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AbstractÐWe consider the problem of estimating parameters of a model described by an equation of special form. Specific models

arise in the analysis of a wide class of computer vision problems, including conic fitting and estimation of the fundamental matrix. We

assume that noisy data are accompanied by (known) covariance matrices characterizing the uncertainty of the measurements. A cost

function is first obtained by considering a maximum-likelihood formulation and applying certain necessary approximations that render

the problem tractable. A novel, Newton-like iterative scheme is then generated for determining a minimizer of the cost function. Unlike

alternative approaches such as Sampson's method or the renormalization technique, the new scheme has as its theoretical limit the

minimizer of the cost function. Furthermore, the scheme is simply expressed, efficient, and unsurpassed as a general technique in our

testing. An important feature of the method is that it can serve as a basis for conducting theoretical comparison of various estimation

approaches.

Index TermsÐStatistical methods, surface fitting, parameter estimation, covariance matrix, maximum-likelihood, renormalization,

conic fitting, fundamental matrix.

æ

1 INTRODUCTION

AN important problem in computer vision is that of
estimating the coefficients of a given algebraic equa-

tion that constrains a set of image feature locations.
Geometrically, such an equation describes a multidimen-
sional surface (possibly just a curve) embedded in a space of
higher dimension. In some cases, candidate surfaces are
subject to ancillary constraints not involving feature loca-
tions. The above estimation problem can thus be viewed as
that of fitting a curve or surface, possibly lying within a
certain manifold, through a number of points. Conic fitting is
one particular problem of this kind [1], [2]. Two other
problems are estimating coefficients of the epipolar equation

[3] and estimating coefficients of the differential epipolar

equation [4], [5], each involving an ancillary cubic constraint.
The principal equation that applies to a wide class of

problems, including those specified above, takes the form

��Tuu�xx� � 0: �1�
Here, �� � ��1; . . . ; �l�T is a vector representing unknown

parameters, xx � �x1; . . . ; xk�T is a vector representing an

element of the data (for example, the locations of a pair of

corresponding points), and uu�xx� � �u1�xx�; . . . ; ul�xx��T is a

vector with the data transformed in a problem-dependent

manner such that: 1) each component of uu�xx� is a quadratic

form in the compound vector �xxT ; 1�T and 2) one component

of uu�xx� is equal to 1. The ancillary constraint, if it applies,

may be expressed as

 ���� � 0 �2�
for some scalar-valued function  . The estimation problem

can now be stated as follows: Given a collection �xx1; . . . ; xxn�
of image data, determine �� 6� 0 satisfying (2) such that (1)

holds with xx replaced by xxi for 1 � i � n. When n > l and

noise is present, the corresponding system of equations is

overdetermined and as such may fail to have a nonzero

solution. In this situation, we are concerned with finding ��

that best fits the data in some sense. Various methods for

finding such a fit have been developed. A vast class of

techniques rests upon the use of cost functions measuring the

extent to which the data and candidate estimates fail to

satisfy (1). IfÐfor simplicityÐone sets aside the ancillary

constraint, then, given a cost function J � J���;xx1; . . . ; xxn�, a

corresponding estimate �̂� is defined by

J��̂�� � min
�� 6�0

J���;xx1; . . . ; xxn�:

A straightforward cost function is

JALS���;xx1; . . . ; xxn� �
Xn
i�1

��Tuu�xxi�uu�xxi�T ��
k��k2

;

where k��k � ��2
1 � . . .� �2

l �1=2. It leads to an algebraic least-

squares estimate �̂�ALS that can be explicitly computed. When

some information about the measurement error is available,

more involved cost functions can be devised. Under the

assumption that the uncertainty of each data point xxi can be

described by a k� k covariance matrix ��xxi , a compelling case

(drawing upon the principle of maximum-likelihood) may

be made for adoption of the cost function

JAML���;xx1; . . . ; xxn� �
Xn
i�1

��Tuu�xxi�uu�xxi�T ��
��T@xxuu�xxi���xxi@xxuu�xxi�T ��

;
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where, for any k vector yy, @xxuu�yy� denotes the l� k matrix of
the partial derivatives of the functionxx 7! uu�xx�evaluated atyy.
The corresponding approximated maximum-likelihood estimate
�̂�AML cannot be expressed in closed form, but a numerical
approximation to it can be calculated by employing a suitable
numerical scheme. One such scheme was proposed by
Sampson [6]. Kanatani [7, Chapter 12] noted that Sampson's
algorithm is susceptible to statistical bias and proposed
amendments in the form of the first-order and second-order
renormalization schemes. While the aim of both types of
renormalization was to produce better approximations to
�̂�AML, it emerges that these schemes do not theoretically act to
compute �̂�AML (see a companion paper [8]).

In this work, we evolve a fundamental Newton-like
algorithm for calculating �̂�AML based on the algebraic
constraint to which all critical points of JAML are subject.
This algorithm provides a genuine means for theoretically
calculating �̂�AML, is elegantly expressed, and is unsurpassed
in our comparative testing. As it turns out, it can also be
used to establish a framework for examining theoretical
relationships between various existing methods of mini-
mizing JAML [8].

2 SOME EXAMPLES

We begin by showing that two of the previously mentioned
application problems can be written as either (1) or the
system of (1) and (2).

2.1 Conic Fitting

Consider a plane with a coordinate system. Any point in the
plane can be represented as a pair �m1;m2� of coordinates.
An equivalent representation of �m1;m2� is via the vector
mm � �m1;m2; 1�T . A conic is any set of points �m1;m2�
satisfying

am2
1 � bm1m2 � cm2

2 � dm1 � em2 � f � 0

for some real numbers a; b; c; d; e not all simultaneously
zero. The same set can also be described in terms of mm by

mmTAAmm � 0; �3�
where

AA �
a b=2 d=2
b=2 c e=2
d=2 e=2 f

24 35:
We can group together the coefficients a; b; c; d; e; f , obtain-
ing the vector of parameters �� � �a; b; c; d; e; f �T . The variables
m1;m2 can be represented as the vector xx � �m1;m2�T . If,
adopting the terminology of Matei and Meer [9], [10], we
also introduce the vector of basis functions or carriers
uu�xx� � �m2

1;m1m2;m
2
2;m1;m2; 1�T , then

mmTAAmm � ��Tuu�xx�:
With this identity, it is clear that (3) can be written as (1).

