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Abstract—This work presents the design and evaluation of an adaptive packet router aimed at supporting CC-NUMA traffic. We

exploit a simple and efficient packet injection mechanism to avoid deadlock, which leads to a fully adaptive routing by employing only

three virtual channels. In addition, we selectively use output buffers for implementing the most utilized virtual paths in order to reduce

head-of-line blocking. The careful implementation of these features has resulted in a good trade off between network performance and

hardware cost. The outcome of this research is a High-Performance Adaptive Router (HPAR), which adequately balances the needs of

parallel applications: minimal network latency at low loads and high throughput at heavy loads. The paper includes an evaluation

process in which HPAR is compared with other adaptive routers using FIFO input buffering, with or without additional virtual channels

to reduce head-of-line blocking. This evaluation contemplates both the VLSI costs of each router and their performance under

synthetic and real application workloads. To make the comparison fair, all the routers use the same efficient deadlock avoidance

mechanism. In all the experiments, HPAR exhibited the best response among all the routers tested. The throughput gains ranged from

10 percent to 40 percent in respect to its most direct rival, which employs more hardware resources. Other results shown that HPAR

achieves up to 83 percent of its theoretical maximum throughput under random traffic and up to 70 percent when running real

applications. Moreover, the observed packet latencies were comparable to those exhibited by simpler routers. Therefore, HPAR can

be considered as a suitable candidate to implement packet interchange in next generations of CC-NUMA multiprocessors.

Index Terms—Interconnection networks, adaptive routing, hardware router design, shared memory multiprocessors.

æ

1 INTRODUCTION

NOWADAYS, the advances in microelectronic technology
offer computer architects a lot of raw logic power,

allowing the implementation of traditional off-chip mod-
ules on the processor die. However, when considering
medium to large-scale parallel systems, it is evident that the
off-chip interconnection network will become a crucial
component, affecting the whole system performance. On
the one hand, the performance of a parallel system will be
seriously penalized if the network is not able to handle the
increasing volume of information generated by the proces-
sing elements when executing intensive data interchange
workloads. On the other hand, message latency will be as
critical as maximum sustained throughput when executing
latency-sensitive workloads. Both kinds of traffic patterns
are present in common parallel applications. Moreover, it is
very usual to encounter several execution phases in a single
application managing different workload types.

This paper presents a detailed router architecture for

parallel machines designed to optimize network through-

put while maintaining a low node pass time, thus fulfilling

the requirements of the next-generation multiprocessor

systems. In this work, we focus on the CC-NUMA class of

multiprocessors, which is one of the most popular

architectures in the high-performance computing field due

to its good scalability and easy programming. We consider

a CC-NUMA machine having a 2D torus topology, which is

a common selection for medium-to-large multiprocessor

systems due to its good cost/performance ratio [1], [7]. In

addition, we employ virtual cut-through (VCT) flow

control. Although several commercial systems use worm-

hole flow control, they all provide large buffers with

capacity for hundreds of flits. In fact, the Cray T3E also

sets a maximum packet size, narrowing the barrier between

the two flow control techniques. However, VCT simplifies

switching among multiple virtual channels and it is less

deadlock-prone. Thus, recent routers such as those used in

the BlueGene/L supercomputer [2] and the Alpha 21364

microprocessor [3] incorporate VCT flow control.
It is well known that many parallel applications present

specific communication patterns, in general far from

uniform distributions. A deterministic router, while sim-

ple, will limit the maximum packet throughput due to its

unbalanced use of network resources. Adaptive routing is

preferable although it implies more complex routing logic.

Moreover, this complexity translates to other key compo-

nents such as the arbiter and the internal switching fabric.

Consequently, for a new adaptive routing proposal to

succeed, it needs to achieve a good cost/performance ratio.

A simple deadlock avoidance mechanism for adaptive

VCT routers known as “Bubble Routing” can lead to

different high-performance router designs such as the one

shown in [18], which will be the base router employed in

this paper. Actually, the BlueGene/L supercomputer from
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IBM employs an adaptive packet router based on this
mechanism [2].

Once we provide sufficient buffer capacity and adaptive
routing at a bounded cost, Head-of-Line Blocking (HLB)
becomes the main limitation for achieving higher packet
throughput. When the first packet in a FIFO queue blocks,
any following packets do so as well. However, it is quite
probable that one or more of those queued packets wish to
reach a free output port. Thus, we will explore the use of
buffer structures different to the standard input FIFO queues,
which are the main source of HLB. Although many
mechanisms have been proposed in the literature, their
complexity usually results in higher base latencies that may
counteract the gains in throughput. In this research, HLB is
nearly eliminated by selectively using multiport output
buffers to implement the most utilized queues of the router.
This constitutes a clear application of Amdahl’s Law. Other
router alternatives avoiding HLB in a different way will be
also considered in this paper for comparison purposes.

In short, the outcome of this paper is a High-Perfor-
mance Adaptive Router (HPAR) that simultaneously uses
packet adaptivity and an internal organization able to
minimize the performance degradation due to HLB. We can
find examples of routers that have employed adaptive
routing [3], [20] and other examples providing some
mechanism to avoid HLB [10], [23]. We will demonstrate
in this work that adaptive routing with reduced HLB can be
implemented in a realistic scenario at an affordable cost. To
support the feasibility of our proposal, a detailed HPAR
hardware implementation will be presented, evaluated, and
compared against other router alternatives. The perfor-
mance exhibited by the different solutions under study will
be evaluated twofold: under synthetic traffic and executing
real parallel application by means of different simulation
environments.

