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Isospin-breaking vector meson decay constants from continuous families
of finite energy sum rules
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C. E. Wolfe
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The isospin-breaking vector meson decay constants are determined from a QCD sum rule analysis of the
vector current correlato(|O|T(VfLVf)|O), using a recently proposed implementation of the finite energy sum
rule approach. The analysis employs the three-loop version of the OPE and two different families of weight
functions. It is shown that the requirement of consistency between results obtained using these two different
weight families leads to a rather good determination of the parameter describing the deviatiorDof éhe
condensate term in the OPE from its vacuum saturation value, and that the ability to determine this value has
non-trivial numerical consequences on the analysis. The phenomenological relevance of the results to experi-
mental extractions of the isoscalar and isovector spectral functioa$en — hadrons, the extraction of the
strange quark mass and the determination of theoBder chiral low energy constan®, is also briefly
discussed[S0556-282(99)06009-9

PACS numbgs): 11.55.Hx, 12.38-t, 13.40.Hq, 14.40.Cs

I. INTRODUCTION and Ref[6] for both a discussion of the subset of these terms
surviving when one restricts one’s attention to vacuum cor-
Because the neutrah& 3,8) members of th8U(3): oc-  relators and a definition a.]
tet of vector currents)3=qy,(\¥2)q (with A\ the usual Of course,J’, and J%, do not couple separately in the
Gell-Mann matrices couple to fermions in the standard Standard model, but only in the combination
model, it is possible to use experimental data on the spectral
functions associated with correlators involving these currents

. ; o -2 JEM=33 4 —_ 38 2
to determine certain quantities of phenomenological interest. m re3TH
For example, defining the scalar correlatofE2°(q?), by
means of which gives the light quarky,d,s) part of the electromag-
netic (EM) current. Thus, what is measured i@'e”
iJ dx exp(igx) (0| T[32(x)38(0)]0) —hadrons is not the desired quantitigé® and p®, sepa-
# rately, but the combination

=(0,9,—9%9,.,)117°(g?), (1)

and the corresponding spectral functiop8®(q?), as usual,
by p2°(g?)=(1/7) Im TI12°(g?), one finds thatl) integrat-
ing the differencer®%(q?) — p®(g?) with the weight function In the isospin symmetry limitp3® would vanish and, since
occurring naturally(due to kinematicsin the finite energy one could then classify the final hadronic states according to
sum rule (FESR treatment of hadronie- decays[1] pro- their G parity, it would be straightforward to separate the
duces a sum rule from which one can, in principle, determinésovector (33) and isoscalan88) components of the EM
the running strange quark mass,(u«) [2], and(2) integrat-  spectral function.
ing the same difference®3(q?) — p®&g?) with weight func- In the presence of isospin breaking, however, this process
tion w(s)=1/s produces a sum rule from which one canis no longer so straightforward. The most obvious experi-
extract one of the § order low-energy constantsEC’s), Q, mental signature of the presence of isospin breaking in
appearing in the 8 order version of the effective chiral La- e"e”—hadrons is the interference shoulder in thée~
grangian[3]. [See Ref[4] for a discussion of chiral pertur- — 77~ cross section in the-w region[7]. The e*e”
bation theory(ChPT) and the method of effective chiral —w— "7~ contribution topEM is clearly, to leading order
Lagrangians in general, Ref] for the form of the(q®) in isospin breaking, to be associated witff and hence is
terms in the effective Lagrangian in the most general casajsually removed explicitly in analyzing the data. This re-
moval is accomplished byl) fitting the parameters of a
model for the totake™e™— 77~ amplitude, consisting of
*E mail address: maltman@fewbody.phys.yorku.ca p,o and possible background contributions, to the experi-
'E mail address: wolfe@fewbody.phys.yorku.ca mental data(2) removing thew contribution once the fit has

2 1
P =P + A+ 3% @
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been performed an@) squaring the modulus of the remain- Thus, for example, the broas contribution top&™, usually
ing p contribution and identifying this result with thecon-  taken to be associated purely wjtR®, consists not only of a
tribution to p3 [8]. flavor 33 contribution proportional tpF>], but also of a
While this procedureloesremove one source of isospin- flavor 38 contribution proportional to (@)Fipg, The w
breaking contamination from the nominal® so extracted, it contribution topEM, similarly, contains both a flavor 88 part
is easy to see that other such contaminations still remaimyroportional toi[F8]2 and a flavor 38 part proportional to
Indeed, once one allows isospin breaking, the physgicatd (2/\3)F3F8 . The flavor 38 parts, in both cases, are present
» are admixtures of pure isovector and isoscalar states, ﬂl?nly duewtc;o isospin breaking, and have to be removed from
size of the admixture of the “wrong” isospin component 4, experimentap and  contributions topEM in order to
being governed by the scale of isospin breaking. As a CONgptain the corresponding contribution top3 andw contri-
sequence, the intermediafe contribution to p®, for ex- o t0 p®8
ample, does not vanish. In fact, if one denotes the pure is-  js important to stress at this point that the conventional
ovectorp state byp®) and the pure isoscalar state byw'®), “few-percent” rule of thumb for estimating the size of
one expectp contributions top3® from two sources(l) that  jsospin-breaking effects, which might lead one to expect
due top(?-»(® mixing (a one particle reducible contribu- gch effects to be numerically negligible, is inapplicable in
tion, with coupling of the isovector current to thé® com-  the cases involving®(q?) — p®(q?) discussed above. This
ponent and the isoscalar current to th€” component of the s true for a number of reasons. First, because the difference
p) and(2) that due to the “direct”[one particle irreducible of spectral functions is itself flavor breaking, thelative
(1P1)] coupling of thep(® component to the isoscalar cur- importance of isospin breaking is enhanced by a factor of
rent(such a coupling being unavoidable in any hadronic ef-— 3, characteristic of the inverse of the scale of flavor break-
fective Lagrangian based on Q@.0Thus, removing the con- jng. Second, the effect of-w mixing naturally produces
tribution due to the intermediate state from the e"e”  corrections for thep contribution top®® and » contribution
—a "~ cross section, while removing part of tpé® con- g 88 which are opposite in sign; the effects therefore add
tribution, does not remove it all. One is then left wittat the when the difference is taken. Finally, there is a natural nu-
desired quantityp®, but rather with a combination gf**  merical enhancement which makes the size of the correction
and the residual part gf*® associated with the intermediate needed to remove the®® part of thew contribution topEM,
p state(plus possible additional such contaminations fromand hence isolatg®, larger than naively expectdéd0]. The

elsewhere in the spectrymSimilar isospin-breaking flavor
38 contributions exist foe* e~ — w— 37, complicating the
extraction of the isoscalar spectral function.

Corrections for such isospin-breaking effectshich are

latter two points are discussed in somewhat more detail in
Sec. Il below.

