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PHYSICAL REVIEW D, VOLUME 59, 096003
Isospin-breaking vector meson decay constants from continuous families
of finite energy sum rules

Kim Maltman*
Department of Mathematics and Statistics, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3

and Special Research Centre for the Subatomic Structure of Matter, University of Adelaide, Australia 5005

C. E. Wolfe†

Department of Physics and Astronomy, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
~Received 30 November 1998; published 5 April 1999!

The isospin-breaking vector meson decay constants are determined from a QCD sum rule analysis of the
vector current correlator̂OuT(Vm

3 Vn
8)uO&, using a recently proposed implementation of the finite energy sum

rule approach. The analysis employs the three-loop version of the OPE and two different families of weight
functions. It is shown that the requirement of consistency between results obtained using these two different
weight families leads to a rather good determination of the parameter describing the deviation of theD56
condensate term in the OPE from its vacuum saturation value, and that the ability to determine this value has
non-trivial numerical consequences on the analysis. The phenomenological relevance of the results to experi-
mental extractions of the isoscalar and isovector spectral functions ine1e2→hadrons, the extraction of the
strange quark mass and the determination of the 6th order chiral low energy constant,Q, is also briefly
discussed.@S0556-2821~99!06009-9#

PACS number~s!: 11.55.Hx, 12.38.2t, 13.40.Hq, 14.40.Cs
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I. INTRODUCTION

Because the neutral (a53,8) members of theSU(3)F oc-
tet of vector currents,Jm

a 5q̄gm(la/2)q ~with la the usual
Gell-Mann matrices!, couple to fermions in the standar
model, it is possible to use experimental data on the spe
functions associated with correlators involving these curre
to determine certain quantities of phenomenological inter
For example, defining the scalar correlators,Pab(q2), by
means of

i E d4x exp~ iqx!^0uT@Jm
a ~x!Jn

b~0!#u0&

[~qmqn2q2gmn!Pab~q2!, ~1!

and the corresponding spectral functions,rab(q2), as usual,
by rab(q2)5(1/p) Im Pab(q2), one finds that~1! integrat-
ing the differencer33(q2)2r88(q2) with the weight function
occurring naturally~due to kinematics! in the finite energy
sum rule ~FESR! treatment of hadronict decays@1# pro-
duces a sum rule from which one can, in principle, determ
the running strange quark mass,ms(m) @2#, and~2! integrat-
ing the same differencer33(q2)2r88(q2) with weight func-
tion w(s)51/s produces a sum rule from which one ca
extract one of the 6th order low-energy constants~LEC’s!, Q,
appearing in the 6th order version of the effective chiral La
grangian@3#. @See Ref.@4# for a discussion of chiral pertur
bation theory~ChPT! and the method of effective chira
Lagrangians in general, Ref.@5# for the form of theO(q6)
terms in the effective Lagrangian in the most general ca

*E mail address: maltman@fewbody.phys.yorku.ca
†E mail address: wolfe@fewbody.phys.yorku.ca
0556-2821/99/59~9!/096003~13!/$15.00 59 0960
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and Ref.@6# for both a discussion of the subset of these ter
surviving when one restricts one’s attention to vacuum c
relators and a definition ofQ.#

Of course,Jm
3 and Jm

8 do not couple separately in th
standard model, but only in the combination

Jm
EM5Jm

3 1
1

A3
Jm

8 ~2!

which gives the light quark (u,d,s) part of the electromag-
netic ~EM! current. Thus, what is measured ine1e2

→hadrons is not the desired quantities,r33 and r88, sepa-
rately, but the combination

rEM~q2!5r33~q2!1
2

A3
r38~q2!1

1

3
r88~q2!. ~3!

In the isospin symmetry limit,r38 would vanish and, since
one could then classify the final hadronic states accordin
their G parity, it would be straightforward to separate th
isovector ~33! and isoscalar~88! components of the EM
spectral function.

In the presence of isospin breaking, however, this proc
is no longer so straightforward. The most obvious expe
mental signature of the presence of isospin breaking
e1e2→hadrons is the interference shoulder in thee1e2

→p1p2 cross section in ther-v region @7#. The e1e2

→v→p1p2 contribution torEM is clearly, to leading order
in isospin breaking, to be associated withr38 and hence is
usually removed explicitly in analyzing the data. This r
moval is accomplished by~1! fitting the parameters of a
model for the totale1e2→p1p2 amplitude, consisting of
r,v and possible background contributions, to the expe
mental data,~2! removing thev contribution once the fit has
©1999 The American Physical Society03-1
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KIM MALTMAN AND C. E. WOLFE PHYSICAL REVIEW D 59 096003
been performed and~3! squaring the modulus of the remain
ing r contribution and identifying this result with ther con-
tribution to r33 @8#.

While this proceduredoesremove one source of isospin
breaking contamination from the nominalr33 so extracted, it
is easy to see that other such contaminations still rem
Indeed, once one allows isospin breaking, the physicalr and
v are admixtures of pure isovector and isoscalar states
size of the admixture of the ‘‘wrong’’ isospin compone
being governed by the scale of isospin breaking. As a c
sequence, the intermediater contribution to r38, for ex-
ample, does not vanish. In fact, if one denotes the pure
ovectorr state byr (0) and the pure isoscalarv state byv (0),
one expectsr contributions tor38 from two sources:~1! that
due tor (0)-v (0) mixing ~a one particle reducible contribu
tion, with coupling of the isovector current to ther (0) com-
ponent and the isoscalar current to thev (0) component of the
r) and ~2! that due to the ‘‘direct’’@one particle irreducible
(1PI)] coupling of ther (0) component to the isoscalar cu
rent ~such a coupling being unavoidable in any hadronic
fective Lagrangian based on QCD!. Thus, removing the con
tribution due to the intermediate statev from the e1e2

→p1p2 cross section, while removing part of ther38 con-
tribution, does not remove it all. One is then left with,not the
desired quantity,r33, but rather with a combination ofr33

and the residual part ofr38 associated with the intermedia
r state~plus possible additional such contaminations fro
elsewhere in the spectrum!. Similar isospin-breaking flavo
38 contributions exist fore1e2→v→3p, complicating the
extraction of the isoscalar spectral function.

Corrections for such isospin-breaking effects,which are
unavoidable as long as no process exists in which only
of the two neutral flavor currents couples, are thus necessar
if one wishes to perform phenomenological analyses of
type mentioned above. Such corrections would also be
portant in performing precision tests of conserved vector c
rent ~CVC!, which involve a comparison ofr33 and the
charged isovector spectral functionr (1), measured in had
ronic t decays~see, for example, Ref.@9#!.

