PUBLISHED VERSION

Alexandrou, C.; Rosenfelder, R.; Schreiber, Andreas Wolfgang
Worldline path integral for the massive Dirac propagator: A four-dimensional approach
Physical Review A, 1999; 59(3):1762-1776

© 1999 American Physical Society
http://link.aps.org/doi/10.1103/PhysRevA.59.1762

PERMISSIONS

http://publish.aps.org/authors/transfer-of-copyright-agreement

“The author(s), and in the case of a Work Made For Hire, as defined in the U.S.
Copyright Act, 17 U.S.C.

8101, the employer named [below], shall have the following rights (the “Author Rights”):
[...]

3. The right to use all or part of the Article, including the APS-prepared version without
revision or modification, on the author(s)’ web home page or employer’s website and to
make copies of all or part of the Article, including the APS-prepared version without
revision or modification, for the author(s)’ and/or the employer’s use for educational or
research purposes.”

14" March 2013

http://hdl.handle.net/2440/10871



http://hdl.handle.net/2440/10871�
http://link.aps.org/doi/10.1103/PhysRevA.59.1762�
http://hdl.handle.net/2440/10871�
http://publish.aps.org/authors/transfer-of-copyright-agreement�

PHYSICAL REVIEW A VOLUME 59, NUMBER 3 MARCH 1999

Worldline path integral for the massive Dirac propagator: A four-dimensional approach
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2paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
3Department of Physics and Mathematical Physics and Research Centre for the Subatomic Structure of Matter,
University of Adelaide, Adelaide, S. A. 5005, Australia
(Received 14 September 1998

We simplify and generalize an approach proposed by Di Vecchia and Ravndal to describe a massive Dirac
particle in external vector and scalar fields. Two different path integral representations for the propagator are
derived systematically without the usual five-dimensional extension and shown to be equivalent due to the
supersymmetry of the action. They correspond to a projection on the mass of the particle either continuously
or at the end of the time evolution. It is shown that the supersymmetry transformations are generated by
shifting and scaling the supertimes and the invariant difference of two supertimes is given for the general case.
A nonrelativistic reduction of the relativistic propagator leads to a three-dimensional path integral with the
usual Pauli Hamiltonian. By integrating out the photons we obtain the effective action for quenched QED and
use it to derive the gauge-transformation properties of the general Green function of the theory.
[S1050-294{@9)04302-4

PACS numbgs): 03.65.Pm, 12.26-m, 12.38.Lg, 03.70tk

[. INTRODUCTION tion to the dependence on bosonic and fermionic trajectories
mentioned above, their formulation has the special feature
The problem of how to describe spin in a path integral hashat as well as the usual Schwinger proper time a Grassman-
a long and twisted history. This is mostly due to the fact thatian partner to it is required. Representing Dirac particles in
a path integral is determined by the classical Lagran@i&n a first quantized form in the “world line formalism” has
Hamiltonian and a classical analog for the internal spin of apecome popular for perturbative calculations in QED and
particle is not readily available. MartifiL] apparently first QCcD [12-14. These one-loop calculations of the effective
suggested to use anticommuting Grassmann variables for thigtion are simplified by the fact that only Green functions on
purpose. This can be made plausible when one recalls thatrcje(with simpler boundary conditionsre needed. More
the spin operatos=f.o/2 of an electron fulfills recently, the method has also been used in order to derive
derivative expansions of the one-loop effective actiofn
+1)- and (3+1)-dimensional QEO15].
Although sufficient for many purposes the Berezin-
Marinov introduction of the fifth spin variable is an awkward

in the classical limit. Consequently one can describe a spirPne: there is no clear physical picture associated with it and
ning particle by its bosonic part, the usual trajectay), the corresponding multiplication of the propagator with the
and a fermionic degree of freedom given by a Grassman®irac matrixys [11] is very unnatural in a parity conserving
valued function{(t).! Brink et al. [3] noted an important theory. A four-dimensional approach, which has not received
supersymmetry between the bosonic and fermionic parts of @wery much attention up to now, is that proposed by Di Vec-
relativistic massless Dirac particle and Berezin and Marinowchia and Ravndal16,17] in which the unwanted spin de-
[4] showed thatmassiveparticles can be described by adding grees of freedom are simply projected 8ut.

a fifth components(t) to the spin variable. The reason for It is the purpose of the present paper to develop this latter
this peculiar addition is that in the rest frame of the particleapproach further and to show that it has attractive features. In
the spin is intrinsically three-dimensiorf@ee Eq(1)] and a  particular, in Sec. Il, we will calculate the propagator for a
covariant four-dimensional description therefore has superBirac particle in an external vector field and demonstrate that
fluous degrees of freedom which have to be cancelled by théhe projection mentioned above can be done in two different

2

h .
{si,sj}Esisj+sjsi=?5ij—>0, i,j=1,2,3 (1)

fifth spin variable[5]. ways: either at each time step during the evolution of the
There is now a vast amount of literature about spin in pattsystem or at the end. We will refer to the former as the
integrals (a partial list of references i6—10]) which dis-  “local’projection method and to the latter as the “global”

cusses various aspects of this approach. In particular, Fradkjsrojection method. In Sec. Ill both procedures are shown to
and Gitman[11] have given a straightforward way of con- be equivalent due to the supersymmetry between bosonic
structing the corresponding relativistic propagator. In addi-

2During the course of this work there appeared a publicdtl@h
11t should be noted that there are other approaches, e.g., usirig which the fifth spin variable is also eliminated but by a different
coherent state path integrdt], which we will not consider here.  nonlinear technigue.
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and fermionic variables. However, the global projectionlt is now possible either to exponentiate only the denomina-
leads, in general, to simpler expressions without a Grasger which gives
mann proper time. In addition, an inherent coupling between

orbital and spin parts which is already present for a free 1 __ wdT(]?H—M)

particle is removed by the global projection method. Section M=M+i0 2kolo

IV contains the nonrelativistic reduction where we start di-

rectly from the path integral representation of the Dirac iM2T NS
propagator and show that this reduces to the three- XeXF{ T 20 )exp{ 2_1(0]7[ T) ®)

dimensional spin path integral of the nonrelativistic theory.

This is to be contrasted with R€9] where the nonrelativ- or both numerator and denominator leading to

istic propagator was derived starting with the nonrelativistic .

