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Lumpable Hidden Markov Models—Model
Reduction and Reduced Complexity Filtering

Langford B. White Member, IEEERobert Mahony, and Gary D. Brushdember, IEEE

Abstract—This paper is concerned with filtering of hidden sequence of “state” variables which themselves form a finite
Markov processes (HMPs) which possess (or approximately pos- state Markov chain. We shall also use the term Hidden Markov
sess) the property of lumpability. This property is a generalization prycess (HMP) for a realization of the output (or measurement)

of the property of lumpability of a Markov chain which has - .
been previously addressed by others. In essence, the property ofS€quence from an HMM. The difference is important because

lumpability means that there is a partition of the (atomic) states the same HMP (observed output sequence) may be associated
of the Markov chain into aggregated sets which act in a similar with different HMMs. By making a suitable choice of HMM,

manner as far as the state dynamics and observation statistics the overall complexity of the associated filtering problem can
are concerned. We prove necessary and sufficient conditions on be significantly reduced

the HMP for exact lumpability to hold. For a particular class of | tical bl ticularly th involvi
hidden Markov models (HMMs), namely finite output alphabet n many practical problems, particularly those involving a

models, conditions for lumpability of all HMPs representable by humber of superimposed statistically independent signals, the

a specified HMM are given. The corresponding optimal filter computational complexity of the resulting optimal estimation

algorithms for the aggregated states are then derived. ~algorithms can become prohibitive, with many being of expo-
The paper also describes an approach to efficient suboptimal yantial complexity in terms of some system parameter such as

filtering for HMPs which are approximately lumpable. By this we . -
mean that the HMM generating the process may be approximated the number of superimposed signals present [4]. The central

by a lumpable HMM. This approach involves directly finding a  focus of this paper is to exploit a certain structure known as
lumped HMM which approximates the original HMM well, in a  lumpability, which is often inherent in these models to derive
matrix norm sense. An alternative approach for model reduction - good suboptimal algorithms which are computationally simpler.
based on approximating a given HMM by an exactly lumpable - A giated in [5], exploitation of lumpability is concerned with

HMM is also derived. This method is based on the alternating Vsis of ibilities.” with the imolicit
convex projections algorithm. Some simulation examples are --- & COarseranalysis ol possibiiiies,” with the implicit prop-

presented which illustrate the performance of the suboptimal €rty thatsuch a “coarser” analysis will be generally less compu-

filtering algorithms. tationally demanding to perform. We first focus on filtering for
Index Terms—Hidden Markov models, model reduction, optimal HMPs which are exactly lumpable, then address the problem of
filtering, state reduction. approximation of a given HMM by a lumpable one, and the per-

formance of estimation algorithms derived from these approx-
imate models. We are interested in using approximate lumpa-
bility as a way of designing computationally efficient subop-
IDDEN Markov models (HMMs) have been widely usedimal filters for the states of the original HMM (referred to as
to describe the nature of many random processes encoatpmic states) as well as the aggregated (lumped) states. The
tered in science and engineering (see [1] for general descriptigaper does not explicitly address smoothing or prediction; how-
and speech processing examples). In particular, HMMs hageer, both smoothing and prediction are closely related to fil-
been applied in the area of estimation of communicatiotgring, so in principle, reduced complexity smoothers and pre-
signals such as convolutional coded signals [2] and analogtietors for lumpable HMPs could be designed using the tech-
frequency modulated signals [3], to name a couple of examplegues of this paper.
An HMM may be thought of as a system model where the The concept of lumpability has been addressed in [5]. One
observed data are statistically dependent on an unobseriey use of this concept has been in the computation of the
asymptotic distribution of subsets of the states of a large
Markov chain [6], however only recently has the concept been
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these results are relatively simple generalizations of the resu#stingm-lumpability, and deriving the associated aggregated
of [5], the method of proof used, together with the procedustates. We then specialize to the case= 2. Although this
for testing lumpability which we outline, leads us naturally tis the most restrictive case, it is also the easiest to describe,
the approximation algorithms presented subsequently. It asod appropriately models practical applications such as two
should be mentioned that we generally assume the Markswperimposed Markov chains for example. The case= 2
process is stationary, i.e., it is initialized with its asymptotialso allows the important subspace properties we derive here
distribution. Thus we do not consider the conceptwafak to be more clearly visualized and understood. The necessity
lumpability discussed in [5] and more recently by a number dér much additional and cumbersome notation may then be
authors including [9] for example, which are concerned withvoided. We comment that the results of our main theorems
selection of appropriate initial conditions yielding a differengenerally apply forn > 2, but space limitations prevent us
form of state aggregation. A work which also exploits relategroviding details herein. Readers are referred to [12] and [13]
subspace properties, but which applies such properties to idé&r-examples ofn-lumpable HMMs wheren > 2.
tify an HMM, and to determine the fundamental complexity
of an HMM is found in [10]. Lumpability is also mentioned inA. Testingmn-Lumpability
conjunction with both HMMS and apprquaﬂoh ideas in [1}]' Definition: Let X, be an-state Markov chain taking values

