
Institut für Logik, Komplexität
und Deduktionssysteme

Fakultät für Informatik
Universität Karlsruhe

Bayesian methods for Support

Vector machines and Gaussian

processes

Diplomarbeit von

Matthias Seeger

Betreuer und Erstgutachter: Dr Christopher K. I. Williams
Division of Informatics

University of Edinburgh, UK

Betreuer und Zweitgutachter: Prof Dr Wolfram Menzel
Institut für Logik, Komplexität

und Deduktionssysteme

Tag der Anmeldung: 1. Mai 1999

Tag der Abgabe: 22. Oktober 1999

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/12650556?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Ich erkläre hiermit, daß ich die vorliegende Arbeit selbständig verfaßt und
keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Karlsruhe, den 22. Oktober 1999

Matthias Seeger

Zusammenfassung

In dieser Arbeit formulieren wir einen einheitlichen begrifflichen Rah-
men für die probabilistische Behandlung von Kern- oder Spline-Glättungs-
Methoden, zu denen populäre Architekturen wie Gaußprozesse und Support-
Vector-Maschinen zählen. Wir identifizieren das Problem nicht normalisierter
Verlustfunktionen und schlagen eine allgemeine, zumindest approximative
Lösungsmethode vor. Der Effekt, den die Verwendung solcher nicht normal-
isierter Verlustfunktionen induzieren kann, wird am Beispiel des Support-
Vector-Klassifikators intuitiv verdeutlicht, wobei wir den direkten Vergle-
ich mit dem Bayesschen Gaußprozess-Klassifikator als nichtparametrische
Verallgemeinerung logistischer Regression suchen. Diese Interpretation setzt
Support-Vector-Klassifikation in Bezug zu Boosting-Techniken.

Im Hauptteil dieser Arbeit stellen wir einen neuen Bayesschen Modell-
Selektionsalgorithmus für Gaußprozessmodelle mit allgemeinen Verlustfunk-
tionen vor, der auf der variationellen Idee basiert. Dieser Algorithmus ist
allgemeiner einsetzbar als bisher vorgeschlagene Bayessche Techniken. Wir
zeigen anhand der Resultate einer Reihe von Klassifikationsexperimenten auf
Datenmengen natürlichen Ursprungs, daß der neue Algorithmus leistungs-
mäßig mit den besten bekannten Verfahren für Modell-Selektion von Kern-
methoden vergleichbar ist.

Eine weitere Zielsetzung dieser Arbeit war, eine leicht verständliche Brücke
zu schlagen zwischen den Feldern probabilistischer Bayesscher Verfahren und
Statistischer Lerntheorie, und zu diesem Zweck haben wir eine Menge Text
tutorieller Natur hinzugefügt. Wir hoffen, daß dieser Teil der Arbeit für Wis-
senschaftler aus beiden Bereichen von Nutzen ist.

Teile dieser Arbeit werden unter dem Titel “Bayesian model selection for
Support Vector machines, Gaussian processes and other kernel classifiers” auf
der jährlichen Konferenz für Neural Information Processing Systems (NIPS)
1999 in Denver, Colorado, USA vorgestellt werden, das Papier kann in den
proceedings der Konferenz eingesehen werden.

Abstract

We present a common probabilistic framework for kernel or spline smooth-
ing methods, including popular architectures such as Gaussian processes and
Support Vector machines. We identify the problem of unnormalized loss func-
tions and suggest a general technique to overcome this problem at least ap-
proximately. We give an intuitive interpretation of the effect an unnormalized
loss function can induce, by comparing Support Vector classification (SVC)
with Gaussian process classification (GPC) as a nonparametric generalization
of logistic regression. This interpretation relates SVC to boosting techniques.

We propose a variational Bayesian model selection algorithm for general nor-
malized loss functions. This algorithm has a wider applicability than other
previously suggested Bayesian techniques and exhibits comparable perfor-
mance in cases where both techniques are applicable. We present and discuss
results of a substantial number of experiments in which we applied the vari-
ational algorithm to common real-world classification tasks and compared it
to a range of other known methods.

The wider scope of this thesis is to provide a bridge between the fields of
probabilistic Bayesian techniques and Statistical Learning Theory, and we
present some material of tutorial nature which we hope will be useful to
researchers of both fields.

Parts of this work will be presented at the annual conference on Neural In-
formation Processing Systems (NIPS) 1999 in Denver, Colorado, USA, under
the title “Bayesian model selection for Support Vector machines, Gaussian
processes and other kernel classifiers” and will be contained in the corre-
sponding conference proceedings.

2

Acknowledgments

This thesis was written while the author visited the Institute for Adaptive
and Neural Computation (ANC), Division of Informatics, University of Ed-
inburgh, Scotland, from January to September 1999.

My special thanks go to Dr Chris Williams (ANC, Edinburgh) who acted as
supervisor “across borders” and had to spend a lot of efforts to get things
going. His great knowledge about (and belief in!) Bayesian techniques of all
sorts and kernel methods, his incredible overview of the literature, his steady
interest in my work, his innumerably many hints and suggestions and so
many very long discussions have shaped this work considerably. I am looking
forward to continue my work with him in Edinburgh.

Many thanks also to Dr Amos Storkey (ANC, Edinburgh) for discussions
outside and sometimes inside the pub from which I learned a lot. Chris and
Amos also bravely fought their way through this monster of a thesis, gave
valuable advice in great detail and corrected many of my somewhat too
German expressions.

Thanks to Dr Peter Sollich (Kings College, London) for helpful discussions
about Bayesian techniques for SVM and related stuff, and to Stephen Felder-
hof, Nick Adams, Dr Stephen Eglen, Will Lowe (all ANC) and William
Chesters (DAI, Edinburgh).

My thesis supervisor in Karlsruhe, Germany, and “Betreuer der Diplomar-
beit” was Prof Dr Wolfram Menzel. I owe many thanks to him for acting very
flexible and tolerant in this somewhat unusual project of an “Auslandsdiplo-
marbeit”. He took many efforts with respect to organization, suggested many
possibilities for funding (one of which succeeded, see below) and showed much
interest in my work done abroad. We also had some discussions which were
very valuable.

I would also like to thank David Willshaw, head of the ANC, who together
with Chris made possible my visit in Edinburgh, and the Division of Infor-
matics for waiving my bench fees in Edinburgh and funding my visit of the
Kernel workshop in Dortmund, Germany, in summer 1999.

I gratefully acknowledge a scholarship which I was awarded by the Prof Dr
Erich Müller Stiftung to cover living expenses abroad.

Last, but not least, many thanks to old friends in Karlsruhe and new friends
in Edinburgh with whom I had so much fun during this exciting time.

This thesis is dedicated to my mother and my sisters, and was written in
memory of my father.

Contents

1 Introduction 9

1.1 Overview . 9

1.1.1 History of Support Vector machines 10

1.1.2 Bayesian techniques for kernel methods 11

1.2 Models, definitions and notation 13

1.2.1 Context-free notation 13

1.2.2 The problem . 14

1.2.3 The Bayesian paradigm 15

1.2.4 The discriminative paradigm 17

1.2.5 Comparison of the paradigms 20

1.2.6 Models of classification noise 22

1.3 Bayesian Gaussian processes 23

1.3.1 Construction of Gaussian processes 23

1.3.2 Remarks on choice or design of kernels 24

1.3.3 But why Gaussian? . 25

1.3.4 Bayesian regression – an easy warmup 26

1.3.5 Bayesian classification 27

1.4 Support Vector classification 31

2 A common framework 35

2.1 Spline smoothing methods . 35

2.1.1 Some facts from Hilbert space theory 35

2.1.2 The general spline smoothing problem 37

3

4 CONTENTS

2.1.3 Gaussian process classification as spline smoothing
problem . 38

2.1.4 Support Vector classification as spline smoothing prob-
lem . 38

2.1.5 The bias parameter . 39

2.1.6 The smoothing parameter 41

2.1.7 Unnormalized loss functions 42

2.1.8 A generative model for SVC 46

2.2 Intuitive Interpretation of SVC model 50

2.2.1 Boosting and the margin distribution 50

2.2.2 Additive logistic regression 53

2.2.3 LogitBoost and Gaussian process classification 54

2.2.4 Continuous reweighting 55

2.2.5 Incorporating the prior 58

2.3 Comparing GPC and SVC prediction 61

3 Variational and Bayesian techniques 63

3.1 Variational inference techniques 63

3.1.1 Convex duality and variational bounds 64

3.1.2 Maximum entropy and variational free energy mini-
mization . 66

3.1.3 Variational approximation of probabilistic inference . . 69

3.1.4 From inference to learning: The EM algorithm 70

3.1.5 Minimum description length and the bits-back encoder 73

3.2 Bayesian techniques . 77

3.2.1 The evidence framework 77

3.2.2 Monte Carlo methods 79

3.2.3 Choice of hyperpriors 80

3.2.4 Evidence versus Cross Validation 82

CONTENTS 5

4 Bayesian model selection 85

4.1 Model selection techniques . 85

4.1.1 Bayesian model selection: Related work 86

4.2 A variational technique for model selection 88

4.2.1 Derivation of the algorithm 88

4.2.2 Factor-analyzed variational distributions 93

4.2.3 MAP prediction . 94

4.3 Comparison with related methods 96

4.3.1 The Laplace method 97

4.3.2 Another variational method 100

4.4 Experiments and results . 102

4.4.1 Hyperpriors . 107

4.4.2 Laplace Gaussian as variational density 111

4.4.3 Evidence approximation of Laplace method 113

5 Conclusions and future work 115

5.1 Conclusions . 115

5.2 Future work . 116

5.2.1 Sequential updating of the variational distribution . . . 118

Bibliography 123

A Factor-analyzed covariances 133

A.1 Origins of factor-analyzed covariances 133

B Skilling approximations 135

B.1 Conjugate gradients optimization 135

B.2 Convergence bounds for CG 136

B.3 Rotationally invariant functions 138

6 CONTENTS

C Variational free energy and gradients 141

C.1 The gradients . 141

C.2 Efficient computation or approximation 142

C.2.1 The variance parameter 146

C.2.2 Computation of loss-related terms 146

C.2.3 Upper bound on loss normalization factor 147

D The STATSIM system 153

D.1 Purpose and goals . 153

D.1.1 Programs we built on 154

D.2 System structure . 155

D.2.1 Optimization: An example 155

D.2.2 Sketch of the user interface 156

D.3 Status Quo . 156

List of Figures

1.1 Component of W matrix . 30

2.1 Several loss functions . 46

2.2 Normalization factor of single-case likelihood 49

2.3 Loss functions considered so far 57

2.4 Unnormalized reweighting distribution 57

2.5 Reweighting factors of SVC loss and AdaBoost 58

2.6 Reweighting factors for SVC and GPC 62

3.1 The dual metric. 65

3.2 Iteration of convex maximization algorithm. 73

4.1 Comparison of test error of different methods 111

4.2 Criterion curves for several datasets 113

4.3 Comparison of Laplace approximation and variational bound . 114

C.1 Log normalization factor of SVC noise distribution 148

7

List of Tables

4.1 Test errors for various methods 103

4.2 Variance parameter chosen by different methods 106

4.3 Support Vector statistics . 106

4.4 Test errors for methods with hyperpriors 108

4.5 Variance parameter for methods with hyperpriors 108

4.6 Legend for box plots . 110

8

Chapter 1

Introduction

In this chapter, we give an informal overview over the topics we are concerned
about in this thesis. We then define the notation used in the rest of the text
and review architectures, methods and algorithms of central importance to
an understanding of this work. Experienced readers might want to skip this
chapter and use it in a lookup manner.

1.1 Overview

Kernel or spline smoothing methods are powerful nonparametric statistical
models that, while free from unreasonable parametric restrictions, allow to
specify prior knowledge about an unknown relation between observables in a
convenient and simple way. Unless otherwise stated, we will concentrate here
on the problem of classification or pattern recognition. It is, however, straight-
forward to apply most of our results to regression estimation as well. In any
reasonable complex parametric model, like for example a neural network,
simple prior distributions on the adjustable parameters lead to an extremely
complicated distribution over the actual function the model computes, and
this can usually only be investigated in limit cases. Now, by observing that for
two-layer sigmoid networks with a growing number of hidden units this out-
put distribution convergences against a simple Gaussian process (GP), Neal
[Nea96], Williams and Rasmussen [WR96] focused considerable and ongoing
interest on these kernel models within the neural learning community.

9

10 CHAPTER 1. INTRODUCTION

1.1.1 History of Support Vector machines

Another class of kernel methods, namely Support Vector machines, have been
developed from a very different viewpoint. Vapnik and Chervonenkis were
concerned with the question under what conditions the ill-posed problem
of learning the probabilistic dependence between an input and a response
variable1 can actually be solved uniquely, and what paradigm should be pro-
posed to construct learning algorithms for this task? A candidate for such
a paradigm was quickly found in the widely used principle of empirical risk
minimization (ERM): From all functions in the hypothesis space, choose one
that minimizes the empirical risk, i.e. the loss averaged over the empirical
distribution induced by the training sample. It is well-known that this prin-
ciple fails badly when applied to reasonably “complex” hypothesis spaces,
resulting in “overfitted” solutions that follow random noise on the training
sample rather than abstract from such and generalize. The problem of over-
fitting can easily be understood by looking at a correspondence to function
interpolation, see for example [Bis95]. In search for a complexity measure for
possibly infinite hypothesis spaces, Vapnik and Chervonenkis proposed the
Vapnik-Chervonenkis dimension, a combinatorial property of a function set
that can be calculated or bounded for most of the commonly used learning
architectures. They proved that once a function family has finite VC dimen-
sion, the probability of an ε deviation of the minimal empirical risk from
the minimal risk over that family converges to zero exponentially fast in the
number of training examples, and the exponent of this convergence depends
only on the VC dimension and the accuracy ε. They also showed the con-
verse, namely that no paradigm at all can construct algorithms that learn
classes with infinite VC dimension. In this sense, ERM is optimal as learning
paradigm over suitably restricted hypothesis spaces. These results laid the
foundation of Statistical Learning Theory.

Instead of demonstrating their theory on neural networks, Vapnik and Cher-
vonenkis focussed on linear discriminants and proved VC bounds for such
families. It turns out that to restrict the VC dimension of a class of seper-
ating hyperplanes one can for example demand that the minimal distance
to all datapoints is bounded below by a fixed constant. This idea, namely
that a certain well-defined distribution (called the margin distribution) and
statistics thereof (in our case the minimum sample margin, i.e. distance from

1This problem can formally be defined by choosing a loss function and a hypothesis
space (both choices are guided by our prior belief into the nature of the combination of
underlying cause and random noise for the random correspondence to be learned), and
then ask for a function in the space that minimizes the expected loss or risk, where the
expectation is over the true, unknown distribution of input and response variable.

1.1. OVERVIEW 11

the data points) are strongly connected to the mysterious property of gener-
alization capability (the most important qualitative performance measure for
an adaptive system) is currently a hot topic in statistical and computational
learning theory and by no means completely understood. We will return to
the notion of margins below.

Surprisingly, only very much later, the idea of large margin linear discrimi-
nants was taken up again (by Vapnik) and generalized to the nonlinear case.
This generalization, sometimes referred to as “kernel trick”, builds on an easy
consequence of Hilbert space theory and has been widely used long before in
the Statistics community, but the combination with large margin machines
was novel and resulted in the Support Vector machine, a new and extremely
powerful statistical tool.

There are excellent reviews on Statistical Learning Theory and Support Vec-
tor machines (see for example [Vap95],[Vap98], [Bur98b]), and we will not
try to compete with them here. Large margin theory is far out of the scope
of this work, although we feel that by having included these lines we might
have given an insight into the fascinating scientific “birth” of Support Vector
machines and maybe awakened some genuine interest in the reader.

1.1.2 Bayesian techniques for kernel methods

This thesis reviews and clarifies the common roots of Gaussian process and
Support Vector models, analyzes the actual differences between the domains
and finally exploits the common viewpoint by proposing new techniques of
Bayesian nature that can be used successfully in both fields.

Only very recently there has been interest in such Bayesian methods for
Support Vector classification while Bayesian methods for Gaussian process
models are successful and widely established. Let us have a look at possible
reasons for this divergence. As we will show below, and as is well known,
the only difference between the domains from a modeling viewpoint are the
loss functions used. Support Vector classification employs losses of the ε-
insensitive type [Vap98] while Gaussian process models make use of smooth
differentiable loss functions. How does this affect the applicability of typical
Bayesian methods?

