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Abstract We establish a generalization of the Widder–Arendt theorem from Laplace transform theory.
Given a Banach space E, a non-negative Borel measure m on the set R+ of all non-negative numbers, and
an element ω of R∪{−∞} such that ε−λ is m-integrable for all λ > ω, where ε−λ is defined by ε−λ(t) =
exp(−λt) for all t ∈ R+, our generalization gives an intrinsic description of functions r : (ω, ∞) → E

that can be represented as r(λ) = T (ε−λ) for some bounded linear operator T : L1(R+, m) → E and
all λ > ω; here L1(R+, m) denotes the Lebesgue space based on m. We use this result to characterize
pseudo-resolvents with values in a Banach algebra, satisfying a growth condition of Hille–Yosida type.

Keywords: Laplace–Stieltjes transform; weighted convolution algebra;
representation; pseudo-resolvent; one-parameter semigroup
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1. Introduction

Let F be either the field R of real numbers or the field C of complex numbers. Hereafter
all vector spaces will be assumed to be over F. Any particular choice of the ground field
F will be inessential for the validity of results. Let R+ be the set of all non-negative
numbers and let R

•
+ be the set of all positive numbers. A weight function on R+ is a

Lebesgue measurable function Ω : R+ → R
•
+ such that

Ω(s + t) � Ω(s)Ω(t) (1.1)

for all s, t ∈ R+. A function satisfying (1.1) is said to be submultiplicative. Given a weight
function Ω, denote by L1(R+, Ω) the set of equivalence classes of F-valued Lebesgue
measurable functions f on R+ such that

‖f‖1,Ω =
∫

R+

|f(t)|Ω(t) dt < ∞,

where two functions are equivalent if they are equal almost everywhere. With addition
and scalar multiplication derived from the addition and scalar multiplication of functions,
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162 W. Chojnacki

and with the norm ‖ · ‖1,Ω , L1(R+, Ω) is a Banach space. Moreover, L1(R+, Ω) is a
Banach algebra, a weighted convolution algebra, when multiplication is defined to be the
convolution

(f ∗ g)(t) =
∫ t

0
f(t − s)g(s) ds (almost all t ∈ R+).

Let Z
+ be the set of all non-negative integers. For each λ ∈ R, denote by ελ the

function
ελ(t) = eλt (t ∈ R+).

We shall employ the notation
f∗n = f ∗ · · · ∗ f︸ ︷︷ ︸

n times

.

For each k ∈ Z
+ and each λ ∈ R, set

αk,λ = ε
∗(k+1)
−λ , (1.2)

βk,λ = k!αk,λ, (1.3)

γk,λ = λkαk,λ; (1.4)

more explicitly,

αk,λ(t) =
tk

k!
e−λt, βk,λ(t) = tke−λt, γk,λ(t) =

(λt)k

k!
e−λt

for all t ∈ R+.
Let Ω be a weight function on R+. A bound for Ω is an element ω of {−∞} ∪ R such

that ε−µ ∈ L1(R+, Ω) for each µ > ω. If ω is a bound for Ω, then αk,µ ∈ L1(R+, Ω) (and
automatically βk,µ ∈ L1(R+, Ω) and γk,µ ∈ L1(R+, Ω)) for all k ∈ Z

+ and all µ > ω.
Let E be a Banach space. Given an open subset U of R, let C∞(U, E) be the space of

E-valued functions on U infinitely differentiable in the norm topology of E. Let Ω be a
weight function on R+ with bound ω. For r ∈ C∞((ω, ∞), E), set

‖r‖W,Ω,ω = sup{‖r(k)(λ)‖/‖βk,λ‖1,Ω | k ∈ Z
+, λ ∈ (ω, ∞)}

and define the Widder space C∞
W ((ω, ∞), E; Ω) by

C∞
W ((ω, ∞), E; Ω) = {r ∈ C∞((ω, ∞), E) | ‖r‖W,Ω,ω < ∞}.

Equipped with the norm ‖ · ‖W,Ω,ω, C∞
W ((ω, ∞), E; Ω) is a Banach space.

A weight function Ω : R+ → R
•
+ will be termed an (α, ω)-weight function if

(i) Ω is continuous and satisfies Ω(0) = 1;

(ii) there exist α ∈ R+ and ω ∈ R such that Ω(t)t−αe−ωt tends to a positive number
as t → ∞.
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The numbers α and ω in condition (ii) are uniquely determined and define the power
order and exponential order of Ω, respectively. A simple example of an (α, ω)-weight
function is furnished by

Ω(t) = (1 + βt)αeωt (t ∈ R+)

with α, β ∈ R+ and ω ∈ R. It is readily verified that if Ω is an (α, ω)-weight function,
then ω is a bound for L1(R+, Ω).

Given two normed vector spaces E and F , denote by L(E, F ) the space of all bounded
linear operators from E into F .

Recently, Kisyński [17] established the following result.

Theorem 1.1 (Widder–Arendt–Kisyński). Let Ω be an (α, ω)-weight function
on R+, let E be a Banach space, and let r : (ω, ∞) → E be a function. Then r can be
represented in the form

r(λ) = T (ε−λ) (λ > ω)

for some T ∈ L(L1(R+, Ω), E) if and only if r ∈ C∞
W ((ω, ∞), E; Ω). If there exists a

T ∈ L(L1(R+, Ω), E) such that r(λ) = T (ε−λ) for all λ > ω, then T is unique and
‖T‖ = ‖r‖W,Ω,ω.