In what follows, we evaluate the isospin-breaking vector
meson decay constants by performing a QCD sum rule

unavoidable as long as no process exists in which only on@nalysis of the isospin-breaking vector current correlator

of the two neutral flavor currents couplesre thus necessary

1138, The vector meson spectral contributions are, in this

if one wishes to perform phenomenological analyses of thease proportional t&3FS, so that a determination of this
type mentioned above. Such corrections would also be improdyct, in combination with the experimental determination
portant in performing precision tests of conserved vector curgg FEM | given in terms of 3 andF& above, allows a sepa-

rent (CVC), which involve a comparison 0p> and the
charged isovector spectral functigi®), measured in had-
ronic = decays(see, for example, Ref9]).

It is easy to see that, to be able to make these correctio
(at least in the region below~2 Ge\?, where the EM
spectral function is, experimentally, resonance dominated

is sufficient to determine the isospin-breaking vector meso

decay constants. Let us first clarify the notation. We defin
the flavor 3 and 8 vector meson decay constants via

(017 IV(K)) = myFie, (k) (4)

whereV=p,w, ¢, ..., €,(K) is the vector meson polariza-
tion vector, anca=3,8.F¥, F® andF{) are non-zero in
the limit of isospin symmetryg (¥, FY) andF > are zero in

n

rate determination of 3 and F&. The rest of the paper is
organized as follows. In Sec. Il we discuss qualitative expec-
tations for the pattern of isospin-breaking corrections based
the structure of the leadin@hiral) order terms in the
vector meson effective chiral Lagrangian, as well as semi-
gquantitative expectations for their probable scale which can,
using this perspective, be obtained from experimental data.

8n Sec. Ill, we discuss briefly the form of QCD sum rules

employed(a version of the FESRand the advantages of this
approach. In Sec. IV, we discuss the input used for the had-
ronic and operator product expansi@PE sides of the sum
rules employed and present our results. Some advantages of
the approach, in particular in relation to the handling of the
D=6 terms in the OPE of the 38 correlator, will also be
discussed here. Finally, in Sec. V we summarize and make
some brief comments on the phenomenological significance

the absence of isospin breaking. The experimentally detelf our results.

mined EM decay constants;" , are then given by

FoM=F3+ ﬁFs.

©)

II. CHIRAL CONSTRAINTS AND THE SCALE
OF ISOSPIN-BREAKING CORRECTIONS

ChPT provides both an underlying conceptual framework
and systematic procedufdl] for writing down the most

096003-2
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general effective Lagrangian relevant to a given set of hadthe same terms in the effective Lagrangian, this implies that
ronic states which fully incorporates the symmetries of QCDisospin breaking in the vector meson decay constants should
and implements the broken symmetrigsich as chiral sym- also be dominated by mixing effects.
metry) with the same pattern of symmetry breaking as occurs If we take this point of view then, up to sub-leading cor-
in QCD. Although the resulting effective Lagrangiafy ¢, rections, we find, for the physical and » decay constants,
is non-renormalizable, it is possible to formulate the theorynow including isospin breaking and taking into account the
in such a way that only a finite number of terms appears to aelation Fgo):gFEuo) ,
given order in the chiral, or low-energy, expansi@for so-
called “heavy” fields, those whose masses are non- EM_ c(0) ©0)_ =(0) €
vanishing in the chiral limit, this requires a reformulation in F, =F, —eF,=F, | 1- 5)
terms of velocity-dependent field42,13.) The leading or-
der terms in this expansiofin which light quark masses,
my, q=u,d,s, count asO(qg?), with g representing some
soft external momentumincorporate the leading constraints
associated with either chiral symmetry or the symmetry pat
tern of its breaking.

The framework of the heavy field implementation of

ChPT given in Ref[13] for the vector mesons and their
interactions with the members of the pseudo Goldstone bowe note two relevant features of these resilisbecause of

son pseudoscalar octet provides two useful pieces of infort—he dominance by mixing, the corrections required to convert

. ovide Sefu - (0) - - EM
mation about the scale of isospin breaking in the vector meth€ pure isovectoF ;™ coupling to the experimentdf

son sector. First, note that the leadifig chiral ordey term  COUPling is opposite in sign to that required to convert the
in L.(; generating isospin-breaking mixing involves one Pure isoscalaF{” coupling to theFE", and(2) because of
power Of the quark mass matrix and no derivati[/_bg]’ and the pattern of ideal miXing and the numerical SuppreSSion of
hence produces no off-diagonal contributions to the wavdhe isoscalar current relative to the isovector currenI/'iiM,
function renormalization matrix. Thieading ordermixing ~ the magnitude of the correction is a factor of 9 larger in the

effect thus results in a physical and w basis which is re- ® than in thep case.
lated by a rotation to the original pure isospif?®, w(©® In view of the discussion above, a rough idea of the size

basis. At this order, therefore, the “wrong” isospisf® ad- ~ ©Of the isospin-breaking vector meson decay constants can be
mixture in the physicap state is equal in magnitude, but obtained by analyzing experimental data prw interfer-
opposite in sign, to the© admixture in the physical ence, ignoring all non-mixing e]_‘fects. Althqugh crude, this
state, a pattern which should remain approximately valid€stimate will prgwde a qualitative constraint for our later
even at higher order. The second point concerns the vect&Um rule analysis. . o

meson decay constants, which are necesssti}3); sym- In or_der to obt_anj the pa_lrameterdescrl_bmgp-w mixing
metric in the chiral limit. When one considers the effects ofat leading order, it is sufficient to determine the off-.dlagonal
flavor- and isospin-symmetry breakirigecalling that both ~€lementlI,,, of the vector meson self-energy matrix. In the
are generated by the quark mass matrix, and hence both ap@st, values forll,,, around ~—4000 MeV* have been
produced by the same set of terms in the effective Lagrangduoted, based on simplified analyseseoe™ — =" 7~ data

ian), there are two potential sources of such breaking. Thén the interference region which effectively assume that the
first is that associated with higher order terms, involving atone-particle irreducibles®z* ™ vertex is zero, even in
least one power of the quark mass matrix, coupling the exthe presence of isospin breaking. Since effective operators
ternal photon field to the vector meson nonet, and the secontihich generate such a coupling exist in the vector meson
that induced by the leading quark-mass-dependent term, ré&ffective Lagrangian, however, this assumption is unphysical
sponsible for mixing, discussed above. The leading ordefin the sense of being incompatible with QCDnce one
mixing effect simply reproduces the standard leading ordeicludes contributions to the— mm amplitude generated
SU(3)r mixing analysig13], leading to near ideal mixing in both by p-o mixing and the 1P| vertexwhose strength we
the vector meson sector. As is well known, the combinatiorwill denote byg(®) ), the analysis of the experimental data is
of ideal mixing and neglect of flavor breaking in the EM somewhat more complicated but, in principle, allows a sepa-
couplings of the unmixed states leads to the prediction thatate determination of bothl ,, and the isospin-breaking ra-
the vector meson EM decay constants, measured experimetis of couplings of the isospin pure stat&= gfuogﬂ/g(pg,)w
tally in V—e*e~ [14], should be in the proportions [15,16.

