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The role of inertia in extensional fall of a
viscous drop

By Y. M. STOKES AND E. O. TUCK
Department of Applied Mathematics, University of Adelaide, Australia

(Received 6 September 2001 and in revised form 12 August 2003)

In flows of very viscous fluids, it is often justifiable to neglect inertia and solve the
resulting creeping-flow or Stokes equations. For drops hanging beneath a fixed wall
and extending under gravity from an initial rest state, an inevitable consequence of
neglect of inertia and surface tension is that the drop formally becomes infinite in
length at a finite crisis time, at which time the acceleration of the drop, which has
been assumed small relative to gravity g, formally also becomes infinite. This is a
physical impossibility, and the acceleration must in fact approach the (finite) free-fall
value g. However, we verify here, by a full Navier–Stokes computation and also with
a slender-drop approximation, that the crisis time is a good estimate of the time at
which the bulk of the drop goes into free fall. We also show that the drop shape at
the crisis time is a good approximation to the final shape of the freely falling drop,
prior to smoothing by surface tension. Additionally, we verify that the drop has an
initial acceleration of g, which quickly decreases as viscous forces in the drop become
dominant during the early stages of fall.

1. Introduction
Extensional flow and break-off of viscous fluid drops has been much studied (see

the review article by Eggers 1997 and articles cited in Stokes, Tuck & Schwartz 2000).
In particular, fall under gravity of a drop of very viscous fluid hanging under a solid
boundary, such as honey dripping from a spoon held upside-down, was examined
by Stokes et al. (2000). Because of the high viscosity of the fluid and the relatively
large lengthscale, both inertial and surface tension forces were assumed to be small
relative to viscous and gravitational forces, and were therefore neglected in that
study. The resulting creeping-flow problem was then solved using both a slender-drop
approximation and exact finite-element computational methods. However, neglect of
inertia in the latter stages of the fall of the drop, when its acceleration is no longer
small and in reality must approach the free-fall value g, results in a finite ‘crisis’
time at which the length and acceleration of the drop formally become infinite,
simultaneously with its cross-sectional area becoming zero at some point along its
length (often close to the solid boundary).

Wilson (1988) suggested for a similar problem that this non-physical infinity could
be removed by putting inertia back into the problem, and also identified the crisis
time with the time at which the drop breaks. Kaye (1991) considered some problems
of viscous extensional flow both with and without inertia, and Cram (1984) included
inertia in a numerical study of falling drops, but neither discussed the effect of inertia
on the crisis time or acceleration. More recent references on drops that are falling
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and/or in extensional flow include Henderson et al. (2000), Wilkes, Phillips & Basaran
(1999) and Sarkar & Schowalter (2001).

Clearly, inertia can only be justifiably neglected when the acceleration of the fluid
in the drop is small compared to the acceleration due to g, and inclusion of inertia
terms in the equations of motion should lead to a solution that agrees more closely
with reality in circumstances where this assumption breaks down. It is of interest to
demonstrate this explicitly, and so determine the time at which inertia begins to play
a significant role, in the latter stages of the fall of the drop.

Actually, inertia must also be important in the very earliest stages of its fall. Neglect
of inertia yields Stokes-flow equations which imply that the initial instantaneous
acceleration of the drop is infinite and that the drop starts with an impulsively
developed initial velocity. In practice, it must undergo an acceleration from rest of
magnitude g, which is large compared to the fluid accelerations that apply soon after
motion begins, when viscous retarding forces in the drop are dominant. Again the
physics requires inclusion of inertia in any analysis of the very early stages of the
flow, if we wish to estimate the true magnitude of the accelerations.

We emphasize here the role of inertia in extensional flow and drop formation, while
in the present study still neglecting surface tension. This neglect of surface tension
does demand justification, especially since surface tension is usually believed to be
of primary importance immediately before and during the final drop pinch-off. A
comparison of the relevant scales in this class of problem shows that surface tension
becomes important when the gravitational Bond number

Bo =
ρg�2

γ

(based on an appropriate length scale � such as the mean drop diameter, where γ is
surface tension and ρ is density) is of order one or smaller. In physical terms, this
simply states that surface tension is important when such lengths � are comparable
to or smaller than the meniscus size

√
γ /(ρg), which for most fluids (including water,

honey and molten glass) is about 2 mm.
In neglecting surface tension we thus focus our attention on development and fall

of drops that are significantly larger in overall size than 2mm, such as are typical
for spoonfuls of honey, in metal arc welding with globular transfer, and in ‘gob’
formation in the glass moulding industry. Droplet diameters for globular transfer in
welding may be 4 mm and larger (Haidar & Lowke 1996), while glass gobs may range
from around 8 mm in diameter for production of optical glass elements (Gearing
1999) up to more than 100 mm, and weighing 30 to 50 kilograms, for production of
CRT television bulbs (Kary et al. 2000).

An interesting geological application for large-drop research is the formation of
salt domes (or diapirs), having diameters measured in kilometres and formed by
buoyancy- and/or tectonic-driven viscous flow of salts in the earths crust. Large
hydrocarbon reserves are sometimes associated with these structures and determining
their shape is, therefore, of considerable interest to the petroleum industry (Barnichon
et al. 1999).

In addition to relatively large drop size, we are also mainly concerned with the
relatively long time period during which the main drop is evolving, before instability
of very thin filaments and other small-scale phenomena demand inclusion of surface
tension. Nevertheless, this theory predicts the formation of such thin filaments.

In the context of inertial influence on this extensional flow, the actual shape of
the evolving drop is of considerable interest. The drop’s shape as a function of time
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is non-trivially and uniquely determined by its initial static shape, and only after a
relatively long time in free fall will surface tension mandate smoothing of that shape,
ultimately into a spherical drop. When inertia is neglected as in Stokes et al. (2000),
we are able to compute a drop shape up to but not beyond the finite crisis time.
However, since we anticipate break-off at close to this time, the drop shape at this
crisis time should be a good approximation to the subsequent shape of the freely
falling drop.

