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MAXIMAL PROFIT DIMENSIONING
AND TARIFFING OF LOSS

NETWORKS

N. G. BEAN AND P. G. TAYLOR
Department of Applied Mathematics

University of Adelaide
S.A. 5005, Australia

In this paper we present a unified approach to the optimal dimensioning and'
tariffing of loss networks. In our formulation the optimum is chosen to max-
imize the profit for the company operating the loss network. We assume that
the operating company has the flexibility to determine tariffs and grade of
service —although both of these can possibly be subject to regulatory con-
straints. The fact that the tariffing may affect demand and, hence, the dimen-
sioning makes it essential that the operating company include the tariff/demand
trade-off in determining the optimal way to dimension the loss network. A con-
sequence of our formulation is that the optimal tariff structure has a particu-
larly simple form, with the optimal tariff on a particular route separating into
a term related to the tariff/demand trade-off on that route and a term that
reflects the cost of the circuits used by the route.

1. INTRODUCTION

Loss networks have been used to model many systems in which users of differ-
ent types arrive at sets of resources and try to access one or more of the
resources from some of the sets. If the required resources are not available, one
or more alternative sets may be tried, but ultimately a user whose request can-
not be satisfied is lost from the system. Among systems well modelled by loss
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networks are local area networks, multiprocessor architectures, database struc-
tures, cellular mobile phone networks, computer communication networks, and,
of course, circuit-switched telephone networks, from which the terminology
used to describe loss networks is taken (see Kelly [12] and references therein).

The issue of how a loss network should be dimensioned has long been of
interest and much has been written about it. A good summary of the field was
given by Girard [5]. Early work was due to Truitt [16] and Pratt [15], who dis-
cussed the dimensioning of loss networks under hierarchical routing. Katz [9],
Berry [2], Ash, Cardwell and Murray [1], and Girard and Liau [6] have pre-
sented methods for dimensioning networks under various types of nonhierar-
chical alternative routing.

Each of these models dimensions a network by attempting to minimize its
cost, provided certain grade of service constraints are satisfied. Dimensioning
can be considered to proceed in a manner appropriate to a company operating
in a "public utility" framework, that is, a company with a charter to provide a
given service to the public in as efficient a way as possible. However, in the
increasingly competitive environment that is faced by modern operating com-
panies, it seems more appropriate that networks should be dimensioned accord-
ing to a principle first put forward by Moe in the late 1920s (see Girard [5] or
Jensen [8]) —that networks should be dimensioned such that the difference
between the revenue generated by servicing users and the cost of providing
resources (i.e., the profit generated by the network) is maximized.

This approach was used for dimensioning loss networks by Kelly [10-12],
and a similar concept was used by Low and Varaiya [14] with respect to service
provision in ATM networks. Kelly's work focussed on perturbations to a given
network. He studied ways to calculate the incremental cost to the network of
accepting an extra call on a particular link and the surplus value gained from
accepting a new call on a given route. This approach is admirably suited to the
study of optimal routing of calls and optimal upgrades for a preexisting network
but is less useful for dimensioning a new network, to be built from scratch.
This is the problem that we examine in this paper: to formulate the problem of
dimensioning a "greenfield" loss network in such a way as to maximize the
profit generated for the operating company.

We incorporate a further feature that, to our knowledge, has not appeared
in the literature on loss networks. We take into account the fact that there is a
relationship between the tariff charged to users and the traffic offered to the
network. This relationship is encapsulated in a traffic elasticity function, which,
in general, assumes that offered traffic is a decreasing function of tariff and
whose specific form could reflect market factors such as a competitor's tariff
structure and, indeed, the grade of service offered by the network.

The paper is organized as follows. In Section 2 we define our model and
discuss some basic results from the literature. In Section 3 we discuss how a net-
work with fixed routing can be optimally dimensioned and finish with a dis-
cussion of how our method can be extended to cover networks with alternate
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routing. Section 4 contains a numerical example. We present a further investi-
gation of our model in Section 5. In that section we show that, under reason-
able assumptions, the optimal tariff for a particular route splits into a term
related to the cost of carrying a call on that route plus a term related to the traf-
fic elasticity function. Our conclusions are stated in Section 6.

