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Quantum version of the Monty Hall problem

A. P. Flitney* and D. Abbott†

Centre for Biomedical Engineering (CBME) and Department of Electrical and Electronic Engineering, Adelaide University,
South Australia 5005, Australia

~Received 2 October 2001; published 14 June 2002!

A version of the Monty Hall problem is presented where the players are permitted to select quantum
strategies. If the initial state involves no entanglement the Nash equilibrium in the quantum game offers the
players nothing more than that obtained with a classical mixed strategy. However, if the initial state involves
entanglement of the qutrits of the two players, it is advantageous for one player to have access to a quantum
strategy while the other does not. Where both players have access to quantum strategies there is no Nash
equilibrium in pure strategies, however, there is a Nash equilibrium in quantum mixed strategies that gives the
same average payoff as the classical game.
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I. INTRODUCTION

Inspired by the work of von Neumann@1#, classical infor-
mation theorists have been utilizing the study of games
chance since the 1950s. Consequently, there has been
cent interest in recasting classical game theory with quan
probability amplitudes, to create quantum games. The se
nal paper by Meyer in 1999@2# pointed the way for gener
alizing the classical theory of games to include quant
games. Quantum strategies can exploit both quantum su
position @2,3# and quantum entanglement@4,5#. There are
many paradoxes and unsolved problems associated
quantum information@6# and the study of quantum gam
theory is a useful tool to explore this area. Another motiv
tion is that in the area of quantum communication, optim
quantum eavesdropping can be treated as a strategic g
with the goal of extracting maximal information@7#. It has
also been suggested that a quantum version of the M
Hall problem may be of interest in the study of quantu
strategies of quantum measurement@8#.

The classical Monty Hall problem@9,10# has raised much
interest because it is sharply counterintuitive. Also from
informational viewpoint it illustrates the case where an a
parent null operation does indeed provide information ab
the system.

In the classical Monty Hall game the banker~‘‘Alice’’ !
secretly selects one door of three behind which to plac
prize. The player~‘‘Bob’’ ! picks a door. Alice then opens
different door showing that the prize is not behind it. B
now has the option of sticking with his current selection
changing to the untouched door. Classically, the optim
strategy for Bob is to alter his choice of door and this, s
prisingly, doubles his chance@9# of winning the prize from1

3

to 2
3 .

II. QUANTUM MONTY HALL

A recent attempt at a quantum version of the Monty H
problem @8# is briefly described as follows: there is on
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quantum particle and three boxesu0&, u1&, and u2&. Alice
selects a superposition of boxes for her initial placemen
the particle and Bob then selects a particular box. The
thors make this a fair game by introducing an addition
particle entangled with the original one and allowing Alice
make a quantum measurement on this particle as a part o
strategy. If a suitable measurement is taken after a bo
opened it can have the result of changing the state of
original particle in such a manner as to ‘‘redistribute’’ th
particle evenly between the other two boxes. In the origi
game Bob has a2

3 chance of picking the correct box b
altering his choice but with this change Bob has1

2 probabil-
ity of being correct by either staying or switching.

In the literature there are various explorations of quant
games@2,4,5,8,11–19#. For example, the prisoner’s dilemm
@4,12,13#, penny flip@2#, the battle of the sexes@11,14#, and
others@15–19#. In this paper we take a different approach
Ref. @8# and quantize theoriginal Monty Hall game directly,
with no ancillary particles, and allow the banker and/
player to access general quantum strategies. Alice’s
Bob’s choices are represented by qutrits@20# and we suppose
that they start in some initial state. Their strategies are
erators acting on their respective qutrit. A third qutrit is us
to represent the box ‘‘opened’’ by Alice. That is, the state
the system can be expressed as

uc&5uoba&, ~1!

where a5Alice’s choice of box,b5Bob’s choice of box,
ando5the box that has been opened. The initial state of
system shall be designated asuc i&. The final state of the
system is

uc f&5~Ŝcosg1N̂ sing!Ô~ Î ^ B̂^ Â!uc i&, ~2!

whereÂ5Alice’s choice operator or strategy,B̂5Bob’s ini-
tial choice operator or initial strategy, Oˆ 5the opening box
operator, Sˆ5Bob’s switching operator,N̂5Bob’s not switch-
ing operator,Î 5the identity operator, andgP[0,p/2].

It is necessary for the initial state to contain a designat
for an open box but this should not be taken literally~it does
©2002 The American Physical Society18-1
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A. P. FLITNEY AND D. ABBOTT PHYSICAL REVIEW A 65 062318
not make sense in the context of the game!. We shall assign
the initial state of the open box to beu0&.

