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Lumpable Hidden Markov Models—Model
Reduction and Reduced Complexity Filtering

Langford B. White, Member, IEEE, Robert Mahony, and Gary D. Brushe, Member, IEEE

Abstract—This paper is concerned with filtering of hidden
Markov processes (HMPs) which possess (or approximately pos-
sess) the property of lumpability. This property is a generalization
of the property of lumpability of a Markov chain which has
been previously addressed by others. In essence, the property of
lumpability means that there is a partition of the (atomic) states
of the Markov chain into aggregated sets which act in a similar
manner as far as the state dynamics and observation statistics
are concerned. We prove necessary and sufficient conditions on
the HMP for exact lumpability to hold. For a particular class of
hidden Markov models (HMMs), namely finite output alphabet
models, conditions for lumpability of all HMPs representable by
a specified HMM are given. The corresponding optimal filter
algorithms for the aggregated states are then derived.

The paper also describes an approach to efficient suboptimal
filtering for HMPs which are approximately lumpable. By this we
mean that the HMM generating the process may be approximated
by a lumpable HMM. This approach involves directly finding a
lumped HMM which approximates the original HMM well, in a
matrix norm sense. An alternative approach for model reduction
based on approximating a given HMM by an exactly lumpable
HMM is also derived. This method is based on the alternating
convex projections algorithm. Some simulation examples are
presented which illustrate the performance of the suboptimal
filtering algorithms.

Index Terms—Hidden Markov models, model reduction, optimal
filtering, state reduction.

I. INTRODUCTION

H IDDEN Markov models (HMMs) have been widely used
to describe the nature of many random processes encoun-

tered in science and engineering (see [1] for general description
and speech processing examples). In particular, HMMs have
been applied in the area of estimation of communications
signals such as convolutional coded signals [2] and analogue
frequency modulated signals [3], to name a couple of examples.
An HMM may be thought of as a system model where the
observed data are statistically dependent on an unobserved
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sequence of “state” variables which themselves form a finite
state Markov chain. We shall also use the term Hidden Markov
Process (HMP) for a realization of the output (or measurement)
sequence from an HMM. The difference is important because
the same HMP (observed output sequence) may be associated
with different HMMs. By making a suitable choice of HMM,
the overall complexity of the associated filtering problem can
be significantly reduced.

In many practical problems, particularly those involving a
number of superimposed statistically independent signals, the
computational complexity of the resulting optimal estimation
algorithms can become prohibitive, with many being of expo-
nential complexity in terms of some system parameter such as
the number of superimposed signals present [4]. The central
focus of this paper is to exploit a certain structure known as
lumpability, which is often inherent in these models to derive
good suboptimal algorithms which are computationally simpler.
As stated in [5], exploitation of lumpability is concerned with
“ a coarser analysis of possibilities,” with the implicit prop-
erty that such a “coarser” analysis will be generally less compu-
tationally demanding to perform. We first focus on filtering for
HMPs which are exactly lumpable, then address the problem of
approximation of a given HMM by a lumpable one, and the per-
formance of estimation algorithms derived from these approx-
imate models. We are interested in using approximate lumpa-
bility as a way of designing computationally efficient subop-
timal filters for the states of the original HMM (referred to as
atomic states) as well as the aggregated (lumped) states. The
paper does not explicitly address smoothing or prediction; how-
ever, both smoothing and prediction are closely related to fil-
tering, so in principle, reduced complexity smoothers and pre-
dictors for lumpable HMPs could be designed using the tech-
niques of this paper.

The concept of lumpability has been addressed in [5]. One
key use of this concept has been in the computation of the
asymptotic distribution of subsets of the states of a large
Markov chain [6], however only recently has the concept been
mentioned in conjunction with HMMs [7]. In [7], lumpability
of HMMs was not addressed explicitly, however the procedure
mentioned in [7, Section 4] implicitly uses a lumpable approx-
imation to an HMM. We comment further on this approach
in Section IV. Implicit in this approach is the concept of a
time scale separation in the Markov chain dynamics. The state
reduction is achieved in a sense, by only examining the “slow”
states. A similar concept is applied in continuous time in [8] and
related papers referenced therein. Our formulation is similar
in nature to [5], however we have concentrated on a linear
subspace setting for the presentation of our results. Although
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these results are relatively simple generalizations of the results
of [5], the method of proof used, together with the procedure
for testing lumpability which we outline, leads us naturally to
the approximation algorithms presented subsequently. It also
should be mentioned that we generally assume the Markov
process is stationary, i.e., it is initialized with its asymptotic
distribution. Thus we do not consider the concept ofweak
lumpabilitydiscussed in [5] and more recently by a number of
authors including [9] for example, which are concerned with
selection of appropriate initial conditions yielding a different
form of state aggregation. A work which also exploits related
subspace properties, but which applies such properties to iden-
tify an HMM, and to determine the fundamental complexity
of an HMM is found in [10]. Lumpability is also mentioned in
conjunction with both HMMs and approximation ideas in [11].