Hamiltonian and introducing three-dimensional Grassmann i} :f de dXEXF{—I—(MZTﬁ-MX)}
variables instead of obtaining it from the relativistic path Mm=M+io Jo 2kg

integral for the Dirac propagator. In Sec. V we show that one

can also describe a Yukawa interaction of the fernios, [N o &

the particle in an external scalar figldn such a four- X ex Z_KO(M T+1x)|. (6)
dimensional framework. As an application we derive the ef-

fective action in quantum electrodynamics in Sec. VI andrpq |atter only holds iflI commutes withII2 which is

final!y we summayize our resqlts. _ _ proved in Ref[17]. Here
Since we aim in making this paper self-contained we in-
clude an Appendix with a derivation of the spin path integral #= E)M_gAﬂ(;(), @

which is somewhat different, more explicit and simpler than
the one given by Fradkin and Gitman. Our conventions fol-and the Berezin integrals over Grassmann variables are de-
low Bjorken and Drell[19] and in general we use—: and  fined as[20]
£— o to denote Grassmann variables, with some exceptions
to comply with the standard notation found in the literature.

id [ av=0. [an-1 ®
Il. DIRAC PROPAGATOR IN AN EXTERNAL VECTOR

POTENTIAL Ko IS a parameter which reparametrizes the proper tifhes

— ko T,x— Kkox Without changing the physics and is a rem-
We are looking for the path integral representation for thenant of the local reparametrization invariance of the action. It

propagator of a Dirac particle is thus related to the “einbein’[3]. x is either called a
(one-dimensional“gravitino” field or, more appropriately
< 1 > in the present context, as the supersymmetric partner of the
G(xy)={ x| = = —Y (2 proper time, the “supertime.”
p—gA(X)—M+i0 The Di Vecchia—Ravndal representation has several ad-

_ _ _ vantages compared to the standard Berezin-Marinov fdim

in an external fieldA,(x) where throughout this paper for the description of anassivespinning particle: no five-

quantum-mechanical operators are denoted by hats over thnensional extension and multiplication wigly are neces-

corresponding symbols. In the spinle@msonig case this  gary and, as we will see in Sec. IlI, the supersymmetric trans-

can be achieved by using Schwinger's proper time represefgrmations are much simpler and more transparent. It can be

tation for the quantum-mechanical resolvent considered as the result obtained by integrating out the fifth
spin variable. A certain disadvantage is that not all exponents

1 o deTex;{i(E— i Li0)T. 3 in Eq. (6) are Grassmann even. The odd term

E—|:|+i0 0 iM
exr{ o ) 9
However, in the fermionic case we have to make sure that Ko

the operatoH which plays the role of a Hamiltonian for the is to be considered as part of an operator which projects out
guantum-mechanical system contains ewen number of
Dirac matrices. This is because in the classical lifaihd
also in the path integrabnly an even, commuting object can
represent a physical quantity.

Fradkin and Gitmafl1] achieved this by multiplying nu-

M=M [17] and not as part of the evolution operator. In Eq.
(5) this projection is done at the erftiglobal” ) whereas in
Eqg. (6) it is done at each time step during the evolution
(“local™ ).

) . . It is essential that in both procedures the “Hamiltonian”
m.erator and deno'mlna'tor in qu) by s and gxpendmg th? which governs the proper-time evolution is even. In the glo-
Dirac algebra to five dimensions. However, it is much 5|m-tl)a| projection method it is given by

pler to use the representation of Di Vecchia and Ravnda

[16,17 where we write . 1 . 2

“ i ~
= — — 2:__ - Y
) H(IL,X,y) ZKOVI 2K0+4K09FW(X)7 Y
—=(+M) —. (4)

Mm-M+i0 m?—M2+i0 (Fuv=3d,A,—3d,A,), (10)
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whereas for the local projection method it reads i 9\ [
G(x,y)=— 2—KO(|¢9X—gA(x)+ M)exy{ y-ﬁ) fo daT
A A 1 -
H (LX) =HILxy) — 5=,y (1D i |
0 ><exp( — —M?2T |NSP f DxDIID¢
2KO

In both cases the parametep can be interpreted as the T . .
“mass” of the quantum-mechanical particle. xeXp{ g’(O){(T)HJ dt[iZ- = (IT+gA(X))- X

0

A. Global projection

We will first consider the projection after the end of the _H(H’X’Zg)]]r_o' (7

evolution, i.e.,
| . As usual we can perform the functiondrintegration since
G(Xy)=— — | d*(x B—aA(x)+ M|z J' dT the Hamiltonian is at most quadratic in the kinematical mo-
6y) 2KOJ {xlp=gAX) 12) 0 mentum. We then obtain the final expression

iM2T = P
Xex;{— P )<z|exp(—|HT)|y) G(x,y)=_2_Ko(|gx_gA(X)+M)
g aAGO+M fde p( iMZT) g\ (=
=T 2 GA) M) | dTexp — xexd y: o JO dTN(T)
X(x|exp(—iHT)|y). (12 Xexr{_iMzT)'JDXDé’eXp{iS[x,g]}r=o,
0
The remaining proper-time evolution operator can be written 18

in path integral form following Fradkin and Gitmaa1] but
staying within a four-dimensional framework. In the Appen- where
dix we show that

N(T>=[ f Dgexp( £(0)-¢(T)

X(T)=x T Al i Ir*
J (M= DXDpDE> N —fo dtg-g)} .fDHexp(lfo dtZ—KO) (29

x(0)=y

(x|exp(—iHT)|y)

7,

><exp{ i det[ig- E—p-x—H(,x26+T)]1
0

r=o
(13

provides the proper normalization and
T . .
S[X,g]E jo dtL(X,X,g,g) —i g(o) : g(T)a

where NP" s a normalization factor for the four- oo Ko, oo : e} Y
dimensional spin path integral as given in E419) and we LOGX 8,8 == X1 = gx- AX) = K_OF*“’(XMng

use antiperiodic boundary conditions for the spin variable (20

¢ are the action and the Lagrangian, respectively. The first two
terms in Eq.(20) correspond, respectively, to contributions
from the orbital and spin degrees of freedom to the kinetic
) o - energy, while the last two terms are the contributions of the
Equation(13) can be further simplified by shifting to the new photon field coupling to both the electron’s convection cur-

spin variables rent and its spin current. The canonically conjugate momenta

£,(0)+£,(T)=0. (14)

are given by
1
Pu=—"=—koX,~9A,(X) (21
axH
so that the boundary condition becomes
and
{u(0)+(T)=T . (16) i
== 22
This introduces an additional boundary tergI"-[£(T) (e arm £ 22

