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We consider the numerical stability of discretisation schemes for continuous-time state
estimation filters. The dynamical systems we consider model the indirect observation of
a continuous-time Markov chain. Two candidate observation models are studied. These
models are (a) the observation of the state through a Brownian motion, and (b) the obser-
vation of the state through a Poisson process. It is shown that for robust filters (via Clark’s
transformation), one can ensure nonnegative estimated probabilities by choosing a max-
imum grid step to be no greater than a given bound. The importance of this result is that
one can choose an a priori grid step maximum ensuring nonnegative estimated prob-
abilities. In contrast, no such upper bound is available for the standard approximation
schemes. Further, this upper bound also applies to the corresponding robust smoothing
scheme, in turn ensuring stability for smoothed state estimates.

1. Introduction

In much of the literature concerning stochastic numerics, for continuous-time filters, the
main emphasis is placed upon minimising errors in estimation, for example, see [9].

However, there are indeed other equally important criteria concerning the imple-
mentation of continuous-time filters. One example is the issue of numerical stability;
in particular, there is a well-known flaw in the Euler-Maruyama scheme applied to the
Wonham filter, that is, the estimated probabilities can be negative (see [9, page 448]). De-
spite negative probabilities being meaningless in state estimation, this particular problem
has received little attention in the literature.

In this paper, we show that one can guarantee nonnegative state estimation probabil-
ities by using the so-called “robust” filter due to Clark and making a judicious choice
for the maximum subinterval in a discretisation partition. It is shown that there exists a
simple deterministic upper bound for the maximum time step (in a discretisation), en-
suring nonnegative probabilities with the robust filters due to Clark. It is also shown that
no such bounds exist for the more standard discretisation schemes, such as the Fuler-
Maruyama and the Milstein. The robust filter ideas of Clark are also considered here in
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the context of Markov-modulated Poisson process observations. In this scenario, one can
construct a robust filter; however, the meaning of continuous dependence in the space of
sample paths relies on the Skorokhod metric, as the observations are cadlag and belong to
the space D(0, o). Continuous dependence in this sense is established for a robust filter
driven by Poisson observations.

2. Model dynamics

Two observation models are considered, each describing an indirect observation of a
continuous-time Markov chain, whose dynamics we now describe. Initially all processes
are defined on the fixed probability space (Q, %, P).

2.1. State process dynamics. Suppose a state process X = {X;,0 < ¢t} is a finite-state
time-homogeneous Markov chain evolving in continuous time. Without loss of gener-
ality, we can take the state space of X as & = {ej,e;,...,e,} < R", where e; denotes a
column vector in R" with unity in the ith position and zero elsewhere. The dynamics for
this process are

t
Xt=X0+J AX, du+ M, 2.1)
0

where M isa (P,0{X,, 0 < u < t})-martingale and A is an n X n rate matrix.

2.2. Observation process dynamics

2.2.1. Observation through a Brownian motion. We suppose that the process X is not
observed directly, rather, we observe a scalar-valued process

t
ys= L (Xoog)du+ Wi (2.2)

Here W is a standard Wiener process and g = ({g,e1),...,{(g.e,))” € R" is a vector of the
so-called drift coefficients, or levels for the Markov chain.

2.2.2. Observation through a Poisson process. We suppose that the process X is not ob-
served directly, rather, we observe a scalar-valued univariate Poisson process with inten-
sity model

At = (XpA). (2.3)

Here A = ({A,e1),...,{A,e,)) € R". The dynamics for N have the form

t
Nt = J (Xu,A> du+ Vt. (24)
0

Here the process V is a (P,0{N,, 0 < u < t})-martingale.



W. P. Malcolm et al. 373

Remark 2.1. The observation processes y and N are each scalar-valued. However, the
results in this paper are routinely extended to vector-valued models.

Remark 2.2. Equation (2.4) can also be interpreted as a counting measure. For example,

suppose A; 4 (0,¢] and the sequence {7;},-1 is a sequence of jump epochs for a Poisson
process. Then

N; =card{n |1, € A/} (2.5)

exhibits the interpretation of a Poisson process as a random counting measure; see, for
example, [8, 10].