The layout of the paper is as follows: We define lumpability
for a Markov chain and prove necessary and sufficient condi-
tions for lumpability of a given chain. A finite algorithm is pre-
sented for testing exact lumpability of a Markov chain, and this
algorithm yields all lumpings of a given chain. In [5], similar
results are given; however, we provide a particularly simple test
for lumpability of a given Markov chain, but our results, which
are subspace based, offer two potential advantages over the re-
sults of [5]. Firstly, we can apply our results to yield lumpable
approximations in the case where the Markov chain may be only
approximately lumpable. Secondly, because linear (and some
nonlinear) subspaces have well defined projection operators, the
subspace formalism facilitates the specification of approxima-
tion algorithms based on these projections.

We extend the concept of lumpability of Markov chains to
HMPs and derive the class of all lumped HMPs for a given
HMP. A particular example of a HMP which is generated by a
HMM possessing a finite parameterization is the discrete output
HMP. In this case, we derive conditions on themodelparameters
(rather than data dependent parameters) which yield lumpability
of the model, and thus the lumpability of all HMPs arising from
that HMM. Finally we derive the optimal filters for the aggre-
gated states.

One of the main applications of lumpability is model reduc-
tion. In Section IV of the paper, we describe an optimal lumped
approximation to a given Markov chain, HMP or HMM. This
gives rise to a two-pass filtering algorithm for approximately
lumpable processes. The first pass computes filtereda poste-
riori probabilities for the aggregated states. The second pass
uses maximuma posterioriprobability estimates for the aggre-
gated states to reduce the computational complexity of the stan-
dard optimal filter for the atomic states. The performance of the
suboptimal filter is examined using simulation experiments.

In the final section, we examine anexplicit model reduction
technique, exploiting the subspace properties derived in earlier
sections.

II. L UMPABLE MARKOV CHAINS

In this section, we define the concept of Markov chain
-lumpability where where is the number of

states of the Markov chain. We describe a general procedure for

testing -lumpability, and deriving the associated aggregated
states. We then specialize to the case . Although this
is the most restrictive case, it is also the easiest to describe,
and appropriately models practical applications such as two
superimposed Markov chains for example. The case
also allows the important subspace properties we derive here
to be more clearly visualized and understood. The necessity
for much additional and cumbersome notation may then be
avoided. We comment that the results of our main theorems
generally apply for , but space limitations prevent us
providing details herein. Readers are referred to [12] and [13]
for examples of -lumpable HMMs where .

A. Testing -Lumpability

Definition: Let be a -state Markov chain taking values
in the state set . Then is said to be -lumpable if and
only if there exist nonempty disjoint subsets
such that and for every

is independent of .
Definition: Let , then a class of disjoint

nonempty subsets of with union is said
to be an -partition of .

Definition: Let , and . We denote by
the set of all with elements

else
(1)

where is a -partition of . The matrix is
called the lumping matrix defined by the-partition .

We now describe a finite algorithm for computing all lump-
ings of a specified Markov chain. Suppose is a -lumping
of an -state process , where , noting that an

-lumping is trivial. We are interested in testing whether an
-lumping exists. We suppose this is achieved (without

loss of generality, by relabeling if necessary) by amalgamating
and . It is easy to see from the definition of lumpability,

that one may test whether this amalgamation may be made by
selecting any and and determining whether
for each the condition

(2)

holds. Thus it suffices to only test using arbitraryand be-
cause the -lumping guarantees that each of the above transi-
tion probabilities are constant across and , respectively.
We then have that the -partition

(3)

generates an -lumping for .
Comments:

1) The above result shows that it takes comparisons
to check whether a given pair of subsets of the-par-
tition can be amalgamated. Thus, to determine all

-lumpings given an -lumping requires at most
comparisons.
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2) Thus we may specify a procedure for obtaining all lump-
ings which exist.

i) Let and define the trivial partition
for .

ii) Let denote an -partition generating a
lumping. Apply the above test to each distinct pair
of . If there are no successes, then we stop
the procedure, with the process being-lumpable
but not -lumpable, and the set of all such

-partitions defines all -lumpings. If there
are successes, then amalgamate the appropriate
partition subsets, and define the -partition

generated by the -partition as above.
There may be several such -partitions for
a given -partition. Repeat this process for each

-partition.
iii) This yields the minimal yielding -lumpa-

bility, together with all -lumpings and associated
-lumpings for .

