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Abstract—This paper addresses the design and performance of code-division multiple-access (CDMA) system. In these types
time-recursive receivers for diversity based communication sys- of systems, the presence of a number of different diversity
tems with flat Rayleigh or Ricean fading. The paper introduces :hannels can be used to improve the system performance by

a general state-space model for such systems, where there is tem; L L. . .
poral correlation in the channel gain. Such an approach encom- transmitting and/or receiving the same information symbols

passes a wide range of diversity systems such as spatial diversitySimultaneously across a number of channels. This goal can
frequency diversity, and code diversity systems which are used in be achieved by introducing coding in both the temporal and

practice. The paper describes a number of noncoherent receiver diversity dimensions. This paper is concerned with the design
structures derived from both sequence anc posterioriprobability-  of receivers for suckiversity systems

based cost functions and compares their performance using an or- Given that there are many different types of diversity which

thogonal frequency-division multiplex example. In this example, . s . )
the paper shows how a standard physical delay-doppler scattering MaY be exploited, it is desirable to develop a generalized and

channel model can be approximated by the proposed state-spaceunified taxonomy for_ system modeling and signal p_rocess_ing
model. The simulations show that significant performance gains for such systems. This framework can be used to derive various
can be made by exploiting temporal, as well as diversity channel types of receiver structures which are applicable to any type of
correlations. The paper argues that such time-recursive receivers diversity system. In particular, we will consider systems where
offer some advantages over block processing schemes such as comy, e channel is modeled by vector time series where each ele-
putational and memory requirement reductions and the easier in- tofth ¢ ts th | in of a diff t di
corporation of adaptivity in the receiver structures. Ment of the Vector represents the compiex gain or a dierent di-
- ) _ ~versity channel. We will assume that these gains are correlated
Wi:nldex Terrnmrs_n?"’%rsr']ty' fading channels, space-time coding, i poth the diversity dimension (i.e., the gains of different chan-
€less communications. nels are statistically dependent at each time), and the temporal
direction. Temporal correlation can arise from doppler effects
|. INTRODUCTION [4] and from oversampling as examples. We particularly focus
N RECENT years, there has been an increasing emphaosri]ssFate'Spa.Ce channel models which lead naturally to time-re-
o . . o CuTsive receiver structures. These structures generally tend to
on exploitation of different types of diversity in commu- . : :
. . ; i . offer reduced computational complexity and memory require-
nications systems, particularly those which utilize a wireless

transmission medium. Examples of types of diversity whicWents when compared with block processing systems. Another

have been exploited to improve the performance of digitgptentlal advantage of time-recursive receivers is the ease of de-

o . . ) velopment of adaptive processing algorithms, however, we do
communications systems are time diversity (also known as

. . s o not address this issue in this paper.
fractional sampling) [1], spatial diversity via the use of several .. . . . .
. . . . Since the computational complexity of the optimal receiver
transmitter, and/or receiver antennae [2], [3], code d|verS||tg/

(as used in spread-spectrum communications), and frequenc .engrally too large to be feasible, the paper fpcuses on the
diversity such as used in orthogonal frequenc;/-division mue ivation and comparison of a number of suboptimal receivers
tiplexing (OFDM) systems. Also, these different types o hich have computational complexity which is linear in the size

! . . .~ ofthe transmission codebook. In this paper, we will tend to focus
diversity can also be combined, for example, a multicarrier . . o
on single-user systems where the general aim of the receiver is

to exploit the temporal and diversity correlation to improve per-

. . , formance. Much of what is considered here also applies to the
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has been significantly less published concerning the presemdeere s, € CZ is the channel gains and, ¢ CM is a

of, and exploitation of temporal correlation in the channetero-mean complex circular white Gaussian noise sequence
We believe that this work makes the following contributionswith covariance 2%1,;. We now give several examples of

1) a generalized state-space model for diversity communicatiaow this model may be applied to represent different diversity
systems; 2) development of a number of time-recursive receiggstems.

structures which exploit temporal correlations in the channel;

and 3) a performance comparison of these proposed receivérs Examples

In addition, we examine the issue of matching our proposed 1)
model to a physical correlation model for delay-doppler chan-
nels [9], [10]. Some of the proposed receivers are well-known,
but others are novel, especially in the context of their applica-
tion in this problem.

There has been considerable interest also in the code design
issue for diversity systems, particularly space—time diversity
systems (see, e.g., [6] and [11]-[14]). We do not directly
address the design issue in this paper, but we will make some
pertinent observations regarding code design in the context ofz)
the OFDM example presented in Section IV.