2.3. Reference probability. The filters we consider in this paper are in the form of dy-
namics for unnormalised probabilities. Such filters can be computed with reference prob-
ability techniques and Girsanov’s theorem, or versions of Girsanov’s theorem. Central to
this approach is the abstract form of Bayes’ rule.

Notation. Write Y, for either informationino{y, | 0 < u <t} or6{N, | 0 < u < t}. Sup-
pose y = {yu, 0 < u <t} is a process and we wish to estimate E[y; | ¥;]. Using a form of
Bayes’ rule [2],

Et [Az)’t | oyt]

Ely: | %Y,] = E A W]

(2.6)

Here E'[-] denotes expectation under a reference measure Pt and A denotes a Radon-
Nikodym derivative dP/dP*. Further details on the reference probability methods can be
found in [2, 3]. Finally, suppose we consider the observation model given at (2.2). Then,
using the numerator in (2.6), we write

qtéET[AtXt\a{yuIOsust}]ER”. (2.7)

3. State estimation filters

Here we recall some state estimation filters whose stability we wish to investigate.

3.1. Filters for X observed through a Wiener process

TaeoreM 3.1 (Wonham, 1965). Suppose the process X satisfies dynamics given by (2.1)
and a process y satisfies the dynamics at (2.2).

With q, 2 E1[AX, | Y],

t t
qr = q0+J0 Aqudu+I0 diag{(g,e:) }qudy.. (3.1)

To determine the corresponding normalised probability for the dynamics at (3.1), one
computes, for example,

(gr-ei)

P(Xt =e| oyt) = (%71) .

(3.2)
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In [1], it was shown that the process g satisfying the dynamics at (3.1) could be trans-
formed to a new process whose dynamics do not involve stochastic integration. The im-
portance of this result cannot be understated, as it eliminates the numerical difficulties
concerning the approximation of stochastic integrals.

Definition 3.2. Define a matrix-valued stochastic process ® € R™", where
@, = diag{¢},¢?,...,4"} (3.3)

with ¢f = exp((g,e;) y: — (1/2)|{g,e;) |*t).

Tueorem 3.3 (Clark [1]). Write g, £ ®;'q;. The process q satisfies the linear ordinary
differential equation

dq,

Fri O;'ADG,, g, = qo. (3.4)

Conversely, the process Oq satisfies (3.1) when q satisfies (3.4).

LEMMA 3.4. The quantity
m(X) = —— (3.5)
defines a locally Lipschitz continuous version of the expectation E[X; | Yq].

Lemma 3.4 is established in [1, 7].

3.2. Filters for X observed through a Poisson process

THEOREM 3.5. Suppose the process X satisfies dynamics given by (2.1). Suppose a Poisson
process N is observed whose intensity model has the form

A= (Xd) =D 1ix—ey (&) (3.6)

i=1

With q, £ EHAX | Y],

t t
qt = qo +I Aqudu +I diag{(A,e;) — 1}qu- (dN, — du). (3.7)
0 0

3.2.1. A robust filter for Poisson observations

Definition 3.6. Define a matrix-valued stochastic process I' € R"*", where
T; = diag{y},y7,...,y"} (3.8)

with y} = exp((1 — (L, e))t) (A e)N, i=1,...,n.
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TuEOREM 3.7. Write g, 2 T;'qs. The process q satisfies the linear ordinary differential
equation

.
% “T;'ATG, G = o (3.9)

Conversely, the process I'q satisfies (3.7) when q satisfies (3.9).
The process I'q satisfies (3.7).

Theorem 3.7 was established in [11].