B. The Case When

We now specialize to the case and derive linear alge-
braic descriptions of lumpability. Generalizations to arbitrary
of most results presented in this paper for can be found
in [13].

Lemma 1: A -state Markov chain is 2-lumpable if and
only if the state transition matrix is (up to re-labeling of the
states) of the form

where , and there are and
such that

(4)

where is a vector of unity elements of the ap-
propriate dimension.

Proof: Take and
where is the state set for . Now for

we have

(5)

which is required to be independent of, i.e., a scalar multiple
of . This result holds with replaced by , and by .
The other equations follow from the fact that . Con-
versely if (4) holds, then the resulting class probabilities satisfy
the lumping condition.

Theorem 1: An -state Markov chain is 2-lumpable
under lumping matrix if and only if its state transition matrix

satisfies , i.e., the null space , of
is -invariant.

Proof: Suppose is 2-lumpable under lumping matrix
which we can assume w.l.o.g. (by state relabeling) to be of

the form , where there are unit elements in
the first row and on the second. The null space ofis

given by the set of all -vectors of the form
where , with . Then by
Lemma 1,

(6)

which is clearly zero for all .
Conversely, suppose for all , then in

particular firstly taking then taking
we have from (5) that , ,

and orthogonal to (the appropriate dimension). The
dimension of the subspaces of suchand are and

, respectively. Thus , . Thus
, i.e., there is a constant such that

. The remainder of (4) can be similarly derived with the
constant terms constrained by the unity row sums of. Thus

corresponds to a 2-lumpable chain under.
Corollary: Consider , where

are the right singular vectors of , with
, then is 2-lumpable under if and

only if has the following form in the coordinate change
generated by :

(7)

with nonnegative, i.e., there is a zero matrix in
the bottom left block. Note also that , i.e.,

and are the scaled (to unit norm) rows of.
Proof: Follows from the fact that for

and . Nonnegativity of fol-
lows from the fact that where

is nonnegative. repre-
sents a weighting dependent on the number of atomic states in
each aggregated state.

Comment: The number of candidate 2-lumpings is given by
the number of distinct pairs of subsets of at least one
of which has at least 2 elements. This number is for

. Despite the fact that the number of candidate lumpings
increases exponentially as the state dimension, a large number
of candidate lumpings can be rejected by simple tests based di-
rectly on the definition as above. It is only when the number of
atomic states which are being lumped into the two aggregated
state sets are each comparable, is there advantages in using the
results of the corollary above to test candidate lumpings.

The next result yields the lumped Markov chain model, and
is analogous to the example [5, p. 125].

Lemma 2: Let denote the transition matrix for the lumped
model of , then where is the transition ma-
trix for , and is a diagonal weighting matrix with element

being the number of atomic states in aggregated state set.
Proof: The aggregated class transition probabilities are

(8)
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Thus

(9)

where denotes the cardinality of the set. This establishes
the result. Note that , where is as
defined in the corollary to Theorem 1.

Comment: It is easy to show that the only single nonunity
eigenvalue of is identical to the eigenvalue of
corresponding to those eigenvectors of not in , i.e.,

.
To see this, suppose , , where de-
notes the appropriate size identity matrix. Decomposeinto
the direct sum where and

with . Here denotes the range of a
matrix. Then lumpability implies ,
for some , . This holds because

, and . So
. But

. Now
.

We will designate the lumped chain by.