On the other hand, as soon as inertia is included in the analysis, the computations
can proceed beyond the crisis time of the inertialess theory, into a regime where the
main drop is nearly in free fall as if it were a rigid body, with an extending and
thinning filament (which has a decreasing effect on its dynamics) connecting it to
the wall. Then we can determine just how well the shape of this almost-rigid body
compares with the drop shape at the crisis time predicted by the inertialess theory. In
contrast to the inertialess theory, with inertia included and in the absence of surface
tension, the connecting filament never formally breaks, but becomes ever longer and
thinner as time increases.

As indicated above, eventually when the filament is sufficiently thin, surface tension
can no longer be neglected but will play a significant role, ultimately causing the
filament to break (Eggers 1993; Papageorgiou 1995). However, for very viscous fluids,
such filaments can, in practice, persist for very long times, well beyond predictions
given by current theories (Eggers 1997), becoming in the process very long and very
much thinner than the meniscus length, as the simple household example of a drop of
smooth honey readily shows. This behaviour is not yet well understood. It is, however,
known that, near to breakup, a balance of viscous and surface tension forces alone
is not sufficient to describe the evolution of the ever thinning thread and that inertia
enters the dominant force balance (Eggers 1997; Renardy & Losh 2002). The present
study which concentrates attention on the effect of inertia is a contribution to the
understanding of highly viscous drops and filaments.

2. Mathematical formulation
We consider a drop of incompressible Newtonian fluid with density ρ and kinematic

viscosity ν = µ/ρ, hanging beneath a horizontal surface at x = 0. The complete
mathematical formulation is similar to that in Stokes et al. (2000), but with the
addition of inertia. Thus, g acts in the x-direction and the Navier–Stokes and
continuity equations are given by

∂q
∂t

+ q · ∇q = gi − 1

ρ
∇p + ν∇2q , (2.1)

and

∇ · q = 0 , (2.2)

where q is the velocity vector, p is the pressure and i is the unit vector in the
x-direction. We consider a drop that lies in 0 < x < L(t), where x = 0 is the wall
boundary and x = L(t) is the (to-be-determined) lower free end. The drop is assumed
to be initially at rest with a given initial shape of radius R0(x, θ) (using cylindrical
polar coordinates) and having initial length L0 = L(0).

Equations (2.1) and (2.2) would usually be solved subject to no-slip boundary
conditions at the wall x = 0 and zero-stress free-surface and kinematic conditions
on all other boundaries, see Stokes et al. (2000). However, when using a zeroth-order
slender-drop approximation, we must allow slip along the wall.
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Once inertia is included in the analysis we need not be restricted to highly viscous
fluids, but may measure the influence of inertia by a Reynolds number (see below)

Re =
gL3

0

9ν2
. (2.3)

For small Re, we expect the drop behaviour to be approximated well by the inertialess
theory, with the quality of this approximation decreasing as Re increases. We present
here a number of computed results enabling quantitative assessment of this effect.
As already indicated, our main attention in the present paper is directed toward
two matters, namely computation of the acceleration L′′(t) of the bottom point of
the drop, and determination of the shape of the final freely falling drop. Very small
Reynolds numbers Re will give the best comparison with results from the inertialess
theory, but larger Reynolds numbers, i.e. less viscous fluids, display more clearly the
large-time characteristics of a falling viscous fluid drop.

We provide here computations only for axisymmetric slender drops, although it is
straightforward to treat similarly general three-dimensional drops or two-dimensional
thin sheets. Hence, the drop has initial radius R0(x) and cross-section area A0(x) =
πR2

0(x) at station x, 0 � x � L0. Its subsequent shape is described by R(x, t) or A(x, t),
0 � x � L(t), where R0(x) = R(x, 0) and A0(x) = A(x, 0). In the absence of significant
surface-tension effects, thin sheets and slender drops behave similarly, drop width in
two dimensions being analogous to drop cross-section area in three dimensions. For
extremely slender axisymmetric filaments, the large lateral curvature implies some
surface tension effects which are absent in the equivalent two-dimensional case, but
these effects do not have any major influence on the main-drop behaviour over the
time frame of interest here. Rather they are of interest in the study of pinch-off and
rupture of the filament to release the main drop into actual free fall. Significantly, our
work (both here with inertia and previously in Stokes et al. (2000) without inertia),
although neglecting surface tension, does give an indication of when and where
the high-curvature factors causing filament rupture begin to become important, and
hence when and where break-off of the drop is likely to occur, without specifying the
surface-tension-dependent details of this subsequent event.

The full flow problem defined above may be solved without approximation, using
finite elements, and we first do this to identify interesting features of the flow. Most
(but not all) of these features are also captured by a semi-analytic slender-drop
analysis to follow. An intuitive large-time asymptotic analysis for slender drops then
gives an explicit formula connecting initial and final shapes, which is confirmed by
the detailed computations.

3. Finite-element computations
A finite-element algorithm was described and used in Stokes et al. (2000) for

computing the extension under gravity of a viscous drop, neglecting inertia. We need
only modify this algorithm for the problem formulated above to include inertia.

First note that, because of the Lagrangian time-stepping method, the nonlinear
nature of the inertia terms in the Navier–Stokes equations presents no difficulties.
We simply discretize the acceleration Dq/Dt = ∂q/∂t + (q · ∇)q following a particle,
using backward Euler differencing so that (2.1) becomes

qn+1 − �t

(
gi − 1

ρ
∇pn+1 + ν∇2qn+1

)
= qn, (3.1)
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where �t is the time-step size and qn and pn are the velocity and pressure distributions
in the flow domain at the nth time step, with q0 = 0. The continuity equation (2.2) is
just

∇ · qn+1 = 0. (3.2)

Now, let a fluid particle be labelled by its initial position vector r0, and let its
position at time t � 0 be given by r(r0, t), with r(r0, 0) = r0. In particular, ξ = r0 · i
is the initial x-wise distance of this particle below the wall. Then we compute the
subsequent displacement of this particle by backward differencing, i.e.

qn+1 =
dr
dt

n+1

=
rn+1 − rn

�t
, (3.3)

where rn = r(r0, n�t) is the particle position at the nth time step. For a fixed
time step �t , displacements will become very large as time progresses and velocities
increase, giving rise to numerical inaccuracy. Hence we set a maximum permissible
displacement �m for any fluid particle and decrease the time step as necessary to
ensure that this is nowhere exceeded.