This theorem is a generalization of the Widder–Arendt representation theorem from
Laplace transform theory. Widder established Theorem 1.1 in the case that E = F

and Ω is of the form Ω(t) = eωt (t ∈ R+, ω ∈ R) (cf. [21, pp. 315–316] and [22,
p. 157]). Since L(L1(R+, Ω), F) is isometrically isomorphic to the space L∞(R+, Ω−1) of
all (equivalence classes of) F-valued Lebesgue measurable functions f on R+ for which
fΩ−1 is essentially bounded, Theorem 1.1 in that case can be viewed as a characterization
of the Laplace transforms of elements of L∞(R+, Ω−1). Extension to the case in which E

is not necessarily F and Ω is still of the form Ω(t) = eωt (t ∈ R+, ω ∈ R) is due to Arendt
[1]. Arendt’s approach, drawing on Widder’s result, relies on reduction of the vector case
to the scalar one. A direct proof of Arendt’s result was given by Hennig and Neubrander
[14] (see also [18]). Another proof was offered by Bobrowski [3]. deLaubenfels et al . [7]
proved a special case of Theorem 1.1 in which Ω(t) = (1+t)k (t ∈ R+, k ∈ Z

+). Kisyński
established a simultaneous generalization of the results of Arendt and deLaubenfels et al ..

The aim of this paper is establish a generalization of Theorem 1.1. In this general-
ization, formulated as Theorem 1.2 below, L1(R+, Ω) is replaced by a more general L1

space, not necessarily a weighted convolution algebra. This space may in particular be
of the form L1(R+, Ω), where Ω is a weight function with a bound, e.g. an (α, ω)-weight
function. A similar result was recently, independently obtained by Bobrowski [4].

Let m be a non-negative Borel measure on R+. Let L1(R+,m) be the space of all (classes
of) F-valued m-integrable functions on R+. A bound for m is an element ω of {−∞} ∪ R

such that ε−µ ∈ L1(R+,m) for each µ > ω. If ω is a bound for m, then αk,µ ∈ L1(R+,m)
(and hence also βk,µ ∈ L1(R+,m) and γk,µ ∈ L1(R+,m)) for all k ∈ Z

+ and all µ > ω.
Note that if a measure m admits a bound, then it is Radon; that is to say, m is finite on
every bounded Borel subset of R+.
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Let m be a non-negative Borel measure on R+ with bound ω. Let E be a Banach space.
For r ∈ C∞((ω, ∞), E), set

‖r‖W,m,ω = sup{‖r(k)(λ)‖/‖βk,λ‖1,m | k ∈ Z
+, λ ∈ (ω, ∞)}

and define the Widder space C∞
W ((ω, ∞), E; m) by

C∞
W ((ω, ∞), E; m) = {r ∈ C∞((ω, ∞), E) | ‖r‖W,m,ω < ∞}.

Endowed with the norm ‖ · ‖W,m,ω, C∞
W ((ω, ∞), E; m) is a Banach space.

The main result of this paper is the following theorem.

Theorem 1.2. Let m be a non-negative Borel measure on R+ with bound ω, let E

be a Banach space, and let r : (ω, ∞) → E be a function. Then r can be represented in
the form

r(λ) = T (ε−λ) (λ > ω)

for some T ∈ L(L1(R+,m), E) if and only if r ∈ C∞
W ((ω, ∞), E; m). If there exists a

T ∈ L(L1(R+,m), E) such that r(λ) = T (ε−λ) for all λ > ω, then T is unique and
‖T‖ = ‖r‖W,m,ω.

As is the case with all versions of the Widder–Arendt theorem, the proof of Theorem 1.2
is based on an approximation argument. The method we use draws on the technique
applied by Kisyński in [16] to prove the classical Widder–Arendt theorem. Bobrowski
proved a result similar to Theorem 1.2 employing the same technique with which he had
earlier re-established the classical Widder–Arendt theorem (cf. [2]) and which goes back
to Phillips [19] (see also [15, Theorem 6.6.3]).

The remainder of the paper is organized as follows. Section 2 collects together a number
of technical results. Section 3 is devoted to the proof of Theorem 1.2. In § 4 the Widder
spaces characterized in Theorem 1.2 are identified as spaces of the Laplace–Stieltjes
transforms of certain vector-valued measures. Finally, § 5 gives a corollary to Theorem 1.2
that characterizes pseudo-resolvents with values in a Banach algebra, satisfying a growth
condition of Hille–Yosida type. Being of significance for the theory of semigroups of
operators, the latter result provides motivation for conceiving Theorem 1.2 in the first
place.

2. Auxiliary results

We begin by establishing a number of technical results that will form a basis for the
proof of Theorem 1.2.

Denote by ‖ · ‖∞ the uniform norm ‖f‖∞ = supt∈R+
|f(t)|. For each λ ∈ R, let

Cb(R+, ελ) be the space of all F-valued continuous functions on R+ such that ελf is
bounded. Under the norm ‖f‖∞,λ = ‖ελf‖∞, Cb(R+, ελ) is a Banach space. Note that
ε−µ ∈ Cb(R+, ελ) for each µ � λ, and also αk,µ ∈ Cb(R+, ελ) for each k ∈ N and each
µ > λ.

The following result is the key to all what ensues next. It is a generalization of a well-
known result from the theory of Borel summability [15, Equation (10.4.13)]. Its proof is
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based on a refinement of a well-known probabilistic argument [12, Chapter VII, Lemma 1
and Equation (1.5)].

Proposition 2.1. Let λ ∈ R and let f ∈ Cb(R+, ελ). Then, for each a > 0, the series

∞∑
k=0

f

(
k

a

)
γk,a(t)

converges locally uniformly in t ∈ R+. Furthermore, for each λ′ < λ, there exists a′ > 0
such that

sup
a>a′

∞∑
k=0

∣∣∣∣f
(

k

a

)∣∣∣∣‖γk,a‖∞,λ′ � ‖f‖∞,λ. (2.1)

We also have

f(t) = lim
a→∞

∞∑
k=0

f

(
k

a

)
γk,a(t) (2.2)

for all t ∈ R+.