Firstly, in its exact form, Bayesian analysis is usually intractable, and sen-
sible yet feasible approximations have to applied. Traditionally these focus
on gradient and curvature information of the log probability manifold of the
posterior which is (as we argue below) not possible if nondifferentiable loss

12 CHAPTER 1. INTRODUCTION

functions of the ε-insensitive type are used. However, we show how to over-
come this problem using variational techniques.

Secondly, at present the running-time scaling behaviour of Bayesian meth-
ods for kernel classifiers (like Gaussian processes) is cubic in the number of
training points which reduces the applicability of these models severely. This
scaling has to be contrasted with the behaviour of fast SVC implementations
like [Pla98] with seems to be somewhat quadratic in the number of Support
Vectors, usually only a small fraction of the training set, and is for many
datasets essentially linear in the training set size2. However, very powerful
approximative techniques for Bayesian numerical analysis have been devel-
oped (see [Ski89]) for,

. . . if Bayesians are unable to solve the problems properly,
other methods will gain credit for improper solutions.

John Skilling

These methods have been used for Gaussian process regression and classifi-
cation in [Gib97], and we are currently exploring their applicability within
our work presented here. Note that an efficient and numerically stable imple-
mentation of these methods is not at all straightforward, which might explain
why they have not been widely used so far in the Bayesian community.

Thirdly, Gaussian process discriminants lack a very appealing property of
the Support Vector machine, its sparse solution. The final discriminant is a
function of only a (typically) small fraction of the data points, the so-called
Support Vectors, and completely independent of the rest of the dataset. Of
course, it is not known from the beginning which of the points will be the
Support Vectors, but nevertheless the assumption that the final set will be
small can greatly speed up the training process, and prediction over large
test sets benefits from the sparseness if running time is concerned. However,
the sparseness property is based on the ε-insensitive loss functions and not
on the use of special prior covariance kernels, therefore applying Bayesian
techniques for kernel model selection does not affect this property at all.

Fourthly, a final gap between Support Vector classification and probabilistic
generative Gaussian process models remains unbridged. The ε-insensitive loss
does not correspond to a noise distribution since it cannot be normalized in
the sense discussed below. “Hence, a direct Bayesian probabilistic interpreta-
tion of SVM is not fully possible (at least in the simple MAP approach that

2The worst-case scaling of SMO as one of the fastest SVC training algorithms is more
than quadratic in the training set size, and the occurrence of such superquadratic scaling
is not extremely unlikeli (Alex Smola, personnal communication).

1.2. MODELS, DEFINITIONS AND NOTATION 13

we have sketched).” [OW99], and we will not try to sketch anything more
complicated, although there are possible probabilistic generative interpreta-
tions of SVC [Sol99]. Rather than closing it, we will explore this gap more
closely and thereby show the relations between GPC and SVC in a new light.
For practical Bayesian analysis however, we will resort to a probabilistic ker-
nel regression model to which Support Vector classification can be regarded
as an approximation.

The thesis is organized as follows. The remainder of this chapter introduces
notation, models and paradigms. Gaussian process regression, classification
and Support Vector classification are reviewed. The following chapter devel-
ops a common framework for Gaussian process and Support Vector classifiers.
We also give an argument that might help to understand the difference be-
tween Support Vector classification models and probabilistic kernel regression
classifiers like such based on Gaussian processes. The third chapter is tuto-
rial in nature and can be skipped by experienced readers, although we think
that it reviews some interesting “new views on old stuff” which seem not to
be widely known. Chapter four is the main part of the thesis and discusses
Bayesian model selection for architectures within the framework developed in
earlier chapters, with special consideration of Support Vector classification.
A new variational algorithm is suggested, analyzed and compared with re-
lated methods. Experiments and results are described, and several extensions
are proposed for future work. The Appendix contains longer calculations and
discussions that would disturb the flow in the main text. The STATSIM sys-
tem which was used to implement all experiments related to this thesis, is
also briefly described there.

1.2 Models, definitions and notation

1.2.1 Context-free notation

Most of the notation used in this thesis is defined here. However, we cannot
avoid postponing some definitions to later sections of the introduction, since
they require the appropriate context to be introduced.

We will denote vectors in boldface (e.g. x) and matrices in calligraphic letters
(e.g. A). xi refers to the i-th component in x = (xi)i, likewise A = (αij)ij.
At denotes transposition, |A| the absolute value of the determinant, tr A the
trace (i.e. the sum over the diagonal elements), diag A the diagonal of A as
vector and diag x the matrix with diagonal x and 0 elsewhere. Given any set
A ⊂ R, IA denotes the indicator function of A, i.e. IA(x) = 1 if x ∈ A, and

14 CHAPTER 1. INTRODUCTION

0 elsewhere. If ρ(x) is a predicate (or event), we write I{ρ}(x) = 1 if ρ(x) is
true, 0 otherwise. By [u]+ we denote the hinge function [u]+ = uI{u≥0}.

The probability spaces we deal with are usually finite-dimensional Euclidean
ones. We consider only probability measures which have a density with re-
spect to Lebesgue measure. A (measurable) random variable x over such a
space induces a probability measure itself, which we denote by P � or often
simply P . The density of x is also denoted by P (x). Note that P (x) and
P (y) are different densities if x 6= y. For convenience, we use x to denote
both the random variable and its actual value. This is used also for random
processes: y(·) might denote both a random process and its actual value, i.e.
a function. Measures and densities can be conditioned by events E, which
we denote by P (x|E). Special E are point events for random variables. As
an example, P (x|y) denotes the density of x, conditioned on the event that
the random variable y attains the value y. N(µ, σ2) denotes the univariate
Gaussian distribution, N(x|µ, σ2) its density. N(µ, Σ) is the multidimen-
sional counterpart.

K and R usually denote symmetric, positive definite kernels with associated
covariance matrices K and R, evaluated on the data points. If both symbols
appear together, we usually have K = CR, where C is a constant called
variance parameter. Implicit in this notation is the assumption that R has
no parametric prefactor.

1.2.2 The problem

Let X be a probability space (e.g. X = R
d) and D = (X, t) = {(x1, t1), . . . ,

(xn, tn)}, xi ∈ X, ti ∈ {−1, +1} a noisy independent, indentically dis-
tributed (i.i.d.) sample from a latent function y : X → R, where P (t|y)
denotes the noise distribution. In the most general setting of the prediction
problem, the noise distribution is unknown, but in many settings we have a
very concrete idea about the nature of the noise. Let y = (yi)i, yi = y(xi),
for a given function or random process y(·). Given further points x∗ we wish
to predict t∗ so as to minimize the error probability P (t∗|x∗, D), or (more
difficult) to estimate this probability. In the following, we drop the condi-
tioning on points from X for notational convenience and assume that all
distributions are implicitely conditioned on all relevant points from X, for
example P (t∗|t) on X and x∗.

1.2. MODELS, DEFINITIONS AND NOTATION 15

There are two major paradigm to attack this problem:

• Sampling paradigm

• Diagnostic paradigm

Methods following the sampling paradigm model the class conditional input
distributions P (x|t), t ∈ {−1, +1} explicitely and use Bayes formula to com-
pute the predictive distributions. The advantage of this approach is that one
can estimate the class conditional densities quite reliably from small datasets
if the model family is reasonably broad. However, the way via the class con-
ditional densities is often wasteful: we don’t need to know the complete shape
of the class distributions, but only the boundary between them to do a good
classification job. Instead of the inductive step to estimate the class densi-
ties and the deductive step to compute the predictive probabilities and label
the test set, it seems more reasonable to only employ the transductive step
to estimate the predictive probabilities directly (see [Vap95]), which is what
diagnostic methods do. No dataset is ever large enough to obtain point esti-
mates of the predictive probabilities P (t|x) (if X is large), and most diagostic
methods will therefore estimate smoothed versions of these probabilities. This
thesis deals with diagnostic, nonparametric (or predictive) methods, and we
refer to [Rip96] for more details on the other paradigms.

Two major subclasses within the diagnostic, nonparametric paradigm are:

• Bayesian methods

• Nonprobabilistic (discriminative) methods

We will refer to nonprobabilistic methods as discriminative methods because
they focus on selecting a discriminant between classes which need not have a
probabilistic meaning. We will briefly consider each of these classes in what
follows. We will sometimes refer to Bayesian methods as generative Bayesian
methods, to emphasize the fact that they use a generative model for the data.

1.2.3 The Bayesian paradigm

Generative Bayesian methods start by encoding all knowledge we might have
about the problem setting into a prior distribution. Once we have done that,
the problem is solved in theory, since every inference we might want to per-
form upon the basis of the data follows by “turning the Bayesian handle”,
i.e. performing simple and mechanical operations of probability theory:

16 CHAPTER 1. INTRODUCTION

1. Conditioning the prior distribution on the data D, resulting in a pos-
terior distribution

2. Marginalization (i.e. integration) over all variables in the posterior we
are not interested in at the moment. The remaining marginal posterior
is the complete solution to the inference problem

The most general way to encode our prior knowledge about the problem
above is to place a stochastic process prior P (y(·)) on the space of latent
functions. A stochastic process y(·) can be defined as a random variable over
a probability space containing functions, but it is more intuitive to think of it
as a collection of random variables y(x), x ∈ X. How can we construct such a
process? Since the y(x) are random variables over the same probability space
Ω, we can look at realizations (or sample paths) x 7→ (y(x))(ω) for fixed ω ∈
Ω. However, it is much easier to specify the finite-dimensional distributions
(fdd) of the process, being the joint distributions P(�

1,..., �

m)(y �

1
, . . . , y �

m
) for

every finite ordered subset (x1, . . . , xm) of X. It is important to remark that
the specification of all fdd’s does not suffice to uniquely define a random
process, in general there is a whole family of processes sharing the same
fdd’s (called versions of the specification of the fdd’s). Uniqueness can be
enforced by concentrating on a restricted class of processes, see for example
[GS92], chapter 8.6. In this thesis, we won’t study properties of sample paths
of processes, and we therefore take the liberty to identify all versions of a
specification of fdd’s and call this family a random process.

Consider assigning to each finite ordered subset (x1, . . . , xm) of X a joint
probability distribution P(�

1,..., �

m)(y �

1
, . . . , y �

m
) over R

m. We require this as-
signment to be consistent in the following sense: For any finite ordered subset
X1 ⊂ X and element x ∈ X \X1 we require that

∫

PX1∪{x} dy(x) = PX1
. (1.1)

Furthermore, for any finite ordered subset X1 ⊂ X and permutation π we
require that

PπX1
(πy(X1)) = PX1

(y(X1)). (1.2)

Here we used the notation y(X1) = (y �) � ∈X1
. Note that all mentioned sets

are ordered. These requirements are called Kolmogorov consistency conditions
and are obviously a necessary property of the definition of fdd’s. One can show
that these conditions are also sufficient ([GS92], chapter 8.6), and since we
indentified version families with processes, we have shown how to construct
a process using only the familiar notion of finite-dimensional distributions.

1.2. MODELS, DEFINITIONS AND NOTATION 17

Now, there is an immense variety of possible constructions of a process prior.
For example, we might choose a parametric family {y(x; θ) | θ ∈ Θ} and a
prior distribution P (θ) over the space Θ which is usually finite-dimensional.
We then define y(·) = y(·; θ), θ ∼ P (θ). This is referred to as a parametric
statistical architecture. Examples are linear discriminants with fixed basis
functions or multi-layer perceptrons.3 Note that given the value of θ, y(·) is
completely determined.

Another possibility is to use a Gaussian process prior. We will return to
this option shortly, but remark here that in contrast to a parametric prior a
Gaussian process cannot in general be determined (or parameterized) by a
finite-dimensional random variable. If y(·) is a Gaussian process, there is in
general no finite-dimensional random variable θ such that given θ, y(·) is com-
pletely determined. However, a countably infinite number of real parameters
does the job, which is quite remarkable since X might not be countable.

What is the Bayesian solution to our problem, given a prior on y(·)? We
first compute the posterior distribution over all hidden (or latent) variables
involved:

P (y, y∗|D) (1.3)

We then marginalize over y to obtain

P (y∗|D) =

∫

P (y∗|y)P (y|D) dy. (1.4)

This follows from P (y, y∗|D) = P (y∗|y, D)P (y|D) = P (y∗|y)P (y|D), where
we used the fact that y∗ and D are conditionally independent given y. P (y∗|y)
depends only on the prior, and we can use Bayes formula to compute P (y|D):

P (y|D) =
P (D|y)P (y)

P (D)
, (1.5)

where the likelihood P (D|y) =
∏

i P (ti|yi) and P (D) is a normalization
constant. P (t∗|D) can then be obtained by averaging P (t∗|y∗) over P (y∗|D).

1.2.4 The discriminative paradigm

Methods under the discriminative paradigm are sometimes called
distribution-free, since they make no assumptions about unknown variables

3Strange enough, the latter are sometimes referred to as nonparametric, just because
they (usually) have a lot of parameters. We don’t follow this inconsistent nomenclature.

18 CHAPTER 1. INTRODUCTION

whatsoever. Their approach to the prediction problem is to choose a loss
function g(t, y), being an approximation to the misclassification loss I{ty≤0}

and then to search for a discriminant y(·) which minimizes Eg(t∗, y(x∗)) for
the points x∗ of interest (see [Wah98]). The expectation is over the true dis-
tribution ptrue = P (t|x), induced by the latent function and the unknown
noise distribution. Of course, this criterion is not accessible, but approxi-
mations based on the training sample can be used. These approximations
are usually consistent in the limit of large n in that the minimum argument
of the approximation tends to the minimum argument of the true criterion.
The behaviour for finite, rather small samples is often less well understood.
[Wah98] and [WLZ99] suggest using proxies to the generalized comparative
Kullback-Leibler distance (GCKL):

GCKL(ptrue, y(·)) = Etrue

[

1

n

n
∑

i=1

g(ti, y(xi))

]

, (1.6)

where the expectation is over future, unobserved ti. The corresponding points
xi are fixed to the points in the training set, so we rely on these being a typ-
ical sample of the unknown distribution P (x) and the relations between the
latent values yi at these points being characteristic for the relations between
latent points elsewhere. Note that if g(t, y) is the misclassification loss, the
GCKL is the expected misclassification rate for y(·) on unobserved instances
if they have the same distribution on the xi as the training set. Many loss
functions g are actually upper bounds of this special misclassification loss (in-
cluding the Support Vector classification loss discussed below), and therefore
minimizing the GCKL of such a loss function w.r.t. free model parameters
can be regarded as a variational method to approach low generalization error.
We will discussion the principles of variational methods in detail below. The
GCKL itself is of course not accessible since the true law ptrue is unknown, but
computational proxies based on the technique of generalized approximative
cross validation can be found, see [Wah98] and [WLZ99].

A huge number of other distribution-free methods are analyzed in the ex-
cellent book [DGL96]. Maybe the most promising general technique is the
principle of Structural Risk Minimization (SRM) (see [Vap98]) which is based
on the idea of VC dimension mentioned above. Suppose we have a hypothesis
space of (in general) infinite VC dimension. PAC theory proposes frequentist
bounds on the minimal expected loss which come with two adjustable pa-
rameters, namely the accuracy ε and the confidence δ. PAC means probably
approximately correct, and PAC bounds assure that “probably” (with con-
fidence δ) the empirical risk is “approximately” (at most ε away from) the
“correct” expected risk, and this statement holds for all input distributions

1.2. MODELS, DEFINITIONS AND NOTATION 19

and all underlying hypotheses from the hypothesis space. The probabilities
are taken over the i.i.d. sampling from the true underlying distribution. It
is important to note that this notion of frequentist probabilities is funda-
mentally different from Bayesian beliefs. Within the frequentist framework,
the value of any information we extract from given data (in the form of an
estimator) can only be assessed over the ensemble of all datasets from an
unknown source. To actually perform such an assessment, we would need
many datasets from exactly the same source. Some frequentist techniques
split given data to be able to assess their estimators at least approximately,
but this is clearly wasteful. The idea behind frequentist techniques like PAC
or tail bounds or statistical tests with frequentist confidence regions is that
even though we have no access to the source ensemble, we can exploit the
fact that our dataset has been generated i.i.d. from the source and there-
fore exhibits a certain form of regularity. This phenomenon is referred to
as asymptotic equipartition property (AEP) (see [CT91]) and is conceptually
closely related to the notion of ergodicity. The AEP holds also for some non
i.i.d. sources, and frequentist tests can in general be applied to these sources,
but the methods become more and more complicated and need large datasets
to reach satisfying conclusions. In contrast to that, Bayesian prior beliefs are
assessed using (necessarily subjective) experience which can be gained from
expert knowledge or previous experiments. These beliefs are conditioned on
the given data, without the need to refer to the data ensemble or to waste
data for assessment of the analysis. The posterior probability distribution (or
characteristics thereof) is the most complete statement of conclusions that
can be drawn from the data (given the model), and we do not need to em-
ploy awkward, nonprobabilistic constructions like confidence intervals and p
values.

