PUBLISHED VERSION

Ardekani, Armin; Williams, Anthony Gordon
Optimization of Monte Carlo calculations of the effective potential Physical Review E, 1998;
57(5):6140-6151

©1998 American Physical Society
http://link.aps.org/doi/10.1103/PhysRevE.57.6140

PERMISSIONS

http://publish.aps.org/authors/transfer-of-copyright-agreement

“The author(s), and in the case of a Work Made For Hire, as defined in the U.S.
Copyright Act, 17 U.S.C.

8101, the employer named [below], shall have the following rights (the “Author Rights”):
[...]

3. The right to use all or part of the Article, including the APS-prepared version without
revision or modification, on the author(s)’ web home page or employer’s website and to
make copies of all or part of the Article, including the APS-prepared version without
revision or modification, for the author(s)’ and/or the employer’s use for educational or
research purposes.”

24™ April 2013

http://hdl.handle.net/2440/10921



http://hdl.handle.net/2440/10921�
http://link.aps.org/doi/10.1103/PhysRevE.57.6140�
http://link.aps.org/doi/10.1103/PhysRevD.62.093023�
http://hdl.handle.net/2440/10921�
http://publish.aps.org/authors/transfer-of-copyright-agreement�

PHYSICAL REVIEW E VOLUME 57, NUMBER 5 MAY 1998

Optimization of Monte Carlo calculations of the effective potential

A. Ardekant and A. G. Williamg
Department of Physics and Mathematical Physics and Special Research Center for the Subatomic Structure of Matter,
University of Adelaide, Adelaide, SA 5005, Australia
(Received 21 May 1997

We study Monte Carlo calculations of the effective potential for a scalar field theory using three techniques.
In each case we extract the renormalized quantities of the theory. The system studied in our calculations is a
one-componeni* model in two dimensions. We apply these methods to both the weak and strong coupling
regimes. In the weak coupling regime we compare our results for the renormalized quantities with those
obtained from two-loop lattice perturbation theory. Our results are verified in the strong coupling regime
through comparison with the strong coupling expansion. We conclude that effective potential methods, when
suitably chosen, can be accurate tools in calculations of the renormalized parameters of scalar field theories.
[S1063-651%98)09801-9

PACS numbgs): 02.70-c, 11.10.Kk, 11.15.Ha, 11.15.Tk

I. INTRODUCTION we investigate the calculation of the effective potential for
A ¢* using two established methods: The variation of source
An understanding of the underlying vacuum structure of anethod(VSM) [6,7] which introduces an external field such
guantum field theory is essential for understanding its physithat the effective potential can be calculated from the re-
cal content. This analysis is conveniently carried out by calsponse of the system to this external field; and a version of
culating a quantity known as the effective potenfib+3|,  the constraint effective potenti@CEP | [8] where the effec-
denoted b>U($) and the minimum of which gives informa- tive potential is calculated from the distribution of the con-
tion as to the nature of the lowest energy eigenstate of thstrained mean fieldg. Some suggestions for improving

theory. This makey(a) very useful, particularly in studies these methods are also put to the test. We will show that the
of Spontaneous symmetry breaki(@SB_ The effective po- standard method of CalCUIating the renormalized COUpling in
tential determines the one-particle irreducibl®l) vertices A ¢* theory, through calculating two- and four-point correla-
[1] at zero momenta and reflects any nontrivial dynamics. Ition functions at zero momentum, suffers from large statisti-
is also widely used to study radiative corrections in quantunfal errors, especially where the coupling constant is not suf-
field theorieg3]. Truncating the loop expansion of the effec- ficiently strong. CEP | also suffers from the same problem.
tive potential often gives it a complex and nonconvex charWe will show that the VSM can be used to obtain much
acter, in spite of the fact that on general grounds the effectivénore accurate and precise results for the renormalized vertex
potential must be real and of convex charad#}. It has functions. In addition to the above two established methods
been pointed out that the loop expansion for the effectiveusing the effective potentidVSM and CEP ) we will show
potential fails for the fields in just those regions where thehow the renormalized quantities can be calculated from the
classical potential is nonconvex; the most familiar case coreffective potential by calculating appropriate correlation
responds to a double-well potentid]. Therefore it is im-  functions in the presence of a constraigt(we refer to this
portant to carry out nonperturbative studies which can benethod as CEP )I The procedure does not require any curve
used even where the loop expansion is not applicable. Onfitting or extrapolation to a zero external field limit, as VSM
convenient nonperturbative approach is to employ a discretgequires. Also this method does not require the very high
version of the theory, i.e., lattice field theory. Lattice field statistics that the CEP | method needs. The computational
theories have an ultraviol¢UV) regulator(the lattice spac- time is also dramatically reduced. However, the drawback is
ing) and an infrared(IR) cutoff (the lattice sizg and are that its accuracy in the strong coupling regime is limited. We
conveniently studied using Monte CarlbiC) methods. will point out the advantages and disadvantages of each
The model used in our study is thep;,; model. The method and their accuracy.
Higgs mechanism is based on a more elaborate version of Both in numerical MC studies and analytical calculations
such a model and is usually discussed at the tree level. & is important to find the renormalization group trajectories
fully nonperturbative treatment of the Higgs model would be(RGT). Along these curves and close to an infrared fixed
of considerable interest, but is not discussed further hergoint (the scaling regionthe physics described by the lattice
First, we review the lattice effective potential, showing howregularized quantum field is invariant and only the value of
all of the renormalized vertex functions can be calculated ithe cutoff (lattice spacinyjis changing. It is in the scaling
one knows the full structure of the effective potential. Then,region that the ratio of dimensionless renormalized vertex
functions is invariant and one expects the scaling region to
be in the vicinity of the critical point. However, we perform
*Electronic address: aardekan@physics.adelaide.edu.au our calculations away from the scaling region in order to
"Electronic address: awilliam@physics.adelaide.edu.au examine the accuracy of effective potential methods to the
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fullest extent. Since the correlation length is large in thesjte ofn in the direction ofu by a,w_ Henceforth we drop
scaling region, one expects that the finite size effects can b@e hat from the dimensionless field variables and sources for
considerable. By performing the calculations in a regionprevity unless it is necessary to avoid confusion. We also

away from the Scaling region, where the correlation Iength iSmpose the appropria‘[e periodic boundary condition on
smaller, we have hopefully minimized the finite size effectsfig|ds:

on our calculations of renormalized quantities. The other fac-

tor is that away from the critical point Monte Carlo methods dnin =¢n for all u, 2)
typically perform well, whereas, near the critical point where #
the correlation length becomes larger, the autocorrelation

I i ; ' where N,=(0,... N,,...,0), is ad-dimensional vector
ength rapidly diverges. This well-known phenomenon re- . B m . o .