FE,O):FEE):Fg’)=3:1:— V2, where the superscript (0) indi- An important general conclusion, which follows from the
cates that the couplings refer to the ideally mixed, but isospi@nalysis framework developed in Rg15], is that the small-
pure, vector meson states. That this prediction is borne outess of previously quoted errors fir,, is an artifact of the
by experiment represents empirical evidence that, despite théphysical assumptio&= 0, and does not survive the more
potential SU(3)g-breaking photon coupling contributions general treatment. It is worth outlining why this is the case
being of the same formal order as effects induced by mixingsince, in so doing, the reason for the difficulty in improving
the former are numerically suppressed relative to the lattetthe experimental situation sufficiently to really pin down the
Since flavor breaking and isospin breaking are generated byixing contribution will become clear.

FEV=FD +eFV=F(1+3e), (6)
wheree is the leading order mixing angle, defined via

p=p(0)—6w(0), w=w(0)+ep(0). (7

096003-3
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The contribution of thghysical(i.e., mixed-isospihw to
the amplitude foe*e™ — " 7~ is obtained experimentally
by determining the timelike pion form factd,_(g?), in the
interference region and fitting it to a form

, { 1 Al
Fa(a%) +
q2_m§ q2_mZ

+ background

)

w

where m? are the complex pole positionsmZ=mZ
—imyI'y, and the fit parametetp, is known as the “Orsay
phase.” Thew contribution in Eq.(8) is generated by the
coupling of the physical to =7~ which, as discussed
above, has two sources: 1PRP-0(® mixing) and 1PI(as-
sociated with thew©7r7r vertex. The physical coupling is
given, in terms of these contributions, by

— (0 0
Jora™ gEm:'ﬂ'_l_ € gE)ﬂ)'ﬂ ’

9

where, as usual, the superscript (0) indicates couplings C}P

the isospin-pure states. In tfhysically plausibleapproxi-

PHYSICAL REVIEW D 59 096003

TABLE I. Results for theD =6 VSA-violation parameter,qq,
and the spectral strength parametdrs, f,, f, andf, ., as a
function of the isospin-breaking mass ratio, The first line, for
each value of, corresponds to the results obtained using the single-
pinch weight family, the second line to those obtained using the
double-pinch family. The units of, are Ge\?.

r prea T,(X10P) f,(X10%) f,(X10%) f, ,(x10)
0251 102 23 1.7 ~0.28 ~0.020
2.3 1.7 ~0.28 ~0.020
0.288 115 26 2.0 -0.32 ~0.026
2.6 2.0 -0.32 ~0.026
0.325 1.28 29 2.2 ~0.36 ~0.032
2.9 2.2 ~0.36 ~0.032

The reason is that, althougtis approximately real and near
1,(1-2) is dominantly imaginary. Since the denominator of
e second term in Eq14) is also dominantly imaginary, the
two terms add nearly constructively. Were the phases of

mation in which one assumes saturation of the imaginar}hese terms to be actually identical, it would be impossible to

part ofI1,,, by w7 intermediate states, one finds

Im I1,,(m)=-Gm,l", (10)
and hence, in the narroprw interference region,
m,,=,,—iGmrT, (11)

Whereﬁpw is now real. The mixing angle is then given by
[15]

II,,(m?) -
= L =—izT-zG, (12)
m —m
® p
where
im T - I, (m2)
7=—+t1L, T=—"—". (13)
m;, —m; m,[",

One then finds, upon substitution of Ed.2) into Eq. (9),
that

(0)

pmwm*

(14

gw‘lT7T:

I1,,(m)
G(1-2)+—=—"|g
' prp
In many places in the literature, the approximatimﬁ
—mﬁzimpl“p(z=1) is employed. Since Reg=1 and Im z
is small (~.2-.3), this approximatioiwhich was, in fact,

separate them experimentally, regardless of how precise the
data. Fortunately, there is a small phase difference which, at
least in principle, means that a determination, with sufficient
accuracy, of both the magnituda, and phase¢, of the w
contribution toF ., would allow separate determination @f

and ﬁpw. From this, one would be able to reconstriit;,,

and hence determine. The smallness of the phase differ-
ence, however, turns out to severely limit the accuracy at-
tainable using current experimental information. If one takes
the updated numerical analyses of Rgf6], for example,

one finds that values ofﬁpw between —4000 and
—8000 Me\V? are allowed (with a central value
~—6800 Me\?), and that, while the central extraction for

G is moderately large~.1,G=0 is only 2.5 distant. A
significant improvement in this situation would require a sig-
nificant reduction of the errors in the determination of the
Orsay phase. The prospects for such an improvement at any
time in the near future are remote, at present.

Although present experimental accuracy allows one to
place only rather weak constraints eywe can, nonetheless,
use the range of values obtained in Rdfk5,16 to set a
rough scale for the size of those corrections required to go
from FEY to F3 and fromF5" to FS. Using the central
values for the four fits given in Table | of Réfl6], one finds
that F> is less than E™ by between 0.3% and 3.8%he
former corresponding to fixing=0 by hand, the latter to
the MOW and A solutions contained in Table | of REE6])
andF?8 greater than EM by between 2.6% and 24.6%. We
will see that the solutions obtained below via the sum rule

made uniformly in analyses previous to the discussion ofinalysis satisfy these rather loose constraints.
Ref.[15]) might appear rather safe. If this were true, then the

effect of G in Eq. (14) would cancel exactly17], and the
experimental data would determine the real parflof, in

Ill. QCD SUM RULES AND THE CHOICE
OF THE FESR METHOD

the interference region with the usually quoted errors

[11,,(m2) = —3844+271 MeV?; see Refs[16,18,19 and
earlier references cited thergirnfortunately, it turns out

As is well known, the properties of unitarity and analyt-
icity lead to the existence dippropriately subtractedlis-

that the approximation is both misleading and unreliablepersion relations for typical hadronic correlatdig,g?). The
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-1

-Plane 2 2 2y — %0 2 2 2
o 7o §, d W@ (@)= | dewiaip(), 16

wherew(g?) is any function analytic in the integration re-
gion, andC denotes the circular part of the contour, traversed
counterclockwiséfrom above to below the cutThe OPE is
Sth So to be used on the LHS, spectral data and/or a spectral ansatz
on the RHS. The most common choice of weight has been
ISI=S, w(s)=s¥, with k=0,1,2 ... [24,25, though the standard
theoretical treatment of hadronic decays involves a more
complicated weight determined by kinematjds.

