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Abstract 

Automotive engines are becoming increasingly technically complex and associated 

legal emissions standards more restrictive, making the task of identifying optimum 

actuator settings to use significantly more difficult. Given these challenges, this 

research aims to develop a process for engine calibration optimisation by exploiting 

advanced mathematical methods. Validation of this work is based upon a case study 

describing a steady-state Diesel engine calibration problem. 

The calibration optimisation problem seeks an optimal combination of actuator 

settings that minimises fuel consumption, while simultaneously meeting or exceeding 

the legal emissions constraints over a specified drive cycle. As another engineering 

target, the engine control maps are required as smooth as possible.  

The Multidisciplinary Design Optimisation (MDO) Frameworks have been studied to 

develop the optimisation process for the steady state Diesel engine calibration 

optimisation problem. Two MDO strategies are proposed for formulating and 

addressing this optimisation problem, which are All At Once (AAO), Collaborative 

Optimisation. An innovative MDO formulation has been developed based on the 

Collaborative Optimisation application for Diesel engine calibration.  

Form the MDO implementations, the fuel consumption have been significantly 

improved, while keep the emission at same level compare with the bench mark 

solution provided by sponsoring company. More importantly, this research has 

shown the ability of MDO methodologies that manage and organize the Diesel 

engine calibration optimisation problem more effectively.  
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Chapter 1 Introduction 

To meet increasing customer expectations of good fuel economy and driveability 

whilst simultaneously meeting increasingly stringent legislative limits on emissions, a 

consequence of new technologies added to modern engines is increased control 

complexity. With more engine actuators and controls to calibrate, the engine 

mapping and calibration task has become significantly more involved and the task of 

identifying optimal actuator settings is now much more difficult. This situation is 

challenging for current internal combustion engines, and is only likely to get worse 

with the introduction of 'hybrid' technologies. More efficient optimisation strategies 

are required to handle the increased dimensionality of the optimisation problem and 

to cope with the imposed complex couplings between system control variables.  

1.1 Engine Mapping and Calibration 

The target of Engine Mapping and Calibration (EMC) is to find the controllable 

actuator settings that make an engine work with improved performance (generally 

higher torque with lower emissions and fuel consumption). The original EMC process 

dealt with a single control variable and was carried out across a grid of engine 

load/speed points covering the whole engine operating range based on experiments 

(Waters, 1972 , Blumberg, 1976). As more engine control variables were introduced 

so an EMC process was developed based upon the experiments by using statistical 

techniques to analyse engine outputs trends towards achieving the best engine 

performance (Rishavy, 1977). The purpose of statistical methods in EMC processes 
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is to develop accurate engine models, which are used to find optimal actuator 

settings.  

Model Based Calibration (MBC) (Onder and Geering, 1993 , Onder and Geering, 

1995) was developed based on a statistical analysis to predict the engine 

performance. This process became increasingly popular and powerful engine 

calibration approach for modern internal combustion engines, especially since the 

commercial toolboxes (such as MBC toolbox in MATLAB, AVL CAMEO toolbox and 

so on) became available. A typical MBC process is underpinned by statistical tools 

such as  Design of Experiments (DoE) or response surface modelling and 

optimisation (Pilley et al., 1994 , Roudenko et al., 2002 , Sampson, 2004). DoE 

techniques can be used to give a set of efficient test combinations that carry all 

essential information to build up the engine response models, based upon the well 

defined design space (such as input variables, inputs range).  

Statistical engine modelling is the process of modelling engine response data as a 

function of engine state and actuation variables. The engine response models are 

then used for engine calibration optimisation. Engine calibration optimisation is the 

process of finding the optimal engine actuator settings that produce optimal engine 

performance based on engine response models covering the whole engine operating 

range.  

1.2 Project Background 

This project was sponsored by Jaguar Land Rover with the aim of addressing a 

number of issues relating to Diesel engine steady state calibration processes. The 

common approach to Diesel engine calibration is based on using local optimisation 

at different engine states (load/speed) and generating an engine control map with 
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locally-optimal solutions by interpolation and extrapolation. This process does not 

only lead to expensive computational cost, but also results in less-than-smooth 

engine control maps. The engine control maps are validated on the transient testing 

bed and vehicle and also make the engine map smooth by manually adjust the 

engine variable control. Since the modification of engine control map has been made 

based on the local optimal solution, it leads to a failure of achieving emission targets.  

Because of the failure of validation and modification on transient testing bed and 

vehicle for the calibration of optimal solution, the engine calibration needs to be re-

optimised by revising the engine actuator valid range and the engine actuator map 

gradient limits. This led to that the driveability calibration and robustness to 

environments process was delayed. The reason was that calibration optimisation 

process cannot produce a robust optimal solution with a single optimisation run, in 

terms of achieving emission productions and driveability requirements.  

This situation is only getting worse as more controls are added into engine systems 

to meet more restrictive emissions legislations and increased driveability 

expectations. Based upon these issues the sponsoring company set up a number of 

targets as follows: 

 Develop a future-proof computational methodology for engine calibration 

optimisation, which has many inputs (design variables), typically more than 

100. 

 The (mathematical) methodology must be capable of expansion as engine 

complexity increases. 
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1.3 Aim and Objectives 

The aim of this project is to study and implement the advanced mathematical 

optimisation methodology to the Diesel engine calibration optimisation problem with 

steady state engine test data. The selected optimisation methodology should provide 

computational efficiency with a clear optimisation structure and capability of 

expansion as engine (or powertrain) complexity increases.  

In order to meet this research aim, research objectives have been determined as 

follows: 

 Carry out an outline review from literature of existing engine calibration 

approaches; 

 Investigate existing optimisation methodologies from literature; 

 Study the present calibration approach in order to understand the issues and 

challenges; 

 From the study of optimisation methodologies review, attempt to formulate the 

steady state Diesel engine calibration problem based on the reviewed 

optimisation methodologies; 

 Test the optimisation formulation and analyse the optimisation application for 

Diesel engine calibration; 

 Effort on the further development based on the implementation  
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1.4 Methodology 

Figure 1.1 indicates the process flow of this research project, divided into two parts 

which are research preparation and research development.  

 

Figure 1.1 Flowchart of research methodology 

Based on the research objectives, literature reviews of both engine calibration 

processes and mathematical optimisation methodologies are required in order to (i) 

understand the state of art in both engine calibration and optimisation methodology 

and (ii) to find opportunities to apply more advanced optimisation methodologies to 
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developing the engine calibration approach. The proposed calibration approach is 

then validated and compared with the present engine calibration approach. From the 

evaluation, decisions on taking further of development are taken. 

1.5 Outline of Thesis 

This thesis is structured as follows: 

Chapter 2: literature review of optimisation. This chapter carries out a review of 

optimisation methodologies available for solving complicated engineering systems 

optimisation problems.  

Chapter 3: Engine mapping and calibration literature review. In this chapter a critical 

review of engine mapping and calibration approaches is undertaken. Different 

calibration approaches are compared and discussed in order to define the research 

direction.  

Chapter 4: Case Study of Current Engine Mapping Calibration Process. In this 

chapter the present Diesel engine calibration approach is studied to understand the 

difficulties and define the problem. A discussion and analysis of the calibration 

approach associated with potential optimisation methodologies is provided.  

Chapter 5: All At Once (AAO) describes the first approach developed for the present 

Diesel engine calibration optimisation approach. The engine calibration optimisation 

problem is formulated using the AAO framework and the optimisation tests are 

carried out. A discussion and analysis of the results is provided, in contrast with the 

benchmark results obtained from using the conventional “current” process.     
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Chapter 6: Collaborative Optimisation demonstrates an engine calibration 

optimisation process that is formulated into a framework. The tested results are 

compared with AAO and present-process results. Based on the comparison and 

discussion, an analysis of the Collaborative Optimisation formulation is carried out to 

define the further development.  

Chapter 7: Hybrid Collaborative Optimisation (HCO) is the further improvement of 

this research. The engine calibration optimisation problem is reformulated with the 

HCO that is specially designed for a Diesel engine calibration optimisation problem. 

The HCO approach results have been presented and discussed in Chapter 7. 

Chapter 8:  Discussion and Conclusions comparing the different calibration 

optimisation approaches. The decision of choosing the optimal actuator setting is 

made.  

Chapter 9: Summary and Future work. This chapter summarises this research and 

provides suggestions and recommendations for future research in this area. 
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Chapter 2 Literature Review: Optimisation Methods and 

Frameworks 

2.1 Introduction 

This chapter presents a review of optimisation problems, optimisation algorithms 

(gradient-based methods and population-based algorithms), and Multidisciplinary 

Design Optimisation (MDO) frameworks for complex system design. A number of 

algorithms and frameworks are compared and analysed to assist with the selection 

of possible options for Diesel engine calibration optimisation. 

2.2 Optimisation Problem 

In the literature (Deb, 2004 , Rao, 2009 , Ravindran et al., 2006 , Reklaitis et al., 

1983b) an optimisation problem is generally formulated as: 

Minimise:                    

Subject to:            

                       

                           Equation 2.1 

Engineering optimisation problems are generally expressed as the minimisation of a 

function       of a set of controls               , whose values are restricted to 

satisfy  j inequalities         , and a set of   equalities         , within variable 

domain bounds           . 



9 
 

The growth both in computing hardware development and the use of complex 

statistical modelling has led to the development of optimisation theories and 

algorithms. Figure 2.1 summarises a basic classification of optimisation algorithms 

(Li and Wood, 2010): 

 

Figure 2.1 Description of search algorithm developments (Li and Wood, 2010) 

2.2.1 Gradient-based Algorithms 

Gradient-based algorithms use a functional gradient to find the minimum or 

maximum point of a function. Whilst these are rapidly-converging algorithms, they 

can only find a local solution (Bhatti, 2000 , Deb, 2004 , Fletcher, 1987 , 

Papalambros and Wilde, 2000 , Reklaitis et al., 1983b). There are a large number of  

gradient-based search algorithms, including Cauchy’s method (Goldstein, 1962), 

Newton’s method (Grippo et al., 1986), and so on. Cauchy’s method provides rapid 

reduction of the objective value, particularly when the starting point is far from the 

optimum solution. Cauchy’s method determines the gradient direction by the first 

order derivative and applies the steepest descent method to find the ‘most local 
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Equation 2.2 

Where:     : current estimate solution; 

   step length parameter 

      search direction in the N space of the design variables xi, i=1,2...,N 

Cauchy’s method provides a good reduction of the objective value, especially when 

   is far from the optimum solution (Goldstein and Price, 1967). Since the higher 

order derivative information has been ignored, Cauchy’s method is only good at 

finding the local optimum solution (Goldstein, 1962 , Ravindran et al., 2006). In order 

to construct a more global strategy, Newton’s method employs higher order 

derivative information on the objective function based upon Taylor series expansions 

(Reklaitis et al., 1983a). 

Due to most engineering optimisation problems involving a number of constraints, 

both in the design and the decision spaces, techniques to convert the constrained 

optimisation problem into an equivalent unconstrained optimisation problem are 

required. Two basic techniques are Lagrange Multipliers (LM) and Kuhn-Tucker 

Conditions (KTC) (Bhatti, 2000 , Deb, 2004 , Fletcher, 1987 , Papalambros and 

Wilde, 2000 , Reklaitis et al., 1983b). Both techniques convert the constrained 

problem to an unconstrained problem by combining the objective function and the 

constraints function into a single objective function with a number of coefficients 

(corresponding to the number of constraints), and then solving a set of differential 

equations to estimate the coefficients. The difference between LM and KTC is that 

KTC can handle equality and inequality constraints whereas LM can only handle 
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equality constraints (Bhatti, 2000 , Cohon, 1985 , Ravindran et al., 2006 , Reklaitis et 

al., 1983b). 

Sequential Quadratic Programming (SQP) (Bhatti, 2000 , Boggs and Tolle, 1995 , 

Ravindran et al., 2006 , Byrd et al., 1992) has been widely used to solve optimisation 

problems containing non-linear constraints and it represents a state-of-the-art of non-

linear programming methods. SQP is based upon gradient-based methods and a 

KTC formulation to solve the constrained problem. As a gradient-based method, 

SQP also involves two major definitions from search processes, which are step size 

and search direction (Boggs and Tolle, 1995 , Byrd et al., 1992). 

2.2.2 Population-based Algorithms 

2.2.2.1 Introduction 

Since the 1970s computing power has dramatically improved. Population-based 

computational methods were introduced in order to produce global optimal solutions 

within complicated design spaces (Holland, 1975 , Conley, 1980 , Conley, 1984 , 

Dickman and Gilman, 1989). Genetic Algorithms (GAs) are a class of search 

algorithms based upon the principles of evolution and natural selection. GAs do not 

only allow the population to indicate the search direction through the evaluation of 

each design in the population, but also let the solutions in the population carry the 

better genes with them by inducing off-spring solutions with selected parental 

solutions (Deb, 2001). 
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2.2.2.2 Principles of Genetic Algorithms 

Figure 2.2 shows the flow of a standard GA process that starts with an initial 

population that is randomly created within the design space (Weile and Michielssen, 

1997). Each design in the population set is evaluated and randomly compared 

between a small number of solutions by a selection function, and the selected 

solutions are used as ‘parents’ to generate new solutions as a new population (child 

solutions) by using crossover and mutation operators. The population of child 

solutions is checked against convergence criteria, and the optimisation is terminated 

if the convergence criteria are achieved. Otherwise, the same procedure continues 

until convergence criteria are satisfied. 

 

Figure 2.2 Flowchart of a standard GA process (Weile and Michielssen, 1997) 

 

Selection operator 
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The selection operator is used to assign preference to the better individual solutions 

in a population and to allow them to pass their genes to the next generation. There 

are a number of ways to duplicate good solutions and eliminate bad solutions. Some 

of the commonly-used methods are ranking selection, roulette selection tournament 

selection(Goldberg, 1989b). 

Ranking selection evaluates and ranks the fitness of each solution. Thereafter a 

number of parents are selected from the top of the rank. This selection results in a 

fast convergence searching route. However, the search direction concentrates in a 

particular area after just a few generations. Some areas are missed, which leads to a 

local optimal solution(Schaffer, 1985a) 

Tournament selection randomly selects and compares a number (tournament size) 

of solutions. The tournament size must be at least two. The best individual of the 

tournament is chosen and placed in the mating pool as a parent solution according 

to its fitness value (Goldberg, 1989b). 

Crossover operator 

The crossover operator creates new solutions that carry genes from a parent 

solution from the previous generation (Bramlette, 1991). Figure 2.3 shows an 

example of crossover. Two solutions are selected as parent solutions by the 

selection operator. As survivors from selection they are assumed to be carrying 

better genes. According to biology and evolutionary theory, there is a chance to 

make a “better” child by combining the genotype of two naturally selected survivors. 

From an engineering point of view, there are more possibilities of finding better 

solutions around those two selected solutions with better fitness. User defined parts 
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of the string are exchanged between the two parent strings. This process creates 

two new strings, the so called offspring or child solutions (Goldberg, 1989a). 

 

Figure 2.3 Demonstration of crossover with binary strings(Goldberg, 1989a) 

In most engineering problems, real numbers are normally used for the input and 

output variable values. There are a number of commonly-used crossover functions in 

engineering applications that are intermediate and heuristic. 

Mutation operator 

The mutation operator is designed according to the theory of geno-variation. The 

essence of mutation is to discover more areas of the design space that have not 

been previously explored. The discovery of a new area provides the possibility of 

finding an ‘improved’ optimal solution. The principle of the mutation operator 

application with a binary number is shown in Figure 2.4. The number at the user 

selected bit is mutated from generation to generation (Goldberg, 1989a). 
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Figure 2.4 Demonstration of mutation with binary strings(Goldberg, 1989a) 

 

Similarly, in engineering applications the mutation operator has been developed into 

a number of different approaches, for example Gaussian mutation (Fogel and Atmar, 

1990), Uniform mutation (Houck et al., 1995), and Adaptive Feasible 

mutation(Srinivas and Patnaik, 1994).  

Gaussian mutation adds a random number to each entry of the parent solution 

vector. The random number is generated according to the Gaussian distribution with 

a mean of zero and a standard deviation determined by user-defined parameters 

which are scale and shrinks. The mutated solution is evaluated as equation 2.2 

(Fogel and Atmar, 1990). 

                

                                  
 

                    
   

Equation2.2 

k is the current generation number.  “Scale” controls the standard deviation of the 

mutation at the first generation, which is scale multiplied by the range of the initial 

population (which is specified by the Initial range option). “Shrink” controls the rate at 
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which the average amount of mutation decreases. The standard deviation decreases 

linearly so that its final value equals 1 “Shrink” times its initial value at the first 

generation (MATLAB User Guide). For example, if “Shrink” has the default value of 1, 

then the amount of mutation decreases to 0 at the final step. 

Uniform mutation returns the mutated child solution by replacing each of the 

individual solutions of selected entry (defined as a number of variables or a part of 

solution) with the probability rate to be mutated. A random number is used to replace 

the selected byte, which is uniformly selected from the corresponding range of each 

entry. Similarly, adaptive feasible mutation uses the same procedure with respect to 

both linear and non-linear constraints (Houck et al., 1995). 

2.2.2.3 Multi-Objective Optimisation Problem (MOOP): 

As engineering systems are becoming more complicated, so too are the optimisation 

processes required to be able to handle such complexity. In these engineering 

optimisation problems the traditional single objective optimisation cannot satisfy the 

engineering system requirements anymore, therefore such a type of engineering 

system is formulated as a Multi-Objective Optimisation Problem (MOOP) (Ravindran 

et al., 2006). A typical MOOP is presented in Equation 2.3 (Schaffer, 1984; Fonseca 

and Fleming, 1995):   

Minimise:      ⃑                                               

Subject to:     ⃑                                              

      ⃑                                               

Equation2.3 
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  is the number of objective functions   , and  ⃑             
  is the vector of 

design variables. The optimal solution is defined as a set of  ⃑ that yields the optimum 

values of all the objective functions and that satisfies the inequality constraints 

    ⃑     and equality constraints     ⃑   . 

To compare, for a single optimisation problem using one solution to represent the 

optimal solution, it will be rare that a single point will simultaneously optimise all the 

objective functions (Coello, 2006). Therefore, ‘trade-offs’ are normally expected while 

dealing with multi-objective optimisation problem. The set of solutions of a multi-

objective optimisation problem consists of the decision vectors  ̅  that cannot be 

further improved in any objective dimension without retrogression in another 

objective (Zitzler and Thiele, 1998). These decision vectors in the design space are 

termed the Pareto-optimal, non-dominated solution, trade-off or non-inferior solution 

(Horn, 1997).  

In theory any multi-objective optimisation problem can be converted into a single-

objective optimisation problem. There are two common ways to convert a multi-

objective optimisation problem to a single-objective optimisation:  

i. Aggregate all the objectives into one scalar function and treat all the 

objectives apart from the most important one as constraints with given 

limits (Coello, 2002; Fonsesca and Fleming, 1994); 

ii. The weighted sum method was the most common procedure used in 

early approaches to solve the multi-objective optimisation problem. It 

assigns a weight iw
 
to each objective if

 
and the combination of all 

these weighted objectives is formulated as (Coello, 2002): 
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     ∑   

 

   

   

 

The weighted sum approach produces a single compromise solution without 

requiring any further information from the decision maker after the weights are 

established. This procedure only produces one single-point optimal solution for each 

single run. If the candidate ‘optimal solution’ is not acceptable or the weighting 

information is updated, additional simulation runs would be required until a suitable 

solution was found (Fonsesca and Fleming, 1994). Although a suitable solution may 

be found after many simulation runs, this single optimal solution is not necessarily 

the best choice. Furthermore, the weighted sum method cannot find the real Pareto-

Frontier optimal solution set in a non-convex objective space (Deb, 2001) 

Several extensions of similar scalarised sum weighted approaches have been 

reported in the literature (Koski and Silvennoinen, 1987; Steuer, 1989; Das and 

Dennis, 1997).Jin et al. (1993) discussed how to generate a Pareto-optimal solution 

set by using the weighted sum method with dynamic weights, also called dynamic 

weighted aggregation. These methods emphasise the selection of non-arbitrary and 

efficient weights and can produce an approximate Pareto-optimal solution. As the 

weight becomes more efficient, knowledge and preference information of the system 

is required from the decision maker. These methods are more computationally 

expensive (Marler and Arora, 2004).  
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2.2.2.4 Evolutionary Algorithms 

Table 2.1 summarises a number of major developments in evolutionary algorithms, 

which are reviewed in this section. 

Table 2.1 Summary of evolutionary algorithms 

Algorithms Technique Advantage Disadvantage Reference 

VEGA Vector evaluation Addresses all 
objectives 
simultaneously 

the optimal solution of 
each single objective 
is not well covered 

(Schaffer, 
1985b , 
Schaffer, 1985a) 

MOGA Non-dominated 
ranking; sharing 
function used in 
objective space 

Able to produce 
non-dominated 
solution set; less 
crowded 
distribution in 
objective space 

Depends on an 
appropriate selection 
of sharing function 

(Fonseca and 
Fleming, 1993 , 
Fonseca and 
Fleming, 1998 , 
Sinoquet, 2009) 

NSGA Non-dominated 
ranking; sharing 
function used in 
design space 

Non-dominated 
solution set can 
be produced; 
maintains 
diversity of 
Pareto-solution 

Depends on parameter 
of crowding distance 

(Goldberg, 
1989b , Srinivas 
and Deb, 1994) 

NPGA Tournament 
comparison ranking 
scheme; niching 
technique 
performed over 
population 

Convergence rate 
is controllable by 
user defined 
parameter, 
diversity 
maintained over 
whole population 

Elitism solutions are 
not maintained from 
generation to 
generation; depends 
on the parameter tdom;  

(Horn et al., 
1994) 

Rudolph’s 
MOEA 

Elitist algorithm 
based on non-
dominated ranking; 
number of optimum 
solutions saved 
externally 

Fast convergence 
rate; diversity 
maintained over 
whole population 

Depends on parameter 
too much; computation 
is expensive 

(Rudolph, 1999) 

NSGAII Elitist algorithm 
based on NSGA; 
sharing function 
performs in 
objective space  

Fast convergence 
rate; diversity 
controlled by 
crowding distance 

Depends on parameter 
of crowding distance 

(Deb, 2001 , 
Deb, 2004) 

SPGA Elitist algorithm 
performed by 
storing Pareto 
optimal solution 
externally; uses 
clustering  

Reduces number 
of iterations; 
maintains 
diversity of 
Pareto-solution 

Storing Pareto optimal 
solution and clustering 
algorithm costs 

(Zitzler et al., 
2001 , Zitzler 
and Thiele, 
1998) 
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Vector Evaluated Genetic Algorithm 

Schaffer (1984) was the first to find a Pareto-optimal solution set for a multi-objective 

optimisation problem by using an Evolutionary Algorithm (EA). Schaffer’s (1985) 

multimodal EA approach, also called the Vector Evaluated Genetic Algorithm 

(VEGA), is possibly the simplest Multi-Objective Genetic Algorithm (MOGA) 

extension from a single-objective genetic algorithm. Schaffer (1985) proposed that a 

crossover between two higher ranking solutions corresponding to different objectives 

could find good trade-off solutions between the two objectives. Since each sub-

population had been ranked with a different objective, and the solutions of higher 

rank were selected to generate a mating pool, this procedure meant that the 

solutions of each sub-population converge to the optimal solution of just one 

particular objective. Thus, the VEGA approach results in a set of solutions that can 

be distributed around the extreme value of different objective optimal solutions in the 

objective space (Coello, 1999). The shortcoming of this approach is that many 

solutions are missed on the approximate Pareto-frontier between the different 

individual objective optimal solutions (Deb, 2001). 

Since VEGA was introduced, many people have tried to update it to obtain a better 

distribution on the Pareto-frontier. Schaffer (1985) suggested that the diversity of 

solutions could be maintained by emphasising non-dominated solutions in a 

population. 

Non-dominated Sorting Genetic Algorithm (NSGA)  

Goldberg’s (1989) non-dominated sorting concept  in GA was implemented again by 

Srinivas and Deb (1994). To maintain diversity in the design space, a sharing 

function with the niche technique has been used to assign the shared fitness to 
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every individual in the same non-dominated set. Tournament selection based upon 

the shared fitness has been used to produce a mating pool. Crossover and mutation 

operators are used as normal. In the NSGA process, the diversity of a non-

dominated solution set is improved by assigning a rank to each individual within the 

non-dominated solution set. Also, the share function has been carried out again and 

the “niching” has been performed in the design space. Therefore this process 

provides a better possibility of finding more local optimal solutions. 

Multi-Objective Genetic Algorithm (MOGA) 

Many attempts have been made to improve the VEGA algorithm. Fonseca and 

Fleming (1993) represented a Multi-Objective GA (MOGA) that, for the first time, 

used the non-dominated classification of a GA population to solve a multi-objective 

optimisation problem. The difference between MOGA and the standard GA revolves 

around the way in which fitness is assigned to each solution in the population. The 

idea of MOGA is that all the individuals can be sorted into different non-dominated 

sets by assigning a rank to them. In order to maintain the diversity of non-dominated 

solution set, Fonseca and Fleming implemented Goldberg’s (Goldberg et al., 1991 , 

Miller and Shaw, 1996) idea of a sharing function for a “niching” mechanism by 

selecting individuals from the same rank solution set (Fonseca and Fleming, 1998). 

Niched-Pareto Genetic Algorithm (NPGA) 

Horn and Goldberg (Horn et al., 1994) employed a method to solve the multi-

objective optimisation problem, which was a Pareto dominated tournament instead of 

a non-dominated ranking method. They proved that the amount of selection pressure 

and convergence speed can be controlled by adjusting the size of the tournament. 

To maintain the diversity between the individuals, Goldberg (1989) suggested that 
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the individuals are degraded by simply dividing the objective fitness by the niche 

count to find the shared fitness. Hence, the individuals within the share distance 

σshare of each other degrade each other’s fitness. Since tournament selection has 

been used instead of non-dominated ranking, the optimiser cannot be certain that all 

the selected solutions are in the non-dominated solution set. The quality of the 

selected solutions depends heavily upon the randomly selected solution size tdom 

(Deb et al., 2000).  

Rudolph’s Multi-Objective Evolutionary Algorithm (Rudolph, 1999) 

Early evolutionary algorithms had the disadvantage that they could lose better 

solutions in the population from previous generations. A ‘remedy’ was proposed by 

Rudolph (1999), Deb (2000) and Zitzler (Zitzler and Thiele, 1998). Rudolph (1999) 

proved that GAs converged to the global optimal solution better by keeping the elitist 

solution in the population from generation to generation. Rudolph (1999) suggested 

a complete procedure for a GA based Multi-Objective Evolutionary Algorithm with 

elitism. Rudolph’s suggestion represents an elitist multi-objective optimisation 

algorithm: every elitist solution in the population is preserved in the next generation. 

Nevertheless, Rudolph’s method does not involve any diversity preservation 

mechanisms, and it produces the final Pareto-optimal solution set distributed only 

around the different objective optimal solution (similar to VEGA). 

Non-dominated Sorting GA II (NSGA II)  

Following Rudolph (Rudolph, 1996) the elitist algorithm has been examined by many 

researchers. The most innovative algorithm is the elitist non-dominated sorting 

genetic algorithm (NSGAII). Deb (2000) suggested preserving the elitism solution 

from generation to generation and maintaining the diversity between the solutions at 
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the same time by applying NSGA. In order to keep the elitism in the population from 

generation to generation, for every generation the parent solutions are combined 

with offspring solutions. Then the selection procedure is carried out with this 

combination of solution sets according to the rank of the non-dominated solution set. 

To choose the solution from the same non-dominated solution set, a crowding 

distance is calculated to assign selecting rank for each solution. The elitist 

mechanism has been implemented in NSGAII by combining the parent and offspring 

population to preserve the elitism from generation to generation. The diversity 

between the non-dominated solutions is retained by using tournament selection of 

crowding distance comparison (Deb et al., 2000). On the other hand, the crowding 

distance assignment does not require any extra parameters, for example σshare for 

sharing function in MOGA, NSGA and NPGA.  

Strength Pareto Evolutionary Algorithm (De Jong and Spears): 

A number of elitist multi-objective EAs have been recently proposed, such as Zitzler 

and Thiele’s (Zitzler and Thiele, 1998) Strength Pareto Evolutionary Algorithm (De 

Jong and Spears). SPEA stores the Pareto-optimal solutions externally so that the 

Pareto-optimal solutions are not lost from generation to generation. The clustering 

algorithm has been used in SPEA to produce a good distribution of Pareto-optimal 

solutions on the Pareto-front. In order to prune the external non-dominated elite 

solution, while keeping the characteristics of the original set, a clustering algorithm 

has been implemented in the SPEA optimisation process (Zitzler and Thiele, 1998). 

A non-dominated set of   elements is partitioned into   groups of relatively 

homogeneous elements by cluster analysis, where     . One solution is chosen 

from each of these groups to be used as parent solution. In SPEA, any solution in 

the Pareto-optimal front will immediately get stored in the external population, and 
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will not be deleted until a solution is found which can dominate it or perform better 

than it in the same cluster (Zitzler et al., 2001). Clearly, the external population 

stores the elitism from generation to generation to preserve them. Also, a good 

spread from the non-dominated solution set is generated by the clustering algorithm 

and the concept of non-domination. However, the clustering algorithm uses less 

parameter than the sharing function. It still introduces a parameter  ̅, which is the 

size of the external population. The success of SPEA depends upon how this 

parameter is defined (Zitzler et al., 2001).  

2.3 Multidisciplinary Design Optimisation (MDO) 

Another approach to considering the complex process of engineering system design 

involves working with a number of various interacting disciplines. Based on these 

natural characteristics, MDO methodologies have been developed to deal with these 

complex engineering systems. MDO aims to explore and perform optimisation at 

every discipline while following “interaction” rules. MDO frameworks have been used 

to optimise the design of aircraft (Kroo et al., 1994), automotive vehicles (Kim et al., 

2001), and aerospace vehicles (Braun and Moore, 1996).  

The original MDO methodology was developed in the aircraft industry to improve the 

design of complex aircraft systems that involve the work of many specialists in 

various dependent disciplines (Kroo et al., 1994).  

In complex system MDOs, there is always the challenge of balancing computation 

and organisation. A good MDO strategy is required to (Kroo et al., 1994): 

 decrease the dimensionality; 

 simplify the analysis expense;  
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 maintain the consistency of the whole system with each discipline; 

 properly explore the design space of each discipline for a good search. 

Multidisciplinary optimisation methodologies for complex engineering systems design 

are developed based upon the different formulation of the optimisation problem. 

