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Error Propagation and Recovery in Decision-Feedback Equalizers
for Nonlinear Channels

John Tsimbinos, Member, IEEE,and Langford B. White, Member, IEEE

Abstract—Nonlinear intersymbol interference is often present
in communication and digital storage channels. Decision-feedback
equalizers (DFEs) can decrease this nonlinear effect by including
appropriate nonlinear feedback filters. Although various applica-
tions of these types of equalizers have been published in the liter-
ature, the analysis of their stability and error recovery has not ap-
peared. In this letter, we consider a DFE with a nonlinear feedback
filter based on a discrete Volterra series. We extend error propa-
gation, error probability, stability, and error recovery time results
for th-order nonlinear channels.

Index Terms—Decision-feedback equalizers, error analysis, non-
linear distortion, nonlinear filters, Volterra series.

I. INTRODUCTION

NONLINEAR intersymbol interference (ISI) caused by
channel nonlinearities can significantly increase the

error rate in communication and digital storage channels. A
decision-feedback equalizer (DFE) is aimed at decreasing the
effect of this nonlinear process by incorporating nonlinear
feedforward and feedback filters. The nonlinear feedback filter
may be of the form of a discrete time Volterra series, a look-up
table, or a neural network [1]–[5]. Basic details of DFEs for
nonlinear channels, and their applications have been sparsely
published in the literature. However, to the best of the authors’
knowledge, no work has appeared on the error propagation and
recovery of such equalizers. In this letter we consider a DFE
with a nonlinear feedback filter based on a discreteth-order
Volterra series, a natural nonlinear extension of the linear finite
impulse response (FIR) filter. We determine the effect of the
nonlinear extensions on the error propagation analysis, error
probability analysis, stability analysis, and error recovery time.

II. NONLINEAR CHANNEL MODEL

The discrete time Volterra model [6] is a natural extension of
the widely used linear FIR channel model. Such a model has
been used to extend the DFE to the nonlinear channel case [4],
[5]. The th-order discrete time Volterra model adopted in this
letter is given by (1). For the purpose of our analysis we as-
sume only postcursor terms, and that any precursor terms can
be dealt with by prefiltering. is the channel output for an
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Fig. 1. Nonlinear channel equalizer with Volterra feedback filters.

input and white Gaussian noise .
are the Volterra kernels, and , are the associ-
ated memories.

(1)

III. DFE WITH VOLTERRA FEEDBACK FILTER

Nonlinear intersymbol interference is a function of previous
as well ascurrentsamples, necessitating the need for the DFE to
make tentative decisions. Such an equalizer is shown in Fig. 1.
We separate the nonlinear ISI components not containing the
current sample , and subtract them from the system output
to obtain a reasonable tentative decision. For a second-order
nonlinear system, a tentative decision would be

, where denotes
quantization. The final decision of such an equalizer is given by

(2)

We define the first-order error variable as

, the second-ordererror variable as
for ,

, and . The
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th-order error is , and is similarly defined.
The final decision estimate can be written as

(3)

We consider an -ary random data sequence , independent
and identically distributed. The corresponding decision device

is an level quantizer. We can write

.

IV. DEFINITION OF ERRORSTATES

The operation of a DFE may involveprimary andsecondary
errors. A primary error is one due to noise in the channel. The
amount of noise required to produce a primary error will be
determined by the level of the ISI. The primary error may then
lead to a secondary error due to the feedback in the DFE. Error
states may be defined according to past and present errors made
in the DFE.

We can carry out an error propagation analysis of a DFE for
nonlinear channels by considering past error states. We consider
the aggregated Markov states model introduced in [7] and used
in [8]–[13] for the linear channel case. This model groups the
Markov states according to the most recent error, and is used
for determining error probability and error recovery times. This
model can also be used for theth-order nonlinear channel case
considered in this letter.

A prerequisite for obtaining an th-order error
associated with an th-order product of

decisions, is the existence of at least one first-order error
, which has a common time instance with theth-order

error. Therefore, the time extent of higher-order errors can
be defined in terms of the time extent of first-order errors. If
there are no first-order errors up to a particular time instant,
we can say that all higher-order errors involving products of
decisions up to these time instances are also zero. Therefore,
for an th-order nonlinear channel, the error statesstates
can still be defined according to the position of the most recent
first-order error , but for a maximum channel memory

that takes into account the
memory of the nonlinear components. is the zero error
state. Table I gives a representation of the states, and the state
transition diagram is given in Fig. 2. For the linear channel
case where , the steady-state transition probabilities

TABLE I
STATE ASSIGNMENT FOR THENTH-ORDER NONLINEAR CHANNEL CASE

(E= ERROR, 0= NO ERROR, X = DO NOT CARE)

Fig. 2. State transition diagram forN th-order nonlinear system with memory
M .

are given in [7]. Similar steady-state transition probabilities
can be determined for theth-order nonlinear channel case by
taking into account the full memory of the nonlinear channel:

, , where
is the current state, and , . is
the probability of error due to noise in the absence of any past
errors.