Thus, our computational algorithm can be summarized as follows:
(a) construct a mesh of interconnected nodes over the fluid region, each node

representing a fluid particle;
(b) set n = 0;
(c) use the finite-element method to solve the discretized forms of the Navier–

Stokes and continuity equations (3.1), (3.2) for the velocity qn+1 and pressure pn+1

at each of the mesh nodes, subject to the initial condition q = 0 and no-slip and
zero-stress conditions on the wall and free surface boundaries, respectively;

(d) determine the time step �t = min(�t, �m/|qn+1
i |) over all nodes i;

(e) solve (3.3) for the new position vector rn+1 of each mesh node;
(f) move each node to its new position;
(g) increment n and repeat steps (c)–(f) to obtain the time-evolution of the drop.
At time step n = 1, 2, . . . , we can compute the downward vertical component an

of the fluid acceleration of a mesh node, i.e. of a fluid particle, by simple backward
differencing,

an =
un − un−1

�t
, (3.4)

where un = q(rn, n�t) · i is the x-component of the velocity of that particle at time
step n. In particular, the vertical acceleration L′′(n�t), n = 1, 2, . . . , at the centre-
bottom of the drop, is given by (3.4) for the particle with ξ = L0. Close to t = 0, we
use a very small time step, but progressively increase this at larger times.

This algorithm has been implemented in the finite-element package Fastflo, CSIRO
(1999). An augmented-Lagrangian method was used to solve for velocity and pressure
(CSIRO 1999, pp. 165–169). Eventually, the computations must cease because of
excessive stretching of mesh elements, leading to numerical inaccuracy and ultimately
failure.

As our main example in this paper, we use an initially paraboloidal drop, with
scaled cross-section area

A0(x)

A0(0)
=

(
R0(x)

R0(0)

)2

= 1 − x

L0

, 0 � x � L0, (3.5)

having its maximum value A0(0) at the wall. Results for a drop of initial aspect ratio
αr = R0(0)/L0 = 0.1, with Reynolds number ranging from very small Re = 0.001 to
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Figure 1. Scaled vertical acceleration at the bottom of the drop ReL′′ versus scaled time t .
Initially paraboloidal drop of aspect ratio αr = 0.1 at Reynolds numbers Re = 0.001, 0.01, 0.1.
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Figure 2. Acceleration along the drop centreline as a function of Lagrangian coordinate ξ ,
corresponding to initial distance from the wall. Initially paraboloidal drop of aspect ratio
αr = 0.1 at Reynolds number Re = 0.1 and times t = 0.8, 0.9, 1.0, . . . , 4.0.

somewhat larger Re = 0.1, are shown in figures 1 to 4. A mesh of 1027 quadratic
triangular elements was used, with elements clustered near the wall where there is
most distortion from the initial shape. Computations were continued at least until
the drop acceleration had (very nearly) returned to g, but could not be taken too far
beyond this time owing to excessive mesh distortion.

Results are presented in non-dimensional form using the length scale L0, a time scale
T = ν∗/(gL0), and a velocity scale U = gL2

0/ν
∗, where ν∗ = 3ν is the elongational

kinematic viscosity (Bird et al. 1977, p. 30). This choice of viscosity and velocity
and length scales corresponds to the definition (2.3) of the Reynolds number. The
cross-section area A(x, t) is scaled with A0(0) and the drop radius R(x, t) is scaled
with R0(0).

3.1. Accelerations

The scaled vertical acceleration ReL′′(t) of the bottom-most point of the drop, which
is unity when the actual acceleration takes the value g, is plotted in figure 1. As
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Figure 3. Lagrangian evolution of the initially paraboloidal drop of aspect ratio αr = 0.1 at
Reynolds number Re = 0.1, i.e. scaled drop cross-section area A as a function of initial distance
from the wall ξ , at times t = 0.0, 0.2, 0.4, . . . , 4.0. The drop shape progressively changes from
initially paraboloidal A = 1 − ξ to a final profile A = (ξ − 0.7αr )(1 − ξ )/(1 − 0.7αr ), connected
by a thin filament to the wall boundary at ξ = 0.
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Figure 4. Eulerian drop shape, i.e. drop radius R =
√

A as a function of distance L(t) − x
from the drop bottom, at t = 2.5, 3.0, 4.0, showing that the main drop is effectively a solid
body at large time. Initially paraboloidal drop of aspect ratio αr = 0.1 at Reynolds number
Re = 0.1.

expected, the actual acceleration starts at g, falls rapidly to a small value while
viscosity dominates, and then rises, returning to g at large times when the drop is
effectively in free fall. The smaller the Reynolds number, the faster and larger is
the initial decrease in acceleration from g, the minimum actual acceleration being of
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the order of Re times g. Further, the smaller the Reynolds number, the longer the
acceleration remains small, but then the more rapid is the return to g, which also then
occurs nearer to the crisis time of the inertialess theory, which is t ≈ 2 for the present
initially paraboloidal example, with t → 2 as αr → 0 (as seen later from (4.16)).

The above discussion relates strictly only to the acceleration of the particle at the
very bottom of the drop. It is also of interest to consider other particles. Plotting
vertical acceleration versus particle label ξ along the drop centreline, as is done for
Re = 0.1 in figure 2, reveals an interesting characteristic of the flow in the falling
drop.

In the very early stages of commencement of fall (not shown), the actual acceleration
throughout most of the drop is g, but this acceleration quickly decreases in
the viscosity-dominated time range. During this initial time, the curves show an
acceleration increasing with ξ , with the maximum acceleration at the bottom ξ = 1.