2.2 Fundamental Matrix Estimation

Consider a camera with an image plane that is equipped
with a coordinate system. Any 3D element of the scene
perspectively projected onto this plane gives rise to an image

point represented by coordinates �m1;m2� or, equivalently,
by the vector mm � �m1;m2; 1�T . A 3D point projected onto
the image planes of two different cameras endowed with
two separate coordinate systems gives rise to a pair of

corresponding points. When represented by �mm;mm0�, this pair
satisfies the epipolar equation

mm0TFFmm � 0; �4�
where FF � �fij� is a 3� 3 fundamental matrix that incorpo-
rates information about the relative orientation and internal
geometry of the cameras [3]. The matrix FF is subject to the
cubic constraint

detFF � 0: �5�
Let �� � �f11; f12; f13; f21; f22; f23; f31; f32; f33�T be the vector of
parameters, let xx � �m1;m2;m

0
1;m

0
2�T be the vector of

variables, and let

uu�xx� � �m1m
0
1;m2m

0
1;m

0
1;m1m

0
2;m2m

0
2;m

0
2;m1;m2; 1�T

be the vector of carriers. Then,

mm0TFFmm � ��Tuu�xx�
and again, we see that (4) reduces to (1). Equation (5) can be
expressed as (2), if we let

 ���� � �1��5�9 ÿ �6�8� � �2��6�7 ÿ �4�9� � �3��4�8 ÿ �5�7�:

3 COST FUNCTIONS AND ESTIMATORS

We set out to estimate the parameter �� based on the

available data �xx1; . . . ; xxn�. Since (1) does not change if �� is
multiplied by a nonzero scalar, the effective entity to be
estimated is the one-dimensional ray through ��:

���� � ft�� : t a nonzero scalarg:
Here, we tacitly assume that �� 6� 0.

Estimators of ���� will be evolved from cost functions

J���;xx1; . . . ; xxn� of special form. We shall use cost functions

that are homogeneous in ��, or ��-homogeneous, such that

J�t��;xx1; . . . ; xxn� � J���;xx1; . . . ; xxn�
for every nonzero scalar t. IfÐfor simplicityÐthe ancillary
constraint is set aside, then, given a ��-homogeneous cost
function J , an estimate �̂� of �� based on J is defined by

J��̂�� � min
�� 6�0

J���;xx1; . . . ; xxn�:

This equation specifies �̂� only to within a scalar factor.
Nevertheless, the ray ��̂�� is uniquely defined and we take
this for the J-based estimate of ��̂��. The assignment of �̂� or

��̂�� to xx1; . . . ; xxn will be termed the J-based estimator of �� or
����, respectively. Henceforth, we shall deal exclusively with
estimates and estimators of ��.

Once an estimate has been generated by minimizing a
specific cost function, the ancillary constraint (if it applies)

can further be accommodated via an adjustment procedure.
One possibility is to use a general scheme delivering an
ªoptimal correctionº described in [7, Subsection 9.5.2]. In
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what follows, we shall confine our attention to the
estimation phase that precedes adjustment.

3.1 Algebraic Least-Squares Estimator

For each i � 1; . . . ; n, let

AAi � uu�xxi�uu�xxi�T �6�
and let MM �Pn

i�1 AAi. A straightforward estimator is
derived from the cost function

JALS���;xx1; . . . ; xxn� � ��
TMM��

k��k2
:

The numerator ��TMM�� above is the sum of the squares of the
algebraic distances j��Tuu�xxi�j. Accordingly, the JALS-based
estimate of �� is termed the algebraic least-squares (ALS)
estimate and is denoted �̂�ALS.

Since �̂�ALS is a minimizer of JAML, we have that, when
�� � �̂�ALS, the following equation holds:

@��JALS���;xx1; . . . ; xxn� � 0T :

Here, @��JALS � @JALS=�1; � � � ; @JALS=@�l� �. Direct computa-
tion shows that

�@��JALS���;xx1; . . . ; xxn��T � 2XX����;

where

XX�� �MM ÿ JALS����IIl
k��k2

;

JALS���� is short for JALS���;xx1; . . . ; xxn�, and IIl is the

l� l identity matrix. We see that �̂�ALS is an eigenvector of MM

with eigenvalueJALS��̂�ALS�. If �� is any eigenvector ofMM with a

corresponding eigenvalue �, then, necessarily, JALS���� � �.

Since JALS��̂�ALS� � JALS����, we conclude that JALS��̂�ALS� � �.

Thus, �̂�ALS is an eigenvector of MM corresponding to the

smallest eigenvalue. In practice, �̂�ALS can readily be deter-

mined by carrying out singular-value decomposition (SVD)

of MM (cf. [11, Section 5.7], [12, Section 2.6]).

3.2 Maximum-Likelihood Estimator

The ALS estimator treats all data as being equally valuable.
When information about the measurement errors is avail-
able, it is desirable that it be incorporated into the
estimation process. Prior knowledge of the measurement
errors may indicate that some data are more reliable than
others. This could be taken into account in the cost function
by weighting the better data more heavily than the poorer
data. Here, we present an estimator capable of informed
weighting. It is based on the principle of maximum-
likelihood and draws upon Kanatani's work on geometric
fitting [7, chapter 7].

The measurement errors being generally unknowable,
we regard the collective data �xx1; . . . ; xxn� as a sample
value taken on by an aggregate of vector-valued random
variables (x1; . . . ; xn). We assume that the distribution of
(x1; . . . ; xn) is not exactly specified, but is an element of a
collection fP�� j �� 2 HHg of candidate distributions, with HH
the set of all �n� 1�-tuples �� � ���; �xx1; . . . ; �xxn� such that
�� 6� 0 and

��Tuu��xx1� � � � � � ��Tuu��xxn� � 0: �7�
The candidate distributions are to be such that if some

distribution P�� is in effect, then each xi �i � 1; . . . ; n� is a

noise-driven, fluctuating quantity around �xxi.
We assume that the data come equipped with a collection

���xx1
; . . . ;��xxn� of (known) positive definite k� k covariance

matrices. These matrices constitute repositories of prior

information about the uncertainty of the data. We put the

��xxi to use by assuming that, for each �� 2 HH, P�� is the unique

distribution satisfying the following conditions:

. For any i; j � 1; . . . ; n with i 6� j, the random vectors
xi and xj (or, equivalently, the noises behind xi and
xj) are stochastically independent.

