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In light of recent lattice results for the light quark massesand m,+my, we reexamine the use of sum
rules in the extraction of these quantities, and discuss a number of potential problems with existing analyses.
The most important issue is that of the overall normalization of the hadronic spectral functions relevant to the
sum rule analyses. We explain why previous treatments, which fix this normalization by assuming complete
resonance dominance of the continuum threshold region, can potentially overestimate the resonance contribu-
tions to spectral integrals by factors as large-ds We propose an alternate method of normalization based on
an understanding of the role of resonances in chiral perturbation theory which avoids this problem. The second
important uncertainty we consider relates to the physical content of the assumed Isgatibthe onset of
duality with perturbative QCD. We find that the extracted quark masses depend very sensitively on this
parameter. We show that the assumption of duality imposes very severe constraints on the shape of the relevant
spectral function in the dual region and present rigorous lower bounds,féimy as a function ok, based on
a combination of these constraints and the requirement of positivigg(a). In the extractions ofng, we find
that the conventional choice of the valueggfis not physical. For a more reasonable choicegfwe are not
able to find a solution that is stable with respect to variations of the Borel transform parameter. This problem
can, unfortunately, be overcome only if the hadronic spectral function is determined up to significantly larger
values ofs than is currently possible. Finally, we also estimate the error associated with the convergence of
perturbative QCD expressions used in the sum rule analyses. Our conclusion is that, taking all of these issues
into account, the resulting sum rule estimates for bogh- my andmg could easily have uncertainties as large
as a factor of 2, which would make them compatible with the low estimates obtained from lattice QCD.
[S0556-282(98)00209-4

PACS numbgs): 11.55.Hx, 12.15.Ff, 14.65.Bt

[. INTRODUCTION since the approach and techniques are the same, we will refer
to their work jointly by the abbreviation JM-CBPSThe sum
The recent lattice results for the light quark masgls rule results, thus, lie roughlyl-2c above the guenched
m,+my=6.8+0.8+=0.6 MeV and mg=100+21+10 MeV  results. The difference between the sum rule andnthe2
in the quenched approximation and the even smaller valudsattice estimates, however, is large and, we feel, significant
m,+mMy=5.4=0.6x0.6 MeV andm =68+ 12+7 MeV, for = enough to warrant scrutiny. Both the lattice and sum rules
the n;=2 flavor theory[all evaluated in the modified mini- approaches have their share of systematic errors. A recent
mal subtraction |(/|_5) scheme aju=2 GeV], appear to be review of the lattice results is given [2]. Here we present a
significantly smaller than results obtained from sum rulereevaluation of the sum rules analyses.
analyses. The most recent and complete sum rules analysesThe issues in the sum rule analyses that we shall concen-
are (i) that of Bijnens, Prades, and deRaféBPR), which  trate on are the convergence of perturbative Q®QCD
yields my+my(u=2 GeV)=9.4+1.76 MeV [3], and (i)  expressions, the choice dof,—the scale beyond which
that of Chetyrkin, Pirjol, and SchilchéCPS, which gives quark-hadron duality is assumed to be valid—and the nor-
me= 143+ 14 MeV [4]. We have translated the original val- malization of resonance contributions in tAesatzfor the
uesm,+my=12+2.5 MeV andms=203+20 MeV, quoted hadronic spectral function fa=s,.
atu=1 GeV, tou=2 GeV using the renormalization group  The first issue is important because bathand ag cor-
running and the preferred va|u‘e§gD: 300, 380 MeV used, rections to the two-point correlation functions used in sum
respectively, in the two calculation€The analysis by CPS is rule analyses are large. This issue has been analyzed in detail
an update of that by Jamin and "W (JM) [5]; however, by CPS for the extraction ofng; therefore, we shall only
comment on it briefly for the case ofi,+m;.
The second point is important because, as we will show

*Email address: tanmoy@qcd.lanl.gov below, it turns out that the extraction of the quark masses, in
"Email address: rajan@qcd.lanl.gov particular that ofm,+mgy, is very sensitive to the choice of
*Email address: fs300175@sol.yorku.ca Sp. This is illustrated by deriving lower bounds om,+ my
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associated with the positivity gis(t) and by investigating
trial spectral functions. Ideally, one would like to picg )
large enough so that PQCD, to the order considered, can be /Permrbanve
shown to be reliable. Unfortunately, for larggy, the had-
ronic spectral function receives contributions from an in-
creasing number of intermediate states and, hence, becomes Hadronic
increasingly hard to model. We discuss the uncertainties in- z
troduced by a compromise choice sf. In the extraction of Duality
ms by JM-CPS, we argue that an artificially large valuesgf

has been used. For a more reasonable valsg,ofve are not
able to find an estimate fang that is stable under variations

of the Borel transform scale.

The third issue arises because the continuum part of the
hadronic spectral function is typically represented as a sum-
of-resonances modulation of a continuum form, the overall F|G. 1. The contour integral for the FESR’s of the text. The
normalization of which is fixed by assuming complete reso-hadronic” integral from 0 tos, which includes contributions from
nance dominance of the spectral function near continuunthe poles and cuts, is obtained using a model for the continuum
threshold. This turns out to be potentially the most importanportion of the spectral function, while the integral over the circle at
issue. We in fact show in the case of the vector two-pointsufficiently larges (s>s;) is done using the three-loop perturbative
function, for which experimental information on the spectralresult.
function is available in the resonance region, that an analo-
gous extrapolation from threshold to theneson peak would case as an illustrative example. Based on the lessons learned
lead to an overestimate of the spectral function in the rescfrom the vector channel, a reanalysis of the IM-CPS estimate
nance region by a factor of 5. We then explain the origin of mg is presented in Sec. VII. Finally, we end with some
of this problem from the point of view of the existing phe- conclusions in Sec. VIII.
nomenological understanding of how resonance contribu-
tions enter the expressions for low-energy observables as I. FINITE ENERGY SUM RULES
computed in chiral perturbation theotyPT). Based on this
understanding, we propose an alternate method for normal- The standard starting point for the extraction of the light
izing the spectral function in the resonance region whichguark mass combinatiom,+mg is the Ward identity relat-
requires as input only the expression obtained frgPT to ing the divergence of the axial vector current to the pseudo-
one-loop order, in the near-threshold region. We then emscalar density,
ploy this method in a reanalysis of the only sum rule treat-
ment for which the relevaniPT expression is known,
namely, that of the correlator of the product of two diver-
gences of the strangeness-changing vector cufenused o
by JM-CPS to obtain the estimate quoted abovenfigrand  whereq=(u,d,s) and the projectionst =(\,*+i\,)/2 pick
show that the traditional method of normalization leads to aut states with the quantum numbers of #e. This relation
significant overestimate ofy. implies, for the two-point function of the product of two such

We find that the size of the corrections suggested by oudivergences, that
consideration of the above issues can easily lower the sum
rule estimates for both,+my andmg by a factor at least as
large as 2. In particular, using the corrected normalization for
the hadronic spectral function in the JM-CPS analysis alone

- IS UES W
aﬂA#— (X):(md+mu)q(x)|75 2 q(X)! (1)