Typical VC bounds on the minimal expected loss consist of the sum of the
minimal empirical loss (a function of the training sample) and a complexity
penalty depending on the VC dimension of the hypothesis class, but they
only apply to spaces of finite complexity. The idea behind SRM is to choose
a sequence of nested subsets of the hypothesis space. Each of these subsets
has finite VC dimension, and the union of all subsets is the whole space.
We start from the smallest subset and gradually move up in the hierarchy.
In every set, we detect the minimizer of the empirical risk and evaluate the
bound. We keep track of the minimizer which achieved the smallest value of
the bound so far. Since the penalty term is monotonically increasing in the
VC dimension, we only need to consider finitely many of the subsets (the
loss function is bounded from below, and so is the expected loss term). The
discriminant selected in this way has low guaranteed risk.

20 CHAPTER 1. INTRODUCTION

The original formulation of SRM required the hypothesis class hierarchy to
be specified in advance, without considering the actual data. This is not only
extremely inefficient, but is also clearly violated by the method Support Vec-
tor machines are trained: The minimum margin which is maximized by the
training algorithm is a function of the sample. This dilemma was resolved
in [STBWA96] where the important notion of luckiness functions was intro-
duced. In a nutshell, a luckiness function ranks samples such that the higher
luckiness value a sample achieves, the better (i.e. smaller) the penalty terms
in certain VC-style upper bounds on the risk are. These bounds which are
parameterized by the luckiness value, are still distribution-free. If the dis-
tribution is actually very “unusual”, the luckiness value of a typical sample
will be high and the value of the bound is large. The important point about
luckiness-based bounds is that they can be biased in the following sense. Sup-
pose we have some prior knowledge or expectations about the behaviour of
the luckiness value under the true unknown distribution. We can then choose,
as direct consequence of this prior knowledge, the values of a sequence of free
parameters of the bound which can actually be interpreted as a prior dis-
tribution. The bound will be the tighter, the closer this sequence is to the
true distribution of the luckiness variable. We think that this is actually a
quite close correspondence to the Bayesian paradigm, although the luckiness
framework is far more complicated than the Bayesian one. As non-experts in
the former field, we hope that some day a synthesis will be achieved that com-
bines the conceptually simple and elegant Bayesian method with somewhat
more robust PAC-based techniques A very promising approach was shown
by McAllester (see [McA99b], [McA99a]), but see also [HKS94].

Support Vector classification is an example of a discriminative technique.
The loss function used there is

g(ti, yi) = [1− tiyi]+, (1.7)

which will be referred to as SVC loss. The SVC loss is an upper bound to the
misclassification loss (see [Wah98]). Furthermore, the size of the minimum
margin is a luckiness function (as is the negative VC dimension). However,
we will depart from this point of view and regard the penalty term in the
SVC criterion as coming from a Bayesian-style prior distribution.

1.2.5 Comparison of the paradigms

Now, what paradigm should we follow given a special instantiation of the
above problem? There’s a long, fierce and ongoing debate between follow-
ers of either paradigm. Bayesians argue that there is no other proper and

1.2. MODELS, DEFINITIONS AND NOTATION 21

consistent method for inference than the Bayesian one. Not quantifying prior
knowledge in distributions and including them in the inference process means
that information is lost. This is wasteful and can lead to false conclusions,
especially for small training sample sizes. Advocats of the discriminative
paradigm criticize the subjectivity introduced into the problem by choosing a
prior. Furthermore, the Bayesian approach might fail if the assumed prior is
far from the true distribution having generated the data. Both problems can
be alleviated by choosing hierarchical priors. There are also guidelines, like
the maximum entropy principle (see [Jay82]), that allow us to choose a prior
with “minimum subjectivity”, given constraints that many people (including
the critiques) would agree about.

Maybe the most serious drawback about the Bayesian paradigm (at least from
a practical viewpoint) is its immense computational complexity. Marginal-
ization involves integration over spaces of huge dimension, and at present no
known numerical technique is able to perform such computations reliably and
efficiently. Thus, we are forced to use crude approximations, and the error
introduced by these often cannot be determined to reasonable accuracy since
the true posterior distributions are not accessible. However, as we and most
Bayesians would argue, it should be more reasonable to begin with doing the
right thing and gradually apply approximations where absolutely necessary,
than to throw all prior knowledge away and rely on concentration properties
of large, i.i.d. samples only.

Methods in the discriminative paradigm have the advantage that they are
robust against false assumptions by the simple fact that they make no as-
sumptions. However, by ignoring possibly available prior information about
the problem to solve, they tend to have worse performance on small and
medium sized samples. By concentrating entirely on the generalization er-
ror, they fail to answer other questions related to inference, while Bayesian
methods are at least able to give subjective answers (an important example
is the computation of error bars, i.e. the variance of the predictive distri-
bution in the Bayesian framework, see for example [Bis95], chapter 6.5).
However, as mentioned above, recent developments in the PAC theory have
shown that distribution-free bounds on the generalization error can actually
depend on the training sample, and such bounds are usually, if appropriately
adjusted using prior knowledge, very much tighter than bounds that ignore
such knowledge.

22 CHAPTER 1. INTRODUCTION

1.2.6 Models of classification noise

Let us introduce some common models for classification noise P (t|y). The
Bernoulli noise model (also binomial or logit noise model) is most commonly
used for two-class classification. If π(x) = P (t = +1|x), the model treats t
given π as Bernoulli(π) variable, i.e.

P (t|π) = π(1+t)/2(1− π)(1−t)/2. (1.8)

Instead of π, we model the logit log π/(1− π) as latent function:

y(x) = logit(x) = log
P (t = +1|x)

P (t = −1|x)
(1.9)

If σ(u) = (1 + exp(−u))−1 denotes the logistic function, we have π(x) =
σ(−y(x)) and

P (t|y) = σ(ty) (1.10)

The choice of the logit as the latent function is motivated by the theory of
nonparametric generalized linear models (GLIM, see [GS94],[MN83]). These
models impose a Gaussian process prior (as introduced in the next sec-
tion) on the latent function y(·) and use noise distributions P (t|y) from the
exponential family, so that the Gaussian process classification model with
Bernoulli noise is actually a special case of a GLIM. If µ(x) = Et|y(x), the
connection between µ and the latent function is given by the link function
G(µ(x)) = y(x). The most common link is to represent the natural parame-
ter of the exponential family by y(·), referred to as canonical link. This choice
has statistical as well as algorithmic advantages. As an example, the natural
parameter of the Gaussian distribution is its mean, so that GP regression (as
discussed in the next section) is a trivial GLIM. The natural parameter of
the Bernoulli distribution is the logit. The standard method to fit a GLIM
to data is the Fisher scoring method which, when applied to our model, is
equivalent to the Laplace method discussed below. However, most applica-
tions of Fisher scoring in the statistical literature differ from the Bayesian
GP classification in the treatment of hyperparameters. The former use clas-
sical statistical techniques like cross validation (as discussed in detail below)
to adjust such parameters.

Another common model is probit noise (based on the cumulative distribution
function (c.d.f.) of a Gaussian, instead of the logistic function, see [Nea97]).
Probit noise can be generated very elegantly, as shown in [OW00],[OW99].
Consider adding stationary white noise ξ(x) to the latent function y(x),

1.3. BAYESIAN GAUSSIAN PROCESSES 23

and then thresholding the sum at zero, i.e. P (t|y, ξ) = Θ(t(y + ξ)) where
Θ(u) = I{u≥0} is the Heavisyde step function. If ξ(x) is a white zero-mean
Gaussian process with variance σ2, independent of y(x), the induced noise
model is

P (t|y) =

∫

P (t|y, ξ)P (ξ) dξ = Φ

(

ty

σ

)

, (1.11)

where Φ is the c.d.f. of N(0, 1). Moving from the noiseless case P (t|y) = Θ(ty)
to the probit noise therefore amounts to simply add Gaussian noise to the
latent variable. Adding Laplace or t distributed noise, i.e. distributions with
heavier tails, results in more robust noise models. Finally, Opper and Winther
[OW00],[OW99] discuss a flip noise model where P (t|y, ξ) = Θ(tξy), ξ(x) ∈
{−1, +1} is white and stationary. If κ = P (ξ = +1), we have P (t|y) =
κ + (1− 2κ)Θ(ty).

1.3 Bayesian Gaussian processes

1.3.1 Construction of Gaussian processes

We follow [Wil97] and [WB98]. A Gaussian process is a collection of random
variables, indexed by X, such that each joint distribution of finitely many
of these variables is Gaussian. Such a process y(·) is completely determined
by the mean function x 7→ E[y(x)] and the covariance kernel K(x, x′) =
E[y(x)y(x′)]. If we plan to use Gaussian processes as prior distributions, we
can savely assume that their mean functions are 0, since knowing a priori
any deviation from 0, it is easy to subtract this off. Note that assuming a
zero-mean Gaussian process does not mean that we expect sample functions
to be close to zero over wide ranges of X. It means no more and no less that,
given no data and asked about our opinion where y(x) might lie for a fixed
x, we have no reason to prefer positive over negative values or vice versa.

We can start from a positive definite symmetric kernel K(x, x′). Since K
is positive definite, for every finite ordered subset (x1, . . . , xm) ⊂ X the
covariance matrix K = (K(xi, xj))ij is positive definite. We now assign
(x1, . . . , xm) 7→ N(0, K). It is easy to see that these mappings are consistent
with respect to marginalization and therefore, by the theorem indicated in
1.2.3, induce a unique Gaussian random process.

In the following, we will denote the covariance kernel of the prior Gaussian
process by K, the covariance matrix evaluated over the training sample by K.
For a prediction point x∗, we set k∗ = K(x∗, x∗) and k(x∗) = (K(xi, x∗))i.

24 CHAPTER 1. INTRODUCTION

1.3.2 Remarks on choice or design of kernels

When using a Gaussian process prior, all prior knowledge we have must
be faithfully encoded in the covariance kernel. We will not go into model-
ing details here, but briefly mention some work in that direction. The ba-
sic idea behind most approaches is to use a more or less hierarchical de-
sign. Instead of choosing a fixed kernel K, we choose a parametric family
{K(x, x′|θ) | θ ∈ Θ} and a prior distribution over the hyperparameter vec-
tor θ, sometimes referred to as hyperprior. In principle we can continue and
parameterize the hyperprior by hyper-hyperparameters, and so on. Note that
this leads effectively to a non-Gaussian process prior, by integrating θ out.
Also, hierarchical design is very related to the way human experts attack
modeling problems. If we in principle expect a certain property to hold for
typical sample functions, but are not sure about some quantitative aspects of
this property, we simply introduce a new hidden variable mapping these as-
pects to numerical values. Given a fixed value for this variable, the property
should be easy to encode. Neal [Nea97] and MacKay [Mac97] give intuitive in-
troductions to kernel design and show how to encode properties like smooth-
ness, periodicity, trends and many more. Williams and Vivarelli [WV00] give
kernels that encode degrees of mean-square differentiability which maps to
expected roughness of sample functions. Another approach is to start from
a parametric function family (see section 1.2.3) and choose priors on the
weights in such a way that a Gaussian process prior over the function results.
This sometimes works for finite architectures (i.e. having a finite number of
weights), an example would be linear regression with fixed basis functions
(see [Wil97]). However, in general the function distribution of more complex
architectures will not be Gaussian if the weight priors are chosen in a simple
way, but we often can achieve a Gaussian process in the limit of infinitely
many weights. Such convergence can usually be proved by using the central
limit theorem. Neal [Nea96] provides a thorough discussion of this technique,
also showing up its limits. Williams [Wil96] calculated the kernel correspond-
ing to radial basis function networks and multi-layer perceptrons, in the limit
of an infinitely large hidden layer. Apart from the Adaptive Systems commu-
nity, there are many other fields (like geology, meteorology) where Gaussian
processes have been studied extensively, and there is a huge literature we
will not try to review here. The reader might consider [Cre93] for spatial
processes or the references given above for further bibliographies.

While most of the methods for choosing kernels mentioned above are rather
adhoc, there are more principled approaches. Burges [Bur98a] shows how to
incorporate certain invariance properties into a kernel, using ideas of differ-

1.3. BAYESIAN GAUSSIAN PROCESSES 25

ential geometry, see also [SSSV97]. Jaakkola and Haussler [JH98],[JHD99]
propose the method of Fisher kernels and use generative models of the class
densities over X to construct kernels. This widens the scope of kernel meth-
ods significantly. While the standard kernels usually assume X to be a real
space of fixed, finite dimension, Fisher kernels have been used to discrim-
inate between variable-length sequences, using Hidden Markov Models as
generative models.

1.3.3 But why Gaussian?

There are several good reasons for preferring the family of Gaussian processes
over other random processes, when choosing a prior distribution without
using an underlying parametric model such as a parameterized function class.
The most important one is maybe that using Gaussian process priors renders
a subsequent Bayesian analysis tractable. Conditioning and marginalization
of Gaussians gives Gaussians again, and simple matrix algebra suffices to
compute the corresponding parameters. No other known parametric family
of multivariate distributions has these closeness properties.

More justification comes from the principle of maximum entropy (see
[Jay82],[CT91]). Suppose we use our knowledge to construct a covariance
kernel K for the prior process. We now choose, among all random processes
with zero mean and covariance K the one that is otherwise most uncertain.
Uncertainty of a process can be measured by the differential entropies of its
joint distributions. But it is well-known that among all distributions with a
fixed covariance matrix the Gaussian maximizes the differential entropy. The
maximum entropy principle therefore suggests choosing the Gaussian process
with covariance K as prior distribution.

Finally, one might justify the use of Gaussian process priors by the fact
that such prior distributions result if standard architectures like radial basis
function networks or multi-layer perceptrons are blown up to infinite size.
However, this argument is rather weak since convergence against a Gaussian
process is only achieved if the priors on the architecture weights are cho-
sen appropriately. Consider a multi-layer perceptron with one hidden layer.
For the central limit theorem to be applicable, the variances of the hidden-
to-output weights must converge to zero as the network grows. The final
response of such a large network is the combination of a huge number of very
small effects. Neal [Nea96] suggests and analyzes the use of weight priors that
allows a finite number of the weights to be of the same order as the final re-
sponse. More specific, under this prior the expected number of weights larger

26 CHAPTER 1. INTRODUCTION

than some threshold is bounded away from zero, even in the infinite network.
Such a parameterization is maybe more reasonable if some of the network
units are expected to develop feature detection capabilities. In this case, the
limit of the network output is a random process which is not Gaussian.

1.3.4 Bayesian regression – an easy warmup

Even though the rest of this thesis deals with two-class classification only,
we briefly develop the Bayesian analysis of the regression estimation problem
with Gaussian noise, mainly because it is one of the rare special cases beyond
linear regression where an exact Bayesian analysis is feasible.

Additive Gaussian noise is often justified by the presence of a large num-
ber of very small and widely independent random effects which add up to
produce the final noise, and by the central limit theorem. Another argument
can be formulated if we regard the corruption by noise as an information-
theoretic communication channel (see [CT91]). The input yi is corrupted by
independent noise ni to form the output ti = yi + ni. Both input and noise
are power-constrained in the sense that E[y2

i] and E[n2
i] are bounded. One

can show that among all constrained noise distributions the Gaussian one
gives rise to the smallest capacity of this channel. In other words, no other
noise distribution leads to a smaller maximum mutual information between
input yi and output ti. In this sense, Gaussian noise is the worst we can
expect, and modeling unknown noise as Gaussian will at least satisfy the
pessimists among the critiques. However, Gaussian noise is clearly inappro-
priate if we expect single random effects of the output’s order of magnitude
to occur (see also subsection 1.3.3), such effects result in so-called outliers.
In these situations, distributions with larger tails like the t distribution or
Huber distributions (see [Nea97],[Hub81]) should be used.