The rest of this paper is organized as follows: Section 2
presents the basic motivations under this research and
reviews some of the most related works. Section 3, which
constitutes the kernel of this paper, presents the HPAR
architecture basis, a suitable router organization, and an in-
depth study of a particular hardware implementation.
Section 4 presents a succinct but self-contained description
of the router alternatives considered to compare with our
proposal and the evaluation of their corresponding hard-
ware costs. Section 5 presents a complete performance
analysis of each router under synthetic and real workloads.
Finally, Section 6 concludes the paper summarizing our
main findings.

2 MOTIVATIONS AND PREVIOUS WORKS

The design of a high-performance network router is a trade
off between the gains achieved by sophisticated routing and
buffering mechanisms and their costs in terms of router’s
area and speed. In one extreme, we have the simplest
designs which implement oblivious or Dimension Order
Routing (DOR) and FIFO input queues, limiting network
throughput to a fraction of its theoretical maximum [6]. Not
more than 60 percent is achieved for random traffic,
dropping below 30 percent for nonuniform patterns such
as perfect-shuffle or bit-reversal permutations. On the other

extreme, we have more sophisticated designs, such as the
Chaos router [15], which achieve higher network through-
put, but their complexity prevent them from being
implemented in a real system. Nevertheless, when con-
sidering clock frequencies, the simple designs translate, in
most cases, into higher absolute values of packets delivered
per time unit as well as lower packet latencies. For these
reasons, oblivious routers have been used in some commer-
cial systems. Somewhere in between lies the appropriate
router architecture under the current implementation
technology. It should incorporate mechanisms that increase
network throughput, provided that their gains offset the
added implementation complexity. In this section, we
describe the basic functions that must incorporate a high-
performance packet router and their corresponding imple-
mentations that will determine its cost/performance ratio.

2.1 Deadlock Avoidance and Adaptive Routing

As we mentioned before, we focus in this research on k-ary
n-cube networks, specifically on bidimensional tori in which
packets are transferred under VCT flow control. These two
features in conjunction with the selected routing mechan-
ism will determine the nature of packet deadlocks in the
system. It is perfectly known that the performance and
complexity of any router is extremely sensitive to the
methods employed to deal with potentially deadlocked
packets.

An extension of virtual cut-through switching, known as

Bubble Flow Control (BFC) [5], was successfully proven to

avoid deadlock in deterministic tori with virtually no cost.

A torus can be seen as a collection of unidimensional rings,

which, under DOR, are visited in a specific order. BFC

prevents the injection of a packet into any of these rings if it

exhausts the ring’s buffer space at the corresponding local

router. Fulfilling this condition ensures the existence of a

“bubble” (a free packet buffer) in any possible cycle of the

network topology, then avoiding packet deadlock.
One of the best known methods to design deadlock-free

adaptive networks is to add fully adaptive virtual channels
to a given deadlock-free network, the latter constituting an
escape subnet for any packet potentially deadlocked [9].
This subnet was chosen to be a BFC DOR virtual network in
a previous adaptive router presented by the authors [18].
That router employed a second virtual channel per input
link in which the packets were adaptively routed under
VCT flow control. When using this switching technique,
packets always try to travel through the fully adaptive
virtual channels, changing dimensions only when blocked
at a router. If all the adaptive paths for a packet are blocked,
then the packet will use a BFC DOR escape virtual channel.
Packets may change at any time from an escape channel to
an adaptive one. In that work, we analyzed deterministic
and adaptive versions of wormhole and BFC routers by
designing the different alternatives at the VLSI level. It was
demonstrated that the BFC adaptive routers outperform
their wormhole counterparts both in packet latency and
network throughput.

A switching technique based on this mechanism has
recently been implemented in the BlueGene/L super-
computer [2]. Henceforth, we will use an evolution of a
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BFC router, denoted as “Adaptive Bubble Router” [18], as
the baseline for this new research and explore other design
alternatives in order to improve its performance.

2.2 Avoiding Head-of-Line Blocking

Router performance depends not only on its functional
characteristics, such as routing, flow control, and deadlock
avoidance mechanisms, but also on its structural character-
istics, such as the placement and organization of the internal
buffers. A FIFO queue located at each input link is the most
popular implementation as it requires single-port mem-
ories. Nevertheless, as mentioned before, this buffer
organization exhibits Head of Line Blocking (HLB). A
router suffering from HLB tends to exhibit poor perfor-
mance. Under synthetic traffic loads with a random pattern
for accessing the output ports, the router saturates at about
60 percent of its total capacity, thus wasting a significant
fraction of its link bandwidth [11].

The solutions to this problem come from using non-FIFO
input buffers and/or locating the storage space in a central
queue or at the output links. Another common scheme is to
use multiple input buffers, one for each output port, in the
form of virtual channels [21]. The implementation of non-
FIFO input queues implies the use of complex management
hardware. For example, it is possible to use dynamic access
queues (DAMQ) in order to service packets out of order as
in [26]. Another possibility is to use a memory with
multiple read ports to service one or more packets from
the queue in a single cycle as in HIPIQS [22].

The use of a centralized queue shared between the input
and output channel as in the IBM SP-2’s router [23] entails a
more efficient use of the buffer space, but requires multiple
reads and writes per cycle. Placing the buffers at the output
links still needs multiple writes to accept multiple incoming
packets, but only one read per cycle. Although the
efficiency in the use of the storage space is worse than in
the centralized case, the silicon area needed diminishes
considerably.