The layout of the paper is as follows. In Section I, we intro-
duce our model of a general diversity system in complex number
form, and then in a real quadrature signal form. The latter will
form the basis for the receiver design. The model for the re-
ceived signal constitutes the measurement equation for a time
varying state-space system. Our model for the diversity path
gains is cast as a quadrature Gauss—Markov process which con-
stitutes the state equation for the state-space system. We also
give some examples, which are by no means exhaustive, of how
some well-known examples of diversity systems may be cast
within our framework. In Section I1I, we introduce a number of 3)
candidate noncoherent receiver structures which are based on
the state-space diversity model from Section II. In Section IV,
we detail a specific application of our techniques to the OFDM
system. The diversity dimension here is frequency. We examine
a general physical delay-doppler scattering model for path cor-
relations as a function of time and frequency, and detail a tech-
nigue which permits approximation of this correlation function
by the signal model introduced in Section Il. Some issues re-
lating to partial diversity and an associated model reduction
method are discussed. Finally, we present some simulation re-
sults for the OFDM case, which compare the performance of our
candidate receivers to the coherent case (path gains known by
the receiver), and to standard approaches which do not exploit
the time correlation.

Il. COMMUNICATION SYSTEM MODEL

In this paper, we consider a communication system consisting
of L > 1 diversity paths. These diversity paths are assumed to
undergo Rayleigh/Ricean flat fading. The path gains are cor-
related with each other and are also temporally correlated. At
each time, we mapp bits of the input data stream onto one of
the codewords of the sgt= {X(), X . X)) where
X ¢ CMxL and K — 2. The codeword is then transmitted )
serially across thé channels, i.e., columfof the selected code
is transmitted serially across diversity pdthWe assume that
the receiver measures a linear superposition offttiiversity
paths. Thus, the received signal in blockiddfcomplex samples
(M is the temporal dimension) can be written as

Y = Xihy + g 1)

Space-time coded system with a single receive antenna.
Here, we havd. transmitters and the diversity is obtained
by virtue of theL paths from the transmitters to the single
receiver. In each block aff time samples, transmittér
transmits the sequenc[:&t]m,f form =0,...,M — 1.
The diversity gaing:; represent the complex flat fading
gains on each spatial path. The cod&$) are known as
space-time codes [6].
Space—-time coded system witN receive antennae.
Let the channel gain between transmitteand receiver
n be given by[h]nrqe for ¢ = 0,....L — 1 and

, N — 1. Let [¢¢]nrr+m denote the received
signal for samplem (of block ¢) and receivemn, for
m 0,....M — 1 andn 0,...,N — 1, and
[72¢]nar+m fOr the corresponding noise sample. Then, (1)
holds with the appropriate dimension changes, and the
MN x LN code matrix is formed by making a block
diagonal matrix withV x N blocks (each of sizé/ x L)
with the same space—time code on each diagonal block
and zeros elsewhere.
OFDM. Here, the diversity dimension is frequency, so
we can regard OFDM as a frequency-time coded system.
Suppose we seek to transmitcomplex symbols in a
vector s; for time periodt. We use a precoder matrix
C € CI*" to map then symbols onto the. orthog-
onal frequency channels. Herd, = L. The signal trans-
mitted on channel will be the /th element of the vector
C's;. The cyclic prefix which is added at the transmitter
and stripped off at the receiver turns the time and fre-
quency-selective fading into a time fading on each carrier,
see [9]. Thus, the received signal for symbol periag
the superposition

L-1

A S L R A A

£=0

)

where[h,], denotes the complex gain of chanfighndiz;

is additive Gaussian white noise. Thus, we have the form
of (1) where the code matrix has the forkh = FHS,
where S; is a L x L diagonal matrix with its diagonal
elements being the entries of the vectos;, and F' is

the Fourier matri{F],,; = e~>"*/L More details on
OFDM as a diversity system are given in Section IV.
Code-division multiple-access (CDMA) uplink. This is
an example of a multiuser diversity system. In this case,
column/ of the code matrix is the spreading code for user
¢ multiplied by the complex modulation symbol for user
¢ at symbol timet. Thus, ifW € CM>*L denotes a matrix

of the lengthM spreading codes for active users, &fd

is a diagonal matrix of sizé& x L with the diagonal el-
ements being the modulation symbols of the active users
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for symbol period, then the associated diversity code is The analogous real quadrature form for (5) is
X; = WS;. The path gains in this case are the propa-

gation gains from each user mobile station to the base hiyr = Ahe + v; (®)
station. In this case, our receiver designs will constitutghere
noncoherent multiuser detectors. p
AT A v
A= At AT | Ve = i - 9)
B. Real Quadrature Model Form Ut

It will be convenient for the resulting receiver derivations, tdhe process; € R?L is a Gaussian white noise process with
utilize a real quadrature model for the signal. Let denote the réakan,, and covariance matri§) given by

and imaginary part of an arbitrary complex matrix (or vectr) ”, Q Oni
by 67 and#:, respectively. The complex received signal (1) can W= [“,} , Q= [ e Q“] (20)
be modeled into quadrature form by H Cri w
i, with Q... + Qi;; = Q" andQZ — Q,; = Q'. The mean and
Y = [‘zﬁ} = X¢hy +ny (3) autocorrelation sequence fby are then given by
Jt
=E{h}=(1-A)""
wherey, € R*M | h, € R*L and X, € R*M*2L gre given by v 1;; ( T)> OIL
, E{hhi{ .} = - 11
hy n X X} {hehir } {P(AT) <0 (11)
hy = i Tt = | Xi = i |- 4)
h} t Xi X where
The transmitted codeword; is now selected from the corre- P.. P.
sponding sefy = {XM, x® . . XU} Here,n, € RM P = [pTT; pizl (12)

is a zero-mean Gaussian white noise vector with covariance
a2l with P, + P;; = P" andPL — P.; = P. Equation (3) and