It is easy to see that, to be able to make these correct
~at least in the region belows;2 GeV2, where the EM
spectral function is, experimentally, resonance dominated!, it
is sufficient to determine the isospin-breaking vector me
decay constants. Let us first clarify the notation. We defi
the flavor 3 and 8 vector meson decay constants via

^0uJm
a uV~k!&5mVFV

aem~k! ~4!

whereV5r,v,f, . . . , em(k) is the vector meson polariza
tion vector, anda53,8. Fr

(3) , Fv
(8) andFf

(8) are non-zero in
the limit of isospin symmetry;Fr

(8) , Fv
(3) andFf

(3) are zero in
the absence of isospin breaking. The experimentally de
mined EM decay constants,FV

EM , are then given by

FV
EM5FV

31
1

A3
FV

8 . ~5!
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Thus, for example, the broadr contribution torEM, usually
taken to be associated purely withr33, consists not only of a
flavor 33 contribution proportional to@Fr

3#2, but also of a
flavor 38 contribution proportional to (2/A3)Fr

3Fr
8 . The v

contribution torEM, similarly, contains both a flavor 88 pa
proportional to1

3 @Fv
8 #2 and a flavor 38 part proportional t

(2/A3)Fv
3 Fv

8 . The flavor 38 parts, in both cases, are pres
only due to isospin breaking, and have to be removed fr
the experimentalr and v contributions torEM in order to
obtain the correspondingr contribution tor33 andv contri-
bution tor88.

It is important to stress at this point that the conventio
‘‘few-percent’’ rule of thumb for estimating the size o
isospin-breaking effects, which might lead one to exp
such effects to be numerically negligible, is inapplicable
the cases involvingr33(q2)2r88(q2) discussed above. Thi
is true for a number of reasons. First, because the differe
of spectral functions is itself flavor breaking, therelative
importance of isospin breaking is enhanced by a factor
;3, characteristic of the inverse of the scale of flavor bre
ing. Second, the effect ofr-v mixing naturally produces
corrections for ther contribution tor33 andv contribution
to r88 which are opposite in sign; the effects therefore a
when the difference is taken. Finally, there is a natural
merical enhancement which makes the size of the correc
needed to remove ther38 part of thev contribution torEM,
and hence isolater88, larger than naively expected@10#. The
latter two points are discussed in somewhat more detai
Sec. II below.

In what follows, we evaluate the isospin-breaking vec
meson decay constants by performing a QCD sum r
analysis of the isospin-breaking vector current correla
P38. The vector meson spectral contributions are, in t
case, proportional toFV

3FV
8 , so that a determination of thi

product, in combination with the experimental determinati
of FV

EM , given in terms ofFV
3 andFV

8 above, allows a sepa
rate determination ofFV

3 and FV
8 . The rest of the paper is

organized as follows. In Sec. II we discuss qualitative exp
tations for the pattern of isospin-breaking corrections ba
on the structure of the leading~chiral! order terms in the
vector meson effective chiral Lagrangian, as well as se
quantitative expectations for their probable scale which c
using this perspective, be obtained from experimental d
In Sec. III, we discuss briefly the form of QCD sum rule
employed~a version of the FESR! and the advantages of thi
approach. In Sec. IV, we discuss the input used for the h
ronic and operator product expansion~OPE! sides of the sum
rules employed and present our results. Some advantag
the approach, in particular in relation to the handling of t
D56 terms in the OPE of the 38 correlator, will also b
discussed here. Finally, in Sec. V we summarize and m
some brief comments on the phenomenological significa
of our results.

II. CHIRAL CONSTRAINTS AND THE SCALE
OF ISOSPIN-BREAKING CORRECTIONS

ChPT provides both an underlying conceptual framew
and systematic procedure@11# for writing down the most
3-2
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ISOSPIN-BREAKING VECTOR MESON DECAY . . . PHYSICAL REVIEW D59 096003
general effective Lagrangian relevant to a given set of h
ronic states which fully incorporates the symmetries of QC
and implements the broken symmetries~such as chiral sym-
metry! with the same pattern of symmetry breaking as occ
in QCD. Although the resulting effective Lagrangian,Le f f ,
is non-renormalizable, it is possible to formulate the the
in such a way that only a finite number of terms appears
given order in the chiral, or low-energy, expansion.~For so-
called ‘‘heavy’’ fields, those whose masses are no
vanishing in the chiral limit, this requires a reformulation
terms of velocity-dependent fields@12,13#.! The leading or-
der terms in this expansion@in which light quark masses
mq , q5u,d,s, count asO(q2), with q representing some
soft external momentum#, incorporate the leading constrain
associated with either chiral symmetry or the symmetry p
tern of its breaking.

The framework of the heavy field implementation
ChPT given in Ref.@13# for the vector mesons and the
interactions with the members of the pseudo Goldstone
son pseudoscalar octet provides two useful pieces of in
mation about the scale of isospin breaking in the vector m
son sector. First, note that the leading~in chiral order! term
in Le f f generating isospin-breaking mixing involves o
power of the quark mass matrix and no derivatives@13#, and
hence produces no off-diagonal contributions to the w
function renormalization matrix. Theleading ordermixing
effect thus results in a physicalr and v basis which is re-
lated by a rotation to the original pure isospinr (0), v (0)

basis. At this order, therefore, the ‘‘wrong’’ isospinv (0) ad-
mixture in the physicalr state is equal in magnitude, bu
opposite in sign, to ther (0) admixture in the physicalv
state, a pattern which should remain approximately va
even at higher order. The second point concerns the ve
meson decay constants, which are necessarilySU(3)F sym-
metric in the chiral limit. When one considers the effects
flavor- and isospin-symmetry breaking~recalling that both
are generated by the quark mass matrix, and hence both
produced by the same set of terms in the effective Lagra
ian!, there are two potential sources of such breaking. T
first is that associated with higher order terms, involving
least one power of the quark mass matrix, coupling the
ternal photon field to the vector meson nonet, and the sec
that induced by the leading quark-mass-dependent term
sponsible for mixing, discussed above. The leading or
mixing effect simply reproduces the standard leading or
SU(3)F mixing analysis@13#, leading to near ideal mixing in
the vector meson sector. As is well known, the combinat
of ideal mixing and neglect of flavor breaking in the E
couplings of the unmixed states leads to the prediction
the vector meson EM decay constants, measured experim
tally in V→e1e2 @14#, should be in the proportion
Fr

(0) :Fv
(0) :Ff

(0)53:1:2A2, where the superscript (0) ind
cates that the couplings refer to the ideally mixed, but isos
pure, vector meson states. That this prediction is borne
by experiment represents empirical evidence that, despite
potential SU(3)F-breaking photon coupling contribution
being of the same formal order as effects induced by mixi
the former are numerically suppressed relative to the la
Since flavor breaking and isospin breaking are generate
09600
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the same terms in the effective Lagrangian, this implies t
isospin breaking in the vector meson decay constants sh
also be dominated by mixing effects.

If we take this point of view then, up to sub-leading co
rections, we find, for the physicalr andv decay constants
now including isospin breaking and taking into account t
relationFr

(0).3Fv
(0) ,

Fr
EM5Fr

~0!2eFv
~0!.Fr

~0!S 12
e

3D
Fv

EM5Fv
~0!1eFr

~0!.Fv
~0!~113e!, ~6!

wheree is the leading order mixing angle, defined via

r5r~0!2e v~0!, v5v~0!1e r~0!. ~7!

We note two relevant features of these results:~1! because of
the dominance by mixing, the corrections required to conv
the pure isovectorFr

(0) coupling to the experimentalFr
EM

coupling is opposite in sign to that required to convert t
pure isoscalarFv

(0) coupling to theFv
EM , and~2! because of

the pattern of ideal mixing and the numerical suppression
the isoscalar current relative to the isovector current inJm

EM ,
the magnitude of the correction is a factor of 9 larger in t
v than in ther case.

