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Larval dispersion along a straight coast with tidal 
currents: complex distribution patterns from a 

simple model 

S. A. Richards, H. P. Possingham, B. J. Noye 

Department of Applied Mathematics, University of Adelaide. Adelaide. South Australia 5005, Australia 

ABSTRACT: The majority of marine species have a complex life cycle where the adult phase is pre- 
ceded by a pelagic larval phase. The dynamics of the more obvious adult phase may be strongly influ- 
enced by the distribution and abundance of larvae. Field experiments have been unable to give a com- 
plete picture of the spatial-temporal dynamics of the larval phase. This is due to the extremely small 
size of the individual larvae and the environment in which they live. Here we present a mathematical 
model of the dispersal of larvae into a region consisting of a straight coastline and a current dominated 
by tidal effects. Spawning 1s near the coast from a well-defined site the size of a small jetty or reef and 
the larvae have a relatively short pelagic Metime. The model is based on the advection-diffusion- 
mortality equation. Using a new analytic solution to the model, we examine the effect of processes such 
as the current structure, mortal~ty, and the duration and rate at which larvae are released, on dispersal. 
The model is relatively simple but produces surprisingly complex patterns of d~spersal. This has impli- 
cations for attempts to produce more complex models of dispersal and the way In which field data of 
larval densities should be interpreted. 
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INTRODUCTION 

Many marine organisms have a complex life cycle 
in which the early stage is a pelagic larval form. 
Adults release their larvae into the surrounding water 
column where they are influenced by hydrodynamic 
processes like advection and eddy diffusion. This 
results in the dispersal of larvae away from their 
release site. Even though it has long been recognised 
that knowledge of the presettlement processes affect- 
ing larvae is important to understanding the popula- 
tion dynamics of the adult stage, recently there has 
been a stronger emphasis on this issue (Butler 1987, 
Menge & Sutherland 1987, Roughgarden et  al. 1988, 
Dight et al. 1990, Possingham & Roughgarden 1990, 
Sale 1990, Fairweather 1991, Havenhand 1991b, 
Minchinton & Scheibling 1991, Gaines & Bertress 
1992, James & Scandol 1992, Koehl et al. 1993). Previ- 
ously, local populations were often modelled by con- 
sidering local conditions only. It is now realised that 
the inclusion of conditions at a larger spatial scale is 

required to understand the large variations in recruit- 
ment observed in the field. 

The larval phase is important when considering 
issues such as marine reserve design, environmental 
monitoring, and the impact of humans on populations. 
For species with a long pelagic larval phase in particu- 
lar, changes in large-scale hydrological conditions can 
dramatically affect the dynamics of a local population. 
Knowledge of the processes involved in larval disper- 
sal is important for understanding gene flow between 
spatially distinct communities, especially when the 
adult phase is sessile (Todd et al. 1988, Havenhand 
1991a, Planes 1993). Where local extinctions of marine 
species occur, the extent of larval dispersal is critical 
for recolonisation. 

Very few critical experiments and measurements 
have been made on larval dispersal (Okubo 1980, 
Jackson & Strathmann 1981, Barnes & Mann 1991). 
This has been due to the difficulties in observing and 
collecting such small organisms in the field (Strath- 
mann 1974, Fairweather 1991, Scandol & James 1992). 
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The purpose of this paper is to construct a mathemati- 
cal model which tracks the movements of a large num- 
ber of larvae when released from a well-defined region 
into a tidal current. The solution to the model is the 
spatially varying distribution and abundance of larvae 
within the larval cloud. This is the sort of information 
that field experiments have currently been unable to 
provide. The model is run under a variety of condi- 
tions, and the distribution patterns analysed to get a 
basic understanding of how certain processes influ- 
ence and effect dispersal. In particular we assess the 
relative importance of currents, turbulence, pelagic 
lifetime, and the duration and rate of spawning. Mea- 
surements of larval densities within a spatially con- 
fined area can be performed by sampling the water 
column, or using settlement plates or traps (Minchin- 
ton & Scheibling 1991). Our model is used to produce 
dispersal diagrams that predict the data that could be 
collected from these types of experiments and our 
results have significant implications for their interpre- 
tation. 

The model in this paper is concerned with the early 
peiagic sidye oi Liie iiie cycie d l ~ d  cvuid be used iii a 
larger model which investigates recruitment and adult 
population dynamics. The model begins with the 
spawning of larvae from a release site the size of a jetty 
or small reef. Spawning is not instantaneous (although 
the model can treat this as a special case) but continues 
over a defined period of time. Released larvae are then 
mixed into the surrounding current. The result is to 
produce a cloud of larvae with a complicated internal 
density structure. The cloud is tracked over a few days 
and its distribution examined. We consider a specific 
current regime that is typical of those found in shallow 
gulfs and large estuaries (B. J. Noye pers. obs.). We 
assume that the tides create a current that oscillates in 
a direction parallel to the coast over a 12 h period 
(Barnes & Mann 1991). We also consider the case when 
there is a steady along-shore drift acting in conjunction 
with the tidal osc~llation and then compare the results. 
Even with these simple currents surprisingly complex 
patterns of larval dispersal arise and this has important 
implications for the analysis of field data on larval 
abundance. 