LEmMMA 3.8. The quantity

Iz
m(X) A <thit1> (3.10)
defines a Skorokhod continuous version of the expectation E[X; | Y;].
Proof of Lemma 3.8. Suppose
N(w) = {Ni(w1),0<t<T},
(3.11)

are two counting process observation paths. The distance between the two counting
process paths will be defined in terms of the Skorokhod metric:

d(N(w1),N(w2)) éialf{ sup [A(t) —t| Vv sup |Ni(wr) —Nw)(wz)|}. (3.12)

0=<t<T 0=<t<T

Here, the infimum is taken over the set of increasing functions A : [0, T] — [0, T] such
that A(0) = 0 and M(T) = T. That is, each A gives a time change on [0, T]. Clearly for
counting processes, when d(N(w1),N(w,)) < 1, the two processes N(w ), N(w,) have the
same number of jumps on [0, T]. Suppose this is the case and suppose the jumps of N (w, )
occur at times Tj, 1 < i < k, and that those of N(w,) occur at S;,i < i < k. Then

d(N(wl),N(wz))=1’l‘1?lX|T,'—S,'|. (313)

1<i<k
Now

t
7,(w1) =q0+jo O (1) A, (w01)7, (@) du, -
3.14

20) =7+ [ 07 (040, (@)7, (@)du

D, (w) = O,(w,) except where N, (w;) # N, (w,). Therefore, it follows that

t
g, (@) =7, (@) | = €| g, (@) -7, (@)lldu+D 3 |T;-s
1=<i<k (315)

< CL:H%((AM) —q,(w>)||du+Dkd(N(w1),N(w2)).
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Letting

$(0) = max |7, (@) ~7,(@2)]|

. (3.16)
$(0) < C | glurdu-+ Dkd(N (@), N (@),
0
and using Gronwall’s inequality, we have that
SUPT||qt(w1) = q,(w2)|| = Kd(N(w1),N(w2)). (3.17)
0<t<
O

4. Discretisation schemes
For all time discretisations, we will consider a partition, on the interval [0, T], and write
I = {0 = ty,t,...,tx = T}. (4.1)

Here the partition is strict, that is, tp <t} < - - -.
To denote the mesh of the partition, we write

[IT)) = max {t = i} (4.2)

. . . A .
For brevity, we will use the notation & = &, where & denotes a process & at a time
point t.

4.1. Observation through a Brownian motion. The discrete-time recursions given here
are standard. These schemes can be developed by approximating stochastic Taylor series
expansions; for example, see [9].

(1) The Euler-Maruyama scheme:
qk = [1+AA + diag{(g,e:) } (yk = yk-1) | gk-1. (4.3)
(2) The Milstein scheme:

qr = [1+AA +diag{(g,e) } (yx — yx-1) gk

. (4.4)
+ B((yk — )’ - A)dlag{<g,ei>2}]qk71-
(3) Order-1 strong Taylor scheme:
qr = [T+ AA +diag{(g, i)} (yx = yi-1) ] g5
#]5(0n =)’ - ) dingl (g.e)’)
(4.5)

# JARN 4 (Adiag](g.en) ) + diag{ (g.6) }4) (O~ yic1)A

+ édiag{(g,e,-)s} (()/k —)/k—l)3 —3(yx —yk—l)A)]qk—l-
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(4) Robust discretisation schemes (see [1, 7] ):
gk = (DkCD];ll[I-f—AA]qk_l. (4.6)

Remark 4.1. Note that in each of the approximate recursions (4.3), (4.4), and (4.5), the
difference yx — yx—1 appears explicitly. However, in the robust recursion at (4.6), this dif-
ference appears as an argument of the exponentials in the matrix product ®;®;*,.

4.2. Observation through a Poisson process

(1) The Euler-Maruyama scheme:
gk = gk—1 + Aqi—1 A +diag{(A,e;) — 1}gk—1 (N — Nx—1) — A). (4.7)
(2) Robust discretisation schemes (see [11]):

qk = Fkr,;_ll[I+AA]qk,1. (4.8)

5. Discretisation limits

Definition 5.1. A numerical implementation of dynamics to compute the estimated un-
normalised probability gy, either for an observation of the process X through a Brownian
motion, or a Poisson process, is said to be stable on 1% if for each i € {1,2,...,n} and
for each k € {1,2,...,K}, the following inequality holds:

(qr-ei) = 0. (5.1)