The viability of any of these buffer organizations will
depend on the implementation complexity of the multiport
memories associated to each design. A true multiport
memory is extremely expensive and, usually, its application
is limited to processor register files. Some proposals to
provide high memory performance with lower cost include
interleaved and wide memories. Such approaches have also
been used in network routers such as the “Knockout
Switch” [28] and the “Vulcan Switch” from IBM [24].
However, interleaved or wide memories have a serious
drawback as it is necessary to wait for the reception of a
wide word (in this context, a packet) before it can be written
into memory. Therefore, its application would impose Store
and Forward flow control or the use of an additional
crossbar that allows the packets under low-load conditions
to cut-through without using the memory [23].

The cost of the pipelined memory structure presented in
[12] is similar to that of an interleaved memory, but, by
exploiting the spatial locality of the accesses, it provides a
fast and cheap VLSI implementation of multiport memories
for packet routing purposes. The number of independent
banks must be greater than or equal to the number of write
ports. Writes and reads in such a memory are produced in a

pipelined manner. The memory controller is quite simple
because the write or read address in each one of the banks is
that used by the previous bank in the preceding clock cycle.

In this research, we will investigate the use of this
memory technology to implement some of our router’s
virtual channels as multiport output buffers, specifically the
ones belonging to the adaptive virtual subnetwork. We will
show how this technique greatly reduces HLB, leading to a
very high packet routing performance. We will demonstrate
the viability of our proposal by comparing it with a router
having multiple virtual channels in the form of FIFO queues
located at the input ports. This alternative represents our
most directed contender in terms of both cost and
performance.

3 HIGH-PERFORMANCE ADAPTIVE ROUTER

(HPAR)

As mentioned before, our goal is to design a high-
performance adaptive router for k-ary 2-cube networks,
specially conceived to manage traffic generated by a
standard CC-NUMA multiprocessor. The reactive traffic
properties of CC-NUMA machines can give rise to applica-
tion deadlock due to the limited capacity of the consump-
tion queues at the network interface. The mechanism
usually employed to avoid this kind of deadlock is to use
two different virtual networks for request and reply traffic.
This solution has been adopted in several systems such as
the SGI Origin [16] and the Cray T3E [20]. In this work, we
will also consider a router managing two adaptive virtual
networks. The implementation of both networks is achieved
by means of three virtual channels: one adaptive channel
shared by request and reply packets and two separate DOR
escape channels managed under a restricted injection policy
(BFC) to avoid packet deadlock in both virtual networks.
More evolved systems generating other traffic classes
would need additional virtual networks. The router
proposed in this work could consequently be adapted to
cope with additional packet classes.

3.1 HPAR Architecture

A preliminary version of our HPAR, in which all its
temporary storage has been associated to the output links,
can be seen in Fig. 1. For simplicity, this figure only shows
two of the four input/output transit modules. There is a
single packet buffer per input channel in order to dissociate
the internode flow control from the Routing Unit (RU). Each
output link has three multiport buffers, one per virtual
channel, plus a virtual channel controller. Adding the reply
and request delivery queues, it would require 14 multiport
memories in total. The number of writing ports would
depend on our “bubble switching mechanism” [18], ranging
from six for the +X/-X deterministic output queues to 11 for
the +Y/-Y adaptive output queues. Note that this organiza-
tion not only eliminates HLB, but also the need for
arbitration as all incoming packets could be written in their
output buffers at once. However, the complexity of the
resulting structure makes this proposal unfeasible.

It is clear that we need to compromise our output buffer
structure implementation in order to produce an affordable
router. Fig. 2 shows that the population of the adaptive
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queues in a 16 x 16 torus under heavy random traffic is

three times higher than their deterministic counterparts

when using a conventional input-buffer adaptive bubble

router [18]. This happens because our switching mechanism

selects adaptive paths whenever possible. Thus, at low

loads, most traffic exclusively uses the adaptive paths and

the need for the escape’s paths is minimal. At saturation

approaches, more packets will resort to escape paths.

However, as BFC is a restricted injection mechanism, it

prevents packets from filling up the escape queues. It is well

known that by improving the most frequent case of router’s

operation we will obtain high performance at the lower cost

Thus, we can limit our effort to reduce HLB by using only

output buffers for the adaptive paths.
Taking this behavior into account, a more feasible version

of HPAR is shown in Fig. 3. This approach uses output

multiport buffers only for adaptive channels and input

FIFO queues for escape channels. The number of multiport

memories required for a bidimensional torus is five: four for

the adaptive channels X+, X-, Y+, and Y- plus another one

for the delivery channel. The connection between input and

output modules requires a crossbar of 14 x 14, which is a

manageable size to be implemented without input or

output multiplexing. There exist 12 input/output crossbar

490 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 5, MAY 2003

Fig. 1. Bubble Adaptive Router with output buffers (preliminary HPAR version).
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terminals to manage transit packets and two additional
input/output crossbar terminals to manage the injection
and consumption processes from/to two separate request
and reply queues.