Larval movement is governed by the 2-d~m.ensional 
depth averaged advection-diffusion-mortality equa- 
tion (ADME). Modelling the pelagic phase of an organ- 
ism's life cycle by the ADME is not new (Jackson & 
Strathmann 1981, Roughgarden et al. 1988, McGurk 
1989, Possingham & Roughgarden 1990, Hill 1990, 
1991a, Hinckley et al. 1993). Generally, spatial and 
temporal scales considered in previous models have 
been large and smaller scale phenomena such as the 
oscillation component of the tidal current and the dura- 
tion of spawning are neglected. For example, Hill 

(1990) considered the dispersal of Norway lobster 
Nephrops norveglcus larvae in the western Irish Sea. 
The release site was 100 km by 100 km and the larvae 
were allowed to drift for a period of 50 d towards a 
recruitment site 300 km downstream. As mentioned 
above, in our model the release site is relatively small 
and larval drift is tracked only for a few days and 
remains relatively close to the coast. We show that the 
smaller-scale effects must be included in our model 
equations as they have a significant effect on the pat- 
terns of dispersal. Actual settlement is not incorporated 
into the model equations, but with a knowledge of the 
precompetent period, and the competent period of the 
particular species of interest, the model can be used to 
show the extent of coastline where larvae are compe- 
tent to settle. 

The structure of this paper is as follows. First we give 
the governing equation for the mathematical model 
and explain in which situations it is appropriate. We 
then examine and justify the parameters used in the 
model. The numerical results are then given and 
briefly discussed. In conclusion we examine the impli- 
caiioils of the model. 

DERIVATIONS AND ASSUMPTIONS 
OF THE MODEL 

For many species of marine organisms the dispersal 
of larvae is largely controlled by horizontal currents 
(De Wolf 1973, Hannan 1984, Butman 1987, Walters 
1992). Although some species of larvae have the ability 
to swim horizontally, the period when active swimming 
can be sustained, and the speed attained, is usually 
small when compared with the surrounding water 
movement. We assume that larvae act as if they are 
passive particles. For some specles, development dur- 
ing the pelagic phase leads to the grouping of individ- 
uals (Power 1984, McGurk 1989). As we ignore hori- 
zontal swimming and schooling of larvae in our model, 
the results it produces may be relevant only for the 
early part of the pelagic phase for some species 

Diurnal vertlcal migration has been observed for 
some species of larvae. Typically, these larvae congre- 
gate in the surface waters during the night and recede 
into the depths during the day. However, this is not 
always the case and some species prefer to be at the 
surface during the day and near the bottom at night 
(Barnes & Mann 1991). Our model is 2-dimensional 
and treats all variables as depth-averaged values so 
our results specifically apply if the larvae behave in 1 
of 2 ways. Firstly, the larvae are neutrally buoyant and 
well mixed (evenly distributed) throughout the water 
column from the surface to the bottom. In this case the 
parameters used in the model such as the horizontal 
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current velocities and the horizontal dispersion coeffi- 
cients are depth averaged values. Alternatively, larvae 
maintain themselves within a bounded region in the 
vertical and they are evenly distributed within this 
region. For example, the larvae always remain within 
the first few metres of the surface (Johnson & Hess 
1990). Here, current and diffusion values represent 
averages over the region where the larvae reside. 

The ADME generally used to model the depth-aver- 
aged dispersal of a passive particle in a turbulent fluid 
is given by 

where X and y are horizontal Cartesian coordinates; 
t is time; h(x, y, t) is water depth; C(x, y, t) is depth- 
averaged concentration of larvae per unit volume; 
U(x, y, t) and V(x, y, t) are depth-averaged water veloci- 
ties in the X and y directions respectively; K,,(x, y, t), 
K,,(x, y, t), K,(x, y, t) and Kyy(x, y, t) are depth-averaged 
components of the diffusion tensor K; and M(x,y, t) is 
the depth averaged coefficient for mortality. Upper- 
case notation is used to indicate variables that are 
depth-averaged. Finding an analytic solution for 
Eq .  (1) is possible only if some assumptions are made 
on the boundary conditions and the functional forms 
of the parameters. 

We consider dispersal within a region bounded on 
1 side by a long straight coastline (or estuary bank) that 
coincides with the x-axis (see Fig. 1). We assume that 
the effect of the tide is to produce a current that is par- 
allel to the coastline such that at any instant in time it 
has uniform strength and direction everywhere. Thus 
the depth-averaged across-shore current velocity 
V(x, y, t) is set to zero and the depth-averaged along- 
shore current velocity becomes a function of time only, 
i.e. U = U(t). 

The spreading of the larval cloud is due to the terms 
containing the components of the dispersion tensor K. 
These components are used to represent turbulence 
caused by the existence of eddies (erratic circular 
motions of water) which distort and mix the larval 
cloud. The resulting effect of an eddy on the larval 
cloud is dependent on scale. If the size of the eddy is 
much larger than that of the larval cloud, then the 
cloud will tend to be advected as a whole following the 
motion of the eddy, whereas if the eddy is smaller than 
the cloud, it will tend to mix and break up the cloud, 
resulting in an overall increase in size of the cloud 
(Bowden 1964, Okubo 1980). Intuitively, the longer a 

cloud is exposed to eddies, the larger it will become 
and hence eddies which initially tended to advect the 
cloud will later aid in the process of breaking it up. 
Thus, if there exists eddies at all spatial scales, then the 
rate at which the larval cloud spreads should increase 
with time. Turbulence theory predicts that with a point 
source release the variance of a cloud will follow the 
third power of time, t. Experimental results given by 
Okubo (1971) found that a best line of fit for the data 
gave a power of 2.34. Okubo (1971) also related an 
apparent diffusivity, K,, with the scale of the cloud, l. 
Theory predicts that K, should follow the 4/3 power law, 
which is slightly higher than the 1.15 observed from 
data (Okubo 1971). 

