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First-order reliability method for estimating reliability, 
vulnerability, and resilience 

Holger R. Maier 
Centre for Applied Modelling in Water Engineering, Department of Civil and Environmental Engineering 
Adelaide University, Adelaide, South Australia, Australia 
Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia, Canada 

Barbara J. Lence, Bryan A. Tolson, and Ricardo O. Foschi 
Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia, Canada 

Abstract. Reliability, vulnerability, and resilience provide measures of the frequency, 
magnitude, and duration of the failure of water resources systems, respectively. 
Traditionally, these measures have been estimated using simulation. However, this can be 
computationally intensive, particularly when complex system-response models are used, 
when many estimates of the performance measures are required, and when persistence 
among the data needs to be taken into account. In this paper, an efficient method for 
estimating reliability, vulnerability, and resilience, which i s based on the First-Order 
Reliability Method (FORM), is developed and demonstrated for the case study of 
managing water quality in the Willamette River, Oregon. Reliability, vulnerability, and 
resilience are determined for different dissolved oxygen (DO) standards. DO is simulated 
using a QUAL2EU water quality response model that has recently been developed for the 
Oregon Department of Environmental Quality (ODEQ) as part of the Willamette River 
Basin Water Quality Study (WRBWQS). The results obtained indicate that FORM can be 
used to efficiently estimate reliability, vulnerability, and resilience. 

1. Introduction 

The risk-based performance measures reliability, vulnerabil- 
ity, and resilience were first introduced to the water resources 
community by Heshimoto et el. [1982], although similar con- 
cepts (e.g., frequency, magnitude, and duration of failure) had 
previously been used to assess water supply systems [Fiering, 
1969] and to describe natural hazards [e.g., Ketes, 1970]. Heshi- 
moro et el. [1982] define reliability as the frequency that a 
system is in a satisfactory state, vulnerability as the likely mag- 
nitude of a failure, if one occurs, and resilience (or resiliency) 
as the inverse of the expected value of the length of time a 
system's output remains unsatisfactory after a failure. These 
definitions are adopted in this paper. These criteria or varia- 
tions thereof [e.g., Burn et el., •1991; Moy et al., 1986] have been 
used to assess reservoir operating policies [e.g., Burn et el., 
1991; Heshimoto et el., 1982; Moy et el., 1986], to measure the 
performance of water distribution systems [e.g., Zongxue et el., 
1998] and to characterize regional droughts [e.g., Correie et el., 

In all of the aforementioned applications, estimates of reli- 
ability, vulnerability, and resilience are obtained by simulation. 
In some cases [e.g., Moy et el., 1986; Zongxue et el., 1998], the 
number of time steps used is <400, as limited deterministic 
data sets are used. Since reasonable estimates under stochastic 

inputs require several thousand realizations [Melching, !992], 
synthetic data generation is used by Heshimoto et el. [1982] and 
Burn et el. [1991] to obtain time series of sufficient length. The 
major disadvantage of an approach using long data series is its 
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computational inefficiency. This becomes especially important 
if estimates of reliability, resilience, and vulnerability are used 
to optimize decisions, as many estimates of these criteria may 
be required, depending on the optimization algorithm used. 

In this paper, an approach using the First-Order Reliability 
Method (FORM) is developed as an alternative to simulation 
for obtaining probabilistic estimates of reliability, vulnerability, 
and resilience. The approach is illustrated for an example 
water quality case study based on the Willamette River, Ore- 
gon. The remainder of the paper is organized as follows. In 
section 2, details of FORM are given, and the relative advan- 
tages and disadvantages of the method are discussed. In sec- 
tion 3, the approach that uses FORM to estimate reliability, 
vulnerability, and resilience is outlined, and th e case study is 
introduced in section 4. The results of the case study are 
presented and discussed in section 5, and conclusions are given 
in section 6. 

2. Reliability Analysis 
2.1. Introduction 

The performance of any engineered system can be expressed 
in terms of its load (demand) and resistance (capacity). Use of 
the load resistance analogy for water resources problems has 
been discussed by a number of authors, including Duckstein 
end Bernier [1986] and Kundzewicz [1989]. For example, in the 
water supply case, water demand corresponds to system load 
and supply capacity to system resistance, whereas in the water 
quality case, pollution load and a given water quality standard 
correspond to the system's load and resistance, respectively. 

If X = (X•, X:, ..., X n) • is the vector of random variables 
that influences a system's load (L) and resistance (R), the 
performance function, G(X), is commonly written as 

779 



780 MAIER ET AL.: FORM FOR ESTIMATING RELIABILITY, RESILIENCE, VULNERABILITY 

first order approximation 
of failure surface 

l'ailure surface 
failure \ G = 0 
domain x•, , 

",,• _0..__._....•/ I ,,"' survival ('"-- ? I ,, domain 

design"'•.•"-... j""•' ,-.•...--- ,, '• 
point '•tf •Q'-• I," / 

// ,,,,," '" -. / , 
,' mean 

,,,' point 
! 

Figure 1. FORM approximation of the failure surface in 
standard normal space. 

G(X) =R -L. (1) 

The failure (limit state) surface, G = 0, separates all combi- 
nations of X that lie in the failure domain (F) from those in 
the survival domain (S). Consequently, the probability of fail- 
ure, pp is given as 

pf = Pr{X • F} = Pr{G(X) < 0} = fc, fx(X) dx, (2) (x)<0 

where fx(X) is the joint probability density function (PDF) of X. 
In most realistic applications, the integral in (2) is difficult to 

compute. Approximate solutions can be obtained by using a 
variety of techniques including Monte Carlo Simulation 
(MCS), Mean-value First-Order Second-Moment analysis 
(MFOSM), the First-Order Reliability Method (FORM), also 
known as Advanced First-Order Second-Moment analysis 
(AFOSM), and the Second-Order Reliability Method 
(SORM). This paper concentrates on FORM, although the 
advantages and disadvantages of FORM in comparison with 
SORM and MCS also are discussed. Detailed descriptions of 
the MCS and MFOSM approaches, as well as comparative 
studies between MFOSM and FORM (AFOSM), are given by 
Tung [1990] and Melching and Anmangandla [1992]. 

2.2. First-Order Reliability Method (FORM) 

FORM was originally developed to assess the reliability of 
structures [Hasofer and Lind, 1974; Rackwitz, 1976]. More re- 
cently, FORM has been used in water resources engineering. It 
has been applied primarily to groundwater problems [e.g., Jang 
et al., 1994; Sitar et al., 1987; Skaggs and Barry, 1997], although 
there have been some surface water applications. For example, 
Tung [1990] compared the performance of MFOSM, FORM, 

and MCS for evaluating the probability of violating various 
dissolved oxygen (DO) standards for a hypothetical case study. 
A similar study was carried out by Melching and Anmangandla 
[1992], who used the hypothetical DO case studies of Burges 
and Lettenmaier [1975] and Tung and Hathhorn [1988]. In both 
papers, the performance of FORM was very similar to that of 
MCS. However, MFOSM did not perform as well, especially at 
the extremes of the range of DO standards investigated. Melch- 
ing et al. [1990] used FORM to determine the uncertainty of 
the peak discharge predictions obtained from a rainfall-runoff 
model for the Vermillion River watershed, Illinois. Melching 
[1992] carried out a comparison between MFOSM, FORM, 
and MCS for the same case study. There was good agreement 
between FORM and MCS for a wide range of storm magni- 
tudes and types. MFOSM did not perform as well in cases 
where nonlinearities were significant. 