2. THE MODEL

In this section we introduce the classical loss network operating under fixed
routing and present both exact and approximate approaches for analysis. We
follow the notation of Kelly [12]. The standard example of this model is a
circuit-switched telephone network. Accordingly, we use the terms calls, links,
and circuits. The model also arises naturally in many other types of communica-
tion networks. Generalizations to dynamic and alternative routing are possible.

Consider a loss network where the set of links is labelled $ and the set of
routes is labelled CR. A route is considered to be a collection of links (not nec-
essarily connected) and so r C d, r G CR. Suppose that link j comprises C, cir-
cuits, for ally G Q. A call on route r G CR uses Ajr circuits from link j , where
Ajr G 2 + . Calls requesting route r arrive as a Poisson stream of rate vr, and
as r varies it indexes independent Poisson streams. A call requesting route r
is blocked and lost if on any link j e 3 there are fewer than Ajr free circuits.
Otherwise, the call is connected and simultaneously holds AJr circuits from link
j G 3 for the holding time of the call. If the call is connected, it is charged ar

units. The holding times of calls on route r G CR are identically distributed with
unit mean, and holding times are independent of all earlier arrival times and
holding times. The focus in this paper is the optimal choice of Cj,j G Q and
ar,r G CR, the variables over which the operating company will usually have
some control.

Let nr(t) be the number of calls in progress at time / on route r and define
the vectors n(O = (nr{t),rE CR) and C = {Cj,jE$). Then the stochastic pro-
cess (n(t),t 2: 0) has a unique stationary distribution TT(-) given by

7r(n) = G(C)-' TT — . nGS(C), (2.1)
rest "A

where

S(C) = (nGZ+Mn < C) (2.2)

and G(C) is the normalizing constant

G(C)=
\ n e S ( C ) rGCH

This result is easy to check when call holding times are exponentially dis-
tributed because the stochastic process is a reversible Markov process and for
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general distributions the result holds from the theory of insensitivity (see, e.g.,
Burman, Lehoczky, and Lim [3]).

The performance measure of interest in such networks is the probability
that a call on route r E (R will be blocked, known as the blocking probabil-
ity for route r and denoted Br,rE (R. Let (Br(C) represent the set of states for
which a call of type r is blocked. Then, for each rG(R,

Br= 2 x(n). (2.4)
n£(Br(C)

The equilibrium distribution ir(-) of Eq. (2.1) is of a very simple form.
However, the determination of the normalizing constant G(C), defined by
Eq. (2.3), is difficult and has recently been shown by Louth, Mitzenmacher,
and Kelly [13] to be ttP-comptete in the number of distinct routes. Accordingly,
some method of approximation must be used, and the usual method for approx-
imating the blocking probabilities is the Erlang fixed-point technique [12].

Let Ej,j E # be the unique solution to the equations

j j j , •.. (2.5)

where

•Pj= 2 M l - £ , ) " ' I I O - E ' ) A ' r <2-6>
r:jEr i£r

and the function E is Erlang's formula

]"- Je>- a7)

Then the vector (£},,/ e 5) is called the Erlang fixed point, and an approxima-
tion for the loss probability on route r is given by

£r»l-nO-£»'1", (2-8)
yea

where the link blocking probabilities are now sufficient to describe the grades
of service.

The idea behind this approximation is very simple. Suppose that a Poisson
stream of rate vr is thinned randomly by a factor of (1 - Ej)Air at each link on
route r other than linky and by (1 - Ej)Ajr~l at linky". If these thinnings were
independent over both the links and the routes (clearly this is not true), then the
traffic offered to link./ would be Poisson at rate (2.6), the link blocking prob-
ability would be given by Eq. (2.5), and the loss probability on route r would
satisfy Eq. (2.8) exactly. We call Eq. (2.6) the reduced load on link 7.

At this stage we have assumed that calls on route r arrive as a Poisson
process of rate vr and pay a tariff of ar if accepted. However, in reality the
traffic offered to route r is likely to depend on both the tariff ctr and the route
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blocking probability Br. Thus, henceforth we treat the arrival rate vr as a func-
tion of both the tariff and the grade of service on route r, that is,

vr = pr(ar,Br), r€<R. (2.9)