Let the noise be coloured Gaussian, i.e. P (t|y) = N(y, F), F = (F (xi, xj))ij

and F the covariance of the noise process. Then, P (t, y) is Gaussian with
zero mean and a covariance made up of the blocks K + F and three times
K. By conditioning on t we arrive at

P (y|t) = N
(

K(K + F)−1t, K(K + F)−1F
)

(1.12)

P (y, y∗) is jointly Gaussian, and by conditioning we have P (y∗|y) =
N(qty, ρ2) with q = K−1k(x∗) and ρ2 = k∗ − qtk(x∗). Furthermore,

P (y∗|t) =

∫

P (y∗|y)P (y|t) dy. (1.13)

1.3. BAYESIAN GAUSSIAN PROCESSES 27

Having a look at this equation, we see that y∗ given t has the same distribu-
tion as x+qty where y ∼ P (y|t) and x ∼ N(0, ρ2), independent of y. There-
fore, given t, y∗ is normal with mean qtK(K + F)−1t = k(x∗)

t(K + F)−1t

and variance ρ2 + qtK(K + F)−1Fq = k∗ − k(x∗)
t(K + F)−1k(x∗). The

predictive distribution P (y∗|t) contitutes a complete solution of the predic-
tion problem. Prediction with white noise corresponds to the special case
F = σ2I. See [Wil97],[WR96], [Ras96] for more details on Gaussian process
regression with Gaussian noise. Neal [Nea97] discusses the regression problem
with non-Gaussian, t distributed noise and suggests a Markov Chain Monte
Carlo solution.

The Bayesian analysis is not complete at this point if we use a kernel fam-
ily indexed by the hyperparameter vector θ. However, the remaining exact
computations needed are not tractable. Therefore, we have to employ ap-
proximative techniques which are basically the same as in the classification
case and will be described below.

1.3.5 Bayesian classification

As opposed to the regression case, the exact Bayesian analysis of two-class
classification is infeasible since the integrals are not analytically tractable. A
set of different techniques have been proposed to approximate the predictive
distribution or moments thereof, based on Laplace approximations [WB98],
Markov chain Monte Carlo [Nea97], variational techniques [Gib97] or mean
field approximations [OW99]. We will describe the Laplace approximation
in detail, since we need it in following arguments. In this subsection, we
will assume that the hyperparameter vector θ is fixed. We will specialize
to the Bernoulli noise model (see subsection 1.2.6), although the presented
techniques are more general.

The Laplace approximation is a general technique that applies to a wide
range of positive densities. Let p(x) = exp(−Ψ(x)) where Ψ is two times
differentiable everywhere. Let x̂ be a local minimum of Ψ. We can expand
Ψ around the local mode of p(x) into a Taylor series. Dropping terms higher
than second order, we have

Ψ(x) ≈ Ψ(x̂) +
1

2
(x − x̂)tH(x − x̂), (1.14)

where H = ∇∇(− log p(x)), evaluated at the mode x̂. Plugging this into
exp(−Ψ(x)) and normalizing, we see that p(x) can be approximated by the
Gaussian with mean x̂ and covariance matrix H−1. At first sight, this ap-
proximation seems to be too inaccurate to ever be useful. Indeed, even if x̂ is

28 CHAPTER 1. INTRODUCTION

a global minimum of Ψ, using the Laplace method with very “non-Gaussian”
p(x) can cause severe problems. However, we should bear in mind that our
goal is to approximate very peaky, low entropy distributions (namely, pos-
terior distributions) in very high-dimensional spaces, where volume ratios
tend to behave completely different compared to familiar low-dimensional
settings. MacKay [Mac91],[Mac95] discusses some aspects of Gaussian ap-
proximations of distributions in high-dimensional spaces. From the practical
point of view, we use Laplace approximations because they reduce compli-
cated distributions to simple Gaussian ones and render previously intractable
computations feasible. Apart from that, applying Laplace approximations in
Bayesian analysis works surprisingly well in a large number of situations.
Even though we cannot conclude that distributions are in general reasonably
well represented by their Laplace approximations, these defiencies often don’t
seem to have a destructive effect on the final results.

The Laplace method is not the only way to approximate a high-dimensional
density. It fails if Ψ is not differentiable everywhere or the second deriva-
tives at the minimum x̂ don’t exist. Finally, there might be other Gaussians
representing p(x) “better”4 than the Laplace solution does. The latter uses
only local information (namely, the curvature of the log probability manifold)
concentrated at the mode and is usually suboptimal. Both problems are ad-
dressed by variational techniques like variational free energy minimization
which will be discussed in detail below. The merits of the Laplace approx-
imation lie in its simplicity and high computational speed, as compared to
rival methods.

The negative log of the posterior P (y|t) = P (t, y)/P (t) is, up to the constant
log P (t), given by

Ψ = Ψ(y) = − log P (y, t) = − log P (t|y)− log N(y|0, K)

= − log P (t|y) +
1

2
ytK−1y +

1

2
log |K|+ n

2
log 2π.

(1.15)

If ŷ = argmin Ψ denotes the posterior mode, the Gaussian approximation
rendered by the Laplace method is

Pa(y|t) = N
(

ŷ, (W + K−1)−1
)

, (1.16)

where W = ∇∇(− log P (t|y)), evaluated at ŷ, is a diagonal matrix. The
predictive distribution is given by (1.13) and can be computed the same way
as shown in subsection 1.3.4. We end up with

Pa(y∗|t) = N
(

k(x∗)
tK−1ŷ, k∗ − k(x∗)

t (I + WK)−1
Wk(x∗)

)

. (1.17)

4A suitable quality criterion will be introduced and justified later.

1.3. BAYESIAN GAUSSIAN PROCESSES 29

Given the model and the approximations we did so far, (1.17) represents the
predictive distribution, i.e. the most complete solution to the classification
problem. The MAP discriminant is k(x∗)

tK−1ŷ, and the variance of Pa(y∗|t)
can be seen as error bar. Note that the mode of Pa(y∗|t) is linearly related
to the mode ŷ of Pa(y|t) which is also the true posterior mode. The same
linear relation holds between the true predictive mean and the true posterior
mean. However, since we cannot compute the true posterior mean (which
is usually different from the posterior mode) in a tractable way, we need to
apply some sort of approximation, such as the Laplace method, to be able to
calculate an approximative predictive mean or mode5. Other approximations
like for example mean field techniques (see [OW00]) make a Gaussian ansatz
only for the predictive distribution, but the computation of the mean field
parameters is typically much more involved than the minimization of (1.15).
The variational method described in this thesis makes a Gaussian ansatz for
the posterior P (y|t) too, but takes more information about the posterior
into account than just its mode and the local curvature around it.

We have not said anything about how accurate we expect this Gaussian ap-
proximation of the posterior to be. From the convexity of (1.15) we know
that the true posterior is unimodal, but it might be very skew so that any
Gaussian approximation is poor in the sense that a sensible distance (such
as the relative entropy, see subsection 3.1.2) between the posterior and any
Gaussian approximation is large. Even if the posterior can be approximated
well by a Gaussian, the choice made by the Laplace technique might be poor
(see [BB97] for a toy example), this problem is attacked by the variational
method in this thesis. However, what we are really interested in is a Gaus-
sian approximation of the univariate predictive distribution P (y∗|t), and we
noted above that some methods (see [OW00]) indeed make a Gaussian ansatz
only for this distribution. We have seen that our posterior ansatz leads to
a Gaussian approximation of the predictive distribution and therefore is a
stronger assumption, but the two are very related in the following sense. If
y ∼ P (y|D) and y∗ ∼ P (y∗|D), we have the linear relation y∗ = q(x∗)

ty + r
where q(x∗) = K−1k(x∗) and r is independent Gaussian noise with variance
k∗ − q(x∗)

tk(x∗). If y∗ is Gaussian for all x∗, so is q(x∗)
ty. By Cramer’s

theorem (see [Fel71]), a multivariate variable is jointly Gaussian iff the pro-
jection of this variable onto every direction is Gaussian. While in general the
q(x∗) will not cover all directions, it is nevertheless clear that the Gaussian
ansatz for the posterior is not much stronger than the assumption that all
predictive distributions are Gaussian.

5The predictive mode is usually not even a function of the posterior mode, so we can’t
hope to determine it without approximations either.

30 CHAPTER 1. INTRODUCTION

Let us have a closer look at (1.17). If W is invertible, the variance can
be written as k∗ − k(x∗)

t(W−1 + K)−1k(x∗) which has the same form as
in the regression case, with W −1 replacing the noise covariance E. The
following applies to the Bernoulli noise model introduced above. We have
wi = d2(− log σ(tiyi))/dy2

i = σ(yi)(1 − σ(yi)). Figure 1.1 shows wi plotted
against yi. How can we interpret that? Suppose that after we have found
ŷ we observe that most of the components in ŷ are close to 0, i.e. most of
the training patterns actually lie in the critical region between the classes.
Then, the elements in the “noise” matrix W −1 will be fairly small and the
predictive variance will be rather small. On the other hand, if most of the
components in ŷ are rather large, i.e. most of the patterns either deep in the
region of their class or judged as strong outliers by the discriminant, W −1

has large elements, and the predictive variance will be large, for many cases
x∗ close to the prior variance k∗. This is intuitively clear since patterns close
to the decision boundary contain much more discriminative information (see
discussion about Support Vectors below) than patterns far from the bound-
ary, and a prediction based on more informative data should also be more
confident than one based on a less informative sample.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

t y

w

Figure 1.1: Component of W matrix against ty for the corresponding data-
point.

An approximation to the predictive distribution for the class label P (t∗|t) can
be computed by averaging the noise distribution P (t∗|y∗) over the Gaussian

1.4. SUPPORT VECTOR CLASSIFICATION 31

Pa(y∗|t). The analytically intractable integral can easily be approximated by
numerical techniques like Gaussian quadrature (see [PTVF92]). If the noise
distribution P (t|y) is strictly monotonic increasing in ty, there exist a unique
threshold point a such that P (+1|y = a) = P (−1|y = a), and the optimal
discriminant based on Pa(y∗|t) is g(x∗) = sgn(k(x∗)

tK−1ŷ − a). In case of
Bernoulli noise, we have a = 0.

The mode ŷ can be found very efficiently using the Newton-Raphson algo-
rithm, which is equivalent to the Fisher scoring method mentioned above
since we use the canonical link (recall subsection 1.2.6). Note that if the
negative logarithm of the noise distribution P (t|y) is convex in y for both
t = ±1, then the optimization problem of finding the mode is a convex one.

Finally, we have to deal with the hyperparameters θ. The exact method
would be to compute the posterior P (θ|D) and to average all quantities
obtained so far by this distribution. Neither of these computations are
tractable, so again approximations must be employed. Sophisticated Markov
Chain Monte Carlo methods like the hybrid MC algorithm (see [Nea96])
can be used to approximate the integrals (see [WB98]). We can also search
for the mode θ̂ of the posterior P (θ|D) and plug this parameter in, i.e.
P (y∗|D) ≈ P (y∗|D, θ̂), etc. This maximum a-posteriori (MAP) approach
can be justified in the limit of large datasets, since P (θ|D) converges to a
delta or point distribution for all reasonable models. We will discuss the MAP
approach in more detail below.

1.4 Support Vector classification

We follow [Vap98], [Bur98b]. If not otherwise stated, all facts mentioned here
can be found in these references. Vapnik [Vap98] gives a fascinating overview
of the history of Statistical Learning Theory and SVM.

Support Vector classification has its origin in a perceptron learning algorithm
developed by Vapnik and Chervonenkis. They argued, using bounds derived
within the newly created field of Statistical Learning Theory, that choosing
the hyperplane which seperates a (linearly seperable) sample with maximum
minimal margin6 results in a discriminant with low generalization error. The
minimal margin of a seperating hyperplane y(x) = (ω, x)+ b, ‖ω‖ = 1 with

6In earlier literature, the minimal margin is sometimes simply referred to as margin.
However, the margin (as defined in more recent papers) is actually a random variable whose
distribution seems to be closely related to generalization error. The minimal margin is the
sample minimum of this variable.

32 CHAPTER 1. INTRODUCTION

respect to the sample D is defined as

min
i=1,...,n

tiy(xi) (1.18)

where y(·) seperates the data without error. We will write yi = y(xi) in
the sequel. Note that tiyi denotes the perpendicular distance of xi from the
seperating plane. The reasoning behind this is that if the data points xi are
restricted to lie within a ball of radius D/2, then the VC dimension of the set
of hyperplanes with minimal margin M is bounded above by dD2/M2e + 1
(see [Vap98]). Much later, the optimum margin hyperplanes were generalized
in two directions with the result being the Support Vector machine. First
of all, nonlinear decision boundaries can be achieved by mapping the in-
put vector x via Φ into a high, possibly infinite dimensional feature space
with an inner product. Since in the original algorithm, input vectors oc-
cured only in inner products, the nonlinear version is simply obtained by
replacing such x by Φ(x) and inner products in X by inner products in
the feature space. This seems to be a bad idea since neither Φ nor feature
space inner products can usually be computed efficiently, but a certain rich
class of Φ mappings have associated positive semidefinite kernels K such
that K(x, x′) = (Φ(x), Φ(x′)). As we will see below, every positive semidefi-
nite kernel satisfying certain regularity conditions actually induces a feature
space and a mapping Φ. We will now derive the SVC algorithm using this
nonlinear generalization, and later show how it arises as the special case of
a more general setting.

Instead of constraining ω to unit length, we can equivalently fix the minimal
margin to 1 (it must be positive if the data set is linearly seperable). Given
a canonical hyperplane (ω, b), i.e.

tiyi ≥ 1, i = 1, . . . , n (1.19)

with equality for at least one point from each class, the same hyperplane
with normal vector constrained to unit length has margin 1/‖ω‖. The SVC
problem therefore is to find a canonical hyperplane with minimal (1/2)‖ω‖2.

The second generalization was to allow for errors, i.e. violations of (1.19), but
penalize errors [1− tiyi]+ using a monotonically increasing function of these
which is added to the criterion function. The fully generalized SVC problem
is to find a discriminant y(x) = (ω, Φ(x))+b which minimizes the functional

C
∑

i

[1− tiyi]+ +
1

2
‖ω‖2. (1.20)

1.4. SUPPORT VECTOR CLASSIFICATION 33

This is a quadratic programming problem as can be shown by introducing
nonnegative slack variables ξi, relaxing (1.19) to

tiyi ≥ 1− ξi, i = 1, . . . , n (1.21)

and minimizing (1/2)‖ω‖2 + C
∑

i ξi with respect to (1.21). Note that the
sum is an upper bound on the number of training errors. Applying standard
optimization techniques (see [Fle80]), we introduce nonnegative Lagrange
multipliers αi ≥ 0 to account for the constraints (1.21) and νi ≥ 0 for the
nonnegativity of the slack variables. The multipliers are referred to as dual
variables, as opposed to the primal variables ω and b. The Lagrangian has
a saddlepoint7 at the solution of the original problem. Differentiating the
Lagrangian with respect to the primal variables and equating to zero, we can
express ω in terms of the dual variables:

ω =

n
∑

i=1

αitiΦ(xi). (1.22)

The primal variable b gives us the equality constraint

n
∑

i=1

αiti = 0. (1.23)

Substituting these into the Lagrangian, we arrive at the Wolfe dual which
depends only on the dual variables α:

∑

i

αi −
1

2

∑

i,j

αiαjtitj(Φ(xi), Φ(xj)). (1.24)

However, the combination of feasibility conditions8 and Karush-Kuhn-Tucker
(KKT) conditions introduces new constraints αi ≤ C on the dual variables.
The boundedness of the dual variables is a direct consequence of the linear
penalty (slack variables enter linearly into the criterion), as is the fact that
slack variables and their Lagrange multipliers do not appear in the Wolfe
dual. By using the kernel K and the corresponding covariance matrix K, the
dual can be written as

αt1− 1

2
αtT KTα, (1.25)

7The solution is a minimum point of the Lagrangian w.r.t. the primal variables ω, b

and a maximum w.r.t. the dual variables.
8A vector is called feasible if it fulfils all the constraints of the problem. The set of all

such vectors is called the feasible set. This set is convex in our situation.

