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A New Bound and Algorithm for Star 16-QAM Carrier Phase Estimation
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Abstract—The true Cramér–Rao lower bound (CRLB) is de-
rived and evaluated for the estimation of carrier phase of Star
16-quadrature amplitude modulation (QAM) and can be simply
applied to carrier frequency estimation. Different geometries are
investigated by varying the ring ratio (RR). For signal-to-noise ra-
tios (SNRs) between 6–15 dB, the CRLB with RR= 3 is lower than
that of Square 16-QAM. A modified phase estimator is presented,
which closely follows the new CRLB. Investigation of symbol error
performance in short packet length reveals Star 16-QAM to be su-
perior to Square 16-QAM for SNR 13 dB, which is a reasonable
operating range for a coded system. Although Square 16-QAM and
Star RR= 1 8 are optimum for a perfect receiver, when the effect
of phase estimation is considered, we find Star RR= 3 to be better
for SNR below 10 dB.

Index Terms—Cramér–Rao lower bounds (CRLB), frequency
estimation, phase estimation, quadrature amplitude modulation
(QAM), synchronization.

I. INTRODUCTION

QUADRATURE amplitude modulation (QAM) techniques
[2] are used to transmit -bit symbols via a 2 signal
point constellation, distributed on a complex plane. By

selecting large , a highly bandwidth efficient modulation
scheme can be designed.

Star 16-QAM [2] was proposed as it can be differential
detected with noncoherent techniques. Differential detection
is computationally simpler than coherent detection, however,
it suffers a performance loss. Star QAM has the property that
its peak-to-average power ratio is less than that for Square
QAM. This means that Star QAM can operate at higher power
(less backoff from saturation) in a practical radio transmitter.
Therefore, there may be situations where Star QAM combined
with coherent detector can be the preferred scheme.

The coherent detector requires phase knowledge which, in
practice, must be estimated. The Cramér–Rao lower bound
(CRLB) for the phase estimate of an unmodulated carrier wave
(CW) is well known [3]. The modified CRLB (MCRB) [4]–[6]
and the asymptotic CRLB (ACRB) [7] are good approximations
for the true bound for -ary phase-shift keying (MPSK)/QAM
modulated signals at higher signal-to-noise ratios (SNRs).
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However, they depart significantly from the true CRLB at low
SNR. Recently, the true CRLBs for Square QAM was derived
and evaluated [1].

This paper is concerned with evaluating the CRLBs for Star
16-QAM and a modified phase estimator. We assume a static
flat channel with no knowledge of the transmitted sequence,
i.e., preamble or pilot symbols. Several authors have suggested
phase estimators for this scenario [8]–[11]. Without knowledge
of the true CRLB, it is impossible to know how far these tech-
niques are from the fundamental performance limits.

In Section II, we derive the Star 16-QAM CRLB expression
and evaluate it using a numerical approach. A comparison of
CRLBs for CW, binary phase-shift keying (BPSK), quaternary
phase-shift keying (QPSK) [12], 8-phase-shift keying (PSK),
Star 16-QAM, and Square 16-QAM [1] is given. It is shown
that the ratio of CRLB for a modulated signal to the
CRLB for CW is the same for phase estimation and frequency
estimation [1]. is particularly useful to designers
in determining the limiting performance of synchronization cir-
cuits for coherent receivers for an arbitrary observation interval.

Section III presents a two-stage conjugate phase estimator
for Star 16-QAM. This algorithm uses a non-decision-directed
approach first, then a decision-directed approach. The simula-
tion results are compared to the CRLBs evaluated in Section II.
The performance of the new algorithm follows the new CRLB
clearly at moderate SNR and converge to the bound at high SNR.

Section IV discusses the CRLBs for Star 16-QAM constella-
tions with different inner to outer ring ratios (RRs). The prob-
abilities of symbol error with various RRs for both a perfect
receiver and optimum receiver in an additive white Gaussian
noise (AWGN) channel also are presented. The perfect receiver
is taken to be the receiver with perfect phase and frequency
knowledge; whereas, the optimum receiver has phase (and fre-
quency) estimate(s) with variance(s) equal to the (respective)
CRLBs.

Section IV also investigates the effect of Star 16-QAM RR on
symbol error rate. The RR effect on error rate is determined by
considering an optimum receiver, i.e., with the phase estimation
matching the CRLB. It is found that with an optimum receiver
at SNR below 10 dB, an RR of three gives better performance
than other RRs, including and Square 16-QAM. Brief
conclusions are presented in Section V.

