retained (p is the relative quark–diquark momentum and P
is the total nucleon momentum).

Singularities in the exchange kernel contributions (diagrams (b) in Fig. 4) are present in the
diagram where the photon couples to the exchange quark. The corresponding current matrix
element is given by

〈Jµ
ex〉 =

∫

d4k

(2π)4

∫

d4p

(2π)4
Ψ̄a(k, Pf)χ

a(ps)
(

S(q1)Γ
µ
q (q1, q2)S(q2)

)T ×

χ̄b(ks)Ψ
b(p, Pi) (a, b = {5, µ}) (61)

q1 = −p − k + (1 − 2η)P − Q

2
, ps = k +

p

2
− (1 − 3η)

P

2
− (η − 1)

Q

4

q2 = −p − k + (1 − 2η)P +
Q

2
, ks = p +

k

2
− (1 − 3η)

P

2
+ (η − 1)

Q

4

Here the imaginary part of the momenta q1 and q2 (appearing in the quark–photon vertex) is
given by (1 − 2η)P . Using eq. (58) again (with η → (1 − 2η)), we find the condition η > 0.34
if we want to calculate this diagram without encountering poles up to Q2 = 2 GeV2.
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