III. L UMPABLE HIDDEN MARKOV PROCESSES ANDMODELS

In this section we shall extend the concept of a lumpable
Markov chain to a hidden Markov process (HMP). A general
definition in terms of joint state transition and observation prob-
abilities is given first. We shall prove a general theorem anal-
ogous to Theorem 1 for HMPs with continuous outputs. We
then specialize the result to the case where the HMP has a finite
number of discrete levels. For this particular subclass of HMMs,
we find it convenient to distinguish between lumpability for a
given observed HMP, and lumpability of the model which gen-
erated the observed HMP. This is because the concept of lumpa-
bility for the HMM can then be made explicit by virtue of the
finite parameterization inherent in this specific casevis a visthe
general continuous output case. An HMM defines the statistics
of all HMPs it generates. We also comment that although our
results are given for , the comments made in the previous
section relating to -lumpability of Markov chains, also apply
here with the appropriate modifications [13].

Definition: An HMM is defined by a finite state level set
, a transition probability matrix

satisfying , for all and , and
a set of probability measures . We denote the
HMM by the triple , where denotes the vector
comprising the . We will typically assume that is of
specified form, perhaps depending on a finite parameterization
.
Definition: A hidden Markov process (HMP) generated by

the HMM is a random process , which sat-
isfies: i) are conditionally independent given an underlying
state process taking values in the set with conditional mea-
sure and ii) the process is a Markov
chain with transition probabilities

, where .

Comment: We have used the notation in a loose
manner. To be precise, one should work with mixed continuous
and discrete measures to handle continuous observations and
discrete states but the context remains clear.

Definition: An HMP with state sequence and obser-
vation sequence where , is said to be 2-lumpable
if and only if there exist nonempty disjoint subsetsand of

such that and: i)
is independent of , , and ii)

is independent of, , .
Comment: Notice that in contrast with the definition of

lumpability of a (stationary) Markov chain, the above prop-
erty must hold at all times. This is because the probabilities
involved are dependent on the observed HMP realization,
which is clearly time dependent. This is in contrast to the
HMM generating the observed HMP, which specifies the
(time-independent) statistics of the HMP. For the specific
HMMs we address below, this requirement will be replaced by
requirements made of the (finite number of) model parameters.

Definition: A hidden Markov model is said to be 2-lumpable
if and only if every HMP generated by the model is 2-lumpable.

A. Continuous Output HMMs

A continuous output HMM will be parameterized by
the state transition matrix and observation conditional
probability density . We define the observation matrices

.1 An HMP is parameterized by
.

Theorem 2: The HMP is 2-lumpable if and only
if for each there is a partition

(10)

where there are such that

(11)

Here the and are in general time-dependent due to the
dependence on the measurements sequence.

Proof: Follows as per Lemma 1 but using the fact that
. The fact that we

do not have and in (11) in general,
follows from the fact that is not row stochastic in general.
However, regarding the terms as dependent on the observa-
tion , it is easy to see that , and
similarly for . Nonnegativity of the follows from the
fact that both and are nonnegative.

Comment: The unnormalized filter recursion for computing
where , is [14]

(12)

It follows from Lemma 2 that the optimal (unnormalized) filter
for the aggregated states , is given by

(13)

1By this we mean[B ] = � p(y jX = q ), where� = 1 if i = j

and zero otherwise.
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Corollary: Let denote the right singular vectors of, as
before. Then is 2-lumpable if and only if has the rep-
resentation

where is positive.
Proof: Follows directly from the application of the corol-

lary to Theorem 1 to the product . The filter matrix as
defined in (13) is given by .

B. Discrete Output HMMs

Consider a finite output HMM with observations taking
one of possible values and conditional output
probability matrix with elements

(14)

so that . Let ,2 which will be a diag-
onal matrix with one of the rows of on its diagonal spec-
ified by the observation, i.e., there are only possible values
which can be assumed by . A discrete output HMM is param-
eterized by the matrix pair .

Theorem 3: The HMM is 2-lumpable if and only if
for each , there is a partition

where there are such that
(11) holds. The matrices and scalars are dependent on
due to the explicit dependence on the measurements. In addition
we have that , and similarly for .

Proof: Follows directly from Theorem 2 since the
required property for holds for all and for all
observation sequences if and only if has
the form above . The final result follows by
summing each side of (11) over the implicitdependence.

Corollary: , if and only if

where the are nonnegative.
Proof: Again this result follows directly from the

corollary to Theorem 1, again with the same argument as
Theorem 3.

Comment: As in (13), the recursion for the filtereda pos-
teriori probabilities for the aggregated states involves the ma-
trices one of which is determined by each measurement. In
contrast to the continuous output case where an infinite number
of possible values for could exist, there are only distinct
values the measurements can take. Thus there are onlydis-
tinct matrices which can result. These could therefore be pre-
computed and the measurements used to select the appropriate

at each [12].