The layout of the paper is as follows: We def|ne_lu_mpab|l|t¥_ the state sef. Then X; is said to bem-lumpable if and
f_or a Markov Chfi.'n and prove necessary and S“‘ff'c'e".“ COn(ﬁhly if there exist nonempty disjoint subseigi = 1,...,m
tions for Iumpgblllty of a given ch'aun. A finite algonthm IS Pré-g \ch thats — U, S; and for everyi = 1,...,m, Pr{X, €
sented for testing exact lumpability of a Markov chain, and th§< | X,—1 = q} iszinde dent R

. . - - . L 0| A1 = ¢ pendentof,Vq € S;,Vj # 4.

algorithm yields all lumpings of a given chain. In [5], similar Definition: Letn > 2, then a clas$.y.} of m < n disjoint

results are given; however, we provide a particularly simple ter%nempty subsets dfl n} with union {1 n} is said
for lumpability of a given Markov chain, but our results, which ", o anm-partition of{i' " n} R

are subspace based, offer two potential advantages over the "Sefinition: Letn > 2 andl < m < n. We denote byo™

sults of [5]. Firstly, we can apply our results to yield lumpabl ' Xr y "
e ; ?51e setof allL € {0,1} with elements

approximations in the case where the Markov chain may be only

approximately lumpable. Secondly, because linear (and some

nonlinear) subspaces have well defined projection operators, the L= {

subspace formalism facilitates the specification of approxima-

tion algorithms based on these pI’Oje(_:FIOI’lS. . .where{I} is a m-partition of {1,...,n}. The matrixL is
We extend the concept of lumpability of Markov chains Q1 iled the lumping matrix defined by the-partition { Iz }.

HMPs and derive the class of all lumped HMPs for a given We now describe a finite algorithm for computing all lump-

HMP. A particular example of a HMP which is generated by . - . i .
HMM possessing a finite parameterization is the discrete outﬁ%?s of a specified Markov chain. Suppoisk } is am-lumping

Ot'an n-state process,, where2 < < n, noting that an
HMP. In this case, we derive conditions on thedelparameters " P b ne g

(rather than data dependent parameters) which yield Iumpabiﬁ;/iumping s trivial. We are interested in testing whether an
of the model, and thus the lumpability of all HMPs arising frorr< — 1)-lumping exists. We suppose this is achieved (without

. . ? . loss of generality, by relabeling if necessary) by amalgamatin
that HMM. Finally we derive the optimal filters for the aggre- ar?d[ It isyea)s/yto see fr?)m the definigln)éflumgability g
gated states. e ™ ’

that one may test whether this amalgamation may be made by

One of the main applications of lumpability is model reducs— lecting any; € 1,1 andq’ € I,, and determining whether
tion. In Section IV of the paper, we describe an optimal lumped; oach: < {1,. I 2) the condition

approximation to a given Markov chain, HMP or HMM. This
gives rise to a two-pass filtering algorithm for approximately
lumpable processes. The first pass computes filtergoste-
riori probabilities for the aggregated states. The second pas _ ) : .

uses Fr)naximunat posterioriprgogbatg)]ility estimates for the aggrg- o?ds. Thus it sufflces to only test using arbitrarandg’ be- .
gated states to reduce the computational complexity of the st§AYS€ then-lumping guarantees that each of the above transi-
dard optimal filter for the atomic states. The performance of thion probabilities are constant acrdss-; andl,,, respectively.

suboptimal filter is examined using simulation experiments. V& then have that then — 1)-partition

In the final section, we examine axplicit model reduction .
technique, exploiting the subspace properties derived in earlier /i = 1;; i=1,....m =2, Jp_ 1 =In_1UlL, (3)
sections.

1 jel
0 else

)

PI‘{Xt € Sz | Xt—l == q} = PI‘{Xt € Sz |Xt_1 == (]/} (2)

generates avn — 1)-lumping for X.
Comments:
II. LUMPABLE MARKOV CHAINS 1) The above result shows that it takes— 2 comparisons
to check whether a given pair of subsets of thepar-
In this section, we define the concept of Markov chain tition can be amalgamated. Thus, to determinéall—
m-lumpability where2 < m < n wheren is the number of 1)-lumpings given am:-lumping requires at most.(m—
states of the Markov chain. We describe a general procedure for  1)(m — 2)/2 comparisons.
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2) Thus we may specify a procedure for obtaining all lumggiven by the set of ath-vectorsz of the formz? = [z1 2T

ings which exist. wherez; € R¥, z, € R %, with 17z, = 0 = 17x,. Then by
i) Let m = n and define the trivial partitiod,, = Lemmal,
{k}fork:l,...,n. 1T$ +(1— 1T$
i) Let {I,} denote anm-partition generating a LAY {xl} = [ul ! T( 12) T 2 (6)
lumping. Apply the above test to each distinct pair *2 (1= p)1% 1 + p2l iy

of {I;}. If there are no successes, then we stapnich is clearly zero for alk € N(L).