For the discussion which follows, it is important to main-
tain the distinction between “local” and “semi-local” dual-
ity. The OPE for a typical hadronic correlator is expected to
be reliable, not only fog? large and spacelike, but also for
_ ) g? on any circle of sufficiently large radius in the complex
term “QCD sum rules” describes those versions of thesey2_plane, apart possibly from a region of hadronic size about
relations in which kinematic restrictions allow one to taketne timelike real axigwhere confinement is expected to be-
advantage of the asymptotic freedom of QCD, and hencgome important[26]. “Local duality” is the postulate that,
technigues based on the OPE/perturbative QERCD. at scalesq?~s, for which resonance separation is small

The most common [Shifman-Vainshtein-Zakharov compared to the typical resonance widths, the region of va-
(SVZ)] implementation of this approad0] involves Borel  |igity of the OPE extends all the way down to the real time-
transformation of the original Cauchy representation, whichjke axis. The hadronic spectral function in this region is thus
is of the form(up to possible subtractions identical to that obtained using the OPE. “Semi-local dual-

ity” refers to the idea that, at somewhat lowgintermedi-
ate”) scales, where local duality is no longer valid, nonethe-
2 R .
(g2 = f” p(q°) less, averaged over some range(tirhelike) momenta, the
(q°)=| ds——. (15 . e :
sn S—( mean values given by using either the actual hadronic spec-
tral function or the OPE version thereof should be the same.
It is important to understand that, empirically, the condition
with sy, the lowest physical threshold, andthe relevant that resonance spacing Imeuch smaller than typical reso-
spectral function. The left-hand sideHS), for g2 large and  nance widths is crucial to the validity of local duality. In-
spacelike, is to be computed using the OPE/PQCD, the RH8eed, one can test local duality using various FESR’s in the
using measured spectral data and/or some spectral ansatase of the isovector vector channel, for which the hadronic
The effect of the Borel transform is {d) replace the weight spectral function is very accurately measured in hadrenic
1/(s—g?) on the RHS of Eq(15) with exp(—q¥/M?) (where  decays[9]. One finds that, even at scales as largemgs
M, the Borel mass, is a parameter of the transformati@) =3.2 GeV (where resonance widths and separations are
destroy subtraction terms arié) create a factorial suppres- comparablg and even though the experimental spectral
sion of the contributions of higher dimensional operators orfunction appears rather featureless in this region, nonethe-
the OPE side of the equatidrc/(Q?)"—c/(n—1)IM2"]. less, local duality is rather poorly satisfi€2i7].
On the hadronic side one would thus prefer to work with  As noted above, in the SVZ approach, the location of the
small M, in order to suppress contributions from the poorly stability window for most analyses is such that one cannot
known larges part of the spectral function, and on the OPE avoid non-trivial contributions from the intermediate- and
side, to work with largeM, in order to suppress the contri- high-s part of the spectrum. This is a problem because, typi-
butions of unknown higher dimension condensates. Sinceally, in the intermediate region, the qualitative form of the
one cannot simultaneously satisfy both conditions, one mustpectral function is either not known or, if known, involves
hope to find a “stability window” inM, i.e. a range of val- too many free parameters to be tractable, given the limited
ues for which neither requirement is too badly violated.amount of information available in the truncated OPB].
Typically, as a result of this compromise, neither the contri-Conventionally, this problem is dealt with by employing a
bution from the larges part of the spectrum nor that from the spectral ansatz in whicfl) the lows region is assumed to
highest dimension operator retained on the OPE side is nedpe dominated by one or two low-lying resonance contribu-
ligible [20—-23. tions and(2) the intermediate- and high+egion is approxi-

An alternate approach, based on Cauchy’s theorem, is thmated using local duality, which one assumes to start at
method of FESR’s. A convenient integration contour is thatsome “continuum threshold,’s,. It is well known that this
of Fig. 1, where the radiusy, is taken large enough that the form of “continuum ansatz” represents a rather crude ap-
OPE, to the order available, is reliable in the spacelike regioproximation, and hence can create significant uncertainties in
of the circle. The resulting sum rule is then generically of thethe analysis if the continuum contributions are large Nbr
form values in the stability window.

FIG. 1. The FESR “Pac-man” contour.
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A similar problem exists for the integer-power weighted the hadronic spectral function, including a determination of
FESR's. In principle, one would like to choosgas large as thep decay constant accurate to within a few perd¢@i. In
possible, in order to improve convergence on the OPE sidavhat follows, we will refer to the familiesvg(s) andwy(s),

In practice, however, the spectral ansatz will be intractablas single-pinch and double-pinch weights, respectively. The
unless thesy chosen lies not too far into the intermediate freedom to vanA plays a role analogous to that of the varia-
region. The possibility of working at such intermediate tion of M within the stability window in a SVZ-style analy-
scales can, even so, represent a practical advantage in casés An additional advantage of the FESR approach, at least
where the stability window of the SVZ analysis lies at rela-if one wishes to determine not just the parameters of the
tively low M (e.g.,M~1 Ge\?, as found for many applica- lowest resonance in the channel but also those of higher reso-
tions in the literature Unfortunately, this advantage is usu- nances, is that the weight function can be arranged to be
ally more than offset by increased uncertainties associateldrger in the second resonance region than in the first.

with the use of local duality in the intermediate region. This In what follows, in light of its success in the isovector
increase results from the fact that, on the circular part of thevector channel, we will investigate the isospin-breaking vec-
contour, the region near the timelike real axis does not havéor current correlator 18, defined above, in the FESR
the exponential suppression present for “continuum” contri-framework. As usual, we will work at scales as high as pos-
butions in the SVZ approach. The errors that result can bsible, compatible with the constraint of having a tractable
quantified in the case of the isovector vector channel, wherand physically sensible spectral ansatzgars,. Since little

the hadronic spectral function is known experimentally. Asis known about the vector meson resonance spectrum beyond
shown in Ref.[27], the errors in integer-power weighted the second excited resonance region, and since including
FESR’s, even at scales as highm$, can be very large, even the second excited resonance region would lead to a
despite the fact that the OPE at this scale is both dominatespectral ansatz with more parameters than are generally trac-
by the leading D=0) perturbative term and rather rapidly table for the present analysis, we are forced to work at scales
converging. no higher than~2.8 Ge\?. Since the separation of the first

This problem, however, is not intrinsic to the FESR ap-and second excited vector meson resonance regions is com-
proach. Indeed, at least one non-integer-power-weightegarable to the resonance widttthe p’ and w’ lie at 1419
FESR is known to be very well satisfied: that giving the and 1452 MeV, the" andw” at 1723 MeV and 1649 MeV,
hadronic 7 decay widths in terms of an integral, over the respectively{14)), it is clear that, at these scales, we are not
circle of radiuss,=m?, of the product of the OPE for the Yet in the region of the validity of local duality, making use
isovector vector current correlator and the weight functionof the single- and double-pinch families crucial to the reli-
WT(s)=(1—s/mf)2(1+23/m§) [where the dominant input ability of the analysis. In order to maintain as good a con-
parameter in the OPE representatiom{sn?), which can be ~ Vergence as possible on the OPE side of the two sum rule
taken as obtained by running the value measured aZthe families, while at the same t_|me allowing enough variation in
mass down to the scald. The reason for the success of this So {0 get a good determination of the parameters of the spec-
sum rule is simple: the juncture of the cut and circular por_tral ansatz, we also restrict our attention to scadgsgreater

tions of the contour corresponds to the edge of hadroni¢han 2 GeV.
phase space and hence, because of kinematics, the weight