In view of the discussion above, a rough idea of the s
of the isospin-breaking vector meson decay constants ca
obtained by analyzing experimental data onr-v interfer-
ence, ignoring all non-mixing effects. Although crude, th
estimate will provide a qualitative constraint for our lat
sum rule analysis.

In order to obtain the parametere describingr-v mixing
at leading order, it is sufficient to determine the off-diagon
element,Prv , of the vector meson self-energy matrix. In th
past, values forPrv around ;24000 MeV2 have been
quoted, based on simplified analyses ofe1e2→p1p2 data
in the interference region which effectively assume that
one-particle irreduciblev (0)p1p2 vertex is zero, even in
the presence of isospin breaking. Since effective opera
which generate such a coupling exist in the vector me
effective Lagrangian, however, this assumption is unphys
~in the sense of being incompatible with QCD!. Once one
includes contributions to thev→pp amplitude generated
both byr-v mixing and the 1PI vertex~whose strength we
will denote bygvpp

(0) ), the analysis of the experimental data
somewhat more complicated but, in principle, allows a se
rate determination of bothPrv and the isospin-breaking ra
tio of couplings of the isospin pure statesG5gvpp

(0) /grpp
(0)

@15,16#.
An important general conclusion, which follows from th

analysis framework developed in Ref.@15#, is that the small-
ness of previously quoted errors forPrv is an artifact of the
unphysical assumptionG50, and does not survive the mor
general treatment. It is worth outlining why this is the ca
since, in so doing, the reason for the difficulty in improvin
the experimental situation sufficiently to really pin down t
mixing contribution will become clear.
3-3
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KIM MALTMAN AND C. E. WOLFE PHYSICAL REVIEW D 59 096003
The contribution of thephysical~i.e., mixed-isospin! v to
the amplitude fore1e2→p1p2 is obtained experimentally
by determining the timelike pion form factor,Fp(q2), in the
interference region and fitting it to a form

Fp~q2!}F 1

q22mr
2

1
Aif

q22mv
2 G1 background ~8!

where mV
2 are the complex pole positions,mV

25m̂V
2

2 im̂VGV , and the fit parameter,f, is known as the ‘‘Orsay
phase.’’ Thev contribution in Eq.~8! is generated by the
coupling of the physicalv to p1p2 which, as discussed
above, has two sources: 1PR (r (0)-v (0) mixing! and 1PI~as-
sociated with thev (0)pp vertex!. The physical coupling is
given, in terms of these contributions, by

gvpp5gvpp
~0! 1e grpp

~0! , ~9!

where, as usual, the superscript (0) indicates coupling
the isospin-pure states. In the~physically plausible! approxi-
mation in which one assumes saturation of the imagin
part of Prv by pp intermediate states, one finds

Im Prv~mr
2!52Gm̂rGr ~10!

and hence, in the narrowr-v interference region,

Prv.P̃rv2 iGm̂rGr ~11!

whereP̃rv is now real. The mixing anglee is then given by
@15#

e5
Prv~mr

2!

mv
2 2mr

2
[2 izT̃2zG, ~12!

where

z[
im̂rGr

mv
2 2mr

2
, T̃[

P̃rv~mr
2!

m̂rGr

. ~13!

One then finds, upon substitution of Eq.~12! into Eq. ~9!,
that

gvpp5FG~12z!1
P̃rv~mr

2!

im̂rGr
Ggrpp

~0! . ~14!

In many places in the literature, the approximationmv
2

2mr
2. imrGr(z51) is employed. Since Rez.1 and Im z

is small (;.2–.3), this approximation~which was, in fact,
made uniformly in analyses previous to the discussion
Ref. @15#! might appear rather safe. If this were true, then
effect of G in Eq. ~14! would cancel exactly@17#, and the
experimental data would determine the real part ofPrv in
the interference region with the usually quoted err

@P̃rv(mr
2)5238446271 MeV2; see Refs.@16,18,19# and

earlier references cited therein#. Unfortunately, it turns out
that the approximation is both misleading and unreliab
09600
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The reason is that, althoughz is approximately real and nea
1,(12z) is dominantly imaginary. Since the denominator
the second term in Eq.~14! is also dominantly imaginary, the
two terms add nearly constructively. Were the phases
these terms to be actually identical, it would be impossible
separate them experimentally, regardless of how precise
data. Fortunately, there is a small phase difference which
least in principle, means that a determination, with suffici
accuracy, of both the magnitude,A, and phase,f, of the v
contribution toFp , would allow separate determination ofG

and P̃rv . From this, one would be able to reconstructPrv

and hence determinee. The smallness of the phase diffe
ence, however, turns out to severely limit the accuracy
tainable using current experimental information. If one tak
the updated numerical analyses of Ref.@16#, for example,
one finds that values ofP̃rv between 24000 and
28000 MeV2 are allowed ~with a central value
;26800 MeV2), and that, while the central extraction fo
G is moderately large,;.1,G50 is only 2.5s distant. A
significant improvement in this situation would require a s
nificant reduction of the errors in the determination of t
Orsay phase. The prospects for such an improvement at
time in the near future are remote, at present.

Although present experimental accuracy allows one
place only rather weak constraints one, we can, nonetheless
use the range of values obtained in Refs.@15,16# to set a
rough scale for the size of those corrections required to
from Fr

EM to Fr
3 and from Fv

EM to Fv
8 . Using the central

values for the four fits given in Table I of Ref.@16#, one finds
that Fr

3 is less than Fr
EM by between 0.3% and 3.8%~the

former corresponding to fixingG50 by hand, the latter to
the MOW and A solutions contained in Table I of Ref.@16#!
andFv

8 greater than Fv
EM by between 2.6% and 24.6%. W

will see that the solutions obtained below via the sum r
analysis satisfy these rather loose constraints.

III. QCD SUM RULES AND THE CHOICE
OF THE FESR METHOD

As is well known, the properties of unitarity and analy
icity lead to the existence of~appropriately subtracted! dis-
persion relations for typical hadronic correlators,P(q2). The

TABLE I. Results for theD56 VSA-violation parameter,r red ,
and the spectral strength parameters,f r , f v , f f and f r8v8 , as a
function of the isospin-breaking mass ratio,r. The first line, for
each value ofr, corresponds to the results obtained using the sing
pinch weight family, the second line to those obtained using
double-pinch family. The units off V are GeV2.

r r red f r(3103) f v(3103) f f(3103) f r8v8(3103)

0.251 1.02 2.3 1.7 20.28 20.020
2.3 1.7 20.28 20.020

0.288 1.15 2.6 2.0 20.32 20.026
2.6 2.0 20.32 20.026

0.325 1.28 2.9 2.2 20.36 20.032
2.9 2.2 20.36 20.032
3-4
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ISOSPIN-BREAKING VECTOR MESON DECAY . . . PHYSICAL REVIEW D59 096003
term ‘‘QCD sum rules’’ describes those versions of the
relations in which kinematic restrictions allow one to ta
advantage of the asymptotic freedom of QCD, and he
techniques based on the OPE/perturbative QCD~PQCD!.

The most common @Shifman-Vainshtein-Zakharov
~SVZ!# implementation of this approach@20# involves Borel
transformation of the original Cauchy representation, wh
is of the form~up to possible subtractions!