the procedure, with the process beingumpable  conversely, supposeAZz = 0 for all z € A(L), then in
but not(m — 1)-lumpable, and the set of all suchparticular firstly takingz? = [Z 07_,] then takingz? =
m-partitions  defines allm-lumpings. If there (o ;7] we have from (5) thatT ALz, = 0,4,j = 1,2,
are successes, then amalgamate the approprigie, andz, orthogonal to (the appropriate dimensidn)The
partition subsets, and define the — 1)-partition  gimension of the subspaces of sughandz, arek — 1 and
{/x} generated by thex-partition {1} as above. ,, _ 1. _ 1 respectively. Thusi;;1 Lz, Yo, € 1+. Thus
There may be several su¢tn — 1)-partitions for  4,,1 ¢ Span{1}, i.e., there is a constapt such thatd;;1 =

a givenm-partition. Repeat this process for eacl), 1. The remainder of (4) can be similarly derived with the

m-'parFition. o o constant terms constrained by the unity row sumsiofThus
iii) This yields the minimalm yielding m-lumpa- 4 corresponds to a 2-lumpable chain under O
bility, together with allm-lumpings and associated Corollary: Consider VTAV, where V. = [vr,...,v,]
p-lumpings forn — 1 > p > m. are the right singular vectors ofL, with A(L) =

Spani{wvs,...,v,}, then A is 2-lumpable underL if and
B. The Case Whem = 2 only ?f A has tEwe following form in the coordinate change
We now specialize to the case = 2 and derive linear alge- generated by :
braic descriptions of lumpability. Generalizations to arbitrary
of most results presented in this paper#fer= 2 can be found vT AV = { En El?} @
in [13]. Op—22 Eo
Lemma 1: A n-state Markov chainY, is 2-lumpable if and
only if the state transition matrix is (up to re-labeling of th
states) of the form

with £;1 nonnegative, i.e., there i@ — 2) x 2 zero matrix in
%he bottom left block. Note also that, vo] = LTDV? e,
v1 andw are the scaled (to unit norm) rows bf

Ao [An A Proof: Follows from the fact thaw] A™v; = 0 for
= [Am AQJ 1 = 3,...,n andj = 1,2. Nonnegativity of Ey; fol-
lows from the fact thatL? = [u; va]D~1/2 where
whereAd;; € R¥** Ay € R=F*("=%) ‘andtherearp, and D = (LLT)™! = diag(k,n — k)~! is nonnegativeD repre-
p2 such that sents a weighting dependent on the number of atomic states in
each aggregated state. O
Aul =l Apl=(1-m)l Comment: The number of candidate 2-lumpings is given by
Anl=(1-p2)l, Axpl=pl (4)  the number of distinct pairs of subsets{af. .., n} atleast one

. ) 1
wherel = [1,...,1]¥ is a vector of unity elements of the ap—Of which has_ at least 2 elements. This number"i_s L for .
propriate dimension. n > 3. Despite the fgct that the numbgr of cgndldate lumpings
Proof: TakeS: = {q1,. .., g1} andSs = {qurs, .-, qn} mfcreﬁg:eds ?xlpomneir:lually ansgher gtatte ginenii;orln ? Iatrgs nurgté(ier
where{qi,...,q.} is the state set fo,. Now fori = % 4 ©' candidaleiumpings can be rejected by Simpie tests based di-
1. _nwe have rectly on the definition as above. It is only when the number of
Y atomic states which are being lumped into the two aggregated
Pr{X, eS| Xs 1=¢}= Z A;; =[Anl],_x (5) state sets are each comparable, is there advantages in using the
jen results of the corollary above to test candidate lumpings.

which is required to be independentioi.e., a scalar multiple The next result yields the lumped Markov chain model, and

of 1. This result holds wittt; replaced bys,, andA>; by A;,. is analogou§ to the example [5, p. .1.25]' .
The other equations follow from the fact thati = 1. Con- Lemma 2: Let A denote the transition matrix for the lumped

- T : " )
versely if (4) holds, then the resulting class probabilities satisfpo?el ?X“ tgg‘.A _dl.)LAL | Wh.efle s the Fran.5|rt1|o? ma
the lumping condition. trix for X;, andD is a diagonal weighting matrix with element

Theorem 1:An n-state Markov chainX; is 2-lumpable D;} being the number of atomic states in aggregated staie set
under lumping matrix. if and only if its state transition matrix Proof: The aggregated class transition probabilities are

A sati;fiesAT/\/(L) C N (L), i.e., the null space&/(L), of L A =Pr{X, € S;| Xo_y € 5}
is AT-invariant. ’
Proof: SupposeX, is 2-lumpable under lumping matrix = Z Pr{X; = g [ Xty € Si}
L which we can assume w.l.o.g. (by state relabeling) to be of kes;
the formL = diag(1%,17"), where there ar& unit elements in = Z Ay Vpel. (8)
the first row andn — & on the second. The null space bfis kes;
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Thus Comment: We have used the notatioBAr{.} in a loose
1 manner. To be precise, one should work with mixed continuous
A= A g = A L [DLALT1. . (9) and discrete measures to handle continuous observations and
. k%;j TS, k%;j g; vl Ly ©) discrete states but the context remains clear.