However, this soon changes, and the particle with maximum acceleration soon
becomes one that was initially close to the wall, with a label of the order of ξ = αr � 1,
although in terms of the actual distance x, this particle is typically quite far from
the wall for times t > 0. As this change occurs and as the acceleration throughout
the lower bulk of the drop approaches g, the maximum acceleration in the upper
part of the drop may even exceed g for some time. For the case Re = 0.1, αr = 0.1
illustrated in figure 2, the acceleration rises to a maximum value of about 1.03g when
t ≈ 3.1 and ξ ≈ 0.11 (x ≈ 5.1). Subsequently, the maximum acceleration decreases
to g, until we effectively reach a steady state with the bulk of the drop in free fall.
Decreasing the aspect ratio of the initial drop results in an increase in the peak value
of acceleration (e.g. for Re = 0.1 and αr = 0.05, the acceleration reaches about 1.08g

at t ≈ 2.8), whereas decreasing the Reynolds number Re causes a decrease in this
peak value, so that for Re = 0.01 and αr = 0.1 the acceleration in the drop does not
significantly exceed g ever (to within numerical accuracy).

After a sufficiently long time, the fluid in a region just below the wall, of approximate
initial scaled length αr , has an acceleration that reduces rapidly from g at ξ ≈ αr ,
to 0 at the wall ξ = 0. This region 0 < ξ < O(αr ), occupying a smaller and smaller
fraction of the initial length of the drop as the aspect ratio αr decreases, includes but
extends somewhat beyond the ‘wall boundary layer’ discussed in Stokes et al. (2000).

In figure 2 the acceleration profile reaches a steady state by t ≈ 4. Reducing
the Reynolds number reduces the time period during which the acceleration profile
evolves, with this time period approaching a sudden jump at the crisis time t ≈ 2 as
Re → 0 (cf. figure 1).

3.2. Drop shapes

In figure 3 we plot, for a range of times t and for Re = 0.1, the scaled drop cross-
section area A versus the particle label ξ . This is a ‘Lagrangian’ evolution plot.
Similarly, in figure 4 we plot a true Eulerian drop shape, namely R versus distance
L(t) − x from the bottom of the drop. The latter plot shows just the portion of the
drop furthest from the wall containing the bulk of the fluid mass. Both plots show the
drop shape to be effectively unchanging at large time, excepting for an ever-thinning
filament connecting the main drop to the wall. Overall filament and drop shape R

versus x is shown in figure 10.
At about t = 3.1, as the acceleration in the bulk of the drop nears g, there is a

pinching of the drop near ξ ≈ αr , corresponding to a particle located at a distance
L(t)−x ≈ 3 from the bottom of the drop and from where the filament extends back to
the wall. The position and time at which this pinching becomes evident corresponds
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to the position and time at which the acceleration in the drop reaches its maximum
value. Referring to figure 2 we see that in the filament region above this position,
the acceleration decreases to 0 at the wall, which is to be expected from physical
considerations. Because this pinching occurs when the bulk of the drop has almost
reached free fall, it will occur closer and closer to the crisis time as Re → 0, and can
be associated with the ultimate breaking off of the main drop.

The drop and filament behaviour can be understood with reference to the inertialess
theory of Stokes et al. (2000). In the connecting filament attaching the drop to the
wall, viscous forces are still dominant even at large times, so that the acceleration
is small and inertia can therefore still be neglected in this region. The main bulk of
the drop in virtual free fall below this filament exerts minimal force on the filament,
so that we have, effectively, a thin fluid filament extending under the influence of its
own mass alone. While the main drop shape remains fairly constant, the shape of the
connecting filament will, in the absence of surface tension, develop according to the
inertialess theory of Stokes et al. (2000).

4. Slender-drop approximation
Considerable insight into this type of extensional flow can be obtained through an

approximate one-dimensional slender-drop analysis which is not subject to numerical
inaccuracy arising from a deforming mesh as in the above finite-element computations.
The following development in the main relates to three-dimensional drops where the
drop length is much greater than any cross-section area; however, it also applies to
two-dimensional sheets where the length is much greater than the sheet thickness.

In a Lagrangian reference frame (Wilson 1988; Stokes et al. 2000) we let x = X(ξ, t),
where ξ is a fluid-particle label such that x = ξ at t = 0. The initial drop geometry is
assumed to have a cross-section area distribution given by some function A0(ξ ). That
is, A(ξ, 0) = A0(ξ ), 0 � ξ � L0, where A(ξ, t) is the cross-sectional area at label ξ

and time t , and L0 is the initial drop length.
Consider a small element located at ξ = ξ1, with length dx = Xξ (ξ1, t) dξ1 and

volume dV = A(ξ1, t) dx. Conservation of mass demands that dV is time-independent,
i.e. A(ξ1, t) dx = A0(ξ1) dξ1. Since dx = Xξ dξ1, we have

A
∂X

∂ξ
= A0 , (4.1)

which is the differential form of the Lagrangian continuity equation. Integration from
the wall to a general ξ yields

X(ξ, t) =

∫ ξ

0

A0(ξ1)

A(ξ1, t)
dξ1 (4.2)

as in Stokes et al. (2000).
Newton’s second law for this element states that its mass multiplied by its downward

acceleration is equal to its weight less the net viscous force resisting elongation. The
latter viscous force can be written as stress σ multiplied by area A on the top side
ξ = ξ1 minus that on the bottom side ξ = ξ1 + dξ1. Thus, if a = a(ξ1, t) = Xtt (ξ1, t) is
the downward acceleration,

(ρdV )a = (ρdV )g +

[
σA

]ξ=ξ1+dξ1

ξ=ξ1

. (4.3)
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Using the continuity requirement dV = Adx = A0dξ1 as above, and summing over all
elements ξ = ξ1 lying below station ξ , assuming zero stress σ = 0 at the bottom
ξ = L0 of the drop, we have∫ L0

ξ

ρ [g − a(ξ1, t)] A0(ξ1) dξ1 = σ (ξ, t)A(ξ, t) = −µ∗ ∂

∂t
A(ξ, t). (4.4)

In the above, µ∗ = 3µ is the elongational (Trouton) viscosity (Bird et al. 1977, p. 30),
which relates stress σ and elongational rate of strain −At/A. Integrating (4.4) with
respect to time t gives

A(ξ, t) = A0(ξ ) − ρ

µ∗

∫ L0

ξ

A0(ξ1) [gt − u(ξ1, t)] dξ1, (4.5)

where u(ξ1, t) = Xt (ξ1, t) is the downward velocity of the element at ξ = ξ1.
Equation (4.5) is the appropriate generalization of the corresponding inertialess

equation in Stokes et al. (2000), namely that resulting from dropping the term in u,
and is to be solved together with the continuity equation (4.2).