Proof. Since, for each t ∈ R+,

|f(t)| � ‖f‖∞,λe−λt, (2.3)

we have
∞∑

k=0

∣∣∣∣f
(

k

a

)∣∣∣∣γk,a(t) � ‖f‖∞,λ

∞∑
k=0

e−λk/a (at)k

k!
e−at

= ‖f‖∞,λ exp[at(e−λ/a − 1)]

(2.4)

for all a > 0 and all t ∈ R+. This immediately implies that, for each a > 0, the series∑∞
k=0 f(k/a)γk,a(t) converges locally uniformly in t ∈ R+.
Note that

lim
a→∞

a(1 − e−λ/a) = λ. (2.5)

Hence if λ′ satisfies λ′ < λ, then there exists a′ > 0 such that a(e−λ/a − 1) < −λ′ for all
a > a′. Consequently, in view of (2.4),

∞∑
k=0

∣∣∣∣f
(

k

a

)∣∣∣∣γk,a(t) � ‖f‖∞,λe−λ′t

for all a > a′ and all t ∈ R+, which gives (2.1).
It remains to prove (2.2). Fix t ∈ R+ arbitrarily. Given a > 0, let Yat be a Poisson

random variable with parameter at, carried by a probability space (Ω, M,P); that is to
say, Yat is a Z

+-valued random variable such that

P[Yat = k] =
(at)k

k!
e−at = γk,a(t)
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for all k ∈ Z
+. Set Xa,t = Yat/a. Denoting by E[X] the expected value of the random

variable X, we clearly have

E[f(Xa,t)] =
∞∑

k=0

f

(
k

a

)
γk,a(t)

and further

E[f(Xa,t) − f(t)] =
∞∑

k=0

f

(
k

a

)
γk,a(t) − f(t).

Thus, in order to prove (2.2), it suffices to show that

lim
a→∞

E[f(Xa,t) − f(t)] = 0. (2.6)

Choose ε > 0 arbitrarily. Since f is continuous, there exists δ > 0 such that |f(x) −
f(t)| < ε/2 for every x ∈ R+ with |x − t| < δ. Let

Aa,t,δ = {ω ∈ Ω | |Xa,t(ω) − t| < δ}.

As is customary, given a set A, denote by 1A the characteristic function of A. Now

|E[f(Xa,t) − f(t)]| � E[|f(Xa,t) − f(t)|1Aa,t,δ
] + E[|f(Xa,t) − f(t)|1Ω\Aa,t,δ

]. (2.7)

Of course, |f(Xa,t) − f(t)|1Aa,t,δ
� (ε/2)1Aa,t,δ

, and so

E[|f(Xa,t) − f(t)|1Aa,t,δ
] � (ε/2)P[Aa,t,δ] � ε/2. (2.8)

We shall prove shortly that

lim
a→∞

E[|f(Xa,t) − f(t)|1Ω\Aa,t,δ
] = 0. (2.9)

Assuming this for now, select a0 > 0 so that

E[|f(Xa,t) − f(t)|1Ω\Aa,t,δ
] < ε/2

for all a > a0. Then, on account of (2.7) and (2.8), E[|f(Xa,t) − f(t)|] < ε for all a > a0.
We thus see that (2.6) holds.

We proceed to prove (2.9). By the Cauchy–Schwarz inequality,

E[|f(Xa,t) − f(t)|1Ω\Aa,t,δ
] � (E[|f(Xa,t) − f(t)|2])1/2(E[(1Ω\Aa,t,δ

)2])1/2

= (E[|f(Xa,t) − f(t)|2])1/2(P[Ω \ Aa,t,δ])1/2. (2.10)

By the triangle inequality for the L2 norm,

(E[|f(Xa,t) − f(t)|2])1/2 � (E[|f(Xa,t)|2])1/2 + (E[|f(t)|2])1/2

= (E[|f(Xa,t)|2])1/2 + |f(t)|. (2.11)
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Clearly,

E[|f(Xa,t)|2] =
∞∑

k=0

∣∣∣∣f
(

k

a

)∣∣∣∣
2

γk,a(t)

and, by (2.3),

∞∑
k=0

∣∣∣∣f
(

k

a

)∣∣∣∣
2

γk,a(t) � ‖f‖2
∞,λ

∞∑
k=0

e−2λk/aγk,a(t) = ‖f‖2
∞,λ exp[at(e−2λ/a − 1)].

Since lima→∞ a(e−2λ/a − 1) = −2λ, it follows that

lim sup
a→∞

E[|f(Xa,t)|2] � ‖f‖2
∞,λe−2λt

and further, by (2.11),

lim sup
a→∞

(E[|f(Xa,t) − f(t)|2])1/2 � ‖f‖∞,λe−λt + |f(t)|. (2.12)

On the other hand, since

Ω \ Aa,t,δ = {ω ∈ Ω | |Xa,t(ω) − a| � δ},

an application of Chebyshev’s inequality implies that

P[Ω \ Aa,t,δ] � E[(Xa,t − t)2]
δ2 . (2.13)

It is a well-known property of Poisson variables that

E[Yat] = varYat = at,

where var X denotes the variance of the random variable X, defined—let us recall—by
varX = E[|X − E[X]|2]. Hence

E[Xa,t] =
E[Yat]

a
= t

and
varXa,t =

varYat

a2 =
t

a
.

Rewriting the last equality as

E[(Xa,t − t)2] =
t

a

and combining it with (2.13), we conclude that

lim
a→∞

P[Ω \ Aa,t,δ] = 0.

This together with (2.10) and (2.12) implies (2.9). �
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For each λ ∈ R, let P (R+, λ) be the linear space spanned by the set {ε−µ | µ > λ}.

Clearly,
P (R+, λ) =

⋃
ν>λ

P (R+, ν). (2.14)

Under pointwise multiplication, P (R+, 0) is an algebra. Moreover, all the P (R+, λ) (λ ∈
R) are modules for P (R+, 0).

Let C0(R+) be the space of all F-valued continuous functions f on R+ vanishing at
infinity.

Proposition 2.2. Let m be a non-negative Borel measure on R+ with bound ω.
Then, for each µ > ω, P (R+, µ) is dense in L1(R+,m). In particular, P (R+, ω) is dense
in L1(R+,m).