Woa?)=i [ dh rXo[TI#AL (00,51 (0)}[0)

would lower the extracted value ofiy by almost exactly a ,

factor of 2. Such a change would make the lattice and sum =(mg+ mu)zif d'x €9

rule estimates consistent. Lowering both estimates by

roughly the same factor would, moreover, preserve agree- X (0| T{P)(x),P")(0)}|0). 2
ment of the ratior = 2mg/(m,+ my), with that predicted by

xPT. The idea of the standard analyf®6,7,9 is then to consider

The paper is organized as follows. In order to make itthe finite energy sum ruled~ESR’9 generated by integrat-
self-sufficient and to introduce the notation, we reproduceng products of the form"Ws(t) over the contour shown in
the necessary details from Ref8] and[5] in Secs. Il and Fig. 1. Forn negative the result involve¥ 5 or its deriva-
VII. The convergence of PQCD is discussed in Sec. Ill. Intives att=0, while for n greater than or equal to zero, the
Sec. IV we derive lower bounds an,+mgy, as a function of result is zero. For sufficiently large radsi of the circular
Sg, using the positivity of the relevant spectral functipg. portion of the contour, the pseudoscalar two-point function,
In Sec. V we illustrate the potential sensitivity of the ex- and hence also its line integral over the circle, can be evalu-
tracted value ofn,+ my to the choice of, by considering a ated using perturbative QCD. Taking the resulting expres-
number of plausible trial spectral functions. The importantsions to the right-hand sidg®kHS'’s), one obtains FESR’s
issue of the overall normalization of the hadronic spectrafor the moments of the spectral functiorps(t)
function is investigated in Sec. VI using the vector current=(1/7)Im Wg(t), on the interval (&), for example[3],
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s N ) s2 where the “3r continuum spectral function’i)igT(t) is ob-
Jodt ps(t)= gz [Mu(S) +My(s)]" - tained from the leading-order, tree-levgPT result for
(0|d,A*|37) andF is a modulating factor which accounts
C4(0,) for the presence of the’ and 7" resonances. The form &f
X1 1+Ry(s)+2—2 }? (3 is taken to be a superposition of Breit-Wigner terms:
|Si& /[s=MZ+iMTy] ]2
s N 53 =
fodt tp5(t)=8—;z[mu(s)+md(s)]2§ F(e)=A |= & [9M2—MZ+iM;T;]]?’ ©
3 Cg(Os) : o
X114+ Rz(S)———s—]v (4) There remain three unknowns at this point, the overall
2 s normalization parameteh, the relative strength and phase

. ) &, of the two resonances, and the valuesgf BPR find
where m(s) is the running mass evaluated at the sale that, if they assums,~2—3 Ge\?, duality can be satisfied
Ri(s) andRy(s) contain the(higher order inas) perturba-  for a number of values dfA,&,]. Their best solution uses

tive corrections, an€,(O,) andCe(Og) represent the lead- the normalizationA=1 at threshold and then fixe%, by
ing nonperturbative corrections, of dimensions 4 and 6, regemanding duality between the hadronic ratio

spectively [9]. They are dominated by the gluon

condensate, C4(0,)=(m/N){(aG?), and the four-quark s

condensate, which, in the vacuum saturation approximation, Riad 8)= i Jodt tos(t) 9)
is given by Cg(Og)=(1792/2N.)m3agqq)?. Since the ha 2s [5dt ps(t)

contribution of the condensates is negligible and we have no

new information to add, we simply accept the values quotednd its PQCD counterpart

by BPR and JM-CPS in the remainder of this paper.

To extractm,(s) +my(s), one then needs to input the 3 Cg(Og)
scales=s;, at which one assumes PQCD to have become 1+Ry(s)— 578
valid and, second, experimental and/or model information on Roco(S)= (10)
the hadronic spectral functiofand hence its momentde- 14R (S)+2C4<O4>
low sp. Having done so, one may then use either €g.or ! ?

(4) to extractm,(s)+my(s) and, from that, theMS combi- ) _
nation of the masses at any desired sqalasing the renor- OVver the interval between the two resonances, i.e<8.2
malization group running. Most sum rule analyses extract3-2 GeVe. We have reproduced the results of BPR with
their estimates at/s=1.7 GeV and then run down tp their choice 'of resonance paramet(a@mh differ slightly
=1 GeV. We believe that it is unnecessary to introduce arffom those listed in their published versi¢a3]) based on
extra uncertainty in the estimates by relying on PQCD oveth® 1994 Particle Data GrouDG) book [12]:

this interval where the running is large. For this reason our

final comparisons are gi=2 GeV. However, to preserve M,=1300 MeV, I';=325 MeV,

continuity with existing sum rule analyses, masses quoted
without any argument will always refer to théS values at 1
GeV.

The most up-to-date version of the above analysis wagheijr preferred solutiorfsolution 2 is shown in Fig. 2. For

performed by BPR[3], whose treatment we will follow ¢~ o —3Ge\2 we also plot the perturbative spectral func-
closely below. In this analysis, BPR have used the three-loog,, (duality constraint for m,+my=12 MeV, their ex-

PQCD result of Refq.10,11] for the pseudoscalar tw.o-%c))int tracted value of the quark mass. As is evident from the fig-
function, employing three active quark flavors withizs  ure, the rise due to the”(1800) is roughly consistent, both

M,=1770 MeV, I',=310 MeV. (11

=300+ 150 MeV[12] and the values in magnitude and slope, with the perturbatiesatz This is
a consequence of tuning the normalization and relative phase
C4(0,)=(0.08-0.04 GeV/, (5) of the second resonance, and leads to approximate duality

over the range 2.2 Gé¥ s< 3.5 Ge\f. However, the falloff
of the spectral function on the far side of th€(1800) reso-
Ce(0g)=(0.04+0.03 Ge\P (6)  nance, in contrast to the rising PQCD solution, shows that, in
order to preserve duality, further resonances and intermediate
for the nonperturbative, condensate contributions. For thétates are required to bolster the BPRsatzbeyond the
hadronic spectral function on the interval€0,they include ~ 7"(1800) peak.

the pion pole, whose residue is known exactly in term§_of Note that, in the BPR analysis, the threshold behavior of
andm_, and a 3r continuum contribution modulated by the the spectral function is not determined experimentally, but
' and#" resonances. The BPRnsatzis rather obtained from leading-ordgPT. To the extent that

SU(2)xSU(2) xPT converges well at leading order, the
3 5 choiceA=1 then ensures correct normalization of the spec-
Phadronid S) = Ppotet F(S) pypr®(s—9m7), (7)  tral function near the 8 threshold. However, in the spectral
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4x10°F is to represent the series by the Pddgl—0.63), in which

s case the neglected terms would further increase the PQCD
estimate by~35% and consequently lower the BPR result
for my,+my by y1.35, i.e., from 12 to 10.4 MeV. In fact,
historically sum rule estimates have decreased over time pre-
cisely because of the increase in the PQCD result. Part of the
change has been due to the increase in the valuésp and

part due to the large positive three-loop contributj@h If

this trend were to continue and the unknown higher-order
terms were to continue to grow geometrically and contribute
with the same sigr(as is the case for the scalar channel
discussed beloyy then the extracted quark mass would be
significantly lowered.