Equivalent Eulerian equations are also not difficult to construct. Defining a small
slenderness parameter (in three dimensions) as the maximum value of

√
A0(x)/L0, a

formal asymptotic expansion of (2.1) and (2.2) with respect to this parameter yields
equations for the Eulerian velocity u(x, t) and cross-section area A(x, t), namely a
‘one-dimensional Navier–Stokes equation’

∂u

∂t
+ u

∂u

∂x
= g + ν∗ 1

A

∂

∂x

(
A

∂u

∂x

)
(4.6)

(ν∗ = µ∗/ρ), and a one-dimensional continuity equation

∂A

∂t
+

∂

∂x
(Au) = 0 . (4.7)

Equations equivalent to (4.6) and (4.7) were given by Kaye (1991). In practice, the
Lagrangian system (4.5) and (4.2) is much easier to solve. However, the presence of
the term in u = Xt in (4.5) couples the two Lagrangian equations and variables X

and A together, which means that the Lagrangian solution is no longer explicit as a
pair of quadratures, as it was in Stokes et al. (2000).

4.1. Nonlinear diffusion equations

We proceed by differentiating (4.5) with respect to ξ , dividing through by A0(ξ ), and
then differentiating again with respect to ξ to give

∂

∂ξ

[
1

A0

∂

∂ξ
(A − A0)

]
= − 1

ν∗
∂u

∂ξ
. (4.8)

Differentiating (4.2) with respect to t and ξ gives uξ in terms of A, and substituting
into (4.8) finally yields

∂A

∂t
= ν∗ A2

A0

∂

∂ξ

[
1

A0

∂

∂ξ
(A − A0)

]
. (4.9)

For any given initial drop shape A0(ξ ), we must solve the partial differential
equation (4.9) for A(ξ, t) subject to the initial condition

A(ξ, 0) = A0(ξ ) . (4.10)
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The boundary condition at the bottom (free) end of the drop ξ = L0 is just

A(L0, t) = A0(L0) , (4.11)

obtained by setting ξ = L0 in (4.5) and equivalent to the Eulerian zero-stress condition
ux = 0. The zero normal-velocity boundary condition u = 0 at the wall end ξ = 0 is

∂A

∂ξ
(0, t) = A′

0(0) +
g

ν∗ A0(0)t, (4.12)

obtained by differentiating (4.5) with respect to ξ and setting ξ = 0. The zero
tangential-velocity boundary condition at the wall is by necessity violated in this
slender-drop approximation; when included, it induces a wall boundary layer, as
discussed in Stokes et al. (2000). Once A(ξ, t) is found, we use the continuity equation
(4.2) to find X(ξ, t), and hence the drop length L(t) = X(L0, t).

A suitable non-dimensional form of this problem follows by scaling A(ξ, t) and
A0(ξ ) with respect to A0(0), ξ with respect to L0, and t with respect to ν∗/(gL0). Then
equation (4.9) becomes

A2

A0

∂

∂ξ

[
1

A0

∂(A − A0)

∂ξ

]
= Re

∂A

∂t
, (4.13)

where Re is defined by equation (2.3). Equation (4.13) is a nonlinear diffusion equation,
with a diffusivity proportional to the square of the ‘concentration’ A. In the special
case A0 = 1, this equation was derived by Kaye (1991, equation (4.3.20), p. 72)
from an Eulerian formulation. Although for this special case A0 = 1, there are
methods (see e.g. Ames 1972, p.14) for converting (4.13) to a linear diffusion equation,
and hence solving analytically, these solutions are not appropriate for the present
boundary conditions or for more general initial shapes, and we shall instead use direct
numerical methods.

The inertialess limit is Re = 0, and in that limit, the explicit solution of (4.13)
subject to the scaled boundary and initial conditions is

A(ξ, t) = A0(ξ ) − t

∫ 1

ξ

A0(ξ1) dξ1 (4.14)

which is just a scaled version of (4.5), with the inertia term in u dropped. Thus, for
the initially paraboloidal drop A0 = 1 − ξ , we have

A(ξ, t) = 1 − ξ − t

2
(1 − ξ )2 , (4.15)

corresponding (via (4.2) with ξ = 1) to a drop length

L(t) = −2

t
log

[
1 − t

2

]
, (4.16)

which becomes infinite at the (scaled) crisis time t = 2. However, we expect that for
any finite Re, the drop length remains finite for all finite t , and that for large t , the
acceleration approaches gravity, which means that ReL′′(t) → 1. The cross-section
area at this crisis time is A(ξ, 2) = ξ (1 − ξ ) when Re = 0. We shall observe later that
this is also the large-t limit of the solution for arbitrary Re.

4.2. Slender-drop numerical computations

In the general case, it is convenient to define B(ξ, t) = A(ξ, t)−A0(ξ ) as the departure
from the initial shape A0(ξ ). Then, (4.13) is a nonlinear diffusion equation for B , with
diffusivity proportional to A2 = (A0 + B)2.
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We have for the present purpose solved (4.13) numerically, and indeed have not
found it necessary to use anything other than the most direct explicit finite-difference
method, i.e. with time step �t and space step �ξ , we approximate (4.13) by

B(ξ, t+�t) = B(ξ, t) + D

[
B(ξ+�ξ, t) − B(ξ, t)

A0(ξ+�ξ/2)
− B(ξ, t) − B(ξ −�ξ, t)

A0(ξ −�ξ/2)

]
, (4.17)

where

D =
�tA(ξ, t)2

Re�ξ 2A0(ξ )
. (4.18)

The boundary conditions are B = 0 at t = 0 and ξ = 1, and ∂B/∂ξ = t at
ξ = 0; the latter is implemented simply by defining an artificial value B(−�ξ, t) =
B(�ξ, t) − 2t�ξ for use in the last term of (4.17) at ξ = 0.