It should be noted that the diffusion tensor used in 
Eq. (1) represents a statistical average of the effects of 
diffusion. In reality eddies will distort a larval cloud 
resulting in it having a very complicated boundary 
and internal concentration structure (Fischer et al. 
1979). This irregularity can not be resolved by Eq. (1); 
what is obtained is an average (not typical) concentra- 
tion profile of the cloud, hence the model gives a 
smoother distribution of larvae than would be 
observed in the field. 

We make the assumption that diffusion is composed 
of longitudinal and transverse components only (Holly 
& Usseglio 1984). As flow is in the X-direction only, we 
set the diffusion tensor components K,, = K,, = 0. Like 
the advection term U, we assume spatial indepen- 
dence of the 2 remaining diffusion components, i.e. 
K,, = K,(t) and K,, = K, , ( t ) .  This means that at any 
instant in time the turbulence contributing to diffusion 
of the larval cloud in the X-direction is the same 
throughout the region and similarly for diffusion in the 
y-direction. In reality the presence of the coastline 
and the depth of the water may influence the rate of 
diffusion. 

For this model larval mortality, M, is assumed to be 
due only to predation and starvation. A more com- 
plicated model may also include mortality effects due 
to inhospitable environmental conditions such as 
extremes in salinity and temperature. Again, spatial 
dependence is ignored and so M = M(t) and larvae are 
influenced equally throughout the entire region but 
the rate of mortality may change with larval age. 

In order to simplify Eq. (1) to a stage where an  ana- 
lytic solution may be found we assume that the water 
depth is independent of X and t, so h = h(y).  Thus, tidal 
sea-surface elevations are considered to be negligible 
when compared with the mean depth of the region 
being modelled and that there is uniformity in the sea- 
bottom bathymetry along the coast. 

The requirement that all of the parameters to the 
model be spatially independent is a limitation of the 
model. Thus, the results given in this paper may not be 
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applicable to the situation when environmental condi- 
tions, such as eddy turbulence, larval mortality, etc., 
vary considerably throughout the region where disper- 
sal takes place. We feel that spatial independence is a 
reasonable first approximation when modelling dis- 
persal over the relatively small range of tens of kilome- 
tres. 

With the above assumptions the ADME is simplified 
to, 

where S = S(x, y, t )  = h ( y )  C(x, y, t); U = U(t); K,, = K,(!); 
K, = K,(t) and M = M(t). The unknown variable S 
is the depth-integrated concentration which by defini- 
tion is the product of the depth-averaged concentra- 
tion per unit volume and the water depth. This equa- 
tion is similar to the one used previously (Possingham 
& Koughgarden 1990, Hill 1990, 1991a) but is more 
general as the advection, diffusion and mortality terms 
may now be time dependent. 

PARAMETER ESTIMATION 

One of the most difficult aspects of modelling is esti- 
mating realistic values for parameters and functions for 
relationships (Hofmann 1993). In Eq. (2) we have 4 
parameters that require a functional form. They are the 
along-shore velocity profile U(t), the diffusion compo- 
nents K,(t) and K,(t), and the mortality rate M(t). We 
also need to define the size and location of the release 
site, the rate at which larvae are released from this site, 
and the time that larvae spend in the water column 
before they can settle. 

First, consider the region where the marine species 
releases its larvae. The release site might be a reef, 
mud flat or jetty. To simplify the analytic solution let 
the release site be rectangular in shape with centre at 
(xR, yR) and with sides of length 2AR and 2BR (Fig. 1). 
With all the examples given in this paper we set (xR, yR) 

Y 
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P - ? A z  - - - - - - - - . 
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Fig. 1 The geometry of the solution domaln 

= (0, 200 m); AR = 5 m; and BR = 100 m. This set of val- 
ues is used to represent a small 200 m long jetty or reef 
projecting from the coast. We consider a potential set- 
tlement site having the same dimensions as the release 
site (i.e. another jetty or small reef) located 4 km down- 
stream. The term downstream refers to the positive x- 
direction while upstream refers to the negative x- 
direction. If we use similar notation to define the 
dimensions and location of the settlement site as the 
release site then (xS, ys) = (4000 m, 200 m), As = 5 m 
and Bs = 100 m. 

Next we need to know the number of larvae, 
denoted L, that are spawned from the release site. This 
number depends on the size of the release site and the 
species being modelled. Let L = 1000000 - in the fol- 
lowing results, densities of larvae should be compared 
to this original release number. The duration of larval 
release, T, also needs to be specified along with a time- 
dependent rate, r(t) ,  representing the fraction of total 
larvae released at time t. As r(t) is a fractional rate of 
release then 

We include this rate to represent fluctuations in larval 
release that may occur. For example larvae may be 
more likely to be released during periods of darkness 
(Strathmann 1974) or when the surrounding current is 
near its peak strength. Note that the rate of release at 
any time during spawning is assumed to be equal 
throughout the release site. We can now calculate the 
rate of release of larvae per unit area within the release 
site, denoted $, by 

In all examples given in this paper we assume that 
r ( t )  is constant throughout the spawning period, r ( t )  = 
l /Tand  $ (tj = 0 = L /(4 TAR BR). For example, with para- 
meter values mentioned above if we release larvae 
continuously for 12 h (1 tidal cycle, see below) the rate 
of constant release is approximately 42 larvae m-' h-'. 