An outline of the principles underlying FORM are given 
below. Detailed descriptions are given by Madsen et al. [1986], 
Sitar et al. [1987], Melching [1992], and Skaggs and Barry [1997]. 
As mentioned in section 2.1, the objective of FORM is to 
obtain an estimate of the integral in (2) and hence the prob- 
ability of failure. A "reliability index,"/3, is computed which is 
then used to obtain the probability of failure by 

pt= cI) (-/3), (3) 

where cI)( ) is the standard normal cumulative distribution 
function (CDF). In the n-dimensional space of the n random 
variables, /3 can be interpreted as the minimum distance be- 
tween the point defined by the values of the n variable means 
(mean point) and the failure surface (Figure 1). Consequently, 
/3 may be thought of as a safety margin, as it indicates how far 
the System is from failure when it is in its mean state. The point 
on the failure surface closest to the mean point generally is 
referred to as the design point, X*, which may be thought of as 
the most likely failure point. In other words, the design point 
yields the highest risk of failure among all points on the failure 
surface. 

Determination of the design point, and hence/3, is a con- 
strained nonlinear minimization problem. Suitable optimiza- 
tion techniques include the Rackwitz-Fiessler method [Madsen 
et al., 1986], the generalized reduced gradient algorithm [see 
Cheng, 1982], and the Lagrange Multiplier method [see Shino- 
zuka, 1983]. 

Equation (3) is exact only if (1) the elements of X are 
uncorrelated normal variables with a mean of zero and a stan- 

dard deviation of one and (2) the failure surface is a hyper- 
plane. These conditions are rarely met in realistic applications. 
The approach taken in FORM to deal with the first of these 
problems is to transform all random variables (X•, X2, ..., 
Xn) to the space of uncorrelated standard normal variables 
(Zl, Z2, ..o , Zn). Generally, the method of Der Kiureghian 
and Liu [1986] is used to perform this transformation, as it 
accounts for the correlation structure among the variables. The 
second condition cannot be accounted for exactly by FORM, 
and the failure surface is approximated by its tangent hyper- 
plane at the design point in standard normal space, Z*, using 
first-order Taylor Series expansion (Figure 1). Consequently, 
the probability of failure obtained using FORM is only an 
approximation, unless the performance function is linear. The 
degree of nonlinearity in the performance function, and hence 
the accuracy of FORM, is problem dependent. SORM is iden- 
tical to FORM with the exception that a second-order approx- 
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imation of the failure surface at the design point is used. A 
detailed description of SORM is given by Madsen et al. [1986]. 

2.3. FORM, SORM, and MCS 

The major disadvantage of MCS is its high computational 
cost. The number of realizations required to estimate the prob- 
ability of failure accurately depends on the unknown failure 
probability itself. Generally, of the order of 10,000 realizations 
are needed to obtain accurate estimates of small probabilities 
of failure (<-0.01) [see Cheng, 1982; Melching, 1992]. It should 
be noted that a number of variants of conventional MCS have 

been developed in order to increase its computational effi- 
ciency [see Tung, 1990]. For example, in importance sampling 
MCS [Mazumdar, 1975] a distribution with reduced variance is 
fitted around the neighborhood of failure, not around the 
mean point as in conventional MCS. Consequently, computa- 
tional efficiency can be greatly increased, as more failures are 
obtained with a smaller number of realizations. 

In most applications, FORM only needs a small number of 
iterations for convergence, making it more computationally 
efficient than MCS. This is particularly so when the failure 
probabilities are low. However, it should be noted that when 
FORM is used, the number of evaluations of the performance 
function per iteration equals 2n + 1, as the performance 
function and its gradient have to be calculated at each step. 
Consequently, the relative advantage of FORM diminishes as 
the number of random variables increases. For example, Jang 
et al. [1994] found that for a two-dimensional groundwater 
contaminant transport model where the number of random 
variables was greater than 100, FORM was computationally 
more expensive than MCS. However, the computational cost 
of FORM can be reduced significantly by using sensitivity 
methods [e.g., Ahlfeld et al., 1988], rather than divided differ- 
ences, to compute the gradient [Skaggs and Barry, 1997]. When 
SORM is used, - 8n additional evaluations of the performance 
function need to be carried out per iteration [Skaggs and Barry, 
1997]. As a result, Skaggs and Barry [1997] suggest that the 
computational efficiency of SORM is no greater than that of 
MCS when the number of random variables is large (-100). 

The probability estimated by MCS generally closely approx- 
imates the exact value, provided the number of iterations is 
sufficiently large [Melching, 1992]. Testing for convergence by 
applying MCS with different numbers of realizations can be 
used to assess the accuracy of MCS. In contrast, as discussed in 
section 2.2, the accuracy of FORM and SORM depends on the 
shape of the failure surface and thus is problem dependent. As 
such, the accuracy of FORM and SORM can only be assessed 
in comparison with MCS. However, the first- and second-order 
approximations given by FORM and SORM, respectively, gen- 
erally give good results in standard normal space, as the prob- 
ability density decays exponentially with distance from the or- 
igin (FigUre 1). As a result, most of the probability content in 
the unsafe region is in the vicinity of the design point, where 
the first- and second-order expansions are good approxima- 
tions to the failure surface [Sitar et al., 1987]. 

Apart from its computational efficiency, FORM also pro- 
vides a measure of the sensitivity of the probability of failure to 
the input parameters, X, and their statistical moments in the 
vicinity of the design point with little or no additional compu- 
tational cost [Sitar et al., 1987; Skaggs and Barry, 1997]. Such 
information is also available when MCS is used if, for each 
realization, the random inputs and resulting output are re- 
corded and a postsimulation analysis of variance (ANOVA) or 
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Figure 2. Schematic representation of multiple failure states 
on a cumulative probability density function. 

rank correlation is performed. An advantage the FORM/ 
SORM approach has over MCS is that it determines the com- 
bination of model parameters that are most likely to result in 
failure (i.e., the design point). In addition to the fact that the 
accuracy of the probability estimates obtained are problem 
dependent when FORM is used, the requirement that the 
performance function divide the parameter space into distinct 
failure and survival regions also can present difficulties in cer- 
tain applications [see Skaggs and Barry, 1997]. 