. For each i � 1; . . . ; n, the random vector xi has
multivariate normal distribution with mean value
vector �xxi and covariance matrix ��xxi .

Each P�� can be described in terms of the probability density

function

f�~xx1; . . . ; ~xxnj��� ��2��ÿkn=2
Yn
i�1

�det ��xxi�ÿ1=2

� exp ÿ 1

2

Xn
i�1

�~xxi ÿ �xxi�T��ÿxxi
1�~xxi ÿ �xxi�

( )
;

where �~xx1; . . . ; ~xxn� is an arbitrary member of the sample

space.
The collection fP�� j �� 2 HHg is a statistical model of

possible distributions of (x1; . . . ; xn). In this model, the

random variables x1; . . . ; xn are all placed on equal footing.

In particular, these variables are not partitioned into a

group of independent explanatory variables and a group of

response variables that are functions of the members of the

first group. As a result, fP�� j �� 2 HHg falls into the category

of the so-called errors-in-variables models [13], [14]. Further-

more, since each compound parameter �� is not arbitrary,

but is subject to the constraint (7) that is geometric in

nature, estimation based on fP�� j �� 2 HHg is an instance of

geometric fitting [7, chapter 7], [15].
The number f�xx1; . . . ; xxnj��� indicates the probability

(density) of obtaining �xx1; . . . ; xxn� under the error model

indexed by ��. As such, f�xx1; . . . ; xxnj��� measures the match

between the data and the predictions of the model. This

property of the f�xx1; . . . ; xxnj��� (�� 2 HH) can be exploited to

design an estimator of �� whereby the greatest confidence is

given to that choice of �� for which the likelihood function

�� 7! f�xx1; . . . ; xxnj��� attains a maximum. Given the form of

f�xx1; . . . ; xxnj���, it is immediately seen that the maximum-

likelihood estimate thus defined is the parameter �̂�ML at which

the cost function

JML���;xx1; . . . ; xxn� �
Xn
i�1

�xxi ÿ �xxi�T��ÿ1
xxi
�xxi ÿ �xxi�

attains a minimum. Each term �xxi ÿ �xxi�T��ÿ1
xxi
�xxi ÿ �xxi� in the

above summation represents the squared Mahalanobis

distance between xxi and �xxi. Note that the value of �̂�ML

remains unchanged if the covariance matrices are multi-

plied by a common scalar.
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The parameter �� � ���; �xx1; . . . ; �xxn� naturally splits into
two parts: �1���� � �� and �2���� � ��xx1; . . . ; �xxn�. These parts
encompass the principal parameters and nuisance parameters,
respectively. We are mostly interested in the �1-part of �̂�ML,
which we call the maximum-likelihood estimate of �� and
denote �̂�ML. (As will become apparent shortly, the �2-part of
�̂�ML, which can be viewed as the maximum-likelihood
estimate of �xx1; . . . ; xxn�, is a function of �̂�ML.) The estimate
�̂�ML can be effectively determined by splitting the search for
the minimizer of JML into two steps: one in which, for each
principal parameter, a conditional minimizer is found by
letting only the nuisance parameters vary; and one in which
minimizers obtained in the first step are compared by
letting the principal parameters vary. The splitting is
embodied by the formula

min
��

JML���;xx1; . . . ; xxn�
� min

�� 6�0
minfJML���;xx1; . . . ; xxn�: �� with �1���� � ��gf g:

For each �� 6� 0, let ���� � ���; �xx��1; . . . ; �xx��n� be the compound
parameter at which the inner minimum is attained. Then,
clearly,

JML��̂�ML;xx1; . . . ; xxn� � min
�� 6�0

JML�����;xx1; . . . ; xxn�:

If we introduce the function

J#
ML���;xx1; . . . ; xxn� � JML�����;xx1; . . . ; xxn�;

then �̂�ML can be identified as the minimizer of J#
ML and we

also have �̂�ML � ���̂�ML
, showing that determining �̂�ML is

tantamount to determining �̂�ML and, in particular, that the
maximum-likelihood estimate of ��xx1; . . . ; �xxn� can be ex-
pressed in terms of �̂�ML as ��xx�̂�ML

1 ; . . . ; �xx�̂�ML
n �.

The function J#
ML does not lend itself to explicit

calculation, so the determination of �̂�ML directly on the
basis of J#

ML is impractical. However, as we shall see next, a
tractable approximation to J#

ML can be derived. The new
cost function will serve as a basis for determining an
approximation of �̂�ML.

Interestingly, �̂�ML can be found by employing another
method that requires no intermediary step involving J#

ML.
As it turns out, �̂�ML and a vector of certain additional
unknowns (which happen to be suitable Lagrange multi-
pliers) satisfy a system of equations that expresses, in a
differential form, the fact that �̂�ML is a minimizer of a
constrained problem. This system can be solved numerically
by employing, say, the Newton-Raphson method. Finding
�̂�ML (and, hence, �̂�ML) in this way constitutes the so-called
direct approach to maximum-likelihood fitting [15], [16], [17].
In contrast, finding �̂�ML (and, hence, �̂�ML) by resorting to J#

ML

embodies the so-called reduced approach [17].

3.3 Approximated Maximum-Likelihood Estimator

To obtain an approximation of J#
ML, first note that the

definition of ���� involves minimization subject to the
constraints ��Tuu��xxi� � 0 �i � 1; . . . ; n�. This minimization

can effectively be handled with the use of Lagrange
multipliers. Fix i � 1; . . . ; n arbitrarily. Note that the

gradient (the column vector of the partial derivatives) of
�xxi ÿ yy�T��ÿ1

xxi
�xxi ÿ yy� with respect to yy is ÿ2��ÿ1

xxi
�xxi ÿ yy� and

the gradient of ��Tuu�yy� with respect to yy is @xxuu�yy�T ��, where

@xxuu�yy� � ��@ui=@xj��yy��1�i�l;1�j�k. Now, the constrained

minimization condition implies that, evaluated at �xx��i , these

two gradients are proportional; that is, there exists a (scalar)