Different formulations of an optimisation problem lead to the development of different 

MDO frameworks. The methodologies of MDO can be divided into single-level 

system (e.g. All At Once and Multidisciplinary Feasible Method) and multi-level 

system (e.g. Collaborative Optimisation, Bi-Level Integrated System Synthesis and 

Analytical Target Cascading), which are reviewed in this chapter. Table 2.2 

summarises the MDO frameworks that are reviewed. 
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Table 2. 2 Summary of Reviewed MDO Frameworks 

 MDO Advantages Disadvantages Reference 

S
in

g
le
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e

v
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l 

S
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a
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g
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AAO Simple to use and 
capable for all MDO 
problem (both hierarchical 
and non-hierarchical) 

Expensive 
computation costs, the 
performance depends 
on  the number of 
disciplines and 
variables very much 

(Balling et al., 1994 , 
Cramer et al., 1992 , 
Kodiyalam and Center, 
1998 , Cramer et al., 
1994). 

MDF Coordinate all the 
disciplines with a single 
level optimiser, no 
restrictions on data 
communication between 
disciplines (non-
hierarchical coupling) 

Extremely expensive 
computation is 
required for each 
iteration as more 
disciplines involved, 
low robustness to find 
optimal solution 

(Braun et al., 1996 , 
Cramer et al., 1994) 

IDF Less computation 
required and better 
robustness compare with 
MDF, 

Does not ensure the 
consistency, the 
dimensionality 
increased by 
decomposing coupling 
variables 

(Allison et al., 2005 , 
Cramer et al., 1994 , 
Allison, 2004) 

M
u

lt
i-

L
e
v
e
l 

S
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a
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g
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CO The decomposition 
provides the maximum 
possibility to find the local 
optimal solution and 
reduce the data 
communication 
requirements 

With the increased 
dimensionality, it is 
difficult to decompose 
the system into 
disciplines 

(Kroo et al., 1994 , 
Kroo and Manning, 
2000 , Braun and Kroo, 
1995 , Braun and 
Moore, 1996 , 
Sobieszczanski-
Sobieski and Haftka, 
1997) 

BLISS Better performance when 
design variable cluster 
into few relative design 
variable groups and 
disciplines have large 
number of local variables.  

Difficulty with 
nonhierarchical 
strongly coupled MDO 
problem with less 
flexibility in the local 
design space  

(Sobieszczanski-
Sobieski et al., 1998 , 
Sobieszczanski-
Sobieski and Haftka, 
1997) 

ATC Clear and efficient 
structure for hierarchical 
MDO problem 

Difficulty to handle 
nonhierarchical MDO 
problem  

(Kim et al., 2001 , 
Michelena et al., 1999 , 
Papalambros, 2001 , 
Papalambros, 2002 , 
Allison et al., 2009 , 
Kim, 2001) 

2.3.1 Single-level MDO Strategies 

Single-level MDO strategies aim to solve a problem with a number of disciplines in 

which all the requirements of expertise can be easily acquired by full control of inputs 

from the optimiser. Therefore, the analyser may create a new discipline by focusing 
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upon the interaction between disciplines. Also, the shared variables between 

disciplines have to be obtained simultaneously. Figure 2.5 shows an example of a 

system design with a number of fully-coupled disciplines (or subsystems). The 

single-level MDO strategies aim to solve the total optimisation problem by handling 

all the disciplines together (Allison et al., 2005).  

 

Figure 2.5 Demonstration of MDO Problem with Fully Coupled Disciplines (Allison et al., 2005) 

 

All At Once (AAO) 

The All-At–Once strategy (AAO) is a highly centralised approach. In the AAO 

approach, the system optimiser deals with three sets of design variables: the original 

design variables, the coupling variables, and the state variables (Balling et al., 1994 , 

Cramer et al., 1992 , Kodiyalam and Center, 1998). The values of these design 

variables are evaluated by the optimiser of the AAO in the design space. The values 

of the original design variables are reproduced in the optimal objective function 

values; the values of coupling variables satisfy the auxiliary constraints to ensure the 
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consistency of the system; the values of state variables satisfy the governing 

equations. Figure 2.6 demonstrates the AAO framework where decision space 

design, system analysis, and subsystem analysis are all performed simultaneously 

(Allison, 2004). 

 

Figure 2.6 Illustration of AAO Framework 

 

AAO is the most basic of MDO methodologies and has been commonly used in 

industry, although it is restricted to small design problems. Because AAO takes all 

the local optimisations away and gives full control of all the design variables to the 

system level optimiser, this leads to an expensive computation cost. It ensures that 

MDO is performed and a global objective is met by performing the optimisation at all 

the disciplines and controlling the entire engineering system design with one 

optimiser. Such an optimisation can immediately determine how changes to one 

particular part of the system affect the whole system.  
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Multidisciplinary Feasible (MDF) 

Multidisciplinary feasible (MDF) approaches use a single system-level optimiser to 

coordinate all of the subspace analysers (Cramer et al., 1994). In MDF approaches, 

the system analyser is responsible for finding the optimal solution in the design 

space using the optimiser with the appropriate response functions. The system 

analyser is nested in order to find the optimal solution at every optimisation iteration. 

Kodiyalam and Center (Kodiyalam and Center, 1998) summarised a MDF 

formulation to a general optimisation problem (Equation 2.6): 

Minimise:              

Subject to:  (        )     and boundaries on design variables    

Equation 2.6 

In this formulation    is the vector of design variables and       is the output of the 

Multidisciplinary Analysis (MDA).    and       are used to evaluate the objective 

            and constraints  (        ). Figure 2.7 shows the structure and data 

flow of MDF. In Figure 2.7        is used to evaluate the output of discipline1, where 

  is the input of discipline1 that is evaluated by           ;     is the transfer 

function of discipline   that the form is suitable for use by discipline  .  
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Figure 2.7 Demonstration of Data Flow under MDF Structure (Allison et al., 2005) 

 

The MDF approach is only concerned with treating non-hierarchical problems. 

During the MDF process there are no restrictions on data communication between 

the subspaces. However, sometimes the large iteration loops of MDF can be 

computationally expensive, especially when more subsystems are involved and the 

system analysis requires more iteration to converge. Due to the fact that subsystem 

analysis cannot be carried out in parallel in the MDF approach, MDF exhibits low 

robustness for finding the optimal solution when the system analysis does not 

converge to one set of design settings (Braun and Moore, 1996). 
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Individual Disciplinary Feasible (IDF) 

Compared to MDF, the Individual Disciplinary Feasible (IDF) approach was 

developed in order to improve the limitations of the MDF approach. The difference 

between MDF and IDF is that the optimiser of IDF coordinates the interactions 

between the subsystems, rather than relying on the simple iterations of MDF 

analysis (Allison, 2004). IDF allows the optimiser to directly drive the controls of 

individual disciplines in order to achieve multidisciplinary feasibility and optimality, 

whilst maintaining individual discipline feasibility. From literature (Allison et al., 2005 , 

Balling et al., 1994 , Braun et al., 1996 , Cramer et al., 1992 , Cramer et al., 1994), 

IDF can be summarised by Equation 2.7: 

Minimise:              with respect to           

Subject to:    (       )    

            ̅    and boundaries on design variables    

Equation 2.7 

           is the total objective function and   is the vector of design variables that 

consists of    and   .    is the vector of state variables and    is the vector of 

interdisciplinary coupling variables.  (       ) is the constraint function and      

describes the consistency constraints that ensure that the shared variables are 

consistent.  

Figure 2.8 shows that the IDF approach uses a parallel process to optimise the 

complex system rather than simply using the same analysis tool repeatedly. In the 

IDF approach, the non-hierarchical links in the system are broken down by using the 
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constraints so that the optimisation problem can be formulated in a hierarchical 

system (Allison, 2004). 

 

Figure 2.8 Illustration of IDF Data Flow Structure  

 

The IDF approach does not ensure that multiple disciplines are consistent at every 

iteration, but only ensures that the constraints are satisfied at each discipline 

individually. In this process, the coupling variables become design variables in each 

discipline. Therefore, the dimension of the system is increased by breaking down the 

non-hierarchical links. 

2.3.2 Multi-level strategies 

With single level MDO strategies, difficulties in communication and organisation 

between disciplines are minimised. As design problems become more complex, the 

number of disciplines increases and it becomes more difficult for a centralised 

process (Braun and Moore, 1996). These difficulties with multidisciplinary design are 

particularly evident in the design of aerospace vehicles (Sobieszczanski-Sobieski 

and Haftka, 1997) and aircraft conceptual design (Kroo et al., 1994) Since the 
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analysis and design tasks become more decentralised, communication requirements 

become more severe and more analysis needs to be handled during the process of a 

complex system design. A need exists, not simply to increase the ability of analyses, 

but rather to have a more organised structure of design optimisation problem that 

better explores the design problem, improves performance, and reduces complexity 

(Allison, 2004 , Kroo, 2004 , Sobieszczanski-Sobieski and Haftka, 1997).  

The interdisciplinary coupling inherent in MDO tends to present additional challenges 

beyond those encountered in a single-discipline optimisation, and so Sobieski 

concluded that the computation, complexities and even the difficulties of 

organisational challenges for implementing the necessary coupling in system are 

increased (Sobieszczanski-Sobieski and Haftka, 1997). Faced with these challenges, 

single-level MDO systems are becoming incapable or inefficient. Therefore, a 

number of Multi-level MDO frameworks have been introduced.  

Collaborative Optimisation  

Braun and Kroo (1995) introduced Collaborative Optimisation (TCO, Traditional 

Collaborative optimisation) as a distributed system design (Braun and Kroo, 1995 , 

Braun and Moore, 1996 , Kroo and Manning, 2000 , Kroo, 2004). TCO is a design 

architecture that is capable of solving a complicated optimisation problem in any 

multidisciplinary analysis environment, but is specifically intended for large-scale 

distributed analysis applications (Braun and Kroo, 1996). In the TCO approach, an 

optimisation problem of the complex system is decomposed along disciplinary 

boundaries into a number of sub-problems, and the sub-problems are brought into 

multidisciplinary agreement by system-level coordination procedures. The TCO 

formulation is a two-level hierarchical scheme for MDO, which typically involves a 
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system optimiser (top level) and sub-system or discipline level (bottom level), as 

shown in Figure 2.9.  

 

Figure 2.9 Basic Structure of Collaborative Optimisation Architecture (Kroo and Manning, 2000) 

 

The system optimiser aims to minimise the system objective (     ) while satisfying 

the interdisciplinary compatibility    by varying the multidisciplinary variables  . 

Collaborative Optimisation (CO) at system level can be formulated as Equation 2.8:  

Minimise:                           

Subject to:                

            

                  Equation 2.8 

The nomenclature is defined as follows: 

      : System level objective function  

       and      : system level constraints function 

Minimise:Js=F(x)
Sub to:

 

( ) 0

0

( ) 0

  s

s
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Sub to: Local Constraints
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1( , ) ( )sub subD z z z z  Minimise:

Sub to: Local Constraints

2
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Disciplinary Analysis 1:
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Disciplinary Analysis 2:

Local Constraints Evaluation

Disciplinary Analysis i:

Local Constraints Evaluation
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  : Vector of system level design variables 

  : Vector of interdisciplinary coupling variables,     

   : Vector of consistency term of length   

 : Number of disciplines  

For every iteration the system optimiser varies the   as variables to improve the 

system level objective and passes   down to the sub-system.  

The subspace can then be formulated as Equation 2.9 (Braun, 1996): 

Minimize:           
     ∑           

Subject to:             
          

 Equation 2.9 

The nomenclature is: 

       
    : Sub-system local objective function at discipline i 

          
    : Local constraints function at discipline i 

  : Sub-system local design variables at discipline i 

 : Vector of sub-system parameters that is passed down from system level as 

targets 

     : Interdisciplinary coupling variables at discipline i 

For each iteration the improved   is sent to the subspace and is used as parameters 

of the sub-system. The objective in the subspace is calculated in a least squares 
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sense as the discrepancy from the sub-system level design variables      and 

system target  . 

For centralised strategies such as MDF or AAO, which use one central system 

optimiser, data communication and structure organisation become extremely 

expensive computationally when the system is complicated. Collaborative 

Optimisation can reduce the computation of complicated system optimisation while 

keeping the system consistent by employing a subsystem optimiser and a unique 

treatment of the system level and subspace level design problem (Allison, 2004). 

The main aim of each subsystem optimiser is to get coupling variables consistent 

between subsystems, while a system optimiser provides coordination and minimises 

the overall objective (Braun and Kroo, 1996). Specifically, each subsystem controls a 

local design space variables and is determined by satisfying the local constraints. 

The system optimiser performs the coherence and communication between the 

different subsystems by managing, passing and decomposing the targets of the 

subsystem.  

In the Collaborative Optimisation (MDO/CO) framework, the multidisciplinary 

optimisation problem is decomposed into disciplines at a subsystem level. In each 

discipline, the deviation of each variable from the target value passed down from the 

system level is optimised while subject to the constraints that are used to define the 

discipline space. In practice, the discipline optimisers minimise the distance from the 

local optimal solution to the global optimal solution locally in the discipline space 

(Braun and Kroo, 1996). In each discipline, the constraints for the other disciplines 

are released to provide the maximum possibility of finding the local optimal solution 

(Braun and Kroo, 1995). The decomposition of MDO/CO can reduce the 

communication requirements and the size of the overall system optimisation problem 
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(Kroo, 1997). However, it does increase the number of variables by creating target 

variables for discipline optimisers (Sobieszczanski-Sobieski et al., 1998). Although 

Collaborative Optimisation is a clear hierarchical MDO structure, it has been well 

implemented with non-hierarchical MDO problems by reorganising the data 

communication at the system level (Kroo, 2004).  

Bi-Level Integrated System Synthesis (BLISS) 

Bi-Level Integrated System Synthesis (BLISS) is a MDO method of engineering 

systems, which involves system optimisation with a small number of system sharing 

variables and a number of sub-systems having a large number of local variables 

compared to the system (Sobieszczanski-Sobieski et al., 1998). BLISS uses a 

relatively small number of design variables, which are shared with the disciplines. 

The solution of system level problem is obtained by using the derivatives of the state 

variables with respect to system level design variables and the constraint functions, 

which are obtained from discipline optimisations (Sobieszczanski-sobieski, 1999). 

The BLISS process is described as follows (Sobieszczanski-Sobieski et al., 1998): 

 define initial values of global variables (Z) and local sub-system variables (X); 

 conduct system analysis to compute the state variables and the design 

constraint function values; 

 check the convergence for termination, both at system level and at sub-

system level 

                                         

 conduct sensitivity analysis for both the system level and the subsystem 

levels by using the derivatives of the state variables/outputs of sub-system (Yr) 
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and the input variables from the sub-systems r to sub-system s (Yrs) with 

respect to global design variables (Z) and subspace design variables (X); 

 at subsystem r, given X and Z, the optimisation is carried out by varying    to 

minimise the objective function (   
  

   

 
   ) of sub-system r, which is 

expanded in a Taylor series;  

 evaluate d(Φ,Z) for system optimisation, where Φ is the system objective 

function;  

 solve the optimisation problem at the system level to get   , and update X 

and Z with 

                               ; 

 repeat from step 1. 

Essentially, BLISS distributes the difficulty of system design between the disciplines 

and uses a gradient-guided path to reach the improvement of system level design by 

alternating between the disciplines and the system level (Sobieszczanski-Sobieski et 

al., 1998). BLISS has been implemented and has been found to have performed well 

with the optimisation of complicated systems (Sobieszczanski-Sobieski and Haftka, 

1997). Typically, the design variables cluster into a set of relatively few design 

variables that govern the system design; and a set of local variables that governs the 

local discipline design detail (Sobieszczanski-sobieski, 1999). 

Analytical Target Cascading (ATC) 

Analytical Target Cascading (ATC) is a methodology for product design architectures 

that support some type of hierarchical partitioning (Papalambros, 2001).. When the 

system design problem can be modelled analytically, the process can be formalized 
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as a MDO problem referred to as ATC. The term ‘analytically’ here means any 

functional representation that computes the responses for some given values of the 

elements’ design variables, and the functional representations from lower level 

elements are used as design variables at upper levels (Papalambros, 2001).  

In the ATC process, the system design targets are cascaded through a hierarchy of 

design groups (Allison et al., 2005). The solution of a partitioned system optimisation 

problem is obtained by solving the sub-system optimisation problem and matching 

their optimal solution at system level using a coordination strategy. Two types of 

models are used in the ATC process; optimal design model and analysis model 

(Lygoe, 2010 , Papalambros, 2002). The optimal design model is used to make 

decisions based on analysis model evaluations; analysis models take values of 

parameters, design variables and linking variables that are from lower level 

responses and return values of responses for design problems (Papalambros, 2001). 

A linking variable is defined as a common variable between more than one design 

problem. The ATC partitioning process can be carried out with the original problem 

by the following steps: 

 minimise the discrepancy between the original problem objective and the 

response from the analysis model while satisfying all the constraints, shown in 

Equation 2.10: 

Minimise:                                    

 Subject to:             

                       

                        
         

         Equation 2.10 
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The nomenclature is: 

T: overall design target 

R: total objective response function of x 

                                           

                                         

                                     

 cascade the system optimisation problem to the subsystem optimisation 

problems; at level p the optimisation problem of q can be formulated as: 

Minimise:   |     ̃     
 |  |   ( ̃)     

 |        

Subject to:  ∑|     ̃     
 |     

    ∑|   ( ̃)     
 |     

                                        

                        (           )         

Equation 2.11 

   
 : target value of response from upper level 

   : responses computed by analysis models 

   
 : target value of response from lower level 

   
 : target value of linking variable from upper level 

   : linking design variables 

   
 : target value of linking variable from lower level 
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In order to solve the multilevel engineering system design, ATC has a strong 

resemblance to TCO (Braun et al., 1996 , Tappeta and Renaud, 1997). However, the 

ATC multidisciplinary design optimisation framework is based on hierarchical 

organisation and analysis structures, which are typically partitioned by objective 

(Allison et al., 2005). 

2.4 Discussion and Conclusion 

The MDO literature review has been carried out in order to find a better way to 

organise the complex engineering system optimisation design. MDO strategies 

provide a chance to explore the optimisation problem better by looking at the 

engineering system from a different point of view. Single level MDO strategies have 

been shown to have the capability of dealing with engineering systems having a 

small number of strongly coupled disciplines, especially two or three disciplines 

(Cramer et al., 1994 , Depince et al., 2007 , Kodiyalam and Center, 1998 , 

Sobieszczanski-Sobieski and Haftka, 1997). The AAO method has been shown to 

have the ability to handle different types of MDO problem and provide a solution. 

However, it results in heavier computation by exploring the data communication of 

those interdisciplinary coupling variables. MDF is one of the common ways of 

approaching the solution of MDO problems (Kodiyalam and Center, 1998). In MDF 

multidisciplinary feasibility is achieved by performing a set of analysis following the 

natural interdisciplinary coupling disciplines. Nevertheless, the optimiser of IDF has a 

fully control of all design variables that involve the interdisciplinary coupling variables. 

Multi-level MDO strategies aim to distribute the difficulties of large scale (large 

number of design variables) optimisation problem, by organising the optimisation 

problem in different levels and decomposing the optimisation problem into a number 
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of disciplines (Sobieszczanski-Sobieski and Haftka, 1997). The TCO Approach has 

been demonstrated in some implementation and shown the benefits of 

(Sobieszczanski-Sobieski et al., 1998) improving efficiency and exploring the design 

space better (Braun and Kroo, 1995 , Kroo, 2004). Sobieski introduced the BLISS 

optimisation approach to reduce the difficulty of the complex system optimisation by 

using the gradient-guided path to reach the improvement of system level design, 

which is gathered from sensitivity analysis (Sobieszczanski-Sobieski et al., 1998). 

However, the BLISS approach requires derivative information, which may not be 

readily available (Allison et al., 2009). Papalambros (2001) demonstrated the ATC 

MDO framework to solve hierarchical multi-level optimisation problems, which are 

typically partitioned by objective. Optimisation problems with TCO implementation 

are partitioned by constraints (Allison, 2004). 

2.5 Summary  

This chapter has briefly reviewed optimisation algorithms, from the basic concept of 

optimisation to the most advanced and up to date optimisation methodologies. An 

elaborate discussion of Evolutionary Algorithms was provided based upon GAs. The 

review of optimisation methodologies of Multidisciplinary Design Optimisation has 

been introduced – these help us to understand the higher-dimensional and 

complicated optimisation problem from a higher level, in order to broaden the mind of 

organising the complex optimisation problem more efficiently and explore the design 

space of large optimisation problem better.  



43 
 

Chapter 3 Literature Review: Diesel Engine Mapping and 

Calibration  

3.1 Introduction 

The purpose of this chapter is to review the relevant Diesel engine model based 

calibration literature in order to establish the ‘state of the art’. A brief overview of 

Diesel engine technology is given to help with understanding of modern Diesel 

engine application. An overview of the Model Based Calibration process is presented, 

which involves engine Design of Experiments (DoE), engine response model fitting, 

and engine calibration optimisation. Different Diesel engine calibration processes are 

reviewed in detail and compared, in order to identify the Diesel engine calibration 

process issues. A discussion and analysis of the Diesel engine calibration process is 

presented.  

3.2. Overview of Diesel Engine Technology 

3.2.1 Emissions control for Diesel engines 

Since the first firing of a Diesel engine on 10th August 1893 (with attendant black 

clouds from the exhaust pipe), the pollution problem has been a major consideration 

for the subsequent development of Diesel engines to the present day. Historically, 

developments were focused upon improving Diesel engine exhausts to be visually 

acceptable (Moon, 1974). In June 1927 the first production of Diesel trucks with 

acceptably clean exhausts were made by the Bosch Company. Clessie Cummins 
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first experimented with truck Diesel engines in passenger cars in 1933, with the first 

installed Diesel engine in the Citroen Rosalie being sold in 1935 (Monaghan, 1998).  

Many researchers have pointed out that the difficulty with Diesel pollution is to be 

found in the nature of the Diesel engine cycle, which relies upon auto-ignition when 

liquid fuel is sprayed into the combustion chamber late in the compression stroke. 

Figure 3.1 shows the theoretical pressure compression ignition process in a typical 

Diesel engine. From Figure 3.1, the injected fuel is vaporised and mixed with air 

during the period AB, termed the ignition delay. The pressure is increased rapidly by 

the uncontrolled combustion from B to C just before Top Dead Centre (TDC). From 

C to D, controlled combustion occurs at a rate determined by the air fuel mixture, 

and combustion from D is governed by the diffusion of the air fuel mixture (Stone, 

1999).  

 

Figure 3.1 Hypothetical pressure diagram for a compression ignition engine (Stone, 1999) 

 

Given that the air/fuel ratio in a Diesel engine is always lean, carbon monoxide 

emission is no longer a big issue for a correctly regulated Diesel engine (Stone, 

1999).  
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Heywood (Heywood, 1988) summarised that most Diesel particulates are formed 

from incomplete combustion of fuel hydrocarbons. The incomplete combustion 

normally results from rich fuel injected in the diffusion-controlled combustion phase. 

Stone (1999) also discussed that fact that soot particles can be oxidised after the 

end of diffusion-combustion phase. The reasons for the increases in Diesel engine 

combustion smoke can be summarized as (Stone, 1999):  

 The duration of diffusion combustion increases; 

 The combustion temperature increases; 

 Less oxidation of soot occurs during the expansion stroke since there 

is less time after the end of diffusion combustion and there is less 

oxygen.  

Heywood (1988) explained that nitrous oxides (NOx) form at both the front and rear 

of flame gases. However, the combustion occurs at high pressure and the 

combustion timing is short. Since the Diesel cycle relies upon compression to 

achieve auto-ignition at high pressure, the combustion chamber reaches the reaction 

condition of NOx formation. Therefore, Stone and Ball (Stone and Ball, 2004) 

suggested reducing the NOx emissions for Diesel engine by two ways: reduce the 

compression ratio and reduce the combustion temperature.  

Fuel economy is also an important criterion for judging an engine. Fuel economy 

depends strongly upon the quality of combustion. Heywood (1988) summarised a 

number of engine control parameters that affect the Diesel engine ignition quality, 

such as injection timing, fuel pressure, boost pressure, and Exhaust Gas 

Recirculation rate.  

Combustion noise (which arises from the high pressure during the rapid combustion 

phase) is also a big concern for Diesel engine development, . As fuel is injected into 
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the combustion chamber towards the end of the compression stroke, the fuel 

evaporates and mixes with air to form the flammable mixture. Nevertheless, the 

ignition does not occur immediately, while the flammable mixture is still being formed. 

During this delay the ignition occurs at many sites very rapidly. This rapid 

combustion produces the characteristic Diesel engine noise. Stone (2004) suggested 

two ways to reduce the Diesel combustion noise: reducing the initial rate injection or 

reducing the duration of combustion delay period. The duration of the combustion 

delay period can be reduced by increasing either the temperature or the pressure.  

According to the requirements of reducing emissions and improving fuel economy, it 

is not too difficult to find that there are conflicts requiring complex trade-offs. 

Increasing the pressure can reduce the Diesel combustion delay, which leads to 

better Diesel combustion noise and fuel economy. However, this will increase NOx 

emissions (Stone and Ball, 2004). Additionally, an increase in temperature can 

reduce the ignition delay period and also increase the NOx emissions. Similarly, 

increasing injection timing delay leads to more fuel consumption and other trade-offs. 

Figure 3.2 shows the trade-off effect of injection timing and injection rate between 

NOx, smoke, BSFC, and combustion noise (Heywood, 1988). 

 

Figure 3.2 Trade-off between NOx, Noise, BSFC and Smoke for different injection rate and timing (Glikin, 
1985) 
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Over the years several technical developments have been introduced into Diesel 

engines in order to satisfy emissions legislation and fuel economy requirements. The 

following sections discuss the most important technologies. 

3.2.2 Turbo-charging Systems for Diesel Engines 

The purpose of turbo-charging systems in Diesel engines is to improve the fuel 

economy as well as the combustion quality by increasing the density of the air boost 

into the engine (Stone and Ball, 2004). Given that modern engines use more 

technologies with complex controls, exploring the whole space of control parameters 

by using the traditional “one factor at a time” approach to calibration is clearly not 

feasible and very expensive. The more complete combustion improves the fuel 

economy and reduces smoke emissions. Almost all manufactured Diesel engines for 

ground vehicles are fitted with a turbo-charger (Tetsui and Ono, 1999). 

Watson and Janota (1982) concluded that the turbo-charger has the ability to 

improve fuel economy. Figure 3.3 illustrates a comparison of the brake-specific fuel 

consumption of a turbo-charged engine against that of a naturally aspirated engine, 

scaled for the same maximum torque. This shows that the BSFC can be improved 

with higher boost pressure provided by a turbo-charged engine, especially at lower 

torque output (Stone and Ball, 2004). 
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Figure 3.3 Comparison of BSFC between turbocharged and naturally aspirated engines with same 
maximum torque (Stone and Ball, 2004)  

 

In addition, the higher pressure and temperature reduce ignition delay, which leads 

to better Diesel combustion noise (Stone and Ball, 2004). However, more NOx is 

produced with the higher pressure and temperature conditions.  

3.2.3. Exhaust Gas Recirculation System 

Exhaust Gas Recirculation (EGR) systems are used in modern Diesel engines to 

increase engine efficiency and reduce emissions (Lee, 2005). By using an EGR 

system, the oxygen and nitrogen in the air/fuel mixture are replaced by the exhaust 

gas (such as N2, O2, H2O, CO2, CO, particulates, and unburned HC) (Stone and 

Ball, 2004). Consequently, the emission of NOx is reduced during the engine 

combustion process by the reduction of oxygen and nitrogen in the combustion 

chambers. The graphs in Figure 3.4 illustrate the relationship between NOx and 

EGR (Yokomura et al., 2004). 
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Figure 3.4 The Effect of EGR on NOx Emissions (Yokomura et al., 2004)  

 

3.2.4 Common rail injection system 

The electronically controlled common rail fuel injection system was introduced into 

modern high speed direct injection Diesel engines and permits a considerable 

improvement in fuel consumption and other engine performance (Stumpp and Ricco, 

1996 , Boehner, 1997 , Stotz et al., 2000 , Guerrassi and Dupraz, 1998). The main 

difference compared to the traditional injection system is that injection pressure can 

be controlled at all engine operating conditions within the high pressure range 

(Guerrassi and Dupraz, 1998 , Huhtala and Vilenius, 2001). This also provides the 

potential for a multi-injection strategy. The high injection pressure can reduce the 

Diesel ignition delay, and also the multi-injection can reduce the injection rate by 

post injection. This will benefit the Diesel combustion noise, fuel economy, and 

smoke emissions. The fuel consumption and emissions can be varied by controlling 
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the rail pressure (Park et al., 2004). The injection timing not only affects the fuel 

consumption but also affects emissions, torque and exhaust temperature. Park 

(2004) discussed the effects of fuel pressure and injection timing on the emissions 

and other engine performances, as shown in Figures 3.5 and 3.6. 

 

Figure 3.5 Effects on emissions of injection pressure and timing (ATDC) (Park et al., 2004) 

 

Figure 3.5 shows that higher injection pressure results in lower emissions apart from 

NOx; advancing injection timing increases CO, HC and Particulate Matter (PM) and 

decreases NOx and Indicated Mean Effective Pressure (IMEP). Injection before TDC 

always benefits the engine performance, apart from NOx.  

The electronically controlled high pressure common rail injection system also has the 

capacity to implement more than one discrete injection phase in a single cycle, i.e. 

main injection, pilot injection, and post injection. In the pilot and post injections, small 



51 
 

amounts of fuel are injected at a specified crank angle before and after the main 

injection (Minami et al., 1995). The pilot and post injections respectively reduce the 

engine combustion noise and improve the catalyst efficiency (Guerrassi & Dupraz, 

1998). Figure 3.6 shows the effects of pilot and post injections on engine 

performances Park (2004). With pilot injection, the main injection timing can be 

retarded without affecting ignition delay, which benefits NOx emissions and 

combustion noise. Also, Figure 3.6 shows that post injection results in a considerable 

reduction of emissions.  

 

Figure 3.6 Effect of pilot and post injections on engine performance (Park et al., 2004)  

 

3.2.5 Control Strategies for Diesel Engines 

While the implementation of Diesel technologies helps with improving the engine 

performance, there is no single Diesel technology that can improve all aspects of 

engine performance, and thus trade-offs between different engine responses are 
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required, as indicated previously. Therefore, a combination of technologies is 

required to improve engine performance.  

Initial Diesel engine development was aimed at reducing emissions focused on 

reducing NOx emissions by retarding the fuel injection timing (Baert et al., 1999). 

Smith and Tidmarsh (Smith et al., 1998) also carried out work showing that a 

combination of EGR and common rail injection strategy have the ability of tuning the 

emissions performance of a high speed direct injection Diesel engine. Figures 3.7, 

3.8 and 3.9 show the trade-off between NOx and Particulates, BSFC and unburned 

HC by varying injection timing and holding the EGR rate at different levels. This 

shows that a significant effect on engine emissions and performance can be 

produced by tuning both EGR and injection timing. 