Lo h with N, being the number of lattice sites in the directjen
sults in critical slowing down and causes some well-known TheM 4 theorv is known to exist in two bhases. one where
complications. Hence, we prefer here to perform our calcu;[he refI(thion symmet bis s ontgneous,l broken
lations away from the critical point. In the weak coupling y Yb——¢ P y

regime we compare our results with lattice perturbationand the other where it is not. The symmetric phase with

theory results in order to establish the absence of finite sizg@:O IS separated from the broken symme_tr_y phasAe with
effects in our calculations. In the strong coupling regime we{#)# 0 by a line of second-order phase transitions where
compare the effective potential results with the results oband\ assume the critical values, andX .

tained from the strong coupling expansion on the lattice, ex- For the actionS ¢] on the lattice the generating func-
trapolated to a larger correlation length. The effective potentional for the correlation functions is defined as
tial methods discussed here can be accurate tools for finding

the scaling region, since they can provide accurate values for f[dple T¢I

the dimensionless ratios of renormalized parameters as will 2[J]= [[dple eI

become evident. In the case »&* the fixed points can be

calculated perturbatively10]. Nonperturbatively, the param- sych thatz[ 0]=1. FromZ[J] one can define the connected
eter points on the second-order phase transition critical lingreen functions as

which separates the two phaség;))=0 and(¢$)#0, are

good candidates for the IR fixed poir(tee pointm?=\ =0 d d

is the trivial fixed point and any scaling region corresponding G(nyg, ... ’”i)c:m EXN

to this fixed point represents a free field theory ! !
In Sec. Il we briefly summarize the model to be studied.,,here

In Sec. Ill we review the above methods of calculation of the

effective potential. In Sec. IV we perform the calculations W[J]=In Z[J]. (5)

for both the symmetric and the spontaneous symmetry break-

ing cases in the weak coupling regime and we compare our

results with those obtained from lattice perturbation theory. IIl. THE LATTICE EFFECTIVE POTENTIAL

We also perform calcglations in the strong coupling.regime Consider a lattice Lagrangian density od-gimensional
and compare these with the strong coupling expansion. ¢ ¢ |attice with the total number of lattice sita,

()

W[J[5-0. (4)

Il. THE A ¢* MODEL 1
Lo=2 S(dnu= dn)*+ V(o). ®

We start with the action of a single componen*
theory ind dimensions in Euclidean space in the presence of
a sourcel (in units wherefi=c=1), The classical vacuuniground statgis at the minimum of

V(). The vacuum expectation valyg) of the quantum
1 1 A field is not necessarily identical to the classical vacuum. The
S[‘ﬁ"]]:f dx E(aﬂ¢)2+ 2 m?g?+ ﬂ¢4_‘]¢' vacuum expectation value of the field in the presence of an
external source](x), is given by
A discrete lattice version of the action can be written as
W[ J]

a3,

~ a 1 A ,\ 1 ~on Ao benlI]= . (7)
S[¢,J]={§ 2 (bnp= o)+ 5 2 WP o dn
n,u n n .
The vacuum expectation valugb) is the limit of ¢, as
_2 3.3 } 0 J—0. Hence we can ask for what value btan one obtain
— ~n¥n| a given¢.. One can choose to tredt, as the independent
variable instead of) and define the “effective action”
where we have defined the dimensionless quantitie$[¢.] by a Legendre transformation:
dp=al¥~1¢ m=ma, andh=ra* 9 andI=al¥?*1J, In
additionn=(n4, ... ,ny) is ad-dimensional vector labeling F[d,c]:z bordn—W[JI], (8)
the lattice sites andk is a unit vector in the temporal or n
spatial direction. The sum over is over thed Euclidean
directions. We also have denoted the field on the neighboringhere ¢, is defined in Eq(7). It is easy to verify that
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ol pel The vacuum proper Green functions are obtained by set-
Jnlécl= T (9)  ting J=0. If the source is a constafl,=J for all n), then
en the translational invariance is restored and we can factor out
In the caseJ=0, by translational invariance it follows that an overall normalization and éfunction to define
¢. must become constafite., independent of the labal).

Hence the vacuum expectation value is given(gy and ™k, ... ,RM)ENd5o,kl+~..+kMFf;M)(R1, k),
satisfies (17)
dI'[ ¢¢] 0 10 where in the Ilimt J—0 we recognize that
dée |, :<¢>_ ' (10 T™(k,, ... ky) is the dimensionless, lattice equivalent of

the propemM -point Green function in momentum space. For
Similarly for any constanf we must havep,= ¢ also con-  constant] we also havep;,— ¢ and hencep=N"5; o¢ and

stant. Define the effective potentidl($) by Eq. (16) gives
H1=NU( ) -5\ L =gy M
FLp]=NU(¢). 11 C(p)=ND, v L8, (18)
M=o M!
The Fourier trasform on a finite, discrete lattice is defined by
where
~ 2in.kIN ~ ~
b=2 e Ny, (12 T™M(0)=T™(0,.. . 0. (19
where k=k,,...ky is a d-dimensional vector with Comparing Eq(11) with Eq. (16) gives
(—N/2)<k,<N/2 (we assumeN is even from this point I o
and wheren-k=n,k;+---+ng4ky. The coordinate-space U<¢):l\/|20 WF(CM)(OWM- (20)
and momentum-spac&functions are B '
1 ) 1 o It immediately follows that
S =— 2 e—Zwi(n—m)k/N’ 5& f=—q 2 e—Z'n'i(k—q)n/N'
N NS d“U(¢) ~
(13 — =" (0), (2D
: : : : do" |- . _
respectively. The inverse Fourier transform is ¢=(¢$)=0
1 ) where here it is understood that we are working in the un-
bn=~g >, e 2TNKINGL broken symmetry secto(;j;_}zo. In the unbroken sector we
N™ see from Eq(20) that the dimensionless, proper Green func-

tions with vanishing momenta can be easily obtained from

Note that we have used the asymmetric normalization of the, o affective potentiall () by differentiation. We see that
Fourier transform and its inverse as is usual in the field—

theory in the continuum. The effective action is the generatofﬁ minimpi\lzesU(E;S) tﬁn? IiEn tge Ii_mitJ—>0 the mi_nimléjm_qs
of proper (i.e., one-particle irreducibleGreen’s functions —¢%)- S0_note tha ,q( ) gives an expansion of in
and in particular we can Taylor expand the effective action tderms of the¢’s andI'(0)'s,
give - 1