P~q2!5E
sth

`

ds
r~q2!

s2q2
, ~15!

with sth the lowest physical threshold, andr the relevant
spectral function. The left-hand side~LHS!, for q2 large and
spacelike, is to be computed using the OPE/PQCD, the R
using measured spectral data and/or some spectral an
The effect of the Borel transform is to~1! replace the weight
1/(s2q2) on the RHS of Eq.~15! with exp(2q2/M2) ~where
M, the Borel mass, is a parameter of the transformation!, ~2!
destroy subtraction terms and~3! create a factorial suppres
sion of the contributions of higher dimensional operators
the OPE side of the equation@c/(Q2)n→c/(n21)!M2n#.
On the hadronic side one would thus prefer to work w
small M, in order to suppress contributions from the poo
known large-s part of the spectral function, and on the OP
side, to work with largeM, in order to suppress the contr
butions of unknown higher dimension condensates. Si
one cannot simultaneously satisfy both conditions, one m
hope to find a ‘‘stability window’’ inM, i.e. a range of val-
ues for which neither requirement is too badly violate
Typically, as a result of this compromise, neither the con
bution from the large-s part of the spectrum nor that from th
highest dimension operator retained on the OPE side is
ligible @20–23#.

An alternate approach, based on Cauchy’s theorem, is
method of FESR’s. A convenient integration contour is th
of Fig. 1, where the radius,s0, is taken large enough that th
OPE, to the order available, is reliable in the spacelike reg
of the circle. The resulting sum rule is then generically of t
form

FIG. 1. The FESR ‘‘Pac-man’’ contour.
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2p i RC
dq2 w~q2!P~q2!5E

sth

s0
dq2 w~q2!r~q2!, ~16!

wherew(q2) is any function analytic in the integration re
gion, andC denotes the circular part of the contour, travers
counterclockwise~from above to below the cut!. The OPE is
to be used on the LHS, spectral data and/or a spectral an
on the RHS. The most common choice of weight has b
w(s)5sk, with k50,1,2, . . . @24,25#, though the standard
theoretical treatment of hadronict decays involves a more
complicated weight determined by kinematics@1#.

For the discussion which follows, it is important to mai
tain the distinction between ‘‘local’’ and ‘‘semi-local’’ dual
ity. The OPE for a typical hadronic correlator is expected
be reliable, not only forq2 large and spacelike, but also fo
q2 on any circle of sufficiently large radius in the comple
q2-plane, apart possibly from a region of hadronic size ab
the timelike real axis~where confinement is expected to b
come important! @26#. ‘‘Local duality’’ is the postulate that,
at scalesq2;s0 for which resonance separation is sm
compared to the typical resonance widths, the region of
lidity of the OPE extends all the way down to the real tim
like axis. The hadronic spectral function in this region is th
identical to that obtained using the OPE. ‘‘Semi-local du
ity’’ refers to the idea that, at somewhat lower~‘‘intermedi-
ate’’! scales, where local duality is no longer valid, noneth
less, averaged over some range of~timelike! momenta, the
mean values given by using either the actual hadronic sp
tral function or the OPE version thereof should be the sa
It is important to understand that, empirically, the conditi
that resonance spacing bemuch smaller than typical reso
nance widths is crucial to the validity of local duality. In
deed, one can test local duality using various FESR’s in
case of the isovector vector channel, for which the hadro
spectral function is very accurately measured in hadronit
decays@9#. One finds that, even at scales as large asmt

2

.3.2 GeV2 ~where resonance widths and separations
comparable!, and even though the experimental spect
function appears rather featureless in this region, none
less, local duality is rather poorly satisfied@27#.

As noted above, in the SVZ approach, the location of
stability window for most analyses is such that one can
avoid non-trivial contributions from the intermediate- an
high-s part of the spectrum. This is a problem because, ty
cally, in the intermediate region, the qualitative form of t
spectral function is either not known or, if known, involve
too many free parameters to be tractable, given the lim
amount of information available in the truncated OPE@23#.
Conventionally, this problem is dealt with by employing
spectral ansatz in which~1! the low-s region is assumed to
be dominated by one or two low-lying resonance contrib
tions and~2! the intermediate- and high-s region is approxi-
mated using local duality, which one assumes to star
some ‘‘continuum threshold,’’s0. It is well known that this
form of ‘‘continuum ansatz’’ represents a rather crude a
proximation, and hence can create significant uncertaintie
the analysis if the continuum contributions are large forM
values in the stability window.
3-5
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A similar problem exists for the integer-power weight
FESR’s. In principle, one would like to chooses0 as large as
possible, in order to improve convergence on the OPE s
In practice, however, the spectral ansatz will be intracta
unless thes0 chosen lies not too far into the intermedia
region. The possibility of working at such intermedia
scales can, even so, represent a practical advantage in
where the stability window of the SVZ analysis lies at re
tively low M ~e.g.,M;1 GeV2, as found for many applica
tions in the literature!. Unfortunately, this advantage is us
ally more than offset by increased uncertainties associ
with the use of local duality in the intermediate region. Th
increase results from the fact that, on the circular part of
contour, the region near the timelike real axis does not h
the exponential suppression present for ‘‘continuum’’ con
butions in the SVZ approach. The errors that result can
quantified in the case of the isovector vector channel, wh
the hadronic spectral function is known experimentally.
shown in Ref.@27#, the errors in integer-power weighte
FESR’s, even at scales as high asmt

2 , can be very large
despite the fact that the OPE at this scale is both domin
by the leading (D50) perturbative term and rather rapid
converging.

This problem, however, is not intrinsic to the FESR a
proach. Indeed, at least one non-integer-power-weigh
FESR is known to be very well satisfied: that giving t
hadronict decay widths in terms of an integral, over th
circle of radiuss05mt

2 , of the product of the OPE for the
isovector vector current correlator and the weight funct
wt(s)5(12s/mt

2)2(112s/mt
2) @where the dominant inpu

parameter in the OPE representation isa(mt
2), which can be

taken as obtained by running the value measured at thZ
mass down to thet scale#. The reason for the success of th
sum rule is simple: the juncture of the cut and circular p
tions of the contour corresponds to the edge of hadro
phase space and hence, because of kinematics, the w
function wt(s) has a~double! zero ats5mt

2 , which sup-
presses contributions from that portion of the circle,C, near
the real timelike axis for which the OPE representation of
correlator is unreliable~at intermediate scales likemt

2) @1#.
This suggests that, in implementing FESR’s in other ch
nels, one should restrict one’s attention to weight functio
having a zero ats5s0. In Ref. @27# it was shown that, in the
isovector vector channel, where one can check the proce
explicitly, weight functions of of the forms

ws~s!5S 12
s

s0
D S 11A

s

s0
D , ~17!

wd~s!5S 12
s

s0
D 2S 11A

s

s0
D , ~18!

having, respectively, single and double zeros ats5s0, both
produce extremely well-satisfied FESR’s, for a wide range
values ofs0 and the continuous parameter,A. In addition,
usingonly the OPE representation, for a range ofA ands0,
and fitting the parameters of a sum-of-resonances ansa
this representation, results in a very good reconstruction
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the hadronic spectral function, including a determination
ther decay constant accurate to within a few percent@27#. In
what follows, we will refer to the familiesws(s) andwd(s),
as single-pinch and double-pinch weights, respectively. T
freedom to varyA plays a role analogous to that of the vari
tion of M within the stability window in a SVZ-style analy
sis. An additional advantage of the FESR approach, at l
if one wishes to determine not just the parameters of
lowest resonance in the channel but also those of higher r
nances, is that the weight function can be arranged to
larger in the second resonance region than in the first.