Lagrange multiplier �i such that

��ÿ1
xxi
�xxi ÿ �xx��i � � �i@xxuu��xx��i �T ��: �8�

Multiplying both sides of this equation by the positive

definite square root ��1=2
xxi

of ��xxi , we obtain

��ÿ1=2
xxi
�xxi ÿ �xx��i � � �i��1=2

xxi
@xxuu��xx��i �T ��;

where ��ÿ1=2
xxi

denotes the inverse of ��1=2
xxi

. Hence,

�2
i �
k ��ÿ1=2

xxi
�xxi ÿ �xx��i � k2

k ��1=2
xxi
@xxuu��xx��i �T �� k

2
� �xxi ÿ �xx��i �T��ÿ1

xxi
�xxi ÿ �xx��i �

��T@xxuu��xx��i ���xxi@xxuu��xx��i �T ��
: �9�

Multiplying both sides of (8) by �xxi ÿ �xx��i �T gives

�xxi ÿ �xx��i �T��ÿ1
xxi
�xxi ÿ �xx��i � � �i�xxi ÿ �xx��i �T@xxuu��xx��i �T ��: �10�

Now, replacing the difference uu�xxi� ÿ uu��xx��i � by the first-

order term @xxuu��xx��i ��xxi ÿ �xx��i � in the Taylor expansion of

yy 7! uu�yy� ÿ uu��xx��i � about �xx��i and taking into account that

��Tuu��xx��i � � 0, we obtain

��Tuu�xxi� � ��T@xxuu��xx��i ��xxi ÿ �xx��i �: �11�
Equation (10) can now be written as

�xxi ÿ �xx��i �T��ÿ1
xxi
�xxi ÿ �xx��i � � �iuu�xxi�T ��:

This, jointly with (9), yields

�xxi ÿ �xx��i �T��ÿ1
xxi
�xxi ÿ �xx��i �

h i2

� �2
i ��

Tuu�xxi�uu�xxi�T ��

� �xxi ÿ �xx��i �T��ÿ1
xxi
�xxi ÿ �xx��i � � ��Tuu�xxi�uu�xxi�T ��

��T@xxuu��xx��i ���xxi@xxuu��xx��i �T ��
;

whence, upon diving both sides by �xxi ÿ �xx��i �T��ÿ1
xxi
�xxi ÿ �xx��i �,

�xxi ÿ �xx��i �T��ÿ1
xxi
�xxi ÿ �xx��i � �

��Tuu�xxi�uu�xxi�T ��
��T@xxuu��xx��i ���xxi@xxuu��xx��i �T ��

:

If we further simplify this by substituting @xxuu�xxi� for

@xxuu��xx��i �, we finally arrive at the following approximate

expression JAML for J#
ML:

JAML���;xx1; . . . ; xxn� �
Xn
i�1

��Tuu�xxi�uu�xxi�T ��
��T@xxuu�xxi���xxi@xxuu�xxi�T ��

:

If, for each i � 1; . . . ; n, we let

BBi � @xxuu�xxi���xxi@xxuu�xxi�T ;
then, recalling the definition (6), JAML can be simply written

as

JAML���;xx1; . . . ; xxn� �
Xn
i�1

��TAAi��

��TBBi��
: �12�
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The JAML-based estimate of �� will be called the approximated
maximum-likelihood (AML) estimate and will be denoted
�̂�AML.

It should be observed that JAML can be derived in an
alternative manner. This can be done without recourse to
the maximum-likelihood principle by, for example, using a
gradient weighted approach that also incorporates covar-
iances. Various terms may be used to describe the method
that aims to minimize JAML, although some of the terms
may not be fully discriminating. Candidate labels include
ªheteroscedastic regressionº [18], ªweighted orthogonal
regressionº [13], [19], and ªgradient weighted least-
squaresº [20].

We finally note that an alternative method of finding an
approximation to �̂�ML has recently been developed by
Leedan and Meer [18], [21] and further generalized by
Matei and Meer [9]. It is based on an application of the
maximum-likelihood principle to a statistical model formed
with the use of approximations to candidate distributions of
�uu(x1� . . . ; uu(xn)), each of which is derived from a respective
candidate distribution of (x1; . . . ; xn).

3.4 Example Cost Functions

It is instructive to revisit our fitting examples from
Sections 2.1 and 2.2 and present in each case the function
JAML in the form in which the parameters to be estimated
are represented by a matrix rather than a vector. It is easily
seen that, in the case of conic fitting, JAML reduces to the
cost function

J�AA� � 1

2

Xn
i�1

�mmi
TAAmmi�2

mmi
TAA��mmi

AATmmi

with the covariance matrices having the form

��mm �
��pp 0

0T 0

24 35; �13�

where ��pp is the ªnaturalº 2� 2 covariance matrix corre-
sponding to the vector pp defined via the representation mm �
�ppT ; 1�T (or, equivalently, defined as the vector of coordi-
nates pp � �m1;m2�T ). In the case of fundamental matrix
estimation, JAML reduces to Zhang's favored gradient
weighted least-squares cost function (see J2 in the appendix
of [20]) given by

J�FF � �
Xn
i�1

�mm0iTFFmmi�2
mmi

TFF��mm0iFF
Tmmi �mm0iTFFT��mmi

FFmm0i
;

where again the covariance matrices have the form given
in (13).

4 MINIMIZING THE COST FUNCTION

Minimizing JAML is a challenging problem. One strategy is
to rely upon a general solver such as the Levenberg-
Marquardt method [12, Section 15.5], or the downhill
simplex method of Nelder and Mead [12, Section 10.4] or
one of the direction set methods of Powell [12, Section 10.5].
However, such a solver will not take into account the
special form of the problem and may be unduly slow. A

commonly adopted approach to minimizing functions
involving fractional expressions is that ascribed to Sampson

[6]. When applied to JAML, Sampson's scheme (SMP) starts
the search for a minimizer by substituting an initial estimate

into the denominators ��TBBi�� in (12), which transforms our
problem into one of minimizing a quadratic form in ��; the

latter problem is straightforward and can be solved using

SVD. This process is then repeated with the newly obtained
estimate substituted into the denominators until a measure

of convergence is obtained. (Note, however, that Sampson's
original scheme did not incorporate covariance matrices.)

Kanatani showed that this approach, involving a ªfreez-

ingº of the denominators, is subject to systematic bias.
Accordingly, he devised the technique of renormalization in

which an attempt is made at each iteration to undo the bias
[7, chapter 12]. We show in a companion paper [8] that the

estimate �̂�REN obtained via renormalization does not
theoretically act to compute �̂�AML. However, a case may

be made that this is unimportant given that �̂�REN and �̂�AML

are both first-order approximations to �̂�ML and as such are

likely to be statistically equivalent.
In this section, we derive a straightforward minimization

scheme that is a genuine means of theoretically determining
the minimizer of JAML.