(8) are, respectively, the observation and state equations for a
C. Time-Correlated Rayleigh/Ricean Flat-Fading Channel state-space model of our received signal. The mean and auto-
Model correlations forh; can be shown to be identical to the analo-

In this section, we define the model for the diversity patfOUS means and autocorrelations of the complex sequence

gainsh, in both complex and real quadrature form. The chann&1us. the magnitude gain of the channels is Ricean ¢ 0)
gains are modeled as a first-order vector Gauss—Markov proc@s&ayleigh (if = 0) with joint correlations in the diversity

expressed in complex form by and time dimensions given by (11). Equation (11) shows that
R » the autocorrelation sequence has the form of a mixture of de-
hiy1 = Ahy + 04 (5) caying complex exponentials (determined by the eigenvalues of

. ] ) ) the stable matrix4).
whereA € C"*" is aknown, stable matrix ang is a complex

Gaussian white noise process with mgaand covariance).

eSS ’ Ill. RECEIVERS
We assume that at the initial timie= 0 thath, is chosen to be ] ) ) .
Gaussian with the steady state statistics In this section, we describe a number of noncoherent receiver
structures for estimating the code sequeigen the absence
E {7L0} — (I _ A)_l i (6) Of knowledge of the channel gains. The first class of receivers,

which includes the generalized-likelihood ratio test (GLRT)

and Co\hg} = P whereP satisfies the Lyapunov equation[®]: [14], [15], noncoherent maximum-likelihood (NCML) [6],
APA® 4 (Q = P. Thus,h, will be a stationary process with [12], and maximuma posterioriprobability (MAP) receivers,

mean given by (6) and with autocorrelation matrix are well-known and do not exploit the temporal correlation in
o the signal. The NCML and MAP receivers, however, do exploit

< e AP, T2>0 the correlation in the diversity dimension. The second class are

E {ht ht—r} =\ p (AH) s <o. (") Kalman filter-based receivers which includes the per-survivor

processing (PSP), M-algorithra,posterioriprobability (APP),
This channel model is general and permits both temporal ad@d iterative expected-maximization (EM) receivers. These
diversity correlations in the gains. Several channel models cdgceivers are based on the state-space model from Section II.
sidered in [6], [12], and [13] for the space—time coded systehhe PSP, APP, M-algorithm, and EM algorithms are all
can be considered as special cases of this model. The quasi-s4éit-known. However, the novelty of these receivers is that
independent and identical distributed (i.i.d.) fading model us&¢ incorporate Kalman filtering into these standard algorithms
in [12] can be represented by this general model Witk 0 and to exploit the temporal correlation in the signals and track the
P = I, where 0 is the matrix of all zeros. Setting= 0 and channel variations.
P = E{h,; '} # I, this model corresponds to the quasi-static _ . _ _
correlated fading channel model in [6]. The time-varying i.i.§ Generalized-Likelihood Ratio Test (GLRT) Receiver
fading channel model in [16] can be cast into this general modelWhen the probability distribution of the diversity path gains
by havingP = I andA = oI wherea < 1. is unknown, a GLRT receiver can be used. The GLRT receiver
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computes the joint maximum likelihood estimate of the channehereN is the dimension of the vectar. It can be shown that
and the transmitted codeword. Thus, the transmitted codewexd. | X, h:)p(h:) can be expressed as
estimated by the GLRT receiver is

P (ye| X, he) p (he)

XGLRT _ aromaxsu Xi=X,h 13 R A

t ppaxsupp (ylXe = X, h) - (13) = N (e(X); (X)) N (ht — hy(X); Pt(X)) (20)
wherep(y¢| X¢, he) is the data likelihood function, which is a
Gaussian with meaX .k, and covariance?1. This is equiva-
lent t A _
entto ho(X) =v + PXT (XPXT + 021) ™" (3 — Xv)

= argmin|| Py, (14) By(X) =P - PX" (XPX" +0I) " XP. (21)

where

o GLRT
Xt

wherePLt = 1— X® (X(k)TX(k)>_l (X ()T is the orthog- Clearly, h,(X) maximizesp(y,| X, h¢)p(h:) over h, and the

maximized value is
onal projector to the codeword (¥,

X, he(X)) p (he(X
B. Noncoherent Maximum-Likelihood (NCML) Receiver p(ytl P ))p( o ))

In the situation where the probability distribution of the =N (et(X); Qe(X)) NV (0; Pt(X)> - (22)
fading channel is known, one can use the NCML receiver. The
NCML receiver maximizes the marginal density;| X;) over Thus, the cost function that the MAP receiver needs to minimize
Xt is the same as that of the noncoherent ML receiver plus an extra
termlog det P, (neglecting constant terms)

XNCME — argmax p (y:| Xy = X)
Xex

MAP NCML 5
= arg max En, {p (ye, he| Xe = X)}  (15) J(X) =, (X) + logdet P(X). (23)
XeEX

More detailed description of the GLRT, NCML, and MAP ap-
rpe(oaches can be found in [17].