Tidal effects and an along-shore mean drift can be 
simulated by letting U have the following form 

where P is the number of sinusoidal components mak- 
ing up the tidal motion, t is time, uo is the mean along- 
shore velocity, and up is the amplitude of the oscillatory 
component parallel to the shore having circular fre- 
quency cop and phase E,. We model a tide having a sin- 
gle dominant oscillatory component with period 12 h, 
i.e. P = 1, w, = n/6. The amplitude of this component, 
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-1.2 L I 
0 3 6 9 12 15 18 21 24 

t (hours) 

Fig. 2. The 2 current profiles, U(t) ,  used in the model simula- 
tions [i.e. Eqs. (6) & (7)] 

ul,  is set to 1 m S - ' .  This is typical of the current expe- 
rienced in the gulfs of South Australia (Noye 1984). To 
see the effects of an along-shore drift on dispersal, 2 
sets of model runs are given in the next section; the 
first assumes no along-shore drift, so uo = 0 ,  and the 
other, a slow drift, uo = 0.1 m S-'. For both cases we 
assume the velocity is initially at maximum strength in 
the downstream direction, i.e. E = n / 2 .  The functional 
forms of these 2 velocity profiles is given in Eqs. (6) and 
(7 ) .  Graphs of the 2 velocity profiles are shown in 
Fig. 2. Although there appears to be little difference 
between these 2 velocity profiles the differences in the 
patterns of dispersal are quite pronounced. 

U ( t )  = 3600 sin - + - m h-' ("Q) 
U ( t )  = 360 + 3600 sin ( 7 )  

Finding functions to represent the typical effects of 
diffusion within coastal waters is difficult due to a lack 
of experimental data and the nature of the problem 
(Koehl et al. 1993). We have decided to use a range of 
values for the diffusion coefficients which hopefully 
bounds real values and it also allows us to see how 
changes in diffusion levels affect dispersal. The rate at 
which the larval cloud will diffuse is largely dependent 
on the cloud dimensions and the eddies within the 
region of the cloud. Initially, the size and shape of the 
cloud is primarily determined by the current regime 
and the duration of spawning. Consider the velocity 
profile of Eq. (6). If we ignore the effects of diffusion, 
the length in X of the larval cloud will increase with 
time due to larvae being advected away from the 
release site by the current. The maximum length of the 
larvae cloud as a function of release time is plotted in 
Fig. 3. For release times greater than 12 h the maxi- 

mum length remains at  approximately 13.75 km. The 
length in y of the cloud is fixed at 2 B R  = 200 m, due to 
there being no water movement in the y-direction. 
Clearly the cloud extends a long way along the coast 
within a short period of time. A similar result occurs 
with the velocity profile of Eq. ( 7 ) ,  although there is no 
upper limit to the length in X that the cloud may attain. 
Okubo (1976) gives a functional form for the rate of dif- 
fusion which best fits data previously collected. This 
function, K(r), assumes a point source release and is 
given by, 

where Kand r have units cm2 S '  and cm, respectively. 
From Eq. (8) we can find the rate of diffusion of a cir- 
cular cloud of radius r. We assume the eddies that 
cause diffusion of a cloud of radius r have themselves a 
radius less than or equal to r. Hence, if the size of the 
larval cloud is less than the size of the surrounding 
eddies, the rate of diffusion is determined by the size of 
the larval cloud but if the cloud is larger than the range 
of eddies, the rate of diffusion is bounded by the size of 
the largest eddies. The presence of the coastline 
reduces the maximum size of the eddies that can exist 
within the coastal waters. 

Two base values for diffusion, K, are used in this 
paper. They are K = 1000 m2 h-' and K =  10000 m2 h-'. 
Substituting these values into Eq. (8) and allowing for 
the difference in scale we can obtain a radius value 
that corresponds to the rate of diffusion. For K = 
1000 m2 h-', r = 102.3 m and for K = 10000 m2 h-', r = 

757.4 m. In our model we assume that the eddies 

0 0  
0 2 4 6 8 10 12 

t (hours) 

Fig. 3. Approximate length of the larval cloud when diffusion 
effects are ignored and larvae are released continuously for 
12 h into the current regime given by Eq. (6). The release 
begins at t = 0 when the flow is at its maximum strenqth in the 
downstream direction. This graph is derived by integrating 

Eq. ( 6 )  



64 Mar Ecol Prog SE 

within the coastal waters are bounded in radial size by 
either approximately 100 m or 750 m. Recalling the 
result given above on the initial size of the larval cloud, 
if we let spawning take place for more than a few hours 
the larval cloud will quickly attain a length that is 
much greater than that of the eddies. Thus it is reason- 
able to assume that the rate of diffusion is very near 
constant for all time. Note that if instead larvae were 
released instantaneously as a single point source, then 
a time dependent rate of diffusion based on the result 
given by Eq. (8) would be more appropriate. 

Observations in the ocean have shown that a cloud 
of particles tends to be elongated in the direction of 
flow (Bowden 1964, Okubo 1980), commonly referred 
to as the 'shear effect'. This effect is due to the verti- 
cal diffusion of water mass within a sheared vertical 
velocity profile. Particles (or larvae) at differing 
depths are advected with different speeds resulting in 
an apparent increase in the horizontal diffusion of the 
particles in the direction of the current. The increased 
rate of diffusion is dependent on the rate of vertical 
mixing and the vertical velocity profile. Bowden 
(1964) quoted an increase in tne rare oi aiifusion 'Dy a 
factor of 10 while Holly & Usseglio (1984) suggested 
the increase factor to lie in the range of 20 to 30. Here 
we  assume that diffusion is influenced by shear 
effects so diffusion in the X-direction is 10 times 
greater than that in the y-direction i.e. K, = 10Kw. 
Considering 2 base values of diffusion we  run the 
model for both velocity profiles given by Eqs. (6) and 
(7) with the 2 pairs of diffusion parameters given in 
Table 1. 