5.1. Observation through a Brownian motion

THEOREM 5.2. The robust time-discretised dynamics at (4.6) are stable on a partition TIX),
provided the following inequality is satisfied:

1

max { |agp |} 5.2)

||HK|| = mkax(tk —tg1) <
Proof of Theorem 5.2. Consider the ith component of the vector gx. Without loss of gen-
erality, we take (qx—1,e;) = 0 for each i. Recalling the dynamics at (4.6), we see that

(qr-ei) = <<Dk<1>,§_‘1 [I+AA] <Qk71)ei>>ei>

n
i D D 5.3
= & (gene) — E 1A @ | (g e +E 1A D ag) (gine). O
)
Here &} | = exp(gi(yk — yk-1) — (1/2)|gi|*A}). The stability condition given in Definition
5.1 requires that the left-hand side of (5.3) remain nonnegative, that is,

& i (ar-e) — & At lan | (qr-1,e) + &L ALY agj)(qe-1,€i) = 0. (5.4)
i=1

i#j
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Simplifying this inequality, we get

n

(1= Al agy|) (qe-rrei) + AL > agj(ge-1,e:) = 0. (5.5)
i=1

Since the off-diagonal elements of the matrix A are always nonnegative, the term con-
cerning these elements in (5.5) is always nonnegative, that is,

n

Ay Y aGj){gk-1,e1) = 0. (5.6)
)
So, to ensure the inequality at (5.5) is satisfied, we need only choose A} such that the
quantity (1 — Aila(i,i) |) is nonnegative, that is,

Al < L (5.7)
||
The corresponding global upper limit is, therefore,
1
Ays ———. (5.8)
max; { [ ag, |} O

Remark 5.3. Tt is interesting to note that the bound given by Theorem 5.2 does not de-
pend upon the parameters g,...,g, and depends only on those elements along the main
diagonal of the matrix A.

To emphasise the value of this result, consider a similar calculation for the correspond-
ing Euler-Maruyama scheme given at (4.3). By imposing the same stability demand and
carrying out calculation such as those above, we get an inconclusive result, that is,

(1= A} [agi ) (qe-1,e) + ALY ai(gr-1.e) + &' (quer) (k= ye-1) 20, (5.9)
)

Here there is simply no choice of A} one can make to ensure that inequality (5.9) is satis-
fied, as the left-hand side of this inequality is stochastic, depending both upon the magni-
tude and sign of the difference yx — yx—;. Moreover, carrying out the same calculations for
the Milstein and higher-order schemes also results in stochastic inequalities involving the
difference yx — yk—1. In contrast, the upper bound given by Theorem 5.2 is deterministic
and therefore holds for any observation sample path.

Remark 5.4. The robust Wonham filter can be extended to a robust smoother using
the ideas first introduced in [4, 11, 12]. For these smoothers, one computes a back-
ward recursion very similar to the recursion at (4.6). Smoothed estimates are obtained
by combining forward and backward recursions. It can also be shown, that the stability
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in Definition 5.1 holds for the (robust) smoothed state estimates. Again, there is no such
stability for the corresponding nonrobust discretisation of smoothing schemes. Further,
in [5], a discretization-step upper bound is obtained for M-ary detection filters.

5.2. Observation through a Poisson process

For the models with Poisson observations, one can apply the Euler scheme or the robust
discretisation. In contrast to the Wonham filter, the stochastic integration in the filter at
(3.7) is an integral against a process of bounded variation. Further, if Ny — Nx_; # 0, then
Nk — Ni-1 = 1, provided the discretisation is chosen so at most one jump can occur in
any subinterval of time.