2If x 2 , thendiag(x) 2 with [diag(x)] = � x .

IV. SUBOPTIMAL FILTERING FOR HMMs VIA MODEL

REDUCTION

In this section, we shall be concerned with using the
lumpable approximation to a HMM to derive efficient filters
for the lumped or aggregated state sets as well as the original
atomic states of the-state HMM. Attention will be restricted
to discrete output HMMs.

A. Filtering for Aggregated States

In this section, we examine optimal filtering for the aggre-
gated states of a lumpable approximation to a given HMM.
Since we are only interested in determininga posterioriprob-
abilities for the aggregated states, we do not require the
lumpableapproximation to the HMM, only the lumpedma-
trix. This leads naturally to an approximation procedure which
yields directly the optimal lumped matrix. An alternative
procedure which yields the lumpable transition matrix is
given in Section VI.

Let denote the set of all-state transition probability ma-
trices, i.e., : . Denote by

the affine subspace of given by :
. This -dimensional subspace reflects one part

of the probability constraint imposed by membership of; the
other being the nonnegativity of elements of. Denote by
the set of all satisfying ,
then we show that is an -dimensional linear
subspace. Note that depends on . Let :

. Evidently .
Lemma 3: Let , and let3

(15)

then

(16)

where , and . Furthermore
. Also if and only if is

lumpable by .
Proof: We write

(17)

Differentiating wrt and using yields

(18)

Clearly is nonnegative as it is the product of nonnegative
matrices. To verify that , when consider

(19)
The fact that if and only if is lumpable by
follows from Lemma 1.

Comments:

1) The above optimization problem arises if we were to as-
sume that the lumped probabilities were correct at time,

3Throughout the paper we use the Frobenius normk	k = (Tr(		 )) .
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i.e., and we seek to compute
which is as close to as possible. Hence minimiza-
tion of the above norm is appropriate in terms of mini-
mizing accumulated error in the approximatea posteriori
probabilities for the lumped state sets. Correct probabili-
ties for the aggregated states will thus be obtained if and
only the relevant is lumpable.

2) Lemma 3 can be applied directly to
in the case of discrete output HMMs to yield

for use in the aggregated state filter.
3) Suppose the underlying Markov chain is itself

lumpable with lumped matrix , then for the dis-
crete output HMM the question arises whether to use

, or as arises.
By virtue of the optimality of the above approximation
procedure, we conjecture that lumping
is the best idea.

4) In [7], the authors introduced a lumped approxima-
tion for a continuous output HMM by assuming a
lumpable Markov chain, and approximating the output
probability matrices by the actual conditional ob-
servation probabilities given the aggregated states.
The formula for the aggregated output matrix is then

, where is the asymp-
totic distribution of the atomic chain . This compares
to the direct lumping on using the formula from
Lemma 3 (which inherently and implicitly assumes a
uniform asymptotic distribution of the atomic states)

, i.e., in [7], is replaced
by where . Given the optimality pro-
vided via Lemma 3, this approach would be expected to
be inferior to a direct lumping of . A heuristic
argument is that using does not permit any
coupling between the Markov chain dynamics and the
observation likelihoods when determining a lumpable
approximation to . Use of permits coupling via
the stationary distribution of , while lumping
together uses full information of the dynamics of .
Thus it is suggested that lumping of alone should
not be used. The condition of a uniform asymptotic
probability distribution for the underlying chain is not a
restriction as we suggest lumping the product (or
the appropriate HMM parameters) directly.

5) In [12], the authors concentrate in particular on super-
imposed independent Markov processes in noise. In this
case, the lumping proposed here reduces to a product of
an averaged data likelihood and the dynamics of the com-
ponent chain. Formulas for the lumping matrices are ex-
plicitly given. Also, a successive estimation scheme for
multiuser estimation (i.e., estimation of all component
Markov chains) is provided.