4.1 Variational Equation

Since �̂�AML is a minimizer of JAML, we have that, when

�� � �̂�AML, the following equation holds:

@��JAML���; xx1; . . . ; xxn� � 0T : �14�
We term this the variational equation. Direct computation
shows that

�@��JAML���;xx1; . . . ; xxn��T � 2XX����; �15�
where

XX�� �
Xn
i�1

AAi

��TBBi��
ÿ
Xn
i�1

��TAAi��

���TBBi���2
BBi: �16�

Thus, (14) can be written as

XX���� � 00: �17�
This is a nonlinear equation and is unlikely to admit

solutions in closed form.

4.2 Fundamental Numerical Scheme

Closed-form solutions of the variational equation may be

infeasible, so in practice �̂�AML has to be found numerically.

We assume that �̂�AML lies close to �̂�ALS so as to guarantee
that, when seeded with �̂�ALS, the numerical method that we

are going to develop generates an estimate that coincides
with �̂�AML. Taking �̂�ALS as an initial guess ��0, we construct a

sequence f��kg of successive updates. Under favorable
conditions, the sequence will converge. Exploiting the

assumption about the accuracy of the initial guess, we take
the corresponding limit for the final estimate. In practice,

the limit will be identified with the final term of f��kg
stopped after a finite number of steps. The stopping rule

will be the choice of the first k such that the distance of
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some kind between ��kÿ1 and ��k, say k��kÿ1 ÿ ��kk, is less than
a preassigned quantity.

A straightforward algorithm for numerically solving the
variational equation can be derived by realizing that a
vector �� satisfies (17) if and only if it falls into the null space
of the matrix XX��. Thus, if ��kÿ1 is a tentative guess, then an
improved guess can be obtained by picking a vector ��k from
that eigenspace of XX��kÿ1

which most closely approximates
the null space of XX��; this eigenspace is, of course, the one
corresponding to the eigenvalue closest to zero in absolute
value. The fundamental numerical scheme (FNS) implement-
ing this idea is presented in Fig. 1. The algorithm can be
regarded as a variant of the Newton-Raphson method.

A commonly adopted assumption is that, when initi-
alized sufficiently close to a solution of the variational
equation, the algorithm will produce a succession of
estimates converging to this solution. We shall not give a
formal proof of convergence, but shall show that, when the
sequence of updates converges, the limit is a solution of
(17). In other words, we shall demonstrate that the method
delivers a proper outcome whenever convergence holds.

Suppose that f��kg is a sequence of normalized vectors
convergent to ��1 and such that

XX��kÿ1
��k � �k��k; �18�

where �k is scalar. Let f�kng be any convergent subsequence
of f�kg and let �1 � limn!1 �kn . Substituting kn for k in (18)
and letting n!1, we obtain

XX��1��1 � �1��1: �19�
It immediately follows from (16) that ��TXX���� � 0 for all
�� 6� 0. Hence,

0 � ��1TXX��1��1 � �1k��1k2;

showing that �1 � 0 and, in view of (19), that the limit
vector ��1 satisfies (17), as expected.

As a side observation, note that, by the above argument,
every convergent subsequence of f�kg converges to zero.
Since a sequence is convergent whenever each of its
convergent subsequences converges to one and the same
limit, we conclude that f�kg converges and has limit zero.
Thus, limk!1 �k � 0 is a necessary condition for the
convergence of f��kg.

5 EXPERIMENTAL RESULTS

The fundamental numerical scheme and other algorithms
were tested on the problems of conic fitting [1], [2], [6], [10],

[22], [23], [24], [25], [26], [27], [28], [29], [30], [31] and
estimating the fundamental matrix [2], [20], [32], [33], [34],
[35], [36], [37], [38], [39], [40], [41], [42], [43]. Experiments
reported here are synthetic as they permit precise control of
the conditions under which performance can be evaluated.
In our tests, no special knowledge of the domain was
utilized. Furthermore, no attempt was made to eliminate
outliers, our experiments at this stage comparing general
techniques for solving problems of the form specified in (1).
In both conic fitting and fundamental matrix estimation,
ancillary constraints were ignored. In particular, it was not
assumed that the conic was an ellipse. In the case of
fundamental matrix estimation, the cubic constraint was not
enforced as a postprocess. As it happens, our (uncon-
strained) fundamental numerical scheme always generated
fundamental matrices which, when scaled to unit Frobenius
norm, turned out to have determinants smaller than 10ÿ11.

5.1 Conic Fitting

A randomly oriented ellipse was generated such that the
ratio of its major to minor axes was in the range �2; 3� and its
major axis was approximately 200 pixels in length. About
one third of the ellipse's boundary was chosen as the base
curve and this included the point of maximum curvature of
the ellipse. A set of true points was then randomly selected
from a distribution uniform along the length of the base
curve. A range of tests was then conducted. Each test was
carried out with respect to an average level of noise, �, defined
as the expected value of the trace of the covariance matrices
employed in the test.

For a given test, true points were perturbed randomly in
accordance with their associated covariance matrices,
yielding the data points. In general, the noise conformed to
an inhomogeneous and anisotropic distribution. Fig. 2
shows a large ellipse, some selected true points, and a set
of ellipses associated with these points. Each of the smaller
ellipses represents a level set of the probability density
function used to generate an individual datum, and as such
captures graphically the nature of the uncertainty described
by its covariance matrix.

The following procedure was adopted for generating
covariance matrices associated with image points, prescrib-
ing anisotropic and inhomogeneous noise at a given
average level �. Given a point pp, the scale � of a prospective
covariance matrix ��pp was first selected from a uniform
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distribution in the range �0; 2��. (Similar results were
obtained using other distributions.) Next, an eccentricity
parameter � was generated from a uniform distribution
between 0 and 0:5. An intermediate covariance matrix was
then formed by setting

��0pp � �
� 0
0 1ÿ �
� �

:

This matrix was then ªrotatedº by an angle 
 selected from
a uniform distribution between 0 and 2� to generate the
final covariance

��pp � OO
��
0
ppOO


T

with

OO
 � cos 
 ÿ sin 

sin 
 cos 


� �
:

Since E �Tr ��� � E �Tr ��0� � E ��� � �, where Tr AA denotes
the trace of the matrix AA, the noise generated by employing
��pp has the average level �.