3. FORM-Based Estimators of Reliability, 
Vulnerability, and Resilience 

3.1. Reliability 

Reliability is a measure of the probability of system survival. 
Hashimoto et al. [1982] define the reliability of a system, a, at 
time t as 

ot: Pr{Xt • S}, (4) 

which is the complement of the probability of failure. Using 
(3), reliability can thus be estimated as 

a = 1 -ps = 1 - •(-/3) = •(/3). (5) 

It should be noted that the above relation is only exact if the 
failure surface is a hyperplane. Otherwise, it is only an approx- 
imation as discussed in section 2.2. 

3.2. Vulnerability 

Vulnerability is a measure of the magnitude of a system's 
failure. Hashimoto et al. [1982] define vulnerability, v, as fol- 
lows: 

v = • wjej, (6) 
jGD 

where e i is the probability that the system performance vari- 
able, L, is in discrete failure state j, and w i is a numerical 
indicator of the severity of failure state j (Figure 2). If the 
discrete failure states are bounded by a hierarchy of failure 
levels, R• <- R 2 <-- R 3 <-- ... <-- RH, e i is given by (Figure 2) 

ej = Pr{Rj < L <- Rj+•} = DL(Rj+O - DL(R), (7) 
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whe re DL is the CDF of the load, L. Consequently, vulnera- 
bili• i s give n by 

v= (8) 
jGF 

Using FORM, the probability of failure is given by 

pf = (I)(--]3) = Pr{G(Xt) < 0} - Pr{L > R} 

= 1 - Pr{L -< R} = 1 - DE(R). (9) 

Consequently, 

DL(R) = 1 - 4)(-/3) = 4)(/3). (10) 

Combining (8) and (10), vulnerability can be expressed in 
terms of the reliability index,/3, as follows: 

Pf= Pfl + Pf2 - Pf12 = Pr{G1 < 0} + Pr{G2 < 0} - Pr{G1 

< 0 and G2 < 0}, (14) 

where pf 1 and Pf2 are the probabilities of failure due to failure 
modes 1 and 2, respectively, Pfl2 is the joint probability of 
failure for failure modes 1 and 2 and G• = G(X 0 and G 2 = 
G(X2) are the performance functions for failure modes 1 and 
2, respectively. The failure probabilities for the individual fail- 
ure modes (pf• and Pf2) can be obtained using (3). The joint 
probability of failure, Pf•2, is given by Madsen et al. [1986] as 

= -t3; = 

P12 + ½(-/31, -/32; y) dy, 
dO 

1.1--' E Wj[(I)(•j+i)- (I)(j•j)] = E Wj[(I)(--•J)- (I)(--J•j+l)], 
j•F j•F 

(11) 

where /3j is the reliability index for resistance level Rj. As 
pointed out by Melching et al. [1990] and Skaggs and Barry 
[1997], (10) can also be used to obtain points on the CDF of 
the system performance variable, L, by repeating the reliability 
analysis for a range of values of system resistance, R. 

3.3. Resilience 

A number of alternative concepts of resilience have been 
proposed in the literature [e.g., Fiering, 1982; Holling, 1996]. In 
water resources engineering, resilience generally has been used 
as a measure of how quickly a system recovers from failure, 
once failure has occurred. Hashimoto et al. [1982] give two 
equivalent definitions of resilience, 3,. One is a function of the 
expected value, (El ]), of the length of time a system's out- 
put remains unsatisfactory after a failure, Tf (see (12)). The 
other is based on the probability that the system will recover 
from failure in a single time step (see (13)). 

1 

v = 
Pr{Xt G F and Xt+l G S} 

Y = Pr{Xt+l G SIXt • F} = Pr{X t • F} 
(13) 

where (I)( , ; p) is the CDF for a bivariate normal vector 
with zero mean values, unit variances, and correlation coeffi- 
cient p and q,( , ; p) is the corresponding PDF. It should be 
clarified that the bivariate normal distribution is used because 

all variables are converted to standard normal space. Although 
this conversion changes the correlation matrix values between 
the original variables, the new correlation matrix is estimated 
using the method developed by Der Kiureghiam and Liu [1986]. 
The new correlation matrix must then be diagonalized to un- 
correlate the standard normal variables. The integral in (15) is 
generally obtained numerically. The correlation coefficient 
needed to evaluate this integral, P•2, is calculated using [Mad- 
sen et al., 1986] 

Z*rZ* 

z•Tz * (16) 2, 

where Z• and Z* 2 are the design points in standard normal 
space for failure modes 1 and 2, respectively. 

If we define the performance functions as 

S 1 -'- g t - L t (17) 

G2-- Lt+l- Rt+l, (18) 

the corresponding individual and joint failure probabilities are 
given by 

Pfl = Pr{Xt • F) = cI)(-/3•) (19) 

Pf2 = Pr{Xt+l G S} = (I)(-/32) (2o) 

In water resources applications, (12) has generally been used 
to obtain estimates of resilience. This is undertaken by exam- 
ining a time series (real or synthetic) of the system perfor- 
mance variable and counting the number of consecutive time 
steps the system remains in failure, once failure has occurred. 
However, Kundzewicz [1989] and Tickle and Goulter [1994] 
show that crossing theory (also known as renewal theory or the 
theory of run durations), which has been used in a number of 
hydrologic applications [e.g., Rosjberg, 1977; Sen, 1976], can be 
used to obtain estimates of resilience in accordance with (13). 
FORM also can be used to obtain estimates of resilience based 

on the conditional probability definition of resilience (13), as 
outlined below. 

In many instances in structural engineering, there is a need 
to consider multiple failure modes. For example, a beam may 
fail in bending or in shear, or a retaining wall may fail by 
overturning or by sliding. If there are two failure modes, the 
probability of failure is given by 

Pf•2 = Pr{Xt • F and Xt+ 1 • S} '-' (I)(-j•l, -j•2, P12). (21) 

It should be noted that the conventional definition of the 

performance function (see (1)) is used in (17). However, the 
order of L and R is reversed in (18), so that the probability of 
failure, as defined in (2), is actually the probability that the 
system will return to a nonfailure state (see (20)). Combining 
(13), (19), and (21), resilience is given by 

(I)(- - t3; 
3, = (I)(-/3,) ' (22) 

If system load and resistance are stationary processes, L t -- 
mt+ •, R t = Rt+ •, andpf• = 1 - Pf2. Persistence in the time 
series is accounted for by the lag 1 autocorrelations and cross- 
correlations between the elements of Xt and Xt+ p As pre- 
sented by Hashimoto et al. [1982], if X t and Xt+ • are statistically 
independent, resilience is equivalent to reliability, and is given 
by 
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•,(-/3,, o) 
= : •(-/3•). (23) 

3.4. Application to Water-Quality Systems 

There have only been limited applications of reliability, vul- 
nerability, and resilience to water quality problems [Bain and 
Loucks, 1999; Hiiggl6f, 1996]. However, the need to consider 
the frequency, magnitude, and length of violations of water 
quality standards has been recognized for some time. Loucks 
and Lynn [1966] suggest that the specification of a rigid water 
quality standard, which assumes that water quality is satisfac- 
tory above a certain level and unsatisfactory below it, is inad- 
equate, as it does not reflect the stochastic nature of water 
quality systems. They propose that a more realistic approach 
would be to specify water quality standards in terms of the 
maximum allowable probability for the event that a water qual- 
ity parameter drops below or exceeds a specified level (de- 
pending on the parameter in question) for a given length of 
time. Hathhorn and Tung [1988] emphasize the need to con- 
sider the relative severity of water quality standard violations, 
thus reflecting the different levels of tolerance aquatic biota 
have to various pollution levels. Of course the setting of water 
quality standards is very dependent on the nature of the pa- 
rameter in question. For example, for acutely toxic constitu- 
ents, an instantaneous standard would be best, whereas for a 
chronic constituent, a long-term average would be most appro- 
priate. 