3. OPTIMIZING PROFIT

If the network provider is to install capacity on a link, then there will be an
associated cost to the provider. This may be in the form of a charge per unit
time if the capacity is leased or it may involve a capital outlay. In the latter
case, the installation will have an economic lifetime and the capital outlay must
be written off over this period of time. In such a way the provider can again
describe the cost as a charge per unit time. Let the charge per unit time of in-
stalling capacity C, on linky E 3 be given by |8/(C,-) depending both on the
nature of link 7 and on the amount of capacity required. In a telecommunica-
tions environment, for example, it will normally be the case that the charge
(5j(C) will be made up of three components: one that is independent of j and
C, representing the provision of space costs at either end of the link; another
that is independent of C, representing the cost of accessing the corridor for link
j depending on the length of the link and the terrain; and finally a component
that does not depend on the link but depends only on the capacity, represent-
ing the terminal equipment. Thus, /3y(C) will have the form

7 + 5, + eC. (3.1)

However, different functions j3,(C) are possible.
The traditional method of dimensioning loss networks has involved the

provider attempting to minimize the cost of provision, that is, minimize

T,0j(Cj), (3.2)
j<=3

subject to certain regulatory constraints. This approach is probably due to the
fact that in the recent past most operating companies were public utilities. In
the new era of private ownership and competition, the providers must dimen-
sion to maximize profit, that is, maximize the difference between revenue and
cost. Also, the companies can now alter their tariffs and perhaps offer differ-
ent grades of service. All this points to a new optimization problem with new
constraints and a new objective function.

Recall that the probability that a call on route r 6 (R is blocked is given by Br.
Therefore, the rate that calls are accepted into the network, when the tariff
charged is ar and the blocking probability is Br, is given by i>r(ar,Br){l — Br).
Accordingly, the network can expect to receive revenue on route r € (R at a rate
of arvr(ar,Br)(l — Br) per unit time. Thus, the total expected revenue per unit
time is given by

2 arvr(ar,Br)(l -Br). (3.3)



328 N. G. Bean and P. G. Taylor

The network provider wishes to maximize its profit and so wishes to max-
imize its revenue minus its cost, that is,

(3.4)

where the route blocking probabilities are related to the link capacities through
Eq. (2.4) and the equilibrium distribution ir(-) is given in Eq. (2.1). There may
also be regulatory constraints that the tariff ar,r E (R charged on route r has
to lie in the interval [a^cTA and the blocking probability Br,rE(R on route r
also has to lie in some interval [Br,Wr].

Written formally, the optimization problem is as follows.

3.1 . Formulation 1

Variables: ar,re<R,

CjjES-

Objective: max £ arv,(ar,Br)U - Br) -
yea

Constraints: a, < ar < a;, r G (R,

0< C, < oo, J E #,

where 5, = £ 7r(n),r£(R
nS<Br(C)

and x(n) = G(C)"1 TJ y f ( t t"*r ) \ n S(C).

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

Finding the solution of this optimization problem is an extremely difficult
task. As an illustration, consider the problem of finding an initial feasible point,
that is, a set of route tariffs and link capacities that obeys all the constraints.
First, the solution to the set of Eqs. (3.12) and (3.11) needs to be found. Due
to the fact that the arrival rate, vr{ar,Br), may depend on the grade of ser-
vice, Br, this could become a complex process involving iteration to determine
Br,r6(R and, hence, vr,rG (R. However, each iteration requires that the exact
equilibrium distribution be found. This is itself a computationally intensive task,
and, as we mentioned before, the determination of the normalizing constant,
G(C), has been shown to be #P-complete in the number of distinct routes. Once
this iterative procedure has converged, constraint (3.10) must be checked to see
whether or not it is obeyed. Clearly, constraint (3.8) will be obeyed if the tar-
iffs have been chosen sensibly and constraint (3.9) is a natural bound presented
only for completeness.

It would be a great advantage if the #P-complete procedure of solving for
the equilibrium distribution and, hence, the blocking probabilities could be
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avoided. Next, we take advantage of the Erlang fixed point and so no longer
need to determine the entire equilibrium distribution. The penalty for this added
convenience is that the results are no longer exact.

Because Br is (approximately) determined by E = (Ej,j 6 D) through
Eq. (2.8), we can rewrite the expected revenue as

2 otrvr(ar,E) TJ (1 - Ej)A*. (3.13)
/•e<R yea

The network provider wishes to maximize its profit and so wishes to max-
imize its revenue minus its cost, that is,

2 arvr{ar,E) TJ (1 - Ej)A* - 2 fij(Cj), (3.14)
/•eat yea yea

where the link blocking probabilities are a function of the link capacities
through Eq. (2.5). The constraints are the same as above except that the block-
ing probability Br,r €E (R is now written as Br = 1 - Il/eaO - Ej)Ajr- The
Eqs. (3.12) and (3.11) are also replaced by the Eqs. (2.5) and (2.6) which deter-
mine Ej as a function of Ck, k G Q.