 

Figure 3.7 The Effect of Start of Injection Timing and EGR Rate on Particulate/NOx trade-off (Smith et al., 
1998) 
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Figure 3.8 The Effect of Start of Injection Timing and EGR on BSFC/NOx Trade-off (Smith et al., 1998) 

 

 

Figure 3.9 The Effect of Start of Injection Timing and EGR Rate on the BSHC/NOx Trade-off (Smith et al., 
1998) 
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3.3. Model Based Calibration Process 

3.3.1 Engine Control Unit Strategy 

Diesel engines equipped with modern technologies (turbo-charger, EGR, and 

common rail injection system) are controlled by an electronic engine management 

system, the Engine Control Unit (ECU). The diagram in Figure 3.10 illustrates a 

closed loop engine control system strategy.  

 

Figure 3.10 Illustration of Engine Control System (Cary, 2003) 

 

The control strategy is executed in the form of a continuous loop by the 

microprocessor controller. The microprocessor receives signals from a range of 

sensor devices for engine status, such as engine speed, throttle position, Manifold 

Absolute Pressure, air temperature and engine temperature, and so on (Cary, 2003). 
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These signals are translated and interpreted as inputs. According to these inputs, the 

microprocessor determines the amount of actuation for the engine controls 

(actuators) corresponding to pre-stored calibration data. A look-up table was used in 

the Engine Control Unit, which is defined by engine actuator setting over the entire 

range of engine load/speed (Cary, 2003). In order to define a look-up table, the 

engine actuator settings are given at in a table known as “look-up table” which is 

defined by the engine load speed points over the engine operating range. On the 

other hand, the engine actuator settings can also be represented as functions of 

engine load/speed instead of the look-up table. Both the look-up table and the 

engine actuator setting functions are called ‘engine operating map’ that is produced 

by the engine model based calibration process (Goodman, 2006b).  

3.3.2 Overview of Model Based Calibration Process 

In general, engine mapping and calibration is the process of defining the engine 

calibration data, which is embedded into the ECU in order to control engine actuators. 

As a result of modern engines using more technologies, exploring the whole space 

of control parameters by using traditional one factor at a time experiment-based 

calibration process has became very expensive. Therefore, mathematical and 

statistical techniques are attractive for finding optimal solutions that produce low 

emissions and better engine performance, by using Design of Experiments (DoE), 

statistical modelling, and optimisation methods. 

A typical model based engine calibration approach for steady-state engine tests is 

illustrated in Figure 3.11 (Sampson, 2010), and has been commonly used both for 

gasoline and Diesel engines, and can be summarised as follows: 
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1. Design of Experiment (DoE): is a more efficient way of exploring the design 

space by planning engine tests and aiming to reduce the cost of engine 

testing; 

2. Engine Test & Data Collection: carry out the engine tests and collect the 

engine testing data according to the experiment design; 

3. Engine Responses Modelling: based on the engine testing data, fit 

empirical mathematical models to predict the engine responses; 

4. Optimisation & Engine Control Map Calibration: the engine response 

models are used for the optimisation to search for an optimal solution of the 

engine actuator settings; the aim is to fill the engine maps with local optimal 

engine actuator settings and to smooth the actuator transitions map between 

these settings; 

5. Implementation: embed the calibrated engine control map into ECU and 

validate at system level (engine and vehicle installation). 

 

Figure 3.11 Illustration of Model Based Calibration Process (Sampson, 2010) 

 

Steady-state model based calibration refers to the steady-state engine tests, which 

are to measure and collect engine response data while the engine is running at a 

constant engine load and speed condition. Therefore, this type of engine calibration 
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approach is called steady-state model based calibration. Engine response models 

based on this type of engine test data can predict the engine response only at 

specified engine load-speed conditions. Such engine response models are 

commonly called “local models” (Roudenko et al., 2002). Optimisation with this type 

of engine model would normally be carried out individually at different engine load-

speed conditions. Alternatively, the total objective formulation over the full range of 

engine load and speed conditions has to be integrated by summing all the weighted 

engine local models value (Hafner and Isermann, 2001 , Roudenko et al., 2002). 

Optimisation based on steady state engine models produces an optimal solution for 

a set of engine actuator settings for different engine load and speed conditions. With 

this set of optimal solutions, the engine control map is filled across the full range of 

engine load speed space. This steady-state model based engine calibration 

approach has been taken up by most commercial software tool packs, such as AVL 

CAMEO (Stuhler et al., 2002), MBC toolbox in MATLAB software environment 

(Styron, 2008) and so on. In the literature, a large number of applications of Diesel 

engine calibration are based on the steady-state engine calibration (Alonso et al., 

2007 , Baert et al., 1999 , Brooks and Lumsden, 2005 , Haines et al., 2000 , 

Jankovic and Magner, 2004 , Jankovic and Magner, 2006 , Roudenko et al., 2002 , 

Sampson, 2004). 

From another point of view, the steady-state engine calibration for a gasoline engine 

typically requires more than 30 different engine load/speed points in order to 

populate the look-up table over the range of engine load-speed (Sheridan, 2004). 

Comparing the gasoline and Diesel engine calibration processes, the gasoline 

engine calibration will require more expensive engine testing and more model fitting 

and optimisation to be carried out. In order to reduce the cost of engine testing and 
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modelling, and to characterise the engine responses on the entire engine operating 

condition, a global engine modelling approach has been introduced (Alonso et al., 

2007 , Atkinson et al., 2008 , Atkinson et al., 1998 , Seabrook, 2000). The global 

engine response model is a function of all engine control variables and parameters 

including engine load and speed. The idea of the global engine response modelling 

approach is to represent the engine behaviour over the whole engine operating 

range with a single global engine model rather than using a number of local engine 

models. Global engine response models can reduce engine test cost by producing a 

Design of Experiments (DoE), which involves engine load and speed as design 

variables. A global engine model has the ability of predicting the engine response 

across the full range of engine load speed space (Atkinson and Mott, 2005).  

Research has been carried out to demonstrate and compare the use of local steady-

state models and the use of global models (Hafner and Isermann, 2001 , Roudenko 

et al., 2002 , Stuhler et al., 2002 , Rask and Sellnau, 2004). To find the optimal 

solution of engine actuator settings, optimisation is carried out at each of the engine 

load/speed points according to the look-up table. The use of steady-state engine 

local models requires engine tests and statistical modelling at each of these engine 

load/speed points. Whereas, the use of global engine models reduces engine testing 

effort by carrying out DoE that involves all engine controls and engine parameters 

(speed and load). The optimisation problem at each of the engine load/speed points 

is formulated as a single optimisation problem, in Equation 3.1 (Hafner and Isermann, 

2001): 

 Minimise:        
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 Subject to: 
       

                            
                    

Equation3.1 

  is the optimisation objective defined as a weighted sum of NOx, “Opacity” (a 

measure of smoke or particulates emissions), and “fuel” consumption. The control 

variables   need to be within the range defined by LB (Lower Bounds) and UB 

(Upper Bounds), and other engine responses are defined as nonlinear constraints 

within the user defined limit. At each of the engine load/speed points, the optimal 

solution of controls is generated and entered into the look-up table. 

Vossoughi and Rezazadeh (Vossoughi and Rezazadeh, 2005 , Vossoughi and 

Rezazadeh, 2004) (2004; 2005) applied a similar process with the global engine 

models. In their research, the optimisation problem was formulated as a multi-

objective problem locally at each engine load/speed point. The optimisation at each 

engine operating point is to minimise both fuel consumption and the weighted sum of 

emissions (e.g. NOx, Opacity, HC and CO). Evolutionary Genetic Algorithms (GAs) 

have been tested to solve the multi-objective optimisation problem. Wu et al (Wu et 

al., 2006) also introduced an engine calibration approach to maximise torque output 

and minimise the fuel consumption and NOx emissions. In the optimisation process, 

an attempt to produce a smooth engine control map has been made by adding a 

penalty function (related to engine stability conditions) to the objective function. 
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3.4. Engine Statistical Modelling 

3.4.1. Introduction 

Engine response modelling is essential in the model based engine calibration 

process. The aim of engine response modelling is to build the statistical models that 

can accurately represent the engine performance over the ranges of a number of 

independent factors (i.e. engine load/speed, injection timing, fuel pressure and so 

on ) based on test data collected from engine experiments. Because of the reality of 

the engine testing environment, it is impossible to record accurately all the engine 

responses (torque, emissions and fuel consumption and so on) while the engine 

load/speed condition is being varied.  

 The use of statistical experimental design was proposed in the early 1970s to 

reduce the cost of engine experiments (Edwards, 2000). The design of engine 

experiments has to capture all the necessary information in the engine testing data 

through the engine response model fitting. On the other hand, the design of engine 

experiments depends upon the type of engine response model that will be fitted. 

Consequently, the statistical engine modelling process includes two strongly 

connected components, which are Design of Experiments (DoE) and statistical 

engine response model fitting.  

3.4.2 Overview of DoE for Engine Testing 

DoE is a statistical methodology to make an experimental plan, which aims to make 

engine tests more efficient without loss of significant information for an adequate 

engine response model to be created.  
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Factorial design is one of the basic DoE methods used This finds the change in 

response produced by changes in the levels of the factors and the interaction 

between the factors (Montgomery et al., 2001).  Factorial designs based on 

polynomials were widely used for testing engines that did not have many control 

variables (Grove and Davis, 1992). As the number of control variables increased in 

engine systems, the number of design points has rapidly grown in the factorial 

design. For instance, with 6 factors each having two levels,         runs are 

required for a complete factorial design. Fractional factorial designs can reduce the 

number of tests associated with higher order interactions. This requires prior 

knowledge to indicate that the higher interactions are not significant. However, in the 

engine mapping process there is only limited prior knowledge available. Seabrook 

(Seabrook, 2000) illustrated the use of a central composite design method to 

generate an experimental design for a small number of dimensions of engine 

controls. Figure 3.12 shows a central composite design obtained by adding the 

central star points to the factorial cube design.  

 

 

Figure 3.12 Composite design based on the two level factorial design(Montgomery et al., 2001)  

 

However, as the number of engine control variables has increased rapidly and more 

complicated statistical models have been employed to better reflect the nonlinear 
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behaviour of the engine responses, the requirements of engine testing data have 

dramatically increased. The standard DoE methods based on factorial experiments 

might not be appropriate for such a complicated design space (Cary, 2003 , 

Seabrook, 2000). 

Space-filling designs are suitable when there is little knowledge of the engine 

behaviour within the operating envelope (Sampson, 2004). Space filling designs aim 

to provide a good scatter of data points in the space to be measured. One of space–

filling design, Optimal Latin Hypercube (OLH), is a method for sampling a design 

space that uses an optimisation approach to optimise the uniformity of the 

distribution of a set of sample points. Several formulations for uniformity have been 

proposed to generate OLH design, such as maximising entropy, integrated Mean 

Squared Error (MSE) or maximising minimum distance between sampling points 

(Narayanan et al., 2007). Figure 3.13 shows the OLH design in a three dimensional 

space.  

 

Figure 3. 13 Example of Optimal Latin Hyper Cube design in three dimensions space (Ropke, 2005) 
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Diesel engine techniques offer an opportunity to better control an engine. They also 

result in a more complicated design space. Chaudoye (Chaudoye, 2009) discussed  

the engine operating space  varies for different engine operating conditions. Figure 

3.14 illustrates the boost pressure and air mass flow limits of engine design space 

across a range of engine operating conditions.  

 

Figure 3.14 limited Engine Design Spaces (Boost Pressure Vs Air Mass Flow) over different engine 
operating conditions (Chaudoye, 2009) 

 

Ward, Brace & Vaughan (Ward, 2004) suggested a study to determine the 

permissible envelope before undertaking the DoE task. Since the engine control 

parameter boundaries have been defined, the design space becomes even more 

complicated. Optimal designs give advantages if the behaviour (in the form of a 

suitable model type) is known from previous experience on similar engines 

(Sampson, 2004). Optimal design procedures assume that the functional form of the 

engine response models is known, and therefore the task is to select the design 

points according to a certain optimality criteria (Ayeb, 2005 , Ayeb et al., 2006). For 
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example, the V-optimal design criterion aims to minimise the predictor error variance 

(Grove et al., 2004 , Jankovic and Magner, 2004), which is a common choice of 

optimal design in engine mapping. 

3.4.3. Overview of Engine Response Modelling 

Once engine test data is collected from an engine test bed, empirical models of 

engine responses can be built by using the response surface methodology based on 

the test data. A variety of types of models, both parametric and non-parametric, are 

commonly used for engine responses (Morton, 2002 , Ward et al., 2002). Polynomial 

models have been commonly used to develop “local” models for engine response 

features; they have been found to provide an adequate representation of engineering 

trends and a reasonably accurate approximation over relatively narrow operating 

spaces (Saunders, 2004). Non-parametric estimators can be useful when the 

responses of interest are relatively complex or there is little prior knowledge 

regarding the expected behaviour of the system. The Matlab® MBC toolbox provides 

a non-parametric modelling capability for Radial Basis Functions (RBF) models, 

which is a type of neural network (Morton, 2002). While the RBF models offer the 

attractive feature of local adaptability, they suffer from the curse of ‘over fitting’. 

Research (Saunders, 2004) has shown that the choice of good measures for the 

quality of the model in a statistical sense (such as cross validation, Akaike 

Information Criteria or Bayesian Information Criteria) is very important. Such features 

are available in MBC and have been used in fitting models for the engine responses 

in this case study. 

Since Holliday (Holliday, 1995) first suggested the use of a two-stage modelling 

method for Spark Ignition (SI) statistical engine modelling processes, this has 
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become a widely used methodology for Gasoline engines..  The two-stage modelling 

matches the natural process of conducting gasoline engine experiments.  The first 

stage concerns the modelling of engine responses (such as torque) over the spark 

sweeps, while the second stage is to fit a model of these engine responses or 

features as a function of other engine variables and parameters (such as engine load, 

speed and air/fuel ratio) (Davis and LAWRANCE, 2000). Table 3.1 shows engine 

input and output variables from one of the early two stage modelling applications 

(Davis and LAWRANCE, 2000).  

Table 3. 1 Engine Mapping Inputs and Outputs 

Inputs   Outputs   

Air/Fuel Ratio  Torque  

Exhaust Gas Recirculation  NOx  

Spark Timing  CO  

Speed   HC  

Load    

 

The principle of two-stage modelling can be applied more generally for ‘global’ 

engine response models. 

The introduction of the two-stage engine modelling approach (Holliday et al., 1998) 

for SI engine calibration required the introduction of more complex models capable 

of representing engine behaviour over the whole operating space. Similarly, the 

broad requirements for a ‘global’ model are to adequately represent the engineering 

trends and also to have flexibility or local adaptability to capture ‘local’ changes. 
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Polynomial models are generally not adequate for global models or when more 

variables are involved; higher order polynomials can model the general trends, but 

still lack the local flexibility. Alternative modelling strategies have been introduced, 

such as semi-parametric models based on cubic splines (Grove et al., 2004) and 

non-parametric models including artificial neural networks (Han et al., 2004), radial 

basis functions (Morton, 2002), and stochastic process models or Kriging (Jeong et 

al., 2006). Of these, radial basis functions and Kriging models are the most 

commonly used in engine modelling practice. 

As one type of Artificial Neural Networks (ANN), Radial Basis Functions (RBF) are a 

powerful tool, which has proved useful for fitting data points with a large number of 

inputs (Morton, 2002). RBF models take a general form which is similar to the 

polynomial models (Equation 3.2): 

     (
‖    ‖

 
)            Equation 3.2 

  is the vector of inputs and    is the centre of the  th radial basis function term. 

‖    ‖ is give by the Euclidean distance between input and centre  , shown in 

Equation 3.3: 

  ‖    ‖   √                                          Equation 3.3 

    is the width of the radial basis function, and   is a strictly positive symmetric 

function called the ‘kernel’ with a unique maximum at its centre   . Examples of 

commonly used kernels include Gaussian, multi-quadric, inverse multi-quadric, thin-

plate spline, and logistic functions.  

ANN methods have been used to obtain a global engine model and are statistical 

tools of artificial intelligence, which are efficient in solving a wide range of problems 
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including many engine calibration applications (Han et al., 2004 , Howlett et al., 

1999). This approach has the ability of predicting the engine response models of 

factors and interactions between factors over the load-speed range of the engine 

drive cycle (Alonso et al., 2007 , Atkinson et al., 1998) .  

Kriging can be regarded as a generalisation of RBFs, and it has been introduced as 

an interpolation technique based on a stochastic process model (Forrester et al., 

2008). The predicted response at a point x0 is calculated as the weighted average of 

the neighbouring points, i.e.  

  ̂      ∑                  

Equation 3.4 

   are the interpolation weights, and      is the realisation of a Gaussian stochastic 

process with mean zero, variance v, and non-zero covariance (Seabrook, 2000). In 

simple kriging, the weights are derived based on the assumption that the mean and 

the covariance of y(x) are known, thus the kriging predictor minimises the variance of 

the prediction error.  

One of the problems associated with using non-parametric models is that they suffer 

from the curse of over-fitting (Cary, 2003). Model selection and validation must be 

carefully conducted such that the model balances the error of approximation with the 

error due to random fluctuations. Model validation is usually based on the statistical 

analysis of residuals, and relies on measures such as Root Mean Squared Error 

(RMSE) of residuals and Predicted Residual Error Sum of Squares (PRESS). More 

advanced model selection and validation criteria include generalised cross-validation, 

Akaike information criteria (AIC) and Bayesian information criteria (BIC) (Saunders, 
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2004). The information based methods (AIC and BIC) introduce a penalty for the 

effective number of terms in the model, so they have the effect of reducing the 

modelling sequence (i.e. the number of terms in the model), thus effectively 

addressing over-fitting. 

Within the engineering arena, non-parametric RBF and kriging models have been 

widely used in recent years, in particular in conjunction with experiments involving 

computer based models where a surrogate model is sought in order to address 

computational expense. Within this context, studies comparing RBF and kriging 

models have been reported (Chandrashekarappa and Duvigneau, 2007 , Costa et al., 

1999 , Peter et al., 2007) pointing to the fact that in general kriging models tend to be 

more accurate. 

3.5 Review of Diesel Engine Calibration 

The local steady-state engine response model and global engine response model 

have been widely used in Diesel engine calibration approaches. In order to carry out 

the engine calibration task, a preliminary study is required to select a sample of 

engine operating points (Edwards, 2000 , Edwards et al., 1997). The weight for each 

operating point is usually determined based on the evaluated residency time over a 

specified engine cycle, in case studies presented by Edwards (1997; 2000) The 

engine tests were initially carried out allowing all the control factors (engine hardware 

design and control settings) to vary at each steady state engine operating point. 

Table 3.2 shows the engine input and output variables that are of interest. 
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Table 3.2 The Use of Diesel Engine Inputs and Outputs (Edwards et al., 1997) 

Inputs Outputs 

Injection pressure (common 
rail fuel pressure) 

Brake Specific Fuel 
Consumption (BSFC) 

Initial injection rate (via a 
one-way orifice) 

Brake Specific Particulates 
Matter (BSPMs) 

Overall injection rate (via the 
nozzle hole area) 

Brake Specific NOx 

Number of nozzle holes Brake Specific CO  

Start of injection timing  Brake Specific HC 

 

The “local” (i.e. at each engine speed/load point) optimisations were carried out to 

minimise BSPM first, then the optimal BSPM values were held as constraints to 

minimise the BSFC locally. The local optimal solutions were used to fill the engine 

control maps with some adjustment to smooth the engine map. In this case, the 

system was optimised for minimum fuel consumption; the PM limit was chosen to be 

slightly higher than the value achieved in the search for the minimum PM by 

consideration of the trade-off between NOx and PM (Edwards, et al, 1997). 

Haines and Dicken (Haines et al., 2000) also introduced a similar process for Diesel 

engine calibration with steady state engine models. The steady state engine tests 

were carried out over 10 engine load/speed points and second order polynomial 

engine models were fitted. The estimated cycle fuel consumption was minimised, 

and estimated cycle emissions (NOx, CO, PM and NOx + HC) were set to be within 

the cycle emission constraints globally. Engine operating constraints were defined 

locally, such as smoke opacity, turbine inlet temperature, peak cylinder pressure and 

combustion noise. A smoothing procedure was used to obtain the smooth engine 

control map.  
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Roudenko (2002) developed an engine calibration approach based on the MOGA 

(Multi-Objective Genetic Algorithm) optimisation method. In Roudenko’s study, the 

optimisation problem was formulated as minimising the fuel consumption and 

combustion noise with respect to EU emission legislation (Roudenko et al., 2002). 

Since more optimisation objectives were required, MOGA was used instead of a 

single objective optimisation approach to find the trade-off solution between fuel 

consumption and engine noise. In Roudenko’s study, the optimisation problem has 

been formulated by two different approaches: global optimisation and point-by-point 

optimisation. These two approaches have been applied to the same engine and 

compared. The global optimisation used a number of models for different engine 

load/speed points to represent the engine performance over the entire engine 

operating range. The estimated total cycle fuel consumption was considered  as the 

objective, while gaseous emissions were set as constraints. In point-by-point 

optimisation, the problem was formulated as minimising fuel consumption and 

combustion noise, while subject to the associated local emissions constraints at 

each engine operating point. The local emission constraints were from a preliminary 

study and were defined as the total cycle emissions limits divided by the weights. 

Roudenko (2002) concluded that “global” optimisation had produced a remarkably 

better solution than point-by-point optimisation. At the same time, point-by-point 

optimisation could not produce an optimal solution for every engine operating point.    

Brooks et al (2005) presented another calibration approach based on steady state 

modelling. In this approach 14 model testing points were selected to cover a range of 

speed and load conditions over the New European Drive Cycle (NEDC) region of 

operation. The engine tests were carried out under steady state operating conditions. 

The models of response at each mode were generated by the Model-Based 
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Calibration (MBC) toolbox in the MATLAB software environment.  Statistical analysis 

was applied to each testing point to find a basic trade-off between all the responses 

and the influence of individual factors and interactions between factors. Brooks 

(2005) illustrated that one of the trade-off solutions selected as an initial calibration 

point, while producing reasonable NOx emission and Brake Specific Fuel 

Consumption (BSFC), was unacceptable from the point of view of particulate (smoke) 

emissions. Upon the statistical analysis, smoke emission was reduced by varying 

factors while subject to NOx and BSFC target values that were defined by the basic 

calibration point. With such an approach, a trade-off between NOx and smoke 

emissions is generated by a procedure of defining different NOx and BFSC values in 

the target range (Brooks, et al, 2005). The same process was repeated at five 

selected engine testing modes. From the same analysis at all these testing points, 

similar calibration changes are required in the region of NEDC. These have been 

extrapolated over the remaining NEDC region of the operating map creating an 

updated calibration (Brooks, et al, 2005). 

Global engine models have been used in the engine modelling process to satisfy the 

requirement of reducing expensive engine test effort and the difficulties of 

optimisation by Atkinson (1997; 1998). As discussed in earlier sections, design of 

experiments techniques were required to be applied to the design space, which 

include engine load/speed space. The global engine models were fitted with Neural 

Network (NN) data-driven methods (Atkinson and Mott, 2005). A complete procedure 

for such a process has been given in the literature (Atkinson et al., 2008), described 

as follows:   

 Carry out DoE (space filling design) for transient modelling over the drive 

cycle; 
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 Test and gather the designed operating points at steady state conditions; 

 Carry out statistical data analysis on collected engine testing data; 

 Apply neural network to generate global models over the range of engine 

operating conditions; 

 Carry out local optimisation at each specified engine load and speed point, 

which are defined in engine look-up table. The global engine response 

models are used to define the objective functions and non-linear constraints 

functions by using equally load and speed constraints; 

 Go back to the engine test bed and validate the optimal solution. 

Han et al (2004) applied a neural network with a fuzzy logic system for engine 

calibration over the whole operating space. In this approach neural networks are built 

up over selected engine operating condition points. The local engine models were 

used to carry out optimisation to produce local optimal solutions for each of these the 

engine load/speed points. The local optimal solutions were expanded from the tested 

points to the whole range of engine operating conditions by the Adaptive Network-

based Fuzzy Inference System (ANFIS). In the other word, ANFIS was used as an 

interpolation tool.  

Alonso et al (2006) also introduced a Diesel engine calibration process based on an 

ANN modelling method with a GA optimisation approach. Because of the large 

number of parameters involved in the ANN model, it is not possible to carry out the 

optimisation of the whole range of engine operating conditions. The optimisation 

problem was simply split into a number of ‘local’ optimisations, which are defined by 

engine speed and fuel mass injected. At each of these ‘local’ optimisation problems, 

Brake Specific Fuel Consumption (BSFC) was optimised as an objective and two 
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different types of constraint were defined, which were the limits of engine operating 

parameters and estimated emission constraints based on legal limitations of 

European emission test cycles. The engine operating parameters limits were defined 

as the range of minimum and maximum of the engine operating conditions. 

Emissions constraints were calculated from the legal limits and the approximate time, 

which spent on different engine operating condition ranges during the European 

emission test cycle. Similar methods have been widely used in literature (Omran et 

al., 2007 , Wu et al., 2006 , Zweiri and Seneviratne, 2007). For example, Omran’s 

approach is illustrated in a flowchart in Figure 3.15 (Omran et al., 2007). 

 

Figure 3.15 A Diesel Engine Calibration Approach with ANN Engine Global Models (Omran et al., 2007) 
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Desantes (Desantes et al., 2005) introduced a similar calibration approach based on 

the applied ANN method. In this approach, 7 modes of steady state engine operating 

points were chosen with 7 input variables at each node. The ANN models were used 

to specify BSFC as an objective and emissions as constraints. A Sequential 

Quadratic Programming (SQP) optimisation method was implemented for the 

weighted aggregation of the 7 modes of the different engine operating conditions. 

The optimal solutions for the different engine operating conditions are integrated into 

an engine map covering the whole engine drive cycle by interpolation. 

Using dynamic engine testing techniques , there are more options for fitting a global 

engine response model over the entire operating range. The typical global dynamic 

engine model is described as follows (Neßler, 2007) 

           (                                        )  

 Equation 3.4  

  is a vector consisting of engine control variables and parameters (i.e. engine load/ 

speed, fuel pressure, injection timing and so on),   is the present time,   is the 

engine response to be modelled, and   and   are the delay and response time of the 

instantaneous measuring device, respectively. Accordingly, the optimisation problem 

can be formulated as Equation 3.5: 
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Minimise:                   ∫         
 

 
 

Subject to:             
              

     
 

                                              ∫         
 

 
     

                                          

                                  

Equation 3.5 

To reduce the computational load of this optimisation problem, the optimisation is 

normally carried out at a number of engine operating points (Vossoughi and 

Rezazadeh, 2005). Therefore, the optimisation process based on the steady state 

engine model is still commonly used for dynamic model based calibration processes.  

3.6 Summary 

In order to satisfy emissions legislation and customer expectations, the engine 

industry has introduced strategies, such as common rail injection systems, turbo-

charging systems and EGR systems. These systems provide several potential 

controllable actuator variables to produce better engine output performance. To get 

the better Diesel engine performance without the expense of other output 

performance, it requires a careful combination of such strategies.  

The Modern Diesel engine calibration approaches focus on the efficiency of 

modelling and optimisation approaches, which can reduce fuel consumption and 

emissions with less cost of computation and engine testing. Also, producing a 
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smooth engine map of optimal solutions over the engine drive cycle is another goal 

of engine calibration approach. 

During the development of Diesel engine calibration, the difference of combustion 

between Diesel and gasoline engine suggest that a Diesel engine calibration process 

cannot take the same process as for a gasoline engine. A number of similar 

approaches have been suggested in the literature review. Table 3.3 summarises the 

literature on Diesel engine response modelling and calibration optimisation.  

 

Table 3.3 Summary of Literature on Diesel Engine Calibration Processes 

 

Reference  Used engine response model  Optimisation process 

Edwards 
(1997) 

Local engine response steady 
state models are used at 11 
engine operating points 

Simply optimized the engine response at each 
of selected engine operating point, and used 
these local optimal solution to fulfill (calibrate) 
the engine map 

Haines, Dicken 
(2000) 

Local engine response steady 
state models are used at 10 
engine operating points 

A similar process to Edwards’ was suggested 
by carrying out the optimisation locally with a 
smoothing procedural to fulfill the engine map 

Roudenko 
(2002) 

Local engine response steady 
state models are used at 13 
engine operating points 

Compared between local optimisation and 
global optimisation (weighted sum of local 
response estimations) strategies, and claimed 
much benefit from global optimisation strategy. 

Atkinson (1998, 
2005 and 
2008). 

Global engine response models 
are used  

Based on global engine response models 
(neural network), the optimisation was carried 
out across the Federal Testing Procedural, 
while subject to the emission constraints 

Han et al. 
(2004) 

Global engine response models 
are used 

Used the fuzzy logic to train global engine 
response model, the optimisation were carried 
out at a number of specified engine load speed 
points and these local optimal solutions were 
used to fulfill the engine map by Adaptive 
Network-based Fuzzy Inference System 
(ANFIS) 

Brooks et al 
(2005) 

Local engine response steady 
state models are used at 14 
engine operating points 

The calibration approach was based on the 
steady state engine test at 14 engine 
load/speed points, and the engine calibration 
optimisation process was individually carried 
out at each engine load speed point   

Alonso et al 
(2006) 

Global engine response models 
are used 

The optimisation was carried out by using the 
global engine response models while subject to 
different set of engine load speed constraints  
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From the literature reviewed it was found that two different optimisation formulations 

have been compared and can be summarised as: 

 Both ‘local’ optimisation and ‘global’ optimisation formulations require 

preliminary studies of the engine’s physical (hard) limits and the range of 

engine operating conditions. 

 The emissions limits are defined as the emissions total mass flow based on 

the drive cycle, and need to be redistributed into each of the engine operating 

points according to the preliminary study.  

 The redistributed emission constraints for local optimisation at each engine 

operation point potentially restrict the optimisation process for global 

optimisation (Roudenko et al., 2002). Correspondingly, global optimisation 

provides more flexible emissions limits or cost function targets between the 

engine operating points.  

 In filling the engine control maps with the local optimal solutions, a smoothing 

process is required to ensure a consistency of engine operating conditions, so 

that it may reject the local optimal solution or make adjustment of the optimal 

engine actuator settings. 

Most Diesel engine calibration approaches have been developed by advanced 

modelling methods and evolutionary algorithm optimisation. Advanced modelling 

methods provide a more efficient modelling process and accurate engine 

performance prediction. Evolutionary algorithms have the capability of handling the 

multi-objective optimisation problem. However, all the optimisation approaches are 

carried out at different engine operating conditions locally with the control factor 

changing limitation constraints, which narrows down the design space. Then optimal 
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solutions are interpolated to the remaining engine operating conditions of the NEDC. 

Such a process might result in the optimal solution with control factors lying on 

bounds which are not robust or produce unsmooth engine maps and engine 

responses. 
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Chapter 4 Critical Review of Current Process for Diesel Engine 

Steady State Calibration Process 

4.1 Introduction 

The work in this thesis concentrates on a steady state model-based calibration 

optimisation for Diesel engines.  