= IP)=N 2 =gy V@M (22
Plgel= 2 7 2 TM00, ) den, - Gen,,

- e M (14) In the broken symmetry sectqfg)+0, it is more appropri-

ate to use the shifted field

HereT™)(n,, ... ny) are the propeM-point Green func- B
tions in the presence of the sourdg, X(X)=(X) = (). (23)
MI'[ @] The one-particle irreducible vertex functioh '\;') are linear

Ibar 0 =T™(ny, ... ny). (15  combination of thel™’s, and can be obtained from the
M € shifted version of Eq(20),

In terms of its Fourier transforms we have —

U($)=U5(x)=Us(¢—(¢))
_y 11 = (=M ~
F[d’c]_ME:O M1 Wﬁl,;,ﬁ,\ﬂ :MZO [¢ l\jl(f))] FEQ/)I)(O)- (24)
XTM(ky, ... kb i bk, (16  Asis usually done in lattice field theory studies we renor-

_ malize at the renormalization point where all external mo-
where herep is the Fourier transform o, . menta of the Green functions vanish. The renormalized
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guantities can be obtained directly from the effective poten- oo ' ospr T
tial. For example, in tha ¢* theory we have o . o
. . ﬁ\12=0.1%=0.1;’: | fm—0.1 3=0.16
du . .
(_ ) _o, (25 0.2 0.2
do I=(d) 5 00 x € oof X x
— -0.2 -0.2
d?u ~ ~ A
z (_d’) =2rP0)=r®=m?, (26 :
dzd’ _ —0.4f ! -0.4
¢=(¢)
-0.6 L -0.6 L L I
d4U($) -3-2-10 1 2 3 -4 -2 0 2 4
~ ~ ~ b ¢
72 —— =22TP0)=TW=X,, (27 B B
d4d> I=(&) FIG. 1. Examples ofi(¢) versus¢ in the symmetric secta@)

and for the broken symmetry sectt). The starg*) correspond to
whereZ is the field wave function renormalization constantthe values ofp at J=0. For these results= 20.
(¢, =Z ). From the first two conditions above and requir-
ing m?=0 it follows that(#) is at the minimum ofU(¢). ~ comes smaller the fluctuations become larger. Thus one
needs to perform the calculations for large enough sources

Also note thaim, and), defined as above are not the phy5|_(§hat the error is small and then extrapolate the results to

cal mass and coupling, which are defined in the pole of th
propagator in the complex energy plane and the on she

four-point function, respectively. However, in the scaling re-memésd r;ﬁéhﬁgsmgun?j;rbiegf: dt\(/)aifatheesviﬂin\?;cﬁariog;cic-
gion (close to the critical lingthese values are a good ap- ges. P

proximation to the physical mass and coupl[i8d. tation values of the field?(\]) are the simplest quantities to
compute on the lattice and their dependence can be ex-

ploited to get the first derivative of the effective potential.
Since the source effectively causes the boson field to become

In this section we will examine three MC methods for more massive, the finite size effects generated by the lattice
calculation of the lattice effective potential. The renomalizedbecome exponentially small provided that the lattice is large
coupling constants obtained by these methods are comparetiough. Since the data become noisy for small value$ of
with analytical results. From this point on we work exclu- we need to restrict the analysis to a safe regiod,ofvhich
sively in two dimensionsd=2). can introduce some errors in the results through uncertainties
in the extrapolation.

=0.

IV. THE MC EFFECTIVE POTENTIAL

A. The variation of source method

Equation(22) suggests that in the Monte Carlo calculation B. The constraint effective potential (CEP 1)

one can calculate the mean value of the fielfisfor differ- In the preceding section the effective action and the effec-
ent values of the source and as a result one ob@m a live potentialU(¢) were defined through the introduction of
function of J. This function can then be inverted to obtdin & s_ourceJr.] Tr:jere IS a :j|fferenttme;hodk_wh|ch does_lpr?t re-

. — — ) quire such a dynamical symmetry breaking source. The con-
as a functloh of¢, |.e.,J(¢). Then using Eq(22) yve S€€  straint effective potential was introduced by Fukuta and
that the derivatives o8 with respect to¢ would give the  kyrikopoulos[8] as an alternative way of obtaining the ex-
proper Green functions at zero momentum. From(&gone  pjicit expression for the effective potential. It was further

also concludes thaﬁ is antisymmetric inJ. That is, analyzed by O’Raifeartaigh, Wipf, and Yoneyarfdl]. In
_ _ this approach one obtains an explicit expression for the ef-
by=—d_;. (28)  fective potential, without introducing external sources, but

. . instead through the introduction of&function in the func-
Figure 1 shows)(¢) as a function of¢ for the symmetric  tional integral. In the constraint effective potential approach
case[Fig. 1(a)] and the broken symmetry cabig. 1b)].  one first definedi(¢)=U (N2 ¢) as
the 'Fhat fo_r the broken symmetry .caa_b:g, as a function of B 1
f] is discontinuous and so the r_el_atlon |r? K92 cannot be e*NZU(‘/’):f [d¢]6(_2 D ¢n—$) eS¢l (29
inverted for all¢(J). Whenever it is possible E§R2) has to N® “q
be inverted to obtain the sourdeas a function ofg. Then

the derivatives off with respect top would give the vertex 2" then uses the fact that MZHOO we have U(¢)

functions at zero momenta and consequently the renormat=>U(¢) and the effective potential is recovered.