Definition: An HMP with state sequenck,; € S and obser-
where#S denotes the cardinality of the sgt This establishes vation sequenck; wheret =0, 1, ..., is said to be 2-lumpable
the result. Note thal = D/2E;;D~%/2, whereE; is as if and only if there exist nonempty disjoint subsstsands, of
defined in the corollary to Theorem 1. O Ssuchthats = S U S and: i)Pr{X; € 51, | Xi—1 = ¢}

Comment: It is easy to show that the only single nonunitys independent of;, V¢ € S», V¢ > 0 and ii) Pr{X; €
eigenvalue ofA” € R?*? js identical to the eigenvalue of?  S»,Y; | X;—1 = ¢} isindependentof, Vq € S1,V¢ > 0.
corresponding to those eigenvectors4¥ not in A'(L), i.e., Comment: Notice that in contrast with the definition of
N(AT — M) N NV(D)+ # {0} = N(AT — Al) # {0}. lumpability of a (stationary) Markov chain, the above prop-
To see this, suppose € N (AT — Al), z # 0, wherel de- erty must hold at all times. This is because the probabilities
notes the appropriate size identity matrix. Decompesato involved are dependent on the observed HMP realization,
the direct sume = x; ¢ 22 wherez; € N(L) andz, € which is clearly time dependent. This is in contrast to the
N(L)*+ = R(LT) with z, # 0. HereR denotes the range of aHMM generating the observed HMP, which specifies the
matrix. Then lumpability impliesATz = ATz, + ATLTy,, (time-independent) statistics of the HMP. For the specific
for somey, € R2, 3, # 0. This holds becausei”’z; ¢ HMMs we address below, this requirement will be replaced by
ATN(L) = ATz € N(L), andzy € R(LT). SoLATz = requirements made of the (finite number of) model parameters.
LATLTy, = ATD lyy. But LATz = MLz = ALay = Definition: A hidden Markov model is said to be 2-lumpable
ALLTyy = AD7Yyo. Now s # 0 = 3o # 0 = D1y # ifand only if every HMP generated by the model is 2-lumpable.
0 = N(AT — ) £ {0}.

We will designate the lumped chain ky. A. Continuous Output HMMs

A continuous output HMM will be parameterized by
the state transition matrixd and observation conditional
probability densityp(.). We define the observation matrices

In this section we shall extend the concept of a lumpabl, = diag(p(Y;|X: = ¢)).! An HMP is parameterized by
Markov chain to a hidden Markov process (HMP). A genergld, {B;}).
definition in terms of joint state transition and observation prob- Theorem 2: The HMP (4, { B, }) is 2-lumpable if and only
abilities is given first. We shall prove a general theorem anaf-for eacht > 0 there is a partition
ogous to Theorem 1 for HMPs with continuous outputs. We

I1l. L UMPABLE HIDDEN MARKOV PROCESSES ANDOVIODELS

then specialize the result to the case where the HMP has a finite AB, = {EU El?} (10)
number of discrete levels. For this particular subclass of HMMs, Ea Bz

we find it convenient to distinguish between lumpability for vhere there are, ..., 4 > 0 such that

given observed HMP, and lumpability of the model which gen-

erated the observed HMP. This is because the concept of lumpa- Eijl=uv1, i=1j5=12

bility for the HMM can then be made explicit by virtue of the E;;1=v4;1, 1=2, 7=1,2. (12)

finite parameterization inherent in this specific caigea visthe ) )

general continuous output case. An HMM defines the statisticére theEi; andy; are in general time-dependent due to the
of all HMPs it generates. We also comment that although ofifPendence on the measurements sequence.

results are given for = 2, the comments made in the previous ~ Proof: Follows as per Lemma 1 but using the fact that
section relating tan-lumpability of Markov chains, also apply Pr{Xt = @.Y:| X1 = ¢;} = [B.AT];;. The fact that we

here with the appropriate modifications [13]. do not have, = 1 — 11 andrs = 1 — vy in (11) in general,
Definition: An HMM is defined by a finite state level setfollows from the fact thatdB; is not row stochastic in general.

Q = {q,...,q.}, atransition probability matrixd € R¥><~ However, regarding the; terms as dependent on the observa-
satisfyingA; ; > 0, foralli,j € {1,...,N} andA1 = 1,and tOnY: =y, itis easy to see thaf v, (y) + 12(y)dy = 1, and
a set of probability measures(.),i = 1, ..., N. We denote the similarly for 73 4 4. Nonnegativity qf the; follows from the
HMM by the triple (4, Q, p(.)), wherep(.) denotes the vector fact that both4 and B, are nonnegative. -
comprising thep; (.). We will typically assume thap(-) is of Comment: The unnormalized filter recursion for computing
specified form, perhaps depending on a finite parameterizatign = Pr(X:, Y ) whereY " = {¥o, ..., Y1}, is [14]
0. T
vir1 = Biy1A” oy 12

Definition: A hidden Markov process (HMP) generated by it HhLa o (12)
the HMM (A4, @, p(.)) is arandom proces§, t > 0, which sat- It follows from Lemma 2 that the optimal (unnormalized) filter
isfies: i) Y; are conditionally independent given an underlyingor the aggregated statgs = Pr{x:, Y; }, is given by
state procesi, taking values in the s&® with conditional mea-