Written formally, the optimisation problem is as follows:

3.2. Formulation 2

Variables: ar,rG(R, (3.15)

(3.16)

Objective: max £ ariv(«r,E) TJ 0 -Ej)A*- £ /3,(C,). (3.17)
/•em

Constraints: ĉ . <<*,.< a~r, r £ flt, (3.18)

O^CjKoojEQ, (3.19)

B, < 1 - TJ (1 - £ / ) ^ s ^ r e f l l , (3.20)
;ea

v/heTeEj = E(pj,Cj),je3, (3.21)

andpy= E M « r , E ) ( l - £ , • ) " ' n < l - £ / ) i 1 f r . . / € 3 -

(3.22)

Observe that it is not that much easier to solve Formulation 2 than Formu-
lation 1. First, the solution to constraints (3.21) and (3.22) needs to be found.
This is a complex procedure involving a network-wide iteration. Then, con-
straint (3.20) must be checked to see whether or not it is obeyed. Clearly, con-
straint (3.18) will be obeyed if the tariffs at this point have been chosen sensibly
and constraint (3.19) is a natural bound presented purely for completeness.
Finally, the objective function can be evaluated.
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It would be a great advantage if a procedure could be found that did not
involve the solution of a complex set of equations (such as Eqs. (3.11) and (3.12)
or Eqs. (3.21) and 3.22)) just to determine feasibility. Formulation 3, which uses
link blocking probabilities rather than link capacities as variables, contains such
a procedure. In a slightly different context, Girard [5, p. 382] presented an
approach that also used link blocking probabilities as the variables.

For a fixed value of py>0, the function E: TL+ -»[0,1], defined in Eq. (2.7),
is a one-to-one and strictly decreasing function. If we extend the definition so
that the domain of E is R+ by linearly interpolating between integer points,
then we can define an inverse function C: [0,1] -»R+ such that

Cj = C{Pj,Ej), jed- (3.23)

Cj is then the capacity required in an Erlang loss system to accommodate an
offered traffic of pj with a blocking probability of Ej. Clearly, the function
C(-,-) no longer has a nice analytical form, but the advantages of its use in
dimensioning are compelling.

Using the function C, the optimization problem is as follows.

3.3. Formulation 3

Variables: otr,re(R, (3.24)

EjjES. (3.25)

Objective: max £ arrr(ar,E) I I d - Ej)A* - 2 PjiCj). (3.26)
rem yea yea

Constraints: a, < ctr < 5;, r G (R, (3.27)

OsEjSljeS, (3-28)

Br<l-Tl(l-Ej)AJ'<B'r,re<R, (3.29)
yea

where Cj = C(Pj,Ej),je 3, (3-30)

andp,= 2 Vr(ar.EHl-Ej)-lIHl-E,)A''JeS.
r:j£r igr

(3.31)

The importance of this formulation is that Eqs. (3.30) and (3.31) are not
required to determine feasibility but merely allow a neat statement of the objec-
tive function.

The tariffs, (ar,r G (R), and link blocking probabilities, (Ej,j e 3). are
exactly the variables in the optimization problem and can be chosen so that
constraints (3.27)-(3.29) are obeyed. Hence, pJtj G Q is available immediately.
This, in turn, simply provides the required link capacities by using the functions
C(pj,Ej),j G 3, and so the objective function can be simply evaluated.
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It may at first seem that the complexity has been hidden from view in the
definition of the function C(-,-) defined implicitly as the inverse of Erlang's
function; however, this is not the case. Recall that Erlang's function is defined
in Eq. (2.7) to be

<3-32>

This is usually evaluated using the iterative form

V
with the boundary condition E{p,0) = 1. Accordingly, exactly C steps are
required to evaluate E(p,C). Recall also that E(p,C) is strictly decreasing in
C, and so the inverse function C(p,E) could be found using any of the normal
iterative techniques, involving evaluations of E(p, C) for different values of C.
However, a more efficient procedure is simply to use recursion (3.33) until
E(p, C) is less than the desired blocking probability, followed by linear inter-
polation. Therefore, the complexity of evaluation of Cj = C(p,Ej) is equiva-
lent to the complexity of evaluation of Ej = E(p, Cj).