In what follows, in light of its success in the isovecto
vector channel, we will investigate the isospin-breaking v
tor current correlator,P38, defined above, in the FESR
framework. As usual, we will work at scales as high as p
sible, compatible with the constraint of having a tractab
and physically sensible spectral ansatz fors,s0. Since little
is known about the vector meson resonance spectrum be
the second excited resonance region, and since inclu
even the second excited resonance region would lead
spectral ansatz with more parameters than are generally
table for the present analysis, we are forced to work at sc
no higher than;2.8 GeV2. Since the separation of the firs
and second excited vector meson resonance regions is
parable to the resonance widths~the r8 and v8 lie at 1419
and 1452 MeV, ther9 andv9 at 1723 MeV and 1649 MeV,
respectively@14#!, it is clear that, at these scales, we are n
yet in the region of the validity of local duality, making us
of the single- and double-pinch families crucial to the re
ability of the analysis. In order to maintain as good a co
vergence as possible on the OPE side of the two sum
families, while at the same time allowing enough variation
s0 to get a good determination of the parameters of the sp
tral ansatz, we also restrict our attention to scales,s0, greater
than 2 GeV2.

IV. DETAILS OF THE ANALYSIS

Since the general framework to be employed in the ana
sis has been outlined in the previous section, it remains o
to discuss the input required on the hadronic and OPE s
of the various sum rules.

We begin with the hadronic side. We take, as our ans
for the hadronic spectral function, a sum of resonance c
tributions. For the scales used in the analysis, the resona
present in the region of the hadronic spectral integral are
r, v, f, r8 and v8. ~Although the tails of ther9 and v9
intrude slightly into the hadronic integration region fors0
near 2.8 GeV2, their contributions are strongly suppress
by the zeros in the weight functions. We have checked t
including an effective, combinedr9-v9 contribution in the
spectral ansatz has negligible effect on the extractedr, v
andf spectral strength parameters.! We thus include contri-
butions, written in terms of Breit-Wigner resonance form
for all these resonances. Because the separation of ther8 and
v8 is much smaller than either of their widths, and also
reduce the number of free parameters in the spectral an
we have combined the latter two contributions. The stro
overlap of the two resonances would, in any case, prev
3-6
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one from being able to sensibly extract separater8 and v8
strength parameters by means of any sum rule analysi
P38.

The spectral ansatz then has the form

r38~q2!5
1

4A3
@ f rd̂~q22mr

2!2 f vd̂~q22mv
2 !

1 f fd̂~q22mf
2 !1 f r8v8d~q22m̄r8v8

2
!#, ~19!

where

d̂~q22m2![
1

p

mG

~q22m2!21m2G2
~20!

~with G the width of the resonance in question!. This expres-
sion reduces tod(q22m2) in the narrow width approxima
tion ~NWA!. The minus sign in front off v and the factor of
1/4A3 are conventional; inclusion of the former ensures t
f v and f r become equal in the limit that the spectral cont
butions in ther-v region are generated entirely by leadin
orderr-v mixing. For the combinedr8-v8 contribution we
have taken average values for the effective mass and w
f r , f v , f f and f r8v8 are free parameters, to be determin
from the matching of hadronic and OPE sides of the sing
and double-pinch sum rules, for a range ofs0 , A values.

A few comments are in order concerning the form of t
ansatz above and the physical meaning of the paramete
be extracted from the analysis which follows.

The first concerns the need for the inclusion of af con-
tribution. Note that the correlatorP38 is very closely related
to that, Prv, obtained by dropping the strange part of t
hypercharge current fromP38 ~the OPE’s are, in fact, iden
tical to three-loop order!. The latter correlator has been stu
ied in a number of earlier SVZ-style analyses@28–31#. In the
earliest of these, the NWA was employed for all resonanc
and nof contribution included in the spectral ansatz@28,29#.
As pointed out in Ref.@30#, however, the existence of sig
nificant cancellations between the NWAr and v contribu-
tions ~which would be exact in the limit of mixing domi
nance and equality ofr and v masses! means that af
contribution, even if significantly smaller than theindividual
r andv contributions, could nonetheless be important. P
forming the sum rule analysis with af contribution included
shows that this is indeed the case@30#. Including thef con-
tribution in the spectral ansatz also cured an unphysical
ture of the solutions obtained earlier, which did not include
@30#. The analysis of Ref.@30#, however, still employed the
NWA for all resonances.

The second point concerns the need to incorporate thr
width into the analysis. Because, again, of the high degre
cancellation between the NWAr andv contributions, it was
pointed out that the precise degree of this cancellation m
well be sensitive to whether or not the difference between
r andv widths was retained in the spectral ansatz@31#. The
subsequent analysis of Ref.@31# showed that this is, indeed
the case: the spectral parameters,f V , decrease by factors;6
when one employs the physical widths in place of the NW
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The third point concerns the interpretation of the high
resonance strength parameters,f f and f r8v8 . It is, of course,
very natural to take the spectral function to be resona
dominated. Moreover, the near-threshold region of the sp
tral function has been computed to two loops in ChPT@32#,
and one can see from this result that the corresponding l
s background contribution to the relevant spectral integral
tiny compared to that from ther-v region. The case of the
f, however, is less clear, since background contributio
above ther-v region are not amenable to being reliab
estimated, and hence might not be similarly negligible. In
ansatz as written, such physical contributions, if prese
could only be mocked up~approximately! by additional ef-
fective contributions to thef andr8-v8 strengths. Thus, one
must use some caution in interpreting, for example, the
tractedf f in terms of the physical resonance parametersFf

3

andFf
8 —some portion off f could actually correspond to a

averaged version of background contributions in the reg
betweenr-v and r8-v8. The quality of the agreement be
tween the hadronic and OPE sides of our sum rules is, h
ever, post factoevidence in favor of resonance dominan
and, hence, also in favor of the possibility of interpretingf f

in terms ofFf
3 andFf

8 .
Let us turn, then, to the input on the OPE side of the s

rules. We will discuss the contributions, in turn, by opera
dimension.

Since the correlator in question is isospin breaking,
only dimensionD50 contribution toP38 is electromagnetic
~we adhere, here, to common usage, according to which
leading mass-dependent perturbative terms are labelleD
52). We retain only the leading order~2-loop! graph in this
case.

The D52 contributions are dominated by the strong i
teraction terms proportional to (md2mu)2. To 3-loop order,
the results for these terms follow from the 3-loop expressi
for the correlator involving a flavor-non-diagonal current a
its conjugate@33#, since the perturbative contributions in
volving two quark loops and a purely gluonic intermedia
state~present for flavor diagonal currents but not for flavo
non-diagonal currents! do not enter until 4-loop order. The
resulting expressions are given in the Appendix. To evalu
them, we require the running masses,m(Q2), and running
strong coupling,as(Q

2). These can be obtained once th
values are determined at any fixed scale,m0. Since the
4-loopg @34# andb @35# functions for QCD are now known
we have employed these when running the masses and
pling @explicitly, we solve the renormalization group~RG!
equations exactly, using the truncated 4-loopg andb func-
tions as input#.