—Z£(0)]=¢(T)- £(0). After shifting to the momentuni7) as
integration variable we obtain so that the canonical Hamiltonian becomes
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] Ko . ig Note that there is now a coupling between orbital movement
H= > q—-L=——-x%+ —F,,¢*¢" (23)  and spin, even for the free particle. This is the same mecha-
ai=x.¢  Jq; 2 Ko nism which at high energy aligns the spin of a Dirac particle
along (or opposite to the momentum whereas a nonrelativ-
when expressed in terms ¢feneralizefl coordinates and istic particle with spin is unaffected.
velocities. In terms of coordinates and momenta we have the Since the spin degrees of freedom appear at most qua-
relationH="H|,_,_,. This is a consequence of our metric dratically it is also possible to integrate them out completely
which gives exp{ip-X) as plane wave and therefore leads toand reduce the path integral to a bosonic one modified by a
the form [di[ —p-x— ] for the action in the phase space _SPin factor” [21,22. The price to be paid is that this spin
path integral(13). factor is h}ghly nonlmear in the external fu—::lds. This preyents
The free Dirac propagator in momentum space is readily®? analytic integration over the boson fields to obtain an
obtained from Eq(18) since orbital and spin variables de- effective interaction for the fermion only, as is done in Sec.
couple. The/-path integral cancels against the normalizationV!-
factor NSP" and thex-path integral gives just the usual free

bosonic evolution kernel. Thus I1l. BOSONIC AND FERMIONIC TRANSFORMATIONS
1 - We next discuss the transformation properties of the
G(O)(p):J d4xe”°'x( — —)(i0x+M)f dT Lagrange function in the local formulatidi3,23]. The cor-
Ko 0 responding ones for the global formulation can be obtained
i by setting y=0. There are two kinds of transformations
><exp< — _MZT) which leave the Lagrange functidt in Eq. (26) invariant
2 Ko (up to a total derivative
4%k i (i) Bosonic transformation@eparametrizations
xf e K Xex —kZT) .
(2m)* 2Ko SxP=b(t)x¥,
p+M 1 04 .
= = "= 1
MZrio p-MTI0" (24 8¢ =b(t) ¢, 27
: _— d/(b(t) d
independent of the reparametrization parametgr Sko=— K(Z)& =6l = &[b(t)”’ (28)
Ko

B. Local projection whereb(t) is the infinitesimal parameter of the transforma-

The local projection method follows along the same linestion which, in principle, could have an arbitrary time-
with two differences: first we have an additional integrationdependencélocal transformations However, for quantiza-
over the supertimg and second there is an extra term in thetion the reparametrization “gauge” has to be fixgd,7]

action due to the additional term in E@L1). Thus which in our case, by construction, was taken to hge
5 =const. This means that we only can alléxy=const or
G (X’y):exr’( v a_r) fo dTNCT) b(t)=bg+ byt. (29)
i _ . .
XJ dXEXF{——(MZT-FM)()} Note thatb;=0 corresponds to proper timeanslations
2ko e.0., SXE=x*(t+bg) —X“(t)=bgx“+---, and by=0 to
roper timescalings e.g., 6x*=x*(t+bt) —x#(t) =b,tx*
% | Dxprexplis Dl @5 o e () )=
(i) Fermionic(supersymmetrictransformations
with .
SXM=ia(t) M,
T . .
SI[Xlg]Efo dtL/(X,X,é’,g,X)_lg(O)g(T) " Ko 'M 1 "
6t == a(t)|x —m§ X
L' (x,%, ¢, 5x) = L(X,> ')+1'ﬂ (26)
X|X! 1 ; = Xlxl L _X K
(x.x,{, {1 x GO+ X 5Ko=70a(t)x,
Ko, o 1 i . )
=T oX Tid-i+ fx'é’X_gX'A(X) Sx=—likgTa(t) (30)
ig d Ko
——F () {*". P—j— - 2% .
Xo wn(X)8#¢ =dL' =i a(t)( >X{+gA g” (31
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where a(t) is the infinitesimal Grassmannian parameter ofwhere
the transformation. Again, since, and y are by construc-

tion time independent, one can only allow transformations

with a(t)=const. Fory=0 Ravndal[17] has shown that

similar to the bosonic case it is also possible to generate the
fermionic transformations by a shift in the proper time if a
Grassmannian partner of the proper tiné added. This

allows for a concise supersymmetric formulation of the ac-

tion. In this section we will show the generalization of Ravn-The first term is what we obtain for a global, time-
dal's transformations to the case with spin-orbit coupling,independent transformation in E1). Performing an inte-
which includes a special scaling of the “supertime” in ad- gration by parts in the second terfmo boundary termsthe

Ko

d .
5L=ia(t)a< 2X-§—9A'§)

+ia(t)

3K0-
—TX'Z—QAI)- (36)

dition to a shift. result is then
Since the change of the full Lagrange function is a total
derivative, Noether's theorefi24] allows us to define quan- T d -
tities which are conserved classically. For the bosonic trans- 0:< fo dta(t)| — Koa(x‘ ) > (37
S

formation withb,; =0 (i.e., proper time translationsve have
oko=0 and Eq.(28) therefore leads to the conservation of
the canonical Hamiltoniaf23). It can be shown that proper
time scalings ,=0) lead to the same resdltFor the fer- d
mionic transformations we find from E@31) that the pro- —(— Kok(t) -{(1))s=0 (39)
jection of the spin variable on the kinematical momentum dt

or sincea(t) is arbitrary

— KX .
0 for all times.

=— "
Q KoXué (32) A. Supersymmetric formulation
is conserved classically without the spin-orbit tefrt7]. It is convenient to write the Lagrange function for a rela-
Quantum mechanically the Noether charges either betivistic spinning particle in explicit supersymmetric form by
come conserved operators or, in the functional formalismcombining orbital and spin degrees of freedom into a “su-
their conservation implies that certain averages, i.e., Greeperfield” [3] or “superposition” [17]
functions with the Noether charges as insertions, stay time
independent. For quantum-mechanical averages we will use XHE(t,0)=xH(t) +afl (). (39
the following notation:
Here# is an additional time-independent Grassmann variable

B d isix.q] which acts as a superpartner of the proper timand a a
(O)s=exp v 5 JDXDGVO(X@)G “lr—0- (33 suitably chosen constant. If, in addition, a “superderivative”
is defined as
To be specific, we consider the fermionic transformations
with =0 because their Noether char@®) does not depen- D= J Gi (40)
dent (explicitly) on the interaction and we make lacal, a6 ot
time-dependent transformati¢@5]
then
K .
X(O=X'() +ia(®LD), L{O=¢(OF 5 abx) ‘s o
(34 Lozf do( - ?)DXMDZX*‘:— ?x2+i§~§ (41)

in the path integral. We assume the(0)=«(T)=0 so that  generates all terms in the free Lagrangian of the spinning
we do not have to consider boundary contributions. Theparticle provided the constaatis chosen as

Jacobian for this transformation istlO(«?). Since the path

integral does not change its value we obtamitting the 2i
primes a=i\/—. (42)
Ko
T
0=<if dt5L> , (35 Note that in this compact form only first-order derivatives
0 s appear sinceD?=—4/4t. In the local projection approach

one needs an additiongtdependent factdr3,13]