As mentioned in section 2.1, in water quality systems, resis- 
tance generally is expressed as the water quality standard, and 
load is expressed as the ambient water quality under a given set 
of emission levels and environmental conditions. In some cases 

(e.g., ammonia management) the conventional form of the 
performance function (1) can be used, as failure (G < 0) 
occurs when load, i.e., the ambient water quality, is greater 
than resistance, i.e., the water quality standard (see (24)). In 
other cases (e.g., dissolved oxygen management), failure (G < 
0) occurs when load, i.e., the ambient water quality, is less than 
resistance, i.e., the water quality standard (see (25)). 

G(X) = Qs- Qa(X) = R - L (24) 

G(X) = Qa(X) - Qs = L - R, (25) 

where Qa(X) is the ambient water quality, which is generally 
estimated using a water quality response model, and Q s is a 
fixed water quality standard at a critical location. 

When response models are used to obtain ambient water 
quality values, they are subject to inherent, model, and param- 
eter uncertainties [see Burges and Lettenmaier, 1975; Loucks 
and Lynn, 1966; Tung and Hatthhorn, 1988]. In order to incor- 
porate these uncertainties into FORM, they must be expressed 
as random variables. This requires information about the 
mean, standard deviation, and distribution of each of the ran- 
dom variables, as well as the correlation structure among them. 
This information cannot always be obtained in its entirety, 
necessitating expensive data collection programs or that as- 
sumptions be made based on experience or studies conducted 
elsewhere. Consequently, it is desirable to keep the number of 
random variables to a minimum, while ensuring that all signif- 
icant sources of uncertainty are included. Another reason for 
restricting the number of random variables is the fact that 
computational time is a function of the number of random 
variables, as discussed in section 2.3. 

4. Case Study: Willamette River Basin 

4.1. Background 

The Willamette River basin is located in northwestern Or- 

egon and includes the state's three largest cities, Portland, 
Salem, and Eugene. The mainstem of the Willamette River is 
300 km long, and its flow is regulated by a number of storage 
and reregu!ation reservoirs [Leland et al., 1997]. The river may 
be divided into four distinct regions, based on their hydraulic 
and physical characteristics [Tetra Tech, 1995b]. Reach I, which 
extends from the mouth of the river to the Willamette Falls 

(River Kilometre, RK, 0-42) is influenced by tides and the 
Columbia River; reach II, which extends from the Willamette 
Falls to above Newberg (RK 42-96), is deep and slow-moving; 
reach III, which extends from above Newberg to Corvallis (RK 
96-208), is shallow and fast-moving; and reach IV, which con- 
sists of the portion of the river upstream of Corvallis (RK 
208-300), also is shallow and fast-moving [Tetra Tech, 1995b]. 

Water pollution has been an issue in the Willamette River 
for a number of decades. Prior to the introduction of secondary 
treatment requirements in the 1970s, the river experienced 
severe water quality problems as a result of the discharge of 
oxygen demanding substances from municipal and industrial 
point source dischargers [Tetra Tech, 1993]. Since that time, 
there have been substantial improvements in water quality, and 
the current health of the river is marginal to good [Leland et 
al., 1997]. However, pressure on water quality in the Wil- 
lamette River is likely to increase in the future, as the Wil- 
lamette basin is the fastest growing and most economically 
developed region of Oregon [Leland et al., 1997]. Conse- 
quently, a DO model has been developed to help managers 
prevent the potential deterioration of the water quality in the 
river due to increased waste discharges [Tetra Tech, 1995b]. 

The mainstem of the Willamette River receives carbona- 

ceous biochemical oxygen demanding (CBOD) effluent from 
51 waste dischargers [Tetra Tech, 1995a]. At present, water 
quality standards are defined in terms of a DO concentration 
that must be exceeded during all flows greater than or equal to 
critical environmental conditions (e.g., the minimum 7-day av- 
erage flow that occurs once every 10 years) [Oregon Department 
of Environmental Quality (ODEQ), 1995]. However, the choice 
of an appropriate level of protection is difficult, as there is a 
continuum of risk that is not well defined. For example, at DO 
concentrations between saturation and 3 mg L -•, salmonids 
experience chronic effects of varying severity, including reduc- 
tions in swimming speed, growth rate, and food conversion 
efficiency, whereas DO concentrations below 3 mg L -• gener- 
ally are acutely lethal [ODEQ, 1995]. In addition, impacts are 
more severe if exposure to low concentrations of DO occurs 
more frequently and for longer periods of time [ODEQ, 1995]. 
Consequently, use of the risk-based performance indicators 
reliability, vulnerability, and resilience may provide a better 
representation of the actual impact of varying DO regimes on 
aquatic biota. 

In this paper, the FORM-based method for estimating reli- 
ability, vulnerability, and resilience presented in section 3 is 
applied to the Willamette River. The effect of various uni- 
formly decreasing CBOD wasteloads on the reliability, vulner- 
ability, and resilience of the system in terms of violating dif- 
ferent DO standards is investigated at the mouth (RK 0). The 
latter is chosen as the critical location as DO concentrations 

generally are lowest at this point in the river [Tetra Tech, 
1995b]. 



784 MAIER ET AL.: FORM FOR ESTIMATING RELIABILITY, RESILIENCE, VULNERABILITY 

Table 1. Details of Flow and Temperature Data Used 

Variable USGS Station Number Time Step Years of Record 

Flow in Willamette River at 14157500 + 14152000 Day 1966-1986, 1988-1991, 1993-1997 
confluence of Coast 
and Middle Fork 

Flow in McKenzie River Day 
Flow in Santiam River Day 
Flow in Clackamas River Day 
Temperature at Salem Day 

14166000- (14157500 + 14152000) 
14189000 

14210000 

14191000 

1966-1986, 1988-1991, 1993-1997 
1966-1986, 1988-1991, 1993-1997 
1966-1986, 1988-1991, 1993-1997 

1977-1978, 1980-1981, 1983, 1985-1987 

4.2. Method 

FORM and MCS are implemented using RELAN [Foschi 
and Folz, 1990], a general reliability analysis software package 
that was developed at the University of British Columbia in 
Vancouver, Canada. The Rackwitz-Fiessler algorithm is uti- 
lized to find the design point when the FORM option of RE- 
LAN is used. RELAN accepts a range of probability distribu- 
tions for the random variables and also can perform reliability 
analyses by SORM, Response Surface Methodologies, and 
Adaptive Sampling Simulation. 