II. TRUE CRLBS FORSTAR 16-QAM PHASE AND FREQUENCY

ESTIMATION

The Star 16-QAM has two level amplitudes, and , that
is, two circles around the origin. Each circle has eight phase
points on the ring. Fig. 1 shows Star 16-QAM constellation with

. The unit average energy constellation set
.
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Fig. 1. Star 16-QAM constellation.

A. Phase CRLB for Star 16-QAM

We initially assume that a received QAM square constellation
signal has an unknown fixed phase offset, and that the signal
has been ideally filtered and sampled at the optimum sampling
instant. In this case, the received samples are

(1)

where are the transmitted symbols of Star 16-QAM con-
stellation of unit average energy. is the th noise sample
whose real and imaginary parts are independent zero-mean
Gaussian random variables, each with variance, and the

’s are mutually independent.
We will use the convention that is the probability den-

sity function (pdf) for a random variable and use boldface
symbols to denote vectors; where the meaning is clear, we will
drop the subscript.

The CRLB on the variances of an unbiased estimator of,
namely, for a sequence of symbols, is given by [13]

(2)

where and denotes statistical ex-
pectation with respect to the pdf .

The pdf of Star 16-QAM is given by can be derived as fol-
lows:

(3)

where and stand for real and imaginary parts.
Taking the logarithm and retaining the terms dependent on,

we obtain the corresponding log-likelihood function. Then take
the second partial derivative with respect to, as shown in (4)
at the bottom of the page, where is defined by the three
terms within the large curly brackets.

The expectation of the second derivative is [1], [14]

(5)

Now define

(6)

Thus, from (2) and (5), we obtain

(7)

We note that in (7) corresponds to the
CRLB for estimation of CW phase over symbol intervals.

(4)
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Fig. 2. RatiosF of CRLB for various modulations to CRLB for Carrier.

is, therefore, the ratio of the CRLB for random
QAM signals to the CRLB for CW of the same power. Although
an analytical solution for is not feasible, we can
evaluate it numerically.

The new result for Star 16-QAM with RR is compared
with the results from [1] in Fig. 2. The ratios eventually
converge to one as SNR increases, i.e., the CRLBs converge
to the CRLB of CW. As expected, the more spectrally efficient
modulations require a higher SNR to approach the CW CRLB.
At low SNR, the simpler signal set has a lower CRLB. At SNR
6–15 dB, the CRLB with RR is lower than that of Square
16-QAM.

It may be observed that the Square 16-QAM and 64-QAM
bounds converge at low SNRs. Once the symbols become in-
distinguishable due to noise, the shape of the constellation de-
termines the CRLB, rather than the number of elements in the
signal set. This also provides some explanation of the much
worse performance of 8-PSK and Star 16-QAM. As might be
expected, at below eight decibels, the circular shape of
the constellation makes phase estimation difficult. In contrast,
at higher SNRs, for all signal sets considered, it is the minimum
distances between members of the set which determines where
each bound departs from the CW bound.

Note that the ratios of also apply to the CRLB
for frequency estimation and joint phase and frequency estima-
tion [1].

III. M ODIFIED TWO-STAGE PHASE ESTIMATOR

To verify the new CRLBs, we have developed a modified
phase estimator based on the two-stage conjugate algorithm in
[1]. We use the RR 1.8 since it is the optimum RR for moderate
to high SNR (Section V), and are the transmitted symbols of
Star 16-QAM constellation

with average symbol energy 10.

The signals are processed using a nondata-aided technique to
produce an initial phase estimate. A Viterbi and Viterbi type of
phase estimator (VVPE) [15] is employed. The estimated coarse
phase is

(8)

The phase is corrected for received signalsusing

(9)

The next step is to estimate the transmitted symbols by de-
modulating the phase-corrected signalsand choosing corre-
sponding symbols based on decision regions. The phase-cor-
rected signals are then multiplied with the conjugate of the
estimated transmitted signals to give

The residual phase of can be calculated

(10)

The estimated phase offset is the sum ofand .
The phase estimate can be further refined by iterating the

approach to generate. This reduces the probability of error
for the received signal by successively using an improved
phase estimate. For the case of a coded signal, the probability
of symbol error can be significantly reduced by decoding the
signal. This can improve the overall phase estimator perfor-
mance and system error rate.

In order to determine performance, the phase estimator was
simulated using a Monte Carlo technique. The Star 16-QAM
signal was generated from a pseudorandom data source. The
signal was then shifted by multiplying , where is a static
phase offset taken from a random uniform distribution from
[ , ] (the boundaries of rotational symmetry for this
constellation). Calibrated zero mean, complex Gaussian noise
with variance 2 is added to the signal to generate.