The receivers described above do not exploit the temporal
correlation of the fading channels and operate on each symbol
JNCML( %y — TV~ (X)) e (X) + loe det . (X) (16 period mdep_endently. In the fqllowmg sections, we dgscnbe

p (X) = e (X)Q(X)er(X) + logdet %i(X) (16) (o receivers which take this temporal correlation into ac-

wheree,(X) = y, — Xv; Q(X) = XPXT + 0I; v and P count when performing the detection.

are the mean and covariance@f This receiver does not exploit

the temporal correlation as it operates independently from codz- Sequence Estimation Approaches

word period to codeword period. However, it can be extended toConsider a sequence of codeworfiXo, Xy,..., Xz 1}

account for the temporal correlation by incorporating multiplgeing transmitted during’ codeword intervals. In order to

codewords into the decision metric (16), albeit at the cost of ex-_ : . : ; g L
. . . : Obtain an optimal solution which maximizes the likelihood
ponential increase in processing complexity.

p(Yo, -, yr—1]Xo,...,X7—1), there must be a Kalman
filter for each of the possible sequence (model). This direct
implementation of the optimal receiver has a complexity of
Another receiver which can be used when the statisticy K7) which grows exponentially with the length of the
of the fading channel is known is the MAP receiver. Theequence. Thus, even for smdll it may not be practical
MAP receiver works by maximizing over; and X;, the APP to use this method. Therefore, we need to examine other
p(Xe, helye) o< p(yelhe, Xi)p(he), assuming the codes aresuboptimal methods. In this section, we describe two receivers
chosen from the codebook with uniform probability. Thatis which approximately optimize the likelihood of the transmitted
sequence, i.en(yo, - - -, y7—1| X0y, X7-1).
= arg I){}gﬁs;lpp(ythXt =X) (17) 1) Per-Survivor Processing (PSP) Receivén this sec-
" tion, we describe a receiver which approximates the optimal
where receiver by using the PSP method [18]. This method can be
implemented via the Viterbi algorithm. In this method, there
p (el X, he) p (he) = N (s — Xhy; 0 T) N (hy — v; P) . will be K Kal_man .filters (KFs), each tuned to one qf the
(18) codewords. Fig. 1 illustrates the structure of this receiver.
Here, N/ (z, P) denotes the Gaussian density At time ¢, for each codeword the receiver calculates the log-
likelihood from the possible paths. After computing the path
metric, it retains the path with the largest log-likelihood and
computes the channel estimate for this path. The approximately

where the expectation is with respect to the charnelThis
is equivalent to choosing the codeword which minimizes t
following cost function:

C. Maximum a Posteriori Probability (MAP) Receiver

- MAP
Xt

_ 1 —.7:TP_1.7:/2
N P) = Gy 5rtae Py (19)
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Fig. 1. Structure of PSP receiver.

optimal log-likelihood at timeg of the kth Kalman filter tuned one for each survivor paths from time- 1. Once the channel

to X; = X can be evaluated according to estimates are made, it computes the path metric and selects the
one which maximizes the log-likelihood. The computation of
6t(k) = max the path metric is the same as in (24), with the predicted channel
I=he i - ) estimate and its covariance replaced by the filtered channel es-
. <5t@1 — IR QR T GER) 00 det Qgﬂ?k)) timates and its associated covariance.
2) M-Algorithm Receiver:The PSP method offers a much

(24)  1ower complexity than the optimal receiver. However, there are
situations in which the codebook siZ€, is too large which may
prevent the PSP method from being used. Also the PSP receiver
retains only one survivor path for each codeword at tin¥his

could be a disadvantage as the discarded paths at some code-

whereegj’k) is the innovation sequence of the path | = X0
andX, = X®, andQ"*) s its associated covariance

k) o x (), 0) S .
t tlt—1 words could have a much larger likelihood than the survivor
an k) :X(k)ziljt)_lX(k) +o21. (25) paths at other codewords. Motivated by this observation, we de-

veloped a receiver which is based on the M-algorithm [19] for

The predicted channel estimaitg) and its covariance detecting the transmitted codeword. The complexity of this re-

tit-1  cejver can vary fronO(1) to O(K) depending on the perfor-
of the path fromX, 1 = X ) are determined from the f'lteredmance that weywish té o)btain.( ) dep ¢ P

channel estlmatetj 11¢—1 and its covar|anc€§])1|, viathe  The M.algorithm receiver is implemented using a bani§of
Kalman filter time update equations Kalman filters, where < S < K. A pictorial description of the
) 5 () M-algorithm receiver is depicted in Fig. 2. This receiver works
ht|t  =Ahy -1t A

as follows: Atthe end of each symbol period, the receiver retains

Zgljt) ) _Azgﬁllt AT+ Q. (26) S channel estimates with the largest log-likelihood. Suppose
at the end of timg — 1, the S survivor channel estimates are
Once the survivor path &, = X *) is determined, the Kalman hgmf[t (form =1,..., 5. Attimet, for each codeword’;, the