The rate at which larvae are lost, M ( [ ) ,  is influenced 
by biotic and abiotic factors, i.e. food, predators, and 
temperature. Mortality rates of pelagic larvae are diffi- 
cult to measure and are bound to be variable. Jackson 
& Strathmann (1981) quote a range of figures from 
0.034 d-' for a crab of the genus Halicarcinus up to 
0.65 d- '  for Calanusnauplii. Hinckley et al. (1993) per- 
formed a field study to estimate an age-dependent rate 
of mortality for walleye pollock larvae. They found that 
mortality rates were generally higher for young fish 
larvae and decreased with age and size. The maxlmum 
rate estimated from this study was 0.0575 d-l, which 
was low when compared with previous estimates for 
the same species. For all the results given in the next 
section we  set the mortality rate to be constant at 
0.02 h-' (0.48 d- l ) .  At this rate approximately 38% of 
the larvae die per day. 

In this paper we track the movement of larvae for 
only a few days as the important characteristics of dis- 
persal produced by our model can be detected within 
this period of time. An example of a species that has a 
larval stage which spends several days in the plankton 
is the greenlip abalone (Shepherd et al. 1992). 

RESULTS 

Subject to the reflective boundary condition at the 
coastline, Eq. (2) can be solved to give an analytic solu- 
tion, S(x, y, t ) ,  provided the release of larvae is assumed 
to be instantaneous. To obtain a solution for the case 
when larvae are released continuously over a period of 
length T, we integrate the solution for the instanta- 
neous release with respect to time over the release 
period. We solved the integral analytically using the 
simple Composite Simpson Rule (Mathews 1987, 
Conte & de Boor 1988). 

The number of larvae, N(t), within the water column 
above a settlement site at a particular time can be cal- 
culated by integrating the depth integrated concentra- 
tion, S(x,y,t), over the settlement site i.e. 

Like the function S(x,y,t), an analytic solution for N(t) 
can be found provided the release of larvae is assumed 
to be instantaneous, whereas numerical integration is 
required ii idrvae dre reiedseci ovei d period of iime. 
The mathematical solutions to Eqs. (2) and (9) are 
given in the 'Appendix'. 

The release of larvae into the current described by 
Eq.  (6) is first considered. If we ignore the effects of 
eddy diffusion then an approximation to the size and 
location of the larval cloud can be made from the cur- 
rent velocity profile. For the case considered above, 
where larvae are released over a 12 h period, the 
approximate distribution of larvae along the coast is 
given in Fig. 4 .  At time t = 0, larval release begins from 
the release site located at X = 0. Initially the current is 
at  its maximum strength and larvae are quickly moved 
downstream. For the next 3 h the current gradually 

t (hours) 

Fig. 4 .  Approximate along-shore distribution of larvae when 
released continuously for 12 h into the current regime given 

by Eq. (6)  
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present. It can be seen that the number of larvae over 
the settlement site, N(t ) ,  fluctuates a lot initially, but 
then settles down to become more smooth and peri- 
odic. In order to understand how the large spikes and 
sharp jumps in concentration are formed, we need to 
consider what is happening at  the time of release. 

The density of larvae at the point of release is depen- 
dent on the rate of release and the speed of surround- 
ing water. Here, larvae are released at a constant rate 
throughout the spawning period and so fluctuations in 
the concentration profile can be determined from the 
current. At times of slack water during the release 
period (i.e. t = 3 and 9 h) we would expect the concen- 
tration of larvae at the release site to be higher than at 
any other time during the release. This is because the 
volume of water into which the same number of larvae 
are released is smaller at slack periods than at times 
when the current is faster. Thus high larval concentra- 
tions are produced at the release site at both the 3rd 
and 9th hours. These high concentrations are then 
advected by the current along the outer curves given 
in Fig. 4. Thus, after 9 h of release 2 peaks in concen- 
tration are located at both ends of the cloud. It is inter- 
esting to note that a jump in concentration will occur 
6 h after release. This jump occurs because the larvae 
released at t = 0 return back to the release site after 6 h 
of drifting with the tide where they then mix with 

decreases in strength until eventually the water 1400 

becomes still (slack water), by this time the larval cloud 
extends nearly 7 km downstream starting from the 1200 * 

release site. The current then reverses direction and 1000 - 
for the next 6 h larvae are advected upstream until 

Fig 5. Number of larvae, N(t), at the downstream settlement 
site for a 12 h release into the current given by Eq. (6 )  with 
diffusion rates (a) K, = 10000 m2 h-', K, = 1000 m2 h-'; and 

(b) Kxx = 100000 mZ h-'. K, = 10000 m2 h-' 

another slack occurs. From the graph we can see that 800 

after 9 h of release the larval cloud extends nearly 3 
14 km upstream from the release site. This is the max- 600 

imum length obtained by the larval cloud (if we ignore 
400 

diffusion processes) and the effect of the current after 
the 9th hour is to periodically advect the cloud up and 200 
down the coast about the central release site. 

newly released larvae. From Fig. 4 we can see why the 
first and second occurrences of the larval cloud at the 
settlement site are quite different in shape. The 2 dom- 
inant spikes present in the second and subsequent 
passes of the cloud are due to the high concentration of 
larvae produced during slack water at the 9th hour. 
This peak in concentration periodically moves back 
and forth past the settlement site gradually decreasing 
in magnitude due to larval mortality and the processes 
of diffusion. The graph given in Fig. 4 is used to 
explain the shape of the more complicated curves 
given in Fig. 5 and hence is useful in qualitatively ver- 
ifying the analytic solution. 
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Table 1. Diffusion parameters used in the model 