Each method was then challenged to determine the
coefficients of the best fitting conic. If the method was able
to utilize uncertainty information, it was supplied with the
appropriate covariance matrices. For each �, the conic
coefficients were computed 2; 000 times from 60 data points
generated independently in each repetition (with new true
data points and covariance matrices generated at each
iteration). Critically, for each set of coefficients obtained, an
error measure was computed as the sum of the shortest
pixel distances of each true point from the estimated ellipse.
A composite error measure was then obtained by averaging
this error over all 2; 000 trials. This entire process was then
repeated for different average levels of noise (with �
varying from 1 to 10 pixels).

Note that the error measure used in the experiment took
advantage of the fact that the underlying true points were
known. Were these unknown, an alternative measure might
be the sum of the Mahalanobis distances from the data
points to the estimated ellipses.

The methods tested were as follows:

. ALS: Algebraic least-squares scheme.

. SMP*: Sampson's scheme with identity matrices.

. TAU: Taubin-like scheme.

. FNS*: FNS with identity matrices.

. LM*: LM with identity matrices.

. SMP: Sampson's scheme.

. REN: Renormalization scheme.

. LM: Levenberg-Marquardt scheme.

. FNS: Fundamental numerical scheme.

Recall that SMP is effectively Sampson's method with
covariances (see Section 4). SMP* and FNS* are the variants
of SMP and FNS obtained by replacing true covariances by
the default covariance diag�1; 1�. The ALS, SMP*, and FNS*
methods are included so as to indicate the performance of
estimators when covariance information is not available.

The REN scheme chosen was a second-order method; in
tests carried out in a companion paper, it performed as well
as any of the renormalization variants (see the SORIII
scheme in [8]).

A Levenberg-Marquardt (LM) scheme was included so
as to provide a baseline in both accuracy and timing trials;
specifically, the MINPACK routine LMDER (available from
http://www.netlib.org/minpack) was used to directly
minimize JAML, with the analytical derivatives of JAML, as
in (15), supplied so as to improve the execution time.

The TAU scheme is a one-step, noniterative method,
which aims to minimize the approximation to JAML given
by �Pn

i�1 ��
TAAi���=�nÿ1

Pn
i�1 ��

TBBi���. The scheme is a variant
of the method of Taubin [31] in that it incorporates
covariances matrices.

The ALS method uses the LINPACK routine DSVDC
(http://www.netlib.org/linpack) to perform SVD and the
EISPACK routine RS (http://www.netlib.org/eispack) is
used in those methods requiring computation of eigen-
values and associated eigenvectors since the matrices
involved are symmetric. It should also be noted that the
various iterative schemes were supplied with similar
stopping conditions so as to enable fair comparison.

Table 1 shows the average error (in terms of the shortest
pixel distance of a true point to the estimated ellipse)
obtained for each of the methods. Fig. 3 shows the tabular
data in graphical form.

We note that errors rise approximately linearly with
increasing noise. As would be expected, the results show
that, in the face of data contaminated with inhomogeneous
and anisotropic noise, those (uninformed) methods which
do not make use of covariance information perform
markedly worse than those (informed) methods that do
use this information. An exception to this is the informed,
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noniterative method of TAU, which fails even to match the
uninformed FNS*. Of the uninformed methods, LM* and
FNS* are identical in accuracy and ahead of both ALS and
SMP*. Of the informed methods, REN, LM, FNS are clear
leaders, with SMP lagging behind systematically with
average errors up to 21 percent greater.

5.2 Fundamental Matrix Estimation

A realistic stereo camera configuration was first selected
with non-co-planar optical axes and slightly differing left
and right camera intrinsic parameters. Randomly chosen
3D points were then projected onto the images so as to
generate many pairs of corresponding points. A range of
tests was then conducted, with each test being carried out
with respect to an average level of noise.

For a given test, image points were perturbed by adding
inhomogeneous anisotropic noise at some average level �,
consistent with covariance matrices generated via the method
described below. All tests involved 60 pairs of perturbed
corresponding points. (Similar results were observed in trials
using between 40 and 100 pairs.) Fig. 4 depicts a typical image,
showing a subset of (unperturbed) image points together
with associated ellipses. Each of the ellipses represents a level
set of the probability density function describing the noise
spread around the ellipse center and, as such, captures
graphically the covariances employed.

The following procedure was adopted for generating

covariance matrices associated with points of the form
xx � �ppT ; pp0T �T , where pp and pp0 are corresponding points.

First, covariance matrices ��pp and ��pp0 were generated using

the recipe given earlier. Next, covariance matrices ��xx were
constructed by setting

��xx � ��pp 0
0 ��pp0

� �
:

Each method under test was then challenged to compute
the fundamental matrix. If the method was able to
assimilate uncertainty information, it was supplied with
the appropriate covariance matrices. For each �, the
fundamental matrix was computed 2; 000 times from a
given set of 60 corresponding (true) points, but with fresh
covariance matrices and perturbations generated each time.
For each fundamental matrix obtained, an error measure
was computed as the sum of the distances of the underlying
true points to the epipolar lines derived from the estimated
fundamental matrix, in both the left and right images. A
composite error measure was then obtained by averaging
this error over all 2; 000 trials. This entire process was then
repeated for different average levels of noise (with �
varying from 1 to 10 pixels in steps of 1).

As previously mentioned, the methods tested were ALS,
SMP*, LM*, FNS*, TAU, SMP, REN, LM, and FNS, with
SMP* and FNS* being the SMP and FNS schemes with all
covariance matrices taken to be diag�1; 1; 1; 1�. Again, the
ALS, SMP*, and FNS* methods were included to indicate
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Fig. 4. True stereo image points and associated covariance ellipses.

TABLE 2
Fundamental Matrix Estimation Errors (in Pixels) vs. Average Noise Level

Fig. 3. Conic fitting errors (in pixels) vs. average noise level.
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the performance of the measures when covariance informa-

tion was not utilized. The REN scheme chosen was the same

as that used for conic fitting.
Table 2 shows the average epipolar-distance pixel errors

obtained for each method. Fig. 5 depicts the tabular data in
graphical form. We note again that errors mount
approximately linearly with increasing noise. As would be
expected, the results show that, in the face of data
contaminated with inhomogeneous and anisotropic noise,
those methods which do not make use of uncertainty
(covariance) information perform significantly less well
than those that do. Again, however, the informed, non-
iterative method of TAU fails to match the uninformed
FNS*. Among the noncovariance methods, FNS* and LM*
achieve notably better results than ALS and SMP*. FNS,
REN, and LM perform almost on par and ahead of SMP
(which had errors up to 22 percent worse).