In addition, we reduce the number of write ports by
allocating a single write port for each adaptive input
channel (three, as packets use minimal paths) and another
one for all other traffic routed toward that adaptive channel.
Therefore, each adaptive input channel has its own path to
forward packets to their selected adaptive outputs. Packets
arriving at the adaptive channels that can continue
advancing along them will reach the router output without
passing through the crossbar. Thus, the most common
packet transit case does not need arbitration. On the
contrary, packets routed from any escape channel and
new packets injected at that node moving toward an
adaptive channel must compete to use a single shared
write port. Similarly, all packets coming from an escape
channel and requesting another escape channel must
compete to acquire the corresponding crossbar’s output.
As escape and virtual channels share the physical link, that
crossbar’s outputs and the read port of the multiport
adaptive buffer are connected to the corresponding virtual
channel controller (VC). The delivery buffer also has four
write ports corresponding to the four adaptive inputs, while
packets arriving through escape channels reach directly the
network interface via the escape delivery channels.

In an adaptive router, the selection function chooses the
output channel from the set of profitable ones provided by
the routing function. A dynamic selection function can
balance network occupancy and, therefore, enhance its
maximum throughput. From the different alternatives of
dynamic selection, we have selected the MAX-CREDITS
policy that gives preference to the less populated output

channels [27]. The main problem associated with dynamic
selection functions is the cost involved in knowing the
traffic conditions. When the buffers are located at the input
ports, it is necessary to collect occupancy figures from the
neighboring nodes or to use communication protocols
based on credits, which require additional hardware.
Nevertheless, when the adaptive buffers are located at the
output ports, such as in HPAR, the implementation of a
dynamic selection function is straightforward.

3.2 HPAR Structure and Organization

In the HPAR architecture, each output link has an output
buffer implemented by means of a multiport pipelined
FIFO which is similar to the one presented in [12]. A basic
example of this output buffer, using two write ports and
two phits per packet, appears in Fig. 4. Two modules in this
circuit can be distinguished. One of them, framed in a
dotted box in this figure and denoted as Adaptive Multi-
Input Block, implements the memory pipeline. The other
module is composed of the memory banks themselves.

The total number of cycles required to pass through this
memory under low load is two cycles instead of the three
cycles needed in [12] because it is not necessary to manage
several read ports. This favors latency-sensitive applica-
tions. Under higher traffic load, multiple packets arriving at
the same cycle, two in this example, may want to write into
the first memory bank. The Adaptive Multi-Input Block
pipelines the corresponding writes: the second effective
write will be delayed one clock cycle in order to adequately
fill the memory pipeline. In no case are packets or phits lost.
In addition, the pipelined FIFO is able to read and feed the
output link at its maximum operation frequency. In this
basic design, the minimum number of independent banks
required for a correct memory operation is the maximum of
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the two following quantities: the maximum packet size in

words or phits and the number of write ports. In our design,

one packet is stored in a single memory line. Therefore, the

number of memory banks increases with packet length and

so does it cost.
In order to limit cost, we have assembled two phits into

one wider word, halving the number of banks. As the

maximum packet length is 10 phits, which is dictated by the

characteristics of our emulated CC-NUMA machine, each

memory has five independent banks. It should be noted

that, by the time the routing decision is taken, there are

already two phits at the input FIFO, so this scheme does not

increase router latency. Obviously, the header phit is

advanced to the corresponding routing unit without wait-

ing to receive the second phit of the word. To support this

feature, HPAR has asymmetric FIFO memories at the input

links which use a read bus twice as wide as the write bus.

Consequently, phit serialization will be needed at the

multiport memory output. A diagram of this solution can

be seen in Fig. 5.
As we have seen above, the multiport pipelined output

buffers are designed for a fixed packet size, set by the

number of banks (or a multiple of it). However, CC-NUMA

machines exhibit a bimodal message length distribution,

having both short command messages and larger data

messages. As both the request and reply traffic share the

same adaptive channels with a short-to-long message ratio

close to one, this would lead to significant memory

fragmentation. This would not only use the buffer space

inefficiently, but could cause lower link utilization as well.

To solve this problem, we add one more memory bank for

short packets with its additional memory controller, as
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reflected in Fig. 6. The Adaptive Multi-Input Block also
provides the path to write into that additional bank. The
outputs from the six independent banks will be multiplexed
into the same physical link.

Finally, we need to arbitrate the access to the physical
link between the adaptive channel (the outputs from the
multiport memories) and the two deterministic channels.
This arbitration adds only one simple multiplexing stage to
the output path. Furthermore, as the multiport pipelined
memories already have a multiplexing stage among the
memory banks, we can incorporate the two escape channels
into this same multiplexer which is driven by the VC
controller. Although this multiplexer is on the critical path
of the output stage, most decisions can be taken in advance;
while one packet uses the output, the next outgoing packet
can be chosen. If the output port is free and two or more
packet headers arrive simultaneously, the VC controller will
give way to the adaptive channel. Thus, packets from
escape channels will always have to spend a cycle checking
the port availability.

3.3 HPAR Implementation and Hardware Costs

In order to estimate the hardware costs, our router has been
described at register-transfer level in VHDL. Starting from
this representation, a logic description of each router’s
component has been obtained using the synthesis tools
from the EDA Synopsys 1999.10 suite [25]. The design has
been implemented in 0.25 �m technology using five metal
layers from the UMC foundry. Employing these tools at the
logic implementation level, we have extracted the router’s
costs, both in delay time and silicon area. It must be
highlighted that we are interested in the study of the HPAR
behavior at the architectural level and in the comparison of
its features with those of other router designs. Going down
toward the physical level would unnecessarily increase the
complexity of this analysis with a very limited effect on the

conclusions that can be extracted from the logic implemen-
tation level.