34 CHAPTER 1. INTRODUCTION

where T = diag t. Substituting (1.22) into the hyperplane equation we have

y(x) =

n
∑

i=1

αiti(Φ(xi), Φ(x)) + b = k(x)tTα + b (1.26)

where k(x) = (K(xi, x))i, as defined above.

The dual problem, namely to minimize (1.25) subject to the box constraints
0 ≤ α ≤ C1 and (1.23) has a unique solution α̂, being the only feasible
vector α that fulfils the KKT conditions

αi = 0 =⇒ tiyi ≥ 1

αi ∈ (0, C) =⇒ tiyi = 1

αi = C =⇒ tiyi ≤ 1

(1.27)

These conditions can be used to determine the bias parameter b̂ at the solu-
tion. The input points xi with α̂i > 0 are called Support Vectors. Those with
α̂i ∈ (0, C) are sometimes referred to as essential Support Vectors. The addi-
tive expansion y(·) = k(·)tT α̂ depends only on the Support Vectors, as does
the training process of the Support Vector Machine. Note also that a falsely
classified training point must have its dual variable at the upper bound C.
On not too noisy datasets, the solution α̂ is usually sparse in the sense that
the ratio of the number of Support Vectors to the training set size is of the
same order of magnitude as the Bayes error of the class distributions.

Chapter 2

A common framework

In this chapter we will introduce the spline smoothing framework (see
[Wah90],[Wah98]) and show how Gaussian process and Support Vector clas-
sification arise as special cases. We then analyze the remaining difference
between Support Vector classifiers and probabilistic kernel regression classi-
fiers such as GPC and suggest an intuitive interpretation for the utility and
the effects this difference might show in practice.

2.1 Spline smoothing methods

Throughout this section, we heavily rely on [Wah90] which contains de-
tails and references to the material presented here, unless otherwise stated.
The framework given there has been applied to Support Vector machines
in [Wah98], [WLZ99]. Other, albeit related unifications have been given for
example by [OW99],[SSM98]. Jaakkola and Haussler [JH99] define the class
of kernel regression classifiers and analyzes the relation between primal and
dual criterion, using terms from convex analysis. The primal criterion for
probabilistic kernel regression models is the log posterior of the hidden vari-
ables y. He develops generic training and error estimation methods for this
class.

2.1.1 Some facts from Hilbert space theory

We start with a reproducing kernel Hilbert space (RKHS) HR, i.e. a Hilbert
space such that all Dirac evaluation functionals are bounded. A Hilbert space
is a Banach space with an inner product which is complete in the sense that

35

36 CHAPTER 2. A COMMON FRAMEWORK

all Cauchy sequences converge against elements of the space (see [Hal57]).
Without loss of generality we assume that HR is a subspace of L2 = L2(X),
the space of square integrable functions. Note that L2 itself is no RKHS. The
Dirac functional δ � , a ∈ X maps f to f(a). By the Riesz representation
theorem, all these functionals have representers in HR, and we can define the
reproducing kernel (RK) R of HR as

y(x) = (R(·, x), y), y ∈ HR. (2.1)

Note that R(x, x′) = (R(·, x), R(·, x′)), i.e. R “reproduces” itself. The RK is
always a symmetric, positive definite form. On the other hand, we can start
with any positive definite form R and show that there is a unique RKHS
with RK R, this fact is known as Moore-Aronszajn theorem. In fact, the
inner product of this space is easily obtained from R, by a process that is
simply the function space generalization of the diagonalization of a positive
definite matrix. Suppose that the kernel is continuous and its square has
finite trace:

∫ ∫

R2(x, x′) dxdx′ < ∞. (2.2)

Then, by the Mercer-Hilbert-Schmidt theorems, there exists an orthonormal
sequence of eigenfunctions {Φν} in L2 and eigenvalues λ1 ≥ λ2 ≥ . . . with

∫

R(x, x′)Φν(x
′) dx′ = λνΦν(x) (2.3)

and we can write the kernel as

R(x, x′) =
∑

ν

λνΦν(x)Φν(x
′). (2.4)

Let {yν} denote the spectrum of y ∈ L2 w.r.t. the eigensystem, i.e. yν =
∫

y(x)Φν(x) dx. We can define an inner product on L2 by

(y, z)R =
∑

ν

yνzν

λν
, (2.5)

and HR can be characterized as

HR = {y ∈ L2 | (y, y)R < ∞}. (2.6)

By the well-known Kolmogorov consistency theorem, for every positive defi-
nite form there exists a unique Gaussian process with this form as covariance

2.1. SPLINE SMOOTHING METHODS 37

kernel, so we can conclude that there is a simple 1-1 relationship between
Gaussian processes and RKHS. It is interesting to note a subtilety hidden
in this relationship, as pointed out by [Wah90], p.5. If we draw a sample
function y(x) from the Gaussian process defined by the kernel K, it is not
contained in HK with probability 1 (i.e. its norm, as defined by (2.5), is in-
finite). In light of this fact, it may be preferable to put into foreground the
correspondence between HK and the Hilbert space spanned by the process
y(x) (see [Wah90], p.14–15): these are isometrically isomorphic.

2.1.2 The general spline smoothing problem

A special case of the general spline smoothing problem is stated as follows.
Let Φ1, . . . , ΦM be functions in L2

1 such that the matrix U ∈ R
n×M , U iν =

Φν(xi) has full rank M < n. Let g(ti, yi) be a loss function. Find the mini-
mizer yλ ∈ span{Φν}+ HR of the functional

1

n

∑

i

g(ti, yi) + λ‖P y(·)‖2
R, (2.7)

where ‖·‖R denotes the norm in HR, defined by (2.5), and P is the projection
onto HR. Kimeldorf and Wahba have shown that various very general data
models result in smoothing problems of this kind if the kernel R is chosen in
a proper way, see [Wah90] for details. The special version (2.7) can be found
in [Wah98]. The reader might be curious what all this has to do with splines.
If g is the squared-error loss and the inner product of HR is constructed
using differential operators up to a certain order, the minimizer of (2.7) is a
polynomial spline (this has been shown by Schönberg [Sch64]). See [Wah90]
for a derivation.

The representer theorem is of central importance for the spline smoothing
problem because it transforms the optimization problem (2.7) into a simple
finite-dimensional one. It states that yλ has a representation of the form

yλ(x) =
∑

m

dmΦm(x) +
∑

i

ciR(xi, x). (2.8)

Let R denote the covariance matrix of R, evaluated at the training points,
so Rij = R(xi, xj). Let r(x) be defined by ri(x) = R(x, xi). Much more
can be said about d and c if one specializes to a concrete loss function g. If
g is strictly convex w.r.t. yi, then (2.8) is a convex optimization problem. If

1The base functions should not be confused with the eigenfunctions of R.

38 CHAPTER 2. A COMMON FRAMEWORK

g is differentiable w.r.t. yi and R is nonsingular, we can show that U tc = 0,
so c must be a generalized divided difference of the Φm (see [Wah90], p.32).
In the special case of quadratic loss functionals, i.e. g(ti, yi) = (ti−yi)

2, (2.8)
can be explicitely solved for c and d, and both are linear in the targets t (see
[Wah90], p.11).

2.1.3 Gaussian process classification as spline smooth-

ing problem

The correspondence between the two regimes can now easily be formulated.
Choose M = 0 and P as identity on HR, g(ti, yi) = − log P (ti|yi), so (2.7)
becomes

− 1

n
log P (t|y) + λ‖y(·)‖2

R, (2.9)

where ‖ · ‖R is the norm of HR. The representer theorem gives yλ(x) =
∑

i ciR(x, xi). Substituting this into (2.9) results in the problem to find c

which minimizes

− log P (t|y) + (nλ)ctRc, (2.10)

and if ĉ denotes the minimizer, the best prediction at x∗ is ŷ∗ = r(x∗)
tĉ.

If we set K = (2nλ)−1R and y = K(2nλ)c = Rc, we see that minimizing
(2.10) w.r.t. c is equivalent to minimizing Ψ (1.15) w.r.t y, and the predic-
tions ŷ∗ are identical. c will also be referred to as dual variables, and the
minimization of (2.10) as dual problem.

2.1.4 Support Vector classification as spline smoothing

problem

We choose M = 12 and an arbitrary constant base function, say Φ1 ≡ 1. P

maps y to y−y(0), and the RKHS HR in consideration only contains functions
with y(0) = 0. If y ∈ HR, it can be expanded into the eigenfunctions of R:

y(x) =
∑

ν

ων

√

λνΦν(x) (2.11)

2Chosing M > 1 leads to semiparametric Support Vector Machines. The choice M = 0
is discussed below.

2.1. SPLINE SMOOTHING METHODS 39

If we define the map Φ(x) = (
√

λνΦν(x))ν from X into l2
3 and set ω = (ων)ν ,

this can be written as an inner product in l2:

y(x) = (ω, Φ(x)) (2.12)

We have R(x, x′) = (Φ(x), Φ(x′)), yν =
∫

y(x)Φν(x) dx = ων

√
λν and

‖y‖2
HR

=
∑

ν y2
ν/λν =

∑

ν ω2
ν = ‖ω‖2. Under these constraints, (2.7) becomes

the familiar Support Vector optimization problem: Find y(x) = (ω, Φ(x))+b
to minimize the functional

1

n

∑

i

g(ti, y(xi)) + λ‖ω‖2. (2.13)

See (for example) [Wah98] for a variety of loss functions g and their role
as “computational proxies” to intractable ones. We only consider Support
Vector classification (SVC) here, but the result applies to regression as well.
We use the SVC loss function (1.7) and reparameterize the trade-off constant

C =
1

2nλ
, (2.14)

which transforms (2.13) into (1.20).

2.1.5 The bias parameter

Strictly speaking, Support Vector machines are semiparametric models since
they use a bias parameter b. Semiparametric Gaussian process models have
been considered in the Statistics literature (see [GS94]), and for a single bias
parameter the extension is straightforward. However, to render subsequent
arguments more clear, we prefer to drop the bias parameter b and consider
“nonparametric SVM”. From a theoretical point of view, the bias parameter
is redundant in a certain sense, as we will show. [Wah90] uses a parametric
extension of the basic RKHS if the kernel in consideration has a null space.
In this case, if the null space is finite dimensional, we can bridge the gap
by a parametric extension whose base spans this space. However, we only
consider kernels without null space here. If we retained b, we would have
to place a prior on it. This would be zero-mean, since we have no reason to
prefer one of the half-spaces for y(·). Furthermore, we don’t expect very large
values of b a priori since this results in discriminant functions predicting one

3l2 is the Hilbert space of real sequences of “finite energy”. Note that
∑

ν
(
√

λνΦν(x))2 = R(x, x) < ∞.

40 CHAPTER 2. A COMMON FRAMEWORK

of the targets with high probability almost everywhere.4 Therefore, we can
assume finite variance. The maximum entropy prior (see section 1.3.3) for a
fixed variance is Gaussian. But placing a zero-mean Gaussian prior on b is
equivalent to dropping the parametric extension of the model and adding a
single positive hyperparameter to the kernel.5

Formally, the complete a-priori uncertainness about the value of the bias
parameter would be a good reason to place an noninformative prior on b (see
[Ber85]). However, such priors are usually improper in the sense that they
cannot be normalized, and this is subject to severe criticism by Bayesians.
We discuss such issues in subsection 3.2.3.

Remark One might argue that a fixed large constant added to the kernel
comes closest to the effect of an improper prior on b. While this is true in
theory, it leads to a very badly conditioned covariance matrix, and numerical
errors would spoil all computations based on it.

Dropping the bias parameter might be, from the practical point of view, a
bad idea. Some optimization techniques (like Sequential Minimal Optimiza-
tion (SMO)) are very much faster with than without the equality constraint
(1.23) introduced by the bias parameter. Afterwards, by employing the KKT
conditions, the value of b is easily calculated. We argue that one can apply
model selection algorithms for kernel families {K(x, x′)|θ} and SVM with-
out bias parameter to SVM with a bias b as follows: We add a parameter
v, constrained to be positive, to the kernel and drop b. Then, we run the
model selection algorithm for SVMs without bias parameter which will give
us values (θ̂, v̂) to plug into the kernel. Now, we simply discard v̂ and train
the original SVM with bias parameter using the kernel parameters θ̂. This is
motivated by looking at the modified kernel K(x, x′)+ v which specifies our
prior knowledge about the latent function. Now, this is the covariance of the
sum of two random functions, one is specified by the original kernel K, and
the other one is an unknown constant whose value is a zero-mean random
variable of variance v. The latter function is exactly the bias about which we
don’t make any assumptions at all since the final value v̂ of v is suggested
by the data. If the data indicates that a substantial value of b is necessary
for a good separation, then v̂ will be large, and the effect of the formerly
explicit bias is now implicitely realized by enforcing constraints on the pos-
terior mode via the kernel6. Now, if we discard the v parameter and allow for

4Again, this assumptions does not apply for all possible kernels, but for kernels that
encode some sort of locality by attaining very small values for distant points, it holds.

5Note that, if the bias parameter is dropped, the equality constraint in the dual SVM
problem (see (1.23)) vanishes.

6This is maybe easier to see when looking at the dual variables α. Note that such an

2.1. SPLINE SMOOTHING METHODS 41

an explicit bias parameter, we just shift the responsibility for creating the
bias from the posterior mode into the explicit parameter. This argument is
backed by empirical findings. On only one of the experimental datasets we
observed a substantial value v̂, as computed by the algorithm below for a
machine without bias parameter and kernel K + v. Comparing this machine
to one with explicit bias and kernel K, we found no difference in test error7.
Training a machine without bias and kernel K gave worse performance, as
expected.

2.1.6 The smoothing parameter

Consider the smoothing parameter λ in (2.7). While in the Bayesian litera-
ture this parameter is usually “hidden” in the kernel (i.e. one of the kernel
hyperparameters) it is surely one of the most important free parameters since
it controls the trade-off between the relevance of the loss and the prior (or
penalty) term. Recall

C =
1

2nλ
. (2.15)

If we replace the kernel R by K = CR, i.e. absorb the smoothing parame-
ter into the kernel, the spline smoothing problem (2.7) is equivalent to the
minimization of

∑

i

g(ti, yi) + ‖P y(·)‖2
K, (2.16)

where ‖ · ‖K denotes the norm of the RKHS with reproducing kernel K.

Remark In practical applications the smoothing parameter should be dealt
with separately from the other kernel parameters. C can become quite large
and calculations based on R are much more stable than using the covariance
matrix K.

Let us investigate the effect of C in Gaussian process classification. A large
C will render the likelihood term in (2.9) dominant, so the optimization will
focus on achieving a high likelihood at the expense of a possibly very rough
logit y(·). A too large C leads to the common problem of overfitting the
data and results in poor performance on unseen data. If C is small, the prior

enforcement is not possible (and not necessary) when using an explicit bias, because of
the equality constraint (1.23) introduced by the bias.

7However, the training of the second machine took substantially less time than the
training of the machine without explicit bias, using SMO.

42 CHAPTER 2. A COMMON FRAMEWORK

term in (2.9) dominates. Typical samples from the posterior will therefore
largely be determined by our prior beliefs and be only slightly influenced by
the new information contained in the data. The commonly used GP priors
favor smooth slowly varying functions over rough ones, in accordance with
the principle of Occam’s razor. In this case, the posterior of the logit will
very slowly vary around its mean which is nearly the same as the prior zero
mean. The predictions will therefore remain unsure at most points. When C
is absorbed into the covariance kernel, the variance of y(x) at a fixed point
x is proportional to C. Looking at the extreme cases of C, we see that this
scaling property fits nicely into the interpretation. We will also refer to C as
variance parameter.

We can also consider models with smoothing parameter C and kernel variance
parameter (η, say). This seperation does not affect the MAP solution, i.e. the
solutions for C/η = const are identical, but it might play an important role in
second-level inference of the hyperparameters. C can be interpreted as “noise
variance”. However, if the loss function corresponds to a noise model in the
sense discussed in the next subsection, using a seperate smoothing parameter
C is clearly a bad idea, since in general this destroys the correspondence:
If P (t|y) is a noise distribution, P (t|y)C cannot in general be normalized
independently of y, and this can lead to severe problems, as discussed next.