filter then estimates the channel associated with this path usfi¢§eiver computes path metrics using the predicted channel
the received signal at time Let the predecessor of, = X (¥) estlmatesh“)l = AR™) ijt—1 T #- The log-likelihood of the
which maximizes the Iog-likelihoodgk) be denoted by, (k). path from themth survivor at timet — 1 and X; = X®) is
The filtered channel estimate of the survivor path at time calculated by

ending withX; = X(*) can be evaluated by the Kalman filter

i T —1
measurement update equations 6(m k) _ 5(m) 6mk) ng,k) Egm,k)_logdet ng,k) (28)
i (k) _j (u(K)) (w4 (k) k)7, (Ve (k)
ht|t _ht|t—1 +Gy' (yt - x¢ )ht|t—1 ) (m) - .
(e _gv ()) BT (o) (wt(k)) ©T . 2\ where ¢,°; is the log-likelihood of the survivor path
Gy Y1 X (X Yo X o I) m at time t — 1, ™Y = 4 — X<">h,|t , and
Eglkt) - Erﬁ G(%’t(k))X(k)z(rt(k)) (27) lmk) = X(’“)EETQIX(’“)T + o2] are the innovation

sequence and its covariance, respectively. Thus, ther8 idre
This method has a complexity 6f( K') which is a huge reduc- candidate paths in total and the M-algorithm selegtpaths
tion as compare with the optimal detector. It is possible to deith the largest log-likelihood. Let the path from theth
velop anO (K 2) version of this approach, in which each Kalmasurvivor at timet — 1 and X, = X*) being selected by the
filter which tunes taX,, producedX filtered channel estimates, M-algorithm as thesth survivor path at time. The filtered
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Fig. 2. Structure of M-algorithm receiver.

Channel Estimator
L’ X (€]
Time t-1 e Time t
g .7 Channel Estimator tht
t-11t-1 A,
[ 3 ) L ]
N X
N

|
|
\ |
|
|

N Channel Estimator
(X)
X

Fig. 3. Structure of APP receiver.

channel estimate of thigh survivor path can then be updateaeiver produces a single channel estimate which is the weighted

by using a Kalman filter tuned t&, = X *), Thus sum of all the estimates. This receiver is implemented by using
a bank of K’ Kalman filters, where each Kalman filter is tuned
;Lglst) :;Lgrtzzl n Ggm’k) (yt _ X(k)hifﬁl) to one of the codewords. Fig. 3 illustrates the structure of this
. receiver.
Gk :ES?EIX(’“)T (X(k)zg‘“;llx(k)T + 021) Based on the assumed signal model, each Kalman filter gives
s) (m) (mok) 1 (k) () a conditional channel estimate. These channel estimates will
Et|t :Et|t71 -G X Et|t71' (29)  then be weighted and summed to yield the mean channel esti-

mate. The weighting coefficient of the channel estinffiﬁ% is

e APP thatt, = X®), i.e.,p(X, = X®|yo, ..., y). Using
%e Bayes rule, the APP that, take on each value ig is com-
puted according to

In both the PSP and M-algorithm, the optimal sequence is
tracted by backtracking through the survivor paths. On-line v
sions can also be derived.

E. Codeword by Codeword Estimation 1L, (k) =p (Xt — X® |y, ... yf,>
The receivers described previously are used for sequence )
estimation. In this section, we describe two other techniques =GP (ytIyo, Y1, Xe =X ) (30)

which detect the transmitted codeword at each codeword in-
terval. Thus, these receivers can be used in applications whithere
cannot tolerate the delays associated with the Viterbi algorithm k k k
backtracking, or when we desire to incorporate adaptivity to P (yt|y°" Y1, Xe = X )) =N (6g );Q§ )) (31)
the channel statistics. ) ) *)

1) A Posteriori Probability (APP) Receivertnlike the re- ¢t iS the normalized factor such that, TI,(k) = 1, ¢ =
ceivers described previously which retain several estimatestof— X * .1 is the innovations sequence from the Kalman
the fading channels at the end of each codeword interval, this figer tuned toX; = X andQ{¥) = X(’“)Eﬂt_lX(’“)T +02I



760 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 21, NO. 5, JUNE 2003

is its associated covariance. Thus, the mean channel estinvatereec; = ?/t—XJltH andQ); = Xt2t|tXtT+a2I. This moti-

and its associated covariance at titrere vates the iterative scheme whereby the conditional expectations
N () is computed using{; = X*9) and then maximized, over
"t = zk: (k) M)t 0 all codewords to yieldX (k+1), The iterative process for deter-

T mining the transmitted codeword at time&an be described in
See = > (k) {zgl@ + hgl’? (hglkg) } — hyehl,. (32) detail as follows. o
% Initialization: At the start of each iteration process, the
channel estimate and its associated covariance are initialized to

In effect, we collapse th& Kalman filters’ estimates back to X .
the Kalman filter one step prediction

one each time. The estimated transmitted codeword atitise
that which maxim_izes the APP. o ,”LEO) Zimt—1 — Ailt—m—l tu

From observation, we notice that most of theposteriori =(0) T
probabilities thatX, = X*) for k = 1,..., K are very small. N =1 = AN AT + Q- (36)