The aim of this chapter is to introduce a motivating reference supplied by the 

Sponsoring Company, which will be used as a basis for the analysis, development, 

testing and validation of the novel approaches to calibration optimisation problem 

formulation developed and implemented within this thesis. This reference case study 

is a V6 Twin Turbo 2.7L Diesel engine, currently in production at the Sponsoring 

Company.  

The results obtained from the new methods developed in this work will be contrasted 

with those achieved by using a conventional, “current”, steady state Diesel 

calibration process used by the Sponsoring Company, which will be taken as a 

benchmark. Therefore, it is important to first critically review this process, within the 

broader context of Diesel engine calibration optimisation methods reviewed in 

literature, as the basis for establishing the methodology for further analysis and 

development. 

Specific engine Case Study data and information will be provided along with the 

critical review of the “current” steady state calibration development process. 



80 
 

4.2 Critical Review of the Current Process 

Figure 4.1 illustrates the Diesel engine steady state model-based mapping and 

calibration process used by the Sponsoring Company. In line with other Diesel 

engine mapping and calibration processes presented in the literature (Styron, 2008) 

and widely used by other companies, steady state engine testing is carried out at a 

number of discrete operating points in the engine speed – engine load space, 

referred to as “minimap” or nodal points. Engine response models developed for 

each of the minimap points are used to generate the “local” calibrations, i.e. optimal 

“local” actuator settings. A smooth “global” engine operating map (i.e. smooth 

actuator map) is then produced based on the local calibrations, by interpolation 

across the engine load-speed range. 

A more detailed discussion of each of the process steps illustrated in Figure 4.1 is 

given in the following sections. 

 

Figure 4.1 Diesel Engine Model Based Calibration Process (Yin et al, 2009)  
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4.2.1 Selection of Engine Testing Points 

The first step in the process is to select representative points in the engine operating 

space (engine speed–load) at which engine testing will be conducted and minimap 

models developed.  

In determining the number of test points there is a clear trade-off between effort (in 

terms of time and cost associated with engine testing) and accuracy, in relation to 

the “global” calibration (actuator maps across the engine speed – load operational 

range) which has to deliver good fuel economy and emissions across the driving 

cycle. For the engine case study considered in this work, 10 minimap points have 

been selected. This is consistent with similar case studies presented in literature, 

such as (Haines et al., 2000 , Styron, 2008). 

The focus of the calibration effort is ultimately to ensure that the vehicle will achieve 

minimum fuel consumption whilst meeting constraints on emissions imposed by 

legislation. To measure the vehicle emissions, a reference emissions drive cycle was 

defined to simulate a typical driving profile, which consists of a series of 

accelerations, decelerations, and frequent stops (Andre et al., 1995 , Tzirakis et al., 

2006). Across different countries, various testing criteria are used by different vehicle 

certification and regulatory authorities which are mainly based on two types of 

methodologies. One methodology is reflected by the Economic Commission for 

Europe (ECE) and Japanese cycles, that is made up of a series of repetitions of 

various vehicle operating conditions representative of typical driving modes 

(Kageson, 1998). The other methodology is the Federal Test Procedure (FTP) 



82 
 

mainly used in the U.S.A, Canada, and Australia. The FTP cycle consists of 23 cycle 

tests in order to represent different modes of driving (Samuel et al., 2002). The 

product for the global market has to satisfy all the emission standards. 

The New European Drive Cycle (NEDC) was introduced in the early 1990s (Kageson, 

1998). NEDC is defined by a vehicle speed versus time sequence developed for 

presenting a certain vehicle driving pattern in a particular environment. The purpose 

of NEDC is to measure and regulate the exhaust gas emissions and monitor fuel 

consumption, where the emissions have to be within legal limits. Figure 4.2 shows 

that NEDC involves four segments of ECE-15 (known as Urban Driving Cycle, UDC) 

and the Extra Urban Driving Cycle (EUDC). The total duration of NEDC is 1186 

seconds. 

 

Figure 4.2 Illustration of NEDC Emission Test Cycle (Kageson, 1998)  

 

Early in an engine development programme when the first steady state calibration is 

carried out, a vehicle simulation model is typically used to predict the engine 

speed/load operating conditions over the emissions drive cycle. This analysis 

generates a cloud of points as shown in Figure 4.3 that represent the second-by-
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second predicted engine speed-load operating points over the New European Drive 

Cycle (NEDC). If an engine is used in multiple vehicle applications, as it is the case 

at the Sponsoring Company, then several simulations will be conducted, resulting in 

a bigger “cloud” of points, which aggregates the engine residency across the range 

of vehicle applications considered. 

In order to select a set of 10 minimap points that are the most representative of the 

whole drive cycle, an optimisation procedure is used (Goodman, 2006b). This 

process is based upon the minimisation of the sum of distances between each of the 

points in the cloud and the nearest minimap point. The selected minimap points are 

also shown in Figure 4.3. 

 

Figure 4.3 Illustration of Minimap Points Selection (Goodman, 2006a)  
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derive the equivalent “weight” of each of these minimap points in the cycle output in 

terms of fuel consumption and gaseous emissions. Table 4.1 illustrates the weight of 

the minimap points for a particular engine application (luxury saloon). Since the 

particular engine is used for different vehicles, the minimap points are selected from 

the combined drive cycle simulation of two different vehicle applications. Note that in 

Table 4.1, a zero weight is assigned for minimap point 8. This is due to the fact that 

this is a high load and speed point, which is used by other vehicle applications. Since 

Table 4.1 is only representing the ‘hot’ cycle (i.e. the engine temperature over the 

certain value), the sum of weight is 92.4%. 

Table 4. 1 Equivalent Weight of the Selected Minimap Point for the Selected Engine / Vehicle Application 

 

 

4.2.2 Local DoE Investigation at Each Minimap Point 

The next step in the process is to plan and conduct the steady-state engine tests. 

Besides engine speed and engine load, temperature is another global variable that 

plays an important role in calibration, in particular in relation to emissions. The 

Minimap Points Engine Speed (RPM) Engine Load (Nm) Weight (%)

1 750 30 41.6%

2 1010 93 1.3%

3 1530 95 9.4%

4 2065 86 2.8%

5 2029 183 0.3%

6 1383 137 1.4%

7 1505 42 30.4%

8 2442 220 0.0%

9 2102 124 4.0%

10 2425 150 1.4%

Total 92.4%
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common practice in steady state calibration testing is to “block” this variable by 

conducting testing at “hot” and “cold” engine temperature (usually defined in relation 

to the engine coolant temperature). The discussion and analysis below, and in this 

work, relates to “hot" calibration of the Diesel engine case study. Therefore, Table 

4.1 only represents equivalent weights of residency for each selected minimap point 

from the ‘hot’ engine operating condition. 

4.2.2.1 Analysis of Calibration Variables 

In order to plan and conduct the steady state engine testing, the design space 

(engine control variables) and the decision space (engine responses of interest) 

must be analysed and defined.  

The engine responses of interest include fuel flow (required to achieve the required 

torque) and gaseous emissions as engine outputs, such as Particulates Matter (PM)/ 

soot, HC, CO and NOx. These can be regarded as “global” responses, in the sense 

that the engineering (and legal) interest is on the cumulative values over the drive 

cycle rather than at a particular engine operating point. In addition to these global 

responses, calibration engineers are interested in other ‘local’ engine operating 

parameters such as engine noise (important to the customer), exhaust gas 

temperature and Indicated Mean Effective Pressure (IMEP) that are important to 

maintain the efficiency of catalyst, and combustion stability.    

The engine control parameters or variables, which relate to engine calibration 

actuators, are usually defined by the calibration engineers and also depend on the 

ECU control / strategy. For the Diesel engine used as a case study in this work, the 

engine control variables included: 
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 Fuel Injection pressure/ rail pressure, which is controlled by control valve; 

 Fuelling strategy parameters: Main Injection timing (start of injection), is given 

as the angles Before Top Dead Centre (BTDC) and accurately controlled by 

electronic control injectors;  

 Multiple fuelling: Pilot injection –  which involve quantity of fuel in the pilot and 

pilot timing (relative to the main injection timing); 

 Mass Air Flow, which is measured by throttle position or air flow sensor; 

 Variable nozzle of turbine demand position, which is described as Turbine 

nozzle position or valve position. 

Table 4.2 specifies the engine control actuators with given engineering coded names 

and units. 

Table 4.1  Engine Inputs Variables (Actuators) 

Engine Inputs (Actuators) Engineering Coded Name Engineering Unit 

Fuel pressure Fup MPa 

Main injection timing (start of 

injection) 

soi_main degATDC 

Pilot injection timing relative 

to main injection (difference 

to main injection) 

soi_prev degATDC 

Fuel mass injected in pilot 

injection 

mf_prev mg/stroke 

Mass air flow maf mg/stroke 

Variable nozzle of turbine 

demand position 

bpapwm % 

 

Figure 4.4 summarises the analysis of the engine control variables and responses 

for the Diesel engine case study.  
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Figure 4.4 Analysis of Engine Control Parameters and Responses 

 

Table 4.3 defines the engine response of interests with engineering coded name and 

unit.  

Table 4.2 Engine Outputs (Responses)  

 

• Fuel Pressure

• Main Timing

• Air Mass Flow

•Turbine nozzle 
position

• Pilot Quantity

• Pilot Timing

• Fuel flow 

• Emissions:

•Particulates

• HC

• CO

• NOx

• Noise

• Exhaust Temperature

• IMEP

Control Parameters

Engine load / speed
Coolant Temperature

Responses

Engine Response of Interest Engineering Coded name Unit

Indicated Mean Effective Pressure IMEP bar

Overall Apollo noise level Apollo dBA

Exhaust gas NOx concentration NO ppm

Exhaust gas HC concentration HC ppm

Exhaust gas CO concentration CO ppm

AVL smoke meter Filter Smoke Number 

(FSN) 

Smoke1FSN mean FSN

Total fuel consumption Emmf_tot Mg/stk

EGR valve position Emang_EGR %
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For each minimap point the design space is specified in terms of the actuator valid 

ranges, which are defined by the calibration team based on experience and 

preliminary experiments. Table 4.4 shows the valid engine actuator limits defined for 

each minimap / engine operating point of interest.  

Table 4.3 Engine Actuator Limits at Different Engine Operating Points 

 

 

4.2.2.2 DoE Engine Test Plan 

The engine tests are planned using a DoE approach. Space filling DoEs have been 

growing in popularity in engine mapping testing, in particular since software to 

generate space filling DoEs is widely available, including the Matlab Model Based 

Calibration toolbox. While this does not give any statistical advantage over more 

conventional DoEs (such as fractional factorials or Central Composite / Box Behnken 

DoEs) if a polynomial model is to be fitted (which has been common with Diesel 

engine response models), they do have practical advantages that (i) enables 

engineers to choose the number of tests they want to run, and (ii) the fitting of a 

Minimap 
Points

Operating condition fup soi_main1 mfprev2 soiprev2DIFF maf bpa

Engine Speed 
(RPM)

Engine 
Load (Nm) MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX

1 750 30 20 26 -5 5 0.8 2.2 10 20 210 260 60 95

2 1010 93 26 40 -3.2 5.3 0.8 2.4 5 25 270 370 60 95

3 1530 95 38.5 65 -2.5 5.44 0.8 2.5 9 29 280 330 60 90

4 2065 86 45 70 -4.5 3.5 0.8 2.4 8 35 290 360 50 80

5 2029 183 48 74 -5 2.25 1 3 12 30 465 565 45 70

6 1383 137 35 70 -3 4.5 0.8 3 10 35 350 460 60 88

7 1505 42 36 62.5 -1 4.88 0.8 3 9 29 215 300 70 92

8 2442 220 68 92 -8 -1.5 0.8 3.5 12 40 615 720 44 80

9 2102 124 54 80 -3.5 3.07 0.8 2.8 10.8 31 380 465 45 75

10 2425 150 57 85 -5.5 2 0.8 3 12 32 455 545 38 63
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more flexible model, such as radial basis function or Kriging can be attempted. The 

number of tests run in each experiment is based on a trade-off between effort (time 

and cost of running the engine tests) and the desired accuracy of the model. 

For the engine case study, a space filling Optimal Latin Hypercube (OLH) design 

was chosen, and generated using the Model Browser of the Matlab ® MBC (Model 

Based Calibration) toolbox. The number of tests in the OLH DoE for each minimap 

point was 135, with further 20 tests planned as validation points.  

At each test according to the DoE, engine speed and actuator settings are held as 

predefined constants from the DoE and the quantity of fuel injected from main 

injection is varied in order to achieve the specified torque from the DoE. The same 

procedure is carried out for all the tests according to the DoE. Engine actuator 

settings and engine outputs for each of test are recorded and collected. For each 

minimap point, a small number of extra tests were planned and collected as external 

validation data.  For this experimental plan and for each minimap point, data was 

collected from an engine dynamometer testing facility over a period of 2-3 days. 

Engine testing data was recorded into a data logger, which is an integral part of an 

engine testing bed facility. The engine test data was provided in Excel software 

format for each minimap point; as an example the engine test data for the minimap 

point 750rpm-30Nm is shown in APPENDIX I. This engine test data from the 

specified Diesel engine is used throughout this research.  

4.2.3 Fitting Local Engine Response Model 

Once the engine test data has been collected (i.e. measured engine responses 

obtained at each testing point in the DoE), response models can be fitted for each 
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engine response and at each minimap point. Historically, third order (cubic) 

polynomials have been used for local Diesel engine models (Goodman, 2006b). This 

was also the choice of the calibration team at the Sponsoring Company, thus cubic 

models have been fitted at all minimap points for all engine response interests, 

shown in Table 4.3.  

All models have been fitted using the Model Browser tool in the MBC Toolbox. 

PRESS RMSE was used as the statistical model fitting criteria (internal validation). 

External model validation criteria, in addition to residuals analysis, included RMSE 

for the validation set (points not tested in the main DoE) and engineering trends 

analysis were conducted. For reference, the fitted models are presented as an MBC 

file in Appendix E-1(Appendix in electronic format). 

During the validation process for minimap point 1 it was noticed that the quality of the 

engine response models (across all responses) was worse than the engine response 

models at other minimap points, based on the analysis of model building PRESS and 

validation RMSE. After further analysis of the test data and discussion with the 

calibration team at the Sponsoring Company, it was realised that during the engine 

testing it was difficult to maintain constant coolant temperature at this minimap point 

(750rpm & 30 Nm). Response models were refitted for this minimap point, with 

coolant temperature as an explanatory variable, which considerably improved the 

quality of the models. Figure 4.5 illustrates a comparison of the NOx emissions 

response model with and without the engine coolant temperature; in terms of the 

residual plots. This shows a much smoother residual plot for the NOx response 

model fitted with coolant temperature as a variable. 
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Figure 4.5 Comparative Residual Plot for NOx Models at Minimap Point 1 

 

A study was carried out to evaluate the performance of the cubic polynomials by 

comparison with non-parametric models. In particular, this study considered Radial 

Basis Function (RBF) models and Gaussian Kriging. 

RBF models have become particularly popular for engine response models since the 

Matlab MBC toolbox offers this modelling facility, and their usefulness for engine 

response models has been demonstrated by several studies (Morton, 2002 , 

Seabrook, 2007 , Sinoquet, 2009), in particular for global models. This study 

considered a range of kernel functions for evaluation, including Gaussian, thin plate, 

linear and cubic. Hybrid RBF models were also included in the study – combining a 

quadratic underlying model with Gaussian, thin plate, linear and cubic RBF kernels. 

All RBF models were fitted using the Model Browser tool in the Matlab MBC toolbox. 

Kriging models were also discussed in the literature (Brahmi et al., 2009 , Kaji and 

Kita, 2007 , Langouet et al., 2008) as offering a useful modelling tool for engine 

response models, again in particular for global models. Since Kriging is an option not 

offered in the Matlab MBC toolbox, the commercially available JMP package was 

used.  
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Within this study comparative models were fitted for just 3 minimap points (1, 3, and 

7) selected based on their equivalent residency. Evaluation of each fitted model was 

based on: 

 Engineering trends analysis: evaluation of model adequacy in relation to 

expected engineering (e.g. thermodynamics) trends. While model 

visualisation is difficult given the high dimensionality of the space (6 input 

variables), both the Model Browser MBC tool and JMP provide facility for 3D 

visualisation (response variable plotted as a surface against 2 of the input 

variables, with all the other variables kept at a constant value). This is 

illustrated in Figure 4.6.a, based on output from the MBC. Both tools also offer 

the facility to plot “main effects” type plots as a 2D plot of the response 

variable against one of the input variables, with all the other variables 

constant. This is illustrated in Figure 4.6.b, based on output from MBC. 

 Internal model validation: analysis of the residuals, both visual and statistical 

measures / diagnostics of goodness of fit including RMSE and PRESS / 

PRESS-RMSE for polynomial and RBF models. Given the nature of the 

kriging models, internal validation based on residuals does not make 

engineering sense.   

 External model validation: analysis of prediction errors for the validation data 

set, both visual (residual plots) and statistical (RMSE). The analysis of 

residuals for the validation set is carried out automatically in MBC, whereas 

for the JMP Kriging models the residuals were calculated and analysed 

externally. 



93 
 

 

a. 3D Model visualisation b. 2D Factor effect plot 

Figure 4. 6 Model Visualisation in MBC 

                         

 

The results from this analysis are summarised in Figures 4.7 and 4.8.  

Figure 4.7 presents a comparative analysis of the performance of the different types 

of RBF models against the cubic polynomial, across the engine responses and 

engine operating points considered in the study (minimap points 1, 3 and 7). The 

comparison was based on PRESS RMSE as internal statistical diagnostics and 

validation RMSE (i.e. RMSE for the validation data set). In order to facilitate 

comparison across different models, the results in Figure 4.7 are expressed as error 

to signal ratio, i.e. [PRESS RMSE] / [Average Response], and [Validation RMSE] / 

[Average Response], as percentages.  

The results in Figure 4.7 show that some engine responses can be modelled more 

accurately than others. For example, fuel flow and noise can be modelled quite 

accurately with PRESS RMSE and Validation RMSE below 5% of the average 

response. However, the emissions models are not as accurate, with PRESS RMSE 

and Validation RMSE above 20% of the average response.  
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It is also seen that modelling using RBFs can generate better models than cubic 

polynomials. Also, Hybrid RBF models (with a quadratic global linear model) appear 

to perform consistently better than the standard RBF models. 

 

Figure 4.7 Comparative Analysis of Cubic and RBF Models, expressed as  

 [PRESS RMSE / average response %] and [Validation RMSE / Average Response %]  
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Figure 4.8 summarises the comparison between cubic polynomials, RBF models (the 

best performing RBF model was selected) and the fitted Gaussian Kriging models. 

The results are presented in terms of the ratio [Validation RMSE] / [Average 

Response], expressed as percentage, for each engine response.  

An analysis of the results in Figure 4.8 shows that the Gaussian Kriging models 

perform well for all engine responses and engine test points considered, and 

generally outperform the RBF models. This analysis also shows that both the RBF 

models and Gaussian Kriging models outperform the cubic polynomials, which is 

particularly significant for the gaseous emissions models. 

  

  

  
 

A-Minimap Point 1; B – Minimap Point 2; C – Minimap Point 3 
 

Figure 4.8 Comparative Analysis of Cubic, RBF and Gaussian Kriging Models, expressed as [Validation 
RMSE / Average Response %]  
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4.2.4 Local and Global Optimisation 

After generating the engine response models for all minimap points, the models can 

be used to find the optimal settings for the control variables at each minimap point. 

As discussed in the literature review, Diesel engine calibration optimisation is a multi-

objective optimisation problem; from an external viewpoint this can be summarised 

as minimisation of the fuel consumption and all the emissions over the drive cycle. 

This suggests that optimisation must be performed both at “local” (minimap) level, 

and globally, i.e. over the drive cycle. The “current” optimisation process is illustrated 

in Figure 4.9 (Goodman, 2006b), which can be described as a two-step optimisation 

process, including local optimisation and global optimisation. 

 

Figure 4.9 Justification of Current Two-Stage Optimisation Process 

 

4.2.4.1. Local Optimisation 

It is known that the trade-off between NOx and Particulate emissions (Pm) is the 

most difficult to achieve for a Diesel engine calibration (Stone, 1999). Consequently, 

the optimisation problem for Diesel engine calibration is normally formulated as a 
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2 1009 94 3.2 0.0032 0.0002

3 1531 95 7 0.0043 0.0007

4 2065 86 3.46 0.0057 0.0008

5 2033 184 1.6 0.0372 0.0008
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7 1504 41 35.5 0.0009 0.0001
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multi-objective optimisation problem by using Pareto based optimisation to explore 

the trade-off between NOx and Particulates. The Sponsoring Company uses 

proprietary software to perform this analysis, which implements a Normal Boundary 

Intercept (NBI) algorithm to solve the non-dominated search (Das and Dennis, 1998). 

The NBI method was used to determine the Pareto frontier identifies a specified 

number of points at requested intervals along the frontier. 

The local optimisation task is to produce a user defined number of Pareto trade-off 

solutions between NOx and Particulates within the valid range. The optimisation is 

also subject to nonlinear local constraints on engine noise, exhaust temperature, and 

IMEP. The local optimisation is formulated as: 

Minimise:              

              

Subject to:               

   Local constraints:  

                 

                          

                                       

Equation 4.1 

NOx(x) and PM(x) are the engine response models at each engine load/speed point, 

and    and   are the actuator boundaries.     ,              and       are 

local (engine response) constraints, for which the limits are defined as           , 

           and             . 
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A number of solutions, typically 5, are selected from the generated Pareto trade-off 

front and carried over to the global optimisation stage. The selection aims to be 

representative of the trade-off between the objectives, NOx and PM, thus it is based 

on an analysis in the decision space, and does not necessarily consider the spread 

of the selected solutions in the variables spaces. It is quite possible, also due to the 

performance of the NBI algorithm, that the solutions are not actually distinct in the 

variable space for some of the input variables.  

Figure 4.10 shows that the current optimisation approach is carried out with two 

steps. Local optimisation was the first step to produce 5 Pareto trade-off solutions, 

which are then used as candidates for global optimisation. The second step is global 

optimisation, which is used to determine the combination of local optimal solutions.   

 

Figure 4.10 Flowchart of current calibration optimisation process 
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4.2.4.2. Global Optimisation 

The objective of the global optimisation applied over the drive cycle, is to minimise 

fuel consumption (evaluated as a weighted sum of fuel consumption at each 

minimap point) subject to cycle emission constraints (calculated as a weighted sum 

of emissions at each minimap point). This is performed by exploring combinations of 

the ‘candidate’ solutions from the local optimisation, which were chosen from the 

local Pareto frontier solution sets.  

An important consideration for engine calibration is to have smooth actuator maps. 

The implication for the global optimisation is that the actuator settings in transition 

from one engine load / speed (minimap) point to another should not be varied too 

much. Large changes in actuator settings between neighbouring minimap points 

could lead to significant transient behaviour and driveability issues.  

To address this issue, a set of Gradient Constraints (GC) on maximum actuator 

changes between minimap points have been defined according to engine calibration 

experience. Figure 4.11 illustrates in graphical format the possible transitions 

between the 10 minimap points, as defined by the collaborating calibration team.   
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Figure 4.11 Transitions between minimap points  

 

Figure 4.12 illustrates the way the Gradient Constraints (GC) were formulated. 

Considering the transition between two minimap points i and j for the same engine 

control,    and   , Figure 4.12 illustrates actuator settings that fulfil both the domain 

constraints and the actuator change constraint. The actuator change constraint can 

be expressed mathematically as Equation 4.2: 

    |     |                        

  Equation 4.2 
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Figure 4.12 Formulation of the Actuator Change between Two minimap Points 

 

To define the GCs, an m-file was provided by sponsoring company. The m-file 

contains the complete set of GCs as a       matrix, which defines the limits for 

both decreasing and increasing each engine actuator, for the 21 possible transitions 

as illustrated in Figure 4.11. The reorganised GC in an Excel spreadsheet is shown 

in APPENDIX II.  

In order to carry out the global search for an optimal solution, a Matlab-based script 

was used (Goodman, 2006b), which performs an exhaustive evaluation of all 

possible combinations of candidate solutions passed on from the local optimisation 

stage. Given that the total number of combinations is 510 (i.e. circa 10 million), this is 

a time consuming algorithm. The feasible solutions, which fulfil the global emissions 

constraints and the actuator change constraints, are sorted according to the global 

fuel consumption. 

Experience with this process (Goodman, 2006b) has shown that it is quite possible 

that no feasible solution is found. In this case a new sampling from the local Pareto 
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frontier is performed (i.e. 5 new points are extracted from the NOx – Pm trade-off 

front) and the search for the global solution is restarted. This process will be 

repeated until a feasible global solution is achieved. 

4.2.4.3. Results 

Based on the Pareto solution set, the optimal solution over the whole drive cycle has 

been determined throughout the second step of optimisation, while the requirements 

on restricting the maximum allowable engine actuator change between minimap 

points and on cycle emission constraints must be satisfied. In order to view the final 

solution in the design space, Figure 4.13 shows the actual optimal solution for each 

of the engine controls within the valid actuator ranges (grey bars). In Figure 4.13, it 

shows that each of the engine control variables has a combination of 10 optimal 

actuator settings for all the minimap points, which are plotted in engineering units for 

different engine controls.  
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Figure 4.13 The global optimal solution plot of actuators within the valid range at different minimap 
points  
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Table 4.5 shows the estimated fuel consumption and emissions both at each 

minimap point and over the whole drive cycle. It shows that all the estimated 

emissions are within the engineering target limits for the ‘hot’ cycle.  

Table 4. 4 The Estimated Fuel Consumption and Emissions Compare with Emission Legislation limits 

Mini-map point Fuel NOx CO HC PM 

1 0.12572 0.00016 0.00557 0.00052 0.00006 

2 0.01057 0.00001 0.00015 0.00001 0.00000 

3 0.12020 0.00028 0.00153 0.00009 0.00010 

4 0.04530 0.00014 0.00061 0.00003 0.00001 

5 0.00715 0.00007 0.00002 0.00000 0.00000 

6 0.02230 0.00021 0.00012 0.00001 0.00001 

7 0.22771 0.00022 0.00947 0.00093 0.00000 

8 0.00000 0.00000 0.00000 0.00000 0.00000 

9 0.08438 0.00057 0.00063 0.00004 0.00002 

10 0.03886 0.00032 0.00025 0.00002 0.00001 

      

Total [kg]: 0.68218 0.00198 0.01837 0.00166 0.00021 

Emission 
engineering  

targets  0.00198 0.02640 0.00330 0.00044 

Fuel 
consumption 

l/100km 7.38295     

g/km  0.17998 1.66965 0.15049 0.01910 
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4.2.5 Validated Calibration Development Process 

The output from the optimisation process is a global solution consisting of a set of 

actuator settings for every minimap point. The global solution is used to build up a 

smooth engine actuator control map by a process of interpolation, which also 

includes population of the relevant look-up tables.  

Figure 4.14 illustrates the process used to validate this optimisation.  

 

Figure 4.14 Validation Process for a Diesel Engine Calibration Approach  

 

At first, the smooth engine actuator maps are built up by interpolation between the 

local calibrations for all minimap points and calibrated into an ECU. This engine 

control map is used to measure the engine responses on the steady state engine 

test bed. The collected engine emission values from the engine test bed are then 

compared with the corresponding estimated engine emission values from the 

optimisation process. To follow the steady state engine testing bed validation, the 

transient engine testing bed validation is also required. The transient engine test 
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aims to estimate the total emissions over the drive cycle and compare this with the 

legal emission limits. Finally, the engine calibration is validated on the vehicle for the 

whole drive cycle.  

4.3 Critique of the Current Optimisation Process 

Developing a good steady state optimal calibration is a very important step in the 

overall calibration development process.  

While the optimisation process described in the previous section is common practice 

in the automotive industry, as shown by the literature review (Roudenko et al., 2002 , 

Sheridan, 2004) and was successfully used in practice at the Sponsoring Company 

to generate useful steady state calibrations, it presents some shortcomings, which 

are outlined below: 

 The optimisation is not goal focused: fuel economy is not actually minimised; 

instead, the global solution is the “best” out of the possible combinations of a 

subset of trade-off solutions from the local Particulates (Pm) - NOx Pareto 

front;  

 Given that the “Global” optimisation phase relies on an exhaustive evaluation 

of possible combinations, this is not a computationally efficient process; 

 In order to speed up the computation a small subset (typically 5) of local 

Pareto optimal solutions are typically selected from each minimap point as 

candidates for the global optimum. This not only limits the opportunities to find 

a true optimal global fuel consumption solution, but creates possibly frequent 

situations where no feasible solution can be found due to the constraints on 

actuator change. In this case the process is restarted with re-sampling from 
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the local Pareto frontiers until a global solution is found. Thus, the process 

can become even more expensive computationally and does not guarantee a 

good solution for the global optimal fuel economy objective. 

Similar limitations have been found and discussed by Roudenko (2002), although 

based upon a different global optimisation problem formulation (i.e. a Pareto optimal 

trade-off at the global level between NOx and Particulates calculated as weighted 

sum of minimap emissions, and obtained by using the NSGA-II evolutionary non-

dominated search algorithm).  

A number of comparable calibration optimisation approaches have been taken in the 

past. Both Edwards (1997) and Haines and Dicken (2000) use very similar 

optimisation procedures that carry out the ‘local’ optimisation first and use the local 

optimum solution to fulfil the engine control maps. However, a smoothing procedure 

was required to build up the engine control map based on those local optimum 

solutions. One disadvantages of the current approach that is addressed earlier is the 

limitation of the requirement for smoothing the engine control map according to the 

physical limit on the actuator change over the whole range of engine operating 

conditions. According to these limitations, the optimisation of minimising total fuel 

consumption over the drive cycle cannot be simply formulated as a weighted sum of 

minimised fuel consumption at every engine load/speed point. Compromise is 

required between different engine operating points during the smoothing procedure.  

Although global engine response models have been commonly used, the essential 

process of calibration optimisation has not been amended much. The global engine 

response models are used to predict engine responses at different engine operating 

conditions by defining equality constraints of engine, both in Atkinson’s and Alonso’s 
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(Atkinson et al., 2008) applications. Essentially the global engine response models 

were used same as the steady state engine local models, when the parameters of 

engine load and speed are fixed.  

While the performance of this process could possibly be improved by better search 

algorithms at the global level as suggested by Roudenko (Roudenko et al., 2002), 

there is scope for seeking alternative formulations of the optimisation problem based 

on the existing data gathering and modelling process (i.e. using minimap points) that 

would enhance the steady state calibration optimisation performance.  

Discussions with the calibration teams at the Sponsoring Company as well as other 

such OEMs, have pointed to further engineering considerations, such as: 

 The two stage process itself is not ideal from a user’s point of view; an 

“automatic” process / tool, where global optimal solutions are developed in 

response to the calibrator’s preference expressed a priori would be preferable. 

While software packages such as the Matlab MBC toolbox offer strong 

support for the optimisation task (Styron, 2008), they do require the calibration 

engineer to have significant level of mathematical / statistical knowledge.  