As input for the running coupling, we takem05mt and
use the latest~1998! value for as(mt

2) obtained by the
ALEPH Collaboration in their analysis of non-strange ha
ronic t decays@36#. @The analysis of the strange decays e
ployed previous theoretical results for theD52 terms, pro-
portional to (ms2mu)2, which turn out to be in error@37–
39#; the value obtained in the global ALEPH analysis mu
therefore, be excluded.#
3-7
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The situation with the light quark mass differencedm
[(md2mu) is somewhat more complicated. We first writ

dm5S md2mu

md1mu
D ~md1mu![r ~md1mu!. ~21!

The isospin-breaking mass ratio,r, is known, from a number
of ChPT analyses, to ber 50.28860.037@40#, which would
allow one to determinedm if md1mu were known. The
most recent determination ofmd1mu is that based on an
integer-power-weighted FESR analysis of the isovec
pseudoscalar channel@25,41#. In this analysis, the pion pole
contribution to the spectral function is known experimenta
but the continuum contribution is not. The authors of Re
@25,41#, therefore, constructed an ansatz for the unmeas
continuum contribution. It turns out that the continuum po
tion of the resulting model spectral function provid
roughly 3/4 of the contribution to the extracted value
(md1mu)2. Unfortunately, it has recently been shown, usi
the FESR framework discussed above, that this continu
ansatz is unphysical@27#; so one cannot employ the values
Refs.@25,41#.

If ms were known ~at some scale!, then one could
straightforwardly determinemd1mu ~at that same scale! us-
ing the known ~scale-independent! ratio of masses,r s
52ms /(md1mu)524.461.5, obtained by Leutwyler@40#
using ChPT. Unfortunately, the situation is also somew
complicated forms . A number of recent analyses produ
values ofms(1 GeV2) @in the modified minimal subtraction
(MS̄) scheme# ranging from ;110 MeV to ;210 MeV,
often with rather large errors@42–46,37,38,47#. Because the
analyses based either on flavor breaking in hadronict decays
@37,38# or Narison’s t-decay-like sum rule forP332P88

@45,46# have rather large errors resulting from experimen
uncertainties which are unlikely to be significantly improv
in the near future, the most favorable approach would app
to be that based on various sum rule treatments of the str
scalar channel, where the dominantKp part of the spectra
function is in principle determined, via the Omnes repres
tation of the timelike scalarKp form factor, in terms of
experimentalKp phase shifts andKe3 data@42#. The most
recent analyses of this channel@44,47# employ the SVZ
framework, and produce values ms(1 GeV2)
5125–160 MeV@44#, and 160630 MeV @47#. ~The same
low-s part of the spectral function is used in both analys
the only difference between the two lies in the treatment
the ‘‘continuum.’’ The results of Ref.@47#, in addition, show
no stability window forms . ! Preliminary work using the
FESR framework discussed above indicates that residua
rors associated with the use of the local duality approxim
tion in the continuum region remain, for this channel, wh
one uses the SVZ approach.@See, e.g., the results of Re
@27#. From these one can see~1! that using the central value
for the parameters describing the fit to theKp phases from
Refs. @42,44#, together with the central value from thems
range from Ref.@44#, one obtains rather poorly satisfie
families of FESR’s, and~2! that using the spectral functio
of Refs. @42,44,47#, again with central values for the fit pa
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rameters, the FESR analysis, in fact, producesms values
larger by;20 MeV than those obtained in the analysis
Ref. @44#.# Although work on the extraction ofms is still in
progress@48#, we conclude already from the preliminary re
sults noted above thatms(1 GeV2);165 MeV, probably
with errors;620 MeV or less. The ChPT ratio then pro
duces (md1mu)(1GeV2).13.5 MeV, with errors
;62 MeV. For any value in this range it turns out that th
D52 contributions are at the;15% ~or less! level of the
D54 contributions, and the resulting errors lead, therefo
to very small~percent level! uncertainties in the final results
Since these uncertainties are much smaller than those ge
ated by the uncertainty in the isospin-breaking mass ratir,
we have employed the central value (md1mu)(1 GeV2)
513.5 MeV, and retained only the uncertainty inr, in the
analysis which follows.

The D54 contributions are much more straightforwar
Although in principle both thoseD54 terms proportional to
the isospin-breaking mass difference,dm, and those propor-
tional to the isospin-breaking condensate difference,^d̄d&
2^ūu&, appear in the OPE ofP38, the latter are numerically
tiny compared to the former. The dominantD54 contribu-
tion can then be written in terms ofr and the combination
(md1mu)^q̄q&, which we can take from the Gell-Man
Okubo ~GMO! relation

~md1mu!^q̄q&52mp
2 f p

2 . ~22!

The dominant uncertainties for theD54 terms thus result
from those inr.

The phenomenological situation is not so favorable in
case of theD56 condensates. Usually, in the absence
pre-existing determinations of the relevant condensates,
makes estimates based on the vacuum saturation approx
tion ~VSA!. It is well known that, in situations where it ha
been possible to perform phenomenological checks by
tracting the totalD56 contribution from data, the VSA ha
proved to significantly underestimate these contributio
@49#. Usually one simply replaces the factoras^q̄q&2, which
is produced by the VSA, by an effective scale-independ
factor, written r8as^q̄q&2. The parameter,r8, then repre-
sents the deviation from the VSA. Ideally, it should either
possible to determiner8 from data, or theD56 contribu-
tions should be small, for the sum rule in question. In o
case, neither of these conditions holds. In particular, beca
we are forced to work at scales as low as 2 GeV2 in order to
constrain the spectral parameters, theD56 contributions
can, fors0;2 GeV2, and certain values ofA employed in
our analysis, approach;40% of the leadingD54 term.
Fortunately, it turns out, as we will see explicitly below, th
by working with both the single- and double-pinch weig
families, we can actually obtain a rather good determinat
of theD56 contribution to the correlator~albeit it as a func-
tion of r ) by insisting on the consistency of the results o
tained from the two different sum rule families.

In the Appendix, it is shown that the VSA leads to a
expression for theD56 contribution toP38 proportional to

as~^d̄d&22^ūu&2!5g~as^q̄q&2!, ~23!
3-8
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where^q̄q& is the average of theu andd condensates, and

g[
^d̄d&

^ūu&
21 ~24!

describes isospin breaking in the light quark condensate
order to compare the deviation from the VSA in the isosp
breaking channel with that in the analogous isosp
conserving isovector vector (ab533) channel, we write the
re-scaled version of the RHS of Eq.~23! in the form

r8as~^d̄d&22^ūu&2!5r redg~ras^q̄q&2!, ~25!

wherer is the parameter describing the deviation from t
VSA in the 33 channel, and one has, phenomenologica
@50#

ras^q̄q&25~5.860.9!31024 GeV6. ~26!

With this definition,r red reduces to 1 in the limit that the
deviation from the VSA is the same in the 33 and 38 ch
nels.

The consistency procedure for fixing theD56 contribu-
tion to P38, together with the phenomenological input of E
~26!, of course, determines only the productr redg. In pre-
senting our results forr red below, we have takeng.
20.008, which represents an average of the previous de
minations listed in Ref.@29#, except one.@We omit the value
based on an analysis of baryon splittings because it imp
~via the 1-loop ChPT relations between flavor breaking a
isospin breaking in the light quark condensate@4#!