As we only want to compare different router alterna-
tives, we will assume no channel pipelining. In this way, the
most important contribution to packet latency corresponds
to the router pass time. This constitutes the worst-case
scenario for complex router designs, such as HPAR,
because the impact of the router delays dominates over
the link delays. In our case, the maximum wire frequency
will determine the lowest cycle time for any router design.
If any module of the router was not able to reach this
frequency, it would be necessary to split it, increasing the
number of stages of the corresponding pipeline. The greater
the complexity of the router, the more pipeline stages and,
therefore, the higher the latency.

We will assume a channel width of 32 bits and a
frequency of operation of 333 MHz, providing a max-
imum bandwidth of 1.3 GB/sec per direction. This
number adequately fits among the practical values
exhibited by current multiprocessors. Typical values range
from 14 bits per link at 375 MHz in the Cray T3E to 20 bits
per link at 200 MHz in the SGI Origin. In fact, the
aggregate bandwidth of HPAR will be 14.6 GB/sec. This
is close to the value claimed for systems like the Alpha
21364 [3], which also has 32-bit channels and router
bandwidth between 10 and 15 GB/sec.

The first step to carry out the synthesis process of HPAR
is to describe in VHDL each component at the register-
transfer level. The router pipeline has been established by
separating each module in different stages with clearly
different functionalities. These stages are: synchronization,
temporary storage, request, and arbitration. Therefore, the
router will initially have a latency of five cycles. Results
from the first synthesis step will determine if the critical
path of each module fulfills the frequency limit imposed by
the system. The resulting pipeline structure that achieves
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these temporal requirements is shown in Fig. 7. As we can
see, the pipeline for the most common case, adaptive to
adaptive channel switching, employs five cycles. The
deterministic to deterministic channel switching and the
adaptive to deterministic switching also employ five cycles.
Finally, the deterministic to adaptive transit, not repre-
sented in the figure, consumes six cycles.

Modules facilitated by the Synopsys DesignWare com-
ponents library have been employed to synthesize all the
router elements (FIFOs, static memories, and controllers). In
this way, we could choose among an abundant list of fast
implementations based on the requirements of each mod-
ule. The hardware costs of the temporary storage depend
both on its size and the given packet length. Given a
maximum packet length of 40 bytes, the memory sizes that
achieve a suitable performance are those shown in Table 1.
The total buffer size of our proposal is about 2 KB, which is
perfectly acceptable for 0.25 �m technology. Larger buffer

sizes do not significantly improve router performance, but
it may even increase the router pass time. Moreover, the
cycle time of a FIFO module is a function of its depth. In our
router, as mentioned above, asymmetric FIFOs with double
width and half depth were used to reduce the number of
banks of the output multiport memories.

Continuing with the synthesis process, a logic-level
implementation for each module of the router was obtained.
The main characteristics, in terms of time and silicon area,
for this implementation are shown in Table 2.

4 ALTERNATIVE ROUTER DESIGNS AND

COMPARATIVE HARDWARE COSTS

In order to assess the cost/performance ratio exhibited by
HPAR, we must compare these figures not only with our
baseline router but also with the other alternative design to
reduce HLB. This section describes these two additional
routers and their estimated hardware costs.

4.1 Bubble Adaptive Router

The base router employed in this paper is an evolution of
our original bubble adaptive router. This router can be seen
as the one achieving the highest performance among the
range of adaptive routers having FIFO queues located at the
input ports [18]. By comparing HPAR with this router, we
can see the gains due to reducing HLB.

The Bubble Adaptive router, or BADA for short, has
three virtual channels per link, as show in Fig. 8. In the
same way as with HPAR, BADA has a shared input FIFO to
adaptively manage “request” and “reply” CC-NUMA
traffic and two separate escape queues managed under
DOR to assure deadlock-free communications. Synchroni-
zation units (Synchro), Routing units (RUs), and the
corresponding crossbar unit complete the router structure.
For the sake of clarity, the figure only shows two of the four
input modules. Besides, only the circuit data-path is shown.

4.2 Bubble Adaptive Router with
Multiple Virtual Lanes

The second alternative is a variation of the BADA router,
called BADAVL (BADA with Virtual Lanes), in which the
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adaptive paths have been split into four virtual lanes.1 The
use of virtual lanes located at the input ports to avoid HLB
is a standard practice in the industry [8]. When a packet
blocks at any given virtual channel, it does not prevent
packets at the other virtual lanes from advancing. Each
virtual lane has room to store one packet and any packet
traveling through an adaptive path can use any of the four
lanes, so the buffer space will be efficiently used. This
design alternative will show the effects of using standard
HLB avoidance strategies when combined with adaptive
routing.

When using BADA and HPAR, the adaptive channels
share “reply” and “request” traffic and this introduces
buffer fragmentation. This effect would be magnified when
using BADAVL. If the adaptive channels were shared
between reply and request virtual networks, the storage
utilization of each lane would fall because its individual
buffer can be exhausted with only one short message. Thus,
to avoid this negative effect, two independent virtual
networks have been implemented: one for request and
another for reply traffic. Fig. 9 describes the basic building
blocks of this router. Note that the addition of virtual lanes
does not require extra signaling in the communication
protocol between neighboring routers.

Obviously, as we add virtual lanes the number of inputs
to the crossbar increases. Consequently, the crossbar control
logic has more complexity. The approach taken here is to
multiplex these different lanes at the crossbar input [20],
keeping the cycle time and silicon area within manageable
limits. A Routing Unit (RU) per input link selects the output
ports for each incoming packet and arbitrates amongst them
to reach the crossbar. Since the flow control employed is
VCT, packet-level multiplexing will be used. It should be
noticed that this design provides a simple buffer structure
at the cost of increasing the complexity of the switching
fabric.