. . _ TrT _ N7
surep(Y; | X; = ¢;) = p;(Y3) and ii) the proces¥; is a Markov 41 = LByt A7 L7 Dpy = Qi pua. (13)
chain with transition probabilitieBr{X;; = ¢; | X: = ¢} = 1By this we meariB.];.; = 6:;p(y: | X = q;), wheres, ; = 1if i = j
A; j,where@Q = {q1,...,qn} and zero otherwise.
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Corollary: LetV denote the right singular vectors 6f as IV. SUBOPTIMAL FILTERING FOR HMMSs viA MODEL
before. Therd B; is 2-lumpable if and only ifA B; has the rep- REDUCTION

resentation In this section, we shall be concerned with using the

P, m lumpable approximation to a HMM to derive efficient filters
CJ for the lumped or aggregated state sets as well as the original
atomic states of the-state HMM. Attention will be restricted
wherePF, is positive_ to discrete output HMMs.
Proof: Follows directly from the application of the corol-
lary to Theorem 1 to the produetB;. The filter matrix@, as

VT AB,V = [
O0p—22

A. Filtering for Aggregated States

defined in (13) is given by, = DY/2p,D~1/2, O In this section, we examine optimal filtering for the aggre-
gated states of a lumpable approximation to a given HMM.
B. Discrete Output HMMs Since we are only interested in determin@gosterioriprob-

abilities for the aggregated states, we do not requirentlren
lumpableapproximation to the HMM, only thgx 2 lumpedma-
trix. This leads naturally to an approximation procedure which
yields directly the optima2 x 2 lumped matrix. An alternative

o o o procedure which yields the x »n lumpable transition matrix is
Cij = Pr{¥y =ri| X = ¢j} (14) given in Section VI.

LetS;T denote the set of all-state transition probability ma-
trices, i.e. S = {4 € R"*™ A4, ; > 0, A1 = 1}. Denote by
S, the affine subspace &"*" given byS,, = {¥ € R**™:

V1 = 1}. Thisn(n —1)-dimensional subspace reflects one part
of the probability constraintimposed by membershigdf the
other being the nonnegativity of elementsAfDenote by7,
the set of alll € R™*" satisfyingLV?z = 0,Vz € N (L)
then we show thaf,, is ann? — 2(n — 2)-dimensional linear
E, E subspace. Note théf, depend_s od. LetP = {¥ € R™™:
Eoy EQJ U, ; >0Vi,j=1,...,n}. EvidentlySf =S, N P.
Lemma3:LetL € Q,,V € P, and let

whereC? = [cy,...,cu] there ares, ..., 4 > 0 such that J(Q; 1) = HLTQ _ \I/LTHQ (15)
(11) holds. The matriceg;; and scalarg; are dependent on ’
due to the explicit dependence on the measurements. In additiogn
we have thad | 11 (¢) +14(i) = 1, and similarly fors + .

Proof: Follows directly from Theorem 2 since the
required property forAB, holds for all¢ > 0 and for all
observation sequencely;} if and only if Adiag(c;) has whereD = diag(k,n — k)~*, and@* € P. Furthermorel' €
the form abovevi = 1,...,M. The final result follows by St = Q* € Si. Also J»(Q*; V) = 0 if and only if ¥ is
summing each side of (11) over the implitidlependence. O lumpable byL.

Consider a finite output HMM with observationi§ taking
one of M possible values, ...,y and conditional output
probability matrixC' € RM>*Y with elements

sothatC?1 = 1. Let B, = diag(C,, .),2 which will be a diag-
onal matrix with one of théZ rows of C on its diagonal spec-
ified by the observation, i.e., there are ol possible values
which can be assumed 8. A discrete output HMM is param-
eterized by the matrix pa{f4, C).

Theorem 3: The HMM (A, C) is 2-lumpable if and only if
foreachi = 1,..., M, there is a partition

Adiag(c;) = {

Q* = argmin J(Q; V) = DLULY (16)
Q

Corollary: 1, = Lay, YVt if and only if Proof: We write
‘ ‘ Jo(Q:0) = Te( (LT Q — WLT)(LTQ — wLT)"
VT Adiag(c:)V = {OPZ 2} Vie{l,...,M)} (@) = (170 J(re ")
n—2,2  Zi =Te(QTLLTQ —2LVLYQ + LT LY") . (17)
where theP, are nonnegative. Differentiating wrt() and usingl. LT = D! yields

Proof: Again this result follows directly from the
corollary to Theorem 1, again with the same argument as

Theorem 3. _ _ _ U Clearly Q* is nonnegative as it is the product of nonnegative
teriori probabilities for the aggregated states involves the ma- . ’ .
tricesP, one of which is determined by each measurerderin =~ Q"1 = DLVIL"1 = DLV1 = DI1 = D[k n —k]" = 1.