5.3 Timing Tests

Timing tests were conducted on the various schemes.
Stopping conditions were devised so as to place similar
demands upon each of the iterative methods. None of the
schemes was affected either by change in noise level or the
provision of default (identity) covariances in place of full
covariances. Accordingly, times for LM* and FNS* are not
given. Fig. 6 shows histogram timing data for each of the
methods ALS, SMP, LM, and FNS. In each case, the left bar
denotes the time taken to complete a single test, averaged
over the complete suite of conic-fitting experiments;
analogously, the right bar refers to the fundamental-matrix
estimation experiments. REN was not included, as SORIII is
a particularly slow (but accurate) form of renormalization.
FNS typically converged within eight iterations in the case
of conic fitting and four iterations in the case of funda-
mental matrix estimation. Oscillation was not found to be a
practical problem. Interestingly, FNS emerges as being
significantly faster than LM while generating essentially the
same results. It should also be noted that LM and FNS did
not speed up when their initial values were supplied by
TAU rather than ALS.

6 CONCLUSION

We analyzed the problem of estimating parameters of a
model described by an equation of special form. The
estimation problem was handled via regression in which a
surface is to be fitted to data and their associated
covariances. A fundamental numerical scheme was derived
that acts as a theoretical minimizer of an approximated
maximum-likelihood cost function. Resting upon a novel
variational equation, the scheme is simply derived and
implemented, computationally efficient, and unsurpassed
in our accuracy tests. The main contribution of this work
can be seen as elucidatory, with a novel framework being
generated for understanding the reduced approach to the
maximum-likelihood estimation of parameters arising in a
class of computer vision problems.

ACKNOWLEDGMENTS

The authors are grateful for the insightful comments of
Marino Ivancic, Kenichi Kanatani, Garry Newsam, Naoya
Ohta, and Robyn Owens. In addition, the authors would
like to thank three anonymous referees for providing
suggestions that led to improvements in the presentation
of the paper. This work was in part funded by the
Australian Research Council and the Cooperative Research
Centre for Sensor Signal and Information Processing.

REFERENCES

[1] F. Bookstein, ªFitting Conic Sections to Scattered Data,º Computer
Graphics and Image Processing, vol. 9, no. 1, pp. 56-71, 1979.

[2] Z. Zhang, ªParameter Estimation Techniques: A Tutorial with
Application to Conic Fitting,º Image and Vision Computing, vol. 15,
no. 1, pp. 57-76, 1997.

[3] O.D. Faugeras, Three-Dimensional Computer Vision: A Geometric
Viewpoint. Cambridge, Mass.: MIT Press, 1993.

[4] M.J. Brooks, W. Chojnacki, and L. Baumela, ªDetermining the
Egomotion of an Uncalibrated Camera from Instantaneous Optical
Flow,º J. Optical Soc. Am. A, vol. 14, no. 10, pp. 2,670-2,677, 1997.

[5] T. VieÂville and O.D. Faugeras, ªMotion Analysis with a Camera
with Unknown, and Possibly Varying Intrinsic Parameters,º Proc.
Fifth Int'l Conf. Computer Vision, pp. 750-756, June 1995.

[6] P.D. Sampson, ªFitting Conic Sections to 'Very Scattered' Data: An
Iterative Refinement of the Bookstein Algorithm,º Computer
Graphics and Image Processing, vol. 18, no. 1, pp. 97-108, 1982.

[7] K. Kanatani, Statistical Optimization for Geometric Computation:
Theory and Practice. Amsterdam: Elsevier, 1996.

1302 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 22, NO. 11, NOVEMBER 2000

Fig. 5. Fundamental matrix estimation errors (in pixels) vs. average

noise level.

Fig. 6. Timing results for various methods.

Authorized licensed use limited to: Adelaide University. Downloaded on October 13, 2008 at 02:36 from IEEE Xplore.  Restrictions apply.



[8] W. Chojnacki, M.J. Brooks, and A. van den Hengel, ªRationalising
the Renormalisation Method of Kanatani,º J. Math. Imaging and
Vision, 2001, to appear.

[9] B. Matei and P. Meer, ªA General Method for Errors-in-Variables
Problems in Computer Vision,º Proc. Conf. Computer Vision and
Pattern Recognition, vol. 2, pp. 18-25, June 2000.

[10] B. Matei and P. Meer, ªReduction of Bias in Maximum-Likelihood
Ellipse Fitting,º Proc. 15th Int'l Conf. Pattern Recognition, vol. 3,
pp. 802-806, Sept. 2000.

[11] P. Lancaster and M. Tismenetsky, The Theory of Matrices with
Applications, second ed. San Diego, Calif.: Academic Press, 1985.

[12] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery,
Numerical Recipes in C. Cambridge UK: Cambridge Univ. Press, 1995.

[13] W.A. Fuller, Measurement Error Models. New York: John Wiley &
Sons, 1987.

[14] S. Van Huffel and J. Vandewalle, Total Least Squares Problems.
Philadelphia: SIAM, 1991.

[15] B. Triggs, ªA New Approach to Geometric Fitting.º Available
from http://www.inrialpes.fr/movi/people/Triggs.

[16] W. FoÈrstner, ªOn Weighting and Choosing Constraints for
Optimally Reconstructing the Geometry of Image Triplets,º Proc.
Sixth European Conf. Computer Vision, D. Vernon, ed., vol, 2,
pp. 669-684, June 2000.

[17] B. Triggs, ªOptimal Estimation of Matching Constraints,º
ECCV'98 Workshop 3D Structure from Multiple Images of Large-Scale
Environments (SMILE), R. Koch and L. Van Gool, eds., June 1998.
Available from http://www. inrialpes.fr/movi/people/Triggs.

[18] Y. Leedan and P. Meer, ªHeteroscedastic Regression in Computer
Vision: Problems with Bilinear Constraint,º Int'l J. Computer
Vision, vol. 37, no. 2, pp. 127-150, 2000.

[19] P.T. Boggs and J.E. Rodgers, ªOrthogonal Distance Regression,º
Contemporary Mathematics, vol. 112, pp. 183-194, 1989.

[20] Z. Zhang, ªOn the Optimization Criteria Used in Two-View
Motion Analysis,º IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 20, no. 7, pp. 717-729, July 1998.