Proof. It suffices to prove the first assertion, the other being evident in light of (2.14).
Fix µ > ω arbitrarily. Let n be the Borel measure on R+ defined by dn = ε−µ dm. Clearly,
n is finite. Let f ∈ L1(R+,m). Then εµf ∈ L1(R+, n) and, given ε > 0, there exists
ϕ ∈ C0(R+) such that ‖εµf − ϕ‖1,n < ε/2. A standard argument based on the Stone–
Weierstrass theorem shows that the algebra P (R+, 0) is dense in C0(R+). Therefore,
there exists p ∈ P (R+, 0) such that ‖ϕ − p‖∞ < ε/(2‖ε−µ‖1,m). Since

‖f − ε−µp‖1,m � ‖f − ε−µϕ‖1,m + ‖ε−µϕ − ε−µp‖1,m,

‖f − ε−µϕ‖1,m = ‖εµf − ϕ‖1,n,

‖ε−µϕ − ε−µp‖1,m � ‖ε−µ‖1,m‖ϕ − p‖∞,

it follows that ‖f − ε−µp‖1,m < ε. Noting that ε−µp ∈ P (R+, µ) finishes the proof. �

Proposition 2.3. Let m be a non-negative Borel measure on R+ with bound ω, let
λ > ω, and let f ∈ Cb(R+, ελ). Then

lim
a→∞

∞∑
k=0

∣∣∣∣f
(

k

a

)∣∣∣∣‖γk,a‖1,m = ‖f‖1,m. (2.15)

Proof. Applying the first assertion in Proposition 2.1 with |f | in place of f , we deduce
that, for each a > 0, the series

∞∑
k=0

∣∣∣∣f
(

k

a

)∣∣∣∣γk,a(t) (t ∈ R+)

defines a continuous function. Denote this function by ψa. Select λ′ so that ω < λ′ < λ.
The second assertion in Proposition 2.1 ensures that there exists a′ > 0 such that

‖ψa‖∞,λ′ � ‖f‖∞,λ

for all a > a′. Therefore, for each a > a′, ψa is a function in Cb(R+, ελ′) and

ψa � ‖f‖∞,λε−λ′ . (2.16)
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To prove (2.15), it suffices to show that

lim
n→∞

∞∑
k=0

∣∣∣∣f
(

k

an

)∣∣∣∣‖γk,an
‖1,m = ‖f‖1,m (2.17)

for any sequence {an} in (a′,∞) diverging to infinity. Let {an} be a sequence in (a′,∞)
with limn→∞ an = ∞. The third assertion in Proposition 2.1 applied to |f | yields

lim
n→∞

ψan(t) = |f(t)|

for all t ∈ R+. As λ′ > ω, the function ε−λ′ is m-integrable, and so, in view of (2.16),
{ψan} has an m-integrable majorant. By Lebesgue’s dominated convergence theorem,

lim
n→∞

∫
R+

ψan(t) dm(t) =
∫

R+

|f(t)|dm(t) = ‖f‖1,m.

On the other hand, an application of Levi’s monotone convergence theorem implies that
∫

R+

ψa(t) dm(t) =
∞∑

k=0

∫
R+

∣∣∣∣f
(

k

a

)∣∣∣∣γk,a(t) dm(t)

=
∞∑

k=0

∣∣∣∣f
(

k

a

)∣∣∣∣‖γk,a‖1,m

for all a > 0. Thus (2.17) is established. �

Proposition 2.4. Let m be a non-negative Borel measure on R+ with bound ω, and
let E be a Banach space. Then any function in C∞

W ((ω, ∞), E; m) is real analytic.

Proof. Let r ∈ C∞
W ((ω, ∞), E; m) and let ε > 0. If ξ > ω + 2ε, then

∞∑
k=0

(εt)k

k!
e−ξt = e−(ξ−ε)t � e−(ω+ε)t

for all t ∈ R+. Integrating with respect to the variable t against m, we obtain

∞∑
k=0

εk‖αk,ξ‖1,m � ‖ε−(ω+ε)‖1,m.

Hence, for each k ∈ Z
+,

‖αk,ξ‖1,m � ‖ε−(ω+ε)‖1,mε−k

and further
1
k!

‖r(k)(ξ)‖ � ‖r‖W,m,ω‖ε−(ω+ε)‖1,mε−k.

Fix λ > ω + 2ε arbitrarily. Choose δ > 0 so that λ − δ > ω + 2ε. If x ∈ (λ − δ, λ + δ),
then, for each ξ belonging to the interval joining λ and x,

1
k!

‖r(k)(ξ)‖|x − λ|k � ‖r‖W,m,ω‖ε−(ω+ε)‖1,m(|x − λ|/ε)k.
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If |x − λ| < ε−1, Taylor’s formula implies that

∞∑
k=0

1
k!

r(k)(λ)(x − λ)k

converges to r(x). Thus r is real analytic at λ, and hence is real analytic on all of
(ω + 2ε,∞). Since ε is arbitrary, the theorem follows. �

Proposition 2.5. Let m be a non-negative Borel measure on R+ with bound ω, let
E be a Banach space, and let r ∈ C∞

W ((ω, ∞), E; m). If λ > ω, then there exists a1 > 0
such that

∞∑
k=0

(−1)k

k!
ake−λk/ar(k)(a) = r(a(1 − e−λ/a)) (2.18)

for all a > a1.

Proof. Let λ > ω. Since ε−λ ∈ Cb(R+, ελ), it follows from Proposition 2.3 that there
exists a0 > 0 such that

∞∑
k=0

e−λk/a‖γk,a‖1,m < ∞ (2.19)

for all a > a0. Taking into account (2.5), we infer that there exists a′
0 > 0 such that

a(1 − e−λ/a) > ω (2.20)

for all a > a′
0. Let a1 be a positive number no smaller than both a0 and a′

0. Fix a > a1

arbitrarily. Since
1
k!

ak‖r(k)(a)‖ � ‖r‖W,m,ω‖γk,a‖1,m,

if follows from (2.19) that

∞∑
k=0

1
k!

ake−λk/a‖r(k)(a)‖ < ∞ (2.21)

for all a > a1. Thus the power series
∞∑

k=0

1
k!

r(k)(a)tk

converges for all |t| � ae−λ/a. Denote by ϕ the function defined by this series. Clearly,
ϕ is real analytic on I = (−ae−λ/a, ae−λ/a). We claim that ϕ is continuous on Ī =
[−ae−λ/a, ae−λ/a].