In fact, most of them are almost zero. Thus, the contributiofhe initial codeword is chose to maximize the cost function
of the channel estimates after being weighted by the small

a posterioriprobabilities to the mean channel estimate will be Xt(o) = arg fnax J (Xn h£0)7 Ego)) . (37)
insignificant. Motivated by this observation, we will modify X

this receiver so that it will not compute the filtered channel  Iteration Update: We update from iteratioA — 1 to / for
estimate for the codeword with small APP. Thus, we canh=> 1 via

reduce the complexity of the receiver with little penalty on 3O _j, L KO ( _ xenj, )
performance. The modified receiver will works as follow. After t te—1 v \Yr t bt

computing the APP thakX; takes on a value iy as in (30),S KO _y (X(f—l))T
. e e t T 4t|t—1 t
codewords which have the greatesposteriori probabilities
will be selected, V\_/here <S<K. I__et_SS deno_t_e_s a member [ xe-ny (X“‘”)T o’ -
of the set ofS survivors. Thea posterioriprobabilities are then t tt—1 \ ¢

normalized so tha} " II;(s) = 1. For each of these survivor

- i(f) =3, —K(Z)X(671)Z B
paths, a filtered channel estima/béls,t) and its associated covari- ; fe=1 T B e b1

v _ P (0 (0
ancengt) are calculated. These estimates are then combined X7 =arg 1}3255 Ji (X’ his 24 ) ' (38)
to yield a single channel estimate and its covariance for ti

¢+ Thus n}%e algorithm terminates when the maximizing codeword is un-

altered. We then set the valuesz‘ft andX,, to the final values
heje =Y Ht(s)fzili) of ) and=(”), respectively, and progress to codeword 1.
s After the submission of this paper, we became aware of [16],
_ () | 5(s) (A(S)>T Yy which contains an iterative receiver based on Kalman filtering
e Z:Ht(s) {Etlt e (e Pagehit 33) gimitar to ours. However, this receiver is designed specifically

for decoding the Alamouti’s space—time block code with two

is not the same since at the end of each codeword period, this&seiver is more general.

ceiver retains only one channel estimate while the M-algorithm

retainsS channel estimates. _The complexity of this receiver_is IV. APPLICATION TOOFDM SYSTEMS
O(S). WhenS = K this receiver corresponds to the unmodi- ] ] . )
fied APP receiver as described previously. One important example of a diversity system is (OFDM)

2) Iterative EM Receiver:Another receiver which we which is used in various wireless local area networks. In an

proposed is the iterative receiver. In this approach, we use fAEPM system, data is transmitted oveorthogonal frequency
expectation-maximization algorithm to iteratively maximize thghannels using a discrete Fourier transform (DFT). Within

log-likelihood function,log p(ye|yo, - . .. ye1, X; = X®)). OUr context, we can regard the DFT operation as a type of
The iteration is per-codeword basis. When the channel ‘féme-frequency” coding. Generally, a number of different data
known, the log-likelihood is symbols (from a single user, or a number of different users) are
transmitted simultaneously on subsets of the available channels.
L(t) =logp (yi|ht, X+) Here we will consider the single-user case, where one data
= — 07 2|lys — Xshi|)*> = M logo®. (34) symbol is transmitted on all channels simultaneously. This

approach offers the maximal diversity gain. This is equivalent
Since the knowledge of the chaniiglis not available at the re- to using the precoder matri€' equal to theL-vector of all
ceiver, the conditional expectation of this log-likelihood given s. Thus, corresponding to each data symbol (regarded as a
the present and past measurements is used instead as the oljember of a finite complex alphabet)we transmit a segment
tive cost function of M = [ time samples containing all carriers, and given by

L-1
, _ 2miml/L
Tirtm = ) i€ (39)
= — Eth_lét — 10g det Qt (35) e ;) '
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prefix is added to mitigate against intersymbol interference, ahdls corresponding to the time length after which the correlation
this is stripped off in the receiver. The recovered received saia-considered to be insignificant, see [10]. This approximation

form = 0,...,L — 1. In a standard OFDM system, a cyclicfit the { Jo (7w B4kT}) sz_Ol,D being the number of OFDM sym-

ples then have the form is given by solving the least squares problem
L-1 ) D1
TeLfm = Z sthe, ™™ L v, (40) min Z |Jo (nBakTy) — a®|?. (45)
=0 * k=0

whereh,,, denote the channel path gains as a function of symbglis problem can be solved for various values of normalized
timet and frequency channélUsing this model, the frequency Doppler spreadsi{,;7’) and the corresponding valuesofised
channels are spaced by an amount equal to the symbol r{&ne state-space model. One could also choose to include ad-

Here, v, is a zero-mean white Gaussian noise process. N@jfional “modes” inA to obtain a better approximation, but we
blocking the received samples into a vector of lenfthorre-  do not provide details here.