[21] Y. Leedan and P. Meer, ªEstimation with Bilinear Constraints in
Computer Vision,º Proc. Sixth Int'l Conf. Computer Vision, pp. 733-
738, Jan. 1998.

[22] T. Ellis, ªEllipse Detection and Matching with Uncertainty,º Image
and Vision Computing, vol. 10, no. 2, pp. 271-276, 1992.

[23] A. Fitzgibbon, M. Pilu, and R.B. Fisher, ªDirect Least Square
Fitting of Ellipses,º IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 21, no. 5, pp. 476-480, May 1999.

[24] A.W. Fitzgibbon and R.B. Fisher, ªA Buyer's Guide to Conic
Fitting,º Proc. Sixth British Machine Vision Conf., D. Pycock, ed.,
vol. 2, pp. 513-522, Sept. 1995.

[25] W. Gander, G.H. Golub, and R. Strebel, ªLeast-Square Fitting of
Circles and Ellipses,º BIT, vol. 43, pp. 558-578, 1994.

[26] K. Kanatani, ªStatistical Bias of Conic Fitting and Renormalisa-
tion,º IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 16,
no. 3, pp. 320-326, Mar. 1994.

[27] Y. Kanazawa and K. Kanatani, ªOptimal Conic Fitting and
Reliability Evaluation,º IEICE Trans. Information and Systems,
vol. E79-D, no. 9, pp. 1,323-1,328, Sept. 1996.

[28] J. Porill, ªFitting Ellipses and Predicting Confidence Envelopes
Using a Bias Corrected Kalman Filter,º Image and Vision Comput-
ing, vol. 8, no. 1, pp. 37-41, 1990.

[29] P.L. Rosin, ªA Note on the Least Square Fitting of Ellipses,º
Pattern Recognition Letters, vol. 14, no. 10, pp. 799-808, 1993.

[30] P.L. Rosin and G.A. West, ªNonparametric Segmentation of
Curves into Various Representations,º IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 17, no. 12, pp. 1,140-1,153, Dec. 1995.

[31] G. Taubin, ªEstimation of Planar Curves, Surfaces, and Nonplanar
Space Curves Defined by Implicit Equations, with Applications to
Edge and Range Image Segmentation,º IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 13, no. 11, pp. 1,115-1,138,
Nov. 1991.

[32] O. Faugeras, ªWhat Can Be Seen in Three Dimensions with an
Uncalibrated Stereo Rig?º Proc. Second European Conf. Computer
Vision, G. Sandini, ed., pp. 563-578, May 1992.

[33] R. Hartley, ªIn Defense of the Eight-Point Algorithm,º IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 19, no. 6, pp. 580-593,
June 1997.

[34] R. Hartley, R. Gupta, and T. Chang, ªStereo from Uncalibrated
Cameras,º Proc. Conf. Computer Vision and Pattern Recognition,
pp. 761-764, June 1992.

[35] K. Kanatani, ªUnbiased Estimation and Statistical Analysis of 3D
Rigid Motion from Two Views,º IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 15, no. 1, pp. 37-50, Jan. 1993.

[36] Q.-T. Luong and O.D. Faugeras, ªThe Fundamental Matrix:
Theory, Algorithms, and Stability Analysis,º Int'l J. Computer
Vision, vol. 17, no. 1, pp. 43-75, 1996.

[37] M. MuÈ hlich and R. Mester, ªThe Role of Total Least Squares in
Motion Analysis,º Proc. Fifth European Conf. Computer Vision,
H. Burkhardt and B. Neumann, eds., vol. 2, pp. 305-321, June 1998.

[38] M. MuÈ hlich and R. Mester, ªSubspace Methods and Equilibration
in Computer Vision,º Technical Report XP-TR-C-21, Inst. for
Applied Physics, Johann Wolfgang Goethe-UniversitaÈt, Frankfurt
am Main, Germany, Nov. 1999.

[39] C.V. Stewart, ªRobust Parameter Estimation in Computer Vision,º
SIAM Review, vol. 41, no. 3, pp. 513-537, 1999.

[40] P.H.S. Torr and D.W. Murray, ªThe Development and Compar-
ison of Robust Methods for Estimating the Fundamental Matrix,º
Int'l J. Computer Vision, vol. 24, no. 3, pp. 271-300, 1997.

[41] J. Weng, T.S. Huang, and N. Ahuja, ªMotion and Structure from
Two Perspective Views: Algorithms, Error Analysis, and Error
Estimation,º IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 11, no. 5, pp. 451-476, 1989.

[42] Z. Zhang, ªDetermining the Epipolar Geometry and Its Un-
certainty: A Review,º Int'l J. Computer Vision, vol. 27, no. 2, pp. 161-
195, 1998.

[43] Z. Zhang, R. Deriche, O. Faugeras, and Q.-T. Luong, ªA Robust
Technique for Matching Two Uncalibrated Images through the
Recovery of the Unknown Epipolar Geometry,º Artificial Intelli-
gence, vol. 78, pp. 87-119, 1995.

Wojciech Chojnacki is a professor of mathe-
matics at the Institute of Mathematics, Cardinal
Stefan Wyszynski University, Poland. Currently,
he is a senior research fellow in the Department
of Computer Science at Adelaide University,
working on a range of problems in computer
vision. His research interests include differential
equations, mathematical foundations of compu-
ter vision, functional analysis, and harmonic
analysis.

Michael J. Brooks received the PhD degree
from the University of Essex in 1983. Presently,
he is the Chair of Artificial Intelligence at Adelaide
University. He is a program leader within the
Cooperative Research Center for Sensor Signal
and Information Processing and a member of the
Australian Research Council's Information Tech-
nology and Electrical Engineering Large Grants
Panel. He is a member of the IEEE.

Anton van den Hengel received the PhD
degree in computer science from Adelaide
University in 2000, where he is currently a
lecturer in the Department of Computer Science.
His research interests include structure from
motion, parameter estimation theory, and com-
mercial applications of computer vision.

Darren Gawley graduated with first class honors
from the Department of Computer Science at
Adelaide University, where he is currently work-
ing toward a PhD degree in the field of computer
vision.

CHOJNACKI ET AL.: ON THE FITTING OF SURFACES TO DATA WITH COVARIANCES 1303

Authorized licensed use limited to: Adelaide University. Downloaded on October 13, 2008 at 02:36 from IEEE Xplore.  Restrictions apply.