3n this case the reparametrization parametgr which is also e(fy)= a
. . ; \ : X)=1+—=0x (43
changed, is not a dynamical variable for which the equations of iT

motion can be used. Consequently the change of the corresponding

Noether chargeQ=tH with time is proportional toxydL/d«g in the integrand of Eq(41) to account for the explicit spin-
=H, which gives no new information. orbit coupling. Thus the corresponding free action is
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T Ko Using Eq.(48) we then find that
Sé[X]zJ dtJ dae(ax)( - ?>DX~D2X
0

a
. ‘. oy t =(l+ﬁex t+bg+ €6,
=f dt| — —X2+ig- ¢+ = xx|. (44)
0 2 T a
_ ) ) ) ) ) 0'=|1+==e€x|bO+¢, (52
The interaction of the Dirac particle with an electromagnetic 2iT

field takes the equally simple form generate they-dependent supersymmetric transformations

with ko= 6x=0. Although this constitutes a scaling of the
Le.m,=gf doD X ,A*(X) (45  bosonic timet by a factor
which is easily proved by expanding the “superpositiod” /=1 1+ _ifx) (53
and performing the Berezin integration. Equati@i®) thus i

containsboth the convection current and the spin current

interaction. > o : . .
For y=0 Ravndal and Di Vecchifl6,17 have given a scales by 1J/. Since the spin-orbit factd@3) scales again
with # and the Berezin integral ovesr transforms inversely

simple way of generating both the bosoltigith b,;=0) as . he f AR iy
well as the fermionic transformations by a shift in the propercon_m"’"ef‘OI toa bosonlc_ one the free action is easily found to
be invariant under scaling.

the fermionic timed is only scaled by//. ConsequentiyD

timest and 6: . .
We also note that for two timds,t,, 0,0, the combina-
t—t+by+ €b, tion
t,—t
60— 0+ €, (46) TlZE —1 2 + 91 92 (54)
. ve(Oix)e(fzx)
wheree andb, are constants which may be zero. Indeed, the
superfield changes into is invariant under the shift and scalit§2) of proper times.
This is the generalization of a result which is well known for
X(t,0)—=X'(t,0) =x(t+bo+ €) +a( 0+ €) {(t+by+ €0) x=0 [21] and is important for extensions of the polaron
. e variational approach to QE[26].
=X+box+ael+ab| {+bol— x|+,
a B. Equivalence of local and global projection
e are now able to prove the equivalence between the
(47) w b he equivalence b h
and if we set local projection method and the global one. We give here a
somewhat different and more explicit derivation than the one
i sketched in Ref[27]. We start from the local formulation
€= @ (49 and perform they integration. This gives
. . o AN P
we obtain both transformation®7) and (30) for the indi- G'(xy)=expg v = dTN(T)exp — =—M“T
. . . . (9F 0 ZKO
vidual components of the superfield in the special cgpse
=0. This is not only more transparent but also treats bosonic X(T)=x .
and fermionic transformations on an equal footing. The X f DXJ DEe'S
x(0)=y {0)+¢(M=T

equations of motion and the conserved quantities can also be
formulated compactly in this formalism.

We can generalize the transformatiof#) to the case X
x# 0 by observing that any change tir9 leaveskg,x un-
changed, since these quantities are by construction tim
independent. This means that necessarily

(55

iM iJTd-
T2 T e

s we have seen in E@38) the supersymmetry of the action

Sleads to the result that the expectation value of is time
Skp=0, (490  independent and thus can be evaluated at any tjrimepar-
ticular att=T. We then can perform thieintegral and obtain

I'=0

Sx=0. (50 .
o i
’ _ M2
While the latter condition is fulfilled by a constant parameter G'xy)= fo dTN(T)ex;{ 2kKg M1
a in the fermionic transformatiofsee Eq.(30)] the former )
one requires that the bosonic scaling paraméteiis not VIS
arbitrary but given by x 2k M =ix(T)-£(T) . (56)
b :la (51) where the average with respect to the act®is defined in
1T X Eqg. (33). For the calculation of the last average we use the
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well-known fact (see, e.g., Ref[28]) that the expectation i J
value of time-ordered products of Heisenberg operatorﬁ(X,y):—m(lﬁx—gA+M)exr< Y'E)
On(t) =exp(Ht) Oexp(—iHt) is given by the insertion of

O(t) in the corresponding path integral. Thus xS J' dTex;{ _ EMT) NP
s=*x1 Jo

- Tu(ty)
<X’T T | Xu(ty) —5— ‘y'0> xf D4xD3HD4gf DEexp{iSIX,ILE,{]}r-0o
B P (%) (64)
E<x e T | xy(t): o ‘y>=<x<tl>.z<tz>>s |
with
(57) rM .
SS[X,H,E,§]=—i§(O)-§(T)+f dt[——MsxOH'[-x
since Eq(17) tells us that thWeyl orderedl y matrices are 0 2
to be replaced by 2 Differentiating with respect to, (the . G o
equal time contribution vanisheand puttingt;=t,=T we —gAXotOA - X— ——+il-{— Epwgugv
obtain 2M M
. E2
. NS +sE—EX +—}. (65)
(X(T)- ZT)s=(xlilH.x,J5e ™ y).  (58) ° M

According to our assumption the last term in the square
Evaluating the commutator with the help of Ed0) and the  bracket isO(1/M %) which we neglect. The path integral over

canonical commutation relations we find E then gives a functionad function
1 N X X T
- A~ : o o0k~ Xok-1 _ '
(X(T)-¢{(T)s= = 5, (x| Me ™" Ty) oxo=s]=lim 11 5(—At S)’ At=3-

(66)

i -
i —iHT
_z_m[ﬁx+'gA(X)]<x|e "y) (59 The functional integration ovex, can now be performed
trivially, with the result that the time coordinate has the

which, inserted into Eq(56), gives exactly the same result ProPer time dependence
for the propagator as the global projection method, i.e., Xo(t) =Yg+ st. (67

G'(X,y)=G(x,y). (600 However, oneds-function remains because there are only
(N—1) integrations in the discretized path integral for the
IV. NONRELATIVISTIC LIMIT coordinates
If the massM of the fermion becomes large the integral G(X.V)= — '_ i0—aA+M ex;{ i)
over the proper timd is dominated by the stationary points (x.y) ZM( x~9 ) Yoar
of its integrand which approximately occur ﬁ[%=M2. -
Therefore we make the ansatz X > j dT8(Xg—Yyo—sT)
s=+x1 JO
[My=sM+E, s==1. (61 _
Xexq—iMT)NZp'“f D3xD3IID4¢
For the nonrelativistic limit it is very convenient and natural

to take N ] 2
X ex| §(0)~§(T)+|f dtjiZ-Z+1II-Xx— =—
0 2M
ko=M (62 _
. |g
— X — — a4
and to assume gsAptgA-X M Fund™e ]r=o. (68)
1 The remainings function enforces the boundary condition
=Yiwm Xo(T)=Xq and can be used to perform the integration over
E=0\u (63) (T) d can b d form th
the proper timeT yielding
In this section we will writeD%, D%, and NP" with d T=5(Xo—Yo)- (69)