A further advantage of the approach of using the link blocking probabili-
ties as the variables of the optimization procedure (along with the tariffs) is that
the constraints under this formulation can all be made to be linear via a sim-
ple transformation (as in Kelly [12, Sect. 31). The theoretical and computational
advantages of having linear rather than nonlinear constraints are well known.

This can be achieved by setting

j Ej),jG3 (3.34)

so that

Ej=\- exp( -yj),j £ g. (3.35)

Finally, write y = (yjtj £ Q) and rewrite vr{ar,E) as vr(ar,y).
Then Formulation 3 can be written in the following way, where constraint

(3.41) is now a linear constraint.

3.4. Formulation 4

Variables: ar,re(R, (3.36)

yjjes- 0.37)

Objective: max £ ariv(a,,y)exp( - £ yjAjA - ^PjiCj). (3-38)
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Constraints: a, < ar < Wr, r 6 (R, (3.39)

%jj - Wr), r G (R, (3.41)
jes

where C, = C(p,,£,), y E 3, (3.42)

and p,- = 2 "r(«
rye/-

(3.43)

Up to this point we have only discussed networks with fixed routing—that
is, networks where each route has exactly one path through the network asso-
ciated with it. In the case of alternative routing networks, more than one path
is associated with each route. Usually there is one path that is regarded as a. first
choice path, or direct path, and any number of alternative or indirect paths. The
methods of choice of alternative path discussed in the literature vary from very
complex decisions using information gathered from all over the network to sim-
ple decentralized decisions. They also vary from the fully dynamic decision rely-
ing on exact and up-to-date information on the state of the network through to
static decisions that are independent of the state of the network.

Using a reduced load of the preceding form, it is clear that an approach
similar to that above can be used with the link capacities as the variables in the
dimensioning part of the optimization procedure. This, however, will suffer
from the same inefficiencies as did Formulation 2. For certain forms of alter-
native routing, it is possible to use the link blocking probabilities as variables
in the optimization procedure, as in Formulations 3 and 4. This will provide
similar benefits to those described there. Usually, however, extra information
will be required, such as the probability that alternatively routed calls will be
blocked on each link (due, perhaps, to a trunk reservation scheme). These also
become variables in the optimization procedure. This will have the added advan-
tage of optimally choosing the trunk reservation parameters to maximize profit
for the operating company. For a detailed discussion of reduced load approx-
imations as applied to state-dependent alternative routing schemes, see Chung,
Kashper, and Ross [4].

4. A FIXED ROUTING EXAMPLE

Consider the network shown in Figure 1 operating under fixed routing. The
network could represent a possible backbone network in Australia. Let each
origin-destination pair correspond to a route and so the network has 9 nodes,
10 links, and 36 routes. For each route, the path that a call will take is given by
the shortest possible path (in the sense of the number of links) and the matrix
Ajr is so defined.



LOSS NETWORKS 333

FIGURE 1. An example loss network.

Assume that the regulator has imposed the constraint that the route blocking
probability on all routes must be bounded above by 0.01. That is, Br = 0.01,
r E (R. No constraint has been imposed on the lower bound so Br = 0,r E (R.
Assume, further, that the regulator has imposed an upper bound of 6 on the tar-
iff for all routes. That is, a; = 6, a, = 0, r E <R. Note that for all p, C> 0, it
follows that 1 > E(p,C) > 0. This means that in Formulation 3 we usually
assume that 0 < £, < 1, j E #. This has the effect in Formulation 4 of making
0 <_yj <co,jE $. In practice, it usually pays to impose explicit bounds, and
as B~r =0.01, r E (R, the upper bound is imposed at yj < -log(0.99) = 0.01005,
j G Q. However, there is no such natural lower bound, and so we impose an arti-
ficial constraint of yj > 10~5, j E S, and so Ey > 10~5, j G 3, as well. The solu-
tion (presented later) indicates that this artificial constraint does not bite and
so has no effect on the solution.