^s̄s&/^ūu&.1, which appears unphysical.# We will discuss
the determination ofr red in more detail below when we
present the results of the analysis.

The last point in need of discussion concerns the way
which we handle the integrals on the OPE side of the vari
FESR’s. Two options exist in the literature. The first, som
times called the ‘‘fixed order expansion,’’ involves first e
pandingas(Q

2) and the mass factors, genericallym(Q2), in
terms ofas(s0) andm(s0). The coefficients of the perturba
tive expansions in powers ofas(s0) are then polynomials in
log(s/s0) @51#, and the desired contour integrals can thus
written in terms of elementary integrals involving logarithm
and powers ofs. The integrated OPE expressions which
sult involve powers ofm(s0), each multiplied by a powe
series inas(s0). There is, of course, in this expression, t
usual residual dependence on the choice of scales0 for the
expansions discussed above, which results from trunca
the full perturbative series at fixed order. The second al
native, often referred to as ‘‘contour improvement,’’ in
volves numerically integrating the factor
@m(Q2)#k@as(Q

2)# j sl around the circular contour in thes
52Q2 plane @52#. It is known that this has the effect o
simultaneously improving the convergence of the pertur
tive series and reducing the residual scale depende
@52,25,41#. As a result, we have evaluated all the integrals
the OPE sides of our sum rules using this approach.

Let us now turn to the results, which are presented
Table I. As explained above, the dominant uncertainty is
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to that in the ChPT determination ofr. We have, therefore
tabulated the results for the range of values correspondin
the errors onr quoted by Leutwyler@40#. All results are
based on matching the hadronic and OPE sides of the
sum rule families fors0 in the range 2.0–2.8 GeV2 and with
A in the range 2–5 for the single-pinch case and 3–6 in
double-pinch case. The choice of range ofA in each case has
been made so as to keep the convergence of the perturb
series for theD52 term under control. It is worth mention
ing that the quality of the match between the OPE and h
ronic sides which results after the fitting of the spectral p
rameters is significantly better for Leutwyler’s central val
of r.

The value of theD56 VSA-violating parameter,r red ,
given in Table I, is determined by requiring that the values
f r obtained using the single- and double-pinch weight fam
lies be the same. The sensitivity off r to variations inr red
~true also of the otherf V), as well as the difference in th
r red dependence off r for the single- and double-pinch
analyses, is shown in Fig. 2. The fact that, oncer red has
been determined by the requirement of the consistency of
two output f r values, all the rest of the spectral paramete
determined using either the single- or double-pinch weigh
also become consistent is strong evidence in favor of
reliability of the analysis. Note that~1! the possibility of
determining the correction to the VSA for theD56 opera-
tors and~2! the inclusion of both theD52 terms and the
O(as ,as

2) contributions to the Wilson coefficient of theD
54 term are features not present in previous analyses of
analogous isospin-breakingPrv correlator. Although the
value ofr red , determined as just described, depends so

FIG. 2. The variation off r with r red for the single- and double-
pinch weight families. Results are displayed here for the cen
value r 50.288. The solid line corresponds to the single-pin
weight analysis, the dashed line to the double-pinch analysis.
intersection point determines the value ofr red quoted in Table I.
3-9
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what on r, this dependence is not strong, and we obt
r red51.1560.1560.2. The first error corresponds to that
Eq. ~26!, the second to that onr. We see that the violation o
the VSA is very similar in both the 33 and 38 channels. T
importance, in reducing the errors in the determinations
the spectral parameters,f V , of being able to determiner red
is also evident from Fig. 2.

Having determined theD56 contributions by self-
consistency, the errors on the extracted values off V are de-
termined solely by those onr, and are;10% –15%, com-
pletely correlated withr.

Having extracted the parametersf V , it is straightforward
to determine the isospin-violating decay constants. One fi

Fr
852.460.3 MeV

Fv
3 523.460.4 MeV

Ff
3 50.3360.02 MeV, ~27!

where the errors reflect those in the input isospin-break
mass ratio,r.

V. SUMMARY AND DISCUSSION OF
PHENOMENOLOGICAL CONSEQUENCES

A number of useful general observations follow from t
analysis above. First, we have found that the violation of
VSA for theD56 condensates is very similar in the isosp
breaking ~38! and isospin-conserving~33! vector current
channels. Second, we have seen that, although the ana
can be performed successfully for anyr in the range given by
Leutwyler, the central value of that range is preferred, in
sense of giving the best match between OPE and hadr
sides of both the single- and double-pinch families of s
rules. Finally, we have demonstrated that the FESR meth
particularly when implemented using both the single- a
double-pinch weight families, is very effective, allowing
determination of ther38 spectral parameters,f V , with rather
small errors. These errors~between 10% and 15% forf r , f v

and f f) are a factor of 3 smaller than those obtained in
earlier analysis of Ref.@10# based on results of an SV
analysis ofPrv @31#. In order to obtain this level of reduc
tion, the ability to self-consistently determiner red was cru-
cial.

Let us now turn to the phenomenological consequence
our results. First note that the corrections required to con
the measured contribution of the vector meson,V, to the EM
spectral function,rEM, into the corresponding contribution t
eitherr33 ~for V5r) or r88 ~for V5v,f) are given by the
ratios

F Fr
3

Fr
EMG 2

50.98260.0021

F Fv
8

A3 Fv
EMG 2

51.15460.017
09600
n

e
f

ds

g

e

sis

e
ic

d,
d

e

of
rt

F Ff
8

A3 Ff
EMG 2

51.00960.001, ~28!

where the numerical values follow from those in Eq.~27!.
The size of the deviations of ther andv corrections from 1
is reduced by;15% –20% from those obtained in the earli
analysis@10#; that for thef is increased, but remains sma
In all cases the errors have been reduced by a factor of
more. Note that the first of these corrections is the one
evant to precision tests of CVC. Note also that, as claim
above, the corrections given in Eqs.~28!, for both ther and
v, lie in the corresponding ranges produced by the estim
of Sec. II.

With the results given in Eq.~28!, it is now possible to
correct the EM data used as input to the inverse mom
chiral sum rule for the 6th order LEC,Q. The sum rule is
given by @6,53#

E
4mp

2

`

ds
~r332r88!~s!

s

5
16~mK

2 2mp
2 !

3F2
Q~m2!1

1

48p2
logS mK

2

mp
2 D

1S L9
r ~m2!1L10

r ~m2!

2p2F2 D Fmp
2 logS mp

2

m2 D
2mK

2 logS mK
2

m2 D G , ~29!

wherem is the renormalization scale of the effective chir
theory andLk

r are the usual renormalized 4th order LEC’s of
Gasser and Leutwyler@4#. This sum rule was evaluated i
Ref. @53# using as input EM data for the isoscalar spect
function and both EM andt decay data for the isovecto
spectral function. The corrections above, required for the
data, were not considered in this analysis. It is not clear, fr
our reading of the discussion of Ref.@53#, exactly what the
relative weightings oft decay and EM data in the determ
nation of ther0 contribution to the LHS above actually were
Since, however,t decay data is considerably more preci
than electroproduction data, we have assumed in what
lows that the determination is dominated byt decay data. To
the extent that this is true, we need only make correction
the ~nominally! isoscalarv and f contributions. The result
of this exercise is a shift ofQ(mr

2) from (3.762.0)31025 to

Q~mr
2!5~2.462.0!31025. ~30!