K,, (m2 h-') K, (m2 h-') 

Low rates of diffusion 10 000 
High rates of diffusion l00000 l0000 

By ruling a line parallel to the t-axis which intersects 
o U 1 '  m *  

the x-axis at the 4 km mark in Fig. 4 ,  we can predict 
when larvae will be present at the potential settlement 500 

site. Observing where the straight line intersects the 
curves we can see that larvae should first appear 400 
approximately between the 1st and 5th hours. Larvae 
are next expected to appear between the 11th and 19th 
hours. Fig. 4 also shows that not all of the larval cloud 3 300 

2 
actually passes the potential settlement site; in fact, a g 
section at the upstream end of the cloud is never z 200 

observed at the downstream site as the cloud drifts 
periodically up and down the coast with the current. 100 

Fig. 5 shows the number of larvae, N(t), at the poten- 
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, l  I:, 

-17 
1 \ 1 1 l \ , l . \ ? \  r 

I l \ tial settlement site for the 2 sets of eddy diffusion rates 1 1 1  \ l  [ i  ,Lq 
0 . l ' ,  . . , - , . , , '-,' , . ~ - r W  

given in Table 1. Both graphs are similar in shape and 0 6 12 18 24 30 36 42 48 54 60 66 72 
agree with the predicted times when larvae should be t (hours) 
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Contour plots of larval distribution, S(x,  y, t), 36 h 
after the start of release are given in Fig. 6 for both 
cases of eddy diffusion. Here we can see the effects of 
diffusion in spreading the larvae offshore. An increase 
in the rate of diffusion in the y-direction has resulted in 
larvae being mixed further offshore, leaving fewer 
numbers of larvae within reach of the settlement site. 
Thus the rate of cross-shore mixing appears to be an 
important factor in determining the number of compe- 
tent larvae that will encounter a coastal settlement site. 
If the rate of mixing is low, then larvae tend to always 
remain close to the coast whereas if the rate is 
increased larvae are more likely to drift offshore away 
from desired settlement sites and hence eventually die 
from mortality effects. The contour plots also show the 
2 peaks in concentration within each cloud. In both 
cases as time progresses the 2 peaks in concentration 
continue to diffuse and eventually merge to form a sin- 
gle peak. Again it is stressed that the model provides a 
statistical average of the number of larvae and hence 
the shape and internal structure of the larval cloud 
would in reality be more complicated than is suggested 
by these smooth coilioiii plots. 
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Fig. 6 .  Contour plots of the depth integrated concentration, 
S(x,y,t), 36 h after the start of release The release is contlnu- 
ous over a period of 12 h into the current given by Eq. (6) with 
diffusion rates (a) K, = 10000 m2 h-', Kw = l000 m2 h-'; and 

(b) K,, = 100000 m2 h-', K, = 10000 m2 h-' 

t (hours) 

Fig. 7 Approximate along-shore &stribution of larvae when 
released continuously for 12 h into the current regime given 

by Eq. (7) 

-- 
I he model is now driven with the current given by 

Eq. (7) to see the effect the constant along-shore com- 
ponent, uo, has on the patterns of dispersal. We con- 
sider the same release conditions as before and again 
run the nlodei with the 2 cases of eddy diffusion yiveii 
in Table 1. 

We can approximate the length and location of the 
larval cloud from the current profile as before. This ap- 
proximation is given in Fig. 7. As expected the addition 
of the along-shore component has removed the sym- 
metry of the cloud movements about the release site. 
Hence the periodic appearance of roughly symmetric 
patterns of larval numbers drifting over the settlement 
site will be replaced by a more complicated pattern. 
The larval cloud now drifts with a mean speed of 360 m 
h-' downstream and so the times when larvae are pre- 
sent at the settlement site becomes limited. We can see 
that in the absence of diffusion effects larvae must be 
prepared to settle within less than 48 h from the start of 
release if they are to have any chance of being re- 
cruited to the downstream site. Also, Fig. 7 shows that 
2 slack conditions in the current occur during the re- 
lease period ( t= 3.2 and 8.8 h) and as a result 2 peaks in 
larval concentration will form as before. 

Graphs of the analytic solution for the number of lar- 
vae, N(t) ,  at the downstream settlement site for both 
pairs of diffusion rates are given in Fig. 8. Here we see 
a dramatic change in the patterns of larval drift over 
the settlement site when compared with the previous 
current. Contour plots of the cloud show a similar 
shape and size as before with corresponding rates of 
diffusion. The differences between the numbers ob- 
served at the downstream site is because unlike previ- 
ously the same section of the cloud is not passing the 
settlement site with a constant period. This removes 
any repeating patterns being observed, resulting in 
irregular numbers of larvae drifting over the settle- 
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0 6 12 18 24 30 36 42 48 54 60 66 72 
t (hours) 

t (hours) 

Fig. 8. Number of larvae, N(t ) ,  at the downstream settlement 
site for a 12 h release into the current given by Eq. (7) with 
diffusion rates (a) K,, = 10000 m2 h- ' .  Km= l000 m2 h-'; and 

(b) K, = 100000 m2 h-', K,,,, = 10000 m2 h" 

ment site with time. As expected the higher rates of 
diffusion have moved more of the larvae offshore and 
smoothed the fluctuations in numbers observed at the 
settlement site. In fact, after 30 h the larval cloud in the 
more turbulent water has lost most of its irregularities 
to diffusion and as a result the numbers observed when 
the cloud passes are very smooth unlike the less turbu- 
lent case. Fig. 8 also shows the periods in time when 
larvae are present over the settlement site. The 
increase in turbulence has increased the size of the 
cloud and as a result the periods when larvae are pre- 
sent at the settlement site become longer. 