function w,(s) has a(double zero ats=m?, which sup- IV. DETAILS OF THE ANALYSIS

presses contributions from that portion of the circe near ) )

the real timelike axis for which the OPE representation of the  Since the general framework to be employed in the analy-
correlator is unreliabléat intermediate scales like2) [1]. ~ SiS has been outlined in the previous section, it remains only
This suggests that, in implementing FESR'’s in other chant© dlscus§ the input required on the hadronic and OPE sides
nels, one should restrict one’s attention to weight functiondf the various sum rules. =~

having a zero as=s,. In Ref.[27] it was shown that, in the We begin with the hadronic side. We take, as our ansatz

isovector vector channel, where one can check the proceduf@r th.e hadronic spectral functpn, asum Of_ resonance con-
explicitly, weight functions of of the forms tributions. For the scales used in the analysis, the resonances

present in the region of the hadronic spectral integral are the

s s p, w, ¢, p’ andw’. (Although the tails of the"” and »”
ws(s)=<1— — 1+A—), (170  intrude slightly into the hadronic integration region fey
So So near 2.8 GeY, their contributions are strongly suppressed
) by the zeros in the weight functions. We have checked that
Wd(S)Z(l— s (1+Ai), (19) including an effective, combined”-w" contribution in the
So So spectral ansatz has negligible effect on the extragted

and ¢ spectral strength parameterg/e thus include contri-
having, respectively, single and double zeros-atsy, both  butions, written in terms of Breit-Wigner resonance forms,
produce extremely well-satisfied FESR'’s, for a wide range ofor all these resonances. Because the separation pf tard
values ofsy and the continuous parametéy, In addition, ' is much smaller than either of their widths, and also to
usingonly the OPE representation, for a rangefofind s, reduce the number of free parameters in the spectral ansatz,
and fitting the parameters of a sum-of-resonances ansatz tee have combined the latter two contributions. The strong

this representation, results in a very good reconstruction obverlap of the two resonances would, in any case, prevent
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one from being able to sensibly extract sepagateand o’ The third point concerns the interpretation of the higher
strength parameters by means of any sum rule analysis oésonance strength parametdrsandf ., . Itis, of course,
I3 very natural to take the spectral function to be resonance
The spectral ansatz then has the form dominated. Moreover, the near-threshold region of the spec-
tral function has been computed to two loops in CHBZ],
1 A - and one can see from this result that the corresponding low-
p*(d?) :m[fpﬁ(qz_ m}) —f,8(q*~mj) s background contribution to the relevant spectral integrals is

A tiny compared to that from the-w region. The case of the
+f¢6(q2—m(2ﬁ)+fp,w,5(q2—52 )1, (19 ¢, however, is less clear, since background contributions

r above thep-w region are not amenable to being reliably
where estimated, and hence might not be similarly negligible. In the
ansatz as written, such physical contributions, if present,
N mI’ could only be mocked ugapproximately by additional ef-
o(q°—m%)= . (q%— m2)2+ m2T'2 (200 fective contributions to theb andp’-w’ strengths. Thus, one

must use some caution in interpreting, for example, the ex-

(with T the width of the resonance in questiofihis expres-  tractedf ; in terms of the physical resonance paramekes
sion reduces t&(gq?>—m?) in the narrow width approxima- and F?,)—some portion of , could actually correspond to an
tion (NWA). The minus sign in front of , and the factor of averaged version of background contributions in the region
1/4\/3 are conventional; inclusion of the former ensures thabetweenp-w andp’-w'. The quality of the agreement be-
f, andf, become equal in the limit that the spectral contri-tween the hadronic and OPE sides of our sum rules is, how-
butions in thep-w region are generated entirely by leading ever, post factoevidence in favor of resonance dominance
order p-w mixing. For the combineg’-w" contribution we  and, hence, also in favor of the possibility of interpreting
have taken average values for the effective mass and width terms ofFf; andF8 .
for fu, Ty andf,,, are free parameters, to be determined | et ys turn, then, to the input on the OPE side of the sum
from the matching of hadronic and OPE sides of the singletyjes. we will discuss the contributions, in turn, by operator
and double-pinch sum rules, for a rangesgf A values. dimension.

A few comments are in qrder concerning the form of the  gjnce the correlator in question is isospin breaking, the
ansatz above and the physical meaning of the parameters 6?1Iy dimensionD =0 contribution tol1% is electromagnetic

be extracted from the analysis which follows. (we adhere, here, to common usage, according to which the

The first concerns the need for the inclusion of a&on- . .
tribution. Note that the correlatdi® is very closely related leading mass-dependent perturbative terms are labélled
=2). We retain only the leading ord€-loop) graph in this

to that, IT?*, obtained by dropping the strange part of the
hypercharge current frofi 3 (the OPE’s are, in fact, iden- o _ )
tical to three-loop order The latter correlator has been stud- '€ D=2 contributions are dom|na2ted by the strong in-
ied in a number of earlier SVZ-style analy§@8—31). Inthe  teraction terms proportional tar—m,)*. To 3-loop order,
earliest of these, the NWA was employed for all resonanceghe results for these terms follow from the 3-loop expressions
and nog contribution included in the spectral ansg28,29. for the correlator involving a flavor-non-diagonal current and
As pointed out in Ref[30], however, the existence of sig- its conjugate[33], since the perturbative contributions in-
nificant cancellations between the NWAand » contribu-  volving two quark loops and a purely gluonic intermediate
tions (which would be exact in the limit of mixing domi- state(present for flavor diagonal currents but not for flavor-
nance and equality op and » masses means that ap non-diagonal currentsdo not enter until 4-loop order. The
contribution, even if significantly smaller than thelividual ~ resulting expressions are given in the Appendix. To evaluate
p andw contributions, could nonetheless be important. Perthem, we require the running massexQ?), and running
forming the sum rule analysis withé contribution included ~ strong coupling,a(Q®). These can be obtained once the
shows that this is indeed the cd89)]. Including the¢ con-  values are determined at any fixed scalg. Since the
tribution in the spectral ansatz also cured an unphysical fea#-loop y [34] and 8 [35] functions for QCD are now known,
ture of the solutions obtained earlier, which did not include itwe have employed these when running the masses and cou-
[30]. The analysis of Ref.30], however, still employed the pling [explicitly, we solve the renormalization grouRG)
NWA for all resonances. equations exactly, using the truncated 4-loppnd 8 func-

The second point concerns the need to incorporatethe tions as inpuf
width into the analysis. Because, again, of the high degree of As input for the running coupling, we take,=m, and
cancellation between the NWAande contributions, itwas use the latesf1998 value for ag(m?) obtained by the
pointed out that the precise degree of this cancellation mighALEPH Collaboration in their analysis of non-strange had-
well be sensitive to whether or not the difference between theonic r decayq 36]. [The analysis of the strange decays em-
p andw widths was retained in the spectral and&%|. The  ployed previous theoretical results for tBe=2 terms, pro-
subsequent analysis of R¢81] showed that this is, indeed, portional to (ng—m,)2, which turn out to be in errof37—
the case: the spectral parametéis, decrease by factors6  39]; the value obtained in the global ALEPH analysis must,
when one employs the physical widths in place of the NWA therefore, be excluded.
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The situation with the light quark mass differenéen rameters, the FESR analysis, in fact, produogsvalues
=(myg—m,) is somewhat more complicated. We first write larger by~20 MeV than those obtained in the analysis of
Ref.[44].] Although work on the extraction ahg is still in