@For reference, making, instead, the somewhat perverse
sumption that the determination of ther0 contribution was
dominated by EM data, one would findQ(mr

2)5(2.062.0)
31025. The full correction is dominated by that to thev
contribution. The reason this correction is so much lar
than the others has been discussed above.#

One should bear in mind, in interpreting these results, t
~1! there are, in principle, additional corrections to be ma
3-10
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to the nominal isovector and isoscalar contributions at hig
s, and ~2! the K̄K2p contributions were taken to be pure
isoscalar in the analysis of Ref.@53#. Because the separation
within the higher isovector and isoscalar resonance pa
r8-v8 and r9-v9, are much smaller than the resonan
widths, it is not possible to use sum rule methods to extr
the individual isospin-breaking decay constants of th
resonances. As such, we are unable to estimate the size o
former corrections. Were theK̄K2p states to have a signifi
cant isovector component, the effect would be to ra
Q(mr

2).
An alternate method for determiningQ is based on the

observation thatQ occurs not only in the inverse chiral mo
ment sum rule above, but also in the 2-loop ChPT expres
for P38(0) @32#. It is thus possible to make an independe
estimate by using the fitted spectral ansatz forP38 to com-
pute P38(0), assuming a negligible contribution from th
portion of the spectrum above 2.8 GeV2. One obtains, from
this exercise,

Q~mr
2!5~3.360.460.2!31025, ~31!

where the first error is that associated with the uncertain
~shown in Table I! in the extraction of the spectral param
eters,f V , and the second is our estimate of the error result
from truncating the perturbative series for the Wilson co
ficients in the OPE. The numerical value quoted for this l
ter error was obtained by doubling the difference inQ(mr

2)
values obtained using theO(as) andO(as

2) versions of the
D52 andD54 coefficients in our analysis. Since there
no positivity constraint onr38(s), one does not know in
which direction this result would be changed by correctio
due to the small higher-s part of the spectral integral. Th
results of a study of the effect of including two combin
spectral contributions, one for ther8-v8 and one for the
r9-v9, however, shows negligible change inQ(mr

2), sug-
gesting that such corrections are unlikely to be numeric
significant. This conclusion is supported by an estimate
tained using the local duality approximation for the spec
function in the regions.2.8 GeV2. Performing the relevan
spectral integral, one finds that the high-s portion of the
spectrum, in this approximation, contributes less than 1%
Q(mr

2), making the resulting uncertainties totally negligib
on the scale of those quoted above.

Since the two independent determinations ofQ are com-
pletely consistent, within errors, the conclusion thatQ(mr

2)
.331025 is considerably strengthened.

The last phenomenological application of our results c
cerns the effect on Narison’st-decay-like sum rule forms .
Since a detailed discussion of the way in which one imp
ments the isospin-breaking corrections is given in Ref.@46#,
we report here only the results of employing the improv
determinations of the correction factors determined above
doing so we will also take the opportunity to update the in
parameters to the analysis of Ref.@46#, employing the newer
~1998! ALEPH value of as(mt

2) @36#. One finds, for ex-
ample, usingt decay data for the isovector input, that th
average over the values ofms(1 GeV2) extracted using the
09600
r
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t

set of scaless051.4,1.5 and 1.6 GeV2 in the sum rule
analysis is shifted from 138 MeV to 146 MeV~147 MeV if
one retains the 1997 ALEPH value ofas as input!. Unfortu-
nately, the errors in this value associated with uncertain
in the experimental input are still very large,;650 MeV at
least, and this uncertainty cannot be appreciably redu
without a significant improvement in the accuracy of t
determination of the experimentalv→e1e2 andf→e1e2

widths. As such, although the central value is brought i
better agreement with that discussed above, little more
learned from the Narison sum rule, at the present time.
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APPENDIX: THE OPE FOR P38

The explicit form of the OPE forP38, keeping terms only
up to dimension 6, and toO(as

2 ,mq
2), can be obtained, a

explained in the text, from the relevant expressions for
flavor-non-diagonal case given in the literature@see Ref.@33#
and the paper by Braaten, Narison and Pich~BNP! in Ref.
@1##. We list the results by operator dimension.

Dimension 0: The only isospin-breaking contribution a
dimension 0 is that due to EM, and is given by@28#

@P1gE
38 #D5052

a

16p3

1

4A3
ln~Q2! ~A1!

wherea is the usual EM coupling.
Dimension 2: The D52 term consists of the leadin

mass-dependent part of the perturbative contribution to
OPE, and follows from the expression given in Ref.@33#.
One finds

Q2@P38~Q2!#D52

5
3

2p2

1

4A3
@~md

22mu
2!~Q2!#F11

8

3
a~Q2!

1S 17981

432
1

62

27
z~3!2

1045

54
z~5! Da2~Q2!G

~A2!

where a(Q2)5as(Q
2)/p, and z(n) is the Riemann zeta

function. Further details on how the running of the coupli
and the masses is handled can be found in Sec. IV.

Dimension 4: Our expression for theD54 contribution
also follows from that given in Ref.@33#. Only themq

4 and
quark condensate terms survive once one takes the rele
isospin-breaking difference. The former are numerically ti
compared to the latter, and hence have not been wri
down explicitly. We then find
3-11



s

in
te
e
,

p

o

te
n

.

d

KIM MALTMAN AND C. E. WOLFE PHYSICAL REVIEW D 59 096003
Q4@P38~Q2!#D545
2~^muūu&2^mdd̄d&!

4A3

3F11
1

3
a~Q2!1

11

2
a2~Q2!G .

~A3!

The scale-invariant̂mq̄q& difference can be written in term
of the md2mu , ^d̄d2ūu&, and the averages of theu andd
quark masses and condensates. Since isospin breaking
condensates is much smaller than in the masses, the
proportional tomd2mu dominates numerically. It can b
recast in terms of the isospin-breaking quark mass ratior,
and f p , mp , as explained in the text.

Dimension 6: The 4-quark operators are the dominant o
erators at dimension 6. Their contribution toP38 can be ob-
tained from the expressions given in the Appendix
Braaten, Narison and Pich~BNP! @1#. Since a lack of phe-
nomenological information on the various condensa
forces one to work with the rescaled version of the VSA, o
,

e

l.

09600
the
rm

-

f

s
e

must, for consistency, drop the terms ofO(as
2) contained

there.~See the discussion of this point contained in BNP!
One then finds

4A3Q6@P38~Q2!#D56

528p2a~Q2!~^ūgmg5Tauūgmg5Tau&

2^d̄gmg5Tadd̄gmg5Tad&! ~A4!

2
16p2

9
a~Q2!(

k
~^ūgmTauq̄kg

mTaqk&

2^d̄gmTadq̄kg
mTaqk&!, ~A5!

whereTa is anSU(3) generator. Implementing the re-scale
VSA, this expression reduces to

4A3Q6@P38~Q2!#D565
448p

81
r redg~ras^q̄q&2!,

~A6!

whereg, r andr red are as defined in the text.
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