 Calibration objectives include other engineering criteria such as smoothness 

of responses, “engine noise” across the engine operating range, and 

smoothness of the actuator maps (strongly associated with driveability). The 

current steady state calibration process does not focus on these objectives, 

which are usually achieved through subsequent calibration refinement work, 

usually carried out on the vehicle, which hence are time consuming and 

expensive. If the steady state calibration could deliver “smooth” solutions, this 

would be likely to facilitate a shorter process and better final calibrations. 



110 
 

 The engine control complexity is increasing in order to address demands for 

better fuel economy and less pollutants; this means an increasing number of 

variables (e.g. multiple pilots) and constraints for the optimisation problem, 

with increasingly complex trade-offs, which will further decrease the efficiency 

of the current process. It is therefore desirable to have a formulation of the 

optimisation problem that can easily adapt to the increasing complexity of the 

Diesel engine controls, with more variables / actuators to calibrate. 

4.4 Calibration Optimisation Problem Re-Analysed 

From a system level perspective, the Diesel engine calibration optimisation problem 

has a very high dimensionality. At the system level, the global optimisation problem 

can be regarded as an n∙k dimensional problem (where n is the number of minimap 

points and k is the number of control variables/actuators). For example, for the 

Diesel engine case study considered in this research, there are 6 actuator variables 

(listed in Table 4.2) and 10 minimap points (Figure 4.11), hence 60 variables.  

The way in which data is collected for steady state calibration (i.e. at a set number of 

minimap points) defines a partition of the variables. While the control variables at 

each minimap point are apparently independent from the control variables at other 

minimap points, there is a strong coupling between these variables in terms of the 

actuator change constraints between the minimap points (gradient constraints), 

which is a form of calibrator’s preference articulation for smooth actuator maps.  

In terms of the decision space, it can be argued that there is a natural hierarchy of 

the objectives, as illustrated in Figure 4.15. The system or “global” level objectives 

relate to responses over the drive cycle and essentially include fuel flow and 
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gaseous emissions (Pm, HC, CO and NOx). At “local” minimap level the objectives 

of interest include engine noise, exhaust temperature and IMEP.  

 

Figure 4.15 Partition of Engine Responses / Hierarchy of Optimisation Objectives  

 

Coherent with this analysis, the calibration optimisation problem can be represented 

as a hierarchical multilevel structure, as shown in Figure 4.16. This figure illustrates 

the relationship between the system level / “global” objective and the “local” 

objectives, at a minimap point i, corresponding to a particular engine speed / load 

point. Within the optimisation process, the decision taken about the system variables 

must fulfil both the global objectives and the local objectives, which are associated 

with a subset of the global variables (actuator settings at a minimap point). This 

implies that within the optimisation process there must be strong co-ordination 

between the global and the local objectives. 
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Figure 4.16 Multi-level Structure of Calibration Optimisation Problem  

 

The analysis in Figure 4.16 does not reflect the coupling between variables 

discussed earlier, associated with the requirement for smooth actuator maps. Figure 

4.17 illustrates a revised analysis, showing the coupling between variables associate 

with minimap points at the “local” level, in terms of the gradient changes constraints. 

 

Figure 4.17 Multi-level Structure of Calibration Optimisation Problem, including Coupling Between 
Variables 

 

The Literature Review (Chapter 2) discussed Multidisciplinary Design Optimisation 

(MDO) frameworks, which have been introduced as a practical approach for dealing 
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with modern engineering systems such as aircraft and automotive vehicles, which 

are increasingly complex, with high dimensionality (more than 100 input variables) 

and strong coupling interactions.  

The analysis presented in this section shows that the calibration optimisation 

problem could be regarded as being in the Multi-disciplinary Design Optimisation 

(MDO) framework. This makes a strong case for attempting to formulate the 

calibration optimisation problem within an MDO framework, which has been 

demonstrated as having strong benefits in terms of simplifying and reducing the cost 

of the analysis in other application areas in aerospace and automotive engineering. 

According to the literature (Braun et al., 1996), All At Once (AAO) is an immediate 

opportunity for MDO problem. In Chapter 2, an AAO optimisation architecture has 

been illustrated (Figure 2.5) and discussed. As a highly centralised framework, AAO 

framework offers strong capability to handle both global level targets and local 

level/discipline targets, where in this case global targets refer to total fuel 

consumption, cycle emissions and actuator map smoothness over the whole cycle, 

local level/discipline targets refer to local constraints. Figure 4.18 illustrates the 

possible AAO structure formulation for the Diesel engine calibration problem, 

according to the suggested AAO architecture (Figure 2.5) from the literature (Braun 

et al., 1996). 
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Figure 4.18 All At Once Optimisation Architecture for Diesel Engine Calibration Problem 

 

Of the other MDO framework in literature (Braun et al., 1996 , Kroo et al., 1994 , 

Kroo and Manning, 2000). The Collaborative Optimisation framework as a multi-level 

MDO structure is very popular for dealing with situations where there is a strong 

coupling between variables, as discussed in Chapter 2 (Section 2.4.2.1). Therefore, 

MDO/CO appears to have more potential to handle the Diesel engine calibration 

optimisation problem based on the analysis of the Multi-level structure of this 

problem. Due to the analysis of the Diesel engine calibration system as a multi-level 

problem, it may be concluded that the steady state Diesel engine calibration problem 

can easily fit into MDO/CO framework according to the illustration in Chapter 2 

(Figure 2.8). Figure 4.19 demonstrates the possible MDO/CO framework formulation 

for the steady state Diesel engine calibration problem. 

Optimiser

Targets over the
drive cycle 

Discipline targets
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Discipline targets
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Figure 4.19 MDO/CO Framework Architecture  

 

Due to the main interest of engine calibration process is to reduce the fuel 

consumption and emissions over drive cycle, they are naturally formulated as global 

targets locate at the top level. In the MDO/CO structure suggested, the discipline 

optimisation is to minimise the discrepancy between the subsystem/local variables 

and system/global target values while treating the local targets as constraints. 

Another one of the benefit of the MDO/CO framework is the decomposition of the 

coupling between disciplines, which relate to the actuator gradient change 

constraints. Therefore, a possible choice is to decompose the Diesel engine 

calibration problem into a number of disciplines that are defined by minimap points.  

4.5 Summary 

Based on the analysis presented in the previous section, the All At Once (AAO) and 

Collaborative Optimisation (CO) MDO framework appear to be well suited for the 

Diesel engine calibration optimisation problem. The following Chapters describe the 
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Objective:    Total cycle fuel consumption
Constraints :

Cycle emission constraints
Consistency constraints

Local analysis: (at Discipline j)

Objective: 

Constraints
: 

“Local” constra nts

Coupling constraints

Local analysis : ( at Discipline i )

Objective:

Constraints: 

“Local ” constraints

Coupling constraints

Discrepancy from system 
target value

Discrepancy from system 
target value



116 
 

development, implementation and testing of these frameworks for the Diesel engine 

case study considered in this research. 
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Chapter 5 “All At Once” Multi-disciplinary Design Optimisation 

Approach to Diesel Calibration Optimisation 

5.1 Introduction: 

This chapter aims to describe the development and implementation of an AAO 

framework for the Diesel engine calibration optimisation problem based on steady 

state models.  

“All At Once” (AAO) is the most basic MDO method and is a highly centralized 

approach which attempts to analyse and solve simultaneously both the global and 

local problem. Figure 5.1 illustrates a simplified structure for an AAO framework; the 

“Global Optimiser” focuses on optimising the main objective (or objectives / targets) 

for the engineering system, while the “System Analyser” evaluates the global 

(system level) requirements and the “local” (discipline level) targets. Within the AAO 

framework the global analysis and the local analysis are performed at same time, 

dealing with all variables simultaneously, thus ensuring that the optimisation process 

ends up with both the global and local requirements (targets and constraints) being 

satisfied. 
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Figure 5.1 Illustration of AAO Framework 

5.2 Diesel Engine Calibration Problem Analysis and Formulation as 

MDO / AAO  

According to the discussion in Chapter 4 (Section 4.5), the steady state Diesel 

mapping and calibration optimisation can be presented as a 2-level hierarchical 

structure, as illustrated in Figure 4.17. It has been argued that this problem can be 

represented within an MDO framework in which the local calibration problem (optimal 

actuator settings at each minimap point) can be regarded as “disciplinary” level, 

while the over the drive cycle outcomes can be regarded as the system or global 

objective and / or targets. 

The calibration analysis at each minimap level, discussed in Section 4.2.2, 

highlighted the need to ensure combustion stability, engine noise performance and 

after-treatment efficiency. From an optimisation point of view, the calibration 

preferences for these attributes have been formulated in terms of targets, which in 

turn can be mathematically formulated as constraints, as shown in Equation 4.1. 

System level targets / 
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From a global / system level point of view, it can be argued that cycle fuel 

consumption (i.e. the total fuel flow needed to achieve the required torque at all 

engine operating conditions) is ultimately the most important attribute, while gaseous 

emissions output over the drive cycle can be constrained to an engineering target 

(limit) level (discussed in Section 4.2).  

The smoothness of the actuator maps has also been discussed as an important 

calibration criteria, directly associated with refinement and drive-ability, which is a 

system / global level attribute / objective. Within the “current” calibration process, this 

calibration target has been formulated in terms of a maximum actuator change 

allowed for transitions between minimap points, as discussed in Section 4.2.4.2.  

Table 5.1 summarises this analysis of engineering objectives and targets associated 

with the calibration optimisation problem.  

Table 5. 1 AAO optimisation – engineering analysis of objectives and targets 

 Discipline / Local level  System / Global level 

Objectives   Minimise Fuel consumption 

over the drive cycle 

Targets   Combustion stability (IMEP); 

 Engine Noise (Apollo); 

 Exhaust Temperature. 

 Engineering limits for gaseous 
emissions (NOx, PM, HC, CO); 

 Drive-ability – Smoothness of 
actuator maps – gradient / 
actuator change constraint. 

 

Figure 5.2 illustrates the structure of the Diesel steady state calibration optimisation 

problem analysed within an MDO / AAO framework. 
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Figure 5.2 AAO Formulation for Steady State Diesel Engine Calibration Problem  

Within the AAO framework, the “global optimiser” focuses on minimising total cycle 

fuel consumption and at the same time the “analyser” simultaneously performs all 

the evaluations of the current performance against the targets imposed by the global 

and local analysis. 

The mathematical formulation of the AAO optimisation problem is shown in Equation 

5.1. 

Minimise:      ∑          
                   

Subject to: 

Global constraints: 

       ∑             
 
                    

   (     )  (     )           
                         

Local constraints: 

                                                   

           

Equation 5.1 

Equation 5.1 uses the following notation: 

“Global” / System level objective:

Minimise: Total Fuel Consumption 

Global 
optimiser

Analyser 

Global analysis:
(over the drive cycle)
Global constraints / trgets:
• Cycle emission limits (NOx, PM, HC, 

CO)
• Gradient Constraints

Local analysis: 
(at each mini-map point)
Local constraints / targets: 
• IMEP (combustion stability)
• Engine noise
• Exhaust Temperature
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 Xi is a k-dimensional vector of calibration variables at minimap point   ; where 

k is the number of actuators, 6 in this case as listed in Table 4.2, where 

        , where n is the number of minimap points, 10 in this case; 

        is the  Fuel consumption at node   ; 

       is the Objective function, expressed as the weighted sum of fuel flow in 

L/100Km; 

    is the Residency time associated with minimap point   ; 

       is the Global constraint, which is a vector of cycle emissions, evaluated 

as the weighted sum of emission output at each minimap point i; 

           is a vector of gaseous emissions evaluated at minimap point i, i.e. 

          

[
 
 
 
       

      

      

      ]
 
 
 

 

               is the vector of engineering cycle limits (or target) for gaseous 

emissions, i.e. 

               [

         
        
        
        

] 

   (     )is an     matrix of the actuator changes between neighbouring 

engine operating points   and  ; 

          
 is the     matrix of maximum allowable actuator change for each 

actuator and transition between minimap points;  

        is the Vector of evaluated ‘local constraints’ for node   ,  

                  is the vector of local responses evaluated at minimap point i, 

i.e. 
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                  [

        

          

           
] 

                        is the vector of targets for local responses at minimap 

point i, i.e. 

                        [
          
            

             
] 

         are Domain constraints that is vector of lower bounds (Alberer) and 

upper bounds (UB) for the design variables Xi at minimap point i; 

Consequently, this engine calibration optimisation problem has 60 design variables 

and 316 constraints, made up of: 

 4 global emissions constraints; 

 252 gradient constraints; 

 60 local constraints. 

5.3 Algorithm Development and Implementation in Matlab 

The analysis above has revealed the complexity of the optimisation problem. To 

solve such a large dimensional design space and heavily constrained optimisation 

problem, an effective algorithm needs to be employed. Based on the discussion of 

the literature review in Chapter 3, the GA is more capable of dealing with large scale 

optimisation problems with a complex design space (more curvature and constraints) 

than the gradient based searching methods. GA is also well established with many 

applications (Alonso et al., 2007 , Brooks and Lumsden, 2005 , Rask and Sellnau, 

2004 , Roudenko et al., 2002) rather than other Evolutionary Algorithms, such as 
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PSO. Thus, an evolutionary Genetic Algorithm approach has been selected for 

implementation. 

Matlab was selected as the development and implementation environment in order 

to ensure compatibility with the other calibration support tools used by the 

Sponsoring Company. An existing MATLAB based GA tool was initially used for the 

AAO implementation.  

5.3.1. Development of Data Structures for AAO Implementation 

In order to develop and run an efficient optimisation algorithm an appropriate data 

structure to manage the AAO optimisation problem must be created (including 

design variables, engine response models and constraints). 

The Matalb programming environment offers a variety of data structures, such as 

‘double’ for Floating-point number, cell array, structure and function handle and so 

on. The structure of the data is designed to carry information according to minimap 

points. Table 5.2 summarises the m-files created to manage the data structures for 

engine calibration optimisation. 
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Table 5.2 Engine Calibration Optimisation Inputs 

File Name ‘GC’ ‘Inputs_Lim’ ‘EM_Lims’ ‘LC_Lim’ 

Data / 
Description 

Actuator 
Change 
Gradient 
Constraints 

Inputs variable 
limits 

Cycle Emission 
Limits 

Local engine 
output 
constraints 

Data 
Structure 

Cell array Cell array Structure  Cell array 

File Name ‘mm_n’ ‘mm_t’ ‘Models’ ‘res_time’ 

Data / 
Description 

Engine speed 
for each 
minimap points 

Engine torque 

for each 

minimap points 

Engine 
response 
models 

Residency time 
for each 
minimap points 

Data 
Structure 

Double  Double Cell array Double 

 

Table 5.2 shows that a number of data is in “cell array” format. A cell array can store 

the data in the format of a structure or matrix in each element, which also allows 

organising the data sets from different minimap points within one cell array. Using 

structure files allows the storing arrays of varying classes and sizes, and names to 

denote contents and simple methods of passing function arguments or models. A 

number of data files are designed with a special structure, which is explained as 

follows: 

 As described in Section 4.2.4.2, the original ‘GC’ is a matrix that involves 21 

transitions. For the AAO implementation the ‘GC’ matrix was reorganised into 

a cell file. Figure 5.3 shows the structure of the ‘GC’ cell file that involves 

actuator change limits for all the existing transitions. This is a clearer structure 

to represent the existing transitions between minimap points and is easier to 

use compared with the original ‘GC’ data format. 
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Figure 5.3 Illustration of Gradient Constraints Data Structure 

 ‘EM_Lims’ is a structure file of estimated emission limits with emission names. 

 Apart from ‘GC’ and ‘EM_Lims’, the data files are in either a matrix or a cell 

file structure, which are organized in the structure according to the mini-map. 

For example, the engine response models were built up in the MBC software 

algorithm and exported into the workspace in MATLAB. The engine response 

models are stored in the ‘Models’ cell file corresponding to different minimap 

points. Each of the elements in this cell file defines a set of engine response 

models. 

Figure 5.4 explains the data requirements for AAO implementation by applying the 

standard GA algorithm in MATLAB. The main implementation involves three sections 

viz. data loading, data sorting and optimisation, as shown in APPENDIX III.  
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Figure 5.4 Explanation of Data Requirement for AAO implementation with GA algorithm 

5.3.2. MATLAB Implementation 

In order to run the optimisation, the objective and constraints functions need to be 

defined. As shown in Equation 5.1, the objective function is formulated as the total 

fuel consumption, calculated as the weighted sum of fuel consumption from each 

minimap point. This was implemented in the m-file called ‘objective’, which is shown 

in APPENDIX III. In Figure 5.2, the constraints function was described as the 

formulation that includes global constraints and local constraints. The constraints 

function was also developed into a m-file called ‘con_sys’, which is shown in 

APPENDIX IV.  

Figure 5.5 illustrates the Matab implementation.  
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Figure 5.5 Demonstration of AAO Implementation by Applying GA Standard Algorithm  

The GA programme requires that the user defines the GA options for different 

optimisation problems. Table 5.3 summarises the GA options set for the AAO 

optimisation.  

  

Objective Function:
(user defined)
Total fuel injected

Constraints Function:
(user defined)
Cycle emission constraints;
Local constraints;
Gradient Constraints.

Standard GA Toolbox in 
MATLAB (with user 
defined parameters and 
options)
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Table 5.3 Algorithm option setting for 3 minimap points test 

Option name Setting  Description and explanation 

Selection Fcn selectiontournament,2 

Randomly select a number of solution from the 
current population, and the best individual is 
selected and saved as parents solution for next 
generation 

PopulationSize 
Twice of input 
variable size 

To define the number of individuals in the 
population. It must be chosen with care. If it is 
too low, it cannot explore the design space 
enough, otherwise the selection perform poorly 
with higher possibility to choose similar 
solutions. Normal suggestion is 1.5 or 2 times of 
the number of variables 

Generations 200 

To define the total generation for the 
optimisation process, it very much depends on 
the convergence speed.  

Stall Gen Limit 4 

To define the stopping criteria by the number of 
iterations without improvement in the objective 
values in the population, for example 4 of 
consecutive generations is used. 

Elite count 2% of population size 

Use a small percentage of the population to 
maintain the best achievement while maximally 
keep the diversity 

Crossover 
fraction 0.6 

To keep the searching route within the 
reasonable distance or local area 

TolCon 0.01 
Reasonable tolerance is chosen according to 
the emissions engineering unit (ppm) 

TolFun 0.01 
Reasonable tolerance is chosen according to 
the objective engineering unit (mg)  

 

The population size is defined as twice of input variables size in order to explore the 

design space well. The “tournament” selection function was used to randomly select 

a number of solutions from the current population that is defined as 2 in this 

application, and the best individual is selected and saved as parents solution for next 

generation until enough parents solution are selected. For every generation 2% of 

the top population solutions were kept for the next generation and 60% of the 

population was generated by the crossover operator. The remaining solutions were 

generated by the mutation operator. 
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5.4 Preliminary Results and Analysis 

To assist with the development and implementation of the algorithms and to obtain 

an early evaluation of the potential of the developed AAO optimisation framework, 

the methodology was applied initially to a reduced set of minimaps consisting of only 

three points. These points were selected from the 10 minimap points by choosing the 

points with highest residency times, shown in Table 5.4. The equivalent residency 

time was re-calculated using the same approach as for the original 10 points, i.e. the 

weight of each point in the simulated NEDC “cloud” (Figure 4.3) was added to the 

closest of the selected minimap point.  

Table 5.4 Three Selected minimap for Pre-test   

Number of 
points 

Engine load 
(Nm) 

Engine speed 
(rpm) 

Residency 
time (s) 

Mini-map Point 1 30Nm 750rpm 493.97 s 

Mini-map Point 2 95Nm 1530rpm 231.03 s 

Mini-map Point 3 42Nm 1505rpm 370.98 s 

 

Testing the optimisation procedure on a reduced data set was also a strategy 

adopted by the Sponsoring Company, therefore benchmark results are available to 

compare the AAO results against a typical output from the “current” optimisation 

process described in Chapter 4. 

5.4.1 AAO Results for Three Minimap Points 

The AAO optimisation was run with the settings described in Table 5.3. Figure 5.6 

illustrates the convergence plot for the GA optimisation process, stopping criteria and 

individual objective values of the whole population. From the convergence plot, it can 

be seen that there is a rapid reduction during the first few generations and then the 
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convergence curve is flatten. The stopping criteria show the objective value (fuel 

consumption) has not been improved more than the tolerance after the 65th 

generation.   

 

Figure 5.6 Illustration of GA Convergence with Stopping Criteria and Individual Fitness Values 

 

5.4.2 Study of Effect of Population Size on Algorithm Performance 

From the literature review of optimisation (De Jong and Spears, 1991), the minimum 

population size for a GA algorithm was suggested to be set as 1.5 or 2 times the 

number of control variables. This also depends on the complexity of the design 

space. Given the large dimensionality of the calibration optimisation problem, as 

reflected by relatively high computation expense observed for the AAO, a question 

arises whether there is a trade-off between GA population size and the performance 

of the algorithm in terms of the quality of the solutions and the computation time.  
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A study was conducted based on a set of tests for different population sizes. Four 

population sizes were chosen as 50, 100, 200 and 500, and for each population size 

setting, three repeat runs of the programme were carried out. Table 5.5 summarises 

the results for fuel consumption and computation time.  

Table 5. 5 AAO testing results for three nodes 

Popsize 
Test 
Num 

Fuel 
consumption 

(L/100Km)  
Computation 

(hrs) 
50 1 3.98 1.474 

 2 4.10 2.178 
 3 3.90 1.997 
 Average  3.99 1.8833 

100 1 3.93 5.106 
 2 4.04 3.399 
 3 3.93 4.541 
 Average  3.97 4.3483 

200 1 3.88 5.561 

 2 4.10 7.795 

 3 3.95 8.236 
 Average  3.98 7.1973 

500 1 3.46 19.478 
 2 3.97 15.123 
 3 3.98 21.700 
 Average  3.80 18.7672 

 

In order to make the results more easily understood by calibration engineers, the fuel 

consumption values have been transferred from units of ‘mg’ to ‘L/100km’ by 

Equation 5.2: 

                                                          

Equation 5.2 

Table 5.5 shows that the increase in population size costs more expensive 

computation and does not necessarily result in a significant improvement. 
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5.4.3. AAO Results Analysis 

The AAO optimisation results were compared with the benchmark results obtained 

from the use of the conventional (“current”) process described in Chapter 4, for the 

same reduced data set (3 minimap points). 

In terms of the main objective of the optimisation, Figure 5.7 shows that AAO 

optimisation delivered a significant (12.6%) improvement in fuel consumption 

compared with the current two-step optimisation process.  

 

Figure 5.7 Results Analysis (Fuel Consumption): Two-Step vs. AAO  

Figure 5.8 presents comparative results from both the two-step approach and the 

AAO approach in terms of cycle emissions. For convenience these results are 

presented in terms of NOx-PM and HC- CO trade-offs, with the engineering targets 

for total cycle emissions also indicated on the charts. It shows that both of the 

optimisation approaches produced valid solutions within the cycle emissions 

constraints. However this is only based on the three minimap points simulation test. 

0.0000

0.5000

1.0000

1.5000

2.0000

2.5000

3.0000

3.5000

4.0000

4.5000

Total cycle fuel consumption [L/100Km]

Two-
Step

AAO



133 
 

 

 

Figure 5.8 Results Analysis (Cycle Emissions): Two-step vs. AAO 

In order to understand the effect of engine control variables, Figure 5.9 summarises 

the results in terms of optimal actuator settings for the 3 minimap points from both 

the two-step and the AAO optimisation. This shows that main injection timing, pilot 

injection timing and quantity of pilot injection have quite different actuator settings. 

The AAO solution makes engineering sense in that it suggests a slightly higher 
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quantity of fuel in the pilot rather than the main injection, which is known to reduce 

fuel consumption.  
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Figure 5.9 The Actuator Settings of Optimal Solutions 
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5.5 Preliminary AAO Implementation over the Whole Drive Cycle: 

After the successful implementation for three minimap points, the AAO approach 

was applied for the whole drive cycle (ten minimap points) optimisation problem. The 

same data structure design was used in this implementation and the same GA 

algorithm options were used for the initial test run.  

However, after running a few trials, the attempts all failed with a ‘no feasible solution 

found’ message, as illustrated in Figure 5.10. Figure 5.10 also shows that the AAO 

optimisation was terminated after only two GA generations algorithm. 

 

Figure 5.10 AAO Optimisation Approach Plot with Standard GA Algorithm 

The plot in Figure 5.10 shows the individual feasible solution objective value from the 

whole population. From Figure 5.10, it can be seen that there is only one feasible 

solution in the initial population set. A study using the existing GA algorithm was 

carried out to understand how the GA algorithm handles this problem. Based on the 

study of the algorithm implemented in this GA algorithm, Figure 5.11 was developed 

to illustrate the flowchart of the GA procedure.  
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Figure 5.11 Standard GA Procedure Flowchart 

As a start, the initial population is generated within all the variable valid ranges. This 

initial population is passed to the solution evaluator to assess all the solutions in the 

population. All the feasible solutions are passed to the selection function to choose 

the best solution as parent solution to generate the next generation. The solution 

with the best objective value from the whole population will be chosen as only one 

parent solution, when there is no feasible solution. Because of the same solution 

evaluator are used from generation to generation, algorithm, which invariably leads 

to difficulties with finding feasible solutions.  
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From an engineering point of view this could be explained by the fact that the design 

space is heavily constrained. In order to address this drawback, two actions have 

been undertaken, as follows: 

1. Carry out a study of the constraints in order to verify that the design space is 

not over constrained; 

2. Revise the GA algorithm such that it can better deal with the heavily 

constrained optimisation problem. 

5.6 Constraints Analysis: 

The aim of this analysis was to evaluate how restrictive each of the constraints is 

individually as well as when they are imposed jointly. It was also aimed to verify that 

the calibrators’ preference for a smooth actuator map and expressed as a series of 

“actuator change constraints” are not over-resticting the solution space.  

5.6.1 Methodology for Constraints Analysis 

The approach taken to carry out this analysis used a Monte Carlo process, as 

outlined below: 

1. Generate a set of 100,000 uniformly distributed values within the     

dimensional design space (n is the number of nodes; k is the number of 

variables at each node); 

2. Evaluate the success rate with respect to individual global emissions and 

gradient constraints over the drive cycle; 

3. Evaluate the success rate with respect to combinations of global constraints; 

4. Carryout a comparative analysis aiming to identify actuator or transition 

constraints that are relatively harder to satisfy. 



139 
 

A set of MATLAB scripts has been developed to carry out this analysis as shown in 

APPENDIX I. 

5.6.2 Results and Analysis: 

5.6.2.1 Evaluation against Individual Constraints: 

Table 5.6 summarises the results of checks against individual emissions constraints 

over the drive cycle. This analysis shows that NOx and PM are the most difficult 

emission constraints with a success rate of 1% for NOx and 25.5% for PM (the 

success rate was evaluated as the probability of finding a feasible solution when a 

specific constraint was imposed, for convenience expressed as a percentage).  

This is consistent with reports from the literature, e.g. (Ropke 2009), and the current 

industry practice of starting the optimisation process by seeking  ‘local’ optimal 

solutions (i.e. at each given engine speed and load operating point) as a trade-off 

between NOx and PM, which is widely recognised as being the more difficult to 

achieve.  

Table 5.6 also shows the results from imposing the gradient constraints (GC) checks. 

This analysis shows that GC is also a very restrictive constraint with a 2% success 

rate.   

Table 5. 6 Individual Emission Constraints and GC Constraints over Whole Drive cycle 

Solutions generated: 100,000 NOx PM CO HC GC 

Number of feasible solution 987 25497 96356 99788 1980 

Success rate [%] 1.0% 25.5% 96.4% 99.8% 2.0% 
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A natural subsequent question for this study was to check the distribution of the 

feasible solutions in the design space, to confirm that feasible solutions are not 

confined to a corner or a ‘pocket’ of the design space. Given the large number of 

variables, visualisation was quite difficult, therefore a quantitative measure for the 

spread of feasible solution was defined in terms of range utilisation for each variable 

  (Equation 5.3), calculated as the ratio between the observed feasible range (i.e. the 

range of feasible solution set) and the valid range, i.e. the width of the design space. 

                     [
                             

                       
]
 
                        Equation 5.3 

Figure 5.12 shows the distribution of range utilizations for each variable for the 

feasible solutions against the NOx constraint; the analysis of this result shows high 

range utilization for nearly all variables. 

 

Figure 5.12 Chart of range utilization against NOx emission constraint  

A similar analysis was carried out for the Gradient Constraints (GC), with the result 

illustrated in Figure 5.13. This analysis shows that most actuators utilize the design 
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space well, apart from variable pilot quantity at node1, and variable fuel pressure at 

node 7. 

 

Figure 5.13 Bar Chart of range utilization against gradient constraints  

5.6.2.2. Evaluation for Combinations of Constraints 

Table 5.7 summarizes the results of a number of simulations against the different 

constraint combinations. The analysis shows that the combinations of constraints are 

even more restricting than those calculated from individual constraints analysis. This 

analysis shows that when NOx and PM constraints are jointly imposed the success 

rate is 0.042%. It was also found that when all constraints are simultaneously 

imposed, there was no feasible solution in the randomly generated population.  

  

GC constraints analysis range plot 
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Table 5. 7 The different combinations of emission constraints over drive cycle 

Solutions 
generated: 100,000 

NOx-PM NOx-GC PM-GC All emission 
constraints 

All 
constraints 

Number of feasible 
solutions 

42 23 403 32 0 

Sampling Success 
rate [%] 

0.042% 0.023% 0.403% 0.032% 0 

 

A range utilization plot for the NOx-Pm combination of constraints is shown in Figure 

5.14. 

 

Figure 5.14 Chart of Range Utilization against NOx-PM Emission Combination Constraints  

Figure 5.14 shows that in particular the pilot injection quantity at node3 was reduced 

to about 50 % of the valid range and pilot injection timing and quantity at node 7 was 

reduced by about 30 % of the valid range. 

Figure 5.15 shows that the Mass Air Flow (MAF) at minimap point 6 was reduced to 

about 40% of the valid range and pilot injection at minimap point3 was reduced by 

more than 50% of the valid range, when all emission constraints are imposed. 
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Figure 5.15 Bar Chart of range utilization against all cycle emission combination constraints  

Figure 5.16 shows that when the most difficult constraints (i.e. NOx and GC) are 

simultaneously imposed a number of variables have been reduced by about 50% of 

the valid range viz. main injection timing and pilot injection quantity at node1; fuel 

pressure and MAF at node 7; and MAF at node9. 

 

 

Figure 5.16 Chart of range utilization against the combination of NOx-GC constraints 
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 Further analysis was carried out to evaluate the relative difficulty of gradient 

constraints for particular variables or transitions. The methodology for this analysis 

was to take the viable solutions after imposing all the emissions constraints, and 

impose actuator change trasitions in turn to evaluate success rate. From a 

mathematical point of view this can be stated as evaluating the conditional 

probability of success against a specific gradient constraint given that the emissions 

constraints are satisfied. 