4.3 BADA Routers Implementation and VLSI Costs

To carry out a fair comparison of our proposal with respect

to its two counterparts, a specific implementation of both

routers has been developed following the same methodol-

ogy employed for HPAR. For a fair comparison, we have

fixed the same router cycle for all the alternatives under

study. The pipeline structures for both BADA routers are

shown in Figs. 10 and 11.
It must be noted that the Multiplexed Routing Unit of the

BADAVL router includes a pipeline stage more than the

simpler BADA router. BADAVL needs an extra round-

robin-based arbitration stage to decide which channel sends

its request to the crossbar. The implementation, in a single

clock cycle, of the round-robin scheme together with the

corresponding arbitration process is not possible under the

technology used.
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Fig. 8. Structure of a Bubble Adaptive Router (BADA).

Fig. 9. Structure of the BADAVL router with independent request and

reply virtual networks to avoid fragmentation.

Fig. 10. Pipeline structure of BADA router.

1. Note that the term “lanes” is used to describe a set of virtual channels
which are indistinctly used by the selection function, in contrast with the
more generic term “virtual channels” in which the routing function may
select one channel or another depending on different network conditions.



Again, in order to make the comparison fair, all the

routers will have the same storage capacity. A summary of

the buffer sizes and their distributions in the alternative

router designs is shown in Table 3.
Finally, the measures obtained from the VLSI synthesis

process of both routers can be seen in Table 4. Further

details related to these alternative router implementations

can be found in [18].
The main drawback for the routers with HLB avoidance

mechanisms is the increase in their base latency. Both,

BADAVL and HPAR require, at least, five stages to pass

through them. It must be highlighted that, in some switch-

ing cases, HPAR employs more cycles than BADAVL.
This section ends with comparing the hardware costs of

the three routers considered in this research. Obviously, the
BADA router with FIFO input queues is the cheapest one in
terms of the required silicon area. In absolute terms, the
increase in area for the routers with HLB avoidance
mechanisms is above 50 percent. Nevertheless, our proposal
requires 5 percent less area than the BADAVL router. To put
this number in context, the Alpha 21264A occupies 225 mm2

implementing 15.2 million transistors with 0.25�m technol-
ogy [13]. This design rule is the same as the one we used in
our design process. Thus, the HPAR would represent only
around 4 percent of the processor occupied silicon area,
compared to 2.6 percent for the simplest BADA router.
Whether we integrate the router in the processor chip or not,
the additional cost is quite low; more so when considering
the performance gains it entails, as we will see next.

5 PERFORMANCE ANALYSIS

This section presents a detailed performance analysis of the
three routers described above in order to establish the
potential advantages of HPAR when it is used in a CC-
NUMA multiprocessor. This analysis takes into considera-
tion the hardware costs associated to each router estab-
lished in the previous sections.

First, we will compare the performance exhibited by three
alternative interconnection networks using the different
routers under a range of synthetic workloads. Second, we
will compare the three networks in the context of a state-of-
the-art CC-NUMA multiprocessor running real workloads.

5.1 Performance Analysis under Synthetic Traffic

The simulation environment employed in this study is
based on SICOSYS (SImulator of COmmunication SYS-
tems) [19]. This simulator allows us to take into
consideration most of the VLSI implementation details
with high precision, but with much lower computational
requirements than hardware-level simulators. The max-
imum error observed with respect to a standard hard-
ware simulator is around 2 percent, providing, in all
cases, pessimistic estimations [19].

Although we begin our analysis using synthetic loads, in
order to adequately model the traffic of a CC-NUMA
machine, we have considered a bimodal distribution of
packet lengths with a fixed length of 2 phits for short
messages and 10 phits for the long ones. The real ratio of
short/long messages depends on the network and applica-
tion characteristics. To simplify this preliminary study, we
don’t take into account coherency messages; hence, for each
request (short message), the machine answers with a reply
(long message). Therefore, the probability of generation of
the two classes of messages is set to 0.5. With respect to the
destination pattern, we have considered random as well as
three widely used permutations: transposed matrix, bit-
reversal, and perfect-shuffle. It is well known that this type
of traffic only approximately models the complex behavior

496 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 5, MAY 2003

Fig. 11. Pipeline structure of BADAVL router.

TABLE 3
Buffer Sizes for Each Router in Phits (Bytes)

TABLE 4
Main Synthesis Results for BADA and BADAVL Routers



of the applications. Nevertheless, the network response can
be manageably observed with network loads ranging from
zero to its saturation point. This provides an insight into
network performance in the two extreme cases: latency
sensitive applications that generate low loads and through-
put-limited applications that put high traffic pressure on the
interconnection networks.

As we previously mentioned, the topology is set to a
64 2D-torus network. Fig. 12 shows base latencies and
maximum throughputs for the different routers and Fig. 13
shows the network behavior as a function of the load under
random traffic. The base latency differences are small and
reflect the values of pass-through delays for each router. On
the contrary, substantial differences can be observed in their
maximum throughputs. Of the two proposals to reduce
HLB, HPAR clearly outperforms BADAVL, in spite of
having fewer area requirements. Besides, the throughput
achieved by HPAR managing random traffic is nearly twice
the value exhibited by the conventional BADA router. This
peak performance is very close to the ideal value in which
each network node can consume one phit per cycle. In the
same situation, the BADAVL router exhibits only a slight
throughput increasing.