2.1.7 Unnormalized loss functions

Having gone so far, can we actually formulate SVC as a probabilistic ker-
nel regression classifier, such as GPC? The straightforward way fails be-
cause there is no noise distribution P (t|y) such that g(t, y) ∝ − log P (t|y) for
the SVC loss (1.7). The normalization factor Z(y) of the noise distributions
exp(−g(t, y))/Z(y) depends on y. Using the normalized noise distributions
attributes to change the loss to g(t, y)+logZ(y), and the corresponding neg-
ative log posterior is different from the criterion (1.20) relevant for SVC. One
might try to incorporate the normalization constants into the prior, i.e. using
P (y) ∝ ∏i Z(yi)N(y|0, K). However, there will in general be no stochastic
process having these distributions as marginals (recall that the distributions
have to be consistent w.r.t. marginalization – see section 1.2.3). We will refer
to losses which have no associated noise distribution as unnormalized loss
functions.

There are several possibilities to deal with kernel regression classifiers (or
spline smoothing classifiers) that have unnormalized loss functions. We can
approach such classifiers from the discriminative paradigm (see section 1.2.4),

2.1. SPLINE SMOOTHING METHODS 43

accepting the fact that they are not proper generative models for the data.
Wahba [Wah98],[WLZ99] recommends minimizing the GCKL (1.6) or proxies
thereof. This works in two stages. For fixed kernel parameters θ we minimize
a penalized sample version of the GCKL, also referred to as penalized like-
lihood. This criterion is simply (1.20). Penalization is necessary for capacity
control, since the infinite number of degrees of freedom of a random process
cannot be determined by a finite sample so as to achieve good generalization.
Although simple penalties that enforce smoothness or slow variation are most
commonly used, we argue that the selection of the penalty kernel should be
guided by prior knowledge about the expected nature of the hidden function.

Quite recently it has been shown that boosting techniques (see
[SS98],[FS96],[Bre97], [Bre96]) like discrete or real AdaBoost can be regarded
as stepwise optimization of a criterion that is very similar to the GCKL with
the loss function exp(−ty). This function is a differentiable upper bound on
the misclassification loss and behaves quite similarly to the negative log like-
lihood of the Bernoulli model around 0.8 We will return to this discussion
in subsection 2.2.1. The most common technique to train Support Vector
classifiers is to choose the kernel parameters θ by cross validation, using the
rotation estimator of the generalization error (see [DGL96], chapter 31). Since
the SVC loss is an upper bound on the misclassification loss, this method is
quite similar to the GCKL approach mentioned above. From this discussion,
one might gain the impression that loss functions like SVC or AdaBoost loss
are chosen primarily out of algorithmic convenience, their more or less sole
theoretical justification being the fact that they are tight upper bounds on
the misclassification loss in the critical region. Recent studies show that this
is far from true. While the generalization error is the obvious criterion to
minimize, optimization of estimators of this quantity, like the rotation esti-
mate, even if they are unbiased, usually neglects a lot of information provided
by the sample. For example, the rotation estimate is only concerned about
the fraction of errors among the left-out examples (averaged over a rota-
tion), it completely ignores information about the certainty with which an
example is correctly or incorrectly labelled. Recent discriminative learning
algorithms try to incorporate this information by estimating the margin dis-
tribution or characteristics thereof, and then optimize free parameters with
regard to these estimates. We will take up some aspects of this idea below,
but a thorough discussion would lead us far out of the scope of this work.
Useful references are [SFBL98],[MBB98]. Another possibility for choosing θ

is to minimize PAC bounds on the generalization error w.r.t. the kernel pa-
rameters. However, since the bounds are usually far from the true error (as

8The two functions are equivalent up to second order in a Taylor expansion around 0.

44 CHAPTER 2. A COMMON FRAMEWORK

estimated on toy problems), there is only a vague hope that the minimum
points of the generalization error and of the bound are close. The reason for
the looseness of such bounds lies in their worst-case nature (see [HKS94] for
a discussion).

Jaakkola and Haussler [JH99] define the class of kernel regression classifiers
and shows how to obtain such classifiers from probabilistic generative models.
He minimizes a computationally cheap upper bound on the leave-one-out ro-
tation estimator to choose free parameters. He suggests a sequential Bayesian
algorithm to approximate the posterior which is applicable to any probabilis-
tic kernel regression classifier, like GPC or (parametric) logistic regression.

Opper and Winther [OW99] also discuss the problem of defining a noise model
for Support Vector classification. They start from the probit noise model (see
subsection 1.2.6) P (t|y, ξ) = Θ(t(y + ξ)) where Θ is the Heavyside step, and
the additive noise ξ is Laplace distributed, i.e. P (ξ) = C exp(−Cξ), ξ ≥ 0.
Maximizing the joint P (t, y, ξ) leads to a trivial solution, however. This can
be fixed “ad hoc” by introducing a margin, i.e. replacing the noise P (t|y, ξ) by
Θ(t(y+ξ)−1). But this does not induce a normalized distribution P (t|y). In
fact, the induced “noise distribution” is exp(−C[1−ty]+), whose negative log
is the SVC loss defined in (1.7). Opper and Winther suggest to base Bayesian
analysis for SVC on the related noise distribution P (t|y, ξ) = Θ(t(y + ξ))
where ξ ∼ (C/2) exp(−C|ξ|)9. This distribution induces

P (t|y) = Θ(ty)− sgn(ty)
1

2
exp(−C|ty|). (2.17)

Another work we are aware of is [Kwo99]. This contains an approach to
apply the evidence framework (discussed below) to Support Vector classi-
fication, but it deals with an unnormalized noise distribution. In fact, the
author claims that the noise distribution is normalized by showing that
∫∞

0
exp(−ξi)dξi = 1 where ξi = [1 − tiyi]+ (which is of course true), but

this tells us nothing about the value of exp([1− yi]+) + exp([1 + yi]+) which
is not constant w.r.t. yi. Applying Bayesian techniques to unnormalized dis-
tributions usually leads to systematic errors, as discussed below.

The very recent work [JMJ99] describes Support Vector classification as a
special instance of a general minimum relative entropy (MRE) discrimina-
tion framework. The soft margin constraints result from a prior distribution
imposed on the margin widths at every datapoint, and the form of this prior
determines the penalty for margin violations. The analogy is not perfect,

9Note that we do not impose a positivity constraint on ξ. Doing so would lead to a
trivial solution of the training problem, as remarked above.

2.1. SPLINE SMOOTHING METHODS 45

since the MRE criterion differs from the dual criterion of SVC by a potential
term which prevents any of the dual variables to attain the maximum value
C (or 1 if the variance parameter has been absorbed into the kernel), but the
MRE criterion can be seen as a good approximation of the SVC dual. The
MRE discrimination framework is promising since it attempts a link between
Bayesian techniques (which are generally motivated using maximum entropy
(ME) or MRE settings) and discriminative methods, and this might lead to
important synergetic effects.

Even if we are not able to find a proper generative process model in which
the SVC solution plays the role of the posterior mode, we can consider this
solution as an approximation to the mode in a related Gaussian process
classification model. The rationale behind this is that the Support Vector
discriminant has some apparent advantages over general Gaussian process
predictors, namely its sparsity which allows fast evaluation of the discrimi-
nant on test data and the existence of very efficient algorithms to solve the
training problem. How should the related Gaussian process model be chosen?
First it seems reasonable to employ the same kernel family as for the Support
Vector machine. Second we should try to match the unnormalized SVC loss
as closely as possible by the negative log of the related noise model.

Let us collect some options we have at this point. The normalization factor
of the SVC loss is Z(y) = exp(−C[1 − y]+) + exp(−C[1 + y]+). For not too
small C this is close to 1 except inside the margin region and around its
maximum points y = ±1. Its maximum is 1/σ(2C) < 2, and it has the value
2 exp(−C) at its minimum point 0 (for C > log 2). We therefore expect the
normalized SVC loss C[1 − ty]+ + log Z(y) to be a good approximation to
the unnormalized one, at least for C in a certain range10. This corresponds
to the noise distribution

P (t|y) = Z(y)−1 exp (−C[1− ty]+) . (2.18)

Opper and Winther [OW99] suggest the related noise model (2.17) which
we will call probit noise. Of course, we can also employ the GLIM Gaussian
process model with Bernoulli noise. Figure 2.1 gives a comparative plot. For
all but very small values of C the normalized SVC loss is closest to the
unnormalized one almost everywhere.

Viewing the SVC optimization as an approximation to first-level inference
in a related probabilistic kernel regression model is not completely satisfy-
ing. However, this approximation is not the only one that is used to make
full Bayesian analysis computationally tractable. Very recently, a generative

10We will return to this point below.

46 CHAPTER 2. A COMMON FRAMEWORK

−4 −3 −2 −1 0 1 2 3
0

1

2

3

4

5

6

t y

Probit
Bernoulli
Norm. SVC
Unnorm. SVC

Figure 2.1: Several normalized loss functions versus the unnormalized SVC
loss. Here, C = 1.

model for Support Vector classification has been proposed. We will discuss
this model and some implications in the next subsection. Although the ap-
proach is very promising, there remain some consistency problems, and we
finally decided not to base our algorithms on this model. Once these prob-
lems are fixed, it should be easy to rederive the algorithms within the new
model.

2.1.8 A generative model for SVC

As shown above, the simple model design applied to kernel regression clas-
sifiers with normalized loss functions cannot be transferred to the unnor-
malized case. The standard sampling mechanism employed there is to sam-
ple some input points from an input distribution and independently a la-
tent function from a process prior. The targets are sampled afterwards
at the input points from the noise distribution and are conditionally in-
dependent, given the input points and the latent function. Sollich [Sol00]
(see also [Sol99]) exploits the idea of nonstandard sampling mechanisms to
construct a generative model for Support Vector classification, as follows.
Let Q(x) be a distribution from which examples x ∈ X are sampled. Let

2.1. SPLINE SMOOTHING METHODS 47

Q(t|x, y(·)) = κ(C) exp(−Cg(ty(x))) and

Z(y(x)) = Q(t = 1|x, y(·)) + Q(t = −1|x, y(·)). (2.19)

The normalization constant is chosen such that Z(y(x)) ≤ 1, κ(C) = σ(2C)
is the tightest choice. Our problem is that Z is not constant, therefore the
“likelihood” Q(D|y(·)) =

∏

i(Q(ti|xi, y(·))Q(xi)) is not normalized. But we
have

∫

Q(D|y(·))P (y(·))dDdy(·)

=

∫

(

∏

i

∫

Q(ti|xi, y(·))Q(xi) d(ti, xi)

)

P (y(·)) dy(·)

=

∫

(

∏

i

∫

Z(y(xi))Q(xi) dxi

)

P (y(·)) dy(·)

=

∫
(
∫

Z(y(x))Q(x) dx

)n

P (y(·)) dy(·) = N ,

(2.20)

and

P (D, y(·)) = Q(D|y(·))Q(y(·))/N (2.21)

is properly normalized. Furthermore, the form of N already suggests how
to sample from this joint distribution: First draw the hidden function
y(·) from the Gaussian process prior P (y(·)). Then, for each i, sample
xi ∼ Q(xi) and draw zi ∈ (−1, +1, 0) independently, using the distribu-
tion (Q(−1|xi, y(·)), Q(+1|xi, y(·)), 1−Z(y(xi)). If zi = 0, restart the whole
procedure, i.e. with sampling a new hidden function y(·). Otherwise, as-
sign ti = zi. Let A denote the event that D is generated in the first run.
Since P (D, y(·)) = P (D, y(·)|¬A), we have P (D, y(·)) = P (D, y(·)|A), i.e.
(D, y(·)) is independent of A. Thus, P (D, y(·)) = P (D, y(·), A)/P (A) =
Q(D|y(·))Q(y(·))/N since P (A) = N . The number of trials we need until
a (D, y(·)) is produced, is geometrically distributed with success probabil-
ity P (A) = N , i.e. has mean (1 − N)/N and variance (1 − N)/N 2, so the
sampling terminates in finite expected time.

Let us have a closer look at the variables related to this model. The sam-
pling mechanism induces effective distributions on the variables that finally
“survive”, which are different from the distributions used in each run. The
effective latent function prior is ∝ P (y(·))N(y(·))n where

N(y(·)) =

∫

Z(y(x))Q(x) dx. (2.22)

48 CHAPTER 2. A COMMON FRAMEWORK

For C > ln2, Z(y(x)) is smaller in the margin region y(x) ∈ (−1, 1) than
elsewhere (see figure 2.2). Thus, functions with many values inside this gap
(in the regions of significant Q(x) mass) are discouraged by a low weighting
in the effective prior. In terms of the sampling mechanism, they are less likely
to survive in generating a data set of size n. Note that the effective prior de-
pends on the dataset size n. This is presently the major problem with this
model, as we will see below. Although the effective prior is non-Gaussian,
the prior P (y(·)) used for construction remains Gaussian. Therefore, condi-
tioned on fixed hyperparameter values θ, first-level approximate inference of
y works as in the case of models with normalized loss, the normalization fac-
tor N can be ignored. Second-level inference of the hyperparameters will be
more complicated though, since the normalization factor has to be taken into
account. Sollich [Sol00] suggests to estimate this factor by replacing (2.22)
by the sample average. The estimate of N is a Gaussian expectation (over
the prior) and can be approximated using Monte Carlo chaining.

The effective distribution of the inputs is ∝ Q(x)ν(y(x)). This is somewhat
surprising, but there might be an interesting interpretation for this effect.
The present practice with Gaussian process classification models is to widely
ignore the distribution of the inputs, i.e. implicitely assume a rather broad
input distribution, uniform over the range of interest. However, if we start
from a generative viewpoint, i.e. try to model the two classes seperately,
we typically end up with a roughly bimodal distribution of the inputs. The
reweighting by ν(y(x)) could be interpreted as a “correction” of the flat
input distribution Q(x). It leads to a dependence of the input points on the
latent function. Although this dependence is obviously given in practice, it is
completely ignored so far in common Gaussian process models by assuming
independence of y(·) and the input points of the sample. The dependence
implies that input points convey information about the latent function even
if the corresponding target values are completely unknown. This information
is the basis of any unsupervised learning method, but has been widely ignored
so far in common Gaussian process models. This idea has been pointed out
to us by Amos Storkey. A more detailed exploration is out of the scope of
this thesis.

For C < ln2, the explanation given above fails. However, such small values of
C are not plausible, a brief look at the induced loss Cg(t, y) (which is much
too flat for small C) reveals this fact. It is not yet clear if using a seperate
smoothing parameter C together with the loss function (apart from a kernel
variance parameter usually included in θ, see discussion in subsection (2.1.6))
has any significant advantage at all over just fixing it a-priori to a plausible
value. For example, in the case of SVC loss we might fix C = 1, which

2.1. SPLINE SMOOTHING METHODS 49

guarantees that the loss has the same asymptotic behaviour for large |y| as
the Bernoulli loss.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

y

1−
Z(

y)
C=1
C=2

Figure 2.2: Shows 1−Z(yi) against yi where Z(yi) is the normalization factor
of the single-case likelihood. A point xi is rejected with probability 1 −
Z(y(xi)) during sampling.