The situation in the case of the scalar two-point function
analyzed by JM-CPS is somewhat better. A very careful
analysis of the stability of the PQCD expressions and of the

FIG. 2. The hadronic spectral function assuming that the duathoice of the expansion parameter has been carried out by
region begins at ther” resonance. The location, widths, and nor- cps[4] who include terms up t@ug in the two-point func-
malization are the same as in the solution found by BPR. Thejon and in the running of the coupling and mass. The PQCD
dashed line is the continuation of the_BPR so_lutioné@rs_o. For result, after Borel transformation, has the expansion 1
s>s;, we also show the spectral function required to satisfy pertur'+4.8a5/7r+22(as/7r)2+53(a5/77)3 [5]. Taking as/w

bative duality form,+my=12 MeV. The twoAnsadze are joined i - . (3) _
smoothly by choosing,=3.0 Ge\t. Heres, is in Ge\V? andps in NO'%’ as appropriate far=4 GeV” with Agcp=380 MevV,
GeVt. we find that the difference between the PQCD series and a

possible Padeepresentation 1/(+0.48) is only about 9%.

: L : . . This correction would lower the estimate ofy by ~5%,
integral appearing in Eq(3), which determines the light consistent with the estimate by Jg].

qguark mass, the contribution of the near-threshold region is
negligible compared to that from the vicinity of the reso-
nance peaks. Correctly normalizing the spectral function inlV. CONSTRAINTS ON m,+my FROM THE POSITIVITY
the resonance region is thus much more important than cor- OF ps(s)
rectly normalizing it near threshold. We will show later, by
considering an analogous examftlee correlator of two vec-
tor currents, that the conventional threshold constraint 1
almost certainly leads to a significanterestimateof the
spectral function in the resonance region.

To summarize, we will investigate the following aspec

3x107°

Hadronic

-5
&x10 Perturbative

107° \
\BPR ansatz
\

N

So

0
0 2 4 6
8

T T T T T [ T T T T [ T T TT
v b e b e o N

[e:]

The fact that the spectral functiginy(s) is positive defi-
nite above threshold allows us to place rigorous lower
bounds orm,+my as a function of, [14]. A weak version
of this bound(labeled “pole”) is obtained by ignoring all
ts parts of the spectral function except for the pion pole, whose

. . . . . 2 4
of the BPR solution: the uncertainty in the mass extractioncomrlbutlon to the integral in Eq(3) is 2fom;. [Eq. (4)

P duces a much less stringent bound and hence is not con-
produced by uncertainties in the three-loop PQCD expresP'® , : <
sion, the reliability of the overall normalization of the con- sidered furthep One then finds, assuming the validity of the

tinuum contribution, and the sensitivity of the results to thel"Put three-loop PQCD result,
value chosen foss,, the scale characterizing the onset of

duality with PQCD. The same issues are also relevant to the 2f2m?*

extraction ofmg using the Ward identity for the vector cur- [my(s)+my(s)]?= N T T TR
rent. Our contention is that plausible systematic errors in — = {1+Ry(s)+2 4 5 4

each are such as to lower the estimates for light quark 87 2 S
masses. (12)

wheres is the upper limit of integration in Ed3). A stron-

Ill. CONVERGENCE OF TWO-POINT FUNCTIONS ger constraintlabeled “ratio”) is obtained by noting that,
IN PQCD for ps(t)=0,
The pseudoscalar two-point function is known to three
loops in PQCD[10,11]. The main issue, in applying this I3 dttpg(t)
expression to the problem at hand, is the question of conver- s‘h—ss, (13
gence. If, for example, we writeR; , with R; as defined in s dtps(t)

Eqgs.(3) and(4), in the form 1+ xag/ 7+ Yy(as/ )2, then the

coefficientsx,y show a geometrical growth; i.e., the growth wheresy, denotes the 3 threshold value. The bound is satu-
for R; andR; is roughly the same and the average values areated when the entire spectral strength is concentrated as a
x~6.5 andy~46. As a result, theD(as,a?) correction delta function ass. If s in Eq. (13) is assumed to be in the
terms are 0.61 and 0.41, respectively,sat3 Ge\? where  dual region, this turns out to place considerably stronger con-
ag/m~0.1. Since these are large, it is important to estimatestraints onmy(s) + my(s). To see this, note that the LHS of
the sum of the perturbation series. One plausible possibilitghe inequality in Eq(13) is, using Eqs(3) and (4),
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N s® 3 C¢(Og)

5.2 [Mu(8)+Mu()]? 3 | 1+ Re(8)— 5 — 5| —212m] »
Ne. , S CiOn| .20 4

Swz[mu(s)"‘md(s)] > 1+Ry(s)+2 2 2fomz

From expressior{14) we see that, if we start with a large the perturbativeps(t) is known up to the overall normaliza-
value of my(s)+my(s) and begin to lower it, keeping tion, which is given by the quark mass, one test of the valid-
fixed, the inequality13) will be violated before we reach the ity of the phenomenologicansatzfor the hadronic spectral
value ofm(s) +my(s) corresponding to the pion pole satu- function would be to show that the results for the quark mass
ration of the spectral function at which point the denominatoremained stable under variations of the upper limit of inte-
in Eg. (14) vanishes. Thus the inequalitfl3) provides a grations in Egs.(3) and(4). This test, however, is meaning-
more stringentlargep lower bound on the extracted quark ful only if one already knows that the values sfbeing
mass. This is illustrated in Fig. 3 where the dependence ofmployed are greater thag. Unfortunately, the lack of ex-
(my+mg) min 0N s for both of the above constraints is shown. perimental information on the hadronig(s) precludes the
The *“ratio” curve shows that if one assumes,  possibility of making such a test. In the next section we
=25GeV, as in the BPR analysis, themm,+my construct plausible spectral functions, all satisfying duality,
=10 MeV. The fact that the BPR result for the mass extraccorresponding to a range of possible valuessiplying be-
tion, my+my=12 MeV, is close to this lower bound is a tween 3 and 10 Gé&¥ by including higher resonances in the
reflection of the fact that the spectral strength is concentrate8z channel. These models illustrate how, in the absence of
in the region close to the assumed onset of duality. Such experimental information, the uncertainty mm,+ mgy might
feature is, in fact, rather natural sinegis chosen to coin- be as large as a factor of 2 if considerably higher values, of
cide with thew”(1800) peak. However, g, is considerably are chosen.
larger than 3 Ge¥ [to alleviate the problem of large
(’)(as,ag) corrections toR; at s~ 3 Ge\? discussed aboye
then considerably smaller masses are allowed by the “ratio” V. PLAUSIBLE SPECTRAL FUNCTIONS ps(s)
constraint, as is evident from the figure. Furthermore, one IN THE DUAL REGION

){’iv(gylg(’)l;rr'];ag’ E:%z(\:/torrgzsis:zl?c::tar:eug\]/v%reerztir tg?atlhﬁj mrf' The assumption of duality places constraints on the form
P of the spectral functiorpg(s). Below s=s,, these con-

tions are characterized by resonance modulation of a NSINGy aints amount only to the determination of certain moments

continuum phase space backgrgund and have their spectro the spectral function on the intervady(,s,) and, hence,
strength concentrated in the region negr

These bounds make it clear that the value of the quar re not particularly strong. In fact, as we illustrate below, the

) . onstraints of Eq9.3) and(4) allow considerable freedom in
mass extracted from FESR’s will tend to be very stronglyt e choice oto5(g)5(fo)r s<é0). Fors>s,, in contrast, duality

correlated with assumptions about the appropriate value o . o - .
L : etermines the “averageps(s), i.e., averaged over some
Sp. In addition, it will, of course, depend on the details of the _ ™. . . N
hadronic spectral function from ther3threshold up tcs swtab_le region Og'. This average v_alue IS given by the per-
p p 105,
which are, at present, not experimentally determined. Sinc'[gqrbat|vgp5(s), which can b_e obtained straightiorwardly by
ifferentiating the RHS of either E@3) or (4). We evaluate
these derivatives numerically using either of the two forms,
0.015 —— L which of course give consistent results. Even if one elimi-
nates the running masses by matching the ratios of &s.
and(10) for s>sg, it is easy to show that the resulting equa-
\ . tion completely determines the perturbatjvg(s), up to an
0.01 1 . overall multiplicative factor, for als>s,. The result of the
i duality constraints, in either form, is that(s) must be a
monotonically increasing function o, for s in the duality
region. Numerically we find that this function is approxi-
mately linear as illustrated in Fig. 2.