The formulation of the performance function given in (25) is 
used for reasons discussed in section 3.4. The ambient DO 

concentrations needed to evaluate the performance function 
are estimated using the QUAL2EU water quality response 
model (Version 3.22) [Brown and Barnwell, 1987] developed by 
Tetra Tech for the ODEQ [Tetra Tech, 1993, 1995a] (see sec- 
tion 4.3). The QUAL2EU and RELAN programs source 
codes, both in FORTRAN, are slightly modified and linked 
together such that the random variable values generated by 
RELAN are input to QUAL2EU and the resulting DO con- 
centration at RK 0 is output to RELAN for evaluation of the 
performance function. Details of the random variables in- 
cluded in the DO model are given in section 4.4. In order to 
ensure that the reliability estimates obtained using FORM are 
accurate for the case study considered, the FORM-based reli- 
abilities are compared with those obtained using MCS for a 
number of DO standards. Reliability, vulnerability, and resil- 
ience estimates are then obtained for various CBOD waste- 

loads and DO standards. Details of the critical DO concentra- 

tions and the wasteloads used are given in sections 4.7 and 4.8, 
respectively. 

4.3. Dissolved Oxygen Response Model 

As mentioned in section 4.2, the QUAL2EU model devel- 
oped by Tetra Tech [1993, 1995a] is used in this study. The 
model is one-dimensional, steady state, and includes sediment 
oxygen demand (SOD) and average daily phytoplankton 
growth effects on DO. It consists of 141 model segments, each 
of which is subdivided into computational elements of 0.16 km 
in length, and incorporates inflows from 14 tributaries and 51 
point source wasteload dischargers. The model is calibrated 
using data from August 1992, is verified using data from Au- 
gust 1994, and is considered to be valid for the summer low- 
flow season, July to September, which is the critical period for 
DO. Some of the limitations of the model include that it does 

not incorporate the effect of periphyton production on DO, it 
does not account for tidal mixing with the Columbia River, and 
it does not consider nonpoint or diffuse sources of nutrients or 
oxygen demanding substances. 

4.4. Random Variables 

In this study, only natural and parameter uncertainties are 
considered. It is assumed that the QUAL2EU model ade- 

quately simulates all of the processes affecting DO concentra- 
tions in the Willamette River, although this is not strictly cor- 
rect (see section 4.3). Since the number of random variables 
included should be kept to a minimum, only the naturally 
varying model inputs and uncertain parameters that are con- 
sidered to have a significant effect on the output of the DO 
model, and for which sufficient information characterizing 
their uncertainty exists, are used as random variables. 

4.4.1. Natural variability. In this paper, the natural vari- 
ability in flow and temperature are considered as random vari- 

Table 2. Statistics of the 7-day Moving Average for Flow and Temperature Data Used in 
the Reliability and Vulnerability Calculations 

Standard 
Mean Deviation Lower Distribution 

Variable (Parameter 1)a (Parameter 2) a Bound Type 

Flow in Willamette River 
at confluence of Coast 
and Middle Fork 

Flow in McKenzie River 

Flow in Santiam River 

Flow in Clackamas River 

Temperature at Salem 

62.3 m 3 s -1 13.7 m 3 s -l 2.8 m 3 lognormal 
S-1 

68.3 m 3 s -1 12.5 m 3 s-I 2.8 m 3 lognormal 
S-1 

(6.1) b (41.8) b 2.8 m 3 Weibull 
S-1 

26.2 m 3 s -1 4.8 m 3 s -1 2.8 m 3 lognormal 
S-1 

21.2øC 1.2øC 1.7øC lognormal 

aparameter 1 and 2 are for other distributions that are not normal or lognormal and are specified below 
for the relevant distributions. 

•Santiam River data (in m 3 s-•) fit to a Weibull distribution with location, shape, and scale parameters 
equal to 0, 6.1, and 41.8, respectively. • 
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Table 3. Correlation Coefficients for the 7-day Moving Average for Flow and 
Temperature Data Used in the Reliability and Vulnerability Calculations 

, , , 

Variable Number 
Variable 

Number Description 1 2 3 4 

1 Flow in Willamette River 1 0.0 0.0 0.0 0.0 
at confluence of Coast 
and Middle Fork 

2 Flow in McKenzie River 0.0 1 0.0 0.0 0.0 
3 Flow in Santiam River 0.0 0.0 i 0.7 -0.8 
4 Flow in Clackamas River 0.0 0.0 0.7 1 -0.7 

5 Temperature at Salem 0.0 0.0 -0.8 -0.7 1 

ables, as they have been found to be important in previous 
studies, and sufficient data are available to characterize their 
variability. It should be noted that additional uncertainties 
such as those associated with wasteload levels [see Loucks and 
Lynn, 1966] may also have a significant impact on the results 
obtained. However, insufficient data are available to charac- 
terize this uncertainty for the case study considered. 

The QUAL2EU model uses inputs from the headwaters of 
the Willamette River and from 14 of its tributaries. On inspec- 
tion of the flow records for each of these, only the headwater 
flows (at the confluence of the Coast and Middle Fork of the 
river) and the flows from the McKenzie, Santiam, and Clacka- 
mas Rivers are used as random variables, as their combined 
flows are approximately 1 order of magnitude larger than the 
flOWS in the remaining tributaries. The flow data used are 
available at www.usgs.gov and Table 1 summarizes the USGS 
flow measurement stations, time step for the data, and years of 
record used. The headwater flow is determined by adding flows 
at two U.S. Geological Survey (USGS) gauging stations while 
the flow in the McKenzie River is determined by a flow balance 
be •tween two mainstem USGS gauging stations as by Tetra Tech 
[1993, 1995a]. Although QUAL2EU is capable of modeling 
temperature, this option is not utilized in the DO model de- 
veloped by Tetra Tech [1993, 1995a]. Instead, temperatures are 
assumed to increase uniformly from the headwaters to the 
mouth of the river. In this study, this relationship is maintained 
while randomly varying temperature at one location. This ap- 
proach is reasonable because it is consistent with Tetra Tech 
[1993, 1995a], and temperature data in the Willamette are 
sparse. The temperature data used are obtained from the 
USGS, and the information related to the USGS temperature 
measurement station considered is also summarized in Table 

1. Salem is chosen as the location at which the temperature 
variable is based, as it is the site with the best temperature 
record. 