Given that the number of feasible solutions for all emissions constraints are very 

small, the Monte-Carlo experiment was repeated a further 2 times, which yielded 85 

emissions feasible solutions (out of a simulated population of 300,000).  Each of 

these 85 solutions was tested in turn against each of the actuator change. Table 5.8 

summarises this analysis in terms of how many times a particular gradient transition 

constraint was infringed (out of the total of 85). The transitions are shown in Table 

5.8 with respect to the minimap reference number for the start and stop point. The 

apparent most difficult minimap transitions and actuator variable have been 

highlighted in Table 5.8. Figure 5.17 summarizes the Gradient Constraints analysis 

in graphical terms, highlighting the most difficult transitions in the speed-load space. 
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 Table 5. 8 Gradient Constraints Failing Statistic 

  

  

Figure 5.17 Transitions over the drive cycle  

The transitions higlighted in Figure 5.17 (i.e. transitions from minimap points 3 to 7, 

and 9 to 5) were found to be the most difficult. This makes engineering sense as 

they are associated with a sharp increase in engine load. Therefore, some of the GC 

Actuators Gradient Constraints Failed Times

Start point stop point Fup soi_main1 soi_prev2 mf_prev2 maf bpa Average of failing rate

1 2 18% 12% 11% 31% 0% 13% 14%

1 3 21% 19% 14% 41% 0% 2% 16%

1 7 33% 9% 11% 31% 0% 0% 14%

2 3 24% 31% 14% 53% 2% 1% 21%

2 6 13% 15% 12% 27% 13% 6% 14%

2 7 18% 21% 13% 29% 0% 7% 15%

3 4 19% 18% 26% 33% 15% 9% 20%

3 5 11% 21% 13% 31% 0% 1% 13%

3 6 46% 21% 12% 36% 11% 0% 21%

3 7 42% 14% 29% 55% 0% 8% 25%

3 9 14% 9% 16% 26% 8% 7% 13%

4 7 22% 11% 18% 39% 0% 2% 15%

4 9 25% 12% 15% 42% 6% 9% 18%

4 10 18% 6% 12% 27% 0% 6% 12%

5 6 14% 5% 13% 44% 11% 2% 15%

5 8 12% 18% 11% 34% 0% 5% 13%

5 9 44% 16% 32% 35% 1% 8% 23%

5 10 24% 14% 22% 33% 19% 6% 20%

6 9 22% 5% 14% 42% 2% 0% 14%

8 10 28% 7% 9% 31% 1% 1% 13%

9 10 39% 7% 20% 26% 4% 7% 17%

Average of failing rate 24% 14% 16% 36% 4% 5%
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constraints are possibly too restrictive to satisfied for the transitions with sharp 

increase engine load. Figure 5.17 also shows that the transitions around minimap 

point 3 were more difficult than the others. The statistics shown in Table 5.8 also 

concluded that the most difficult actuators to satisfy the gradient change constraints 

are “pilot injection quantity” (variable code mf_prev2) and fuel pressure (variable 

name Fup).  

5.7 Development of an Improved GA Creation Function  

The constraints study has highlighted the difficulty of finding feasible solutions, which 

explains why the standard existing GA tool failed to generate a feasible initial 

population and the optimisation ends up prematurely with ‘no feasible solution found’.  

In order to address this issue within the GA algorithm, a mechanism was designed to 

bring the infeasible solution into the feasible area by using a subsidiary optimisation 

algorithm. Figure 5.18.a illustrates this idea, which is to find the closest feasible 

solution given the initial un-feasible “guess” solution. Thus, if X0 (in Figure 5.18a) is 

the starting point for the optimisation procedure, the searching direction is forced 

towards the closest feasible point X by minimising the distance from X0 to X. In 

generating the initial population, the diversity also is an important feature for the GA 

process in terms of finding the global optimal solutions. Therefore, the mechanism is 

required to not only generate feasible solution, but also keep the diversity. Figure 

5.18b demonstrates the process to generate feasible population based on a factorial 

design in two dimensions. Figure 5.18b illustrates the idea of a feasible population 

design which preserves diversity within a nonlinear constrained design space, 

underpinned by a factorial designed experiment to generate the initial guess 

solutions. In Figure 5.18b, the solid dots are infeasible solutions which are locate 
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outside of feasible area, and the arrows show the movements from infeasible 

solution to the nearest feasible area.  

 

Figure 5.188 Illustration of Creating Initial Feasible Population by Bringing the Infeasible Solution into the 
Closest Area 

 

The formulation of the optimisation problem is shown in Equation 5.3. 

Min:          ∑              

 ST:          

      ∑             
 
                             

                                                   

   (     )  (     )                                            

Equation 5.3 

A Matlab script was created to implement this procedure, which was called 

“corrector”, shown in APPENDIX V. Figure 5.19 shows the flowchart of the feasible 

initial population creation function. This newly designed initial creation function 
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employs an optimal space filling DoE method to generate an initial population within 

the valid range, which is a strategy in order to ensure a good spread (directly linked 

to diversity) in the solutions space. Solutions (GA individuals) are saved in the 

feasible population if they satisfy all the nonlinear constraints; otherwise, they are 

sent to the “corrector” function to find the closest feasible solution, as illustrated by 

the flowchart in Figure 5.19. 

 

Figure 5.19Flowchart of the Feasible Initial Population Creator 

 

5.8 AAO Results with Corrected GA Creation Function 

5.8.1. Initial Results and Analysis 

The AAO optimisation was run with the modified creation function for the whole drive 

cycle (ten minimap points). Figure 5.20 illustrates the convergence plot of the GA 

process, which still shows that a significant number of solutions in the population are 

lost as infeasible.  
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Figure 5.19 Failed AAO Test Convergence Plot  

The loss of feasible solutions with subsequent GA iterations results in premature 

convergence (less than 15% of stall generation limits). The use of “elite” option 

guaranteed that at least a small number of feasible solutions are preserved. Figure 

5.21 illustrates the improvement in the overall objective (fuel economy) from the AAO 

approach compared with the two-step approach. 

 

Figure 5.21 Fuel Comparison of between Two Step Approach and AAO Approach with Feasible Initial 
Population 

Figure 5.22 shows the trade-off plots for both CO-HC and PM-NOx, showing that the 

emissions constraints have been met.  
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Figure 5.20 Pm vs. NOx and HC vs. CO Emissions Comparison of between Two Step Approach and AAO 
Approach with Feasible Initial Population 

 

5.8.2. Further Study of the GA Algorithm Performance 

In order to understand the optimisation process and improve the quality of 

optimisation process, a study was taken based on the optimisation test with the 

feasible initial population, which has been generated by the creation function. The 

optimisation test was shown the early convergence, which was illustrated in figure 
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5.21. Figure 5.23 shows the first 2 iterations of the optimisation test. It can be seen 

that a significant number of feasible solution are missing from the first 2 generations.  

 

Figure 5.21 Feasible Population Plot from Iteration1 to Iteration3  

 

The analysis in Figures 5.20 and 5.23 suggest that the number of feasible solutions 

in the population is decreasing sharply from iteration to iteration. It is seen from 

Figure 5.20 that only three feasible solutions were left in the last population when the 

optimisation process converged (which includes the “elite” option). It is clear that the 

loss of feasible solutions from generation to generation may cause the early 

convergence and lack of robustness in the optimisation process. 

5.8.3 Development of Revised GA Operators 

In order to address this issue of the loss of feasible solutions, the same idea of a 

‘corrector’ algorithm can be employed for the GA operators to ensure that the 

solutions in the next generation are feasible. This ‘Corrector’ function is embedded 
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into newly developed operators, which are named ‘XFcrossover’ and ‘XFmutation’. 

Both ‘XFcrossover’ and ‘XFmutation’ operators were developed based on the 

standard GA operators by adding the ‘Corrector’ function, in order to bring the 

infeasible solution into feasible area. Figure 5.24 illustrates the use of ‘corrector’ 

function in the existing GA algorithm.  

 

Figure 5.22 Illustration of AAO Flowchart Applied Genetic Algorithm with Modified Operators 
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5.8.4. AAO Implementation with Modified GA Operators and Results 

Discussion 

Table 5.9 summarises the GA options for AAO implementation with modified 

operator functions. The standard operators have been modified and chosen by 

setting up the options for the GA optimisation algorithm.  

Table 5. 9 GA option settings for AAO test with modified GA operators 

Option name Setting  

Selection Fcn selectiontournament,2 

MutationFcn XFmutation 

CrossoverFcn XFcrossover 

Generations 20 

Stall Gen Limit 4 

Elite count 2 

Crossover fraction 0.7 

TolCon 0.01 

TolFun 0.01 
 

Figure 5.25 shows the implementation of the AAO approach program structure.  
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Figure 5.23 Illustration of AAO Approach Implementation with modified operators and function 

 

The AAO optimisation test was carried out with ten nodes using modified crossover 

and mutation operators and the creation function to run the test. Figure 5.26 shows 

the GA convergence of the AAO approach and the smoothness of the final result. 

The optimisation process stopped after 18 generations when it reached the ‘stall’ 

generation limits. The fuel consumption was reduced to about 6.21L/100km which 

represents an improvement of 15% compared with the two-step approach, as 

illustrated in Figure 5.27.  
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Figure 5.24 All At Once approach testing results with 10 nodes by applying modified GA algorithm  

Figures 5.28 and 5.29 show that the emissions performance of the AAO solution, 

incomparison to the “current” 2-stage process solution. It is clear that all emissions 

are within the set engineering limits, however, the AAO solution is clearly much 

better in terms of fuel economy.  
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Figure 5.26 PM-NOx Emission Plot with Engineering Targets 

 

Figure 5.27 HC-CO Emission Plot within the Engineering Limits 

The graphs in Figure 5.30 show the distribution of optimal solutions in the valid 

actuators range.  
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Figure 5.28 Plot of different optimal solution of actuator settings in valid range 
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The graphs in Figure 5.30 show that the actuator settings of different optimal 

solutions are spread over the valid range. The optimal solutions from both the AAO 

and the two-step approaches are located in different areas for some actuators, 

especially the main injection and pilot injection timing.  

In terms of computation the AAO approach only completes the optimisation within 

less than 10 hours by using the standard GA algorithm, while the AAO approach with 

modified operators used about 60 hours with the smaller population size of 50. 

Therefore, compared with the two-step approach (more than few days); both AAO 

approaches applying standard GA algorithm have the benefit in terms of computation. 

In order to judge the effectiveness and efficiency of this AAO problem formulation, it 

was important to know whether the formulation kept the computational effort 

manageable. With the three minimap points’ application, the AAO approach not only 

improved the fuel consumption, but also performed better computation efficiency 

than the current method in Diesel engine calibration process. Nevertheless, the test 

for the full engine test drive cycle optimisation showed the difficulties of generating 

feasible solutions efficiently in a heavily constrained space. In order to address this 

problem, special algorithms were developed and written into MATLAB functions for 

generating feasible solutions for the initial population, as well as offspring from 

generation to generation via mutation and crossover operators. Consequently, the 

computation has been slowed down to more than 60 hours for full cycle optimisation 

test by the modified GA operators function.  

5.7 Summary 

In this chapter a single level optimisation structure AAO has been developed, tested 

and discussed. The Diesel engine calibration problem has been formulated into the 
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original AAO structure and tested. The original AAO has shown some advantages in 

terms of finding the optimal solution by focusing on the objective with respect to all 

the constraints.  

A solution space study has been carried out and shows that the solution space is 

very heavily constrained. Such a constrained space caused the difficulty of 

generating feasible solutions and introducing a premature termination and hence an 

unsuccessful optimisation process. In order to avoid the risk of early convergence, 

some special functions have been created to help the standard GA algorithm find 

feasible solutions.  

Finally, the AAO optimisation structure was successfully tested with a Diesel engine 

full drive cycle calibration problem. The result has shown that AAO formulation is 

capable of finding a global solution and can guarantee a solution for every single run. 

However, the AAO approach with modified function costs very expensive 

computation. 
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Chapter 6 Collaborative Optimisation Approach to Diesel 

Calibration Optimisation 

6.1 Introduction  

As discussed previously, the Diesel engine calibration problem is hierarchically 

structured at two levels, which makes MDO frameworks attractive for this 

optimisation study. After the evaluation of a number of MDO frameworks (Allison et 

al., 2009 , Braun and Moore, 1996 , Kim, 2001 , Kroo, 2004 , Papalambros, 2001 , 

Sobieszczanski-Sobieski et al., 1998), Collaborative Optimisation (CO) appeared as 

the closest two level  MDO framework formulation, with the ability of dealing strong 

coupling between disciplines, which is likely to benefit the engine calibration 

optimisation problem. 

From the discussion in Chapters 4 and 5, the Diesel engine calibration problem can 

be treated as a two-level MDO problem. Within the representation of MDO 

framework in Chapter 5 (Table 5.1), engine drive cycle outcomes and actuator GC 

constraints were regarded as system level targets (objective or constraints to 

achieve). At each minimap, the local constraint analysis is required, such as engine 

noise, IMEP and exhaust temperature. The AAO framework performed a centralized 

analysis for both global level targets and local level requirements simultaneously. 

This requires 316 constraints to be satisfied at the same time, which inherently leads 

to difficulties with finding feasible solutions. 
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As discussed in chapter 2 (Section 2.4.2.1), the essential feature of the MDO/CO 

framework (illustrated in Figure 2.8) is that it decomposes the complex optimisation 

design problem into two levels, namely the subsystems (or disciplinary) and the 

system level. The overall system objective is minimised at system level while subject 

to consistency requirement and system level constraints. Subsystems focus on 

finding the closest solution to the system coordinates while satisfying local 

requirements. Such a framework provides more freedom for searching for optimal 

solutions while maintaining the interdisciplinary compatibility by subsystem design. 

These features ensure the success of the Collaborative Optimisation framework in 

practical multidisciplinary optimisation design. 

The aim of this Chapter is to present the analysis, development and implementation 

of a Collaborative Optimisation framework for the Diesel calibration optimisation 

problem. 

For simplicity of notation and to avoid confusion with the use of CO acronym for 

Carbon Monoxide emissions, the acronym TCO will be used in relation to the 

conventional implementation of Collaborative Optimisation (TCO - Traditional 

Collaborative Optimisation).  

6.2 Collaborative Optimisation Formulation for Diesel Engine 

Calibration 

Kroo (Kroo, 2004) has discussed an important challenge for large scale MDO, which 

is decomposing a problem whose components are strongly coupled. Auxiliary 

variables were suggested to decompose the strong coupling between the disciplines. 

The system optimiser creates ‘copies’ of the computed shared variable values and 
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passes these down to the disciplines as target or parameters to perform the coupling. 

Figure 6.1 illustrates the MDO problem with coupling between disciplines. The 

coupling is commonly defined as a function of a number of local variables from 

different disciplines.   

 

Figure 6.1 Illustration of MDO problem with coupling between disciplines 

According to Kroo’s suggestion, the strong coupling between disciplines is 

decomposed by creating auxiliary variables and imposing the coupling conditions at 

each discipline concurrently. Figure 6.2 illustrates the Collaborative Optimisation 

principle. Essentially, the coupling between disciplines has not been decomposed, 

instead, the coupling is performed within individual disciplines in parallel by data 

communication, and the auxiliary variables are used as medium of the data 

communication. In Figure 6.2, where z is the vector of auxiliary variables, which is 

used in discipline level optimisation as a target. While the disciplines are strong 

coupled, these auxiliary variables are also used to perform the coupling between the 

disciplines. For example, the coupled disciplines in Diesel engine calibration problem 

is described as            , it can be performed at discipline level by using the 

System Level:
Total  system objective: F(x)
Overall system limits/targets 
requirement

Coupling Between Disciplines:

Discipline/Subsystem Analysis j: 

Local constraints/targets
Coupling analysis 

Discipline/Subsystem Analysis i: 

Local constraints/targets
Coupling analysis 
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i j i j

i j
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auxiliary variables   
            , where refer to the local constraints evaluation 

  
 (  

      )       , the   
    is local variables at the discipline I and    is the artificial 

auxiliary variable for discipline j, which is created at system level.  

 

Figure 6.2 Demonstration of decomposing the strong coupling into discipline level 

With strong and high dimensionality coupling, the decomposition may cost an 

excessive computation penalty. But for a problem that only requires a few auxiliary 

variables, the simplicity of the decomposition makes it worthwhile (Kroo, 2004).  

6.2.1 TCO Formulation for a Diesel Engine Calibration  

In analysing the steady-state calibration process to formulate a TCO framework, it 

was clear that the hierarchical structure already exists in terms of the “Global level / 

Drive Cycle“ and “Local level / minimap points“, as illustrated in Figure 6.3. The 

coupling between disciplines (as illustrated in Figure 6.3) is in terms of the maximum 

actuator change between the minimap points, which from a practical point of view 

could be associated with ‘driveability’ as one of the customer level satisfactions. 
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Figure 6.3 Multilevel structure of the engine calibration problem 

In order to decompose this Diesel engine calibration problem, the 

disciplines/subsystems can be naturally defined as the ‘local’ calibration problem at 

each minimap point. By doing this decomposition, the constraints of smoothness 

actuator maps (Gradient Change constraints) can be removed from system level. 

Instead, the actuator GC constraints are performed individually at each 

discipline/subsystem (minimap point). This decomposition benefits the system level 

optimisation by releasing the GC constraints, which are recognised as the most 

difficult constraint from the constraints analyse in Chapter 5. From the literature 

review of MDO/CO (Kroo, 2004), subsystem optimisation was suggested for 

minimising discrepancy between local variables and system target value. Table 6.1 

presents the analysis of the engineering objectives and targets for MDO/CO 

framework.   

Table 6.1 MDO/CO- engineering analysis of objective and targets 

 Discipline / Local level System / Global level 

Objectives   Minimise Fuel consumption over the 

drive cycle 

Targets  Combustion stability (IMEP); 

 Engine Noise (Appolo); 

 Exhaust Temperature.  

 Drive ability – Smoothness of 
actuator maps in local area (around 
minimap point i) – gradient / 

actuator change constraint. 

 Engineering limits for gaseous 
emissions (NOx, PM, HC, CO); 

 Consistency satisfaction with 
subsystem/disciplines feedback 

 

Minimap i Minimap j

System / Drive Cycle

|Xj - Xi|< ACij

“Global” Optimization

“Local” Optimization
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Compared with the AAO analysis (Table 5.1), Table 6.1 shows that for the TCO 

framework the actuator map smoothness requirement (252 GC constraints) is 

removed from the system optimisation, which releases more freedom to the system 

optimisation. Instead, the Gradient Change constraints are handled by subsystem 

optimisation at corresponding disciplines (minimap points). 

At system level, Equation 6.1 shows the optimisation problem formulation where total 

fuel consumption is minimised, which is defined as the system level objective 

(Jsys(X)), subject to the total emission constraints (G(X)).  

The TCO solutions must also satisfy the consistency requirements among the 

disciplines by enforcing an equality constraint at the system level between system 

target and subsystem returned solution as a way to combine the interdisciplinary 

local optimal solution. Therefore, the system optimisation formulation is given, as 

follow: 
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Min:              ∑          
                   

Sub to: 

Global constraints: 

      ∑             
 
                    

 

Consistency constraints: 

 ∑   
    

            

          Equation6.1 

At the subsystem level, optimisation is carried out in parallel for all the minimap 

points. Equation 6.2 shows the formulation of the optimisation problem at each 

minimap point, which is to minimize the discrepancy between subsystem variable 

  
    and system target value   

 , while satisfying local constraints.  

Min:           ∑   
    

      

Sub to:  

 Local constraints: 

                                                   

  (     )  (  
       

 )                                  

                            

Equation 6.2 

This is also illustrated in Figure 6.4, that the steady state Diesel engine calibration 

problem is decomposed into a two level structure formulation of the TCO framework. 

Since the coupled constraints GC is decomposed, it needs to be performed in each 

discipline. Nevertheless, there is no local variables in one discipline for the others. 
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Therefore, the auxiliary variables are used as same as the variable from other 

disciplines. For example, where    
       

   is used same as      . 

 

Figure 6.4 MDO/CO Formulation for Steady State Diesel Engine Calibration Problem  

6.2.2 CO Implementation in MATLAB for a Diesel Engine Calibration   

In order to manage the computational effort, different optimisation algorithms are 

employed at system and discipline level. At the system level, due to the large 

dimensional design problem, a GA algorithm was used to manage the optimisation 

task effectively. At each subsystem level optimisation, local variables are varied in 

order to find the local optimal solution, which is the closest feasible solution to the 

target values (  ) passed from system level optimisation, as shown in Figure 6.4. As 

discussed in chapter 2, the gradient based searching algorithm can find the local 

optimal solution efficiently. Therefore, the gradient search algorithm ‘fmincon’ 

System Level Optimisation:
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Constraints:

Global constraints/ targets : 
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• IMEP (combustion stability)
• Engine noise
• Exhaust Temperature
• Gradient Constraints
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iX
TX
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jX

sub T

i j ijX X GC  sub T
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(function in MATLAB) was employed at subsystem level optimisation. Similar to the 

AAO approach, a number of functions were created viz. the objective function and 

the system constraints function (shown in APPENDIX VI and VII).  

The flowchart in Figure 6.5 illustrates the implementation of the TCO framework 

formulation with GA and Gradient based algorithms.  

 

Figure 6.5 Illustration of TCO framework implementation for Diesel engine calibration optimisation 

Figure 6.5 shows that at the system level, a Genetic Algorithm was used to minimise 

total fuel consumption subject to cycle emission constraints and enforced equality 
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consistency constraints ∑   
    

       . With the GA standard algorithm, the initial 

population was generated and passed down to the subsystem level as the target 

value   . The subsystem optimiser aimed to minimise the discrepancy from the 

system target value with respect to GC constraints and local constraints. The 

discrepancy was formulated as       ∑   
    

      and the GC constraints were 

formulated as   
      

       This optimisation process resulted in a local optimal 

solution that was the closest possible solution to the system target solution. The local 

optimal solution response was used to evaluate the enforced equality constraints 

afterwards. This procedure was carried out with all the population at every iteration 

of the GA process until the optimisation process converged. The developed Matlab 

scripts are shown in APPENDIX VIII.  

6.3 TCO Results and Analysis: 

To implement the TCO approach, the MATLAB based GA Algorithm was employed 

and the options were defined as indicated on Table 6.2, which is similar to the AAO 

implementation. 
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Table 6.2 Standard GA Option Settings 

 System Level Subsystem Level 

Option name  Setting  Options Setting 

Selection Fcn  selectiontournament,2 Display off 

Popsize   100 TolFun 0.0001 

Generations  200 Algorithm active-set 

Stall Gen Limit  4 TolCon 0.0001 

Elite count  2% of population size TolX 0.0001 

Crossover fraction  0.6 TolX 0.0001 

TolCon  0.01   

TolFun  0.01   

UseParallel  always   

6.3.1 Three minimap Points Results Analysis: 

The test was also carried out with 3 nodes at first to test the feasibility of applying the 

TCO framework to the Diesel engine calibration problem. Figure 6.6 shows that the 

TCO approach delivered 3% improvement in terms of fuel consumption, compare to 

Two Step approach. However, this is worse than the AAO result. 

 

Figure 6.6 Comparison of fuel consumption for 3 nodes testing result 

Figure 6.4 compares the results from ‘Two Step’, AAO and TCO approaches in 

terms of cycle emission results. These results are again represented according to 

NOx-Pm and HC-CO trade-offs with the engineering targets for total cycle emissions. 
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From the emission plots in Figure 6.7, it can be seen that all emissions of the optimal 

solution are within the engineering limits. 

 

Figure 6.7 Comparison of Emissions from Different Approaches 

In order to understand the effect of engine actuator settings, Figure 6.5 presents a 

summary of the optimal results in terms of actuator settings for 3 minimap points 

from the different approaches. The TCO optimal actuators settings plot in Figure 6.8 

shows that the actuator settings of main injection timing, pilot injection timing and 

pilot injection quantity are distributed in quite different areas within the valid range 

compared to the “current” two-step process. Similar to AAO, th TCO optimal solution 

uses an increased pilot quantity to reduce the fuel consumption. 
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Figure 6.8 Illustration of optimal solution actuator settings from different approaches 

6.3.2 Full Cycle Results Analysis: 

As suggested by Kroo (Kroo, 2004), the TCO structure appears more beneficial for 

more complicated optimisation problems in terms of higher dimensionality, more 

constraints and strong coupling. Therefore, the TCO implementation for the whole 

drive cycle was carried out to assess the TCO framework formulation for Diesel 

engine calibration problem. Since the Diesel engine calibration optimisation still got a 

large amount of constraints and also to make the result comparable with AAO 

approach, the feasible population used in AAO were used within TCO approach as 

well. 

F
u

e
l P

re
s

s
u

re
 (
M

P
a

)

M
a

in
 i
n

je
c

ti
o

n
 t

im
in

g
 (

B
T

D
C

 

d
e

g
re

e
)

P
il
o

t 
In

je
c

ti
o

n
 T

im
in

g
 (

B
T

D
C

 d
e

g
re

e
)

P
il
o

t 
in

je
c

ti
o

n
 q

u
a

n
ti

ty
 (

m
g

/s
tr

k
)

A
ir

 M
a

s
s

 F
lo

w
 (

g
/s

tr
k

)

T
u

rb
in

e
 N

o
z
z
le

 p
o

s
it

io
n

 (
%

)



174 
 

Figure 6.9 shows the convergence throughout the optimisation process at the 

system level, the stopping criteria and the individual fitness value of the whole 

population.  The convergence plot in Figure 6.9 shows that the objective value (fuel 

consumption) was reduced very sharply during the first 20 generations, then the 

reduction in the objective value flatted until about the 50th generation and the 

reduced rapidly again after the 50th generation. From the 60th generation the 

reduction was slowed down until it was fully converged. The obvious difference 

between the TCO convergence and typical GA convergence is discontinuous 

convergence of the TCO process, which is caused by the contribution of well 

exploring sub-design space at each discipline. This suggests the benefit of the TCO 

framework in addressing complicated engineering optimisation problems by better 

exploration of the design space. 

 

Figure 6.9 Illustration of TCO Optimisation Convergence with Stopping Criteria and Individual Fitness 
Values at System Level 
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Figure 6.10 illustrates a comparative analyse of optimisation results, showing that 

the fuel consumption was significantly improved (12%) obtained by the TCO 

approach. And it shows that the objective value (fuel consumption) of the optimal 

solution from Two-step approach was also slightly better than the AAO approach.  

 

Figure 6.10 comparison of the optimal solution in terms of fuel consumption from different approaches  

Figure 6.11 presents comparative results from different optimisation approaches in 

terms of total cycle emissions of NOx-PM and HC-CO with the engineering limits for 

the cycle emissions. From Figure 6.11, all the cycle emissions of the valid solutions 

that were generated by the TCO approach met the engineering cycle emission 

targets. 
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Figure 6.11 Results Analysis: cycle emissions 

 

Figure 6.12 shows the summary of actuator settings from the valid solutions 

produced by the different optimisation approaches.  
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Figure 6.12 Results analysis: optimal actuator settings from different optimisation approaches 

Figure 6.12 shows that the solutions from the different optimisation approaches are 

distributed in quite different areas within the valid range. Especially, optimal solutions 

for fuel pressure, pilot injection timing and pilot fuel quantity are quite different 

between the optimisation methods. From an engineering viewpoint, the TCO optimal 

solution uses a higher fuel pressure compared to the AAO solution, which has the 

effect of increasing temperature in the combustion chamber, which could improve 

combustion quality. The TCO solution also suggests retarded pilot injection timing 

and less pilot fuel injected. This difference between AAO and TCO optimal solutions 
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with 0.02L/100Km improvement of fuel economy just proved that the TCO 

optimisation approaches can provide better exploration of the design space during 

the searching process.  

Table 6.3 summarizes comparatively the results from different optimisation methods 

in terms of the main objective (fuel consumption) and computation expense 

(Seabrook). It is seen that while the TCO and the AAO approaches have comparable 

fuel economy benefit, the computing time for the TCO approach is considerably 

better than AAO, which can be attributed to the restructuring the optimisation 

problem. This clearly shows the TCO framework has a strong ability to deal with 

complicated engineering system optimisation problems.  

Table 6. 3 Summarise of fuel consumption from different optimisation approaches 

 

Table 6.4 shows comparatively the cycle emissions from the Two Step, AAO and 

TCO approaches. The AAO solution has kept the NOx emission level and decreased 

CO and HC emissions, but increased the PM emissions by 107% (still within the 

emissions limit). The TCO solution has kept the NOX emissions about same level 

and increased all the other cycle emissions but still well inside the engineering target.  

Fuel Consumption 
(L/100Km)

Comparison
Computing 
time (Hrs)

Two-step 7.38

AAO 6.53 12% 62.8

TCO 6.52 12% 41.52
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It can be concluded that both the AAO and TCO approach have produced better fuel 

economy while meeting the emissions targets, with TCO delivering a computation 

advantage over AAO 

Table 6.4 Comparison of Emissions from Different Approaches 

 

6.5 Discussions and Conclusions: 

The Diesel engine calibration optimisation problem was formulated as a hierarchical 

multidisciplinary optimisation under a two level hierarchical TCO framework. A 

penalty function was employed to ensure system consistency. The results show that 

a better solution was produced in terms of fuel consumption; compared with the two-

step approach, fuel economy was improved by 12%, and emissions were just within 

tolerance of the emission limits. 

Compared with the two-step approach, computation time was improved by 

decomposing the large scale optimisation problem into a number of smaller 

subsystems, as shown in Table 6.4. The TCO framework has the advantage that it 

can be easily expanded to include more variables and disciplines/subsystems. 

The TCO implementation of the Diesel engine calibration optimisation problem still 

has some disadvantages, such as: 

Cycle Output Two-step AAO AAO Vs Two-step TCO TCO Vs Two-step Legislation Limits

cycle_NOx_g/km 0.1800 0.1804 0% 0.1809 0% 0.18

cycle_CO_g/km 1.6697 1.4310 14% 2.0980 -26% 2.4

cycle_HC_g/km 0.1505 0.0800 47% 0.1707 -13% 0.3

cycle_PM_FSN_g/km 0.0191 0.0395 -107% 0.0300 -57% 0.04
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 To decompose the strong coupling between disciplines (minimap points), the 

Gradient Constraints have been performed at each discipline (minimap point), 

which means the decomposition just doubles the gradient constraints. 

Although, the local/discipline optimisations have been carried out in parallel, it 

still costs expensive computation effort.  

 Since the consistency constraints are hard to achieve for the system 

optimisation, it was seen that this affected the ability to find the feasible 

solution for the initial population. In order to address this issue the "Creator" 

operator has been used to generate a feasible initial population,  

 Similar to AAO, this framework requires a significant of prior calibration 

knowledge such as the maximum actuator changes; such information might 

not be easily available for new engines and applications, and in any case it is 

a very time consuming task. 
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Chapter 7 Further Development of Collaborative Optimisation for 

Diesel Engine Calibration  

7.1 Introduction 

The previous 2 chapters presented an analysis of the Diesel calibration problem 

within a Multidisciplinary Design Optimisation framework, and the implementation of 

two conventional MDO frameworks (All-At-Once and Collaborative Optimisation). 