It suffices to prove that ϕ is continuous at each endpoint of Ī. Let σ ∈ {−1, 1}. Suppose
that t satisfies |t| � ae−λ/a and is so close to σae−λ/a that |σae−λ/a − t| < ae−λ/a/2.
Then |ae−λ/a − σt| < ae−λ/a/2, and so σt > ae−λ/a/2, showing that σt is positive and
equal to |t|. Now

|(σtae−λ/a)k − tk| = |(ae−λ/a)k − (σt)k| = (ae−λ/a)k − |t|k
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for all k ∈ Z
+. Consequently,

‖ϕ(σae−λ/a) − ϕ(t)‖ �
∞∑

k=0

|(σtae−λ/a)k − tk|
k!

‖r(k)(a)‖

=
∞∑

k=0

(ae−λ/a)k

k!
‖r(k)(a)‖ −

∞∑
k=0

|t|k
k!

‖r(k)(a)‖.

By (2.21) and Abel’s limit theorem (cf. [20, Chapter III, § 2, Theorem 2.1]), or alter-
natively by (2.21) and Levi’s monotone convergence theorem applied to the counting
measure on Z

+, the right-hand side above converges to zero as |t| → ae−λ/a. This implies
that ϕ is continuous at σae−λ/a, establishing the claim.

In light of (2.20), the function ψ(t) = r(a + t) is well defined for t ∈ Ī. By Proposi-
tion 2.4, ψ is real analytic on I, and, clearly, has the same derivatives at the value t = 0
as ϕ. Therefore ϕ = ψ on I. Since both ϕ and ψ are continuous on Ī, they coincide on
Ī, in particular at the value t = −ae−λ/a. This establishes (2.18). �

Proposition 2.6. Let m be a non-negative Borel measure on R+ with bound ω. Then
the function (ω, ∞) � λ �→ ε−λ ∈ L1(R+,m) is infinitely differentiable in the norm
topology of L1(R+,m), and

dkε−λ

dλk
= (−1)kβk,λ

for each k ∈ Z
+ and each λ > ω.

Proof. Given that β0,λ = ε−λ, it suffices to show that, for each k ∈ Z
+, the function

(ω, ∞) � λ �→ βk,λ ∈ L1(R+,m) is differentiable in the norm topology of L1(R+,m) and

dβk,λ

dλ
= −βk+1,λ.

Fix k ∈ Z
+ arbitrarily. Direct computation shows that

∂βk,λ

∂λ
(t) = −βk+1,λ(t) (2.22)

for all λ, t ∈ R. Fix λ > ω arbitrarily, and next select ω′ and ω′′ so that ω < ω′ < ω′′ < λ.
Let h be such that 0 < |h| < ω′′ − ω′. Taking into account (2.22) and Taylor’s formula,
we see that, given t ∈ R+, there exists ξt in the interval joining λ and λ + h such that

βk,λ+h(t) − βk,λ(t)
h

= −βk+1,ξt(t).

Clearly, βk+1,λ ∈ Cb(R+, ω′′) and

tk+1e−λt � ‖βk+1,λ‖∞,ω′′e−ω′′t.

Hence

βk+1,ξt(t) = tk+1e−ξtt � tk+1e−λte|h|t � ‖βk+1,λ‖∞,ω′′e−ω′′te(ω′′−ω′)t

= ‖βk+1,λ‖∞,ω′′e−ω′t,
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showing that the functions

t �→ βk,λ+h(t) − βk,λ(t)
h

(0 < |h| < ω′′ − ω′)

are dominated by an m-integrable function. Let {hn} be an arbitrary sequence in (0, ω′′−
ω′) tending to zero as n → ∞. Since, by (2.22), the sequence {(βk,λ+hn −βk,λ)/hn} tends
pointwise to −βk+1,λ as n → ∞, an appeal to Lebesgue’s dominated convergence theorem
reveals that

lim
n→∞

∥∥∥∥βk,λ+hn − βk,λ

hn
+ βk+1,λ

∥∥∥∥
1,m

= 0,

which is the desired result. �

3. Proof of the main result

Proof of Theorem 1.2. Let r : (ω, ∞) → E be a function such that r(λ) = T (ε−λ)
for some bounded linear operator T : L1(R+,m) → E and all λ > ω. Since, according to
Proposition 2.2, P (R+, ω) is dense in L1(R+,m), T is uniquely determined by its values
taken on at the ε−λ (λ > ω). By Proposition 2.6, the function (ω, ∞) � λ �→ ε−λ ∈
L1(R+,m) is infinitely differentiable in the norm topology of L1(R+,m), and

dkε−λ

dλk
= (−1)kβk,λ

for each k ∈ Z
+ and each λ > ω. Therefore r is infinitely differentiable and

T (βk,λ) = (−1)kr(k)(λ)

for each k ∈ Z
+ and each λ > ω. Consequently, we have ‖r‖W,m,ω � ‖T‖, and in

particular ‖r‖W,m,ω is finite. Now—as a moment’s reflection reveals—to complete the
proof, it suffices to show that if r is a function in C∞

W ((ω, ∞), E; m), then there exists
a bounded linear operator T : L1(R+,m) → E such that T (ε−λ) = r(λ) for each λ > ω

and ‖T‖ � ‖r‖W,m,ω.
Suppose then that r ∈ C∞

W ((ω, ∞), E; m). Define a linear operator T : P (R+, ω) → E

as follows: for each f ∈ P (R+, ω) representable as

f =
∑
λ∈Λ

aλε−λ (aλ ∈ F),

where Λ is a finite subset of (ω, ∞), let

T (f) =
∑
λ∈Λ

aλr(λ).