ized masses and couplings can be calculated. It is easiest to demonstrate this result in Minkowski space,
The mean value of the field in the presence of a sourcéhere Eq.(29) becomes

has a small statistical error. This is expected since it is an 1

analog to the reduction of fluctuati.ons., of a spin system in the e~ IN%U() = J' [dp18| — > dn—b |59 (30)

presence of an external magnetic field. As the source be- N< 5
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We can replace thé function in Eq.(30) by its integral
representation to obtaifup to an irrelevant constant U(¢=——In

(39

e—iNZG@):CJ de d eifdx[qus]—iNZ@ _ N _
[dé] up to an irrelevant additive constant. Equati@6) suggests

that one can generate a large number of configurations
i 234 . — . .
=C’f dJeWII=NTI4) (31)  weighted bye™ 341 calculate¢ for each configuration, and
construct a normalized histogram. The histogram can be fit-

Note that in the integrand of E¢31) we haved fixed andJ ted to Eq.(_38_). The most proba_ble average field values are
arbitrary. In the limitN?— the dominate contribution to near the minimum of the effective potential. In order to de-

the integral comes from the stationary point of the integrafermine U(¢) away from its minimum, i.e., to sample a
which is the value off at whichdW[J]/dJ=¢ Recall that range of relatively improbable values gf one can intro-

F(@ _ (JE—W[J])WFdW[J]/dJ, from which we see that up duce a small source. Then a simple generalization of 8.
to an irrelevant overall constant allows a nonzero external sourEd]

e N _,e TNV a5 N2, (32) 1 df\f(¢)
’ U(p- J¢>———In

as claimed. doé

We can also arrive at this result directly 2in_ Euclidean_l_hus one can check whether such an ansatz gives a good
L . N .
spape by multlplym-g both ;ldes O_f E(9) b_y e with J approximation for the effective potential, and so construct
arbitrary and then integrating ovefto obtain the effective potential by performing a simultaneous fit of
L several histograms corresponding to different valuek &y
f dge*'\‘z[“(@*”’]:f [d¢]e*3[¢]+‘]2n‘/’n_ (33 the expression “simultaneous fit,” we mean that tyreval-
ues corresponding to eadrare summed and this sum is then
minimized. This method can be applied easily on the lattice.
Note that in Eq.(36) we have assumed that for sufficiently

largeN? the finite volume effects ol (¢) can be neglected,

e., that the lattice volume is sufficiently large. The con-
straint effective potential method summarized in E89)
will be referred to as CEP I.

(39

As N?—x the left hand side of Eq:33) becomes entirely
dominated by the stationary point of the one—dimensio?nal
integration given bydU(¢)/d¢=J, while the right hand
side is recognized a"V! for a constant sourcd, Hence up
to an irrelevant overall constant we find

“NAUD 34, W g5 N2 (34)
’ C. The constraint effective potential (CEP I1)
and so find thafup to a constant Now return to Eq.(29) and perform a shift of field,

o N2U(B_, QWII-N2IG_ o~ NU( oo N2, (35) #(x)— ¢(x) + ¢. Since the measure is translationally invari-
ant we obtain

as required.

- ~ 1 —
It is important to note that the N"U(¥ relates to similar e‘NZU("’)=J [d¢>]8(N7 > ¢nle T4 (40
definitions in statistical mechanics and spin systgh#} and n
that —
Taking the derivative with respect ®we get
o e~ N?U(9
P(P)=——F= (36) D oo —
fdge VT Do = [ [ag1s Ed’“)
dé N? N?
can be interpreted as the probagility density for the system to
be in a state of “magnetization,¢. Then it can be seen that dS(¢+ ) o+ d
the probability for a state whose average field is not a mini- X—— ¢ : (41)

mum ofU'(E) then decreases & — . d

This suggests that one needs to study the probability disy ) the potential part of the action is affected by the shift of

tribution of the order paramet&b Using a Monte Carlo field smce¢> is constant and sdS/d¢= NZdVquS Using
algorithm one generates a Boltzmann ensemble of configypis tact and shifting the field back to its original form then

rations,{¢}, weighted bye 5?41, et d\ be the number of gives
configurations with average field values in an interdai

abouté. Then dU(¢) < dV(¢)>
dM( @ =Ce NUDdy, (37) de dé

(42

with C some constant. Then one can write where we have introduced the shorthand notation
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0.6 A ing an arbitrarily chosen single site varialabg. Consider an
0.4F e : initial configuration(denotedC) with the field average being
0oL ] ¢. Each time a site is updated by a valdethat is,
l\i’ oo <§§><X> Vo000 0000tw o ] ¢|’ = d)l + 51

-0.2F :

A ] then the chosen sit¢, must be updated simultaneously by

_0'6 ¢r= ¢ — 8. This procedure is carried out for all the sites,

4 s 5 4 which completes a sweep; the next sweep then starts again

ol L

from ¢, . In order to have a Markov chain which converges
o _ to the equilibrium state, one requires that the process be er-
FIG. 2. An example 08(¢) versus¢ in the broken sector using godic and that the detailed balance condition be satisfied
the constraint effective potential. For these reshlts20. (i.e., the detailed balance condition is a sufficient but not a
necessary condition to converge to the equilibrium $tdte

N 1 — the hybrid Monte Carlo algorithm ergodicity is built into the
(O())=(e )f [d¢]s NZ ; $n— ¢ algorithm by performing Langevin updating for some num-
ber of times(say N”). Here we chosdN” to be 3. The de-
X O(¢p)e” L4, (43)  tailed balance condition is satisfied through a Metropolis test.
That is, after a complete sweep the new configurabe:
In the A ¢* theory being considered here we find notedC’) is accepted with probability
dU(d) . & p=min{1,e~HClje~HICly
W) e (%5 (44) _ _ . _
do 6 whereH is the hybrid Monte Carlo Hamiltonian. It is not

difficult to see that, in general, imposing the constraint does

Expressions for some of the higher derivativedtfp) are  not prevent us from constructing a suitable Markov chain.
given in the Appendix. These equations are very useful in the The advantage of this method over the VSM is that one
Monte Carlo calculations since they relate the derivatives ofloes not need to run a Monte Carlo routine several times
the effective potentialand consequently the zero momentumWwith different sources, and no curve fitting is required. One
vertex function to the averages of quantities that can bedisadvantage of this method is that for calculation of the
calculated directly from the lattice. This method will be ref- renormalized coupling one needs to add and subtract many
ered to as CEP II. average terms as has been shown in the Appendix. Although