The results from both AAO and TCO implementations showed a considerable 

improvement in terms of quality of optimal calibration solutions over the conventional 

two-step process presented in Chapter 4. 

It has been shown and discussed that the main challenge of Diesel calibration 

optimisation is that both the objective and the solution spaces are heavily 

constrained. While the AAO and TCO implementations presented have successfully 

dealt with this issue, this success in terms of delivering a good solution to the 

optimisation problem comes with a severe penalty in terms of computational 

expense. 

The aim of this chapter is to present the development and implementation of a 

refined Collaborative Optimisation based framework, which attempts to better deal 

with the complexity of Diesel calibration optimisation. 



182 
 

7.2 Diesel Calibration Problem: Review and Analysis  

7.2.1 Review and Analysis of Problem Difficulty 

In the Diesel engine calibration optimisation problem, the computational effort lies 

mostly with the constraints analysis. There are several different kinds of constraints 

imposed, reflecting both legislative requirements for emissions and calibrator’s 

preferences for engineering attributes (such as noise and driveability). From a 

calibration optimisation point of view, constraints are imposed both in the solution 

space (mainly reflecting calibrator’s preferences for strategy (i.e. domain constraints 

for actuators) and smoothness of the actuator map) and in the objective domain 

(associated with emissions performance and other attributes such as noise, 

combustion stability, etc).  

The linear constraints define each engine actuator’s valid range. Cycle emission 

constraints are the legal limits of emissions over the whole drive cycle calculated as 

the weighted sum of the emissions at each minimap point. GC constraints define the 

actuator maximum allowable change between different minimap points. Local 

constraints define the limits of acceptable engine performance produced at each 

engine condition. As the calibration optimisation problem analyse in section 4.5, 

cycle emission limits are required in order to ensure satisfaction of emission 

legislations. Similarly, local engine constraints must also necessarily be maintained.  

The constraints analysis presented in Chapter 5 has shown that the most difficult 

constraints to satisfy are cycle emission constraints (especially NOx/PM) and 

Gradient Constraints (GC). There are 252 actuator gradient change constraints 

between the minimap points. Within the AAO framework formulation, the actuator 
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map smoothness was addressed by the integration of GC constraints between the 

minimap points and was formulated as a global constraint. This resulted in 

considerable difficulty with finding feasible solutions, which leads to either very 

expensive computation or an unreliable optimisation process. The TCO framework 

strategy was to simplify the system optimisation problem by breaking down these 

couplings (GC constraints) to each discipline (minimap point). Since each of the GC 

constraints involves two minimap points, the GC constraints analysis is required to 

be performed in both of those disciplines. Therefore, the computational effort for the 

GC constraints analysis is doubled. However, this decomposition has relaxed the 

freedom for the system optimisation, and ultimately this has been shown to deliver 

an improvement in computational speed compared to AAO.  

7.2.2 Optimisation Problem Re-formulation 

The conventional wisdom on difficult constrained optimisation problems Forrester 

(Forrester et al., 2008) suggests that removing constraints is usually an effective way 

of tackling the problem. This principle has been already demonstrated through the 

TCO framework which has effectively removed the GC constraints from the system 

level optimisation, delegating these to subsystems. The fundamental idea for further 

development of the Diesel calibration optimisation problem is based on removing the 

GC constraints altogether, which would further simplify the computational problem.  

This approach can be justified from the engineering analysis of the calibration 

problem. The calibration preference is for a “smooth actuator map”. This preference 

could be formulated mathematically in many different ways; calibrators at the 

Sponsoring Company have formulated this as a “maximum actuator change 

constraint” between minimap points (referred to as a GC constraint in this thesis). 
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Other approaches seen in the literature (Pienaar, 2007 , Roudenko et al., 2002) have 

formulated this directly in terms of a “gradient” constraint, defined as maximum 

change per unit increase in engine speed / load. Implementing such an approach 

would require extensive analysis of what is an acceptable gradient for each actuator, 

and in terms of optimisation implementation would still require a large number of 

evaluations against the limiting value. 

Reflecting upon the fact that the ideal engineering calibration requirement is for the 

actuator map to be as smooth as possible, pointed to the notion that an ideal 

formulation of this preference would in fact be to minimise the gradient, or the 

actuator change, between minimap points. The implication for the Collaborative 

Optimisation implementation would be that in order to address the requirement for a 

smooth actuator map, the subsystem optimisation problem should be redefined from 

a ”discipline feasible solution analysis” to a ”minimisation of actuator gradient / 

change”. 

With this approach the idea is that subsystem level optimisation would be carried out 

to produce an engine control map that was as smooth as possible in every local area 

(load/speed space) presented in each discipline, as well as ensuring consistency 

with the system level optimisation.  

Figure 7.1 illustrates the structure of this revised Collaborative Optimisation 

framework, termed Hybrid Collaborative Optimisation (HCO). In a similar manner to 

TCO, at system level the total fuel consumption is minimised subject to cycle 

emissions constraints and the consistency constraints of subsystem responses. The 

system target value is passed down to each discipline, and at each discipline the 

“local smoothness” (i.e. actuator change)is minimised subject to the local constraints. 
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In order to ensure compatibility with the system level optimisation a constraint is 

imposed on the system overall objective, i.e. the subsystem task is to deliver the 

minimal actuator changes with the ‘not worse’ fuel economy as the system target, 

which is shown in Figure 7.1.  

 

Figure 7.1 HCO data flow structure 

 

7.3 Formulation and Implementation 

7.3.1 Mathematical Formulation of “Smoothness” 

As suggested in Section 7.2, the engine actuator control map is optimised at 

discipline (minimap) level by using subsystem optimisation rather than by using 

actuator gradient change constraints. To carry out the local/discipline optimisation, 

the engine actuator map smoothness objective needs to be formulated at each 

minimap point.  

Subsystem i: (mini-map point i)
Minimise: Local smoothness
ST: local constraints at node i

Noise≤EN_Lim
exhaust temperature ≤ET_Lim

IMEP ≤EP_Lim

System level:
Minimise: total fuel consumption 

Subject to: cycle emission constraints
consistency constraints:

(Xi-Xsubi) 2≈ 0; (Xj-Xsubj ) 2 ≈ 0

(Xi, Xj – system solution)

Subsystem j: (mini-map point j)
Minimise: Local smoothness

ST: : local constraints at node j
Noise≤EN_Lim

exhaust temperature ≤ET_Lim
IMEP ≤EP_Lim

Xj Xsubj XiXsubi

subi iFC(X ) FC(X ) subjFC(X ) FC(X )j
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As illustrated in Figure 4.11, an immediate formulation of smoothness at a local 

discipline (minimap) i can be expressed as the sum of the absolute values of the 

actuator changes associated with all possible transitions from node i, which is 

formulated in Equation 7.1. 

Smoothness1: 

           ∑|       |

 

   

 

Equation 7.1 

   is the actuator settings at minimap point   and    is the actuator setting at minimap 

  with the possible transitions from minimap point  , as illustrated in Figure 4.11. The 

issue with this smoothness formulation is that it involves a number of actuator 

changes that are expressed in different engineering units (scales). For example, the 

scale of mass air flow and injection timing are very different. Since the smoothness 

formulation in Equation 7.1 is taking the sum of actuator change as equal weight, the 

optimisation algorithm would prioritise the mass air flow rather than the injection 

timing as it would likely lead to higher improvement from generation to generation. 

Therefore, this smoothness formulation is not going to be involved any more, as 

more effective smoothness formulation is going to be developed. 

The GC constraint was defined in Chapter 4 as the maximum actuator allowable 

change, which is expressed in the engineering unit associated with each actuator. 

The local actuator map smoothness can be normalised across the different actuators 

by taking the ratio of the actual actuator change between two minimap points to the 

maximum allowable actuator change. Based on this idea, an overall objective 
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function for the discipline can be derived as the sum of squared normalised actuator 

smoothness at the particular minimap point, as shown in Equation 7.2.  

Smoothness2: 

        ∑(
(     )

         

)

  

   

 

Equation 7.2 

 

The subsystem optimisation with the smoothness in Equation 7.2 is not only 

standardising the actuator change between the actuator control variables, but also 

standardising gradient change across the map. Specifically, the allowed gradient 

should be smaller on load increases, which cause drive-ability issues, than on speed 

increases. The valid range for different minimap points has taken this into account, 

therefore by dividing to the allowable actuator change (carefully defined by 

calibrators) you account for these criteria as well. 

An alternative approach to formulating the local objective function is based on a mini-

max principle, i.e. minimise the maximum normalised actuator change around a 

minimap point. The mathematical formulation for this approach is shown in Equation 

7.3.  

                            (
(     )

         

)
 

 

  Equation 7.3 
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7.3.2 HCO Mathematical Formulation  

As discussed, the HCO formulation follows the Collaborative Optimisation framework 

structure. Thus, the system formulation of HCO is similar to the TCO system 

optimisation formulation.  

The optimisation problem formulation at system level is shown in Equation 7.4, 

where total fuel consumption is minimised as system level objective (Jsys(X)).  

System level: 

Minimise:             ∑          
                               

Subject to:   

Global constraints: 

      ∑            

 

   

                

Consistency constraints: 

      ∑           
  

                              Equation 7.4 

   is the residency time of each minimap point contributing to the NEDC cycle;    is 

the fuel consumption for minimap point i; and X is the vector of control variables (G(X) 

denotes the total emission constraints). The solutions must also satisfy the 

consistency constraints (      ) among the disciplines, expressed as equality 

constraints at the system level that coordinate the interdisciplinary couplings.  

At subsystem level, the optimisation problem can be described as Equation 7.5.  
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Subsystem   : 

Minimise:            
   ) 

Subject to:  Local constraints:  

          
                        

               (  
   )                            

      (  
   )                     

    (  
   )       

   

Equation 7.5 

Since the local smoothness was used as the objective at subsystem level, the GC 

constraints have been removed. Consequently, the local constraints are used to 

satisfy the engine performance requirements and the fuel consumption constraint is 

used to ensure not worse than system target. The         is the subsystem objective, 

as discussed in last section,   
    is the vector of local variables at minimap point 

 and the    is the vector of target variables passed from system level, which are 

same as the system variables X. Therefore, the smoothness formulation can be 

written as:  

            ∑(
(  

      
 )

         

)

  

   

 

               (
(  

      
 )

         

)

 

 

Equation7.6 
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Both          and          been implemented in the HCO framework, algorithms 

referred to as “HCO V1” (corresponding to J1smooth) and “HCO V2”, respectively 

(corresponding to J2smooth). 

7.3.3 MATLAB Implementation 

The MATLAB implementation has been developed based on the Collaborative 

Optimisation structure. New scripts had to be developed only for the subsystem 

optimisation, shown in APPENDICES X to XII. Figure 7.2 illustrates the 

implementation of the HCO development based on TCO. 
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Figure 7.2 Illustration of Development of HCO based on the TCO Framework with Integrated Subsystem 
Optimiser  

 

Table 7.1 shows the options for both system and subsystem level optimisation 

options for the standard MATLAB algorithm. 

 

 

X, LB, UB

Select parents 
solution 

Generate next 
population by  GA  

operators (X)

Initial 

Population (X0)

Stopping criteria
satisfied?

Optimal solution

YES

YES

NO

Linear constraints
satisfied?

NOLB, UB

Global Constraints: NOx, 
PM, HC, CO

Objective:  F(X)HCO Subsystem level: 
(ith Discipline)

Optimisation  Toolbox:
(fmincon)

Objective:

Constraints:

Local Constraints: IMEP, EM_TMP, 
NOISE

Coupling Constraints:
GC constraints at minimap point i

Evaluate population:
Objective : F(X)

Constraints:
NOx, PM, HC, CO

Consistency : 2( )T sub

i iX X

System Target: TX

System Target: TX

subX

subX

Local Constraints: IMEP, 
EM_TMP, NOISE

Coupling Constraints: GC

Global Constraints: NOx, 
PM, HC, CO

Objective:  F(X)

Evaluate population:
Objective : F(X)

Constraints:
NOx, PM, HC, CO

Consistency : 2( )T sub

i jX X

System Level optimisation

_subJ Local smoothness
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Table 7.1 Optimisation Options Setting for System Level and Subsystem Level 

System level Subsystem level 

Options Setting Options Setting 

Selection Fcn selectiontournament,2 Display off 

Popsize  100 TolFun 0.0001 

Generations 200 Algorithm active-set 

Stall Gen Limit 4 TolCon 0.0001 

Elite count 2% of population size TolX 0.0001 

Crossover 
fraction 

0.6 
   

TolCon 0.01   

TolFun 0.01   

UseParallel always   

 

7.4 Tests and Results 

7.4.1 Three minimap point test 

As with the implementation of the previous optimisation frameworks (AAO and TCO), 

a test for a reduced data set (three minimap points) was carried out first to explore 

the capability of the formulation to deal with the Diesel engine calibration problem.  

Figures 7.3 and 7.4 show the convergence plots throughout the optimisation process 

at system level, the stopping criteria, individual fitness values of the whole population, 

and the smoothness plot for three different formulations of local smoothness. In 

order to compare the smoothness plot between different formulations, the 

smoothness was calculated as the maximum ratio between actuator change and 

corresponding GC constraint on each actuator, which is same as the local 

smoothness formulation in Equation 7.3. Figures 7.3 and 7.4 show the convergence 

of HCO approaches with the different subsystem formulations. To compare these 

optimisation plots, The HCO with the subsystem formulation of J2smooth has only 
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taken less than 5 iterations to achieve the objective function value of 4.5, which the 

HCO with the subsystem formulation of J1smooth has taken about 70 iteration to 

achieve. However, the HCO optimisation test with J1smooth formulation used the 

population size of 50 and the HCO optimisation test with J2smooth formulation used 

the population size of 100. The HCO optimisation test with J2smooth formulation has 

shown a great opportunity to find a better solution in terms of minimising fuel 

consumption compare with formulation of J1smooth.  

 

Figure 7.3 Illustration of HCO Optimisation Convergence with the formulation          
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Figure 7.4 Illustration of HCO Optimisation Convergence with the formulation          

 

Figure 7.5 compares the fuel consumption between the optimal solutions for the 

different smoothness formulations. 

 

Figure 7. 5 The comparison of the optimal solution of fuel consumptions between HCO V! and HCO V2 
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Figure 7.6 shows that both HCO approaches produced acceptable results from the 

emissions point of view. 

 

 

Figure 7.6 HC Vs CO Emissions plot for different HCO V1 and HCO V2  

Figure 7.7 illustrates the actuator settings solutions from different HCO formulations. 

The two set of solutions are obviously follow the different trend, which the solution 

produced by the framework with the J2smooth formulation are smoother than the 

J1smooth formulation in all of the actuator settings.  
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Figure 7.7 The optimal solution actuator settings from different HCO approaches 

In order to compare the HCO with the other approaches, the best optimal solution 

was chosen in terms of fuel consumption. Figure 7.8 illustrates a comparison of the 

optimal solutions for 3 minimap points from different approaches: two-step, AAO, 
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TCO, and HCO. The comparison of fuel consumption clearly indicates that AAO was 

the best approach, improving fuel consumption by about 15% as compared to the 

two-step, TCO, and HCO approaches.  

 

Figure 7.8 Comparison of fuel consumption between two-step, AAO, TCO, and HCO  

 

7.4.2 Tests and results for 10 minimap points 

In the MDO literature (Kroo, 2004 , Sobieszczanski-Sobieski and Haftka, 1997 , 

Sobieszczanski-Sobieski and Kroo, 1996) it is discussed that Collaborative 

Optimisation based frameworks should perform better with optimisation problems 

having more dimensionality and constraints, which suggests that it is worth testing 

the HCO approach with the full cycle calibration optimisation problem.  

Since more subsystem optimisations are involved, the consistency constraints are 

harder to satisfy. In order to maintain the solution in the population while forcing the 

search direction to the feasible area, a simple penalty function has been employed, 

which add the discrepancy between the subsystem and system solution into the 

objective function with same scale, as shown in Equation 7.7. 
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System Level: 

Minimise:          ∑          
         

   
  ∑           

  
     

Subject to:          ∑             
 
                   

Equation 7.7 

For the implementation, in order to make the results comparable with the AAO and 

HCO results, the population size was chosen to be 200. Figure 7.9 illustrates the 

convergence throughout the optimisation process at system level, the stopping 

criteria, and individual fitness values of the whole population for 10 minimap points 

(with smoothness plots).   

 

Figure 7.9 Illustration of HCO Optimisation Convergence with Stopping Criteria and Individual Fitness 
Values at System Level with smoothness plot 

 

Figure 7.10 shows the result for fuel consumption for the HCO approach with 

subsystem formulation of J2smooth, which was observed to produce the best results 

during several trials. This results shows that HCO improved the fuel economy by 5.5% 

(reduction of fuel consumption). The relatively lower performance in terms of fuel 
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economy compared to AAO and TCO is due to the fact that the optimisation 

objective included a penalty function on the consistency constraints, rather than just 

minimising fuel consumption as in AAO and TCO.  

 

Figure 7.10 Comparison of fuel consumption for different approaches 

Figure 7.11 shows a comparison of the smoothness of the optimal solution from the 

different approaches. The optimal solution from the two-step approach generates the 

worst smoothness and the optimal solution from HCO generates the best 

smoothness of the actuator map.  
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Figure 7.11 Comparison of smoothness for different approaches 

 

Figure 7.12 illustrates the emissions performance of HCO in comparison to the 

solutions generated from AAO and TCO. It shows that NOx is the most difficult 

constraint to achieve by delivering the optimal solution of NOx on the edge of the 

limit.  
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Figure 7.12 Illustration of emissions for different approaches with limits 

 

Figure 7.13 shows the optimal solution actuator settings in the design space. The 

optimal solution of actuator settings from the different approaches are distributed 

over a wide range, which meant that the different optimisation approaches resulted 

in different local optimal solutions. 
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Figure 7.13  Comparison of Optimal solution actuator settings AAO, TCO and HCO with J2smooth 

formulation 
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7.5 Full Cycle HCO Results Performance Analysis: 

In order to summarise the performance of HCO, Table 7.2 summarises and 

comparison with the fuel consumption, the emissions, and the computation time cost 

of different HCO approaches.  

Table 7.2 Comparison of results between HCO formulations and Two Step approaches 

 

Table 7.2 shows that all emissions are within legislative limits, HCO V2 and V3 

significantly improved the fuel consumption, by 4.1% and 4.9%, respectively, as 

compared to the two-step approach.  

Figure 7.14 compares the smoothness of HCO and the optimal solution from 

different local smoothness formulations. 

Column1 NOx(Kg)  CO(Kg)  HC(Kg)  PM (Kg)  Fuel (L/100KM) 
Fuel consumption 

improvement
Computation (hour)  

Two Step 0.00198 0.018366 0.001655 0.00021 7.383

HCO V1 0.001985 0.016763 0.001031 0.000419 7.08 4.1% 22.4

HCO V2 0.001985 0.018085 0.001067 0.000369 7.02 4.9% 40.59

EMS Limits  0.00198 0.0264 0.0033 0.00044
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Figure 7.14 Smoothness Plots of the Optimal Solutions from Different HCO Formulations 

According to the sensitivity of the engine actuator map smoothness, the fuel 

pressure, air mass flow and variable geometry turbine position are more sensitive 

than the rest actuators. For example, air mass flow is not able to change too rapidly, 

because the rapid increase of air mass flow required rapid boost pressure, which 

need time to be built up commonly known as turbo lag. Therefore, compare the 

smoothness of these three variables, HCO framework with the subsystem 

formulation of          has produced the better smoothness for the engine control 
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produced the better fuel consumption. From these results, the comparison has 

clearly shown the trade-off between fuel economy and smoothness of an engine 

control map. HCO has illustrated the trade-off with different formulations.  

7.6 Summary   

This chapter presented a revised Collaborative Optimisation formulation of the Diesel 

Calibration optimisation problem, which was called Hybrid Collaborative Optimisation 

(HCO).  

In terms of problem formulation, HCO delivers a significant enhancement over TCO 

by removing the actuator gradient constraints and replacing it with minimisation of 

the actuator change at the discipline (subsystem or minimap point) level optimisation. 

This makes the MDO problem formulation significantly different from the 

conventional CO (TCO) where the discipline optimisation problem is to minimise the 

discrepancy between system target and discipline feasible solution. This significantly 

reduces the number of constraint evaluation in TCO, leading to a significant 

improvement in computation cost (reduced by 50%, as shown by the results in Table 

7.2). 

Figure 7.11 shows that HCO delivers a significant improvement in the smoothness of 

the solution – by showing a considerable reduction in the maximum actuator change 

between minimap points.  

However, in terms of fuel economy the performance of the HCO does not appear to 

be as good as the TCO and AAO; this is likely due to the introduction of the penalty 

function, and it can be expected that by tuning the penalty function a different trade-

off between fuel economy and smoothness can be found. 

From a practical point of view, an important advantage of HCO is that it reduces the 

need for prior calibrator input in terms of the actuator change constraints – which are 

no longer needed in the HCO formulation. 
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 Chapter 8 Discussions 

8.1 Scope of research 

This project was defined in the context of a conventional steady state Diesel engine 

calibration process, where the engine testing data is collected at a predetermined 

number of engine operating points. Due to the use of engine steady state response 

models within the sponsoring company, this project was limited to be based on the 

steady state engine response models. However, the engine testing and modelling 

techniques have been recently developed for more advanced engine models (ref). 

The provided model structure was under a number of minimap points, which are 

representing the engine operating condition of the NEDC drive cycle. The 

optimisation problem has been defined based on the NEDC drive cycle to minimise 

the fuel consumption and satisfy the cycle emission constraints and local constraints.  

The objective defined as identifying or developing a computational optimisation 

methodology for Diesel engine calibration problem based on the steady state engine 

response model. That can efficiently deliver the Diesel engine calibration 

optimisation task, which was minimising the cost function with high dimensional 

design space. Especially, the new generation Diesel engine involves more modern 

technologies, which lead to more control variables. Therefore, the optimisation 

methodology should be potentially suitable for the future Diesel engine calibration 

task. The studied optimisation methodology tested based on the provided testing 

data on the V6 Twin Turbo 2.7L Diesel engine from the sponsoring company. 
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This chapter presents a critical review of the methodology, developments and results 

in this thesis. 

8.2 Critical Review of Methodology and Developments  

The critical review of Diesel engine calibration process as described in the main 

literature sources and the process currently used by the Sponsoring Company, 

pointed the shortcomings are summarised below: 

1. From the discussion in Chapter 5, the Diesel engine calibration optimisation 

problem can be described as a multi-dimensional optimisation problem, 

typically with more than 100 variables. In the literature (Roudenko, 2002; 

Lygoe, 2010; Styron, 2008), the Diesel engine calibration problem has still 

been handled as an optimisation problem “globally” over the drive cycle, 

which was minimising the weighted sum of engine emissions or fuel 

consumption. Whereas, the formulation of “global” optimisation over the drive 

cycle has to handle a large dimension of input variables.  

2. On reviewing the current process used by the Sponsoring Company, it is clear 

that the optimisation problem formulation is not focused on the global 

objective of the Diesel engine calibration optimisation, i.e it does not minimise 

the total fuel consumption. Instead, the global solution is the ‘best’ possible 

combination out of a set of suboptimal solutions (typically 5) from the local 

PM-NOx Pareto trade-off. In the literature (Roudenko et al., 2002), It has been 

proved that the formulation of “weighted sum” over the drive cycle has better 

ability of exploring the design space, which leads to the better quality of global 

solution in terms of minimising the emissions or fuel consumption over the 

drive cycle. But, this optimisation process has to handle the difficulty of finding 
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feasible solution, which was cost by the heavy constraints on both design and 

decision space.  

3. Another drawback of current process is that a solution is not guaranteed – in 

which case the local trade-off optimisation stage has to be repeated.  

4. Similarly in the literature (Lygoe, 2010), a large number of population size 

(typically 20,000 to 100,000) was used to avoid not finding feasible solution 

when employed the Genetic Algorithm. This simply demonstrated that there is 

a trade-off between the computation of searching feasible solution and 

possibility of finding feasible solution. 

5. From both the current process and the conventional process in the literature 

(Roudenko, 2002; Lygoe, 2010; Emtage, 2009), there are a huge amount of 

constraints that restrict both the searching space (design space) and . 

Throughout the constraints study in Chapter 5, it has shown that the engine 

actuator maximum allowable change constraints were the most 

restrictive,which were defined based on the calibration engineers’ experience 

or from the similar engine calibration experience.  

In summary, the Diesel optimisation problem has a number of issues, such as high 

dimensionality, heaviely constrained both design and decision space. Whereas, the 

optimisation formulation and searching algorithm that have been used in the past 

cannot solve all the issues at same time. A method is required to deal with all these 

issues simultanously as an entirty to improve the Diesel engine calibration process. 

8.3 Discussion of Diesel Engine Calibration Optimisation Problem  

As discussed in the literature review the Diesel model based steady state engine 

calibration process generally involves optimisation problem formulation at two level: 
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“global” or system level associated with the engine fuel consumption and emissions 

over the drive cycle, and the “local” level problem which is associated with engine 

operating limitations at a particular engine speed – load point, such as engine 

combustion stability, exhaust temperature and noise. 

The optimisation literature review in Chapter 2 has shown that MDO frameworks 

have been introduced as a practical approach for dealing with modern engineering 

systems, which are increasingly complex, with high dimensionality and strong 

coupling interactions. The MDO frameworks have shown the benefits of that 

decrease the dimensionality, simplify the optimisation problem and reduce the cost 

of the analysis while maintaining the consistency of the whole system (Kroo et al., 

1994). 

While research was reported on the application of MDO/CO frameworks to 

automotive system design (Kim et al., 2001), there is no reported application of 

MDO/CO frameworks for steady state calibration optimisation problems. The 

engineering analysis of the Diesel engine calibration problem based on conventional 

steady state tests, discussed in Chapter 4, pointed to a 2 level structure – “Global” 

level and a “Local” level, relating to a number of local (minimap) optimisation 

problems. Based on this analysis, it was argued that MDO can be regarded as a 

natural framework for the steady state Diesel engine calibration optimisation problem, 

which the system optimisation problem is associated with the “global” level (i.e. 

performance over the drive cycle), and the “disciplines” are associated with the 

individual minimap point optimisation problems. This partitioning is inherent to the 

way steady state Diesel engine testing is conducted, and from an MDO point of view, 

it has the apparent advantage that the coupling between “disciplines” is not very 

strong in that there is no sharing of variables between minimap points. This is based 
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on a rather simplistic assumption that the actuator settings at steady states can be 

treated as pseudo-independent variables, which ignores the stochastic relationships 

between these states (i.e. the fact that the real operation of an engine is dominated 

by transients). The introduction of actuator change constraints, which are in essence 

a formulation of calibrators’ preference for smooth actuator maps (commonly 

associated with good drive-ability), is a way of introducing coupling variables 

between disciplines, which in effect attempt to deal with the shortcomings of this 

simplistic approximation. 

It also can be argued that the Diesel engine calibration problem could be potentially 

partitioned in disciplines in different ways, e.g. by the global objectives, such as Fuel 

Consumption (FC), NOx, PM, HC and CO. In this case all the variables (actuator 

settings at all minimap points) would be shared between all the disciplines. Therefore, 

the formulation under CO framework would create a huge number of auxiliary 

variables in order to make the disciplines consistent, which is likely to increase the 

computation burden within a MDO/CO framework. 

8.3.1 Discussion of MDO/AAO implementation  

(Allison et al., 2005) discussed that the MDO/AAO framework is discussed as the 

most basic MDO framework. As shown in Figure 5.2, the Diesel engine calibration 

problem can easily fit the MDO/AAO framework, which handles the system/global 

analysis and local discipline / minimap points together.  

Compared to the conventional two-stage approach to Diesel calibration optimisation, 

MDO/AAO has the advantage that it solves concurrently the global and the local 

optimisation problems, while also embedding calibrator’s preference for a smooth 

actuator map in the optimisation problem formulation. This removes the need for 
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detailed a posteriori analysis of the local Pareto trade-offs, and because the system 

optimisation is focused on the key deliverable – fuel economy, it should give a better 

solution.  

However, the initial implementation highlighted computation difficulties associated 

with MDO/AAO, stemming from an over-constrained design space, which discussed 

in chapter 5. In order to address this difficulty a new algorithm (“Corrector” function) 

was developed and implemented in the GA tool to ensure the feasibility of both initial 

population and off-spring solutions. However, the introduction of the “corrector” GA 

operators has attracted severe computation penalty (more than 60 hours). From an 

engineering point of view this computation penalty was deemed acceptable by 

engine calibrators at the Sponsoring Company (equivalent to a run over the 

weekend), provided a competitive solution is delivered. 

8.3.2 Discussion of MDO/CO implementation 

In the literature review (Kroo, 2004) the MDO/CO framework is discussed as one of 

the most effective MDO frameworks for the complex engineering system optimisation 

problem with large dimensionality and coupling disciplines. As illustrated in Figure 

6.1, the Diesel engine calibration problem can be naturally partitioned into a two 

levels Collaborative Optimisation framework. As discussed in chapter 6, at the 

system level the Diesel engine calibration optimisation problem was formulated as 

minimising the total cycle fuel consumption, while satisfying the cycle emission 

constraints. decomposed into a number of simpler disciplines. 

The main advantage of the MDO/TCO formulation is that the actuator change 

constraints that were shown to considerably increase the difficulty of finding the 

feasible solutions are effectively removed from the global level optimisation problem, 
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and delegated to the discipline level. Therefore, the global level (system level) 

optimisation is less constrained, thus reducing the problem of finding feasible 

solutions. In essence, the MDO/TCO framework has broken down the very complex 

optimisation problem down into a number of smaller optimisation tasks (local / 

discipline optimisation). The MDO/TCO process has shown improved computation 

time compared with the MDO/AAO process and more importantly ensures good 

convergence and quality solutions even with small population sizes (50). However, 

the MDO/MDO/TCO process still shows the loss of feasible population and the 

computing time expense still more 40 hours. 

8.3.3 Discussion of MDO/HCO Implementation 

To further improve the MDO/TCO framework, a hybrid CO (MDO/HCO) framework 

MDO/HCO has been developed and implemented. MDO/HCO completely removes 

the actuator change constraints and introduces a new strategy for discipline level 

optimisation - to optimise the local actuator “smoothness” rather than simply 

satisfying the actuator change constraints.  

This innovative formulation of local actuator smoothness does not only reduce the 

complexity of the Diesel calibration optimisation problem (by removing the actuator 

change constraints), but provides the opportunity for calibrating the Diesel engine 

without the need to specify limits for actuator change between minimap points – 

hence reducing significantly the need for prior calibration knowledge input.  

The results of the MDO/HCO implementation showed that the computation expense 

has been significantly reduced. Also, the issue of convergence that is cost by the 

restrictive consistency constraints is addressed by using the penalty function to deal 

with the consistency constraints. However, the overall system objective (fuel 
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economy) of the result from MDO/HCO was not as good as the other frameworks. 