The generative model described above is very recent and has, in its present
form, some apparent problems. If the input distribution Q(x) is unknown
(which is the case in all but toy problems), N(y(·)) and N cannot be com-
puted exactly. Sollich [Sol00] suggests to estimate N using the given training
sample. Pretending that the input points xi are distributed as Q(x), we ar-
rive at an intractable Gaussian integral as estimator for N which can be
attacked by common approximations or sampling techniques. However, the
points xi are not Q(x) distributed, as discussed above. It is not clear if the
averaging over the prior Q(y(·)) washes out the bias of this estimator. A
more severe problem with the model is, however, that it does not marginal-
ize correctly, in the following sense. Suppose we are given a training set D
consisting of n cases. Can we really be sure that D has been generated as
described above, or might it be the case that originally a larger set (D, D̃)
of n + m cases has been drawn from which we only see n elements? Within
a probabilistic kernel regression model, we need not to be concerned about
that because

∫

P (D, D̃) dD̃ = P (D), i.e. the marginal likelihood of the data
is consistent w.r.t. marginalization. Indeed, this consistency is fundamentally

50 CHAPTER 2. A COMMON FRAMEWORK

required in Bayesian analysis. Consistent inference in a world “full of hidden
variables” can only work properly if we can marginalize out everything we
are not interested in. Within the model described above we have

∫

P (D, D̃|θ) dD̃ =

∫

P (D, y(·)|θ)
N(y(·))mNn

Nn+m
dy(·) 6= P (D|θ) (2.23)

in general. For large m, the factor N(y(·))mNn/Nn+m is expected to vary by
many orders of magnitude as we run over different y(·), therefore equality
in (2.23) cannot be expected. This does not mean that P (D|θ) cannot be
used for model selection. If n is reasonably large, the mass of P (D, y(·)|θ) is
usually concentrated in a small area. If the factor N(y(·))mNn/Nn+m is ≈ 1
in this area, equality in (2.23) might hold at least approximately. However,
more work has to be done to come up with justifications like this.

2.2 Continuous reweighting as intuitive in-

terpretation of the SVC model

Can we gain insight into the apparent difference between SVC and prob-
abilistic kernel regression classifiers? A sensible approach is to analyze the
behaviour of the two model classes on some data. The goal of a classifier
built upon a generative probabilistic model is to maximize a trade-off be-
tween the likelihood of the data and a prior probability matching the hidden
function against expectations we have a-priori. As opposed to that, SVC fo-
cuses on maximizing the minimal margin over the sample which relates the
algorithm to a class of boosting techniques. Indeed, it has been empirically
observed that the performances of large margin machines and boosting clas-
sifiers are often strongly correlated (see [MOR98]). We will try to make this
relationship more explicit. However, our arguments will just cumulate into
an intuitive interpretation of the SVC model (which might prove useful to
some and pointless to others), not into a theorem and a proof.

2.2.1 Boosting and the margin distribution

The margin is defined as the random variable ty(x), for a fixed function y(·).
Note the “sources of randomness” involved here, namely the input variable
x and the noisy target t conditioned on y(x). Replacing the unknown data
distribution by the empirical distribution of the sample, we can estimate the

2.2. INTUITIVE INTERPRETATION OF SVC MODEL 51

margin distribution by the sample margin distribution

PD [ty(x) ≤ θ] =
1

n

n
∑

i=1

I{tiy(xi)≤θ}. (2.24)

For fixed θ, this gives us the fraction of examples which are not discrimi-
nated with margin θ by y(·). Now, for certain hypothesis spaces theorems
have been proved that bound the generalization error P [ty(x) ≤ 0] by the
sum of PD[ty(x) ≤ θ] and a complexity penalty term that is monotonically
decreasing in θ. This has been shown for example for two-layer neural net-
works [Bar98] and convex committees (including these generated by boosting
techniques) [SFBL98]. Shawe-Taylor et al [STBWA96] proved a general the-
orem of this kind which gives nontrivial bounds for all hypothesis classes
whose fat-shattering dimension scales favorably with the minimum margin
attained on typical datasets. The fat-shattering dimension is a scale-sensitive
generalization of the VC dimension. The class of Support Vector machines is
covered by this theorem. Anthony [Ant97] gives a tutorial introduction into
this branch of PAC theory.

The history of boosting algorithms is a fascinating one. The boosting problem
in Computational Learning Theory (COLT) asks whether there is a polyno-
mial time algorithm that is able to strongly learn sets using weak learning
algorithms as oracles. For a detailed discussion see [KV94]. The intuitive dis-
tinction about a weak and a strong learner is that the former one is able, after
having learned a polynomial-size training set, to predict future cases slightly
better than uninformed pure random choices would do, while the latter per-
forms with any desired accuracy and confidence (these terms in the context
of the PAC framework are discussed in subsection 1.2.4). Indeed, Schapire
proposed a boosting algorithm, thereby showing that the classes of weak and
strong learners are identical. The algorithm is complicated and hardly suit-
able for practical use, see [KV94] for a textbook presentation. Shortly after,
a much simpler algorithm was discovered by Freund (see [FS96]) and termed
AdaBoost. This algorithm is maybe one of the most important discoveries
in recent COLT and, apart from solving the theoretical boosting problem
in a very elegant way, has an immense practical value. AdaBoost operates
on sets of relatively poor learning methods having large bias or variance or
both, and usually creates a highly competitive committee using these weak
learners as experts. It does so with negligible time and memory requirements,
apart from training the weak learners.

We will not give a detailed description of AdaBoost here (see [FS96],
[SS98],[FHT98]), but only sketch the principal idea. The algorithm main-
tains a distribution over the sample which is uniform at the beginning. A

52 CHAPTER 2. A COMMON FRAMEWORK

weak learner is trained on a copy of the sample which is reweighted accord-
ing to this distribution. This can be done by feeding a resampled version
of the original dataset into the unmodified training algorithm of the weak
learner, or, more efficiently, to modify the training algorithm to account for
the weights. The trained classifier is then tested on the sample. The learner
is multiplied by a coefficient which depends on the test error, and added to
the committee built up so far. The weights corresponding to examples on
which the weak learner failed are multiplied by a factor > 1 which again de-
pends on the test error. The iteration is finished by renormalizing the weight
distribution and the linear coefficients of the committee. The idea behind
the reweighting of the sample is to focus the next weak learner on examples
that have been poorly classified so far by the committee. AdaBoost has been
generalized to real-valued, confidence-rated weak predictors in [SS98]. This
algorithm is referred to as real AdaBoost.

AdaBoost was originally designed to drive the error of the committee on
the original sample to zero as quickly as possible. This was based on the
assumption that a set of small committees has a lower complexity (e.g. VC
dimension) than a set of larger ones, and on VC bounds on the generalization
error in terms of training error plus complexity penalty. Ironically (and luck-
ily), the algorithm performs much better than ever could be expected on this
basis. It was soon discovered empirically that AdaBoost usually continues to
drive the generalization error down, by adding new components to the com-
mittee, after the training error has reached the zero level. Thus, committees
with an order of magnitude larger number of components achieve a smaller
generalization error than small ones, even though both have zero training
error. An explanation was given in [SFBL98], showing that the number of
components in a convex committee is not a relevant complexity measure,
but the scale θ for the margin is. An algorithm required to minimize the
cost function PD[ty(x) ≤ θ] for large θ is not able to make fine distinctions
between the functions in a hypothesis class, and the effective complexity of
the class is reduced. They further showed that algorithms like AdaBoost im-
plicitely minimize criteria like (2.24). Mason et al [MBB98] generalized this
result to more general margin cost functions, thereby showing how the cost
functions of different boosting algorithms might influence the generalization
error of the committees they produce. There seems to be a trade-off between
cost functions close to the misclassification loss I{yf(x)≤0} (high resolution,
therefore high effective complexity) and larger margin cost functions.

2.2. INTUITIVE INTERPRETATION OF SVC MODEL 53

2.2.2 Additive logistic regression

Friedman et al [FHT98] connect boosting algorithms related to AdaBoost
with procedures to fit additive logistic regression models. They show that
algorithms like discrete and real AdaBoost can be regarded as stage-wise
optimization of the criterion

J(y(·)) = E [exp(−ty(x))] , (2.25)

where the expectation is a L2 population expectation or a sample average.
The population minimizer of this criterion is (1/2)logit(x),11 therefore opti-
mizing (2.25) is equivalent to fitting a logistic regression model. The authors
also show that replacing the AdaBoost criterion by related ones like the ex-
pected negative binomial log likelihood

L(y(·)) = E [log (1 + exp(−ty(x)))] (2.26)

gives very similar results. The algorithm using (2.26) is referred to as Logit-
Boost.

We sketch the idea of the proof for real AdaBoost. The reweighting factors
of real AdaBoost, in the notation of [FHT98], are

w(t|x, y(·)) =
exp(−ty(x))

E[exp(−ty(x))|x]
. (2.27)

The proof relies on two properties of the exponential criterion (2.25). First
of all we have

exp(−t(y(x) + δy(x))) = exp(−ty(x)) exp(−tδy(x)), (2.28)

and secondly the Taylor expansions around y = 0 of the negative binomial
log likelihood (which is minimized when fitting additive logistic regression
models) and the exponential criterion are identical up to second order, so
that

E [exp(−t(y(x) + δy(x)))|x]

= E
[

exp(−ty(x))
(

log(1 + exp(−tδy(x))) + O((δy(x))3)
)

|x
]

≈ Eexp(−ty(x))|xEw [log(1 + exp(−tδy(x)))|x] .

(2.29)

Here, Ew denotes expectation over the reweighted sample, i.e. Ew[h(t, x)|x] =
E[h(t, x)w(t|x, y(·))|x]. By reweighting the sample, we therefore manage to
exchange the exponential loss (for which we don’t have a fitting algorithm)
by the usual binomial loss, and the component δy(·) can be trained by simple
logistic regression.

11The logit transformation was introduced in subsection 1.2.6.

54 CHAPTER 2. A COMMON FRAMEWORK

2.2.3 LogitBoost and Gaussian process classification

We will now have a closer look at the training algorithm of a Gaussian process
classification model with Bernoulli noise P (ti|yi) = σ(tiyi). To be consistent
with the notation in [FHT98] and [WB98], we introduce the notation t∗i =
(1/2)(ti + 1) ∈ {0, 1}. The negative log likelihood is − log P (ti|yi) = log(1 +
exp(−tiyi)) = −t∗i yi + log(1 + exp(yi)), and the criterion Ψ from (1.15) is

Ψ = − log P (y, t) = −t∗ty +

n
∑

i=1

log(1 + exp(yi))− log N(y|0, K). (2.30)

The model is fitted using Fisher scoring (see [MN83], [GS94]). Since we are
using the canonical link in the generalized linear model, this is equivalent to
minimizing Ψ by the Newton-Raphson algorithm, i.e. using updates of the
form ynew = y + δy where

δy = − (∇∇Ψ)−1∇Ψ (2.31)

and Hessian and gradient are evaluated at y. It is easy to show that

δy =
(

W + K−1
)−1 (

t∗ − σ(y)−K−1y
)

, (2.32)

where σ(y) denotes the vector with the components σ(yi) and W =
diag(σ(yi)(1− σ(yi)))i. We denote πi = P (ti = +1|yi) = σ(yi).

Since the relation between y and the discriminant y(x) is linear for a kernel
classifier, we can also write this as

ynew(x) = y(x) + k(x)tK−1δy (2.33)

where k(x) is the vector with the components K(x, xi). Denote the Newton
correction of y(x) by δy(x). It is interesting to note a connection to the Logit-
Boost algorithm proposed in [FHT98]. The latter algorithm uses a maximum
likelihood criterion without a penalty or a prior. This is possible because the
model class for the discriminant is strongly restricted (additive combinations
of weak classifiers like decision trees). We can approach maximum likelihood
by choosing a very large variance parameter C (or equivalently a very small
smoothness parameter λ). Recall that K = CR for a kernel R that has no
variance parameter. We then have

δy(x) = r(x)tR−1
(

W + C−1R−1
)−1 (

t∗ − σ(y)− C−1R−1y
)

. (2.34)

Setting z = W−1(t∗ − σ(y)) (z is referred to as working response variable,
and z is a sample of this variable at the input points), we see that in the

2.2. INTUITIVE INTERPRETATION OF SVC MODEL 55

limit C → ∞ δy(x) is the ordinary least-squares regression of z on x. A
look at the LogitBoost algorithm of [FHT98] reveals that the update of y(x)
used there is exactly the same, except for the fact that δy(x) is a weighted
least-squares regression of z on x where the weights of the training points
(xi, ti) are given by wi = πi(1− πi) = σ(yi)(1− σ(yi)). Working with finite
C destroys this direct correspondence which is quite obvious since fitting
a Gaussian process regression model by (unpenalized) maximum likelihood
does not give sensible results because of the richness of the function class.
However, we note that there are boosting-type algorithms that are in a certain
sense quite similar to Gaussian process classification except for the fact that
the dataset is reweighted before fitting each correction δy(x).

2.2.4 Continuous reweighting

Now consider an additive model y(x) = δy1(x) + δy2(x) + . . . (the number
of components is not specified in advance) where the component discrimi-
nants are “weak” in the sense that their model class is restricted. Define the
criterion

J(y(·)) = E [[1− ty(x)]+] . (2.35)

Note the similarity to the GCKL of (1.6). As argued in subsection 1.2.4,
J is an upper bound on the expected misclassification error. Introduce the
reweighting distribution w by

w̃(t|x, y(·)) =
[1− ty(x)]+

log(1 + exp(−ty(x)))
, w(t|x, y(·)) =

w̃(t|x, y(·))
Ew̃(t|x, y(·))|x .

(2.36)

In practice, reweighting the data can be done by resampling from the dataset
in a bootstrap manner, but it is much more efficient to reweight the criterion
based on the data instead, if the training algorithm of the components allows
for such a modification. Let w̃i = w̃(ti|xi, y(·)) and wi = w̃i/S where S =
∑

i w̃i. Conditioning on x we have

E [[1− ty(x)]+|x] = Ew̃(t|x, y(·))|xEw [log(1 + exp(−ty(x)))|x] (2.37)

or, in terms of the sample average,

1

n

n
∑

i=1

[1− tiyi]+ =
S

n

n
∑

i=1

wi log(1 + exp(−tiyi)). (2.38)

56 CHAPTER 2. A COMMON FRAMEWORK

The right hand side is proportional to the weighted likelihood term of a
additive logistic regression model.

Note that this situation is quite different from the one encountered in the
derivation of real AdaBoost above (see equations (2.28) and (2.29)). Our
loss here is neither multiplicative nor close to the negative log Bernoulli
likelihood around 0. We therefore propose a continuous reweighting of the
criterion to transfer the SVC loss into the Bernoulli classification loss. In
light of the aim behind the reweighting of the dataset the latter is clearly
favorable since the constraints imposed by the reweighting are applied in a
continuous fashion and not only after each (possibly large) Newton step has
been performed. Now, in practical terms this is not very useful since we don’t
have an algorithm to perform this “continuously reweighted fitting” but, as
we argue below, it might be useful for understanding the mechanisms going
on in Support Vector training.

Figure 2.3 shows a comparative plot of the loss functions considered so far.
Note that the negative log likelihood has been scaled by 1/ log 2. Note also
that the derivative of the exponential loss is unbounded for ty → −∞ while
the derivatives of all other loss functions remain bounded. This means that
AdaBoost is quite sensitive to outliers and therefore supposed to perform
badly on very noisy data. This has indeed been observed and a soft margin
version of AdaBoost has been suggested (see [MOR98]).

Let us have a closer look at the reweighting distribution w(t|x, y(·)) of (2.36).
Figure 2.4 shows a plot of w̃ (i.e. the unnormalized w) as a function of ty(x).
This function is 0 for ty ≥ 1 and converges to 1 for ty → −∞.

Figure 2.5 compares the (unnormalized) reweighting factor of AdaBoost with
the factor (2.36) applied to the criterion J involving the Support Vector loss.
A direct comparison in the region around 0 is difficult since both factors
can be arbitrarily rescaled, but the differences are easy to see. First of all,
the AdaBoost weight grows without bound for ty → −∞ while w̃ remains
bounded. This means that if there are outliers (in very noisy data) AdaBoost
will concentrate the training of the weak classifiers on these examples. This
may lead to an overcomplex decision boundary, i.e. to overfitting. Indeed,
this hard margin behaviour has been observed in [MOR98]. w̃ is largest in
the region between −1 and 0, so the training is concentrated on patterns
within the margin region (recall that for our canonical hyperplanes y(·) the
margin region is defined by ty(x) ∈ [−1, +1]). Then, the AdaBoost weighting
factor is positive everywhere while w̃ is 0 for ty ≥ 1. This reflects the fact
that as long as a pattern lies out of the margin region (on the correct side),
it doesn’t affect the training of the next weak classifier at all. Note how this

2.2. INTUITIVE INTERPRETATION OF SVC MODEL 57

−1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

(a)

(b)
(c)

(d)

t y

Figure 2.3: Loss functions considered so far. (a) is the misclassification loss,
(b) the SVC loss, (c) the scaled negative log likelihood and (d) is the expo-
nential loss used in real AdaBoost.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

t y

Figure 2.4: Unnormalized reweighting distribution w̃ as a function of ty.