There are two ways of calculating the renormalized quanthe statistical errors might be small for each term, the overall
tities using CEP 1. The first one applies the constraint on therrors contributing to the renormalized coupling can be large.
lattice, fixing g then calculate€4®), and finally uses Eq. Howev:er, the renor_mallzed_ mass in the syr_nmetnc phase of
(44) to obtain the first derivative of the effective potential. (N ¢" theory obtained using this method is very accurate.
Higher derivatives are evaluated from fitting a curve to the We also would like to comment on Fig. 2. It has Been
dU/d¢ versus¢ results. This has some similarities to the SPOWn by a very general argument tht(¢)=0 for all ¢
variation of source method; however, there is a differencdé4] (primes denote differentiation with respect ¢9. This
between these two methods. In VSM one sets the salitee ~ general property is known as the * convexity” of the effec-
constant ancM)):a up to fluctuations due to finit&\?, tive potenual.koo_kmg at Fig. 2 it is clear that this condition
whereas in CEP Il we hawgp) = ¢ exactly by construction, 'S Violated forU(). This can be understood by noting that

In the broken symmetry sector there is another differenc€OnVexity holds only in the thermodynamical limit, i.&\;
between this method and VSM in the broken sector. When~ % ) L _
using VSM we are not able to obtain any value(d in the To conclude this se_ctlon it should al_so be _ment|one_d that
region between the two minima, whereas both CEP methoo@:e %ro%er“;/eriexgjnlctlonst%ar:j b('a:obtamed ?lre?tly ;;gg the

. . . . - standard Monte Carlo method. For example, for

are swtable for p_roblng this region. One can always@_to four-point vertex function one obtains P
any value including the values between the two minima to

get the full shape odl(g) (see Fig. 2 However, as far as the <54> _3@2>2
practical calculation of renormalized quantities is concerned, TWo)=- e AR e (45)
this method is almost equivalent to VSM and so from here <'$2>C

on we disregard this approach.

The second approach to CEP Il is through the equationgiere, for example({$*). is the connected part of vacuum
shown in the Appendix and is more direct. These equationgxpectation value of fourth power of the Fourier transform of
relate the derivative of the effective potential to the averageshe field at zero momentum. As we will show, in the weak
of some derivatives of the classical potential. All these avercoupling regime this method suffers from very noisy signals
ages should be taken in the presence of the constraint whicflving rise to large statistical errors. The errors are due to the
fixes ()= ¢b. large fluctuations of correlation functions in this regime as

We imposed the constraint using hybrid Monte Carlo. Thewell as the subtraction of the disconnected pieces. However,
constraint can be taken into account by appropriately adjusin the strong coupling regime this method gives a relatively
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good approximation fof((0) and the statistical errors are 040
reasonably smal[14]. However, the higher-order vertex 030k @ ]
functions calculated with this approach can be very noisy ’
even in the strong coupling regime, primarily due to subtrac- - 020k 4 E
tions of noisy disconnected pieces. o §

0.10F .

V. THE NUMERICAL RESULTS
0.00 . . . R
In this section we present our results for the calculation of 0.00 0.10 0.20 0.30 040 050

renormalized coupling., in two dimensions. It includes the A

symmetric and broken symmetry sector in the weak coupling R R
regime as well as the Strong Coup”ng regime_ In the case of FIG. 3. Plot Of)\r versusai in the symmetric sector using lattice
the weak coupling regime the results are compared with twoPerturbation theorysolid line) and Eq.(45) (stars and the VSM
loop results and the direct calculation ®f using the stan- (diamond$ with m*=0.1 andN=20.

dard MC method in Eq(45). In the strong coupling regime
we also compared the results of each method with the strong N

coupling expansion results. The details of the numerical B= E E ¢n,m$in[ ~N
simulation are included at the end of this article.

N

A. Case 1: The symmetric sector _

in the weak coupling regime(WCR) Y ngl mE: Pnm: 50

1. The variation of the source method where heren,m label the temporal and spatial coordinates
Here we study the model in the symmetric sector wherdor the field ¢, respectively.

(¢#)=0. As we will see, all methods presented in this paper There are two different ways of calculatidy One is to

require the calculation of renormalized mass, and the use Eq.(47) and the fact thaG(0)=N?($?) to calculateZ.

wave function renormalization constait In general, the The second way of calculating comes from combining

boson propagator extracted from the lattice has the form Egs.(47) and(27) which gives

~ 4 201( A
S (46) d U("’)} . (51
+my d# |- G(0)
¢=(#)
wherem,=m,(m?) is the mass pole of the scalar particle

i.e., the renormalized mass. In particular at zero momentur;l—hus G(0) can be directly calculated from the fit and the

calculation ofZ follows as before. An accurate calculation of

. Z ﬁ]r is crucial for both methods. We found that in the weak
G(k=0)= =2 (47)  coupling regime, the second method was more precise. We
r

compared our results with the two-loop lattice perturbation
R theory calculationgLPT) of the renormalized parameters.
where we make the standard approximation tha=m?(0).  This means that finite size effects may be present in our
The renormalized mass, is then given as the reciprocal of comparisons at some level. The comparison is shown in Fig.
&, the lattice correlation length 3. The values foin, seem to be accurate even in the very
weak coupling regime. In this regime the effective potential
results are in good agreement with the lattice perturbation
] (4g)  calculations. The MC results begin to deviate from the per-
oo turbative calculations aks, increases. This is expected since
a loop expansion in ¢* theory is an expansion iR, and as
Taking into account the translational invariance of the correthis is increased the contribution from higher loops becomes
lation functions, one can choose to approximate the momermore significant.

tum derivative in Eq.(48) by the variation ofG(k) across The VMS can be expensive in CPU time but the cost can
one lattice spacing and in one direction to obtain be reduced to some extent. For a valueldf is possible to

calculateD"(¢)=d5/d"I=N?($"). during the calculation

., 1 1 dG(k

m? G(k) dk?