We must now define the form of the function vr(ar,Br) that defines the
traffic intensity on route r,r G (R given that the tariff is ar and the route block-
ing probability is Br. It is clear that arvr(ar,Br) must decay quite rapidly as
ocr -> oo, for all r E (R, as otherwise the reward for accepting one call will be so
large that the network will be highly profitable if it provides only one circuit
along route r and so accepts a call on route r very occasionally. Also, i>r(ar,Br)
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must be bounded above as orr -> 0, for all r 6 (R, as otherwise the optimization
procedure would have to evaluate the profit of a network offering infinite
capacity on some routes. Economic models for such a function use a sigmoid
shape, representing the fact that under competition there will usually be a
marked reduction (increase) in demand if your, tariff is more (less) expensive
than your competitor's.

The following is artificial, and practical implementations would require
research to be carried out to determine the form of the functions involved and
the parameter values.

We propose that vr(otr,Br) be the following function, for all r E (R:

f v*exp(«; - ov), if ar > a*,
vr(ar,Br) = \ (4.1)

^ vr{2 - e x p ( a r - a*)), otherwise.

This function is clearly continuous and differentiable with respect to ar E (0,oo).
Note also, that vr(ar,Br) is bounded above by v*(2 - exp(-a*)), and this
bound is attained when ar = 0.

Therefore, for each route r E (R, we need to define a* (representing the
tariff of the competitor and, hence, the point of inflection) and v* (the traffic
demand if the tariff is a*). For simplicity, let a* = 1, r E (R. We still need to
provide the values v*,rE(R representing a base traffic demand. Using approx-
imate subscriber figures for the appropriate regions, we have created a possi-
ble base traffic demand, as given in Table 1.

It now remains to define the cost per unit time of providing C, circuits on
linky E 3, labelled /3,(Cy). As described in Section 3, we assume that /3y(-) has
a form given by

Pj (Cj)=y + 8j + eCj, for all j E 3- (4.2)

For simplicity, let e = 1, y = 100, and 5y = 100, j E Q.
To solve the optimization problem, the Erlang fixed point approximation

must be used, as the network is far too large for an exact analysis. We used For-
mulation 4, where the blocking probabilities on each link, rather then the capac-
ities on each link, are treated as variables in the optimization procedure and the
constraints are all linear. A standard routine available in the NAG Library of
routines found the optimal operating point, that is, the optimal tariffs to charge
and the optimal dimensions to install. These are presented in Tables 1 and 2.

Note that with the form of traffic elasticity function and parameter values
that we have used (remember they are artificial) it has turned out that capac-
ity is expensive with respect to tariff. Thus, the optimal way to operate the net-
work is to charge high tariffs on all routes (i.e., ar > a*, rE (R), to reduce the
traffic and, hence, the cost of provision of capacity. In general, tariffs are
higher on longer routes, which makes sense, because longer routes use more
resources.
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TABLE 1. Table of Base Traffic Demands, Optimal Traffic Demands,
and Optimal Tariffs

Route Label
Base Traffic Optimal Traffic

»Aar,Br)
Tariff

Adelaide-Brisbane
Adelaide-Broken Hill
Adelaide-Cairns
Adelaide-Canberra
Adelaide-Melbourne
Adelaide-Perth
Adelaide-Port Macquarie
Adelaide-Sydney
Brisbane-Broken Hill
Brisbane-Cairns
Brisbane-Canberra
Brisbane-Melbourne
Brisbane-Perth
Brisbane-Port Macquarie
Brisbane-Sydney
Broken Hill-Cairns
Broken Hill-Canberra
Broken Hill-Melbourne
Broken Hill-Perth
Broken Hill-Port Macquarie
Broken Hill-Sydney
Cairns-Canberra
Cairns-Melbourne
Cairns-Perth
Cairns-Port Macquarie
Cairns-Sydney
Canberra-Melbourne
Canberra-Perth
Canberra-Port Macquarie
Canberra-Sydney
Melbourne-Perth
Melbourne-Port Macquarie
Melbourne-Sydney
Perth-Port Macquarie
Perth-Sydney
Port Macquarie-Sydney