= 3,4 to stress the different dimensionality of relativistic and
nonrelativistic path integrals. In the global projection methodin other words, in the nonrelativistic limit the proper time
we then obtain from Eq(17) becomes the ordinary timglifference, as expected. Since
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the proper time is positive, thes€ + 1) term describes for-
ward propagation of the particle whereas tlse=(~1) term

describes backward propagation of the antiparticle, which is

also contained in the Feynman propagator but decouples
the heavy mass limit. Furthermore, the global projection op-
erator in front of the propagatd68) can be replaced by

id,— gA+M)—>—|—(1+Sy0)+O 1) (70

i

-~ 2M M
as thex, derivative acting on the phase factor gxjpMs(X,
—Yo)] gives the leading contribution. Since

ars

the (antparticle propagator acts only on tli®wer) upper

10
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Finally we simplify the spin degrees of freedom by using
Funl#l"=2{E-{—B-(£X{) (77)

and observing that the first term in E@.7) is linear in .

After shifting {o=To/2+ &y, the &, integration can be per-
formed and leads to a term in the remaining action which is
of O(1/M?): the Fourier transform of a Gaussian is again a
Gaussian. In that process part of the spin normalization fac-
tor is cancelled. The same argument can be applied with
respect to thel integration so that in leading order only
igsl'oE-T'/M survives from the first term in Eq77). Per-
forming the required differentiations with respectlig we

see that we obtain a contribution to EF0) of the same
order which was already neglected. Notice th@pR- ¢ is
“odd” in the sense of connecting large and small compo-
nents in the Dirac equation; from the standard Foldy-

in

components of Dirac spinors if the remaining path integral isWouthuysen transformation of the Dirac Hamiltonian it also

diagonal in 2<2 Dirac spacéwhich will turn out to be the
case. Shifting back to integration ovgr we therefore obtain

G(x,y)=—i E O(S(X0~Yo)) 5 (1+sy> e~ Msxo=yo)

conf -2

. [T=s(xo~Yo)
xexp[((O)-g“(T)ﬂfo dt

1 A2
m(p—g )°—gshy

Lw.

)NSP'”fD xD3pD4¢

X ig-Z+p~5<—

— MF/.LV

rer (72

The time dependence of the electromagnetic potentials and

fields is fixed by Eq(67). Substituting

t'=y0+St, t’E[yo,Xo],

x(O)=x'(t"),p()=p"(t"), =LY (73

the boundary conditions for the coordinate space path inte-
gral become the usual ones for a nonrelativistic path integral

[29]

X'(Yo)=Y, X'(Xo)=X. (74

Omitting the primes, the action in the phase space path inte-

gral now reads

SIXP, 1= =1 4,(Yo) £#(Xo) + f "difi g4, +p-x

Yo

—HS(X,p,Zé’)], (75)
—gA)? igs
H(X,p,20)=S5 M+%}+gAO+ gVFMg“{V.
(76)

Here we have absorbed the phase factof eX@ds(Xy—VYo)]
into the HamiltoniarnH.

follows that the odd parts are suppressed by a factbr 1/
compared to the “even” ones. In addition, since

- 0 g 0 (Tj . a'iO 0']0 78
')/i')’j— _O'io _O'J'O T OO’i OO'] ( )

one can set
exp(y-Vr)—expio-Vr) (79

for the remaining even part of the action. After changing the
signs of the spin terms by the substitutién:i ¢ the nonrel-
ativistic limit for the Dirac propagator finally becomes

G(X,X0:Y,Yo)

1 —
==i 2 O[s(Xo~Yo)]5(1+sy)e” "IN
s=*1

X(
J|
X

(Yo)=

Xg) =X
D3xD3p D3¢
dyo) +&xg) =T

<ex| @y o)+ [ "atic e

—HS(X,IO,ZQ]] (80)
r=o
with
ﬁipi”:{ f D%ex;{g(yo).g(xo)
dyo)+&xg) =T
X0 Nt
—fy dtg’-g” . (81

The Hamiltonian

(p—gA)? igs
TV +9A+ VB'@XD

(82

Ho(X,p,20)=s| M +

coincides exactly with the standard Foldy-Wouthuysen
Hamiltonian for particles and antiparticlésee, e.g., Ref.

[19], Eq. (4.5)]
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g 1
+9A0— 53 Yoo B YR

(p—gA)?

M+ M

Hew(X,p,0) =7

(89

J’_
M* II(M/M*)[I-MM*+i0

+0

1

W) (83 as the Di Vecchia-Ravndal representation for the present
case. Again we have the choice to projectlbs M* either

during the evolution or at the end. If we adopt the latter

approach the quantum-mechanical Hamiltonian which gov-

erns the proper time evolution is now

if the last term(the so-called Pauli terris rewritten using
oX o=2io. (84)

This ensures that the time evolution is governed by a ~ 1. M -
Grassmann-even Hamiltonian. It is, of course, straightfor- H:_2_KOMM — I (90)
ward to start from the nonrelativistic spin-dependent Hamil- (%)
tonian(83) and by using the identity84) to derive the three-
dimensional path integr&80) for the propagator as has been The phase-space path integral representation of the propaga-
done in Ref[9], Sec. 5. Here we proceeded in the reverseor is now determined by evaluating the Wigner transform of
order showing how the nonrelativistic limit can be takenEq. (90) (see the Appendix With the abbreviationU(x)
within the path integral representation of the Dirac propaga=M/M*(x) one obtains
tor. It should also be possible to evaluate higher-order terms
in the nonrelativistic reduction in this way or to obtain the 1 ig
semiclassical limit of the propagatf30]. H(P,X,y)=— THZU(X) + T Y7, FE () U(X)

0 0

V. DIRAC PROPAGATOR IN AN EXTERNAL ig . B
SCALAR POTENTIAL Iy Yu Y LU ()Y = 11#9"U(x) ]

For some applications one needs the propagator of a fer- 1
mion which moves in an external scalar fied@x) as well. — —dPU(x). (92
For example, in the Walecka modgd1] the exchange of a 8ko
scalar meson generates attraction between nucleons whereas
massive vector mesons are responsible for repulsion &@ince the Hamiltonian is quadratic iH=p—gA the mo-
shorter distances. In such cases we need to evaluate the fohentum path integral can still be performed so that the La-

lowing Green function grangian path integral representation of the propagator reads
i o
G(x,y)={ X| ———— |y}, (85 - ih— f
(x,y) < T—M*(x)+i0 Y> G(x,y) 2KO[U(x)[lﬂ gAX)]+M] . dTN(T)
iMM*(x)T
where Xex;{ — 0T
2K0
M*(x)=M + S(x) (86) F{ P HX”) y J'
xXexp v —= Dx D
is the effective, position-dependent mass of the fermion. YT X(0)=y L0)+{(T)=T
The previous method of multiplying numerator and de- T

nominator in Eq.(85) by 1+ M* obviously does not work ><exp{ g(o).g(-r)ﬂf dtL(x,k,g,'g)}
anymore since 0 r=o