If the duration of spawning is increased from 12 h for 
the current regime described by Eq. (6), then from 
Fig. 4 we can see that the larvae released after the 
12th hour are always mixed with earlier released lar- 
vae. For example, 1 of the 2 peaks in concentration 
within the cloud is always present at the release site 
during a slack (i.e. 15th hour, 21st hour, etc.) and so the 
newly formed peaks in concentration are superim- 
posed over the old. Thus even if the duration of spawn- 

ing is longer than 12 h the general shape and size of 
the cloud remains and hence the patterns of larval 
numbers present at the settlement sites is also similar. 
This is not the case when the current regime of Eq. (7) 
is considered. Now, peaks in concentration formed 
during slack periods are not superimposed over previ- 
ously formed peaks and as a result the structure of the 
larval cloud can become extremely complicated. 

Fig. 9 shows larval numbers, N(t) ,  at the downstream 
site when 1000000 larvae are released at a constant 
rate over a period of 48 h (4 tidal cycles) when both 
pairs of diffusion rates given in Table 1 are considered. 
The rate of release can be calculated using Eq. (4) with 
r ( t )  = 1/48 to give 9 = 10 larvae m-2 h-', i.e. a quarter of 
the previous rate. From Fig. 9 we can see that for both 
cases the number of larvae observed fluctuates wildly. 
A close examination of the graphs reveals a 12 h cycle 
in numbers occurring between the 12th and 60th 
hours. The duration when a cycle can be observed is 
the same length as the duration of release and the 
cycle has the same period as the tide. 

t (hours) 

180 r 

160 - 

0 6 12 18 24 30 36 42 4 8 5 4 6 0 6 6 7 2  78 84 90 96 
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Fig. 9. Number of larvae, N(t ) ,  at the downstream settlement 
site for a 48 h release into the current given by Eq.  (7) with 
diffusion rates (a) K,, = 10000 m2 h-', Kw = 1000 m2 h-'; and 

(b) K,, = 100000 m2 h-', Kw = 10000 m2 h-' 
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DISCUSSION 

In this section we briefly give the motivation for this 
work, explain the implications of our results and then 
describe some avenues for future work. 

Success or failure at the pelagic larval stage of devel- 
opment of many marine invertebrates and vertebrates 
is a major determinant of the dynamics of the adult 
population. Thus it is important that we have a com- 
plete understanding of the processes that affect larval 
distribution. As field experiments have so far been 
unable to provide a complete picture for dispersal, a 
mathematical model has been constructed. We model 
the release of larvae over a period of time from a well 
defined region into an oscillating tidal current. The 
cloud of larvae that is produced is then tracked as it 
drifts along the coastline over a period of a few days. 
The model is also used to predict the number of larvae 
wiihin a bounded region oi interest, e.g. a reef or jetty. 

The results from the model come from an analytic 
solution to the advection-diffusion-mortality equation. 
In order to derive an analytic solution we need to make 
ci numbcr ~f assumi;tions. The main assumptions are 

now briefly reiterated. Larvae are treated as passive 
particles, i.e. their movements are totally dependent on 
the surrounding water current. The model domain is a 
straight coastline with an oscillating tidal current that 
runs parallel to the coast. Parameters such as currents, 
rate of turbulent diffusion, and mortality are time 
dependent only, i.e. they are spatially homogeneous. 
The release site and settlement site are rectangular in 
shape. After analysing the results of the model we con- 
clude the following. 

The contour plots indicate that the size and shape of 
the larval cloud is influenced by eddies. The larger and 
stronger the eddies are, the greater the mixing action 
within the cloud and subsequently the larger the cloud 
becomes. Cross-shore movement of larvae is solely 
due to turbulence. With the reflective boundary condi- 
tion at the coast an increase in the cross-shore rate of 
diffusion, K,, results in a larger proportion of the lar- 
val cloud extending further out from the coastal 
waters. If settlement sites are located near the coast, 
then fewer larvae have the opportunity to settle (Jack- 
son & Strathmann 1981, Possingham & Roughgarden 
1990). Increasing the rate of along-shore diffusion, K,,, 
lengthens the cloud which in turn increases the time 
frame when larvae are present at a coastal site. This 
effect can be seen in Figs. S & 8. 

The model indicates that the current, U ( t ) ,  plays an 
important role in controlling where the larvae drlft and 
hence where settlement can take place. The interac- 
tion of the current with the timing and duration of 
spawning determines the initial size and concentration 
profile of the larval cloud. Larvae that are released 

from a site into a fast-moving stream of water are 
spread more quickly over a greater area than if the lar- 
vae are released into slack water. Thus the density of 
larvae within the cloud is dependent on the current 
strength at the time of release. 

The timing of larval release with the phase of the 
tide is important in determining the length of the cloud 
especially when the duration of release is of the order 
of less than a tidal period. For example, release over a 
short period of time into a fast moving current will pro- 
duce a larval cloud which is larger than if release is 
during slack water. The larger the cloud produced dur- 
ing release, the longer the extent of coastline becomes 
where settlement may take place. For a current with 
no along-shore component there is little to be gained in 
terms of increasing the length of the cloud by releasing 
larvae over a period longer than the tide (e.g. 12 h in 
this case). However, if the current does have an along- 
snore component, then the ionger the larvae are 
released the longer the larval cloud becomes. 