12,556.80
8603.40
7040.30
677.70

38,632.80
9776.60
8327.50

25,750.90
10,764.60

8967.00
848.20

48,263.70
12,232.00
10,419.70
32,191.00

6034.60
580.70

33,143.90
8380.60
7138.00

22,084.10
475.00

27,147.10
6858.00
5840.90

18,081.20
2622.40
660.00
562.00

1744.00
37,638.50
32,086.40
98,224.40

8111.90
25,086.70
21,378.10

621.66
426.12
127.49
90.03

14,182.20
3586.71
412.50

3473.98
1450.83
3281.41

112.57
6507.85
222.80

3812.11
11,813.95

297.23
77.13

4472.85
152.09
962.26

8111.23
23.08

1339.55
46.21

781.72
2427.38
947.30
32.07
74.48

633.11
5069.48
4326.67

36,088.93
147.45

1241.96
7845.37

4.01
4.01
5.01
3.02
2.00
2.00
4.01
3.00
3.00
2.01
3.02
3.00
5.01
2.01
2.00
4.01
3.02
3.00
5.01
3.00
2.00
4.02
4.01
6.00
3.01
3.01
2.02
4.02
3.02
2.01
3.00
3.00
2.00
5.01
4.01
2.00
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TABLE 2. Table of Optimal Link Capacities and
Link Blocking Probabilities

Link Label

Adelaide-Melbourne
Adelaide-Perth
Brisbane-Cairns
Brisbane-Port Macquarie
Brisbane-Sydney
Broken Hill-Sydney
Canberra-Melbourne
Canberra-Sydney
Melbourne-Sydney
Port Macquarie-Sydney

Capacity

Cj

26,355.36
10,601.99

8422.97
4629.00

25,098.51
15,702.77

1111.22
959.95

56,699.47
14,114.85

Blocking Probability

Ej

0.0020423
0.0021478
0.0021037
0.0071315
0.0020586
0.0038879
0.0058387
0.0058664
0.0016877
0.0041053

Consider the structure of the network shown in Figure 1. There are two clear
classes of link, those that form the backbone of the network (Adelaide-Melbourne,
Adelaide-Perth, Brisbane-Cairns, Brisbane-Sydney, Melbourne-Sydney) and
those that represent side branches (Broken Hill-Sydney, Brisbane-Port Mac-
quarie, Canberra-Melbourne, Canberra-Sydney, Port Macquarie-Sydney).
Table 2 shows that this classification is repeated in the optimal allocation of
link blocking probabilities; that is, the link blocking probabilities for the back-
bone links are uniformly less than the link blocking probabilities for the side
branch links. Note that this is not a function of these links also being low-
capacity links because the link Brisbane-Cairns has less capacity than the link
Port Macquarie-Sydney.

5. OBSERVATIONS ABOUT OPTIMAL TARIFFING

The optimal tariffs for the example presented in Section 4 are very, striking. It
is clear that the tariff for each route is the number of links on the route plus
one. This description depends, of course, on the functional forms of vr(•,•).
r e (R and 0j(-),j&d and their parameters. However, by using Formulation 3,
we can prove that a relationship of a similar form always exists. In fact, the
optimal tariff always consists of a term representing the cost to the network of
carrying the call plus a constant depending only on the elasticity function of the
traffic, vr{-,-). First we require a few preliminary lemmas about the partial
derivatives of Erlang's function, E{p,C), which is defined in Eq. (2.7).

Many papers (e.g., Jagerman [7]) present an extended form of Erlang's
function that is defined for complex-valued p and C and passes through the cor-
rect values at the positive integer lattice points. The proof of the following is
given in Jagerman [7].
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LEMMA 1:

dE{p,C) /C \
= E(p,C)\ l+E(p,C) . (5.1)

dp \p /

The function E(p, C) defined in Jagerman [7] is extremely hard to evalu-
ate for noninteger C, and its partial derivative with respect to C is given only
as an approximation. In Section 3 we extended the definition of £(p, C) to non-
integer Cby using linear interpolation between its value at integer points. We
again use this extension and therefore define the derivative to be the left deriv-
ative, in the knowledge that the derivative will not be continuous.

LEMMA 2: For all x £ (C* - 1,C*], C* G Z+, the partial derivative with
respect to C is given by

dE(P,C) „, ^ . , et n . . , .- „„
=E(p,C ) — E(p,C — 1 ) , (5.2)

dC c=x

r*F(n r*)
^T7- (5-3)

PROOF: The first equality is a simple consequence of the definition of Erlang's
function for real-valued C. The second equality can easily be proved by using
the well-known recursion for Erlang's function given in Eq. (3.33). •

Recall that in Section 3 we defined the function C(p,E) as the inverse of
Erlang's function for fixed p. That is, it is defined implicitly by

E(p,C(P,E))=E. (5.4)

We can now use the preceding two lemmas and this equation to determine the
partial derivative of C(p,E) with respect to p. This partial derivative is again
a left derivative and will not be continuous with respect to p.