All data analyses are carried out using only values from July 
to September, as this is the time of year for which the 
QUAL2EU model is calibrated. For the reliability and vulner- 
ability calculations, the 7-day moving average is obtained for 
all data, and the statistics for the random variables are ob- 
tained using the annual extreme low-flow values. Seven-day 
moving average temperatures occurring on the same day as the 
annual extreme low-flow values are used as the raw tempera- 
ture data. The mean, standard deviation, and distribution type 
for the flow and temperature data considered are shown in 
Table 2. The correlations between the random variables are 

shown in Table 3. Only correlations >0.7 are used in this study, 
since preliminary results showed that ignoring correlations less 
than this had a negligible impact on the results. For the resil- 
ience calculations, the statistics for the random variables are 
obtained using 13-day independent averages of flow and tem- 
perature and are summarized in Table 4. The reason for using 
13-day averages of flow and temperature for resilience are 
discussed in section 4.5. The cross correlations and autocorre- 

lations used for the resilience calculations are given in Table 5. 
As shown in Tables 2 and 4, the variables are bounded to 
ensure that the inputs to the QUAL2EU model are realistic. It 
should be noted that RELAN automatically adjusts the PDF 
for each random variable so that the total probability is equal 
to one. 

4.4.2. Parameter uncertainty. The parameter uncertain- 
ties considered in this study include those associated with the 
reaeration coefficient (K a) and the SOD value. The former is 
included as it has been found to be the parameter that has the 

Table 4. Statistics of the 13-day Independent Averages for Flow and Temperature Data Used in the Resilience 
Calculations 

Variable 
Standard Deviation 

Mean (Parameter 1) a (Parameter 2) a Distribution Shift b Lower Bound Distribution Type 

Flow in Willamette River at confluence 
of Coast and Middle Fork 

Flow in McKenzie River 
Flow in Santiam River 
Flow in Clackama s River 
Temperature at Salem 

60.5 m 3 s -1 33.2 m 3 s -1 25.3 m 3 s -1 2.8 m 3 s -1 lognormal 

(24.0) c (3.1) c -- 2.8 m 3 s -1 gamma 
47.8 m 3 s -1 31.6 m 3 s -1 13.4 m 3 s -1 2.8 m 3 s -1 lognormal 
13.8 m 3 s -1 8.4 m 3 s -1 14.9 m 3 s -1 2.8 m 3 s -1 lognormal 

(9.6) d (19.4) d -- 1.7øC Weibull 

aparameter 1 and 2 are for other distributions that are not normal or lognormal and are outlined below for the relevant distributions. 
bThe distribution shift is a constant added to the random values generated by the respective distributions and parameters. 
CThe McKenzie River flow data (m 3 S -1) is fitted with a Gamma distribution with a = 24.0 and/3 = 3.1. 
dThe Salem temperature data (øC) is fitted with a Weibull distribution with location, shape, and scale parameters equal to 0, 9.6, and 19.4, 

respectively. 
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Table 5. Correlation Coefficients for the 13-day Independent Averages for Flow and Temperature Data Used in the 
Resilience Calculations 

Variable Number 
Variable 

Number Description 1 2 3 4 5 6 7 8 9 10 

1 flow in Willamette River (t) at confluence 1 0.0 0.7 0.0 -0.8 0.8 0.0 0.7 0.0 
of Coast and Middle Fork 

2 flow in McKenzie River (t) 0.0 1 0.0 0.0 0.0 0.0 0.8 0.0 0.0 
3 flow in Santiam River (t) 0.7 0.0 1 0.0 -0.8 0.7 0.0 0.7 0.0 
4 flow in Clackamas River (t) 0.0 0.0 0.0 1 0.0 0.0 0.0 0.0 0.7 
5 temperature at Salem (t) -0.8 0.0 -0.8 0.0 1 -0.7 0.0 -0.8 0.0 
6 flow in Willamette River (t + 1) 0.8 0.0 0.7 0.0 -0.7 1 0.0 0.7 0.0 
7 flow in McKenzie River (t + 1) 0.0 0.8 0.0 0.0 0.0 0.0 1 0.0 0.0 
8 flow in Santiam River (t + 1) 0.7 0.0 0.7 0.0 -0.8 0.7 0.0 1 0.0 
9 flow in Clackamas River (t + 1) 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 1 

10 temperature at Salem (t + 1) -0.8 0.0 -0.7 0.0 0.7 -0.8 0.0 -0.8 0.0 

-0.8 

0.0 

-0.7 

0.0 

0.7 
-0.8 

0.0 

-0.8 

0.0 
1 

most significant impact on predicted DO concentrations in a 
number of hypothetical and actual case studies [e.g., Chadder- 
ton et al., 1982; Melching and Yoon, 1996]. The latter is con- 
sidered as it has been found to have a marked effect on the 

outputs obtained from the QUAL2EU model for the Wil- 
lamette River [Tetra Tech, 1995a]. It should be noted that other 
reaction coefficients may also have a significant impact on 
predicted DO concentrations if assumed uncertain but are not 
considered here because of insufficient data. 

In the QUAL2EU model used, K a values are calculated as a 
function of depth and velocity using the O'Connor and Dobbins 
[1958] equation. Four random variables are used to character- 
ize the Ka uncertainty in this research since the original mod- 
elers delineated four distinct hydraulic reaches of the river 
(section 4.1). As no site specific information is available re- 
garding the accuracy of the O'Connor and Dobbins equation, 
the database of 371 measured K• values and the corresponding 
stream characteristics developed by Melching and Flores [1999] 
is utilized to estimate the accuracy of this equation. From the 
database, for streams with similar flow regimes as the Wil- 
lamette River, the depth and velocity data are used to calculate 
the O'Connor and Dobbins estimate of K•. These estimates 
are then compared with the measured K• values to estimate 
the error of the O'Connor and Dobbins equation. As given by 
Melching and Flores [1999], the estimated and measured K• 
values are transformed logarithmically (log•0) before the error 
estimates are generated. Analysis of the database shows that 
there is insufficient information to divide the error data into 

four groups that matched the hydraulic characteristics of each 
reach of the Willamette River. Therefore each source of Ka 
uncertainty is characterized by the same statistics and proba- 
bility distribution. Further details on the development of these 

error statistics are given by Tolson [2000]. The four random 
errors associated with using the O'Connor and Dobbins equa- 
tion are assumed to be spatially independent and their statis- 
tics are summarized in Table 6. The sampling statistics for 
SOD obtained by Tetra Tech [1995a] are used in this study to 
characterize the SOD uncertainty with two spatially indepen- 
dent random variables and are also summarized in Table 6. As 

no information on the autocorrelation structure of SOD and 

K, is available, the autocorrelations are assumed to be 0. 
However, it is likely that these parameter autocorrelations are 
greater than 0. For example, if there is a high error in the 
O'Connor and Dobbins estimate of K, in one time step, then 
it is likely that the error in the next time step is also high. 
Future work should be done to estimate the actual values of 

these auto-correlations. 

In summary, the random variables considered in this study 
are four tributary flows, one temperature, two SOD coeffi- 
cients, and four K, coefficients. For the reliability and vulner- 
ability estimations then, there are 11 random variables in total 
considered in the analysis. For the resilience estimation, since 
two time steps are considered, this set of random variables 
must be generated twice, and thus a total of 22 random vari- 
ables are used in the analysis. 