B. A Two-Pass Filter for the Atomic States

In this section, we propose a filter for the atomic states of a
HMP. The filter is based on finding a good lumpable approxi-
mation and using the results of a coarse state estimation to yield
a filter of reduced complexity for the atomic states. This filter
uses two passes through the observed data. On the first pass we

construct the optimal lumped approximation as described in
Lemma 1 above. This yields approximate filtered probabilities

for the aggregated states from which we can derive ap-
proximate maximuma posterioriprobability (MAP) estimates

: for the aggregated state sets.
Our algorithm for filtering for the atomic states is based on the
assumption that with probability 1 for all . Thus pass
2 proceeds using the iteration

(20)

where instead of using the transition matrixfor the atomic
HMP, we use instead the quantity

else
(21)

One can thus view the MAP estimates from the first pass ascon-
trols for the second pass. The computational complexity for the
first pass is , while the computational complexity for the
second pass is . Fig. 1 shows the best savings achiev-
able (i.e., proportion reduction over optimal atomic state filter)
in computational requirements as a function of the normalized
number of aggregated states . This optimum occurs when
each of the aggregated states has the same number of elements.
This figure clearly displays that there is an optimal aggregation
number (roughly ), and that potential benefits
increase as increases.

It should be noted that both filters can be run together since
(21) requires only knowledge of the current and previous time
estimates from pass 1. We will now examine the performance
of this filter with an example.

V. SIMULATIONS

A. Example 1—Exact Lumpability

In this section, we give an example of an exactly lumpable
HMM with 16 states. There are 4 discrete outputs, and we seek
an 8-lumping, i.e., 8 aggregated state sets each having 2 atomic
states as members. The parameters of this discrete output HMM
are determined as follows. Let

(22)

where each of the vectorshave 2 elements, and define

where . The observation probability ma-
trix is specified by a matrix consisting of a single unity element
in each row with zeros elsewhere. To model a stochastic (or
noisy) output measurement, we perturb each element indepen-
dently by a uniform random variable distributed on where

is termed a noise parameter, and rescale to ensure the
matrix remains a (conditional) probability matrix. The form of

for noise parameter is given by (23), shown at the
bottom of the next page. It can be shown that is exactly
2-lumpable under where denotes the identity
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Fig. 1. Computational savings versus degree of aggregation.

matrix of size . The lumped model corresponding to
the first row of in (23) is given by (24), shown at the bottom of
the page, and similarly for the three remaining lumped models.

The optimal filter for MAP estimates of the atomic states was
computed and applied to 1000 realizations of HMPs of length

200 samples produced from the above HMM. The two pass pro-
cedure was also applied to the same data, with state estimation
error results tabulated in Table I. For pass 1 we say there is an
error if the true atomic state does not lie in the estimated aggre-
gated state set.

(23)

(24)
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TABLE I
STATE ESTIMATION ERRORRESULTS FORTWO-PASS FILTER

The computation required is reduced by approximately 72%
in this case with an increase in state estimation error ranging
from about 65% at low noise to 33% at higher noise. It is in-
teresting to note that the estimated error probabilities computed
for the estimation of the aggregated states in pass 1, are approx-
imately the same as the estimated probability of error in esti-
mating the atomic states with the optimal filter. There appears
to be a small decrease for higher noise, although the statistical
variation from this experiment is too high to make any definitive
comment. This effect may be more significant for aggregated
states having a larger number of elements, rather than the case
for this example, where each aggregated state contains only two
atomic states.

B. Example 2—Approximate Lumpability

The second example addressed is one where the HMP is not
exactly lumpable. We will consider an example of two super-
imposed Markov chains. We consider two statistically indepen-
dent binary chains and with transition probability
matrices given, respectively, by

(25)

The transition probability matrix for the Cartesian product
is thus [4]. We will consider

a continuous observation conditionally Gaussian HMP with
output mapping

(26)

where is an iid Gaussian zero mean process with variance.
The Markov chains and assumes values in the level
sets and , respectively.

The following filters were computed and applied to 1000 re-
alizations of the process, each of 200 samples length: 1) the op-
timal filter; 2) the lumped approximation obtained by lumping

at each time; 3) the lumped approximation obtained by
lumping and separately; and 4) as in 3) but using the
weighting method of [7]. Maximuma posterioriprobability es-
timates of the Markov chain states were computed, and the per-
centage of incorrect decisions are tabulated in Table II below.