The diffusion number D must be kept less than 0.5 for numerical stability, which
presents no problems with respect to nonlinearity since the cross-section area A =
A0 + B tends to reduce from its initial value, but does present a few problems when
Re is small, which is of course the most interesting case. In practice, however, there
appear to be no barriers to use of extremely small time steps �t when Re is small.
We have generally found that �ξ ≈ 0.02 gives adequate spatial accuracy; but then,
for example, with Re = 0.001 we need a time interval �t ≈ 10−7 for stability.

The actual results for A(ξ, t) are simple and well behaved. The cross-section area at
first reduces steadily and almost linearly with respect to time t , as in the inertial-less
limit (4.14). Near the crisis time (t = 2 for the initially paraboloidal case) and for
particles near ξ = 0 (i.e. initially close to the wall), the rate of this reduction in area
slows down and then A slowly approaches zero at ξ = 0 as time further increases,
suggesting break-off at the wall.

It appears from our computations for A0 = 1 − ξ , shown in figure 5, that A(ξ, t) →
ξ (1 − ξ ) as t → ∞, in agreement with a large-time asymptotic theory to be discussed
below (figure 6). Kaye (1991) conjectured (based on results from a relatively coarse
discretization for A0 = 1) that the wall value of A would become negative at a finite
time t identifiable as that for breaking. However, we have found no such tendency in
our computations for any initial shape A0(ξ ), and believe that breaking cannot occur
in the present model (which neglects surface tension) for any Re > 0, and that A

must formally remain non-negative for ever.
There is good comparison between the slender-drop results shown in figure 5 and

our earlier finite-element results shown in figure 3. Noting that the main drop shape
below the filament given by our finite-element computations appears to approach

A =
(ξ − 0.7αr )

(1 − 0.7αr )
(1 − ξ ) (4.19)

as t → ∞, we retrieve the slender-drop result A → ξ (1 − ξ ) as αr → 0. The pinching
of the filament seen in finite-element simulations at ξ ≈ αr will not be observable
in the slender-drop limit, but can perhaps be associated with the large slope ∂A/∂ξ

that develops at large time at ξ = 0, as indicated by (4.12). It is tempting to attribute
the differences seen between figures 3 and 5 solely to the fact that slip is necessarily
permitted along the wall in the slender-drop theory which is not permitted in finite-
element simulations. Certainly, this results in a wall boundary layer in figure 3 which
is absent in figure 5. However, this does not explain the pinching of the filament just
above the main drop.
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Figure 5. Drop cross-section area A as a function of initial distance from the wall ξ , for the
initially paraboloidal drop at Reynolds number Re = 0.1, for times t = 0, 0.2, 0.4, . . . , 3.6.
Computed using the slender-drop theory. The drop shape progressively changes from initially
paraboloidal A = 1 − ξ to a final profile A = ξ (1 − ξ ).
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Figure 6. Drop radius as a function of L(t) − x at large time t for the initially paraboloidal
drop, αr = 0.1, Re = 0.1. —, large-time asymptotic equation (4.26) and slender-drop theory
which are indistinguishable, ---, finite-element computation with no-slip wall boundary at
t = 4.

This is emphasized by repeating the finite-element simulation, but now with the
condition of zero tangential velocity along the wall boundary replaced by zero
tangential stress; this allows slip along the wall similar to that permitted by the
slender-drop theory. Plotting A versus ξ at different times yields curves practically
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Figure 7. Acceleration ReL′′(t) versus time t for an initially paraboloidal slender drop.
(a) Slender drop theory and (b) finite-element curve for Re = 0.001, αr = 0.1.

identical to those in figure 5, excepting for a small deviation near the wall. In
particular, at large time A → ξ (1 − ξ ), but there is pinching of the drop quite similar
to that seen in figure 3, albeit now near ξ = αr/2 (not ξ ≈ αr ). This translational shift
is a consequence of the no-slip boundary layer of thickness O(αr/2), which does not
develop in the case of a slip boundary. The pinching, however, appears to be related
to the fact that with either a no-slip or slip wall boundary, the slope ∂A/∂ξ must
become zero at some point above the main drop (at the wall in the latter case). This
is not permitted by the slender-drop theory for the initially paraboloidal drop under
investigation which demands ∂A/∂ξ (0, t) > 0 for all time.

Returning to our slender-drop theory, once we have solved for A(ξ, t), other flow
variables follow, in particular, the acceleration as measured by the second time
derivative of the drop length. This is computed from A(ξ, t) by evaluating the velocity
u(ξ, t) by numerical ξ -differentiation of (4.5), followed by numerical t-differentiation
of the bottom velocity u(1, t) = L′(t). In figure 7, we plot ReL′′(t) versus time for
various values of Re, for an initially paraboloidal slender drop. As with the finite-
element results, this quantity starts and ends at 1, with a viscosity-dominated time
period of low accelerations in between. As before, reducing Re causes the rise in
acceleration near t = 2 to become steeper and steeper and to approach closer and
closer to the inertialess crisis at t = 2. The curves from the finite-element computations
for an initially paraboloidal drop of aspect ratio αr = 0.1 (see figure 1), compare well
with their slender-drop theory counterparts. The exact computations display a time
delay relative to the slender-drop computations in the return to acceleration due to
gravity, shown in figure 7 for Re = 0.001. This is attributable to the effect of the
no-slip wall boundary, and decreases as the aspect ratio decreases.

Of even more interest is the acceleration profile in the drop, as a function of ξ ,
in the slender-drop limit. This is shown over a range of times in figure 8. As in the
finite-element calculations we find that, after a relatively short time, the acceleration
takes its maximum value at a position in the interior of the drop for a considerable
time, with this position moving towards the wall as time progresses. However, the
maximum acceleration is very much larger than in the finite-element computations
and, because of limitations on the spatial grid near ξ = 0, we have not been able to
determine just how large it becomes, but only that it increases as our grid resolution
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Figure 8. Acceleration as a function of initial position ξ for the initially paraboloidal drop
in the slender drop limit, Re = 0.1, t = 0.8, 0.9, . . . , 3.9.

at the wall increases. Further, the position of maximum acceleration appears to
approach the wall, whereas in our finite-element computations it only came as close
as ξ ≈ αr which we identify as the transition region between the main drop and the
filament.