gz_ﬁ (Y= (a®)e=(B%)c 49 of ¢, for each value ofl. From these derivatives one can
2m (a®) e+ (B¢ ' expand% aroundJ and then use a curve fitting routine to
. calculate\,, as we did before. The statistical errors can
with become larger for the higher derivatives because of the sub-
NN traction of the disconnected pieces®f(¢). In TabLe | we
a= 2 b, mcos{z—w( n— ﬂ” have shown a comparison of our previous results¢fpand
n=1 m=1 N 2)] results obtained by expansion around thtelues, namely,
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TABLE |. Comparison of the calculations Q;J for different TABLE Il. Comparison of the calculations éfr using the VSM
values ofJ’s and perturbative calculations @, aroundJ=0.1, ~ and the CEP Il in the symmetric sector and weak coupling regime.
J=0.225, andl=0.425 withm?=0.1, A =0.055, andN=20. A" denotes the renormalized coupling calculated by CEP II. Here

m?=0.1 andN= 20.
J &3 Error [%]per Error

A AS Error A cons Error
0.050 0.4052 0.0032 0.409 0.0057
0.075 0.5841 0.0031 0.5880 0.0052 0.02 0.0191 0.0003 0.018 0.0007
0.100 0.7648 0.0031 0.7648 0.0031 0.04 0.0386 0.0003 0.0363 0.0008
0.125 0.9253 0.0027 0.9320 0.0042 0.055 0.0518 0.0008 0.0510 0.0017
0.150 1.0840 0.0027 1.095 0.0048 0.07 0.0670 0.0009 0.0657 0.0019
0.175 1.2112 0.0027 1.218 0.0047 0.1 0.0891 0.0008 0.092 0.0016
0.200 1.3399 0.0027 1.4510 0.0039 0.13 0.112 0.0013 0.121 0.004
0.225 1.4505 0.0026 1.4505 0.0026 0.19 0.165 0.002 0.175 0.0061
0.250 1.5590 0.0026 1.5646 0.0038 0.24 0.216 0.0023 0.22 0.007
0.275 1.6659 0.0026 1.6680 0.0043 0.35 0.313 0.0035 0.321 0.018
0.300 1.7620 0.0026 1.7720 0.0049
0.325 1.8564 0.0026 1.8706 0.0048 . . L —
0.350 1.9411 0.0026 1.945 0.0038 these equations are to be taken with the constrairtoD.
0.400 2.0963 0.0026 2.0963 0.0026 tr:/e weak coupling regi?né moV;t \(l)f t,hle termg either Ivanish :alt
0.425 2.1704 0.0026 2.1714 0.0029

0.450 22430 0.0026 22470 0.0029 ¢=0 orare small enough to be neglected. For example, for
m, only three terms need to be considered. But the compu-
tation of A, suffers from larger cumulative errors.
J=0.075,0.25,0.4 fom?=0.1,A=0.1. We see that the cal-  The field wave function renormalization constahtcan
culated values ofs are reasonably close to the previous re-P€ calculated in two different ways. One can use &q)
sults. However, the price for reduced computational time is @nd relationG(0)=N?%(¢ ?), as in the previous case, or one
slight increase in uncertainties. can use Eq(47) and Eq.(51) where[d?U(¢)/d¢ 2]|$:<¢>

We have also calculatek}, for A =0.055,m?=0.1 using  can be found from Eq(A4).
Eg. (45 and the result is included in Fig. 3. The statistical The results are compared with the VSM results and are
errors are extremely large and it suggests that the calculatigshown in Table Il. We also compared the calculation of
of the four-point vertex function in this region is impractical renormalized mass using EG9) with the CEP Il calcula-

with this method. tions in Table Ill. The comparison indicates that in this sec-
tor the CEP Il method can provide an accurate calculation of
2. The constraint effective potential method | the renormalized vertex functions.

This method is the easiest to implement. We generated the
Boltzmann ensemble of independent configurations. For ev-

ery configuration we measured=(1/N?)=;¢; and com- In this section we consider the calculation of the renor-
puted the histograms for the probability densRya) for malized mass and renormalized coupling in the broken sec-
several values of. We also noticed that the ansatz of EQ.  1agLE 1. Comparison of the calculations ah? using the

(39)_ only worked \{vell for very small in thi$ region. We did  ysM and the CEP Il in the symmetric sector and weak coupling
a S|ml_JItaneous fit to Eqr36) of a few histograms corre- regime.\°" denotes the renormalized mass calculated by CEP II.
sponding taJ=0 and smalll’s using a three-parameter an- Herem?=0.1 andN= 20

satz forU(¢) of the form

B. Case 2: The broken symmetry sector

o o o o N m, Error meens Error
U(p)=a,¢ 2+a,p*+asd®. 52
($)=a1¢ “+a¢"+asd 62 0.02 0.324 0.001 0.323 0.007
Although there was no systematic discrepancy between the 0.04 0.334 0.002 0.330 0.007
0.055 0.340 0.0008 0.332 0.008

data and the fit, the statistical errors were very large. We
unsuccessfully tried more histograms and higher powers of 0-07 0.343 0.0014 0.339 0.006

¢ in the fit. The statistical errors remained large and we 0.345 0.0023 0.347 0.008

concluded that even a reasonable estimate of renormalized %13 0.350 0.0023 0.357 0.009
parameters in this region was not feasible with this method. 0.375 0.0025 0.372 0.009
0.24 0.398 0.003 0.384 0.010

3. The constraint effective potential method Il 0.3 0.408 0.003 0.399 0.009

. 0.35 0.421 0.0035 0.410 0.010

In this method Eqs(A4) and(A8) can be used for calcu- 0.40 0.433 0.004 0.428 0.010

lations of ﬁ], and \,, respectively. All averages shown in
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0.20 ' ‘ ' The remaining functional is Gaussian and can be done ex-
actly. The patrtition function can then be written in terms of a
O-15¢ 3 1 power series of and the standard perturbation theory fol-
- 0.10f t ] lows. : : ,
< ¢ The strong coupling expansion was first proposed by the
oosk ] authors of Ref[15]. For this expansion, unlike the weak
coupling expansion, the kinetic and the mass terms are
0.00 , ‘ , pulled out of the path integral as a functional operator. That
0.00 005 010 015 0.0 is
A
- R R A é é R
FIG. 4. The plot ofA, versus\ in the broken symmetry sectar Z[J]= exr{ 2 — G (n,m) —1Zo[J], (59
using lattice perturbation theorigolid line) and VSM (diamond$ mn- 5, 6dm

with m2=—0.1 andN=20.
where

tor, (¢)#0, in the weak coupling regime. The VSM proce-

g . R \ ~
dyre |§2exactly the same as for the symmet[|c sectE)r. For Zo[J]ZJ [d¢]exl{z T ¢ﬁ+Jn¢n}. (56)
fixed m*=—0.1 and G<A=<0.17 we calculatean, and\, :

for different values ofx. The error onG(0) is larger than
the symmetric case due to the subtraction of the disconnect

pieces. Thus we used E€p1) to calculateG(0) and subse-
quently extracted@ as previously discussed. ) F(x)