It appears from these simulations that the suboptimal method
of [7] is superior, particularly at higher noise levels. This calls

TABLE II
PERCENTAGEERRORPROBABILITIES FOR FILTERS

into question the argument that the optimal approximation ob-
tained via Lemma 3 (i.e., lumping of ) yields the best re-
sults in terms of error probabilities. In order to test this conjec-
ture more thoroughly, further simulations are required. Refer-
ence [12] investigates these aspects in more detail. Also, in order
to reconcile the algebraic approximation inherent in Lemma 3,
with statistical properties of the resulting estimates, we argue
that the measure change ideas inherent in [14] will be useful.
This is an area of continuing research effort. It should be noted
that in general, the lumping of matrices at each time is a compu-
tationally intensive procedure which would neutralize any com-
putational savings made due to the two-pass procedure. In prac-
tice, one would use a discrete output model (obtained by some
appropriate discretization of the continuous output model) and
precompute all lumpings (see [12]).

VI. M ODEL REDUCTION VIA APPROXIMATE2-LUMPABILITY

In this section, we propose a model reduction technique for
Markov chains and, by extension, hidden Markov processes. In
the Markov chain case, the method is based on the approxima-
tion of a given transition probability matrix by a 2-lumpable
probability matrix. In the HMP case, we approximate the
product of a transition probability matrix , and the data
likelihood matrix at each time, by a lumpable probability
matrix. Even though the product is not in general row
stochastic, the equations for the unnormalizeda posteriori
probabilities for the HMP states are invariant to row scaling, so
we will still seek a 2-lumpable transition probability matrix as
the approximation to . Approximation of HMMs can also
be addressed in a similar way. We do not explicitly provide
details for the HMP or HMM case, as they follow in much the
same way as previous results.

Given , we seek a 2-lumping matrix and
such that is minimized subject to ,

. We shall propose an alternating projection algorithm to
yield feasible solutions to this problem. Optimality of the ap-
proximation appears to be an open issue.

Lemma 4: The affine projection onto is given by

(27)

Proof: We seek the solution to the optimization problem

(28)

Differentiating with respect to yields the necessary condition
. The constraint is then forced by the choice
. Thus the form (27) is obtained.

Authorized licensed use limited to: Adelaide University. Downloaded on October 13, 2008 at 01:49 from IEEE Xplore.  Restrictions apply.



WHITE et al.: LUMPABLE HIDDEN MARKOV MODELS—MODEL REDUCTION AND REDUCED COMPLEXITY FILTERING 2305

Theorem 4: The linear (orthogonal) projection onto is
given by

(29)

where is defined by

(30)

where is the (unitary) matrix of right singular
vectors of .

Proof: Let then we seek such that
is minimized. Let , and

then by the corollary to Theorem 1, the constraint ,
is equivalent to having the structure

where and . Thus
, there being zero elements in the lower

left corner of . Similarly block the matrix . Thus

(31)

This is clearly minimized by the choice

(32)

with the resulting error . To see that the
projection has the form of (29) consider

(33)

which has the desired form (32).
Lemma 5: Theconvex projection[16] onto the convex subset
of is given by

(34)

Proof: Follows directly from the definition in [16].
Theorem 5: Let be given, and define a sequence

of iterates in by

(35)

then .
Proof: Follows from the alternating convex projection

[16, Theorem 2.3-4]. To see this we need only observe that
the intersection is nonempty since there are
lumpable probability matrices (see earlier examples) and has
finite dimension.

Comments:

1) It can be shown that in gen-
eral. The convex projection onto restricted to how-

ever can be determined analytically, and its use may be
preferable for large problems where the speed of conver-
gence of (35) in an issue.

2) Theorem 5 does not say anything about the optimality of
the approximation. Optimality is equivalent to saying that

in Theorem 5 is the convex projection onto .

VII. CONCLUSION

This paper has generalized the concept of lumpability of a
Markov chain to hidden Markov processes (HMPs). A vector
space approach to the problem has been used to establish con-
ditions for lumpability of a given HMP realization. For the case
of a discrete output hidden Markov model (HMM) we have
proven necessary and sufficient conditions for that HMM to
be lumpable. A HMP arising from a lumpable HMM is always
lumpable. The optimal filter for the aggregated (lumped) states
has been derived.

We have also applied these results to obtain lumpable approx-
imations in the case where a given HMP may only be approx-
imately lumpable. We have derived an optimal approximation
algorithm based on an algebraic criterion, yielding the lumped
model or process, and the associated filter for the aggregated
states. A two pass procedure has been derived which yields sub-
optimal filtered estimates for the atomic states of the original
HMP. Significant computational savings are provided, although
more simulation is required to make definitive statements about
the performance of this suboptimal procedure. Finally, a general
and explicit approximation result based on convex projections
has been described.
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