Mg—m progresg 48], we conclude already from the preliminary re-
5m=( 2 (mg+my)=r(mg+m,). (21)  sults noted above thahy(1 Ge\¥)~165 MeV, probably
Mg+ My with errors~+20 MeV or less. The ChPT ratio then pro-

duces (ng+m,)(1GeV®)=13.5 MeV, with errors
The isospin-breaking mass ratig,is known, from a number ~=*2 MeV. For any value in this range it turns out that the
of ChPT analyses, to be=0.288+ 0.037[40], which would D=2 contributions are at the-15% (or les3 level of the
allow one to determineSm if my+m, were known. The D=4 contributions, and the resulting errors lead, therefore,
most recent determination @hy+m, is that based on an to very small(percent leveluncertainties in the final results.
integer-power-weighted FESR analysis of the isovectoSince these uncertainties are much smaller than those gener-
pseudoscalar channg5,41]. In this analysis, the pion pole ated by the uncertainty in the isospin-breaking mass ratio
contribution to the spectral function is known experimentallywe have employed the central valueng+m,)(1 Ge\?)
but the continuum contribution is not. The authors of Refs.=13.5 MeV, and retained only the uncertaintyrinin the
[25,41], therefore, constructed an ansatz for the unmeasureshalysis which follows.
continuum contribution. It turns out that the continuum por- The D=4 contributions are much more straightforward.
tion of the resulting model spectral function provides Although in principle both thos® =4 terms proportional to
roughly 3/4 of the contribution to the extracted value ofthe isospin-breaking mass differendm, and those propor-

(mg+my)?. Unfortunately, it has recently been shown, usingtional to the isospin-breaking condensate differerei)
the FESR framework discussed above, that this continuunl<au> appear in the OPE dii®® the latter are numerically

ansatz is unphysic27]; so one cannot employ the values of i, compared to the former. The dominaddt=4 contribu-
Refs.[25,41). tion can then be written in terms ofand the combination

If mg were known (at some sca)e then one could (Mg+m )(EQ> which we can take from the Gell-Mann
i i + - d u ' ) -
straightforwardly determineny+m, (at that same scaleis Okubo (GMO) relation

ing the known (scale-independentratio of masses,rg
=2mg/(my+m,)=24.4+1.5, obtained by Leutwylef40] Mt m)aa) = — m2f2 29
using ChPT. Unfortunately, the situation is also somewhat (Mg +mu){aa) e 22
complicated forms. A number of recent analyses produce The dominant uncertainties for tHe=4 terms thus result
values ofmy(1 Ge\?) [in the modified minimal subtraction from those inr.

(MS) schemé ranging from~110 MeV to ~210 MeV, The phenomenological situation is not so favorable in the
often with rather large errofgl2—46,37,38,4) Because the case of theD=6 condensates. Usually, in the absence of
analyses based either on flavor breaking in hadremiecays ~ Pre-existing determinations of the relevant condensates, one
[37,38 or Narison's r-decay-like sum rule fol33—I1%8 makes estimates based on the vacuum saturation approxima-
[45,46] have rather large errors resulting from experimentafion (VSA). It is well known that, in situations where it has
uncertainties which are unlikely to be significantly improved been possible to perform phenomenological checks by ex-
in the near future, the most favorable approach would appedfacting the totaD =6 contribution from data, the VSA has

to be that based on various sum rule treatments of the strangoved to significantly underestimate these contributions
scalar channel, where the dominat part of the spectral [49]. Usually one simply replaces the facteg qq)?, which
function is in principle determined, via the Omnes represenis produced by the VSA, by an effective scale-independent

tation of the timelike scalaK 7 form factor, in terms of factor, written p’as<aq>2_ The parameterp” then repre-
experimentaK# phase shifts an.; data[42]. The most  sents the deviation from the VSA. Ideally, it should either be
recent analyses of this channiet4,47 employ the SVZ  possible to determing’ from data, or theD=6 contribu-
framework, ~and  produce  values my(1 GeV’)  tions should be small, for the sum rule in question. In our
=125-160 MeV[44], and 1630 MeV [47]. (The same case, neither of these conditions holds. In particular, because
low-s part of the spectral function is used in both analysesiye are forced to work at scales as low as 2 &aVorder to

the only difference between the two lies in the treatment Otonstrain the 5pect|’a| parametersy fbe=6 contributions
the “continuum.” The results of Re[.47], in addition, show can, forso~2 Ge\,e, and certain values oA emp|oyed in

no Stablllty window forms. ) Preliminary work USing the our ana|ysi3, approach,40% of the |eadingD:4 term.
FESR framework discussed above indicates that residual efortunately, it turns out, as we will see explicitly below, that
rors associated with the use of the local duality approximapy working with both the single- and double-pinch weight
tion in the continuum region remain, for this channel, whenfamilies, we can actually obtain a rather good determination
one uses the SVZ approadSee, e.g., the results of Ref. of theD =6 contribution to the correlatdalbeit it as a func-
[27]. From these one can s€B that using the central values tjon of r) by insisting on the consistency of the results ob-
for the parameters describing the fit to ter phases from tgined from the two different sum rule families.
Refs.[42,44, together with the central value from thmeg In the Appendix, it is shown that the VSA leads to an

range from Ref.[44], one obtains rather poorly satisfied expression for thé =6 contribution tol13® proportional to
families of FESR’s, and?2) that using the spectral function

of Refs.[42,44,47, again with central values for the fit pa- ag((dd)2—(uu)?)= y(asqq)?), (23
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where(ﬁq) is the average of tha andd condensates, and 35 :
(dd) 1 i
y==_- (24)
(uu)

30
describes isospin breaking in the light quark condensates. In
order to compare the deviation from the VSA in the isospin-
breaking channel with that in the analogous isospin-
conserving isovector vectoap=33) channel, we write the
re-scaled version of the RHS of E®3) in the form

p' ag({(dd)2—(uu)?) = peg¥(pas(qa)?), (25

wherep is the parameter describing the deviation from the 20 —
VSA in the 33 channel, and one has, phenomenologically,
[50] ] i

25 —

£, (x10%) (GeV?)