0=LLTQ - LVLY = @* = DLVL". (18)

contrast to the continuous output case where an infinite number _ o (19)
of possible values foP; could exist, there are only/ distinct The fact that/>(Q; V) = 0if and only if ¥ is lumpable byL
values the measurements can take. Thus there arelérdjs- follows from Lemma 1. U

tinct matricesP; which can result. These could therefore be pre- Comments:
computed and the measurements used to select the appropriat) The above optimization problem arises if we were to as-
Q, at each [12]. sume that the lumped probabilities were correct at time

Af x € R, thendiag(x) € R™*™ with [diag(x)];; = 6: ;4. SThroughout the paper we use the Frobenius npinl| = (Tr(P ¥ 7T))1/2.
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i.e.,uy = Loy and we seek to compute 1 = Q7 p:  construct the optimal lumped approximati@n as described in
which is as close td.«;; as possible. Hence minimiza-Lemma 1 above. This yields approximate filtered probabilities
tion of the above norm is appropriate in terms of minix, for the aggregated statgs from which we can derive ap-
mizing accumulated error in the approximatposteriori proximate maximuna posterioriprobability (MAP) estimates
probabilities for the lumped state sets. Correct probabilg; = argmax{u.(¢): ¢ = 1,2} for the aggregated state sets.
ties for the aggregated states will thus be obtained if ai@ur algorithm for filtering for the atomic states is based on the
only the relevantl is lumpable. assumption that; = x; with probability 1 for allt. Thus pass

2) Lemma 3 can be applied directlyfo= A diag(c;),i = 2 proceeds using the iteration

1,..., M in the case of discrete output HMMs to yield A
Q;,i=1,..., M for use in the aggregated state filter. Gyy1 = Biy1 AL Gy (20)

3) Suppose the underlying Markov chaiN; is itself

lumpable with lumped matrixA4, then for the dis- where instead of using the transition matrixfor the atomic
crete output HMM the question arises whether to udéMP, we use instead the quantity

ADLdiag(c;)LT, or DLAdiag(c;)LT as Q; arises.

By virtue of the optimality of the above approximation |:At:| _ {Amy © € Xt,J € Xt+1 1)
procedure, we conjecture that lumpidg= Adiag(c;) 0, else

is the best idea.

0.

4) In [7], the authors introduced a lumped approximaone can thus view the MAP estimates from the first pasoas

5) In [12], the authors concentrate in particular on super-

B. A Two-Pass Filter for the Atomic States

tion for a continuous output HMM by assuming at.rols for th(_a second pass. The compu.tational compllexity for the
lumpable Markov chain, and approximating the outp 'St Pass is2m?, while the computational complexity for the
probability matricesB; by the actual conditional ob- S€cOnd pass ign? /m. Fig. 1 shows the best savings achiev-
servation probabilities given the aggregated state%t.’le (i.e., pr_oportmn r(_eductlon over opt|m_al atomic state f||'_[er)
The formula for the aggregated output matrix is thelf computational requirements as a_\func_non of the normalized
BY = diag(Lr)~" diag(LB,x), wherer is the asymp- number of aggregated states/n. This optimum occurs when

totic distribution of the atomic chaif;. This compares &ach of the aggregated states has the same number of elements.
to the direct lumping o = B, using the formula from This figure clearly displays that there is an optlmgl aggreggtlon
Lemma 3 (which inherently and implicitly assumes &Umber (roughlym = (n?/2)"/%), and that potential benefits

uniform asymptotic distribution of the atomic statesfCréase as increases. _ _
B, = diag(L1) ! diag(LB,1), i.e., in[7], L is replaced It should be noted that both filters can be run together since

by LI wherell = diag(r). Given the optimality pro- (21_) requires only knowledge.of the currept and previous time
vided via Lemma 3, this approach would be expected &§tlmat_es from pass 1. We will now examine the performance
be inferior to a direct lumping 0¥ = AB;. A heuristic ©f this filter with an example.

argument is that usin@; = AB,; does not permit any

coupling between the Markov chain dynamics and the V. SIMULATIONS

observation likelihoods when determining a lumpablg. Example 1—Exact Lumpability

approximation toA B;. Use of BY permits coupling via
the stationary distribution of{;, while lumping AB,

In this section, we give an example of an exactly lumpable
: ) . HMM with 16 states. There are 4 discrete outputs, and we seek
together uses full information of the dynamics &t. S . :
g . an 8-lumping, i.e., 8 aggregated state sets each having 2 atomic
Thus it is suggested that lumping &; alone should N
" . .states as members. The parameters of this discrete output HMM
not be used. The condition of a uniform asymptotiC .
Lo . S are determined as follows. Let
probability distribution for the underlying chain is not a
restriction as we suggest lumping the proddc3, (or

_ r liaof(1T 17T
the appropriate HMM parameters) directly. J=05 dlag(l 1 ) (22)

. . . X where each of the vectoishave 2 elements, and define
imposed independent Markov processes in noise. In this

case, the lumping proposed here reduces to a product of A
an averaged data likelihood and the dynamics of the com- A= <A1 )
ponent chain. Formulas for the lumping matrices are ex-

plicitly given. Also, a successive estimation scheme fqghereA; = diag(J, J, J, J). The observation probability ma-
multiuser estimation (i.e., estimation of all componentix is specified by a matrix consisting of a single unity element
Markov chains) is provided. in each row with zeros elsewhere. To model a stochastic (or
noisy) output measurement, we perturb each element indepen-
dently by a uniform random variable distributed@¢) where