Although adding virtual lanes reduces HLB and in-
creases peak throughput (see BADAVL versus BADA),
network performance degrades above its saturation point.
The multiplexing stage before the crossbar forces the
deterministic channel to compete with the other four

adaptive channels to access the crossbar and long waits
result from it. After the load reaches its peak, more and
more packets will resort to their escape routes, which will
only increase network congestion even more. This defi-
ciency could be alleviated using a more complex arbitration
policy than round-robin or implementing a not-multiplexed
crossbar, both solutions having much higher cost.

To complete this evaluation, we have also considered the

impact of varying the ratio of short to long messages. As the

differences in base latency are negligible, we will only

compare the values of the maximum achievable throughput

for each network under the previous traffic patterns, which

are shown in Fig. 14. It can be seen that HPAR performance

does not degrade too much, even for large short/long

ratios, which is proof of its good response under high

fragmentation scenarios. The use of multiport memories

and the added improvements to favor the most frequent

switching case are responsible for this behavior. For low-to-

medium short/long message ratios, BADAVL also exhibits

a constant behavior, but, when the amount of short

messages increases, its performance quickly falls. In some

cases, this performance degradation is close to 15 percent.

The improvements in performance in the medium ratio

values are due to better buffer utilization. In this case, the

use of each virtual lane is more balanced.
Finally, it can be seen that the performance exhibited by

the BADA router is lower in all these experiments. In some
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Fig. 12. (a) Base latencies (0.05 percent applied load with respect to the network bisection). (b) Maximum throughput.

Fig. 13. Latency and throughput evolution for an 8 x 8 torus under random traffic.



scenarios, the effect of varying short/long messages ratios
shows degradations up to 20 percent. This is a consequence
of the increase in contention in the router. When the average
packet length decreases, the arbitration processes inside the
router are more frequent and, consequently, the congestion
increases. HPAR is less sensitive to this effect as packets
using adaptive paths require no arbitration. In a CC-NUMA
multiprocessor, some applications exhibit high short/long
ratios; thus, it is crucial to adequately support short
message traffic.

5.2 Performance Analysis under Real Workloads

In order to test the networks under a more realistic
scenario, an execution-driven simulation process has been
carried out. The integration of our network simulator,
SICOSYS, into the RSIM simulation environment [17]
provides a powerful tool to emulate a complete state-of-
the-art CC-NUMA machine.

We have initially set the simulation configuration
parameters among the different levels of the memory
hierarchy as in [4]. In that paper, 1 GHz processors
implemented in 0.18 �m technology were used, establish-
ing, in consequence, all the different memory access times.
However, our routers have been implemented using
0.25 �m technology, so we scale the processor frequency
down to 666 MHz. This is, in fact, the value reached by
processors developed with the same channel length, such
as the Alpha 21264A [13]. The access latencies to the
different levels of the memory hierarchy have been
modified proportionally. In short, we could model our
multiprocessor system under any given technology by
adequately tuning the configuration parameters of both
RSIM and SICOSYS simulators.

Due to the limitations imposed by the complexity of the
execution-driven simulated system, 16KB L1 cache and
64KB L2 cache have been used. The benchmarks employed
have been tuned according to these cache sizes. In both
cases, the cache line size is 32 bytes. The basic command
messages traveling through the network have been fixed at
8 bytes. Therefore, as mentioned before, the command-
message and the data-message are, respectively, 2 and
10 phits long.

To carry out a realistic evaluation, we fed our simulation
platform with three applications selected from the SPLASH-2
suite: Radix, FFT, and LU. These three applications were
selected because they have significant communication
demands and each one represents a different case of network
load. Radix puts high pressure in terms of volume of
information to be handled by the network, while exhibiting
a practically uniform communication pattern in many phases
of its execution. FFT, however, applies medium pressure on
the network, but the communication pattern has low spatial
locality. Finally, LU applies lower pressure on the network,
but it gives rise to hot spots in localized zones of the system.
These three examples will allow us to explore the effective-
ness of each router under different conditions.

The problem size for FFT is 64K double complexes. This
is the default problem size established in [29]. Due to the
high demand for computational resources, the problem size
for LU has been reduced from its default size of 512� 512 to
256� 256. The problem size for Radix has also been
reduced from one million integer keys to a half-million
using a radix of a half-million. For the emulated system
size, these changes do not affect the accuracy of the results.
The capacity for the different levels of the memory
hierarchy was chosen in such a way that the results
obtained are significant for the selected problem sizes and
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Fig. 14. Maximum achievable throughput with different ratios for short/long messages and different traffic patterns.



for the dimensions of the global system. Other SPLASH-2
applications were not considered because they do not add
any valuable information. In some cases, they exhibit
similar characteristics and, in others, the interconnection
network has no significant impact on its performance.

Figs. 15, 16, and 17 show the system behavior when
running the three applications over three networks using
BADA, BADAVL, and HPAR routers. Each figure includes
the normalized execution time (and a close-up of it) and the
network behavior in latency and throughput as it evolves
during the program execution. The average latency of the
remote accesses is measured in processor cycles and the
throughput is expressed in phits per network cycle. In this
way, we can see the network performance impact on the
remote access latency and the network utilization level
throughout the application execution. Note that the
theoretical limit for the network load is 64 phits/network
cycle (one phit per node per cycle). Only the most
interesting cases are shown.