pas(qq)?=(5.8+0.9x10°* Ge\~. (26) s -—
With this definition, p,eq reduces to 1 in the limit that the 0.9 1.0 11 12 13 14
deviation from the VSA is the same in the 33 and 38 chan- Ored
nels.
The consistency procedure for fixing tBe=6 contribu- FIG. 2. The variation of , with p,q for the single- and double-

tion to T138, together with the phenomenological input of Eg. pinch weight families. Results are displayed here for the central
(26), of course, determines only the prodygtyy. In pre-  value r=0.288. The solid line corresponds to the single-pinch
senting our results fop,.q below, we have takeny= yveight a_nalysis_, the dashed line to the double-pingh analysis. The
—0.008, which represents an average of the previous detelntersection point determines the valuemfy quoted in Table I.
minations listed in Ref.29], except one[We omit the value
based on an analysis of baryon splittings because it impliet that in the ChPT determination of We have, therefore,
(via the 1-loop ChPT relations between flavor breaking andabulated the results for the range of values corresponding to
isospin breaking in the light quark condensafd]) the errors onr quoted by Leutwylef40]. All results are
(ss)/{uu)>1, which appears unphysichWe will discuss based on matching the hadronic and OPE sides of the two
the determination of,qq in more detail below when we sum rule families fos, in the range 2.0-2.8 Gé\and with
present the results of the analysis. Ain the range 2-5 for the single-pinch case and 3—6 in the
The last point in need of discussion concerns the way irflouble-pinch case. The choice of rangeAdh each case has
which we handle the integrals on the OPE side of the variou§een made so as to keep the convergence of the perturbative
FESR’s. Two options exist in the literature. The first, some-series for theD =2 term under control. It is worth mention-
times called the “fixed order expansion,” involves first ex- ing that the quality of the match between the OPE and had-
pandinga<(Q?) and the mass factors, genericayfQ?), in ronic sides which results after the fitting of the spectral pa-
terms ofag(s,) andm(s,). The coefficients of the perturba- rameters is significantly better for Leutwyler's central value
tive expansions in powers afy(s,) are then polynomials in  of I
log(s/sy) [51], and the desired contour integrals can thus be The value of theD=6 VSA-violating parameterp,eg,
written in terms of elementary integrals involving logarithms given in Table |, is determined by requiring that the values of
and powers ob. The integrated OPE expressions which re-f, obtained using the single- and double-pinch weight fami-
sult involve powers ofm(s,), each multiplied by a power lies be the same. The sensitivity bf to variations inp;eq
series ina(Sp). There is, of course, in this expression, the (true also of the othefy), as well as the difference in the
usual residual dependence on the choice of ssaller the  prea dependence of , for the single- and double-pinch
expansions discussed above, which results from truncatingnalyses, is shown in Fig. 2. The fact that, onggy has
the full perturbative series at fixed order. The second alterbeen determined by the requirement of the consistency of the
native, often referred to as “contour improvement,” in- two outputf, values, all the rest of the spectral parameters,
volves numerically integrating the factors determined using either the single- or double-pinch weights,
[M(Q?) ] as(Q?)]'s" around the circular contour in the also become consistent is strong evidence in favor of the
=—Q? plane[52]. It is known that this has the effect of reliability of the analysis. Note thatl) the possibility of
simultaneously improving the convergence of the perturbadetermining the correction to the VSA for tii2=6 opera-
tive series and reducing the residual scale dependenders and(2) the inclusion of both thé=2 terms and the
[52,25,41. As a result, we have evaluated all the integrals onO(as,@3) contributions to the Wilson coefficient of tHg
the OPE sides of our sum rules using this approach. =4 term are features not present in previous analyses of the
Let us now turn to the results, which are presented imanalogous isospin-breakinbl?“ correlator. Although the
Table I. As explained above, the dominant uncertainty is du&alue of p,.q4, determined as just described, depends some-
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what onr, this dependence is not strong, and we obtain g8 1?2
Preq=1.15+0.15+0.2. The first error corresponds to that in —d’EM =1.009+0.001, (28)
Eq. (26), the second to that an We see that the violation of V3 Fs

the VSA is very similar in both the 33 and 38 channels. The ) )
importance, in reducing the errors in the determinations ofvhere the numerical values follow from those in Eg7).
the spectral parameters,, of being able to determing,eq The size of the deviations of theand w cor.rectpns from 1.
is also evident from Fig. 2. is reduced by~ 15%—-20% from those obtained in the earlier
Having determined theD=6 contributions by self- analysis[10]; that for the¢ is increased, but remains small.

consistency, the errors on the extracted values,cdre de- N all cases the errors have been reduced by a factor of 3 or
termined solely by those on and are~10%-15%, com- More. Note that the first of these corrections is the one rel-

pletely correlated with. evant to precision tests of CVC. Note also that, as claimed

Having extracted the parametefrg, it is straightforward ~aPOve, the corrections given in Eq&8), for both thep and

to determine the isospin-violating decay constants. One find%’f’ ge in”the corresponding ranges produced by the estimate
of Sec. Il

F8=24+03 MeV With the results given in Eq(28), it is now possible to
P correct the EM data used as input to the inverse moment
chiral sum rule for the 8 order LEC,Q. The sum rule is

3_ _
F3=-3.4+0.4 MeV given by[6,53

3_
F,=0.33:0.02 MeV, (27 % ds(pss_pss)(s)
2 s
where the errors reflect those in the input isospin-breaking A
mass ratioy. 16( mﬁ— mi) , 1 2
ZTQ(M )+48 5100l —
V. SUMMARY AND DISCUSSION OF a m

PHENOMENOLOGICAL CONSEQUENCES
Q LE(u?) + Ll 12)

27°F?

A number of useful general observations follow from the
analysis above. First, we have found that the violation of the

VSA for theD =6 condensates is very similar in the isospin- mi
breaking (38) and isospin-conserving33) vector current —mZlog — | (29
channels. Second, we have seen that, although the analysis I

can be performed successfully for aniyn the range given by . L . .
Leutwyler, the central value of that range is preferred, in thé"’here'u IS trhe renormalization scalg of r:che effectlv? chiral
sense of giving the best match between OPE and hadronl@€0ry and- are the usual renormalized"4order LEC'’s of
sides of both the single- and double-pinch families of sum®asser and Leutwyled]. This sum rule was evaluated in
rules. Finally, we have demonstrated that the FESR methodRef- [53] using as input EM data for the isoscalar spectral

particularly when implemented using both the single- andunction and both EM and- decay data for the isovector
double-pinch weight families, is very effective, allowing a spectral function. The corrections above, required for the EM

determination of the3® spectral parameters, , with rather data, were not considered in this analysis. It is not clear, from
small errors. These errofbetween 10% and 15% fdy,, f,, our r_eading of_the discussion of R¢&3], exa_ctly what the_
andf ) are a factor of 3 smaller than those obtained in thg/€/ative weightings ofr decay and EM data in the determi-
earlier analysis of Ref[10] based on results of an SVZ nation of thep~ contribution to the LHS above actually were.