At large time, in the slender-drop limit, the acceleration versus ξ curve appears to
approach the step function Re a(ξ, t) = 1, 1 � ξ < 0, Re a(0, t) = 0 as t → ∞, as seen
in figure 8, with no progressive decrease in acceleration from g at ξ = αr to 0 at ξ = 0,
as occurred in the finite-element computations. This seems to be associated with the
fact that pinching of the connecting filament occurs at ξ = 0 in the slender-drop limit,
with the whole of the drop effectively going into free fall, and implies that the drop
will break (owing to surface tension) at the wall.

The actual axisymmetric drop shapes in the physical plane are shown in figure 9(a)
by plotting the (longitudinally-scaled) length coordinate x =X(ξ, t) versus the
(laterally-scaled) scaled radius co-ordinate R =

√
A(ξ, t). The equivalent curves from

the finite-element computations are shown, for comparison in figure 9(b). This time
history seems quite sensible, and in particular demonstrates for large time an approach
to a freely falling state which we now discuss. Note that the vertical scale is the initial
drop length L0 whereas the horizontal scale is the initial maximum drop radius R0(0);
to provide a faithful picture of actual slender drops, these and all figures in this paper
would need to be considerably stretched vertically, and for example the final drop
appearance would have a more rounded bottom.

4.3. Large-time drop shape

An intuitive argument for the large-time behaviour is as follows, reverting temporarily
to unscaled variables.

Once the drop is in free fall as if it were a rigid body, its velocity must be of the
form

u(ξ, t) = g(t − t0) (4.20)

for some constant t0, physically interpretable as the apparent time when this free fall
begins. Because of the initial slowing down of motion owing to viscosity, we expect
that t0 > 0, but otherwise, in principle, the quantity t0 is unknown in advance.
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Figure 9. Evolution of the initially paraboloidal drop, as seen in physical coordinates x,R.
(a) Slender-drop theory, (b) finite element simulation. Re = 0.1, t = 0, 0.2, 0.4, . . . , 3.6.

However, when fluid inertia has only a small effect, i.e. for relatively small Re, we
may expect that t0 = t∗, where t∗ is the crisis time (when formally the inertialess theory
of Stokes et al. (2000) predicts breaking), because then close to the crisis time, the
acceleration of the drop (excepting a small region near the wall) rapidly approaches
g and remains at that value thereafter. Prior to this event, all fluid velocities u(ξ, t)
were small, and from a large-t viewpoint we may assume that the drop was then at
rest.

If we substitute (4.20) into (4.5), we find

A(ξ, t) = A0(ξ ) − g

ν∗ t0V (ξ ) (4.21)

where

V (ξ ) =

∫ L0

ξ

A0(ξ1) dξ1 (4.22)

is the volume of drop fluid below station ξ . The fact that this asymptotic shape
function A(ξ, t) is actually independent of time t confirms the final rigid-body
character of the freely falling drop.
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Now in the present slender-drop theory, there is slip at the wall, and for a large
family of initial drop shapes, including those considered above, it appears that the
drop diameter at the wall tends to zero at large times. If therefore we demand in
(4.21) that A = 0 at ξ = 0, we find

t0 =
ν∗

g

A0(0)

V (0)
(4.23)

so

A(ξ, t) = A0(ξ ) − A0(0)

V (0)
V (ξ ) . (4.24)

It happens that (4.23) is the correct formula for the crisis time t∗ in the inertialess
theory of Stokes et al. (2000), for those initial drops that break at the wall according
to that theory, confirming that t0 ≈ t∗ when Re is small.

Indeed, we expect that t0 ≈ t∗ in all cases, whether or not inertia is small, and
whether or not the drop breaks at the wall, but this is not yet proved. In any case,
there appears to be a remarkable relationship between the inertialess theory and
the large-time limit of the flow with inertia. Namely, as t → ∞ in a computation
including inertia, the drop shape approaches that which would have been obtained at
the (finite) crisis time t = t∗ in a computation neglecting inertia. Specifically, for the
initially paraboloidal drop A0 = 1 − ξ , with V (ξ ) = (1 − ξ )2/2, we have A → ξ (1 − ξ ),
and this is confirmed by our computations.

The actual final drop shape as a function of the physical coordinate x = X(ξ, t)
is obtained by integrating the continuity equation (4.1). However, this integration
cannot be (as with (4.2)) from the wall ξ = 0, where (4.24) has A = 0, because this
integral diverges. Of course it must so diverge, since at infinite times the drop is an
infinite distance from the wall. If instead we integrate from the bottom ξ = L0 of the
drop, using the asymptotic estimate (4.24) for A(ξ, t), we find

X(ξ, t) = L(t) −
∫ L0

ξ

A0(ξ1) dξ1

A0(ξ1) − [A0(0)/V (0)]V (ξ1)
. (4.25)

Equations (4.24) and (4.25) provide the formal connection between initial and final
drop shapes.

For example, the initially paraboloidal drop with A0 = 1− ξ gives X = L(t)+ log ξ ,
or ξ = e−(L−x). Thus, the asymptotic radius of this family of drops is R(x) =

√
A,

where

A = e−(L−x)[1 − e−(L−x)] , (4.26)

which is an explicit function of distance L(t)−x measured upward from the bottom of
the drop, and agrees closely with the computed large-time drop shape obtained from
the slender-drop theory and our finite-element computations, as shown in figure 6.
This final drop has maximum diameter equal to 0.5 (times the original maximum
diameter) at a distance log 2 = 0.693 (times the original length) above the bottom,
and its thickness then decays exponentially at greater distances above the bottom.

The present asymptotic theory does not quite provide an estimate of the actual
bottom position x = L(t), although equation (4.20) gives an estimate of its time
derivative L′(t) = u(L0, t). Further work would be needed to estimate the constant of
integration, i.e. the apparent initial length L(t0) = L(t) − g(t − t0)

2/2.
In summary, the asymptotic theory of the present section enables explicit estimates

of the shape of the drop in its ‘final’ freely falling rigid-body-like state, given any
initial shape. There must also be a thin filament connecting this drop to the wall,
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Figure 10. Radius Rmin versus time t of the point in the filament which becomes the point
of minimum radius. (a) inertialess slender-drop theory, (b) slender-drop theory with inertia,
Re = 0.01, (c) exact finite-element computation, Re = 0.01, αr = 0.1.

whose thickness reduces with time. The above description applies until surface tension
breaks the filament, and eventually (after a sufficient time in free fall) converts any
three-dimensional drop into a sphere.