The hadronic spectral function in this channel is not
known experimentally. It receives contributions not only
from the pion and its resonances, but also from the resonant
ol v v and nonresonant portions of the @b, 7w,

5 10 15 KK, ... NN, ... intermediate states. Experimentally,
¢ only the #'(1300) and#"(1800) have been observed as

FIG. 3. The lower bounds om,+mj as a function os. These  distinct resonancesl5]. Even so, their decay constants are
are obtained by saturating the spectral function with the pion poléiot known experimentally, and hence the normalization of
contribution and from the “ratio” method described in the text. their contributions to the spectral function have to be treated
Heres is in Ge\V? andm,+my in GeV. as free parameters. The number of multiparticle intermediate

0.005

Lower bound on (m,+m,)
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states one has to consider, moreover, grows gjthas does 410 T
the problem of separating their resonant and nonresonant
portions. From dimensional arguments, the contribution of
these various intermediate states will grow linearly at suffi- 3x1075
ciently larges. In the region of resonances, the resonances
will modulate the cut contribution and the hadronic spectral
function is expected to match the PQCD behavior only after
an average over some interval©fThis averaging is crucial
if the resonances are narrow and isolated. Alternately, if the
widths of subsequent resonances, for exampféand 7",
become much greater than the resonance separation, then the 107°
overlap of resonances can provide the monotonically rising
behavior required by duality and averaging is not crucial.
We illustrate these points by constructiAgsazefor the ol
hadronic spectral function which are of the form used by 0 5 10 15
BPR, i.e., involving resonance modulation of the continuum
3 background. To explore values sf as large as 10 GeV FIG. 4. Four examples of the hadronic spectral function, assum-
with the Ansatzabove, we include pseudoscalar resonanceshg different resonance structure and point of matching to the per-
with masses as large as\/10 GeV. For the first two such turbative solution. Units are as in Fig. 2. The locations and widths
resonances, ther’(1300) andz”(1800), we use the 1996 of the resonances used are given in the text. The normalization
Particle Data Group values for the masses and widths. Fa@nd the relative strengttes for the four cases are given in Table I,
the remaining two resonances, th¢ and 7", expected in ~ &long with the values of, andm,+my used to derive the pertur-
this range, we are guided by model predictions. THe  bative solution.
resonance is typically expected to lie around 2400 MeV in
models constrained by the lower part of the meson spectrum ps(s)=F(S)p3pr(s), (16)
[16]. In addition, the*P, model[17], which has proved to be 3 ) ) .
reasonably successful in estimating decay widtg], pre- Wherepyg(s) is the spectral function corresponding to the
dicts a width for ther” (2400) between 700 and 1900 MeV leading-order, tree-leve{PT result for(0|d,A*|37), and
[16,19 depending on how the relativistic effects are treated.
The approach leading to 700 MeV gives 300 MeV for the
width of the#"(1800), which is larger than the experimental
value of 21237) MeV. We therefore assume the lower limit
700 MeV for the width in this study, even though this may The sum in Eq.(17) runs over the appropriate number of
be an overestimate. Similarly, we assume thét lies at resonances, depending ep as described below, with rela-
3150 MeV with a width of 900 MeV. In short, we choose tive strengths;. The parameteA is the overall normaliza-
tion of the resonance contribution to the continuum part of

ko)
o

2x107°

SicM T /[(s—M2)2+M?T2]
SiciMTi /[ (sp— M?)?+MT?]

F(s)=A (17)

M,=1300 MeV, TI';=325 MeV, the spectral function at ther3threshold. We have taken the
¢; to be real, in order to simplify the task of searching for
M.=1800 MeV. T.=212 MeV suitable spectral functions, whereas BPR, who use a slightly
2 ) 2 )

different form forF, as given in Eq(8), with just the first
two resonances, allow the relative strength of the two reso-

M3=2400 MeV, I';=700 MeV, nances to be complex.
We display a series of spectral functions in Fig. 4, all
M,=3150 MeV, I',=900 MeV. (15 satisfying duality and constructed by employing up to four

resonances in thAnsatzabove. The values foh, {c;}, sg,

The decay constants of all of these resonances are unknov¢dm,+mq used in the construction are given in Table I. As
and will therefore be treated as free parameters. The limitaone can see from the figure, there exist perfectly plausible
tions of such a truncated spectral function are obvious; howspectral functions correspondingng,+my=12, 9, 8, and 6
ever, it should be noted that, because we have allowed our-

selves some phenomenological freedom in treating the TABLE I. The parameters used to generate the spectral func-
strengths and widths of the last two resonances Ansize tions shown in Fig. 4. The normalization at threshéldand the

for the spectral function can also be thought of as providin%elative weightsc; assigned to the resonances are defined in Eq.
an approximate means of representing a combination of reso= """

nant and nonresonant effects. Our aim is, in any case, to

Sy my+my

simply demonstrate how the piling up of resonances can give

the PQCD behavior, and the nature of plausible spectral (GeV) (MeV) c C2 s G A

functions for which the “extracted” quark mass is, as for the Case 1 3.0 12.0 1 -0.23+0.65 1.0

BPR case, rather close to the value given by the ‘“ratio” Case 2 5.7 9.0 1 1.0 2.3 1.0

bound. Case 3 8.0 80 1 12 50 6.5 0.7
For the resonance-modulated spectral function we adoptase 4  10.0 6.0 1 0.8 20 3.68 05

following BPR, theAnsatz
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1.5x107° ————F T TABLE Il. The parameters used generate the plots shown in
- 1 Fig. 5. The values ofs, and m,+my have been fixed tcs,

r ] =10 Ge\? andm,+my=6 MeV, respectively, in each of the three
cases.

107% - —
(o Cy C3 Ca A

I ] Case 1 1 0.8 2.0 3.680 0.5
L Case 2 1 0.6 2.0 5.160 0.4
5x107¢ |- - Case 3 1 1.0 4.0 11.75 0.3

will show that values oA significantly smaller than 1 are, in
ol fact, to be expected, based on a consideration of the analo-
0 5 10 15 gous vector current correlator, for which the normalization in
s the resonance region is known experimentally. Third,che
FIG. 5. The hadronic spectral function assuming four reso-€ large. Itis not cleag priori, if this fShOUId be ConSiQered
nances with the quantum numbers of the pion. Units are as in Fig. 2inreasonable or not. For example, in the narrow width ap-
The locations and widths of the resonances are given in the texRroximation thec; would scale as”(fizMi‘l)/(fiMi) and
The normalizatiorA and relative strengths for the three cases are thus have an explicit dependence mﬁ‘. [The BPR model
given in Table Il. These have been adjusted to make the hadronispectral functions, being even larger than ours, of course,
form join smoothly to the dualitAnsatzat s,=10 Ge\?. The solid correspond to even largex’(1300) and=”(1800) decay
line corresponds to case 1, the dotted line to case 2, and the daSh@dnstants}. Moreover, by leaving the normalizations as free
line to case 3. parameters, we are potentially incorporating other nonreso-
nant background effects. Ultimately, this issue can only be