In order to calculate the renormalized quantities using lat- Z[31=N11 F(0)’ (57
tice perturbation theory we followed the standard approach " (
to treating the broken sector. That is, in the bare Lagrangiagvhere
we shifted the field by its vacuum expectation value,
which can be easily calculated using MC methods, such that

x(X)=(X)—v. (53

T(pe remaining functional integral is not Gaussian but can be
e 4 - :
evaluated as a product of ordinary functions on the lattice,

F(X)Ej dze—[(f\/4!)z4+xz] (58)

and \ is a constant. The functioR(x) is a transcendental

After this translation the mean value of the shifted fi€jg, function and can be expanded as a power series in
€

vanishes and the perturbative calculation proceeds in th
standard manner, keeping in mind that a nonsymmaetfic

*® ny2n
interaction has been generated. In lattice perturbation theory F(x)= 1 2 2X F<E+ E) (59)
one then needs to also consider vertex functions with a three- J(2)a=o (2n)!t\2 4

point interaction. Note thait can be different from the clas-

sical value of the vacuumy,=+—6m?\. As an example, Using this series expansion one can easily expand both terms

for m2=—0.1 andh=0.1 we findv=2.181+0.002. which in the right-hand side of E(55) to obtain a power series

is to be corﬁpared with; =2.449 ' T expansion foiZ[ J] which assumes the general form
o=2.449.

The comparison between the two-loop results and the re-
sults from the VSM method is shown in Fig. 4. In applying Z[3]=N"
the CEP Il method to the broken symmetry sector, evaluation
of all the terms in Eq(A8) is necessary. This renders this
method impractical. As one might expect from the symmetwhereA,[J] are integrals over the source functidn Thus
ric sector results the calculation of the renormalized paramthe strong coupling expansion is an expansion in powers of

eters using CEP | also suffers from large noise difficultiesy ~k2 ganderet al.[15,16 obtained a series expansion for a

and the signal could not be recovered. . ~N ~al
9 quantity that we denote here lgg, wheregRE)\r/mﬁ1 d

This expansion has the form

: (60)

1+k21 N K2 3]

C. Case 3: Strong coupling regime

L N
In a weak coupling expansion the interactive term is o de el
pulled out of the path integral representation of the partition 9r=Y ,:20 ,120 XY (6D
function as a functional operator. That is
. where
. A 5 1
Z[J]=ex _Z . J'[dﬁb]ex _E _(¢n_¢n,,u)2 ~2
4! n 534 nu 2 —areMr o 1
n x=y %— and y=¢&=—. (62
)\r mr

1. A
+ = m?pi+3ndn . 54
2™ n(bn] ®9 " For fixedx one has
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L 15
gr=y~ 22 a0y, (63 :
where or ]
N S
a,(’\')(x)znz,0 anX". (64) 3 1
This series does not converge for large correlation lengths. o:

Thus the author.s of Ii?e[lG] proposed a.schemAe to extrapo- 000 010 020 030 040 050 0.60
late the expression fox, to largey assuming thak, remains 8
finite in the limit y—0.
Raising Eq.(61) to the power of 2/d and expanding to FIG. 5. The plot ofgg=A\,/m? versus B=A\/(\+100) with

orderL we find strong coupling expansion resulsolid line), using Eq.(45) (starg
. oLid . and the VSM results(diamond$ with m?=0.078(+4%) and
_ _ N=20.
gr "=y L( 2 af“kx)y') =y~ 2, BNy

(65) were reasonable. For the extraction of renormalized param-
_ eters we only used two histograms correspondingl +c0
We then find andJ=0.005. In the weak coupling regime where the mass

L )(d/ZL) term is dominant, one needs to sample the higher values of

ngyd’Z( > by(x)y! , (66)  in order to improve the calculation &f . Thus in the strong
=0 coupling regime there might not be a need for additional
histograms. From the VSM results one might expect that
sampling very high¢ might have a similar problem. This
was confirmed from our data for this particular case.

We also calculated the renormalized coupling using Eq.
45). Unlike the weak coupling regime, uncertainties in the

which is equivalent to Eq(61) for smally and approaches

[bY(x)1%?" in the limit y—c. In this manner the authors of

Ref.[17] obtained an analytical series for H§6). Since the

interesting physics lies in a regime where the correlatio

lTer?L?;htrI]Se l:kr)%?/’e\'\;ext?:gggggg ggrr]:rilguvlg'soﬂ ;2 etgésarr;g'me'results in this region were reasonable. All the results in the
We chose a moderate correlation length3.6 by an ellp- strong coupling regime are shown in Figs. 5 and 6. In these

. . _< ~ 9 .
propriate tuning of the bare parameters. This can be done pjgures we plotgg=N\,/m; as a function ofg, where we

fixing A and choosingn to be in the symmetric region. As have defined for conveniengg=\/(\ +100). Ash —= we
one decreases, one gets closer to the critical line and the have S—1, which is the strong coupling limit. They were

correlation length increases. Using this, one can reach t Ik?o colrlnpared tWItE the strong com:pllqﬁ expﬁns;ﬁn res_tuhlf[s.
required correlation length. ey all seem to be in agreement with each other within

To apply VSM we followed the same procedure as beforeMors. This indicates that as the coupling increases the MC

. . -, i ) results approach the strong coupling expansion results. In the
For six different \'s and fixed COEe|atI0n length strong coupling expansion, the value g with é=3.6 ap-
§=3.6(+4%), wecalculated the values af, for different  proaches 14.880.04 asg— 1. This value depends on the
values ofJ. The curve fitting procedure was carried out in correlation length. In order to apply the CEP Il method, there

the same way as for the previous cases. We noticed that @re numerous terms in EA8) which have to be evaluated
this regime the inclusion of largep;'s can change the be-

havior of the fit at smallg;, the region which is of most

interest to us. The problem arises due to the curve fitting !
procedure. In the weak coupling regime, the data points close
to ¢=0 have much larger weighting than the one far away 10k ]

fiom this point. Thus calculating the derivativeslw(@ at
¢=0 seems to be reliable. However, in the strong coupling

regime, the data points that are far away freﬁTﬁO have 5:-
much higher weighting and even a small fluctuation might
affect the calculated(¢) considerably.