In this section, we propose a filter for the atomic states ofea> 0 is termed a noise parameter, and rescale to ensure the
HMP. The filter is based on finding a good lumpable approxmatrix remains a (conditional) probability matrix. The form of
mation and using the results of a coarse state estimation to yi€ldor noise parameter = 0.1 is given by (23), shown at the
a filter of reduced complexity for the atomic states. This filtelbottom of the next page. It can be shown that C) is exactly
uses two passes through the observed data. On the first pas@wenpable undeils = [ls 1s] wherel,, denotes the identity
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Fig. 1. Computational savings versus degree of aggregation.

matrix of sizen x n. The lumped mode); corresponding to 200 samples produced from the above HMM. The two pass pro-
the first row ofC in (23) is given by (24), shown at the bottom ofcedure was also applied to the same data, with state estimation
the page, and similarly for the three remaining lumped modeé&sror results tabulated in Table I. For pass 1 we say there is an

The optimal filter for MAP estimates of the atomic states waesrror if the true atomic state does not lie in the estimated aggre-
computed and applied to 1000 realizations of HMPs of lengtfated state set.

0.8393 0.0416 0.0147 0.0315 0.0550 0.0666 0.0148 0.8397
0.0094 0.0311 0.9283 0.0730 0.0261 0.8095 0.0494 0.0688

T
¢ = 0.0802 0.0681 0.0138 0.8614 0.8501 0.0668 0.0027 0.0021
0.0711 0.8593 0.0432 0.0341 0.0688 0.0571 0.9331 0.0694
0.0477 0.8622 0.0725 0.0581 0.0765 0.0355 0.8257 0.0724
0.0316 0.0331 0.0278 0.8787 0.9017 0.0082 0.0671 0.0710 23)
0.0659 0.0457 0.8385 0.0059 0.0078 0.9084 0.0587 0.0393
0.8548 0.0590 0.0612 0.0574 0.0140 0.0479 0.0485 0.8173
r0.4601 0.028 0 0 0 0 0 0 7
0 0 0.0112 0 0 0.0153 0 0
0 0 0 0 0.4188 0 0 0.0343
0 0 0.0253 0 0 0.0311 0 0
@ = 0 0 0 0 0.0237 0 0 0.4124 (24)
0 0 0 0.0005 0 0 0.0335 0
0.0119 0.4147 0 0 0 0 0 0
L O 0 0 0.0250 0 0 0.0049 0
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TABLE | TABLE 1

STATE ESTIMATION ERRORRESULTS FORTWO-PASS FILTER PERCENTAGE ERROR PROBABILITIES FOR FILTERS
Noise Optimal Pass 1 Pass 2 o? | Optimal | Suboptimal 1 | Suboptimal 2 | Suboptimal 3
Level | mean | std. dev. [ mean | std. dev. | mean | std. dev. 0.01 | 0.131 0.353 0.413 0.413
0.01 | 0.0232 | 0.0181 0.0232 | 0.0181 0.0380 | 0.0240 0.03 2.035 4.967 5.030 4.545
0.03 | 0.0695 | 0.0322 0.0695 | 0.0322 0.1057 | 0.0405 0.05 4.069 9.213 9.167 8.517
0.05 | 0.1173 | 0.0428 0.1172 | 0.0427 0.1650 | 0.0526
0.07 | 0.1643 | 0.0507 | 0.1639 | 0.0506 | 0.2237 | 0.0599 into question the argument that the optimal approximation ob-
0.09 | 02099 |0.0561 | 0.2092 | 0.0559 | 0.2790 | 0.0642 tained via Lemma 3 (i.e., lumping oiB;) yields the best re-

sults in terms of error probabilities. In order to test this conjec-
ture more thoroughly, further simulations are required. Refer-

The computation required is reduced by approximately 7285C€ [12] _investigates th_ese aspects in more detail._AIso, in order
in this case with an increase in state estimation error rangifyreconcile the algebraic approximation inherent in Lemma 3,
from about 65% at low noise to 33% at higher noise. It is ivith statistical properties of the resulting estimates, we argue
teresting to note that the estimated error probabilities compui€@t the measure change ideas inherent in [14] will be useful.
for the estimation of the aggregated states in pass 1, are appfﬂysls an area of contm.umg reseqrch effort. It sfhoulld be noted
imately the same as the estimated probability of error in esfiatin general, the lumping of matrices at each time is a compu-
mating the atomic states with the optimal filter. There alop(_‘,atl%tlonally intensive procedure which would neutralize any com-
to be a small decrease for higher noise, although the statistiggfational savings made due to the two-pass procedure. In prac-
variation from this experiment is too high to make any definitivice, one would use a discrete output model (obtained by some
comment. This effect may be more significant for aggregaté@Propriate d|scret|z§t|on of the continuous output model) and
states having a larger number of elements, rather than the dg&sompute all lumpings (see [12]).

for this example, where each aggregated state contains only two
atomic states. VI. M ODEL REDUCTION VIA APPROXIMATE 2-LUMPABILITY