Clearly, T (ε−λ) = rλ for all λ > ω. We shall prove that

‖T (f)‖ � ‖r‖W,m,ω‖f‖1,m. (3.1)
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This will guarantee that T is well defined and also that T is bounded with ‖T‖ � ‖r‖W,m,ω

provided that P (R+, ω) is considered with the norm ‖ · ‖1,m. Since P (R+, ω) is dense in
L1(R+,m), T can next be extended by continuity to a bounded linear operator from
L1(R+,m) to E, the norm of the extension being equal to ‖T‖.

In order to prove (3.1), we introduce, for each n ∈ N and each a > 0, a linear operator
Tn,a : P (R+, ω) → E defined by

Tn,a(f) =
n∑

k=0

(−1)k

k!
akf

(
k

a

)
r(k)(a) (f ∈ P (R+, ω)).

Fix f =
∑

λ∈Λ aλε−λ arbitrarily and choose µ > ω so that Λ ⊂ (µ,∞). Clearly, ε−λ ∈
Cb(R+, εµ) for all λ ∈ Λ. By Proposition 2.5, there exists a1 > 0 such that

lim
n→∞

Tn,a(ε−λ) = r(a(1 − e−λ/a))

for all λ ∈ Λ and all a > a1. Hence

lim
n→∞

Tn,a(f) =
∑
λ∈Λ

aλr(a(1 − e−λ/a))

for all a > a1. Since r is continuous, it follows from (2.5) that

lim
a→∞

r(a(1 − e−λ/a)) = r(λ).

Consequently,
lim

a→∞,
a>a1

[ lim
n→∞

Tn,a(f)] = T (f). (3.2)

Since, for each n ∈ N and each a > 0,

‖Tn,a(f)‖ �
n∑

k=0

1
k!

∣∣∣∣f
(

k

a

)∣∣∣∣ak‖r(k)(a)‖ � ‖r‖W,m,ω

n∑
k=0

∣∣∣∣f
(

k

a

)∣∣∣∣‖γk,a‖1,m

� ‖r‖W,m,ω

∞∑
k=0

∣∣∣∣f
(

k

a

)∣∣∣∣‖γk,a‖1,m,

invoking Proposition 2.3 we conclude that

lim sup
a→∞

[lim sup
n→∞

‖Tn,a(f)‖] � ‖r‖W,m,ω‖f‖1,m.

This together with (3.2) implies (3.1). �

4. A link with the Laplace–Stieltjes transform

Let m be a non-negative Borel measure on R+, and let E be a Banach space. Here we
identify Widder spaces of the form C∞

W ((ω, ∞), E; m), where ω is a bound for m, as spaces
of the Laplace–Stieltjes transforms of certain E-valued measures. This characterization
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is based on the fact that the action of operators in L(L1(R+,m), E) can be expressed in
terms of integrals with respect to E-valued measures.

We begin by recalling that a ring, or a clan, of subsets of a set X is a non-empty col-
lection of subsets of X that is closed under pairwise unions and relative complementation
(cf. [9, p. 1], [13, p. 19]). Let R(R+,m) be the ring of m-measurable subsets A of R+

such that m(A) < ∞. Note that R(R+,m) is not an algebra of sets unless m(R+) < ∞.
Let M(R+, E; m) be the space of all E-valued measures µ on R(R+,m) for which there
exists a non-negative C = C(µ) such that ‖µ(A)‖ � Cm(A) for all A ∈ R(R+,m). The
σ-additivity of m immediately implies that every measure in M(R+, E; m) is σ-additive.
Equipped with the norm

‖µ‖∞,m = sup{C ∈ R+ | ‖µ(A)‖ � Cm(A) for all A ∈ R(R+,m)}
= sup{‖µ(A)‖/m(A) | A ∈ R(R+,m) with m(A) > 0},

M(R+, E; m) is a Banach space. As it turns out, the spaces L(L1(R+,m), E) and
M(R+, E; m) are isometrically isomorphic. Below we outline the proof of this result.

Let T ∈ L(L1(R+,m), E) be a continuous linear operator. For each A ∈ R(R+,m),
define µT (A) to be T (1A). The set function µT : R(R+,m) → E, A �→ µT (A), is easily
seen to be a measure in M(R+, E; m) satisfying ‖µT ‖∞,m � ‖T‖. Accordingly, the map-
ping L(L1(R+,m), E) � T �→ µT ∈ M(R+, E; m) is a linear contraction. We proceed to
define an inverse map. Let S(R+,m) be the set of all simple functions from R+ into F

of the form
∑n

i=1 ai1Ai , where ai ∈ F and Ai ∈ R(R+,m) for each i = 1, . . . , n. Clearly,
S(R+,m) is a dense linear subspace of L1(R+,m). Fix µ ∈ M(R+, E; m) arbitrarily. For
each f ∈ S(R+,m), let

Tµ(f) =
∑
a∈F

aµ(f−1({a})).

A routine verification shows that S(R+,m) � f �→ Tµ(f) ∈ E is a continuous linear
operator with norm not greater than ‖µ‖∞,m. This operator can further be extended by
continuity to a continuous linear operator Tµ : L1(R+,m) → E with norm not greater
than ‖µ‖∞,m. Clearly, M(R+, E; m) � µ �→ Tµ ∈ L(L1(R+,m), E) is a linear contraction.
It is readily verified that the mappings T �→ µT and µ �→ Tµ are mutually inverse and as
such determine an isometric isomorphism between L(L1(R+,m), E) and M(R+, E; m).

Incidentally, note that if f ∈ L1(R+,m) and µ ∈ M(R+, E; m), then the element Tµ(f)
of E coincides with the integral of f with respect to µ (see [8, pp. 5–6]). Therefore Tµ(f)
can also be written as

∫
R+

f dµ.
The space M(R+, E; m) can be further characterized for E having the Radon–Nikodym

property or RNP. Recall that a Banach space E has the RNP provided that if ν is
an E-valued measure of finite variation and ν is absolutely continuous with respect
to a finite scalar measure n, then there is an E-valued measurable function g so that
ν(A) =

∫
A

g dn for every measurable set A, the integral being taken in the sense of
Bochner. An equivalent requirement is that every Lipschitz function from R into E

be differentiable almost everywhere with respect to Lebesgue measure. The RNP is a
hereditary property (i.e. passes to closed subspaces) and is enjoyed (amongst others) by
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any reflexive space, any separable dual space, and any �1(Γ ) space, where Γ is a set
(see [8, Chapter III]).