Remember that the CC-NUMA testbed is identical for
each experiment except for the packet routers, all of them
implementing adaptive routing and having the same clock
cycle. As Fig. 15d shows, the network load fluctuates from
phases of heavy load to others of very low load. At low
loads, all routers behave similarly because the differences
on latency are minimal. The main differences are due to the
ability of HPAR and, in some degree of BADAVL, to sustain
higher peak throughput. This is why HPAR completes the
heavy load phases ahead of its contenders. This is also true
when running Radix, as shown in Fig. 16d, in which the
application loads range from high to medium loads. In this
case, latency values differ from one network to other, as
shown in Fig. 16c. HPAR exhibits lower latency at high and
medium loads, but BADA has lower values at low loads.

There is a clear correlation between the peak throughput
reached under RADIX (70 percent for HPAR, 64 percent for
BADAVL, and 60 percent for BADA of the theoretical
maximum) and the behavior observed under synthetic
random traffic. The peak throughput observed in FFT

(around 40 percent) shows a similarity to the values
observed under synthetic permutations. The differences
among the three networks’ peak throughput when running
real applications are not as considerable as under synthetic
loads. Note that CC-NUMA traffic is reactive in the sense
that, as network congestion slows down the pending
replies, it also reduces the number of incoming requests.
So, maximum load levels oscillate around the network peak
value.

In short, the incorporation of HLB avoidance mechan-
isms improves network throughput. In the highest load
phases, the network can manage heavier traffic. Hence, the
duration of these phases is smaller and, therefore, their
execution times are shorter (see Fig. 16d for example). In
fact, the throughput enhancements of both routers with
HLB reduction compensate for their slight increases in base
latency, as can be clearly seen in the Radix benchmark.
HPAR reduces the execution time in respect to BADA by up
to 10 percent. Besides, it always outperforms the BADAVL
router in spite of using 5 percent less silicon area. Note that
both routers share the same clock frequency and even, in
some cases, HPAR employs more stages to pass a packet
through it. It must also be noted that the whole CC-NUMA
system is a complex architecture and its performance not
only depends on the interconnection subsystem. Further
tuning of other subsystems would increase the significance
of the network performance in the total execution time.

The previous scenario represents a single kind of
system workload, i.e., numerical programs. Nevertheless,
there is a larger range of applications for this class of
popular CC-NUMA multiprocessors. An important set of
these applications, such as OLTPs and DSSs, can put more
pressure on the interconnection network than the numer-
ical ones due to their scarce data locality [4].

6 CONCLUSIONS

In this paper, the design and evaluation of a high-
performance adaptive router (HPAR) suitable for next
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Fig. 15. (a) Normalized execution time for FFT with 64 processors (8 x 8 Torus) managing 64K double complexes. (b) Zoom. (c) Average latency

evolution. (d) Average throughput evolution.



generations of multiprocessor systems have been carried
out. The router has been optimized for k-ary 2-cube
interconnection networks specifically designed for
CC-NUMA machines. As this low-dimensional router
has low area requirements, it could be easily integrated
within the processor chip.

This new architecture is the result of gathering several

functional and technological optimizations together to

obtain a competitive adaptive router design. The use of

Bubble Flow Control as a deadlock avoidance mechanism

provides fully adaptive routing using just one channel for

each virtual network plus an adaptive shared channel. By

selectively using output buffers to manage the most

frequent switching cases and by implementing them as

pipelined multiport memories, we have obtained an

efficient architecture that highly reduces the effect of

head-of-line blocking. The presence of output buffering

has allowed us to use an optimized channel selection

function that improves the load balance at almost no cost.

Moreover, the most common accesses to these output

buffers do not need arbitration.
Our HPAR has been evaluated and compared with other

alternatives, starting at their hardware costs. The module’s

delays obtained from a VLSI synthesis process have been

incorporated into a detailed network simulator able to deal
with standard synthetic traffic patterns. The experiments
for an 8� 8 torus showed that the use of adaptive output
buffering results in throughput gains ranging from 20 to
50 percent when compared to the simplest input buffer
implementation. This improvement comes only with a
minor increment in base latency. Our router also outper-
forms the alternative solution for avoiding HLB based on
splitting the input buffer into multiple virtual lanes both in
throughput (ranging from 14 to 40 percent) and in base
latency. Besides, an execution-driven simulator able to
faithfully emulate CC-NUMA multiprocessors has been
employed to compare the impact of using different routers
when running parallel applications. This testbed has
allowed us to show how our proposal can reduce the
execution time of several applications belonging to the
SPLASH-2 suite. In this scenario, our router outperforms its
most direct rival based on a higher number of virtual
channels. These gains have been achieved even with lower
area requirements.

From a technological point of view, HPAR occupies an
area of approximately 10 mm2 using a 0.25 �m design
rules. If it were integrated within a state-of-the-art
microprocessor using the same technology, it would
increase the chip area by not more than 5 percent. All in
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Fig. 16. (a) Normalized execution time for Radix with 64 processors (8 x 8 Torus) for 512K integer keys and 512K Radix. (b) Zoom. (c) Average

latency evolution. (d) Average throughput evolution.

Fig. 17. (a) Normalized execution time for LU with 64 processors (8 x 8 Torus) for a 256 x 256 Matrix. (b) Zoom.



all, HPAR is an excellent candidate for integration into the
processor chips that will configure the next generations of
CC-NUMA multiprocessors.
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