We improved the results by imposing the condition in Eq.

ol . . . . .
0.00 0.10 0.20 0.30 040 050 0.80

(51), that is to fixing the coefficiermlzllé(O) wherea; is g

defined in Eq.(52) and G(0)=N?($?). This improved the o o

results and the inclusion of largeft;’s did not affect the FIG. 6. The plot ofgg=A,/m? versusB=A/(A+100) with
results significantlyup to 39. strong coupling expansion resulsolid line), using Eq.(45) (stars

Next we calculated the renormalized parameters usingnd the CP Il method resultsliamond$ with m?=0.078(+ 4%)
CEP 1. Unlike the previous cases the errors in the resultandN=20.
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and consequently the accumulated errors can be very largiaund that CEP I, VSM, and the results from the direct
However, we found that as before the renormalized mass cadonte Carlo calculation of the vertex functions were consis-

be calculated accurately. tent with each other and with the strong coupling expansion
results. In summary then, we have shown that Monte Carlo
D. Details of the simulations effective potential methods can be accurate and reliable tools

. . . for calculating physical quantities for scalar field theories,
e e, ht ne SHou use th methd ofevluting th efec
. . tive potential and its derivatives which is best suited to the
tions between two measurements. All the calculations were_ . ,

; egime of interest.
done on a 29 lattice and the rate of acceptance was kept

between 40% and 60%. In all cas@xcept the broken sec-
tor) the calculations of renormalized mass @&(D) (where
it was neededand the direct calculation of )(0) were The differential equations relating the constraint effective
done using 6800 uncorrelated samples with 50 000 thermaRotential and the classical potential follow.

ization configurations. In the broken sector we used 11 000 For the first derivative we have

uncorrelated samples with the same thermalization configu-

APPENDIX

rations. The reason for the increase was to obtain better sta- dU(g) [dV(¢)

tistics, since the measured quantities have larger errors due to 4o - do |- (A1)
the non-vanishing disconnected pieces. In applying the VSM b

to the syminetric cas@nd in the weak coupling regimeve | hich for N ¢* theory becomes

calculateds with 0.025<J=<0.425. We noticed that the nec-

essary number of decorrelation iterations in the presence of dU(¢) o

nonzeroJ was smaller than for thd=0 case. The calcula- ——=m2¢+ —(p%). (A2)
tions were carried out using 2500 decorrelated configura- d 6

tions. We took the number of thermalization configurations o

to be 10 000. In the broken symmetry sector we increased € second derivative is given by

the number of uncorrelated configurations to 3200. In the — Nd

strong coupling regime only the range of the valuesiferas d’U(¢) | d*V(¢y) 3 dV(¢1) dV(¢)
different(as mentioned in the preceding secjidror CEP II d@ h dp? |- =1\ de,  dey

we used 5000 uncorrelated configurations with 50 000 ther- é ¢
malization iterations. In construction of the probability dis- dV(¢y) 2

tribution histograms, we used 750 000 configurations. The +Nd < L > ) , (A3)
curve fits were done using a standayé fitting algorithm d¢ &

where the uncertainties on the parameters were obtained .
from the diagonal of the covariant matrix. For the strongWhich for A\ ¢" theory becomes

coupling results we also estimated the systematic error due to o

the fact thatf was fixed to be approximately 4% by varying ~ d°U(¢) 2 £< 2)
the fixed value within reasonable limits. d24 B 2 ¢
2

)‘_ 3\2 )\_mz_a 42
36<¢>>+ 3 K P%)+m'

VI. CONCLUSIONS
+Nd

We have studied the calculation of the effective potential
for N7, , theory using three different methods: the varia-
tion of source method and two constraint effective potential
methods(CEP | and CEP )l Using our method, referred to
as CEP II, we showed how to calculate the vertex function
using the correlation functions in the presence of a con- m2
straint. We calculated the effective potential in the symmet- +— (¢
ric and the broken sector in the weak coupling regime as well 6
as in the symmetric sector in the strong coupling regime. Thel‘he third derivative gives

renormalized quantities, andm, were then obtained from

_Nd

4/ 17 )\_mz 37 )\_2 373
mY($8)+ = —(97B)+ (%)

. (A4)

the effective potential for each case. In the weak coupling 311 A 201( B Y —\ 2
regime we compared our results with lattice perturbation d U_(db)zNdd li(¢)du(_¢)+ Nd dU(_@)
theory. We found that in the symmetric case both VSM and d¢? d¢? do¢ do

CEP Il can give accurate results, whereas the CEP | method .3

and the direct Monte Carlo calculation of tftevo- and four- 5| dU(P) d3V(¢,)

point) vertex functions failed to do so. We also found that in —N —_— | * 43 T
the broken symmetry sector VSM is the most practical and dé 1 ¢

accurate of these methods. We also studied the model in the (A5)
strong coupling regime and the results were compared with
the strong coupling expansion results. In this regime wewhich for A ¢* theory becomes
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— - - — —\ 2 — —\ 2
d®U(¢) A N~ & o d*U(¢) d*U(¢) d’U(¢) [ dU(¢)
— :m2_<¢)3>_Nd_<¢2¢3>_Nd)\<¢2¢> — :Nd — _4N2d — —
dg* 6 6 dg* d¢? d¢? d¢
d*v
<ﬂ> -
2 ~2 dés |3
+[O(\9) termg+[O(m-) termg
which for A ¢* theory gives
d*U(¢) . . . . n
— — 2_ N9\ m2/ 72 d$ 2/ 42
+[terms that vanish agp=0]+"-- . —, = A=AmMT=NAmMH(¢%) — NAm*(4°)
(A6) dé
+[O(N?) termg+[O(m*) termg
Finally, for the fourth derivative we obtain +[terms that vanish atzz 0]. (A8)
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