MeV. The first casés,=3 Ge\2, m,+my=12 MeV) is the resolved by appeal to experimental data which, unfortu-
. , my

BPR luti . fore. Th nately, is not ayailable at presentl. o '
_57 ég\; IO:n E';Cfge&e\?)e chcr)Eirespoen dze(t:gn?nclclﬁﬁg The bottom line of the above discussion is that since both
=5. . my+mg=

the correct value for the location of the onset of duality with

three resonances and matching to the duality solution at th . :
top of the third resonance. The assumption here is that thEQCD and the correct form of the hadronic spectral function

third and higher resonances merge to produce the dual solll‘ril_.-re at,present “’?k”OW”' the valuemj+ my extracted using

. . . oo . ESR'’s can easily vary by a factor of 2. As we have pointed
tion above this point. The matching in the third casg ; . o .

a _ : o > out, usings,~ 3 Ge\? leads to a perturbation series in which
=8 Ge\?, m,+my=8 MeV) is at the beginning of the rise h da? t | A I anifi
of the fourth resonance, while in the fourth caé®, eﬁs ?n ®s e:mszzr: qrge.d S?OOTI as ‘:”eth?‘ owsbsllgm -
—10 Ge\Z, m,+my=6 MeV) we match at the top of the C@ntly larger values af,, in order to alleviate this problem,

fourth resonance. In cases where we match at the peak Ofr}gwever, consi_derably S”.‘a"er values of the exiracted quark
resonance, the dual region actually appears to begin somgass are possible. We will now, furthermore,.argue that the
what below the input value of,. This is because the slope conventional method of normalizing the continuum part of

of the rising side of the last resonance tends to match rezihe spectral function tends to pTOduce significant over_est_i-_
sonably well the slope of the PQCD versiona{(s) mates of the resonance contributions and, hence, also signifi-

These spectral functions are, by construction, perfectl)?ant overestimates of the extracted quark masses.
dual for s>sy. Duality also requires the low-energys (

<sp) part of ps(s) to have the correct moments to satisfy 0.008 7 T T v
Egs.(3) and(4). However, the constraint of duality does not m,+my (u=1 GeV)
lead to a unique solution. Experimental ddtiecay con- .

stant$ are needed to fix the overall normalizatidnand the 0.008 f

relative weightsc;. We illustrate this point in Fig. 5 by

constructing three spectral functions that differ $stsy. In

all three casessy and the inputm,+my in the PQCD ex-

pression are fixed to be the same, while the values of param-

etersA andc; are as defined in Table Il. The corresponding

output values fom,+ my are shown in Fig. 6. As expected,

they converge to the input value in the dual region. 0.006
There are three features of thesasdze that should be

noted. First, the value of,+my decreases witlsy in a

0.007

manner very similar to the “ratio” bound. This is because in 000s bt o 1

each case the spectral function is stacked up towsgds 5 10 15

Second, we find that, to produce spectral functions corre- s

sponding to values ofm,+my only a few MeV above the FIG. 6. The output values afi,+my (run to =1 GeV) for the

“ratio” bound, the threshold normalization paramefehas three cases of the spectral function shown in Fig. 5. Heigin
to be decreased with increasisg. In the next section we GeV? andm,+my in GeV.
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VI. NORMALIZATION 1 2\ 32 BW(s)
ial o) — m 2 P
OF THE RESONANCE-MODULATED pas ()= 28211 T) 6(s—4m:) BV ame) |
SPECTRAL FUNCTION p w 20

The assumption that a given spectral function may be o ) )
written as a Breit-Wigner resonance modulation of a con\Vhere the quantity in the first set of square brackets is the
tinuum phase space factor, as exemplified in Efjsand(8), leading-orderyPT expression for the spectral functip20]
is valid in the vicinity of a narrow resonance. We will as- and
sume that thisAnsatz used by both BPR and JM-CRSee
Sec. VI) in the pseudoscalar and scalar channels, respec- c®V(s)
tively, is a good approximation. This fixes the general form P

of the spectral function, but, of course, does not fix the mag- . i
nitude in the resonance region, since the relevant pseudd!hich follows from employing thep-wave s-dependent

sm,I",/[m;—4am’]%¥2
 [(m3=s)2+T (s)2m7]"

(21)

scalar and scalar decay constafviith the exception of ) width
are not known experimentally. Both BPR and JM-CPS deal 21312
. . . : m, I’ am
with this problem by assuming that resonance dominance of I, (s)=—5—"2" 3/2[ -7 s (22)
the relevant spectral function continues to hold all the way g (m,—4m?7) S

down to continuum threshold. Thus, for example, the overaIkN h h his f f the width i | h
scale of the BPR and JM-CPS&nsdze for the continuum e have chosen this form of the width in analogy to the

part of the spectral function is obtained by choosikig1,  Standard” s-waves-dependent width of JM-CPS. Thin-

i.e., by assuming that the tails of the resonances reprodu tzagspm?s,f that the effec‘j"ﬁ cguplirlg of+r,h$q ;1777 has
the full threshold spectral function. BPR, in the absence of € minimal formg,,;.p, (7" d" @ —a gm") with g,
experimental data, use the tree-ley®IT expression for the ndependent of momentum over the relevant kinematic
spectral function in the threshold region. The JM-CPS treatf@nge. The threshold factpd —4m7/s]* in the numerator
ment differs only in that they normalize the sum-of- of Eq. (22) has been separateql out explicitly in writing Eq.
resonanced\nsatzat the K threshold using experimental (20- The Ansatz Eq. (20), then implies
data(the scalar form factor at threshold is computed using 1 (m2—4am2)7?
the Omnes representation with experimeital phase shifts trial 2y = 5t

P33
The second key point in the IM-CP$isatzfor the spec- | d . d dth i
tral function is the assumption that one can take the «stan@ factor of 4.1 too large. Had we instead used the normaliza-

dard” s-wave s-dependent widths for the resonance contri-tion given by the full next-to-leading-ordeyPT expression
butions. This assumes that the effective coupling of thd20) (Which matches well to experimental data near thresh-

strange scalar resonancesKkar is momentum independent old)
over the whole kinematic range relevant to the spectral inte-

=027, (23

2

32
gral. We will now show that the combination of this assump- pé(gT(s) = % 1— _”) 9(3—4”137)
tion and of resonance saturation threshold can fail badly by 48m S

studying its exact analogue in the isovector vector channel. AL w)s
In fact, in the vector channel, the analogous set of assump- x| 1+ 9—2+} (24)
tions produces a significant overestimate of the spectral e

strength in the region of the resonance peak.