The length of the precompetent period and the com- 
petent period along with the flow regime are important 
in determiiiiiig when and where sett:emeilt can iaks 
place. For a flow with no along-shore component such 
as the one given by Eq. (6) settlement at the release 
site is possible regardless of the time that larvae must 
spend in the water developing. For a current with an 
along-shore component, the time frame when larvae 
are capable of settling is crucial in determining where 
along the coastline settlement may take place. For the 
current given by Eq. (7) if the precompetent period is 
longer than 40 h, unless turbulent diffusion effects are 
large it would appear unlikely that larvae would return 
to the release site in a state ready to settle. Thus new 
recruits to the release site must come from other 
spawning grounds located upstream. If this is the case, 
then an unsuccessful spawning at a release site due to 
changes in the environment will effect the dynamics of 
other populations located downstream. For species 
with a long precompetent period the success of one 
population may be dependent on the success of neigh- 
bouring populations. 

From the model presented we can see that the scale 
of dispersal is dependent on the interaction of many 
processes. These include current profiles, turbulence 
effects, mortality effects, the length of the precompe- 
tent and competent period, spawning characteristics 
and size and location of settlement sites. Hence there is 
the possibility for great variability in the range of suc- 
cessful settlement if any of these processes are dis- 
turbed or altered in any way. 

Even with the simple assumptions, the model has 
produced surprisingly complex patterns of dispersal 
and relaxing assumptions could only introduce more 
complexity. Thus the testing of more complex models 
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of larval dispersal is likely to be impossible as the 
effects of changing parameter values and the forms of 
functions may be difficult to detect. Another implica- 
tion of the model is in the analysis of field data. The 
model has shown that what may at a first glance 
appear to be chaotic fluctuations in larvae numbers is 
not necessarily the result of a complex current or larval 
behaviour. Thus it may be futile to attempt to recon- 
struct such things as current structure from field data 
on larval densities. 

The work presented here is based on dispersal over 
a relatively short range and period of time. As a conse- 
quence, the results and implications given here may 
not be applicable to larger scale dispersal. We expect 
that for larvae that are released from much larger 
regions and spend longer periods in the pelagic then 
smaller scale processes such as the half daily oscilla- 
tory component of the tide, and the duration and rate of 
release wlll play a lesser role in dispersal. 

Many extensions can be made to the model but as 
stated above their effect on the results will need to 
carefully examined. Below some of the extensions are 
discussed. 

By using the depth-averaged ADME we have had to 
ignore vertical effects in many of the parameters. For 
example the current, U(t ) ,  is a depth-averaged velocity 
and in reality it may vary considerably in direction and 
speed from the surface to the seabed. We have 
assumed that larvae are neutrally buoyant and are uni- 
formly distributed throughout a given section of the 
water column but if  larvae undergo daily vertical 
migration as has been reported for some species of lar- 
vae (Richter 1973, Barnes & Mann 1991, Boudrea et al. 
1991, Hill 1991b) then movements may be different to 
that presented here. In fact dispersal may be controlled 

to some extent by larvae altering their vertical position 
such that they always reside in water that flows in a 
certain direction (Hofmann 1993). By including the 
vertical we could more accurately model the shear 
effect on larvae. 

Spatial homogeneity is assumed in many of the vari- 
ables in order to allow for an analytic solution. These 
variables include the current, mortality, rate of spawn- 
ing and turbulence effects. In reality we would expect 
these parameters to vary in magnitude with spatial 
position. To include spatial dependence will require 
the model equations to be solved by purely numerical 
techniques such as the method of finite elements or 
finite differences. 

Here we have assumed a geometrically simple coast- 
line and a simple flow. The next step is to consider an  
actual coastline with real currents. This involves run- 
ning a numerical tidal model over the region and 
extracting the required velocity vectors for input to the 
larval model (Noye et al. 1992). It has been suggested 
that the geometry of the coast and the sea bed and 
wind stress may be important in generating secondary 
currents that tend to aggregate larvae into slicks 
(Shanks & Wright 1987, Wolanski & Hamner 1988). 
These secondary currents may be in the form of Lang- 
muir circulations or internal waves. Thus a good model 
of dispersal should be able to resolve such secondary 
circulations and the role they play in larval aggrega- 
tion. 
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Appendix 

In this appendix we give the semi-analytic solutions for the where 
depth-integrated larval concentration, S(x, y, f ) ,  and the 
number of larvae at the potential settlement site, N(t). We t,, = rnin(t.T) 

use the term semi-analytic as the solutions are expressed in 
the form of an integral equation which itself cannot be 
solved for analytically but can be accurately approximated 
by numerical integration techniques. 

M ( ~ , T )  = J ' ~ ( r j d T .  I 

First we consider Eq. (2) when it is subject to the reflective G(x, t , r )  = er f{a2(x , t ,~ )}  - erf{a,(x,t ,r)} 
boundary condition at the coast. The solution for the depth- 
integrated larval concentration is given by H ( y , t , ~ )  = erf{P,(y,t,rI}-erf{p,(y,t,~)} 

+erf{L(y.t,r)) -erf{k(y,t ,r)} 

(Appendix continued on next page) 
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Appendix (continued) 

and erfix) is the error hnction defined by the integral 

Due to the absence of experimental data, for all the results 
given in this paper we assumed time homogeneous func- 
tional forms for the fractional rate of larval release, r(t),  
larval mortality, M(t), and the transverse rates of turbulent 
diffusion, K,(t) and Kv(t). This leads to the following 
sirnplifications, 

To obtain the solution to N(t), we integrate the above solu- 
tlon for S(t) over the region of the settlement site. It can be 
shown that the solution to this integral is given by 

where 
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