analysis ofl1? [31]. In order to obtain this level of reduc- SiNC&, howevery decay data is considerably more precise
tion, the ability to self-consistently determipe.y was cru- than electroproduction data, we have assumed in what fol-

cial. lows that the determination is dominated bgecay data. To

Let us now turn to the phenomenological consequences df€ extent that this is true, we need only make corrections to
our results. First note that the corrections required to conveff!® (nominally) isoscalare andzcb contributions. The result
the measured contribution of the vector mesdrto the EM  Of this exercise is a shift @@(m?) from (3.7+2.0)x 10™° to
spectral functionp®M, into the corresponding contribution to ) c
either p33 (for V=p) or p® (for V=w,¢) are given by the Q(m,)=(2.4£2.0x10">. (30

ratios . .
[For reference, making, instead, the somewhat perverse as-
F3 12 sumption that the determination of thé cozntribution was
Tl;\/l =0.982+0.0021 domlinSated by EM data,lone. wouldn fir@(m?) = (2.0=2.0)
F, X 107>, The full correction is dominated by that to the
contribution. The reason this correction is so much larger
= than the others has been discussed afjove.
“’EM =1.154+0.017 One should bear in mind, in interpreting these results, that
\/§Fw ] (1) there are, in principle, additional corrections to be made
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to the nominal isovector and isoscalar contributions at higheget of scalessy=1.4,1.5 and 1.6 Ge¥in the sum rule

s, and(2) the KK2 contributions were taken to be purely analysis is shifted from 138 MeV to 146 Me\ 47 MeV if
isoscalar in the analysis of R¢B3]. Because the separations one retains the 1997 ALEPH value af as inpuj. Unfortu-
within the higher isovector and isoscalar resonance pairsately, the errors in this value associated with uncertainties
p'-w’ and p"-0", are much smaller than the resonancein the experimental input are still very large,=~50 MeV at
widths, it is not possible to use sum rule methods to extrackeast, and this uncertainty cannot be appreciably reduced
the individual isospin-breaking decay constants of thesavithout a significant improvement in the accuracy of the
resonances. As such, we are unable to estimate the size of tHetermination of the experimental—e*e™ and¢—e’e”
former corrections. Were thHéK 21 states to have a signifi- widths. As such, although the central value is brought into
cant isovector component, the effect would be to raisdetter agreement with that discussed above, little more can

Q(mi)_ learned from the Narison sum rule, at the present time.
An alternate method for determinin@ is based on the
observation tha@ occurs not only in the inverse chiral mo- ACKNOWLEDGMENTS
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Q(M)=(3.3+0.4+0.9 X10°S, (31) APPENDIX: THE OPE FOR 11
The explicit form of the OPE fof1 %8 keeping terms only

where the first error is that associated with the uncertainties 2

Shoun n Table | n the exacton of e specal param. 17 10, S1Ienon 6 and 0 ), cn be obtaned o=
eters,fy, and the second is our estimate of the error resultin P ' p

from truncating the perturbative series for the Wilson coef- lavor-non-diagonal case given in the literat{see Ref[33]

ficients in the OPE. The numerical value quoted for this Iat-and the paper by Braaten, Narison and RiBNP) in Ref.

. : : ) [1]]. We list the results by operator dimension.
ter error Wa; obtan_wed by doubling the 2d|ﬁerepcdg(mp) Dimension 0 The only isospin-breaking contribution at
values obtained using Fhé(a?,) and O(«g) versions of the _ dimension 0 is that due to EM, and is given [38]
D=2 andD=4 coefficients in our analysis. Since there is
no positivity constraint orp>¥(s), one does not know in I
which direction this result would be changed by corrections [HESE]D=0= -
due to the small highes-part of the spectral integral. The 7 16m° 443
results of a study of the effect of including two combined
spectral contributions, one for the'-w’ and one for the Wheree is the usual EM coupling.
p"-0", however, shows negligible change @(mi), sug- Dimension 2 The D=2 term cons_ists of the I_eading
gesting that such corrections are unlikely to be numericallynass-dependent part of the perturbative contribution to the
significant. This conclusion is supported by an estimate obOPE, and follows from the expression given in REg3].
tained using the local duality approximation for the spectralOne finds
function in the regiors>2.8 Ge\f. Performing the relevant

In(Q?) (A1)

i i ighporti QYI*}Q?)p-

spectral integral, one finds that the highportion of the D=2
spectrum, in this approximation, contributes less than 1% to

2 king th Iti tainties totall ligibl 3 1 2 _m2) (02 8 2
Q(m}), making the resulting uncertainties totally negligible =— —=L(mj—-m})(Q?)] 1+§a(Q )
on the scale of those quoted above. 2m2 43

Since the_ two mdgpgndent determlnatlons_Q)&re co;n- 17981 62 1045

pletely consistent, within errors, the conclusion ti¥m:) +| =+ —=2(3)—- ——¢(5) | a%(Q?)
=3x%10° is considerably strengthened. 432 27 54

The last phenomenological application of our results con- (A2)
cerns the effect on Narison’sdecay-like sum rule fom;.
Since a detailed discussion of the way in which one implewhere a(Q?) = a(Q?)/, and {(n) is the Riemann zeta
ments the isospin-breaking corrections is given in IR&6],  function. Further details on how the running of the coupling
we report here only the results of employing the improvedand the masses is handled can be found in Sec. IV.
determinations of the correction factors determined above. In  Dimension 4 Our expression for th® =4 contribution
doing so we will also take the opportunity to update the inputalso follows from that given in Ref33]. Only themg and
parameters to the analysis of Ref6], employing the newer quark condensate terms survive once one takes the relevant
(1998 ALEPH value of ag(m?) [36]. One finds, for ex- isospin-breaking difference. The former are numerically tiny
ample, usingr decay data for the isovector input, that the compared to the latter, and hence have not been written
average over the values of(1 Ge\?) extracted using the down explicitly. We then find

096003-11
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_ 2((myuu) —(mydd))

4y3
1 11
X l+§a(Q2)+?a2(Q2) )

(A3)

QYII*(Q*)1p-4

The scale—invarian(tmﬁq) difference can be written in terms
of themyg—m,, (dd—uu), and the averages of theandd

guark masses and condensates. Since isospin breaking in the

PHYSICAL REVIEW D 59 096003

must, for consistency, drop the terms (G(aﬁ) contained
there. (See the discussion of this point contained in BNP.
One then finds

4\3Q[11°(Q?) b6

= —872a(Q?) ((uy, ysT2uuy*ysT2u)

condensates is much smaller than in the masses, the term

proportional tomy—m, dominates numerically. It can be
recast in terms of the isospin-breaking quark mass ratio,
andf_, m_, as explained in the text.

Dimension 6 The 4-quark operators are the dominant op-

erators at dimension 6. Their contributionf5® can be ob-

tained from the expressions given in the Appendix of

Braaten, Narison and PicBNP) [1]. Since a lack of phe-

nomenological information on the various condensates

—(dy,ysTddy ysT2d)) (A4)
1672 _ _

— 5 aQ) 2 (uy,Tugy Tay

—(dy,T2dq " T2ay), (A5)

whereT? is anSU(3) generator. Implementing the re-scaled
VSA, this expression reduces to

448w —
4V3QUII*Q*) ]o-6= g7 Prear(pas(da)?),
(A6)

forces one to work with the rescaled version of the VSA, onewherey, p andp,.4 are as defined in the text.
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