The open box operator is a unitary operator that can
written as

Ô5(
i jk ,

ue i jk uun jk&^, jku1(
j ,

um j j&^, j j u, ~3!

where ue i jk u51, if i , j ,k are all different and 0 otherwise
m5( j 1,11) ~mod3!, andn5( i 1,) ~mod3!.

The second term applies to states where Alice would h
a choice of box to open and is one way of providing a uniq
algorithm for this choice@21#. Here and later the summation
are all over the range 0,1,2. We should not consider Oˆ to be
the literal action of opening a box and inspecting its conte
that would constitute a measurement, but rather it is an
erator that marks a box~i.e., sets theo qutrit! in such a way
that it is anticorrelated with Alice’s and Bob’s choices. T
coherence of the system is maintained until the final stag
determining the payoff.

Bob’s switch box operator can be written as

Ŝ5(
i jk ,

ue i j ,uu i ,k&^ i jk u1(
i j

u i i j &^ i i j u, ~4!

where the second term is not relevant to the mechanics o
game but is added to ensure unitarity of the operator. Botˆ

and Ŝmap each possible basis state to a unique basis s
N̂ is the identity operator on the three-qutrit state. TheÂ

5(ai j ) andB̂5(bi j ) operators can be selected by the play
to operate on their choice of box~that has some initial value
to be specified later! and are restricted to members of SU(3).
Bob also selects the parameterg that controls the mixture o
staying or switching.

In the context of a quantum game it is only the expec
tion value of the payoff that is relevant. Bob wins if he pic
the correct box, hence

^$B&5(
i j

u^ i j j uc f&u2. ~5!

Alice wins if Bob is incorrect, sô$ A&512^$ B&.

III. SOME RESULTS

In quantum game theory it is conventional to have
initial state u000& that is transformed by an entangleme
operatorĴ @4#. Instead we shall simply look at initial state
with and without entanglement. Suppose the initial state
Alice’s and Bob’s choices is an equal mixture of all possib
states with no entanglement:

uc i&5u0& ^
1

A3
~ u0&1u1&1u2&) ^

1

A3
~ u0&1u1&1u2&).

~6!

We can then compute
06231
e

e
e

ts
p-

of

he
O
te.

s

-

n
t

f

Ô~ Î ^ B̂^ Â!uc&5
1

3 (
i jk

ue i jk u~b0 j1b1 j1b2 j !~a0k1a1k

1a2k!u i jk &1
1

3 (
j

~b0 j1b1 j1b2 j !

3~a0 j1a1 j1a2 j !um j j&, ~7!

ŜÔ~ Î ^ B̂^ Â!uc i&5
1

3 (
i jk

ue i jk u~b0 j1b1 j1b2 j !~a0k1a1k

1a2k!u ikk&1
1

3 (
jk

ue jkmu~b0 j1b1 j

1b2 j !~a0 j1a1 j1a2 j !umk j&,

wherem5( j 11) ~mod3!. This gives

^$B&5
1

9
cos2g(

jk
~12d jk!ub0 j1b1 j1b2 j u2ua0k1a1k

1a2ku21
1

9
sin2g(

j
ub0 j1b1 j1b2 j u2ua0 j1a1 j

1a2 j u2. ~8!

We are now in a position to consider some simple cas
If Alice chooses to apply the identity operator, which
equivalent to her choosing a mixed classical strategy wh
each of the boxes is chosen with equal probability, Bo
payoff is

^$B&5S 2

9
cos2g1

1

9
sin2g D(

j
ub0 j1b1 j1b2 j u2. ~9!

Unitarity of B implies that

(
k

ubiku251 for i 50,1,2, ~10!

and (
k

bik* bjk50 for i , j 50,1,2 with iÞ j ,

which means that the sum in Eq.~9! is identically 3. Thus,

^$B&5
2

3
cos2g1

1

3
sin2g, ~11!

which is the same as a classical mixed strategy where
chooses to switch with a probability of cos2g ~payoff 2

3 ) and
not to switch with probability sin2g ~payoff 1

3 ).
The situation is not changed where Alice uses a quan

strategy and Bob is restricted to applying the identity ope
tor ~leaving his choice as an equal superposition of the th
possible boxes!. Then Bob’s payoff becomes

^$B&5S 2

9
cos2g1

1

9
sin2g D(

j
ua0 j1a1 j1a2 j u2, ~12!
8-2
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which, using the unitarity ofA, gives the same result as E
~11!.

If both players have access to quantum strategies, A
can restrict Bob to at most^$ B&5 2

3 by choosingÂ5 Î , while
Bob can ensure an average payoff of at least2

3 by choosing
B̂5 Î andg50 ~switch!. Thus this is the Nash equilibrium o
the quantum game and it gives the same results as the
sical game. The Nash equilibrium is not unique. Bob can a
choose either of

M̂15S 0 1 0

0 0 1

1 0 0
D or M̂25S 0 0 1

1 0 0

0 1 0
D , ~13!

which amount to a shuffling of Bob’s choice, and then swit
boxes.