Let L∞(R+, E; m) be the space of (equivalence classes of) E-valued m-measurable
essentially bounded functions on R+, with the norm

‖f‖∞,m = inf{sup{‖f(t)‖ | t ∈ A} | A ⊂ R+ m-measurable with m(R+ \ A) = 0}.

If E has the RNP, then the spaces L∞(R+, E; m) and M(R+, E; m) are isometrically
isomorphic under the correspondence g ↔ µ, where g ∈ L∞(R+, E; m) and µ ∈
M(R+, E; m), defined by

µ(B) =
∫

B

g dm (B ∈ R(R+,m)),

where the integral is taken in the sense of Bochner (see [8, Chapter III]). Consequently,
if (g,µ) is a pair of corresponding elements of L∞(R+, E; m) and M(R+, E; m), then any
integral of the form ∫

R+

f dµ (f ∈ L1(R+,m))

can be represented as the Bochner integral∫
R+

f dµ =
∫

R+

fg dm.

In light of the comments above, we can now formulate two immediate corollaries to
Theorem 1.2. The first identifies any C∞

W ((ω, ∞), E; m), where ω is a bound for m, as the
space of the Laplace–Stieltjes transforms on (ω, ∞) of measures in M(R+, E; m), whereas
the other, under the assumption that E has the RNP, identifies any C∞

W ((ω, ∞), E; m)
as the space of the Laplace–Stieltjes transforms on (ω, ∞) of E-valued measures on
R(R+,m) absolutely continuous with respect to m with density in L∞(R+, E; m).

Theorem 4.1. Let m be a non-negative Borel measure on R+ with bound ω, let E

be a Banach space, and let r : (ω, ∞) → E be a function. Then r can be represented in
the form

r(λ) =
∫

R+

ε−λ dµ (λ > ω)

for some µ ∈ M(R+, E; m) if and only if r ∈ C∞
W ((ω, ∞), E; m). If there exists a µ ∈

M(R+, E; m) such that r(λ) =
∫

R+
ε−λ dµ for all λ > ω, then µ is unique and ‖µ‖∞,m =

‖r‖W,m,ω.

Theorem 4.2. Let m be a non-negative Borel measure on R+ with bound ω, let E

be a Banach space with the RNP, and let r : (ω, ∞) → E be a function. Then r can be
represented in the form

r(λ) =
∫

R+

ε−λg dm (λ > ω)
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for some g ∈ L∞(R+, E; m) if and only if r ∈ C∞
W ((ω, ∞), E; m). If there exists a g ∈

L∞(R+, E; m) such that r(λ) =
∫

R+
ε−λg dm for all λ > ω, then g is unique and ‖g‖∞,m =

‖r‖W,m,ω.

One more comment is in order. If µ is a measure in M(R+, E; m), where E is a
Banach space and m is a non-negative Borel measure on R+ with bound ω, then, for
every λ > max{ω, 0}, the Laplace–Stieltjes transform

∫
R+

ε−λ dµ can be represented as
the Laplace–Carson transform, or λ-multiplied Laplace transform

∫
R+

ε−λ dµ = λ

∫ ∞

0
e−λtgµ(t) dt, (4.1)

where gµ is the function from R+ into E given by gµ(t) = µ([0, t]) for all t ∈ R+, and
the right-hand side integral is taken in the sense of Bochner. To prove this assertion,
define f : R+ → L1(R+,m) by f(t) = 1[0,t] for all t ∈ R+. We shall show that f is
(strongly) Borel measurable. Let A = {t ∈ R+ : m({t}) > 0}. Since m is finite on every
bounded Borel subset of R+, A is at most countable. Let A = {an : n ∈ N} be an
enumeration of A. Write f as f = f1 + f2, where f1 and f2 are the functions from R+

into L1(R+,m) defined by f1(t) = 1[0,t]∩A and f2(t) = 1[0,t]∩(R+\A) for all t ∈ R+. Given
n ∈ N, define hn : R+ → L1(R+,m) by hn(t) = 1[0,t]∩{an} for all t ∈ R+. Each hn is
Borel measurable, being equal to zero on [0, an) and to 1{an} on [an,∞). It is readily
seen that, for each t ∈ R+, f1(t) =

∑
n∈N

hn(t), the series being absolutely convergent
in the norm topology of L1(R+,m). This implies that f1 is Borel measurable. On the
other hand, since m restricted to R+ \ A is continuous, it follows that f2 is continuous
and hence Borel measurable. Thus f is Borel measurable. As an immediate consequence,
we see that, for every λ ∈ R, the function R+ � t �→ λe−λt1[0,t] ∈ L1(R+,m) is Borel
measurable. Now, for each λ > 0 and each s ∈ R+,

λ

∫ ∞

0
e−λt1[0,t](s) dt = λ

∫ ∞

s

e−λt dt = e−λs (4.2)

and further, for every λ > max{ω, 0},

λ

∫ ∞

0
e−λt‖1[0,t]‖1,m dt = λ

∫ ∞

0
e−λt

[∫
R+

1[0,t](s) dm(s)
]
dt

=
∫

R+

[
λ

∫ ∞

0
e−λt1[0,t](s) dt

]
dm(s)

=
∫

R+

e−λs dm(s) < +∞

by Fubini’s theorem. Fix λ > max{ω, 0} arbitrarily. According to Bochner’s integrability
criterion (cf. [23, Chapter 5, § 5, Theorem 1]), the function R+ � t �→ λe−λt1[0,t] ∈
L1(R+,m) is Bochner integrable with respect to Lebesgue measure on R+. In view of
(4.2), the Bochner integral

∫ ∞
0 λe−λt1[0,t] dt is the element of L1(R+,m) represented by

ε−λ. Now, by the continuity of Tµ (as an operator from L1(R+,m) to E), the function
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R+ � t �→ λe−λtTµ(1[0,t]) ∈ E is Bochner integrable and

Tµ(ε−λ) =
∫ ∞

0
λe−λtTµ(1[0,t]) dt.