Fig. 3 shows simulation results with the observation interval
and the new CRLBs. The vertical scale indicates

standard deviation of the phase error in radians, and the hor-
izontal scale shows SNR. In the simulation, 10 000 packets of

random Star 16-QAM symbols were generated to produce
small measurement errors. The crossed line shown in the figure
is the coarse estimator () and the dashed line is the two-stage
phase estimator. The solid line represents the phase CRLB for
Star 16-QAM, and the “o-” line is the phase CRLB for CW.

The results indicate that the new estimator follows the Star
16-QAM CRLB curve. The phase variance of the estimator is
close to the Star 16-QAM CRLB at moderate SNR and ap-
proaches it at high SNR. There is a fraction of a decibel dif-
ference between the CRLB and the estimator in the range of

dB dB for . The performance gap
reduces as increases.
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Fig. 3. Phase estimator performance of the new algorithm,N = 20.

Fig. 4. RatiosF of CRLB for various RR to CRLB for carrier.

IV. EFFECT OFRR ON ERRORRATE

The Star 16-QAM RR is defined by [2] . Under
the constraint of a constant average symbol power equal to one,
we obtain

(11)

We have presented CRLBs for RR for AWGN channels as
above. We can easily prove that the CRLBs for the RRStar
16-QAM is the same as the CRLB for 8-PSK [14, Ch. 5].

The numerical calculation was undertaken to compute
with various RRs. The results are plotted in Fig. 4.

At high SNR, all CRLBs converge to the CW CRLB, i.e., there
is variance equality at high SNR.

As RR increases, the inner ring constellation points are com-
pressed and become more susceptible to noise. How does this
affect the probability of symbol error?

The receiver error rate is affected by both the signal constel-
lation and the phase estimator perfomance. For a receiver with

Fig. 5. Probability of symbol error for 16-QAM with perfect receiver in an
AWGN channel.

phase offset of and RRs of , the symbol error rate can be
derived from [16, Ch. 5], [17]

(12)

Fig. 5 presents the probability of symbol error for the different
RRs based on (12) for . It shows that 1.8 is the optimum
RR for Star 16-QAM. At low SNR, the symbol error rates for
Star and Square 16-QAM are very close.

We can determine the effect of random phase error using [18,
Ch. 9]

(13)

where is the phase error pdf and is the conditional
probability of the symbol error. The Tikhonov pdf [16, eq.
(6.77), Ch. 6] can be used to model the statistical distribution of
the phase error. At high SNR, it approaches a Gaussian distri-
bution. We calculated the performance of an optimum receiver
assuming that the phase estimator variance has achieved the
CRLB. The observation interval is chosen to be 20 symbols.
The numerical integration of (13) has been computed assuming
a Gaussian distribution (which is accurate above 10 dB) and
the performance loss relative to a perfect receiver with RR

is presented in Fig. 6. Simulated results using the phase
estimator from Section III and the perfect receivers for Star RR

and Square 16-QAM were also plotted for comparison.
It is interesting to note that the simulated performance losses
crossover around 10 dB, which shows the RR performance
to be better than the RR and Square 16-QAM receiver
at low SNR. From the simulated results, Star RR
performance loss is less than Square in the 8–13 dB range.
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Fig. 6. Symbol error degradation for perfect, optimum, and simulated
receivers (N = 20) relative to RR= 1:8 perfect Star 16-QAM receiver.

For coded systems, the low SNR performance may be more
important than at high SNR.

From Fig. 4, the phase estimation error decreases with in-
creasing RR in the lower SNR range, and as a result, the RR

loss is less than the RR at SNR dB. At high
SNR, the symbol error rate for RR is much higher than the
one for RR (Fig. 5). This explains the bigger performance
loss at moderate and high SNR in Fig. 6.

V. CONCLUSION

New CRLBs for carrier phase estimation of Star 16-QAM
have been derived and evaluated. can also be ap-
plied to carrier frequency estimation as in [1]. At RR the
CRLBs are equivalent to that of 8-PSK. A modified phase es-
timator was developed, and the simulated results are presented
which follow the CRLB closely. The RR effect on error rate
was determined by considering an optimum receiver, i.e., with
the phase estimation matching the CRLB. It is found that with
an optimum receiver at SNR below 10 dB, RR gives better
performance than other RRs, including RR and Square
16-QAM. In the range of SNR from 8–13 dB where coded
16-QAM systems often operate, Star 16-QAM symbol error per-
formance is better than that of Square 16-QAM for a small.

For large , Square 16-QAM has a smaller symbol error rate
than Star 16-QAM at moderate to high SNR. The approach de-
scribed of calculating the CRLB and using it to determine op-
timum receiver performance can be used to design good signal
constellations.
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