V. STABILITY ANALYSIS

Stability is defined in terms of the ability for the DFE to re-
cover from the effects of a primary error (return to a zero error
state denoted ) in a finite error recoverytime, in the absence
of noise. Thesufficientconditions for stability are based on an
open eye, and do not allow errors to occur without noise, leading
to fast error recovery. For the linear channel case, sufficient con-
ditions based on an open eye are given in [11], as

(4)

For a channel with up to th-order nonlinear ISI, the open eye
sufficient condition for stability is given by

(5)

The sufficient condition for stability given in this section is
quite restrictive and may not always be easily satisfied. De-
termining less restrictive (necessary) conditions for the non-
linear case is beyond the scope of this letter and although it is a
problem for further investigation, it is of little practical interest.
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TABLE II
TABLE OF ERROR PROBABILITY EXPRESSIONS FORNTH-ORDER

NONLINEAR CHANNELS

Violating the sufficient conditions in general would result in an
increase in the error probability, leading to longer error recovery
times. In the extreme case, it may result in no recovery, although
the input sequences that result in such a failure have such a spe-
cial structure, that their occurrence in a communications system
would have a probability of zero [11]. Several such “pathalog-
ical” sequences are considered in [11] and [12]. Of more interest
is the error probability and error recover times for the various
channel conditions. These are dealt with in the following sec-
tions.

VI. ERRORPROBABILITY

DFE error probability for the linear channel case has been
studied in [7]–[10]. The work is based on modeling the error
transition problem as an aggregated Markov state model [7],
and the theory of success runs covered in [14]. Here we have
extended the error probability upper bounds of a DFE to the

th-order nonlinear channel case, by considering the memory
of the nonlinear terms. The results are summarized in Table II.

VII. ERRORRECOVERY

The average error recovery time is the average time for
the DFE to transition from the error state where a primary
error due to noise has occurred, to the zero error state, under
zero noise conditions. Intuitively, from Fig. 2, the minimum pos-
sible error recovery time is . Error recovery of DFEs has been
extensively studied for the linear channel case [11]–[13]. The
error recovery expressions given in [11] and [12] are indepen-
dent of the type of channel, and tend to be very much conserva-
tive for most practical channels. Reference [13] provides an easy
to follow analysis for the linear channel case by expressing the
average error recovery time in terms of the transition probabili-
ties , and then determining bounds for these transition proba-
bilities, which are the same as in [11]. Reference [13] then intro-
duces channel conditions in order to obtain expressions for the
actual average error recovery time, and in certain cases, tighter
upper bounds.

The purpose of this section is to extend the error recovery
time results for the th-order nonlinear channel case. Our
approach is based on the channel dependent results of [13].
Using the corresponding closed eye and open eye conditions
based on the stability analysis results given in an earlier section,
allows the selection of the appropriate error recovery time
expressions. Secondly, the error recovery time expressions
have been modified to account for the memory of the nonlinear

TABLE III
TABLE OF ERROR RECOVERY TIME EXPRESSIONS FORNTH-ORDER

NONLINEAR CHANNELS

components. is the upper error recovery time bound,
and . Error recovery bounds
that apply for any channel condition, and any signal-to-noise
ratio (SNR) are given. Average error recovery times based on
channel (closed eye and open eye) conditions are given for the
noiseless case, and generally apply for high SNR conditions.
Tighter error recovery time bounds can be obtained by closely
considering the eye condition during the error recovery time.
The last Volterra kernels that span a time period samples
may strictly close the eye [see (6)] or nonstrictly close the eye
[see (7)]. But, the last Volterra kernels that span a time period
of samples may not close the eye [see (8)]. In such a case,
an initial, slow,closed eyeerror recovery will be followed by
a fast,open eyeerror recovery for the last samples, allowing
tighter error recovery time bounds to be determined. The results
are summarized in Table III.

(6)

(7)

(8)
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VIII. C ONCLUSION

We have considered a DFE suitable forth-order nonlinear
channels. We have shown the effect of the nonlinear terms by
extending the stability criteria, error probability, and error re-
covery results to the th-order nonlinear channel case. The re-
sults presented are based on the error propagation over the max-
imum memory of the channel, including the memory of the non-
linear terms. The stability conditions take into account the non-
linear components and the maximum higher-order error values.
The error probability and error recovery times take into account
the memory of the nonlinear terms and the new stability condi-
tions.
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