Taking into account that gµ(t) = Tµ(1[0,t]) for each t ∈ R+, we finally obtain (4.1).

5. An application to pseudo-resolvents

Here we give one application of Theorem 1.2 of importance for operator semigroup theory.
Let A be a Banach algebra (with identity or not) and let U be a subset of F. A

function r : U → A, λ �→ rλ, is called a pseudo-resolvent if it satisfies the following
Hilbert equation:

rλ − rµ = (µ − λ)rλrµ (λ, µ ∈ U).

Let U be an open subset of R and let r : U → A be a pseudo-resolvent. It is well known
that r is then infinitely differentiable, in fact real analytic, and

dkrλ

dλk
= (−1)kk!rk+1

λ

for all k ∈ Z
+ (cf. [11, Chapter IX, § 1], [15, § 5.8], [23, Chapter VIII, § 4]). Thus, if m

is a non-negative Borel measure on R+ with bound ω and U = (ω, ∞), then

‖r‖W,m,ω = sup{‖rk+1
λ ‖/‖αk,λ‖1,m | k ∈ Z

+, λ ∈ (ω, ∞)}.

When m has a density Ω (with respect to Lebesgue measure) of the form Ω(t) = eωt

(t ∈ R+, ω ∈ R), we have ‖αk,λ‖1,m = (λ − ω)−(k+1) for all k ∈ Z
+ and all λ > ω, and

the equality above reduces to

‖r‖W,Ω,ω = sup{(λ − ω)k‖rk
λ‖ | k ∈ N, λ ∈ (ω, ∞)}.

Now observe that ‖r‖W,Ω,ω < ∞ is nothing else but the Hille–Yosida condition inter-
vening in the Hille–Yosida theorem on the generation of one-parameter semigroups of
operators (cf. [10, Chapter VIII, § 1, Theorem 13], [15, Theorem 12.3.1], [23, Chapter 9,
§ 7]). By analogy, when m is a non-negative Borel measure on R+ with bound ω and
r : (ω, ∞) → A is a pseudo-resolvent, r will be said to satisfy the Hille–Yosida condition
if ‖r‖W,m,ω < ∞.

Direct verification shows that if Ω is a weight function on R+ with bound ω, then
ε : (ω, ∞) → L1(R+, Ω), λ �→ ε−λ, is a pseudo-resolvent with ‖ε‖W,Ω,ω = 1. As will
become clear in a moment, from a certain point of view ε can be regarded as a canonical
pseudo-resolvent in L1(R+, Ω).

Let Ω be a weight function on R+ with bound ω, suppose that r : (ω, ∞) → A, λ �→ rλ,
is a pseudo-resolvent, and let T : L1(R+, Ω) → A be a bounded linear operator such that
rλ = T (ε−λ) for all λ > ω. Then, for all λ, µ ∈ (ω, ∞),

(µ − λ)T (ε−λ ∗ ε−µ) = T (ε−λ − ε−µ) = T (ε−λ) − T (ε−µ)
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because ε is a pseudo-resolvent, and

(µ − λ)T (ε−λ)T (ε−µ) = (µ − λ)rλrµ = rλ − rµ = T (ε−λ) − T (ε−µ)

because r is a pseudo-resolvent. Hence T (ε−λ ∗ ε−µ) = T (ε−λ)T (ε−µ) for all λ, µ ∈
(ω, ∞) with λ �= µ. This identity readily extends to the case λ = µ, since the mapping
(ω, ∞) � λ �→ ε−λ ∈ L1(R+, Ω) is continuous. Accordingly, T (f ∗ g) = T (f)T (g) for
all f, g ∈ P (R+, ω). Since P (R+, ω) is dense in L1(R+, Ω) and T is bounded, we have
T (f ∗g) = T (f)T (g) for all f, g ∈ L1(R+,m). Thus T is a homomorphism from L1(R+, Ω)
to A.

Coupled with Theorem 1.2, these observations lead to the following result.

Theorem 5.1. Let A be a Banach algebra, let Ω be a weight function on R+ with
bound ω, and let r : (ω, ∞) → A, λ �→ rλ, be a pseudo-resolvent. Then r satisfies the
Hille–Yosida condition

‖r‖W,Ω,ω = sup{‖rk+1
λ ‖/‖αk,λ‖1,Ω | k ∈ Z

+, λ ∈ (ω, ∞)} < ∞

if and only if there exists a bounded homomorphism T : L1(R+, Ω) → A such that
T (ε−λ) = rλ for each λ ∈ (ω, ∞). Furthermore, if there exists a bounded homomorphism
T : L1(R+, Ω) → A such that T (ε−λ) = rλ for each λ ∈ (ω, ∞), then T is unique and
‖T‖ = ‖r‖W,Ω,ω.

In the case when Ω is an (α, ω)-weight function, this theorem is due to Kisyński [17].
Related results can be found in [3,5,16].

The significance of Theorem 5.1 is that it can be used to develop a generalization
of the Hille–Yosida theorem, and a generalization of the Trotter–Kato theorem on the
convergence of sequences of one-parameter semigroups (cf. [23, Chapter 9, § 12, Theo-
rem 1]). Both these generalizations will involve semigroups {St}t∈R+ satisfying a growth
condition of the form supt∈R+

(Ω(t))−1‖St‖ < +∞, where Ω is a weight function on R+.
The interested reader is referred to [6,16] for a formulation and validation of general-
izations of the Hille–Yosida theorem and Trotter–Kato theorem based on the classical
form of the Widder–Arendt theorem. In [17] a further generalization of the Hille–Yosida
theorem is derived from a special case of Theorem 5.1 in which Ω is an (α, ω)-weight func-
tion. All of these generalizations of the Hille–Yosida theorem and Trotter–Kato theorem
can eventually be subsumed by respective generalizations, derivable from Theorem 5.1,
involving weight functions with a bound. A detailed exposition of these latter results will
be presented elsewhere.
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