Consider, therefore, the vector correlator the peak height would be further increased by a factor of

1.28, the correction being dominated, far~m,, by the
term in the square brackets in E@4) involving the O(q%)

1145(9%)=(9,9,~9°9,.,) I133(a%) renormalized low-energy constafitEC) Ly,
. iq. y 417 4m?
=i [ ax @ o[TIvECOVEO)}[0). (19 A 0,24, 25)

where we have usellg(m,)=0.0069(2)[21] and +--- re-
fers to loop contributions whose form is not important in
what follows. Note that, since it is the next-to-leading-order
expression, Eq(24), which matches experimental data, it is
this latter normalization which corresponds to the JM-CPS
treatment of the scalar channel. The analogue of the IM-CPS
Ansatz in the case of the vector correlator, thus overesti-
[p3s(m?)],= = pm =0.0654. (19 mates the spectral function at thepeak by a factor of 5.1.
P The source of this problem is not difficult to identify and,
in fact, turns out to be that the crucial assumption that the
Let us now apply the analogue of the BPR and JM-CPSpectral function can be taken to be completely resonance
Ansdzeto the vector channel, by assuming tftgal) spec- dominated, even near threshold, is incorrect. This is most
tral function to be given by easily seen from the perspective @ T. Indeed, it is known

where V% is the | =1 vector current. In the narrow width
approximation, they contributions to the spectral function of
I153 andps3, at thep peak, is known in terms of the decay
constant=,=154 MeV,

2
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that, when one eliminates resonance degrees of freedote O(q*) LEC contribution in Eq.(24) at w=m,. This
from a general, extended effective Lagrangian, producing ifeads to a prediction for the spectral function at phgeak of
the process the usual effective chiral Lagrang@ﬁT rel-

. LEC, 12y _
evant to the low-lying Goldstone boson degrees of freedom pa3 (M;)=0.067, (26)
alone, the effect of the resonances present in the original ) _ ) _
theory is to produce contributions to the LEC’s appearing inin 90od agreement with the experimental value given in Eq.
LXET[22,23. There are two important observations about the 19).

nature of these contributions which are of relevance to the €t US Stress that the precise numerical aspects of the

present discussion. The first is that the resonances do nB{escrlpnon above, namely, the supposition th‘?‘t the normal-
contribute to the Iowest-ord@(?(qz)] LEC’s of E"ET' i Ization at resonance peak of resonance contributions to the
e ’

o : ) e hadronic spectral function can be obtained by evaluating the
stead, the‘lleadlngn tr:e chiral expan_s@montrlbutlons are  elevant O(q%) LEC contributions appearing in near-
to the O(q") LEC’s L\(n) (whereu is the yPT renormal-  thresholdyPT expressionsat a scaleu~m, , is one that is
ization scale and we adhere throughout to the notation Of)urely phenomenologically motivaté@2,23. While highly
Gasser and Leutwyldi24]). The second is the phenomeno- syccessful in the case of the vector channel, it has not been
logical observation that, if one takgs~m,, the resonance tested outside this channel. The fact that resonance contribu-
contributions essentially saturate the(«) [22,23 (see, for  tions begin only at’(q*) in the chiral expansion and, hence,
example, Table 2.1 of Ref21], for a comparison with re- that resonances do not contribute to either lowest-order tree-
cent experimental determinations of the LEC’An imme-  level or leading nonanalytic terms in théT expansions of
diate consequence of the first observation is that the correthe relevant spectral functions, however, clearly indicates,
normalization for the resonance contributions to quantitie$ndependent of the numerical reliability of this prescription,
like ps3 or (0|(9MA“|377), near threshold, cannot be that the unsuitability of normalizing the resonance peaks by as-
coming from the tree-levélO(q?)] xPT contributions, since sociating the fullyPT or experimental values near threshold
such contributions are associated with the Goldstone bosowith resonance effects. Moreover, as long as the spectral
degrees of freedom alone and contain no resonance contfiinctions of interest have even reasonably normal chiral ex-
butions whatsoever. Similarly, normalizing to the full thresh-pansions, with the dominant contributions near threshold
old value, as obtained, for example, from experiment, woulccoming from the lowest-order tree-level contributions, we
also be incorrect, since this full value necessarily containgan conclude that the standard method of normalization will
both tree-level and leading nonanalytic contributions, neitheproduce values for these spectral functions in the resonance
of which can be associated with the resonance degrees ofgion that are overestimated by a significant numerical fac-
freedom, in addition to th€(q*) LEC contributions which  tor.
do contain resonance contributions. Fortunately, the second At this stage we should also mention that Stern and col-
observation provides us with an obvious alternative for nordaborators have suggested that the normalization at threshold
malizing resonance contributions near threshold. We proeould actually be much larger than that given by leading-
pose, therefore, to accept the phenomenological observatiarder yPT, as is expected in “generalizedPT” [25]. They
above as a general one and identify resonance effects in nedahen argue that, in that case, the quark masses would be even
threshold observables with those contributions to the onelarger. Our observations are also relevant in this case: We
loop expressions for these observables involving the appraagain stress that, since the sum rules we consider are domi-
priate O(q*) LEC’s {L}}, evaluated at a scaje~ m,. Such  nated by the resonance region, threshold normalization will
an identification, however, requires that the LEC be domi-only provide useful input if one can disentangle the contri-
nated by the appropriate resonance, as is the case for tigitions to threshold amplitudes associated with resonances
vector (Lg) and scalar I(5) channels, but not for the pseu- from those associated with the Goldstone boson degrees of
doscalar channel. This prescription, like that of BPR andreedom.
JM-CPS, represents a means of using information solely
from the near-threshold regidim this case, obtainable from || REANALYSIS OF THE JM-CPS EXTRACTION OF mq
a knowledge of the chiral expansion of the spectral fungtion ) ) _ o
to normalize the spectral function in the resonance region. In this section we will employ the prescription proposed
However, we will show below that, in contrast to the ana-above to a reanalysis of the JM-CPS extractionmgf4,5].
|Ogue of the BPR and JM_CPSnSaze which was in error Such a reanalySiS is pOSSib|e in this case because the one-
by a factor of~5 at thep peak, the new prescription nor- loop xPT exprgssion for the rele\_/ant scala_r form factor is
malizes the peak accurate to within a few percent. Based oknown[26]. To introduce the notation, we briefly review the
the success of the prescription in this channel, we will thernalysis of Ref[5] (that of Refs[4,27] is similar and need
apply it to a reanalysis of the JM-CPS extractionnaf in-  Not be discussed separatelyhese analyses |r_1volve a stan-
volving the correlator of the divergences of the vector cur-dard QCD sum rule treatment of the correlation function
rent.

Let us return, then, to the spectral functipgs. Accord- 2 :-f 4y, Hig-X m st

ing to the discussion above, themeson contributions to V(@) =i | dxeTHO[T{o"V,,(x)7"V,(0)}[0)
pa3, hear threshold, can be obtained by taking just that term
in Eq. (24) proportional toL§, evaluated at a scalg :(ms—mu)2if d4xeiq'X<0|T{s(x)ST(0)}|0>7
~m,. The only change in the above analysis is then a re-
scaling of 2! in Eq. (23) by a factor of 0.24, the value of (27
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whereV ,(x) is the strangeness-changing vector current and 00— 1 T T T 1 T
S(x) the corresponding strangeness-changing scalar current. i p
The correlator of scalar currents is evaluated using the op-

erator product expansid®PE). All terms on this side of the | yau
sum rule are proportional ton;—m,)?, and the full o2 2000 I p"y _
PQCD result is known for the predominant contributibng L / §
[4]. The hadronic spectral function in the phenomenological - 4 .

side is again taken to be a sum-of-resonances modulation of -
the spectral function relevant to thén intermediate state -
near threshold. 1000 -

JM-CPS write theK 7 contribution to the physical spec-
tral function as

Phadronic

3 e N Prn T
S)= 55— 0(s—s,)V(s—s,)(s—s_)|d(s)|?, 0 et T
Prn(S)= 3522 0(S=S1)V(S=84)( )[d(s)| o 1000 2000 2000
(28 Vs (MeV)
wheres.. =(myg=*= mﬂ,)2 andd(s) is the strangeness-changing  FIG. 7. Plots of the spectral functionggcp and phagronic Used
scalar form factor, measured ¥4 for mlzgsgs_ , by JM-CPS[5,4]. The scale of matching between the PQCD and
hadronic solution issy=6.0 Ge\E. To highlight the fact that the
d(s)=(m2—m2)fo(s)=(mz—m2)f,(s)+sf_(s), PhadroniciS dominated by the resonance contribution, we also show

(29 Pk s 1-€., PhadronicWithout the Breit-Wigner modulation factor. For
convenience, we plgix 10°/(m;—m,)?, and so the units along the
with f.(s) the usual form factors defined by y axis are Ge¥. The valuesns=189 MeV andm,=5 MeV have
been taken from Ref5].