In this section, we propose a model reduction technique for
B. Example 2—Approximate Lumpability Markov chains and, by extension, hidden Markov processes. In
The second example addressed is one where the HMP is H#igt Markov chain case, the method is based on the approxima-
exactly lumpable. We will consider an example of two supefion of a given transition probability matrix by a 2-lumpable
imposed Markov chains. We consider two statistically indepeRptobability matrix. In the HMP case, we approximate the

dent binary chainst(" and X with transition probability Product of a transition probability matrixi, and the data
matrices given, respectively, by likelihood matrix B; at each time, by a lumpable probability

matrix. Even though the productB, is not in general row
0.7 0.3 0.2 0.8 stochastic, the equations for the unnormalizegosteriori
0.05 0.95} ’ Ay = [0.4 0.6} : (25) probabilities for the HMP states are invariant to row scaling, so

we will still seek a 2-lumpable transition probability matrix as

The transition probability matrix for the Cartesian produdhe approximation tolB;. Approximation of HMMs can also
Xt(l) % Xt(2) isthusA = A, © A, [4]. We will consider be addressed in a similar way. We do not explicitly provide

a continuous observation conditionally Gaussian HMP witetails for the HMP or HMM case, as they follow in much the
output mapping same way as previous results. R

Given A € S, we seek a 2-lumping matrik andA € St
such thaf| A — AJ| is minimized subject td. ATz = 0,Vz €
N(T). We shall propose an alternating projection algorithm to
yield feasible solutions to this problem. Optimality of the ap-

|

v =X+ X7 e (26)

wheren, is aniid _Gau(sl?ian zerg)mean process With variartce proximation appears to be an open issue.
The Markov chainsX; "’ and X;” assumes yalues inthe level | o.yma 4: The affine projection onte,, is given by
setsg; = {—1,1} andg, = {0.5,1}, respectively.
The following filters were computed and applied to 1000 re- 117 117
alizations of the process, each of 200 samples length: 1) the op- Ps, (X) = X<"n - T) + n @7)
timal filter; 2) the lumped approximation obtained by lumping
AB, at each time; 3) the lumped approximation obtained by Proof: We seek the solution to the optimization problem
lumping A and B; separately; and 4) as in 3) but using the
weighting method of [7]. Maximura posterioriprobability es- min LX) =Y —X|P+22F(1-Y1). (28)
timates of the Markov chain states were computed, and the per-
centage of incorrect decisions are tabulated in Table Il belowDifferentiating with respect t&” yields the necessary condition
It appears from these simulations that the suboptimal methisd= X + A17. The constraint is then forced by the choice
of [7] is superior, particularly at higher noise levels. This calla = (1 — Y'1)/n. Thus the form (27) is obtained. O
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Theorem 4:The linear (orthogonal) projection ontf, is ever can be determined analytically, and its use may be
given by preferable for large problems where the speed of conver-
gence of (35) in an issue.
2) Theorem 5 does not say anything about the optimality of
the approximation. Optimality is equivalent to saying that
A* in Theorem 5 is the convex projection org N 7,,.

Pr(X)=X—(I-®)X® (29)

where® is defined by

vigy = | Vx| _ 7 (30)
Om-2)x2  Om—2)x(n-2) VII. CONCLUSION
whereV’ = [v1,. .., v,] is the (unitary) matrix of right singular  This paper has generalized the concept of lumpability of a
vectors ofL. Markov chain to hidden Markov processes (HMPs). A vector

Proof: Let X' € R™*" then we seeR” ¢ 7, such that space approach to the problem has been used to establish con-
| X — Y| is minimized. LetC' = VXV, andF = V'YV (itions for lumpability of a given HMP realization. For the case
then by the corollary to Theorem 1, the constrdint” z = 0, of a discrete output hidden Markov model (HMM) we have

¥z € N(L) is equivalent ta” having the structure proven necessary and sufficient conditions for that HMM to
r r be lumpable. A HMP arising from a lumpable HMM is always
F= [0 1 FIQ} lumpable. The optimal filter for the aggregated (lumped) states
nohz 2 has been derived.
whereFi; € R2X2? and Fy, € R=2X(=2) Thusdim7, = W_e hav_e also applied these rgsults to obtain lumpable approx-
n? — 2(n — 2), there bein@(n — 2) zero elements in the lower IMations in the case where a given HMP may only be approx-
left corner of . Similarly block the matrixC. Thus imately lumpable. We have derived an optimal approximation
algorithm based on an algebraic criterion, yielding the lumped
X -Y|*=|C-F|? model or process, and the associated filter for the aggregated
— Gy — Fut|? +||Cr2 — Fro|? states. A two pass procedure has been derived which yields sub-

2 2 optimal filtered estimates for the atomic states of the original
+1C22 = o + [|Co 1" G Hwp. Significant computational savings are provided, although

This is clearly minimized by the choice more simulation is required to make definitive statements about

the performance of this suboptimal procedure. Finally, a general

ja Cii Chra 32) and explicit approximation result based on convex projections
| 0h—22 Ca has been described.
with the resulting errof|X — Y|| = ||Cq||. To see that the
projection has the form of (29) consider ACKNOWLEDGMENT
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