sponding to the symba};, we have As observed in [9], for some systems the effective amount of
s = Xohy + iy (41) d|ver§|ty can be_Igss thab: This is mamf_e;t by thg resulthg
. _ _ . covariance matri¥’ not being strictly positive definite. In this
where X; is a L x L matrix with elements[X:]..« = case, we can reduce the dimension of the probleth tioe ef-

s¢ e2™mt/L and h, is an L x 1 vector with elements fectivediversity of the channel, which is given by the number
[ht]e = hs,e. We thus have placed this OFDM system model iof nonzero eigenvalues d@f. This is a standard subspace tech-
the general diversity form (1). Note that the assumption thaigue and is described in [9].

only one user symbol is transmitted over thehannels is not

restrictive as indicated in Section II-A. V. SIMULATIONS

A. Physical Model for Delay-Doppler Spread Channels We considered a single user OFDM system with 16 carriers.
e data sequence is arranged into a block of 16 OFDM sym-

. . - : T
In this section, we relate our statistical channel gain mOdﬁgls. Each symbol is transmitted over the 16 orthogonal fre-

:{I(')h? commgmly used phytS|c_aI Todelffor mutltli)ath propaga(;mquenCy channels using the DFT. The first symbol of each OFDM
IS provides a parameterization ot our state-space Model iy v pe ysed as pilot symbol to generate an estimate to

terms of specified physical parameters such as delay and dop filalize the Kalman filters. We assumed that the fading chan-

spree_lds for the char_mel. In[9], a physlcal model is useq t_o Chﬂ%’ls are independent from block to block. However, within each
acterize the correlation between the time-frequency dgaingn

. . . o block, the time-frequency covariance of the fading channels be-
(40). This model is using the statistics of the channel and use, en any two symbols is given by the model in Section IV.

block representation of the channel based on its autocorrela%rfl assumed the channel is undergone Rayleigh fading, (i.e.,

matrix. For a classical Doppler power spectrum and exponential_ 0). In this simulation, we useB,T, = 0.25. This Doppler

multipat_h in_tensity profile, the correlatio_n between two Syr_nbogpread value corresponds to a fast time-varying channel where
spaced in time and frequency, respectively, withandA f is the temporal correlation between any two consecutive symbols

given by [4] is only 0.852. Even with such low temporal correlation in the
H(AL, Af) = pope(At)pr(Af) (42) channels, a significant performance gain can be attained by ex-
ith 0 ploiting this time correlation as will be shown later in the sim-
with éo > ulation results. We examined two cases whgnt; = 0.5 and
1 T,.Fs = 0.025. These values df;,, F, represent fading chan-
At) = Jo (mrBgAtL), Afy= ——. (43 m-s mes
$u(A1) 0(rBaAt),  ¢5(AS) 1+ 27T, Af (43) nels that are highly decorrelated and highly correlated in fre-

Here, J; is the zeroth-order Bessel function of the first kindJuency dimension, respectively.
with B, and7}, being the Doppler and delay spreads, respec- N this S|m_ulat|on, we compared the performance of tht_e pro-
tively, of the propagation channel. From (7), we can thus see tiR@s€d techniques with the NCML, MAP, and GLRT receivers.

the P matrix represents by itself the frequency correlation arlfl @ddition, we also compared them with the performance of the

by a time shift equal tot{ — ¢,). Thus immediately tion (CSI). The performance of the goherent ML receiver will
be used as the benchmark and we will see how close the perfor-

Dy = - %o (44) mance of the proposed receivers can approach this bound. The
' L+ j2nTn (k — ) F,s PSP and the M-algorithm receivers perform sequence estima-
F, being the frequency spacing between two OFDMon on the whole OFDM block of 16 symbols while the APP
subcarriers. and the iterative EM receivers perform symbol by symbol detec-

Due to the separable nature of the physical channel corretian. The M-algorithm receiver with two survivors (i.e,= 2)
tion function (42), we take our state transition matfixo be of and the unmodified APP receiver (i.e., the channel estimate is
the formA = a I, wherea is a complex constant. Comparingthe weighted sum of the estimates from all the Kalman filters)
the time correlation between two OFDM symbols separated bye used in the simulation. : }
k symbol periods, we need to have = Jo (7 BkT.) for every As from (41), the codewordX; has element$X,],,, =
k, whereT, is the symbol period. This is theoretically impos=s; e2*"*/L In this simulation, we considered the case where
sible, so an approximation has to be made for{thg}; ' to the data symbok, € {+1}. Thus, the codebook consists of



762 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 21, NO. 5, JUNE 2003

Symbol error rate
Symbol error rate

—»— GLRT
107} | =B MAP, Noncoherent ML
-©- lterative EM

| | = GLRT, MAP, Noncoherent ML —¥— Apps
10 °F | -o lterative EM | - PSP
—%— APPs -A- M-algorithm P

- PSP, M-algorithm
—#— Coherent ML

-5| | =&= Coherent ML

L L L . . L . . . .
0 2 4 6 8 10 12 0 2 4 6 8 10 12 14 16 18 20
SNR (dB) SNR (dB)

Fig. 4. Codes =tF with B,T, = 0.25 andT,,. F. = 0.5 Fig. 6. Codes # andU F with B,T, = 0.25 andT,,,F; = 0.5.