5. The filament
Confining attention to those drops which break at the wall according to the

inertialess slender-drop theory of Stokes et al. (2000), namely those initial drop
shapes with V (ξ )/A0(ξ ) monotone decreasing, the filament region is that for small
ξ (< αr ), and the filament consists therefore only of particles that were originally close
to the wall. It is a very difficult computational task to retain accurate representations
of the solution in such a small region while simultaneously representing the main
drop for all finite values of ξ , and hence we cannot expect either the finite-element
or slender-drop computations to capture accurately the fine details of the filament
shape. Nevertheless, we believe that some qualitative understanding may be obtained
by an examination of our results.

It is of interest to consider the decrease in radius over time of the point along the
drop axis which becomes the point of minimum radius in the filament. For the slender-
drop theory this point is at the wall, but for the exact problem it is initially a little
below the wall. Curves from the slender-drop-theory and finite-element computations,
for a small Reynolds number Re = 0.01, are shown in figure 10 (curves (b) and
(c), respectively) and are in reasonable agreement, with this agreement improving as
αr → 0 in the exact problem. The inertialess slender-drop theory of Stokes et al.
(2000) predicts a minimum radius Rmin (scaled with R0(0)) given by

Rmin =

(
t∗ − t

t∗

)1/2

, t∗ = 2, (5.1)

where t is time, scaled with ν∗/(gL0) as earlier. This curve is also shown (as curve (a))
in figure 10, from which we see that the present theory including inertia yields curves
agreeing with (5.1) for a considerable time, but then deviating from it near to the
crisis time t = 2 of the inertialess slender-drop theory. This behaviour is as expected
since, as commented earlier, with the current theory neglecting surface tension, the
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Figure 11. Distance below the wall x versus radius Rmin of the point in the filament which
becomes the point of minimum radius. Exact finite-element computations, Re = 0.01, αr = 0.1.

drop does not formally break. The agreement with (5.1) increases as Re → 0, which
is also according to expectation.

Comparisons of finite-element computations for drops of finite radius with results
from the slender-drop theory do show some interesting differences in the apparent
filament behaviour, which is most clearly evident from figures 9(a) and 9(b).
Specifically, the radial dimension in the transition region between the main drop
and filament, that is about three initial drop lengths above the bottom of the main
drop, is smaller for the computations for drops of finite radius than those for
drops in the slender limit. Then, the computations for drops of finite radius show a
somewhat cylindrical filament above this region (figure 9b) compared with the upward
monotonically decaying filament radius of the slender-drop limit (figure 9a).

Note that because the filament is so long, even though it consists only of particles
that were originally close to the wall, the actual break point along the filament
could be quite far from the wall. Indeed, for drops of finite radius, our finite-element
computations suggest that this is the case, with the distance from the wall of the point
of minimum radius, where eventual break-off due to surface tension can be expected,
increasing rapidly as the radius decreases over time. This is shown in figure 11. It is
not clear whether the distance from the wall becomes infinite or approaches some
large finite value as Rmin → 0. Applying the inertialess theory (Stokes et al. 2000)
in the filament region, which seems reasonable, would lead to the conclusion that
x → ∞ as Rmin → 0 but, in any case, the physical distance along the filament certainly
becomes very large.

It is worth commenting that, while the slender-drop theory predicts breaking ‘at’ the
wall and the exact theory predicts breaking ‘near’ the wall in Lagrangian space which
could physically mean a long way from the wall, both theories predict very similar
time histories for the minimum radius, as already seen in figure 10. The agreement
with the inertialess slender-drop result (5.1), indicates that the minimum filament
radius decreases like the time distance from breakup to the half power, up until times
quite near to breakup. Near to breakup, analyses including surface tension, but in the
absence of gravitational pull, typically give (Eggers 1997)

Rmin ∼ (t∗ − t)β ,
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and it has been shown (Renardy 1995; Renardy & Losh 2002) that, for very viscous
fluids, β may take a value between 1/2 and 1 depending on the initial stretch
conditions, with β = 1 if it is assumed that viscous and surface tension forces
contribute at the same order. However, where gravitational pull is responsible for
filament stretching, very thin threads can persist well beyond time scales indicated by
current theories and a quantitative explanation of this is still lacking (Eggers 1997).

Any further meaningful analysis of the ultimate behaviour of these very thin
filaments must include surface tension. We can expect that surface tension will play a
significant role when and where lateral length scales are comparable with the meniscus
size, and that surface tension will finally determine the exact breaking position.

6. Conclusion
By including inertia terms in the flow model, both in a slender-drop approximation

and in an exact computation, we have demonstrated how, in both the very early and
very late stages of the fall of a drop of viscous fluid, the drop’s acceleration becomes
equal to the acceleration due to gravity g. In the intervening period, from soon after
it begins its descent until a ‘crisis’ time when a rapid increase occurs, accelerations
are small compared to gravity, and neglect of inertia is valid for small values of
the parameter Re = gL3

0/ν
∗2. The crisis time t∗ = O(ν∗/(gL0)) computed from the

inertialess theory is then a good estimate of the time at which the drop acceleration
increases rapidly toward g, when we can expect the drop to break and go into free
fall.

Drop shapes are available from the exact or slender-drop computations at all times
and for all Reynolds numbers. However, the slender-drop theory also provides explicit
formulae via simple quadratures for the final quasi-rigid-body shape of the drop when
it is in free fall prior to smoothing by surface tension, this shape being the same as
the inertialess theory predicts at the finite crisis time.

Including inertia may also provide insight into the behaviour of the ever-thinning
filament which connects this ultimate drop to the wall, prior to breaking events
controlled by surface tension. This, however, must be confirmed by an analysis that
includes surface tension.
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