TaEOREM 5.5 (Poisson process models). For the robust discretisation (4.8) and for any set
of nonnegative Poisson intensities {A1,...,A,}, the stability given by Definition 5.1 is guar-
anteed P-a.s. by choosing a maximum grid step such that

1

¥ = max (t — k1) < ——7—7-
|[TT%]| p (b = ti-1) max; { |agy |}

(5.10)

The proof of Theorem 5.5 is very similar to the proof of Theorem 5.2 and so is omit-
ted. To emphasise the value of the upper bound in Theorem 5.5, consider again a similar
calculation for the corresponding Euler discretisation. The result of this calculation is

1
max; { |agp | + (A e) — 1}

m}gx(tk—tk,l) < (5.11)

While the inequality at (5.11) is not stochastic, it does depend upon the parameters A;.
Further, it is strictly less than the upper bound at (5.10). What this means is that the
robust discretisation will tolerate a “coarser” partition. This might be of advantage when
considering reductions in computation.

The filter for Poisson observations given at (3.7) is in some ways quite distinct to the
Wonham filter. For example, in between jump events in the observation process, it is
essentially a parabolic partial differential equation. Suppose, for example, that the first
jump time is 7;(w). Then on the interval (0,7 (w)), the filter dynamics are

t
ai=ao+ | (A~ diag{(h.e) - 1}}gudu (5.12)
This admits the explicit solution

q: = exp ((A — diag{(A,e;) —1})t)qo on (0,71(w)). (5.13)

In general, the matrices A and diag{(A,e;) — 1} do not commute, so the dynamics at
(5.13) cannot be further simplified. To implement the dynamics at (5.13) requires computing
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_5 I
0 0.5 1 1.5 2 2.5 3 3.5 4
Time (s)
-—- X
— )

P(X; = 0|Obs)
S = W

Time (s)

(b)

P(X; = 5|ODbs)
|

Time (s)

(0)
Figure 6.1. Euler-Maruyama approximation to the Wonham filter.
the matrix exponential which is not trivial [13]. To avoid this matrix exponential, one
might consider a first-order approximation, that is,
qr = {I+A(A — diag{(A,e;) — 1})}qo. (5.14)

However, these dynamics can result in negative probabilities, as is shown in the examples

below.

6. Examples

The simulation studies here include two examples, each illustrating the benefits of us-
ing the discrete-time recursions based upon the robust filters. In the first example, we
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(a)

P(X; = 0|Obs)

P(X; = 5|Obs)

Figure 6.2. Robust approximation to the Wonham filter.

consider the robust Wonham filter and, in particular, an example studied in [9] (see pages
447-448). The model parameters considered are

-0.5 05
A= [ 0.5 —0.5]’

<g’el> =0,

(g,e2) =5.

(6.1)

For this study, a regular discretisation of [0,4] was used with a time step A = 277. The
plots given in Figure 6.1 show realisation of the state and observation processes and
the estimated probabilities computed by using the Euler-Maruyama approximation to
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Figure 6.3. Various approximations to the Poisson process filter in between jump events :
Prob(X; = e;) and (b) Prob(X; = e,). Here A = 0.25.

the Wonham filter at (3.1). It is clear from these plots that not only is the estimation
performance very poor, but also it has also produced negative probabilities.

In Figure 6.2, we show the same state and observation process realisation, but in this
case, the estimated filter probabilities have been computed using the robust recursion at
(4.6).

In our second simulation study, we consider the filter driven by Poisson observations
for the particular scenario described by (5.13). For this example, the two Poisson intensi-
ties used were

<A,61> = 8, </1,ez> =5, (62)
and the rate matrix A was again as above. The plots in Figure 6.3 show the computed
probabilities for three schemes: the Euler-Maruyama scheme, the Robust scheme, and the
matrix exponential computed by a scaling and squaring algorithm with a Pade approxi-
mation [6]. Here the time step was coarse, set at A = 0.25. The results show that the Euler-
Maruyama scheme produced negative probabilities. In contrast, the robust scheme pro-
duced positive probabilities and these estimates are in excellent agreement with the exact
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Figure 6.4. Various approximations to the Poisson process filter in between jump events: (a)
Prob(X; = e;) and (b) Prob(X; = e,). Here A = 0.125.

scheme. Similar calculations are repeated in Figure 6.4, but with a finer time step, that is,
A = 0.125. In this scenario, the robust recursion again has given far better performance
than the Euler-Maruyama scheme.
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