_ * *\ _ T2 _ *2 * (92)

(M-=M*)(M+M*)=N"—M**+[1,M*] (87)
is not Grassmann even. Consequently there are statementsVifth
the literaturd 27] that in this case a five-dimensional formal-
ism is the only possible approach. However, thisiég the .
case: the problem to rationalize the denominator of the Greefh.(X, X e () i §_2U(x)x —gA(X)- X
function is analogous to the problem of inverting complex
matrices by using only real arithmetic. This is easily 1
achieved by writing ——U(X)F’”(X)Z#Q—zlx ‘U U(x )Z U (x)
—(1—-iA~1B ot 88 +iaZU(x)+2i 8(0)InU(x) (93
A-I—iB_( - )A+BAle. (88) 8k '

Therefore we have The last term arises from the quadratic fluctuations
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g“’—kHkIm?  kMk*Im?

J’_
k2 —m? kZ—m?2/\

H 1

k- UZ(xy)

(99

= ex;{ - 22;, IogU(xk)) GH(K)=—

1 . : .
ZGXF{ i2i —AtY, InU(xk)) (94) s the standard propagator for massive vector partidRes.
At % [24]). From the linear terms id* we read off

in the discretized momentum path integral which are now T
position dependent due to the effective maas(x). The h,(y)=] (y)+igJ dtf doDX ,(t,0) 4 (y—X(t,0)).
awkward 6(0) appears as the formal limit of Af when the # # 0 .
time slicing At is made infinitesimalsee Ref[32], Chap. (100
19) and cancels consistently against other divergeri@ak
For the present purposes the local projection method is
VI. EFFECTIVE ACTION FOR QUENCHED QED preferable because the whole dependence on the photon field
resides in the free photon action and the electron-photon in-
In order to reduce the number of degrees of freedom it ieraction. After integration over the photon field we then
advantageous for some applications to integrate out thgbtain for the generating functionéd7)
bosons which mediate the interactions. The price to be paid
is, of course, a more complicated two-time effective interac- P "
tion. We will outline this procedure by considering quantumz'[j,x]=const ex;{w- _) f dTN(T)
electrodynamic¢QED) (or the Walecka model without sca- ') Jo

lar meson$ i
_ Xexy{—2—M2T>-J’dX
L=Lo(A)+(ib—gA—Mo) ¢, (95 Ko

i : )
where X exy{ —5M X) DxDe'SelX | _ g, (102)
0

1 1
Lo(A)=—ZFuF*+ EmZAZ— 5)\(3"“\)2 (96)  where the effective action is given by

is the Stekelberg Lagrangian with a gauge parametekVe
have given the photons a massin order to regularize in-
frared divergencies.

The generating functional for the two-point function with
an arbitrary number of photons is

1
Seil X,j1=So[ X]+ 5 (h,,,G*"h,). (102

As in Ref.[34], it is advantageous to split it up into terms
involving zero, one or two external sourcgy). The latter
one leads to disconnected diagrams and can be discarded.

1
i x]= - - i i We then have
Z'Tj.x] fDA(x|m . 0|0)exp{|AO[A]+(J,A)}.

©7 Sel X, J1=SUXT+SUX]+SX,j], (103

Here the free vector meson action is denoted ApyfA]

= [d*xLo(A) and we have neglected closed fermion loopswhere the free action is given in EGl4) and the interaction
(quenched approximatior{34] in order to have a single part by

world line for the fermion. For integrating out the vector

field A, we use the path integral representation of the Dirac gz T T d%k
propagator in an external vector field in its supersymmetric S[X]=—%| dt; | do;| dt, | db,

. . . 2 4
form and the Gaussian integration formula 0 0 (2m)

X GHY(K)D X, (t1,01)DX,(t5,60)
xexp{—ik-[X(t1,0;) — X(t,62)]}. (104

[
f DAMex;{E[AM,(G1)’”AV]+(Awh“)
ocexr{lz(hp' ,Gf”hy)} (98)  Note that the “current”

Here J,(X)=DX,(t,0)=—6x,(1)+al,(t) (105

looks similar to scalar QED but is Grassmann odd and does
“If one also wants to integrate out the scalar mesons, the fiveDOt depend on the integration variabte Therefore thek
dimensional Berezin-Marinov description has to be used becaus'éltegra'Flon can.be pgrformed eaS”Y_ giving the photon propa-
only then is a Gaussian path integral for the scalar mesons obtainegator in configuration space with argumen(t,,6,)
our four-dimensional forn{93) is highly nonlinear inS(x). —X(t5,6,) [14]. Written in components the interaction term
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S.ix.] ngTdt dtf d*k GO 1f d“k/ 1 1 i
X,{1=— > X°)=—— - e kX,
1 2)o %) (2m) m?) 2m K—m2n, K2—m?ir,

(109

X G#¥(k)

. 2
x#(t1)+K—O§M(t1)k~ §(t1)} then the corresponding changeSp is given by

X X, (1) (1 et 5%=8,71X] -,
0
(106 _g_zf d’k ~ 20i2/0  aikexy a4 aikex
-2 (277)4A(k )i2(1—e kX (1—ek X

is seen to contain up tquartic terms in the spin variablé. ) )

This means that, unlike the case of external fields, the Grass- =gTAKX)—A(0)] (110
mann variables cannot be integrated out anymore to give a o

“spin factor.” Vice versa, it is impossible to eliminate the While the change ir5, is

photon field starting from the spin factor formulation for the
proﬁr?gas?l:'rce term becomes 582:_igJ dyi(y)-a[ATy=x1%) =~ A(y?)].