4.5. Resilience Estimation 

The resilience estimate obtained for this case study refers to 
the probability that given a set of inputs leading to system 
failure at steady state in the previous time step, the inputs in 
the next time step will result in the system recovering from 
failure at steady state. The time step by time step evaluation of 
resilience is conducted for the Willamette River over the entire 

low-flow season. This resilience estimate is with respect to the 

Table 6. 

1995a] 
O'Connor and Dobbins Prediction Error Statistics [Tolson, 2000] and Sampling Statistics for SOD a [Tetra Tech, 

Parameter River Reach Mean Standard Deviation Lower Bound Distribution Type 

SOD tidal (RK 0-RK 42) 2.12 g m -2 d -• 
SOD Newberg (RK 42-RK 81) 1.98 g m -2 d -1 
Ka b same statistics for all four reaches c -0.111 

0.60 g m -2 d -• 0 g m -2 d -• normal 
0.52 g m -2 d -1 0 g m -2 d -• normal 

0.155 ...d normal 

aprediction error statistics are given by Tolson [2000]. Sampling statistics are given by Tetra Tech [1995a]. 
bK a error data generated by: error = log•o(predicted Ka) = Logw(measured K•). Original measured K• data are to the base e at 20øC in units 

of days- •. 
CSee section 4.1 for details of each reach. 

dThe anti-log transformation back to units of days- • ensures that K• is always greater than 0. 
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Table 7. Information About the Failure States Used in the Vulnerability Calculation a 

DO Standard, DO Range, Severity 
mg L- 1 mg L- 1 Effects Index, wi 

5, 6 >standard 
6 5-6 

5, 6 3-5 

5, 6 0-3 

none to minor 0 

some avoidance behavior, reduced cruising 1 
speed, reduced appetite 

increased avoidance behavior, reduced 2.7 
food conversion efficiency, 

acutely lethal 15.2 

aGiven by ODEQ [1995]. 

steady state system inputs and not strictly with respect to the 
speed of system recovery as measured by the DO at Portland. 
For example, owing to the spatial differences in the model 
inputs, the DO at Portland may actually recover from failure 
before steady state is reached. 

The conditional definition of resilience used in this study 
does not require a time series of inputs to be generated. In- 
stead, it only requires estimates of the lag 1 correlation be- 
tween consecutive time steps. This definition allows the resil- 
ience of the system to be estimated by generating repeated 
events of two time steps in duration. The implementation of 
the resilience approach is limited by the water quality response 
model used and the system being modeled. For example, when 
using the steady state DO model for the Willamette River, the 
resilience time step should equal the travel time of the river, as 
the DO model does not respond to more rapid changes in the 
system. 

The travel time for the Willamette River during an average 
annual 7-day moving average low-flow event is ---13 days. 
Therefore the statistics used for the resilience estimation are 

based on 13-day independent averages of flow and tempera- 
ture from July 1 to September 29 of each year. These 13-day 
averages, input to QUAL2EU, are assumed to produce ap- 
proximately similar DO estimates to those that would result 
from a dynamic estimate of DO as a function of a 13-day time 
series of inputs. Owing to the length of this averaging period 
this assumption may not hold at all times for the Willamette 
River. However, in general, the validity of this assumption 
should increase as the travel time in the modeled system de- 
creases. 

4.6. Comparison With Monte Carlo Simulation 

As mentioned in section 2.2, FORM has already been found 
to be a suitable tool for evaluating the probability of violating 
DO standards in a number of hypothetical cases [e.g., Tung, 
1990]. However, only few such comparisons have been ex- 
tended to actual case studies. Consequently, the reliability es- 
timates obtained using FORM are compared with those ob- 
tained using MCS for the case study considered. The use of 
5000 MOnte Carlo realizations is considered sufficient for this 

purpose [see Tetra Tech, 1995a]. A wide range of DO standards 
is examined to ensure that the results obtained span the full 
complement of possible failure probabilities. The DO stan- 
dards used range from 3.0 to 8.0 mg L -1 at 0.5 mg L -1 incre- 
ments. The analyses are carried out at RK 0 using a 60% 
CBOD treatment level (see section 4.8). 

4.7. Critical Dissolved Oxygen Levels 

The current DO standard at RK 0 is 5 mg L-1 [ODEQ, 1995] 
and is used for the reliability and resilience calculations. In 
addition, a standard of 6 mg L-1 is considered. The critical DO 

concentrations used to bound the various failure states, the 
potential physical impacts of being in these failure states and 
their numerical indicators of severity used for the vulnerability 
calculations for both of the standards considered are summa- 

rized in Table 7. It should be noted that the failure states 

pertain to the adult life stages of cold water fish, as the reach 
of the river investigated is generally only used for anadromous 
fish passage [ODEQ, 1995]. The numerical indicators of sever- 
ity are assumed to be zero at DO concentrations above the 
adopted standard, as failure is defined in terms of violation of 
a particular DO standard. This is despite the fact that some 
deleterious effects can occur at higher DO concentrations. The 
set of numerical indicators of severity in Table 7 are chosen 
arbitrarily for illustration purposes, as there is no information 
on the quantitative impacts of being in the various failure 
states. 

4.8. Wasteloads 

The QUAL2EU model developed by Tetra Tech [1995a] 
uses the current wasteloads emitted by each of the 51 discharg- 
ers included in the model. Instead of using the current waste- 
load levels as a basis for varying the wasteloads, the average 
raw CBOD wasteload estimates available for 17 of the most 

important dischargers for the summer low-flow season are 
used (Steve Schnurbusch and Mark Hamlin, ODEQ, personal 
communication, 2000). These 17 dischargers account for 
---95% of the point source wasteload in the QUAL2EU model 
developed by Tetra Tech [1995a]. Therefore the effect on reli- 
ability, vulnerability, and resilience of CBOD waste treatment 
levels of 35, 50, 60, 70, 80, 90, and 95% for each of the 17 
dischargers is investigated. The wasteloads for the remaining 
34 dischargers are left at their original levels, as specified by 
Tetra Tech [1995a], throughout the analyses. 

5. Results and Discussion 

A plot of the cumulative probabilities of failure for achieving 
different DO standards obtained using MCS and FORM is 
shown in Figure 3. It can be seen that the probabilities of 
failure obtained using both methods are similar. If it is as- 
sumed that the results obtained when MCS is used are accu- 

rate, FORM slightly overpredicts the actual probabilities of 
failure. This is in agreement with the results obtained by Tung 
[1990], who carried out a similar comparison for a hypothetical 
case study using the Streeter-Phelps equation. The absolute 
differences between the failure probabilities obtained using 
FORM and MCS vary from 0.00 to 6.1%. This is comparable 
with the range of 0.2-5.6% obtained by Tung [1990]. Conse- 
quently, FORM appears to be a suitable tool for predicting the 
probabilities of failure for the system investigated. 