_ 1
(m°(p")[sy,ulK* ()= v [(P" +P)uf+(5) Omnes representation with experimertat phase shifts as
input. This result is, moreover, shown to be consistent with
+(p—p"),f-(s)]. (300 that of PT to one loop, which can be obtained from the
expression forfy(s) given by Gasser and Leutwyl¢P6]
In their analysis, JM-CPS employ the following resonance{dy"'(s,)=0.35 Ge\f]. Last, the master equation used for

modulationAnsatzfor the spectral function: extractingm is [5]
— 3 2 ~ SO 0
Phadronid S) = 352 V(s—sy)(s—s )[d(s,)|*F(s), U o= fo e 9 ppadronid St L e ppocls, (34)
(31 °
where Where2 both \i”(’)PE and ppocp are proportional to i
—-my)°.
EncEW(s) The first of the three issues raised by us, namely, the
F(s)= S (s, (32 reliability of PQCD, has already been discussed in Sec. IIl.
nn e We agree with JM-CPS that in this channel the effect of the
with neglectedas and higher contributions could, at best, lower
estimates ofmg by ~5%. The remaining two issues, the
fﬁmﬁl“n value of sy and the normalization of the hadronic spectral
BW, oy _ 33 : ; Ic sp
Cn (8)= (My—9)2+m2l'2(s) " (33 function, are far more serious, as we now explain.

To elucidate the role 0§y in the JM-CPS analysis we
In Egs. (31)—(33), s, is the continuunK s threshold, and plot, in Fig. 7, both the model JM hadronic spectral function
f,, m,, andl', are the decay constant, mass, and width of(for s<sy) and the PQCD version of the spectral function
the nth scalar resonanc€,,(s) being the usuas-dependent (for s>s;). We have used the JM values corresponding to
width given in[5]. The s dependence of the width factor the preferred —solution, i.e. sp=6.0GeV,, AS},
occurring in the numerator of the Breit-Wigner resonance=380 MeV, andng,=189 MeV. The plot shows very clearly
forms has already been factored out explicitly in writing Eg.that the Ansatzfor ppagronic IS, at best, valid only fors
(31). The sum in Eq(32) is taken to run over two resonances <4.0 Ge\f. Furthermore, as evident from Eq81)—(33),
[the K§ (1430) andK{(1950)], and the duality poinsg of  phadronicJ0€S t0 a constant at large whereasppgcp grows
QCD sum rules(describing the point beyond which the linearly (with logarithmic corrections For this reason there
physical spectral function is to be modeled by its perturbais a large discontinuity betwegs,gronicand ppocp €ven for
tive expressionis fixed by a stability analysis. Note that the s as low as 4 Ge¥ The only way thapyagronic CONstructed
normalization procedure above assumes that the physicfilom theK s channel can satisfy duality is if there is a piling
spectral function is completely saturated by resonance corup of higher resonances, and these have to have large ampli-
tributions near threshold. The threshold value of the scalatudes(as we illustrated in Sec. V for the pseudoscalar chan-
form factor,d(s,)=0.33+0.02 GeV, is obtained using the nel). We contend thas, should only be chosen in the range
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wherephagronicis known reliably. However, fos,<4.0 Ge\? there are problems of consistency with using the JM-CPS
and using the JM-CP8nsatzfor paqronic We have not been Ansatzfor the spectral function with values e as large as
able to find a result fomg that is stable under variations of 6 Ge\~.
the Borel parameteu. It was precisely this lack of stability In light of the above corrections, the question before us is
that forced JM-CPS to choose a larggr Such a choice, we whether it is possible to get a stable estimatemfby re-
contend, is not reasonable Ag,qronic< Procp OVEr the range  peating the JM-CPS analysis wish~4 Ge\? and an overall
3<s<6 Ge\ ie., duality is badly violated over this whole normalization 0fppadronic Of A~0.25. To answer this ques-
range. _ _ tion we have varied\§2;, in the range 200-450 MeV, the
Last, we turn to the quantity(s. ), which sets the overall r¢ative strengtif, /f, of the two Breit-Wigner resonances in
normahzatlpn _of the_res_onance contributions in E_al). the modulating factor over 0.2—1, andl over the range
This quantity is crucial in the JM-CPS analy3|s SINCe, apH 21, Despite this, we have failed to find a solution that is
noted by JM, the extracted value i, scales directly with stable under variations in the Borel scaleThe cause of this

d(s,). The problem IS that’.JUSt as for the light quark CaS€ilure is theAnsatzor Phadronicand the small range afover
the spectral integral appearing on the phenomenological side