(11D

4
Sz[X,j]=igf d4ij(y)detf def d’k Note that not only is the change By , independent of the
0 (2m)* path, so that it may be pulled out of the path integral in Eq.
, i (101), it also does not involve the Grassmann valliedor is
XGH(K)DX,(t, 0)exp{—ik-[X(t,0)—y]}. it dependent on the proper tim& Hence the generating
(107)  function for the Green functions with gauge parameatgis
related to that with gauge paramelarin a very simple way,

It is also possible to use the global projection method whicH'@Mely,

does not have a spin-orbit coupling. However, there is an o (55,4 5851 11

additional dependence on the photon field in the covariant Zx,[i.X]=€"" Z,\ [ix]

derivative acting on the path integral in E¢L8) which

makes it less suitable for deriving an effective action. =exp{igz[A(x2)—A(0)]
To conclude this section, we note that the effective action

in Eqg. (103 allows a particularly concise derivation of the

transformation properties of Green functidmsder a change + gf d*yj(y)- a[A([y—x]12)—A(y?)]

of the gauge parametar. We see from the photon propaga-

tor G, (k) in Eq. (99) that a change in only effects the XZ! [j,x]. (112
1

term proportional tck k, . For this term the integrals over
the proper timeg; and 6; occurring in the effective action

may be performed exactly as the integrand is a total deriv As special cases we can derive the transformation laws for

%he propagator and the electron-photon vertex from this

ove, Le., expressior. Settingj =0 we obtain
T .
[t [ dok-px ppe-xeo GMa(x,0) =P TN 20IGN(x,0, (113
0
T while by differentiating once with respect to the current and
=i J dtf doDe K X0 =j(1—g kX (108  then setting =0 we obtain thguntruncateivertex function
0

, _ Go¥ (yix,0)=g{a[ A([y—x]2) — A(y) G 2(x,0)
The change ir5; [Eq. (104)] andS, [Eq. (107)] induced by
a change in\ from \; to \,, say, is therefore only depen- +eigZ[A(XZ)*A(O)]Ggll“(y;x,O). (114
dent on the end points of the patit) and not on the path ’
. . 2 .
itself. If we defineA(x7) to be the Fourier transform of the |t should be noted that these relations are valid even if the

change of the coefficier[tEZ(kz)] of k,k, in the photon  photon masgwhich violates gauge invariancé kept non-
propagator, i.e., zero in the photon propagator.

SThese transformations were first derived for the electron propa- 8See Ref[35]. Note that in that paper the photon propagator is
gator and the electron-photon vertex by Landau and Khalatnikodefined with a minus sign with respect to ours. Hence our function
[35] and extended to general Green functions by Fradkin and\(y?) is —Ag(y) of Ref.[35] and our untruncated vertex function
Zumino [36]. is the negative of the functioB,, defined by Landaet al.
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VIl. SUMMARY AND CONCLUSIONS methods along the same lines as those used in the study of
. . . the polaron problem as described in R&6]. Furthermore,

: The main purpose of this work Is to explor(_a a four- we showed that it is a rather simple matter to derive the
dimensional path integral representation for the Dirac propay o yay-Khalatnikov transformations for the propagator, ver-
gator general enough to describe the particle’s motion ifey fnction, and indeed any higher-point function from this
both vector and scalar fields. Although the four-dimensionaksmalism.
approach, for an external vector field, was proposed by Di From a field-theoretic point of view, the world line tech-
Vecchia and Ravndal almost twenty years ago, it had repjque is particularly appropriate whenever one deals with a
ceived limited attention up to now. Instead it is standard tosjtuation where internal fermion loops may either be ne-
use the Berezin-Marinov approach where one introduces glected or taken into account perturbatively. As this situation
fith component to eliminate the extra spin degree of free-arises quite naturally in the nonrelativistic regime, the tech-
dom. However, the fifth component has no clear physicahique would appear to be particularly appropriate in that set-
meaning and the necessity of introducingafor the evalu-  ting. We think that the reason it has not received a great deal
ation of the propagator seems rather unnatural. The fouref attention by physicists working in that area is partly due to
dimensional representation avoids these difficulties; in addithe fact that the commonly used five-dimensional represen-
tion the supersymmetry transformations become easier arf@tion appears artificial within this context. In this paper we
more natural to generate. have tried to convey the message that for most problems the

Working within this four-dimensional formalism we have five-dimensional formulation is not only unnecessary but in
presented two alternative methods to project out the unfact less transparent than the four-dimensional one. It is our
wanted spin degree of freedom. The first method project§oPe. therefore, that this paper makes world line techniques
onto the final state after the time evolution and is hencdnOre accessible to a wider audience than they have been up
termed global, whereas in the second method the projectiof? MOW:

is done at each step in the time evolution and it is therefore NOte added in prooRecently it was pointed out to us that

referred to as local. Extending previous work by Reuter the elimination of the fifth spin variable was also considered
by T. Allen using Hamiltonian methodgT. Allen, Phys.

Schmidt, and Schubert we have shown that due to the supelPy

symmetry the two methods are completely equivalent an(t)ett.' B 214, 87(1988; see also T. Allen, Ph.D. thesis, Cali-
may be used according to convenience. The main differenci?rnia Institute of Technology1988]. Also, J. W. van Hol-
between the two approaches is that the path integral reprd€n has advocated the use of a commuting rather than anti-
sentation using the local projection has an explicit spin-orbi€ommuting fifth spin variable and a different four-
coupling term. It was therefore crucial for the proof of dimensional approacfsee the first reference [110] as well
equivalence to generalize the results of Ravndal and Di Vec@S & more concise discussion of the problem in Nucl. Phys. B

chia regarding the supersymmetry transformations to appl§”"0C: Supp). 49, 319 (1998]. Finally, another important

also in the case where the spin-orbit term appears. In Ref ontribution to the literature on spin in path integrals missing

[16,17] it was pointed out that, in the case where no spin- rom Ref..[6] is the paper by M. Halpern, A. Jevicki, and P.
orbit term was present, a simple way of generating botPenianovidPhys. Rev. D16, 2476(1977]. We are grateful

bosonic and fermionic transformations is to shift the tirhes t© Professor T. Allen, Professor M. Halpern, and Professor J.

and 6. We show in this paper that in the presence of a spinyv. van Holten for correspondence regarding these refer-

orbit term in addition to a shift an appropriate scaling of the®NCES.
timest and # is needed in order to generate the correct su-
persymmetry transformations. This scaling is such that the ACKNOWLEDGMENTS
parametetc, and the supertimg remain unchanged. ) ) ) ]
For the case of a Dirac particle in an external scalar po- We would like to thank Michael Marinov for helpful dis-
tential it was generally believed that a five-dimensional apussions. One of UGA.W.S,) was supported by the Austra-
proach was unavoidable. We have here shown that thistis lian Research Council.
the case and we used the four-dimensional description to
obtain the Dirac propagator in an e_xtgrnal scalar_field. APPENDIX: SPIN PATH INTEGRAL FOR THE TIME
Desp|.te_ the attentlgn given _to spin in the path mtegrgls, a EVOLUTION OPERATOR
nonrelativistic reduction starting directly from the Dirac
propagator was still missing. By expanding the relativistic =~ Here we consider the matrix element of the time evolution
expression in powers of W we were able to reduce the path operator
integrals to three-dimensional form and to obtain the leading
nonrelativistic result described by the Foldy-Wouthuysen