From another point of view, the formulation of consistency constraints analysis 

convinced tuning the trade off between fuel consumption and engine map 

smoothness. 

From the implementation of MDO/TCO and MDO/HCO, it can be discussed that the 

lay out of Diesel engine calibration problem under CO based frameworks were very 

similar to the ATC framework, especially when the consistency constraints analysis 

was handled as a penalty function, which essentially as a part of objective at system 

level. Whereas, the most distinctive difference between CO and ATC is that the CO 

framework has the ability of handling the coupling disciplines, which the ATC has not. 

Also, the ATC has a clear hierarchical structure from system level to subsystem level, 

which there is no “state variable” (or shared variable) between system level and 

subsystem level, even between the disciplines at the same subsystem level. 

Therefore, In the case of the Diesel engine calibration studies, the strong coupled 

subsystems by the actuator change limits are hard to be precipitated within the ATC 

framework.  

Compared to the MDO/AAO approach, the implementation of MDO/TCO formulation 

has shown the advantage that it formulates the engine calibration optimisation 

problem into global level and local level. Compared with the current two-stage 

approach commonly used in industry, the CO based framework formulations have 

used principally same idea, which is to partition the large optimisation problem with 

high dimentionality of design space. Whereas, the CO based frameworks have also 

maintained the global focuses, such as minimising fuel consumption and satisfying 

the cycle emission constraints.  

http://dj.iciba.com/most/


217 
 

8.4 Discussions of MDO implementation and results 

In order to compare and discuss the MDO implementation with current process, 

Table 8.1 and table 8.2 summarise the optimisation results from the different process 

(including the current process result) based on the same engine testing data. Table 

8.1 only shows the emissions, fuel consumption and computing time expense. It 

shows the variance of the results of fuel consumption and computing time expense 

of different processes, which AOO process produce the best fuel consumption and 

MDO/HCO spent the lest computing time. All the simulations in this research have 

been running on a multi-core computer with an Intel Q6600 Core 2 Quad processor 

2.4GHz. Table 8.2 concludes the steepest gradient (in the ratio of neighbouring 

actuator change and actuator change limit) on each engine control settings, which 

produced by the optimal solutions from different process. 

Table 8. 1 Summarised the optimisation results from the different process 

 

Optimisation 
Approach  

NOx(Kg)  CO(Kg)  HC(Kg)  PM (Kg)  
Fuel 

(L/100KM) 

Fuel 
Consumption 
improvement 

Computation 
(hour)  

TWO STEP 0.00198 0.018366 0.001655 0.00021 7.383

AAO  0.001985 0.018594 0.000106 0.000438 6.217 15.8% 62.18

TCO 0.001986 0.024302 0.001524 0.000237 6.603 10.6% 41.52

HCO 0.001985 0.016763 0.001031 0.000419 7.08 4.1% 22.4

EMS Limits  0.00198 0.0264 0.0033 0.00044
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Table 8. 2 Comparison of the optimisation results for actuator change gradient 

 

 

Table 8.3 summarises the developed optimisation approaches for the Diesel engine 

calibration problem from this research. As the different key strategies have been 

employed to address the issues of finding feasible solution and maximise the 

exploration of feasibility in design space, the different approaches have 

demonstrated the advantages and disadvantages as summarised in Table 8.3. The 

comparison of the analysis different approaches, the MDO/HCO is recommend as a 

efficient optimisation process for the Diesel engine calibration problem. It also has 

shown the potential of handling a larger engine calibration problem when more 

minimap points are defined and more engine control variables are involved. 

  

Smoothness TWO STEP AAO TCO HCO

Fuel Pressure 50% 22% 50% 35%

Main Injection Timing 34% 50% 46% 35%

Pilot Injection Timing 78% 72% 81% 64%

Pilot Injection Quantity 49% 50% 42% 44%

Mass Air Flow 50% 50% 50% 22%

Turbine Nozzle Position 94% 95% 94% 66%

http://www.iciba.com/recommend
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Table 8. 3 Summary of key strategies and developments in the MDO implementation 

Framework Strategy for handling difficulty with feasibility 

MDO/AAO Enhanced GA algorithm development to ensure feasible population: 

- Subsidiary optimisation (“Corrector” function) to ensure feasibility of 
initial population; 

- Subsidiary optimisation (“Corrector” function) to ensure feasibility of 
off-springs. 

Advantages Disadvantages 

- Ensures good convergence and 
quality solutions even with small 
populations. 

- Computation penalty due to 
subsidiary optimisation algorithms 

MDO/TCO Relax constraints 

- Actuator change constraints removed from system level optimisation 
and “delegated” to subsystem (local / discipline) optimisation; 

Advantages Disadvantages 

- Improved computation time. - Computation is still expensive due 
to complex subsystem 
optimisation. 

- Ensures good convergence and 
quality solutions even with small 
populations. 

- Still shows loss of feasible 
population, but the algorithm 
appears stable and robust. 

MDO/HCO Remove constraints 

- Actuator change constraints completely removed; 
- Subsystem objective includes minimisation of actuator change. 

Advantages Disadvantages 

- Improved computation time;  

- Use of a penalty function to address 
difficulties with consistency offers the 
benefit of a tune-able optimisation 
(via changing the penalty function 
weights) – biased towards system or 
sub-system. 

- Consistency harder to achieve; 
- Overall system objective (fuel 

economy) not as good as the other 
frameworks. 

- No need for extensive analysis a 
priori – gradient / actuator change 
constraints not required – this is a 
significant benefit in terms of time. 
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8.5 Limitations of this research 

 

Due to the time limits of the research period and the scope of this research, there are 

a number of limitations of this research that are discussed below. 

As discussed this research was concentrated on the optimisation system framework 

and organization, the study have been limited to the use of a specific GA toolbox. 

Therefore, a number of more advance Evolutionary Algorithms (i.e. Particle Swarm 

Optimisation algorithms) have been neglected. In the literature, the Particle Swarm 

Optimisation algorithms have been tested for the generic optimisation problem and 

proved that was more efficient compare with the Genetic Algorithms (Hassan, 2005). 

Since the PSO algorithm is also a population based searching algorithm, it can be 

neatly implemented within the MDO frameworks that have been introduced in this 

research.  

Due to the time limitation of this project, the statistical performance and robustness 

of the presented MDO/TCO and MDO/HCO results have not been studied. More 

optimisation simulation run should be conducted in order to comparing if the 

optimisations can be converged to the same optimal solution area from different 

initial population points. And also, the sensitivity of convergence that effect by 

population size can be tested. Due to the time consuming of the test for each of the 

optimisation run and time limitation of this project, it has not been done.  

In order to make a fair comparison, the third order polynomial model was fitted for 

the engine responses. Whereas, discussion in Chapter 4 shows that there are a 

number of advanced statistical modelling techniques, which can predict the engine 
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responses more accurately. These more advanced engine models should be 

employed to develop the engine response model quality, which can help to improve 

the robustness of optimal solution by predicting the more accurate engine response 

values. 

From the research point of view, the discontinuous convergence performance of both 

MDO/TCO and MDO/HCO can be studied in order to understand how the different 

MDO frameworks affect the optimal solution searching route.  

Because of the lack of the engine data, this research was only based on the only one 

vehicle application of the given engine, which used in the sponsoring company. It 

would be useful to indentify MDO/AAO, MDO/TCO and MDO/HCO frameworks for 

Diesel engine calibration optimisation problem by testing and validating on the 

different engine or different vehicle applications.  
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Chapter 9 Conclusions and Recommendations for Further Work 

9.1 Conclusions 

The main aim of this research was to develop an efficient mathematical methodology 

for the Diesel engine calibration optimisation based on steady state engine test data. 

The work concentrated on implementing a Multidisciplinary Design Optimisation 

framework for the Diesel engine calibration optimisation problem.  

Based on the research presented in this thesis it can be concluded that the MDO 

frameworks could be considered a natural choice for the engine calibration 

optimisation problem when data is collected at steady state points in the engine 

speed/load space.  

The MDO frameworks provide a better organisation of the steady state engine 

calibration problem, as a two level (“Global” and “Local” level) structure. The MDO 

frameworks are flexible and expandable so they have the flexibility to accommodate 

requirement of the increased complexity of engine calibration.  

The research also demonstrated that the MDO algorithms have the potential to 

deliver significantly better solutions in particular in terms of the “Global” calibration 

optimisation objectives (such as fuel economy) compared to the conventional two-

step approach. At the same time, MDO have been shown to have the potential to 

significantly enhance the effectives of the process by both reducing the computation 

time and the requirements for upfront calibrator knowledge input. 
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This research has considered 2 conventional MDO frameworks / formulations, i.e. 

All-At-Once (MDO/AAO), Traditional Collaborative Optimisation (MDO/TCO) and has 

proposed a novel “Hybrid” Collaborative Optimisation (MDO/HCO) formulation. 

Based on the critical review and comparison between these 3 approaches the 

following conclusions can be made: 

 The implemented MDO/AAO framework has generated solutions with a 

significant improvement in main Global objective (fuel economy) while 

satisfying all Global constraints (cycle emissions and drive-ability / actuator 

change constraints) and local constraints.  

 The study of the constraints revealed a very high computation difficulty of 

Diesel calibration optimisation problem (the “chance” of a feasible solution is 

less than        . This leads to severe computation difficulties with the GA 

based evolutionary algorithms tested.  

 The strategy and algorithms developed for “forcing” feasible solutions (by 

using the “corrector” algorithms both for the generation of the initial 

populations and as an evolutionary operator) was proved to be effective in 

promoting an effective exploration of the design space and generating highly 

competitive solutions; however, this was seen to add considerable 

computation penalty (still competitive compared to the conventional two-step 

process). 

 The introduction of the Collaborative Optimisation (TCO) framework has 

proved that the two levels MDO structure enhances the computation efficiency 

and generates competitive Global optimal solutions that meet all “Global” and 

“Local” constraints. This enhancement in effectiveness is due to a better 
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management of the constraints; i.e. by delegating some of the constraints to 

subsystem level optimisation, the system level computation difficulty is greatly 

reduced. This improvement in computation compared to AAO process 

become more obvious when the complexity of the problem was raised to full 

space / 10 minimap points from the reduced complexity problem of only 3 

minimap poitnss considered duringt he development of the algorithm. 

 The Hybrid Collaborative Optimisation (MDO/HCO) algorithm, introduced to 

further simplify the complexity of the Global optimisation problem by 

delegating the actuator change constraints to the subsystem level, was 

proved to be effective. This new organisation of the problem required a 

different approach at the discipline / subsystem optimisation – minimising 

actuator map gradient (via the actuator change variable) rather than the 

standard CO (MDO/TCO) approach of minimising the discrepancy between 

the discipline / subsystem and the Global / system level target. 

 In order to maintain consistency of the system and ensure convergence, a 

penalty function approach is recommended for the “Global” / system level 

optimisation (combining the main optimisation objective with system 

consistency). This leads to a potential loss in terms of the main objective (fuel 

consumption) in particular when a simple additive penalty function is used (as 

in the implementation considered in this research). However, this delivers an 

important opportunity from the engineering point of view – that of a trade-off 

between the Global objective (fuel consumption) and the subsystem / 

discipline objective – a smooth actuator map. Results shown that HCO has 

delivered the smoothest actuator maps, but the smallest improvement in fuel 

economy compared with the other 2 methods. This is important because it 
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has the potential to deliver a steady state calibration closer to the final solution 

– as smooth actuator maps are better in terms of transient behaviour. 

 The practical importance of HCO is that it does not require gradient change 

constraints to be specified a priori. This reduces quite significantly the 

calibration expert effort, which should now be shifted towards evaluation of 

the optimal solution. 

While this work has only focused on Diesel calibration, all the MDO methods 

developed would be applicable to other similar applications – such as gasoline 

steady state engine calibration.  

The MDO / HCO framework could also be applied to other engineering problems that 

can be analysed / decomposed in a similar way. 

 

9.2 Summary of Contribution: 

The following points summarise the main original contributions made by the author: 

 The application of MDO to engine calibration optimisation is novel. This 

includes the analysis / organisation of the engine calibration problem as a 

Multi-Disciplinary Optimisation problem – with disciplines assigned to steady 

state minimap points and “system” level associated with the “over the drive 

cycle” performance, and application / implementation of different MDO 

frameworks for optimisation. 

 Development and implementation in Matlab of a series of algorithms (in 

particular the “corrector” algorithms) to enhance the ability of the GA 
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evolutionary algorithm to cope with the difficulty of finding feasible solutions 

due to the complex constraints in both the objective and solution space. 

 Formulation and implementation of a Hybrid Collaborative Optimisation MDO 

framework, which addresses the computational difficulties, and offers an 

important engineering advantage of trading off between two important high 

level objectives – fuel economy and drive-ability, with potential for a significant 

improvement of the overall calibration process. 

 Demonstrate the application of the MDO frameworks suggested to a real 

world engineering problem, supplied by the sponsoring company. 

 

9.3 Recommendations for Future Work     

Since this research has successfully opened a new avenue of the mathematical 

methodology for working with the Diesel steady state engine calibration optimisation 

problem, there are a number recommendations for further work: 

 Further development of the MDO framework and algorithms: Especially, 

the TCO process can be run with the penalty function. Also, the weight of 

penalty function can be varied for the HCO formulation in order to tuning the 

balance between fuel economy and engine actuator map smoothness. 

Optimisation with different population size can be done to help understand the 

population affect on the objective and convergence speed.  

 Algorithm development / further improvement of computation speed: In 

order to make the MDO optimisation process even more efficient, the 
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optimisation can be developed with other Evolutionary Algorithms, such as 

PSO.  

 Further application: The MDO frameworks can be use for the different type 

of engine calibration (Gasoline Engine) or powertrain (Hybride vehicle 

powertrain), which has even more complicated engineering system that can 

be benefitted from the MDO structure.  
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APPENDIX I Engine Testing Data Example (750 rpm – 30Nm) 
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APPENDIX II  Actuator Gradient Change Constraints 
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APPENDIX III   All At Once Main Matlab  Script 

clear 

clc 

 

% load in the data based inputs 

name = uigetfile; 

load (name); 

%user input information 

options.Resize='on'; 

options.WindowStyle='normal'; 

options.Interpreter='tex'; 

prompt={'number of nodes (engine testing point)',... 

        'number of population'}; 

def = {'0','0'}; 

inputdat = inputdlg(prompt,'user difinition',1,def,options); 

 

numb_node = str2double(inputdat{1,1}); 

PopSize = str2double(inputdat{2,1}); 

%numb_ac = str2double(inputdat{3,1}); 

%nvars = numb_ac*numb_node; 

nvars=0; 

 

if numb_node < 10 

    options.Resize='on'; 

    options.WindowStyle='normal'; 

    options.Interpreter='tex'; 

    

prompt={'nodes1:','nodes2:','nodes3:','nodes4:','nodes5:','nodes6:','nodes7

:','nodes8:','nodes9:','nodes10:'}; 

    def = {'','','','','','','','','',''}; 

    NN = inputdlg(prompt,'selecting node number',1,def,options); 

    NN = cell2mat(NN); 

    NN = str2num(NN); 

    % sort the actuator boundary into one array by combining the actuator 

from 

    % differrent nodes 

    lb = []; 

    ub = []; 

    NumofInput=[]; 

 

    for i=1:numb_node 

        bounds=Inputs_Lim{NN(i,1)}; 

        lb=[lb bounds(1,:)]; 

        ub=[ub bounds(2,:)]; 

        nvars=nvars+size(bounds,2); 

        NumofInput=[NumofInput size(bounds,2)]; 

    end 

else 

    NN=[1; 2; 3; 4; 5; 6; 7; 8; 9; 10]; 

    lb=[];ub=[];NumofInput=[]; 

    for i=1:numb_node 

        bounds=Inputs_Lim{NN(i,1)}; 

        lb=[lb bounds(1,:)]; 

        ub=[ub bounds(2,:)]; 

        nvars=nvars+size(bounds,2); 

        NumofInput=[NumofInput size(bounds,2)]; 

    end 
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end 

% sort the gradient constraints in the orgnised cell 

GCS=cell(size(nodes,2),size(nodes,2)); 

for i=1:size(GC,1) 

    row=GC(i,1); 

    column=GC(i,2); 

    GCS{row,column}=GC(i,3:end); 

%     GCS{column,row}=GC(i,3:end); 

end 

GC=GCS; 

 

msgtxt = {'create the initial population','or supply a set of initial 

population'}; 

msgtit = 'uploading exam result......'; 

in_population = questdlg(msgtxt,msgtit,'Yes','No','load in','Yes'); 

 

switch in_population 

    case 'Yes' 

        initialPop = creator(lb,ub,PopSize,nvars); 

    case 'No' 

        initialPop=[]; 

    case 'load in' 

        name = uigetfile; 

        InPop=load (name); 

        initialPop=InPop.Final_pop; 

end 

PopSize1=50; 

PopSize2=100; 

PopSize3=200; 

PopSize4=500; 

 

Nonlcon=@(x)con_sys(x,models,mm_n,res_time,Inputs_Lim,LC,Lim,GC,NN,... 

    numb_node,NumofInput); 

 

options=gaoptimset( 'PopulationSize',PopSize2,... 

                    'SelectionFcn',{@selectiontournament,2},... 

                    'Generations',10,... 

                    'InitialPopulation',initialPop,... 

                    'StallGenLimit',4,... 

                    'MutationFcn',{@mutationadaptfeasible},... 

                    'CrossoverFcn',{@crossoverheuristic,0.8},... 

                    'creationFcn',@gacreationuniform,... 

                    'Crossoverfraction',0.60,... 

                    'Elitecount',2,... 

                    'Tolfun',0.005,... 

                    'Tolcon',0.005,... 

                    'PlotFcns',{@gaplotbestf,@gaplotstopping,... 

                                @gaplotscores}); 

[x,fval,reason,output,population,scores]=ga({@objectsys,models,res_time,... 

    mm_n,Inputs_Lim,NN,NumofInput,LC,GC,numb_node},... 

    nvars,[],[],[],[],lb,ub,Nonlcon,options); 

 

final_results_check; 
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APPENDIX IV  Constraints Function Matlab Script 

Contents 

 total 'global' cycle emission constraints check 
 Gradient constraints 
 local emission constraints 
 combine all the different type of constraints 

function 

[c,ceq]=con_sys(x,models,mm_n,res_time,Inputs_Lim,LC,Lim,GC,NN,numb_node,Nu

mofInput) 

c=[];ceq=[]; 

SX=cell(1,10); 

loccon=[]; cyclcon=[]; acc_con=[]; 

Xcounter=[]; 

for i=1:size(NN,1) 

    SX{NN(i,1)}=x(:,(size(Xcounter,2)+1):(size(Xcounter,2)+NumofInput(i))); 

    Xcounter=[Xcounter 

x(:,(size(Xcounter,2)+1):(size(Xcounter,2)+NumofInput(i)))]; 

end 

SX{1,1}=[SX{1,1}(1,:) 69]; 

Input argument "NN" is undefined. 

 

Error in ==> con_sys at 7 

for i=1:size(NN,1) 

 

total 'global' cycle emission constraints check 

cyclcon = total_emission_check (SX,NN,numb_node,models,mm_n,res_time,Lim); 

Gradient constraints 

acc_con = gradient_check (SX,GC,NN); 

file:///F:/work%20in%20June/All_in_one_V3/html/con_sys.html%233
file:///F:/work%20in%20June/All_in_one_V3/html/con_sys.html%234
file:///F:/work%20in%20June/All_in_one_V3/html/con_sys.html%235
file:///F:/work%20in%20June/All_in_one_V3/html/con_sys.html%236
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local emission constraints 

for i=1:numb_node 

    mode = models{NN(i,1)}; 

    Lim_local = LC{NN(i,1)}; 

    loccon_em = Local_Emission_check(SX{NN(i,1)},mode,Lim_local); 

    loccon = [loccon loccon_em]; 

end 

combine all the different type of constraints 

c=[loccon cyclcon acc_con]; 
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APPENDIX V  Function corrector Matlab script 

 

function Final_pop = 

corrector(initialPop,models,mm_n,res_time,lb,ub,LC,Lim,GC,NN,numb_node,Numo

fInput) 

% matlabpool 

Final_pop=[]; 

for i=1:size(initialPop,1) 

    X0=initialPop(i,:); 

    objt = @(x)correct_movement(x,X0); 

    

Nonlcon=@(x)correct_con(x,X0,models,mm_n,res_time,LC,Lim,GC,NN,numb_node,Nu

mofInput); 

    options=optimset('Display','final',... 

                    'TolFun',0.0001,... 

                    'Algorithm','active-set',... 

                    'TolCon',0.0001,... 

                    'TolX',0.0001); 

    [Xsub,fval]=fmincon(objt,X0,[],[],[],[],lb,ub,Nonlcon,options); 

    Final_pop(i,:)=Xsub; 

end 

% matlabpool close 

Input argument "initialPop" is undefined. 

 

 

 

Published with MATLAB® 7.6 
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APPENDIX VI  AAO and TCO System objective Function Matlab Script 

 

function 

[obj]=objectsys(x,models,res_time,mm_n,Inputs_Lim,NN,NumofInput,LC,GC,numb_

node) 

SX=cell(1,10); 

Xcounter=[]; 

for i=1:size(NN,1) 

    SX{NN(i,1)}=x(:,(size(Xcounter,2)+1):(size(Xcounter,2)+NumofInput(i))); 

    Xcounter=[Xcounter 

x(:,(size(Xcounter,2)+1):(size(Xcounter,2)+NumofInput(i)))]; 

end 

SX{1,1}=[SX{1,1}(1,:) 69]; 

obj=0; 

for i=1:size(NN,1) 

    mode=models{NN(i,1)}; 

    f=mm_n(NN(i,1)).*res_time(NN(i,1)).*mode.emmf(SX{NN(i,1)})./20; 

    obj=obj+f; 

end 

 

obj=obj*100/((1e+6)*0.84*11); %unit in L/100Km 

Input argument "NN" is undefined. 

 

Error in ==> objectsys at 4 

for i=1:size(NN,1) 

 
Published with MATLAB® 7.6 

 APPENDIX VII  TCO System Constraints  Matlab Script 
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Contents 

 CO subsystem analyser 
 Gradient constraints 
 local emission constraints 
 total cycle emission constraints check 
 combine all the different type of constraints 

function 

[c,ceq]=con_sys(x,models,mm_n,res_time,Inputs_Lim,LC,Lim,GC,NN,numb_node,Nu

mofInput) 

c=[];ceq=[]; 

SX=cell(1,10); 

loccon=[]; cyclcon=[]; acc_con=[]; 

Xcounter=[]; 

for i=1:size(NN,1) 

SX{NN(i,1)}=x(:,(size(Xcounter,2)+1):(size(Xcounter,2)+NumofInput(i))); 

    Xcounter=[Xcounter 

x(:,(size(Xcounter,2)+1):(size(Xcounter,2)+NumofInput(i)))]; 

end 

SX{1,1}=[SX{1,1}(1,:) 69]; 

Input argument "NN" is undefined. 

Error in ==> con_sys at 7 

for i=1:size(NN,1) 

CO subsystem analyser 

% parfor i=1:numb_node 

%     mode = models{NN(i,1)}; 

%     LOC_OUT=LC{NN(i,1)}; 

%     bounds=Inputs_Lim{NN(i,1)}; 

%     Xsub = SubOpt(SX,mode,bounds,LOC_OUT,GC,NN(i,1)) ; 

%     discrepency=abs(Xsub-SX{NN(i,1)}(1,1:6)); 

file:///F:/work%20in%20June/Traditional%20CO/html/con_sys.html%233
file:///F:/work%20in%20June/Traditional%20CO/html/con_sys.html%234
file:///F:/work%20in%20June/Traditional%20CO/html/con_sys.html%235
file:///F:/work%20in%20June/Traditional%20CO/html/con_sys.html%236
file:///F:/work%20in%20June/Traditional%20CO/html/con_sys.html%237
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%     acc_con= [acc_con discrepency]; 

% end 

Xsub = 

analyser_sys(x,models,res_time,mm_n,Inputs_Lim,LC,GC,NN,numb_node,NumofInpu

t); 

acc_con= (Xsub-x).^2; 

Gradient constraints 

% acc_con = gradient_check (SX,GC,NN); 

local emission constraints 

% parfor i=1:numb_node 

%     mode = models{NN(i,1)}; 

%     Lim_local = LC{NN(i,1)}; 

%     loccon_em = Local_Emission_check(SX{NN(i,1)},mode,Lim_local); 

%     loccon = [loccon loccon_em]; 

% end 

total cycle emission constraints check 

cyclcon = total_emission_check (SX,NN,numb_node,models,mm_n,res_time,Lim); 

combine all the different type of constraints 

c=[loccon cyclcon acc_con]; 

WDEavRCxrA000020000 
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function objsb = obj_sub (x,X0) 

this function is evaluate the traditional collabarotive optimisation subsystem 

objective values which is defined by discrepency between system level and sub 

system level in design space. 

objsb=sum((x-X0).^2); 

 

% obj=0; 

% for i=1:size(GC{N_N,:},2) 

%     if ~isempty(GC{N_N,i}) 

%         obj=obj+sum((x-SX{i}).^2); 

%     end 

% end 

Input argument "x" is undefined. 

 

Error in ==> obj_sub at 6 

objsb=sum((x-X0).^2); 

 

end 

WDEavRCxrA000020000 

 

Published with MATLAB® 7.6 
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APPENDIX IX  TCO Subsystem Constraints Matlab Script 

 

Contents 

 local emission constraints 
 Gradient constraints 

function[ con, ceq] = con_sub (x,SX,mode,GC,LOC_OUT,NN) 

con=[];ceq=[];acc_con =[];Em_loccon=[]; 

if NN==1 

    x=[x 69]; 

    SX{NN}=[SX{NN} 69]; 

end 

Input argument "NN" is undefined. 

 

Error in ==> con_sub at 3 

if NN==1 

local emission constraints 

Em_loccon = Local_Emission_check(x,mode,LOC_OUT,SX,NN); 

Gradient constraints 

SX{NN}=x; 

acc_con = gradient_check_sub (SX,GC,NN); 

con=[Em_loccon acc_con]; 

end 

WDEavRCxrA000020000 

 

Published with MATLAB® 7.6  

file:///F:/work%20in%20June/Traditional%20CO/html/con_sub.html%233
file:///F:/work%20in%20June/Traditional%20CO/html/con_sub.html%234
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APPENDIX X HCO Objective Function Matlab Script (Smoothness 2) 

function objsb = obj_sub (x,SX,N_N,GC,lb,ub) 

this function is evaluate the Hybrid Collabarotive Optimisation subsystem objective values which is 

defined by discrepency between system level and sub system level in design space. 

% x=x.*(ub-lb)+lb; 

 

SX{1,N_N}=SX{1,N_N}; 

SX{1,1}=SX{1,1}(1,1:6); 

objsb=0; 

obj=[]; 

% w=[2 1 1 2 1 1]; 

for i=1:size(GC,2) 

    if isempty(GC{N_N,i}) || isempty(SX{i}) 

        continue 

    else 

        if N_N>i 

            diff=x-SX{i}; 

        elseif N_N<i 

            diff=SX{i}-x; 

        end 

    end 

    gradient=[]; 

    for j=1:size(diff,2) 

        if diff(1,j)>0 

            gradient(1,end+1)=(diff(1,j)/(GC{N_N,i}(1,2*j)))^2; 

%             gradient(1,end+1)=(diff(1,j)/(GC{N_N,i}(1,2*j))); 

        elseif diff(1,j)<0 
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            gradient(1,end+1)=(diff(1,j)/(GC{N_N,i}(1,(2*j-1))))^2; 

%             gradient(1,end+1)=(diff(1,j)/(GC{N_N,i}(1,(2*j-1)))); 

        else 

            gradient(1,end+1)=0; 

        end 

    end 

    obj=[obj gradient]; 

end 

% for i=1:3 

%     val=sum(obj); 

%     objsb=objsb+val; 

%     obj(1,pos)=0; 

% end 

objsb=sum(obj); 

% objsb=max(obj); 

Input argument "N_N" is undefined. 

 

Error in ==> obj_sub at 10 

SX{1,N_N}=SX{1,N_N}; 

 

end 

WDEavRCxrA000020000 
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APPENDIX XI HCO Objective Function Matlab Script (Smoothness 3) 

function objsb = obj_sub (x,SX,N_N,GC,lb,ub) 

this function is evaluate the Hybrid Collabarotive Optimisation subsystem objective values which is 

defined by discrepency between system level and sub system level in design space. 

% x=x.*(ub-lb)+lb; 

 

SX{1,N_N}=SX{1,N_N}; 

SX{1,1}=SX{1,1}(1,1:6); 

objsb=0; 

obj=[]; 

% w=[2 1 1 2 1 1]; 

for i=1:size(GC,2) 

    if isempty(GC{N_N,i}) || isempty(SX{i}) 

        continue 

    else 

        if N_N>i 

            diff=x-SX{i}; 

        elseif N_N<i 

            diff=SX{i}-x; 

        end 

    end 

    gradient=[]; 

    for j=1:size(diff,2) 

        if diff(1,j)>0 

            gradient(1,end+1)=(diff(1,j)/(GC{N_N,i}(1,2*j)))^2; 

%             gradient(1,end+1)=(diff(1,j)/(GC{N_N,i}(1,2*j))); 

        elseif diff(1,j)<0 
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            gradient(1,end+1)=(diff(1,j)/(GC{N_N,i}(1,(2*j-1))))^2; 

%             gradient(1,end+1)=(diff(1,j)/(GC{N_N,i}(1,(2*j-1)))); 

        else 

            gradient(1,end+1)=0; 

        end 

    end 

    obj=[obj gradient]; 

end 

% for i=1:3 

%     val=sum(obj); 

%     objsb=objsb+val; 

%     obj(1,pos)=0; 

% end 

%objsb=sum(obj); 

 objsb=max(obj); 

Input argument "N_N" is undefined. 

 

Error in ==> obj_sub at 10 

SX{1,N_N}=SX{1,N_N}; 

 

end 

WDEavRCxrA000020000 
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APPENDIX XII  HCO Constraints Function Matlab Script 

Contents 

 local emission constraints 

function[ con, ceq] = con_sub (x,SX,mode,GC,LOC_OUT,NN,lb,ub) 

con=[];ceq=[];acc_con =[];Em_loccon=[]; 

 

% x=x.*(ub-lb)+lb; 

if NN==1 

    x=[x 69]; 

    SX{NN}=[SX{NN} 69]; 

end 

Input argument "NN" is undefined. 

 

Error in ==> con_sub at 5 

if NN==1 

local emission constraints 

Em_loccon = Local_Emission_check(x,mode,LOC_OUT); 

% % %% Gradient constraints 

% % SX{NN}=x; 

% % acc_con = gradient_check_sub (SX,GC,NN); 

con=[Em_loccon acc_con]; 

end 

WDEavRCxrA000020000 
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