of the sum rule is dominated, not by the near-threshold relVNich it can be evaluated. It is our contention that reliable
gion, but by resonance contributions. TAasatz(31)—(33) results _for Ms using sum _rules can only be obta|_n_ed i
for the spectral function, however, is designed only to prohadronic 1S determined to high precision over a sufficiently
duce the correct overall normalization at tKer threshold.  'arge range of scales, say, frosy, to 8 GeV:. If s, IS
From our discussion above of the analogous treatment of thesmall,” then limitations of the operator product expansion,
vector current correlator, it is clear that such/Amsatzwill ~ convergence of perturbation theory at snsalbnd details of
overestimate the resonance contributions near threshold an@sonances contributions make it difficult to test the reliabil-
hence, almost certainly significantly overestimate the spedty of the results.
tral function in the resonance region. To correct this problem For completeness, we should also mention the alternate
we need to properly rescale the JM-CRBsatzat threshold. JM determination ofmg via an analysis of the analogous
We do so on the basis of the proposal above; i.e., we assun#rangeness-changing axial correlator. Their result in this
that in the scalar channel, just as in the vector channel, thggse ismS(M_S, 2 GeVJ=91 MeV, significantly smaller than
O(q*) LEC's, evaluated at a scajg~m,, give the correct  that obtained from the scalar channel via the treatment of the
normalization of the scalar resonance contributions at threskzector current correlator. They, however, consider this analy-
old. It is easy to implement this revised normalization of gig incomplete because it employs, for the normalization of
PhadronicD€cause, not only is the one-logPT expression for  yhe continuum spectral function at threshold, the leading-
d(s) known [26], but, in addition, Jamin and Mz have o qer tree-levelPT result. They contend, based on the ex-
demonstrated explicitly the accuracy of this expression fole yation that the full normalization will, as in the scalar
d(s.) [5 . . . channel, significantly exceed that given by tree-leyBIT
Let us write the one-loogPT expression fod(s. ) in the [d(s,)=1.5d.ds,) for the scalar channlthat the true
form o S e :
normalization will likely be significantly larger. If true, this
d,pr(S;)=dyed S) +dred St 1)+ diop(Ss 1), (35) would mean thatmg wpuld be correspondingly increasgd.
They thus expect their two analyses to become consistent
wheredyeds,) is the leading(qg?) tree-level contribution, once they employ a normalization at threshold corresponding
dreds, ) contains theO(q*) LEC contributions, and to the one-loop expression for the continuum spectral func-
dioop(S+ ,4) contains the contributions associated with one-tion in the pseudoscalar channel. Our contention is that, in
loop graphs generated from ti®(q°) part of the effective  fact, the “correct” normalization is given, not by the full
chiral Lagrangian. The latter two terms are separately scalghreshold spectral function, but rather by the appropriate
dependent. According to the prescription introduced abovep(q*) LEC contributions to the one-loop result and that it
resonance contributions t(s,) are to be identified with  should hence be significantymallerthan that corresponding
dred s ,m,). Resonance contributions td(s,)|?, consis- to the tree-level result. Further progress on this issue, and
tent to one-loop order, are thus given by that of the consistency of the two different extractions for
5 mg, will be possible only once the one-loop expression for
|d(s4)fes™2dyred S+ ) dred S+ ,M,). (36 (0|d,A*|Kma) is known [28]. A reanalysis of the BPR
FESR treatment ofm,+ my is similarly stymied by the ab-
sence of one-loop expressions for the matrix elements
dyed 5+) = (M2—m2)=0.22 GeV, (0]a#A5")|3) and by the lack of association of thg in-
volved with just the pseudoscalar resonances.
dres(S+-mp):45+(mi—mi)'—[;(mp)/ff,, In the past, of course, the agreement of the ratio
(37) ~2(180)/12= 30 obtained from the different sum rule analy-
ses with that (24.4 1.5) obtained fromyPT [29] has been
with Lg(mp):0.0014t 0.0005, we find that|d(s+)|r2eS taken to providea posteriori support for the validity of the
~0.23d(s.)|2. With no changes to the JM-CPS analysis sum rule treatments. Our contention is that a self-consistent
other than the corresponding rescaling of the continuunsum rule analysis would yield estimates of botg and m,
spectral function, the value o, would thus be lowered by +mgy that are lower by a factor of 2, thus maintaining the
almost exactly a factor of 2. However, as discussed aboveonsistency with thgPT value ofr.

Using [26]
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VIIl. CONCLUSIONS not the threshold region, which dominates the phenomeno-
logical side of the sum rules, the conventional procedure
produces significant overestimates of the quark masses. In
iﬁhe case of the vector current correlator, where the normal-

ization of the spectral function at the peak is known ex-

We have shown that the ability to make reliable extrac-
tions of mg and my+my using sum rule analyses rests on
three key features of these analyses: the degree of reliab
Ik?; dorforFl)ng;)Ii’t; Egg;v*egsgi;{ dthgnsacaams ZL;?{{;C; qclf)?lr;ructoer_imentally, we have shown that the m_agnitude of this over-

. ) N . —estimate is large: The conventional method of
hadronic spectral functions which are correctly normalized in

X . : n?rmalization produces a spectral function which, at ghe
the resonance region, even in channels where experimentgl

- . peak, is a factor 4.1-5.1 larger than that given by experi-
data on the relevant decay constants is not available. . :
, ) : ment. We have explained, based on an understanding of the
We find that, in the relevant PQCD expressions, the in which ff if h I :
5 tions are large both in the scalar and Ioseur_nanner in which resonance effects manifest themselves in
gs’as’l s .hcorrelc Includi bl timates for th PT, why the conventional method of normalization cannot
kosca at:_channeds. rt1c u lnlg reasotr;]a ees |n|1a est_or ‘ € UHe correct and have proposed an alternate phenomenological
nOV\l/(n '9 er-otrher lerms ovx;fers ne suLn rule estima efs 0 rescription for normalizing the spectral function, designed
quark masses. The largest effect Is in the extractiomot  , qide estimates which are reliable, not so much in the

+my, Which we estimate would be lowered MQ% COM- " threshold region, but in the resonance region relevant to the
pared to the value quoted by BRB). The corrgctlon in the sum rule quark mass extractions. We verify that this pre-
case ofms extracted from the scalar channel is roughly 5%, g rintion reproduces the experimental result for the velglor
and this has been _accounted f_or by JM-CPS. channel. This method is straightforward to apply to the scalar
Sec_ond, the estimates obtalned_for the quark masses alfannel as the one-log(q*)] xPT corrections are known,
potentially very sensitive to the choice &f. We have illus- 54 he revised estimate for the normalization could reduce
trated this through an analysis of rigorous lower bounds an@le estimate ofn, by as much as a factor of 2 over the

the use of a variety of plausible spectral functions in the casg, ,es found in previous analyses. We argue that a similar
of m,+mg. Current sum rule analyses are forced to choosg,erestimate of the normalization will exist in the pseudo-

low values ofs, due to lack of experimental information. gea\ar channels, though we are unable to estimate its magni-
The FESR extraction aofn,+my, for example, is based on ,4e at present.

rather low values of;<3 GeV¥, and so no tests of the sta-  The pottom line is that unless the hadronic spectral func-

bility of the estimates under vane_monssn‘ can be made. In 4o is known accurately over a large range of scales, say, up
the case of the JM-CPS analysis rof, the value chosen, 5 s—g Ge\? reliable extraction of quark masses from sum
Sp=6.0 GeV, is art|f|C|aII3_/.Iarge. This choice arises from an jles considered is not possible. Even though the lattice
attempt to achieve stability of the Borel-transformed sumgcp estimates have their share of statistical and systematic
rule with respect to the Borel parameter Since, however, arrors[2], we claim that at present they represent the most
the phenomenologic#insatzor the spectral function breaks rejiable means of estimating the quark masses. Our estimates
down fors=4.0 GeV, itis clear that such a choice 8 is  of the systematic errors in sum rule analysis suggest that
not physical. For reasonable choicessgfwe are also not  reyised sum rule estimates could easily be smaller by a factor

able to find a solution that is stable with respect to variationgf 2, in which case these would be consistent with the small
in u. We therefore conclude that no reliable estimatemgf yajues obtained from lattice QCD.

can be made unless,,qr0niciS known accurately over a sig-
nificantly larger range o§.

Third, we have shown that the method employed in pre-
vious analyses for fixing the overall normalization of the
resonance-modulated model spectral functions leads to sig-
nificant overestimates of the continuum contributions to the
relevant spectral integrals and hence to significant overesti- We are very grateful to J. Bijnens, J. Padres, E. de Rafael,
mates of the quark masses. The source of this problem is tHd. Jamin, and D. Pirjol for communicating details of their
fact that normalizing the resonance-modulafetsatz[see analyses to us and for discussions. We also thank S. Godfrey
Egs. (31)—(33)] to either the experimental value or to the and H. Blundell for communicating previously unpublished
xPT value for the spectral function in the near-threshold reresults of their model of the meson spectrum and decays.
gion results in the inclusion of near-threshold contributionsK.M. thanks the T5 Group, Los Alamos National Labora-
of the Goldstone-boson degrees of freedom in addition to théory, and the Special Research Center for the Subatomic
desired resonance contributions. Overestimating the size @tructure of Matter of the University of Adelaide for hospi-
the resonance tail in this manner, of course, leads to a cotality during the course of this work and also acknowledges
responding overestimate of the resonance contributions @he ongoing financial support of the Natural Sciences and
resonance peak. Since it is the resonance peak region, aishgineering Research Council of Canada.
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