For the case study considered, the computational efficiency 
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Figure 3. Cumulative probability density function obtained 
using FORM and MCS for current wasteload levels and a 
range of DO standards at RK 0. 

curves. For example, optimal values for reliability, vulnerabil- 
ity, and resilience all occur at the maximum CBOD removal 
levels. The resilience curves for the two standards considered 

differ from each other in magnitude (i.e., resilience is higher 
across all CBOD removal levels for a standard of 5 mg L -z) 
and in the shape of the curve at higher CBOD removal levels. 
For a standard of 5 mg L -z, the maximum resilience is nearly 
achieved at the 80% CBOD removal level and further in- 

creases in CBOD removal levels result in minimal improve- 
ments to the system resilience. In contrast, at a standard of 6 
mg L-•, resilience significantly improves with increases in the 
CBOD removal levels above 80%. 

6. Conclusions 

The FORM-based approach developed in this paper ap- 
pears to be an efficient means of estimating reliability, vulner- 
ability, and resilience for CBOD-DO management problems, 
without the need for MCS. Provided the number of random 

1.2 

of FORM is much greater than that of MCS. Preliminary • 
testing with the RELAN program shows that the computa- 
tional execution time required by MCS and FORM is essen- • 0.8 ._ 

tially equal for the same number of evaluations of the perfor- • 0.e 
mance function. Therefore the efficiency of each method can • 

0.4 

be compared in terms of the number of performance function 
evaluations required. The number of FORM iterations re- o.2 
quired for convergence range from 2 to 5, which corresponds 0 
to 46 and 115 evaluations of the performance function, respec- 
tively, when eleven random variables are used. In comparison, 
when MCS is used, 5000 realizations of the performance func- 
tion are required for convergence. Consequently, the compu- 

2.5 

tational efficiency of FORM is of the order of 10-100 times 
greater than that of MCS. 2.0 

Plots of the reliability, vulnerability, and resilience of the 
system for the 5 and 6 mg L -• standards are shown in Figure • 1.s 
4. As expected, reliability increases as the level of CBOD • 

-- 1.13 

removal increases for each standard and under a standard of 5 ½ 

mg L- • higher reliability levels are achieved. The differences 0.s 
in the reliabilities between standards are a maximum at the 

60% CBOD removal level and a minimum at the 95% CBOD 0.0 

removal level and are equal to 0.54 and 0.24, respectively. 
In general, the information provided by the vulnerability and 

reliability trade-off curves is similar. As expected, vulnerability 
decreases as reliability increases. However, the change in vul- 1.2 
nerability resulting from an increase in the DO standard from 
5 to 6 mg L- • is somewhat less pronounced than the associated 1.0 
relative decrease in reliability. The reason for this is that the 
severity of being in the failure state between DO concentra- 
tions of 5 and 6 mg L- • is much less than that associated with 
failure states at lower DO concentrations. However, it should 
be noted that the differences in the information provided is a 
function of the index of severity assigned to each failure state. 
For example, if the same index of severity is used for each 
failure state, the information provided by reliability and vul- 
nerability is identical. 

The shapes of the resilience curves when DO standards of 5 
and 6 mg L -• are considered provides somewhat similar in- 
formation as the corresponding reliability and vulnerability 

--e--5 mg/L standard --h--6 mg/L standard 

30 40 50 60 70 80 90 100 

% CBOD Removal 

30 40 50 100 

, • 
60 7O 80 90 

% CBOD Removal 

0.8 

0.2 t-- 
0.0 

30 40 50 60 70 80 90 100 

% CBOD Removal 

Figure 4. Trade-off curves between reliability, vulnerability, 
and resilience at RK 0 for the DO standards and wasteload 

management regimes considered. 
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variables is moderate, the FORM-based approach is likely to 
be more attractive than MCS when the system response model 
is computationally intensive, when many estimates of the per- 
formance measures are needed (e.g., for optimization ap- 
proaches that employ iterative search techniques), and when 
the time steps of the data used are small. In the latter case, the 
generation of the synthetic data needed for each MCS realiza- 
tion is complicated by persistence among the data. These fea- 
tures are important in many water quality and quantity man- 
agement problems. Moreover, the estimates of reliability, 
vulnerability, and resilience may be combined to evaluate 
other performance measures, which can be functions of vul- 
nerability and resilience [see Dracup et al., 1980] or reliability 
and resilience [Duckstein and Bernier, 1986]. 

The failure surface generated for the Willamette River case 
study using the QUAL2EU water quality response model is 
sufficiently linear, so that FORM is an adequate estimator of 
the failure probabilities for DO standards ranging from 3 to 8 
mg L-1. The trade-off curves developed show that reliability, 
vulnerability, and resilience vary over the range of DO stan- 
dards considered. 

The results of this case study are based on evaluating the 
three performance measures for the DO level at RK 0. How- 
ever, it should be noted that the output from the DO model 
may not be valid below RK 16, as the model does not take into 
account tidal mixing with the Columbia River [Tetra Tech, 
1993]. Furthermore, the current DO standard on the Wil- 
lamette River varies along its length [ODEQ, 1995]. Therefore 
further analyses for this system should examine other potential 
critical points within the river. In addition, for a comprehensive 
assessment of the reliability, vulnerability, and resilience of the 
system in terms of overall water quality, other criteria [see 
Costanza et al., 1998; Xu et al., 1999] and the effects of non- 
point pollution sources [Leland et al., 1997] would also have to 
be considered. 

In water resources applications, the distribution of resilience 
has generally not been considered. However, knowledge of the 
probabilities associated with failure periods of various lengths 
is useful in certain situations. For example, Loucks and Lynn 
[1966] suggest that water quality standards should be specified 
in terms of the maximum allowable probability level associated 
with a particular length of violation for a given water quality 
standard. Kundzewicz [1989] and Tickle and Goulter [1994] 
derive probability distributions for resilience based on the as- 
sumption that the model variables follow a first-order Markov 
Process. If sufficient data are available, the probability distri- 
bution of resilience also can be estimated by carrying out a 
frequency analysis on the durations of individual failure peri- 
ods for a given level of resistance [see Weisman, 1978]. In 
future work the use of FORM for estimating the probabilities 
associated with the occurrence of failure periods of various 
lengths will be investigated. 

Risk-based performance measures should be considered in 
addition to traditional water quality management goals such as 
minimizing social and financial costs. In a classical optimiza- 
tion framework, the management solutions obtained and the 
insights gained by incorporating the risk-based performance 
measures as objectives or constraints may depend on the prob- 
lem investigated. For example, there may be cases where a 
strict threshold value for a given measure must be observed, 
for example, a limit on the length of time that an acute water 
quality standard may be violated, or cases where the cumula- 
tive effects on water quality need to be minimized. As the 

risk-based performance measures are time-dependent, the op- 
timization formulations that include them may be difficult to 
solve with classical optimization techniques. Heuristic iterative 
search techniques that use FORM to estimate the perfor- 
mance measures at each iteration may be effective for solving 
such problems and these approaches, as well as different op- 
timization-model formulations for determining water quality 
management solutions, will be investigated in future work. 
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