Hamiltonian. U(x,y)=(x|exp(—iHT)|y), (A1)
Finally we applied the four-dimensional approach to
quenched QED in order to obtain a supersymmetric formuwhere
lation for the generating functional of Green functions with
one electron line and an arbitrary number of external photon - A A
) o H=H(P.X,7) (A2)

lines. It was possible to do this as in the quenched approxi-
mation the photons can be integrated out, yielding a path
integral only in the electron degrees of freedom, albeit with ds a Weyl-ordered Hamiltonian. Breaking up the evolution
complicated nonlocal interaction. In this form one can applyoperator inN time steps we obtain in the usual way
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: d*p; d*py = T
U(x,y)= lim f d4Xl”.d4XNil(27T)4.”(27T)4 V(T) TEXP{ fo dtp#(t)y,(1)

N—oo

N T ty
Xex% _i,Zl Pi- (Xi=Xj-1) =exp{ - Jo dtlJo dtzp#(tl)p“(tZ)]

-
Xexd —iHw(Pn XN, Yn) AL - - Xepr dtpf‘(t)m}. (A7)
0
X exf —iHw(p1,X1,v1)At] (A3)
This can be proved by solving the corresponding evolution
equation
with Xo=y andxy=Xx. Here
o= AT N(T)
T =pMMy,V(T), V(O)=1  (Ag)

Y|~ Y\
Hw(p,X,)’):J d4y<X—§”H X+ §> e ®Y (A4 by using the Magnus expansif88]

T
V(T)=exp[ f dtp*(t)y,

is the Wigner transformior Weyl symbo) of the Hamil- 0
tonian which is the closest classical analog to iéeyl- 10T 0
ord_ered quantum op_eratoi37]. We will suppress the sub- + EJ dtlf dto[ p,u(ty) ¥4, pu(t2) Y"1+ - - 1.
script W in the following. 0 0

.There are two essential steps to derive a path integral with (A9)
spin.

(i) Because the Dirac matrices do not commute, the orderfhe commutator yields- 2p,,(t1) p*(t2) which is a commut-
ing of the factors is essential and the exponentials cannot biég c number so that all higher terms in the expansion which
combined with impunity. As is well known this also happensinvolve multiple commutators vanish. On the right-hand side
in ordinary quantum mechanics for time dependent Hamiltoof Eq. (A7) we can now drop the artificial time dependence
nians. We therefore have assigned an artificial timeof the Dirac matrices.
dependence to the Dirac matrices and can write now the time (ji) The differentiations with respect t*(t) which are
evolution operator as a time-ordered path intef8l required in Eq.(A5) can only be performed easily if they
appear linearly in the exponent. This can be achieved by
“undoing the square,” which is a standard proced{26].
However, becausg(t) is anticommuting and one needs an
even object in the exponent as evolution operator, we have to
do it with the help of a Grassmann path integral. We thus use

Xexp{ —ifOTdt{p~§(+H[p(t),x(t),y(t)]}} the identity

- Dxppexp{ [T exr){ - [ ay J;dtzpml)p#(tz)]

U(x,y)=f DxDpT

p-x

T .
B _ B
o p(“'x(t)’m)“if f Dgexﬂ' fo dif §u(t)§“(t)+2p”(t)§u(t)]]
T . -1
T —
xex;{ fo dtp”(t) y,(1) (A5) X ngexp( fo dth(t)gﬂ(t)) (A10)

pH=0
and the antiperiodic boundary conditign,(0)+£,(T)=0
for the Grassmann path integral. The standard way of prov-
Here p#(t) are Grassmann sources which are assumed timg this identity in the continuum formulation is by solving
anticommute with the Dirac matrices. The boundary condithe (differentia) equations of motion which should give the
tions for thex-space path integral are exact result for quadratic actions. However, it is very useful
(and reassuringto have an unambiguous formulation with
finite time stepsAt, which we will present now: the dis-
X, (0)=Yy,, X, (T)=X,. (AB6) cretized form of

T .
= — — iz 1
The time-ordering symbal would be disastrous for further S fo df = £.(DED T2p" (M) E,(M]  (ALD)

manipulation of the path integral. However, in the special
case it can be eliminated by the relation may be written as
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required result. Having proven the relatioh10) by writing
, the functional integrals in a well defined discretized form we
can now use it in Eq(A5) with all manipulations formally
done in the continuum.
Using the representation

s=2,

i=1

fi#Jr _fiuf At
m(%) = P El 28 E )

(A12)

whereAt=T/N andN needs to be even for the path integral

to be an even quantity. In discretized form the path integral T

over ¢ in Eq. (A10) can now be done by the stationary phaseexp{ J dtp“(t)y#}
method. Thedifference equation of motion 0

(A17)

At _ 7 !
1= 8=— 7(PII<L+1+ZPil<L+P{<L—1) (A13) _exp{ Vi 311} eXW’ fo dtp‘“(t)FMJ

can be solved using antiperiodic boundary conditionséfor we obtain
e, éN=—¢&h. &Ni1=— &L . Itis convenientbut not nec-

essary to impose the equivalent boundary conditions gor U(x y)=ex;{ y- i) f DXDpDENexp — i det[p~$<
Note that the particular discretization pft)-£(t) in Eq. ' ar 0

F#ZO

(A12) is chosen so that the equations of motié13) for the

odd gnd even _sites are coupled. This_ avoids the infamous —i§-§+H(p,X,2§+F)] ) (A18)
“fermion doubling” problem. The solution to the equation r—o
of motion is
i \ Here
At At
Mo p_ /I Iz ) T . -1
i~ P Atkzl Pkt 5 kzl Py - (Al4) NSPin— ngeXF{ _f dtgﬂgl‘) (A19)
0

Substituting the solutiod,, into Eq. (A12) we find is a normalization factor for the spin integral. Note that the
operation in Eq(A17) is in generahotjust a replacement of
N i-1 (A1)? N the boundary variablE by the corresponding Dirag matrix
Su=(AD2Y pi > plt—5—2 puilplii—ply). but involves an antisymmetrization as well. For example,
=1 8 = exply- T Jr—o=7,., but

(A15)
a 2
The path integral ove¢ can now be performed yielding ex 7”5] I, F_OZE( v 0_F) Fuly o
f Déexd — S| o9
— ——exi-Sy  (A16) ~2| 7 or) (el hur)|
_ u
ngex;{ Jo £,.€ 1
=5 (=YYt Yuyy) (A20)

since the determinant from the quantum fluctuations is can-
celed by the denominator. Taking the continuous limiSgf  This is the inverse transformation of the Weyl representation
only the first term in Eq(A15) survives and we obtain the for fermionic operators.
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