frequency correlated channel wiih, F; = 0.025. The reason
for this huge degradation in performance is that as the channel
] become highly correlated in frequency, the diversity provided
from the frequency domain is reduced. Thus, the probability

X that most of the channel coefficients faded at the same time is
high, resulting in higher probability of error in detecting the
transmitted code. Since the proposed receivers perform joint
data detection and channel tracking, once an error is occurred
{ itis likely to cause error propagation resulting in further error
for the subsequence symbols in the block. The performance of
the coherent ML receiver is also reduced in this case. However,
this is mainly due to the loss in the diversity rather than the
error propagation problem since it has ideal CSI. This suggests
that using codes which are scalar multiples of each other is not
optimal for noncoherent detection.
i To prevent the above problem, we chose two codes which are
0 2 s 6 8 10 12 14 16 1 2 notscalar multiple of each other. The two codesim@ndU F

SNR (dB) matrices, wheré&/ is an arbitrarily unitary matrix. Fig. 6 shows
the performance of the receivers using the new codebook for the
fading channel withB, 7T, = 0.25 andT,,, F, = 0.5. The GLRT
receiver still has th€ER = 0.5 for this case since the orthog-
two codes which are-F whereF' is the Fourier matrix. Fig. 4 onal projectorPkl to the codeX (¥) is equal to zero for both
shows the performance of the receivers for the fading chaneeldes. The performance of the MAP and the NCML receivers
with BT, = 0.25 andT,,F; = 0.5. The symbol-error rate are still very poor. However, with this set of codes, the proposed
(SER) is plotted for different values of signal-to-noise raticeceivers perform very well. At th8ER = 102 the proposed
(SNR), where the SNR is defined as the average receiveghniques obtained a performance which is within 4 dB of the
SNR per symbol. The standard GLRT, MAP, and NCMiIcoherent ML receiver. Unlike the former set of codes, using
receivers all have afER = 0.5 for all SNs. This is because these new codes reduces the performance gap between the pro-
by using two codes which are scalar multiple of each other, thesed receivers and the coherent ML receiver when the fading
decision metrics of these receivers are indistinguishable (fdmannels are highly frequency correlated as shown in Fig. 7 for
the Rayleigh-fading channels) between the two codewordsBsF, = 0.025. We also note an interesting observation that the
discussed in [12] and [14]. Since the proposed receivers explo@rformance of the MAP and NCML is improving as the fading
the time correlation, then by using a pilot symbol to provide athannels are more correlated. This can be explained by exam-
estimate to initialize the Kalman filters, the proposed receiveiring the decision metrics of these receivers.
do not suffer the same problem as those conventional noncoThe simulation results for all the scenarios considered above
herent receivers. As shown in Fig. 4, at $IBR = 1072 the confirm the superiority of the proposed receivers to other stan-
performance of the proposed receivers is within 5—7 dB of tliard noncoherent receivers. They demonstrate the usefulness of
coherent ML receiver. However, as the frequency correlati@xploiting the temporal and diversity correlations in the chan-
is increased, the performance of the proposed techniqueds at the receivers. Simulations above show that even in fast
is significantly reduced as shown in Fig. 5 for the highlyime-varying channels where the temporal correlation is low,

Symbol error rate

F | = GLRT, MAP, Noncoherent ML
—&- lterative EM

- APPs, PSP, M-algorithm
—#— Coherent ML

Fig. 5. Codes =-F with B,T, = 0.25 andT,, F, = 0.025.
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Fig. 7. Codes # andU F with B,T, = 0.25 andT,,, Fs = 0.025.

by exploiting such correlation could significant improve the re- [°]
ceiver’s performance. By utilizing the temporal correlation, the
proposed receivers obtain a performance which is within few
decibels of the coherent receiver. (10]
The above observations are pertinent from the point of code
design for incoherent systems with temporal channel correlgi1]
tions. It appears that an approach consisting of modulation fol-
lowed by a fixed diversity code will perform poorly. Such an
observation is supported by previous work such as [6] as an ext2]
ample which does not seal with such correlation. We believe
there is a deeper issue at hand here when temporal correlatio ig]
included in the signal model, and we are currently investigating
both performance characterization and code design in this cas[\'le‘.1

VI. CONCLUSION [15]

This paper has introduced a general state-space model for a
general diversity communications system with time correlatedLs]
flat fading. Examples of diversity systems which fall within this
framework include space—time coded systems, OFDM systemg,
CDMA systems and hybrids of these systems. The model per-
mits the design of a number of time-recursive noncoherent rg18l
ceivers based either on sequence estimation or on symbol by
symbol estimation. The receivers considered include PSP, M-ajt9
gorithm, two APP techniques, and a per-symbol iterative tech-
nigue based on the EM algorithm. As an example of the utility
of the approach, we examine an OFDM system model based on
a physical delay doppler spread propagation medium, and we
have shown how to approximate the resulting channel statistics
by our model. The various receivers are compared with conven-
tional designs which do not exploit the channel time correla-
tions. These simulations have suggested that there can be ~*~
nificant gains in performance by incorporating time correlatio
into the signal model and the resulting receiver designs. Sol
implications for diversity code design in the noncoherent ca
are also briefly noted.
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