LEMMA 3:

( 5 5 )

) p ( l - 2 f ( p , C - ) >

= l - £ , asE(p,C")-*E, (5.6)

where C* = \C(p,E)], the smallest integer greater than or equal to C{p,E).

PROOF: The first equality is a simple consequence of differentiating Eq. (5.4)
with respect to p and using the results of the previous two lemmas. The limit
result is again a result of simple manipulation. •
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This limit result is a good approximation whenever E is small. This is
because, in this situation, E(p,C*) = E. The limit result is now intuitively
obvious. Consider two Erlang loss systems offered traffic at rate p and p + 1,
respectively, where both systems must achieve a loss probability of E. The sec-
ond system is offered an extra Erlang of traffic but needs to carry only 1 - E
extra Erlangs of traffic. Because the systems are very nearly deterministic (p, C
are usually large and E is small), the second system needs an extra 1 - E capac-
ity to carry the extra 1 — E Erlangs of traffic.

We are now able to prove the result about the optimal choice of tariff.

THEOREM 4: For fixed link blocking probabilities E, the optimal tariff, 6tr, so
that network profit is maximized, when the tariff is unconstrained, satisfies the
following equation in ar:

fflp*fi» ? M « _ ^ , E ) r ^ H i . (5.7)
Jer dC(pj,Ej) dpj \-Ej L dar 1

PROOF: Simple differential calculus applied to Eq. (3.26) is sufficient to find the
location of this extremal point. •

The summand on the right-hand side of Eq. (5.7) is the rate of change of
the cost of capacity on linky with respect to the traffic of route r and the sum-
mation is over all the links used by route r. The theorem thus explains the opti-
mal tariff as the marginal cost to the network of carrying a call plus a term
depending on the elasticity function. This result could also be used to simplify
the optimization procedure so that the variables are just the EjJ 6 $, as the
optimal tariff can now be determined for any set of link blocking probabilities
E. However, this is not a simple task, as each p, depends on possibly all the
tariffs ar,r € (R, and so all the equations are dependent on each other.

For the case where EJtj 6 3 a r e small, an approximate result can be used
that removes this dependence and so could greatly assist with the optimization
procedure. We present this in the following corollary.

COROLLARY 5: If EjJ E&are small, then ar is approximately the unique solu-
tion to the following equation in ar,

Jer dC(pE) I da J

PROOF: Lemma 3 shows that 3C(p/,E,)/3py = 1 — E} when Ej is small. There-
fore, the fact that ar satisfies Eq. (5.8) is a simple consequence of Lemma 3
and the previous theorem. Uniqueness follows from an argument using the sig-
moid nature of y,.(ar,E) as a function of ar. •

We finish this section by considering the example presented in Section 4.
There we defined the function fy (C) to be

(5.9)
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where e = 1, 7 = 100, and 5,- = 100, j G 3- Therefore, dfyiQ/dC = 1. Also, the
function i>r{ctr,E) was defined for ar > a* = 1 to be

- a , ) . (5.10)

Therefore, dr is given by

ye*-

which is the number of links on route r plus one.

6. CONCLUSIONS

In this paper we have presented a unified formulation for the determination
of the optimal dimensions and tariffs for a loss network in order to maximize
the operating company's profit. We allow the traffic arrival intensity on a route
to depend on the tariff charged on that route and the grade of service pro-
vided on that route (in the form of the route blocking probability). By exploit-
ing the Erlang fixed point approximation, we have presented two approximate
approaches to this problem. The first is the intuitively obvious approach of
replacing the exact analysis by the fixed point approximation and so uses the
link capacities as the variables. However, by considering the link blocking prob-
abilities to be the variables, a second approach can be developed. This approach
enables enormous computational savings to be made as the determination of
feasibility is immediate. Further, the constraints can be treated as linear con-
straints by the use of a simple transformation.

Finally, we used this formulation to prove a result that explains the opti-
mal tariff as the marginal cost to the network of carrying the call plus a term
depending only on the elasticity function. This result could be used in certain
circumstances, such as where the traffic arrival rates are high and the link block-
ing probabilities are low, to simplify the optimization procedure.
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