It should not be surprising that the quantum strateg
produced nothing new in the previous case since there
no entanglement in the initial state@22#. A more interesting
situation to consider is an initial state with maximal e
tanglement between Alice’s and Bob’s choices:

uc i&5u0& ^
1

A3
~ u00&1u11&1u22&). ~14!

Now

Ô~ Î ^ B̂^ Â!uc i&5
1

A3
(
i jk ,

ue i jk ub, ja,ku i jk &

1
1

A3
(
j ,

b, ja, j um j j&, ~15!

ŜÔ~ Î ^ B̂^ Â!uc i&5
1

A3
(
i jk ,

ue i jk ub, ja,ku ikk&

1
1

A3
(
jk,

ue jkmub, ja, j umk j&,

where againm5( j 11) ~mod3!. This results in

^$B&5
1

3
sin2g(

j
ub0 ja0 j1b1 ja1 j1b2 ja2 j u2

1
1

3
cos2g(

jk
~12d jk!ub0 ja0k1b1 ja1k1b2 ja2ku2.

~16!

First consider the case where Bob is limited to a class
mixed strategy. For example, settingB̂5 Î is equivalent to
the classical strategy of selecting any of the three boxes
equal probability. Bob’s payoff is then

^$B&5
1

3
sin2g~ ua00u21ua11u21ua22u2!1

1

3
cos2g~ ua01u2

1ua02u21ua10u21ua12u21ua20u21ua21u2!. ~17!
06231
e

as-
o

s
as

al

th

Alice can then make the game fair by selecting an opera
whose diagonal elements all have an absolute value of 1A2
and whose off-diagonal elements all have absolute value1

2 .
One such SU(3) operator is

Ĥ5S 1

A2

1

2

1

2

2
1

2

32 iA7

4A2

11 iA7

4A2

212 iA7

4A2

231 iA7

8

51 iA7

8

D . ~18!

This yields a payoff to both players of12 , whether Bob
chooses to switch or not.

The situation where Alice is limited to the identity oper
tor ~or any other classical strategy! is uninteresting. Bob can
achieve a payoff of 1 by settingB̂5 Î and then not switching.
The correlation between Alice’s and Bob’s choice of box
remains, so Bob is assured of winning. Bob also wins if
appliesM̂1 or M̂2 and then switches.

As noted by Benjamin and Hayden@12#, for a maximally
entangled initial state in a symmetric quantum game, ev
quantum strategy has a counterstrategy since for anyU
PSU(3),

~Û ^ Î !
1

A3
~ u00&1u11&1u22&)

5~ Î ^ ÛT!
1

A3
~ u00&1u11&1u22&). ~19!

Since the initial choices of the players are symmetric, for a
strategyÂ chosen by Alice, Bob has the counterÂ* :

~Â* ^ Â!
1

A3
~ u00&1u11&1u22&)

5~ Î ^ ÂÂ†!
1

A3
~ u00&1u11&1u22&)

5
1

A3
~ u00&1u11&1u22&). ~20!

The correlation between Alice’s and Bob’s choices remai
so Bob can achieve a unit payoff by not switching boxes

Similarly for any strategyB̂ chosen by Bob, Alice can
ensure a win by countering withÂ5B̂* if Bob has chosen
g50, while ag51 strategy is defeated byB̂* M̂ , whereM̂
is M̂1 or M̂2 given in Eq.~13!. As a result there is no Nas
equilibrium amongst pure quantum strategies. Note that
ice can also play a fair game, irrespective of the value ofg,
by choosingB̂* Ĥ, giving an expected payoff of12 to both
players. A Nash equilibrium amongst mixed quantum stra
gies can be found. Where both players choose to playÎ , M̂1

or M̂2 with equal probabilities neither player can gain
8-3
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advantage over the classical payoffs. If Bob chooses
switch all the time, when he has selected the same ope
as Alice, he loses, but the other two times out of three
wins. Not switching produces the complementary payoff
^$ B&5 1

3 , so the situation is analogous to the classical ga

IV. CONCLUSION

For the Monty Hall game where both participants ha
access to quantum strategies, maximal entanglement o
initial states produces the same payoffs as the classical g
That is, for the Nash equilibrium strategy the player, Bo
wins two-thirds of the time by switching boxes. If th
banker, Alice, has access to a quantum strategy while
e

in

et

.

n

06231
to
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e
f
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b

does not, the game is fair, since Alice can adopt a strat
with an expected payoff of12 for each person, while if Bob
has access to a quantum strategy and Alice does not he
win all the time. Without entanglement the quantum ga
confirms our expectations by offering nothing more than
classical mixed strategy.
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