58 CHAPTER 2. A COMMON FRAMEWORK

fact nicely corresponds to the notion of active and inactive constraints en-
countered during the optimization of the Support Vector criterion. A pattern
lying out of the margin region corresponds to an inactive constraint, and as
long as it remains inactive, this constraint can be completely ignored. Inter-
estingly enough, a similar cutoff technique has been proposed for boosting
algorithms (influence trimming, see [Fri99], p.9) with the aim of faster com-
putation. In Support Vector training the cutoff point is actually adapted to
the data (see below) in a theoretically more satisfying way than the heuristic
procedures suggested for incluence trimming. It has been reported that, using
influence trimming, between 90-95% of the observations are typically ignored
over large fractions of the training period. This corresponds to the surpris-
ing effectiveness of chunking algorithms used in Support Vector training (see
[Pla98],[Joa98]).

−1 −0.5 0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

t y

(a)

(b)

Figure 2.5: The reweighting factors of the SVC loss criterion (a) and Ad-
aBoost (b).

2.2.5 Incorporating the prior

It is clear that when using a spline smoother as discriminant, we cannot sim-
ply apply maximum likelihood training. As shown in subsection 2.2.3, the
“weak discriminants” δy(·) are also spline smoothers and therefore form a
very broad model class. The likelihood must be penalized in a certain way

2.2. INTUITIVE INTERPRETATION OF SVC MODEL 59

so as to avoid overcomplex discriminant functions, and this can be done by
imposing a Gaussian process prior on y(·), as discussed above. Adding a
penalty somewhat destroys the direct relationship between techniques like
LogitBoost and GPC training, but we argue that the idea of continuously
reweighting the loss term can be applied here too. First of all, the reweighting
only affects the loss part of the criterion and leaves the prior term unchanged
(recall that reweighting means that we change the true distribution P (t|x)).
Then we note that the most commonly used priors encode characteristics like
smoothness, sometimes an expected periodicity or an expected linear trend.
Considering an additive model, i.e. a linear combination of weak discrimi-
nants, it is therefore perfectly reasonable to impose the same prior on the
components than on the whole committee. This argument applies especially
to the case of a spline smoother where the “weak” discriminants have the
same functional form as the whole. However, we exclude the smoothing pa-
rameter (or variance parameter) from this argument since it is reasonable
to use different smoothing parameters for the various δy(·), depending on
the characteristics of the (reweighted) dataset they have to fit. A smoothing
parameter that varies continuously with y(·) would fit even better.

Let us write the Support Vector classification criterion in the following form
(adopted from [FHT98]):

CE [[1− ty(x)]+]− log P (y(·)). (2.39)

Using a sample average and conditioning on x, this becomes

C

n

n
∑

i=1

[1− tiyi]+ −
1

n
log N(y|0, R). (2.40)

At this point it is suitable to separate the variance parameter C from the
kernel, but by using K = CR it can always be absorbed. Applying the
reweighting leaves the prior term unchanged (note that R does not have a
variance parameter), and using (2.37) we can write (2.39) as

(CEw̃(t|x)|x) Ew

[

log(1 + exp(−ty(x)))
]

− log P (y(·))
= Ew

[

(CEw̃(t|x)|x) log(1 + exp(−ty(x)))− log P (y(·))
] (2.41)

or, in terms of a sample average conditioned on the xi, as

CS

n

n
∑

i=1

wi log(1 + exp(−tiyi))−
1

n
log N(y|0, R)

=

n
∑

i=1

wi

(

CS

n
log(1 + exp(−tiyi))−

1

n
log N(y |0, R)

)

.

(2.42)

60 CHAPTER 2. A COMMON FRAMEWORK

Note that we write w̃(t|x) instead of w̃(t|x, y(·)) for clarity but keep in mind
that the weights depend on the old y(·). Choosing CEw̃(t|x)|x (or CS/n)
as continuously varying variance parameter, we see that SVC training can
regarded as fitting a Gaussian process classification model under continuous
reweighting of the dataset. More insight can be gained by expanding ynew =
y + δy. Then, (2.42) can be written as

n
∑

i=1

wi

(

CS

n
log(1 + exp(−ti(yi + δyi)))−

1

n
log N(δy| − y, R)

)

. (2.43)

We note that the local prior for δy(·) encourages a behaviour in opposition to
y(·), at least w.r.t. these training points that receive zero weight. This is in
fact what is done during Support Vector training: If a point is safely classified
out of the margin region, i.e. tiy(xi) > 1, then, in order to enlarge the margin,
a certain force will be applied to encourage tiy(xi) to decrease, therefore
encourage tiδy(xi) < 0. In fact, if it should ever happen during training that
all training points are correctly classified with margin, this “prior” force is
the striking difference between any standard Perceptron learning algorithm
and the Support Vector algorithm enforcing the largest margin possible on
the training set.

Let us have a closer look on the variance parameter CS/n. Looking at figure
2.4 we note that it lies roughly between 0 and 1.6C. It is largest if most of
the patterns lie in the margin region and very small if most of the patterns
are currently classified with margin. This fits nicely into the interpretation
of the local tuning of δy(·). The likelihood term should receive the highest
relative importance when there are a lot of patterns in the margin region, i.e.
a lot of patterns δy(·) should concentrate on. To move these patterns out of
the margin region, i.e. to act somewhat against the force put forward by the
local prior is encouraged in this way. If there are only very few patterns in
the margin region, the tuning of δy(·) will concentrate on these, but at the
same time the small relative importance of the likelihood term will strongly
encourage (via the local prior) an enlargement of the margin.

Using these observations we can conclude that the interpretation of SVC as
continuously reweighted version of a logistic kernel regression discriminant
might prove useful to understand the differences in behaviour of SVC and
GPC and to explain the often observed similarities in performance between
SVC and boosting architectures, especially those using a soft margin crite-
rion.

2.3. COMPARING GPC AND SVC PREDICTION 61

2.3 Comparing GPC and SVC prediction

Recall the Gaussian process classification model: GPC is a special case of
a nonparametric generalized linear model with Bernoulli-distributed noise,
and the natural parameter of the Bernoulli distribution is the logit y =
log(P (t = +1|x)/P (t = −1|x)), so it is “natural” to model the logit y(x)
by our Gaussian process:

P (ti|yi) = σ(tiyi) (2.44)

where σ(·) is the logistic function, and

− log P (t|y) =
∑

i

log(1 + exp(−tiyi)). (2.45)

At ŷ the derivative of Ψ (see (1.15)) vanishes, and by setting α̂GP =
(σ(−tiŷi))i we arrive at

ŷ = KT α̂GP , (2.46)

where T = diag t. Denote the measures obtained by applying the Laplace
approximation around ŷ by Pa. The approximative predictive distribution
Pa(y∗|t) is normal with mean k(x∗)

tK−1ŷ = k(x∗)
tT α̂GP , and we predict

t∗ = +1 iff this mean is greater than 0.

Also recall the discussion in section 1.4, especially (1.27) and (1.26). Since we
agreed to drop the bias term and absorbed the variance parameter C into the
kernel, we have ŷ = KTα̂SV M , and the predictor for y∗ is k(x∗)

tT α̂SV M ,
where α̂SV M denotes the vector of dual variables at the optimum. Both GPC
and SVC predict a new target by reweighting the vector of training targets
to arrive at a weight vector ĉ = T α̂ which is then used to form an average
over the correlations between the new input point and the training points.
That does not come as a surprise since both methods are special cases of
spline smoothers, as shown in section 2.1. The difference between the two
methods lies in the reweighting factor α̂i for a target ti. For the GP case,
this is σ(−tiŷi) ∈ (0, 1). For fixed ti this is a smooth function of ŷi which
is symmetric to 0 and never attains the extreme values 0 (the discriminant
ignores the value of K(x∗, xi) even if it is significant) or 1. For SVC, the
reweighting factor is the dual variable α̂i ∈ [0, 1]. The KKT conditions (1.27)
show that for a case which is correctly classified with margin, i.e. tiŷi > 1,
the “distance” K(x∗, xi) has no effect on the prediction at x∗. On the other
hand, a case within the margin (tiŷi < 1) has maximum effect on predictions,
resulting in a term tiK(x∗, xi) in the expansion of y(x∗). If a case is on the

62 CHAPTER 2. A COMMON FRAMEWORK

margin, i.e. tiŷi = 1, the effect on predictions lies between these extremes.
The reweighting factors of both methods as functions of ŷi for target ti = +1
are plotted in figure 2.6.

−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

t y

Figure 2.6: Reweighting factors as functions of ŷi for SVC and GPC, target
value ti = +1. The GPC reweighting factor varies smoothly with ŷi.

We have to be careful not to misinterpret the relationship between the pre-
dictions of the two methods which actually looks simpler than it really is.
The ŷ vectors can be quite different, being implicitely defined by the systems
ŷ = KTα̂GP (ŷ) and ŷ = KTα̂SV M(ŷ) respectively, these systems encode
via the definition of the dual variables, the completely different expectations
we have in the predictions. Jaakkola and Haussler [JH99] provide some fur-
ther insight into the relationship between the primal and dual variables.

Chapter 3

Variational and Bayesian

techniques

In this chapter, we give a principled derivation of variational techniques for
probabilistic inference and learning. Motivations from convex analysis, sta-
tistical physics and information theory are given. This chapter is tutorial in
nature and provides a firm basis for the technique introduced in the sub-
sequent chapter. However, the generality offered here is not necessary for
the understanding of the latter, and readers not interested in the details can
safely skip this chapter. We also briefly discuss Bayesian terms like MAP and
the evidence framework.

3.1 Variational techniques for probabilistic

inference

Following the work of Jaakkola [Jaa97], we will derive the variational principle
using simple terms from convex analysis. Variational probabilistic inference is
equivalent to variational free energy minimization in statistical physics, being
an instance of the powerful maximum entropy principle, based on information
theory. We also heavily rely on the notes [Jaa99].

Another bridge to information and coding theory can be drawn via the mini-
mum description length principle, by applying the so called bits-back encoding
scheme.

63

64 CHAPTER 3. VARIATIONAL AND BAYESIAN TECHNIQUES

3.1.1 Convex duality and variational bounds

This subsection is taken from [Jaa97]. We stress that the variational approx-
imation can in principle be introduced using three lines of algebra, but a
more detailed analysis gives better insight. The convex duality principle is
much more general than the variational probabilistic inference technique and
can be applied as a general approximation method, suggesting metrics to
measure the approximation error in an automatic way. See [Roc70] for an
introduction to convex analysis, [CT91] for all information-theoretic terms.

f : X → R is (strictly) convex iff for any x, x′ ∈ X, x 6= x′, λ ∈ (0, 1) we
have f(λx + (1 − λ)x′) ≤ (<)λf(x) + (1 − λ)f(x′). This is equivalent to
f(EX) ≤ (<)Ef(X) for any random variable X ∈ X not concentrated on
a single point, this fact being known as Jensen’s inequality. For convenience,
we assume that f is differentiable. We define epi(f) = {(x, y) | f(x) ≤ y}
which is convex. Every convex set S can be represented as intersection of all
halfspaces that contain S, therefore a parameterization of this set of half-
spaces is a unique representation of epi(f) and f . In our case, we only need
to consider halfspaces (ξ, µ) of the form {(x, y) |xtξ − y − µ ≤ 0}. (ξ, µ)
contains epi(f) iff xtξ − f(x)− µ ≤ 0 for all x, i.e. iff

µ ≥ max
x∈X

(

xtξ − f(x)
)

= f ∗(ξ). (3.1)

f ∗ is called the convex dual of f . It is defined over Ξ, the dual space of X1.
f ∗ is convex itself, and f ∗∗ = f , i.e.

f(x) = max
ξ∈Ξ

(

xtξ − f ∗(ξ)
)

. (3.2)

The fundamental relation between f and its dual f ∗ is

xtξ ≤ f(x) + f ∗(ξ). (3.3)

This gives us an affine family of lower bounds, indexed by ξ:

f(x) ≥ xtξ − f ∗(ξ) = fξ(x). (3.4)

ξ will be called the variational parameter. The halfspaces on the graph of
f ∗ (i.e. µ = f ∗(ξ)) are the critical ones in the sense that every system of
halfspaces whose intersection is epi(f) must contain all these. If f is differen-
tiable, we can get more insight into the nature of Ξ. Let f be strictly convex.
For any fixed ξ there exists one and only one x such that the maximum in

1If X = R
p, Ξ is isomorphic to R

p and we will identify the two spaces.

3.1. VARIATIONAL INFERENCE TECHNIQUES 65

(3.1) is attained at x, thus 0 = ∇x(xtξ − f(x)) = ξ − ∇xf(x). Therefore,
the conjugate space Ξ is simply the gradient space of f . Substiting this into
(3.2), we arrive (after some algebra) at

f(x) = max
� ′∈X

(

(x − x′)t∇x′f(x′) + f(x′)
)

, (3.5)

which is a maximum over tangent hyperplanes for f . The critical halfs-
paces defining f are therefore the tangent hyperplanes which are affine lower
bounds of f . For strictly convex f , the maximum in (3.5) is attained at
exactly one x′.

Is there a general way to characterize the accuracy of the affine variational
bounds in terms of the parameter ξ? If f is strictly convex, then for every
ξ′ there exists exactly one x′ such that f(x′) = fξ′(x

′). x′ and ξ′ are called
corresponding points. Define the distance from ξ to ξ′ as Df∗(ξ → ξ′) =
f(x′)− fξ(x

′), i.e. the approximation error made by using the suboptimal ξ

instead of ξ′. Figure 3.1 illustrates this definition. Using the duality between
f and f ∗, we can define Df(x → x′) analogously. If x and ξ are other
corresponding points, we have

Df (ξ → ξ′) = Df∗(ξ′ → ξ) (3.6)

f (x)ξ

ξ’f (x)

ξ−>ξ’D()

epi(f)

f(x)

xx’

Figure 3.1: The dual metric.

66 CHAPTER 3. VARIATIONAL AND BAYESIAN TECHNIQUES

How can we use convex duality to solve concrete approximation problems?
Suppose, given a convex function f and a fixed point x′, we would like to
approximate f(x′). If the computation of f(x′) is infeasible, we can try to
approximate the value by fξ(x

′) for some ξ. This makes sense only if there
is a substantial subset Ξ̃ ⊂ Ξ such that the evaluation of the approximation
at x′ for any ξ ∈ Ξ̃ is feasible. Assuming this is so, we have to find a method
to choose ξ. If ξ′ corresponding to x′ is in Ξ̃, we have f(x′) = fξ′(x

′) and
the approximation is exact. Otherwise, it is sensible to choose ξ ∈ Ξ̃ such as
to minimize the induced metric Df∗(ξ → ξ′). This approach is completely
automatic. Given the space X and the convex function f , we only have to
determine the space Ξ, the dual f ∗, then select a subset Ξ̃ such that the
bounds fξ(x

′) and the metric Df∗(ξ → ξ′) can be evaluated feasibly for
all ξ ∈ Ξ̃. We will show below how the variational method for probabilistic
inference and learning as well as the EM algorithm arise naturally as special
cases within the convex duality framework.

3.1.2 Maximum entropy and variational free energy

minimization

The maximum entropy principle has its origin in statistical physics where it
is applied for example to thermodynamical systems. Its usage for selection of
Bayesian priors has been advocated by Jaynes (see [Jay82]). A comprehensive
introduction is given in [CT91], chapter 11. The idea behind the maximum
entropy principle is to avoid assigning different probabilities to configurations
of a system that we have no reason to differentiate. We will first introduce
the abstract method and then give a simple physical example.

Recall the method of Lagrange multipliers (see for example [Fle80]). Given a
criterion f(x) to minimize under some equality constraints ci(x) = αi, i ∈ E
and some inequality constraints ci(x) ≥ 0, i ∈ I, C = E ∪ I, we introduce
dual variables λ = (λi)i∈C and construct the Lagrangian

L(x, λ) = f(x)−
∑

i∈C

λici(x). (3.7)

If x∗ is a solution to the original (primal) problem, then there exist a λ∗

such that (x∗, λ∗) is a saddlepoint of L, i.e. x∗ minimizes L(·, λ∗) and λ∗

maximizes L(x∗, ·). By setting ∂L/∂x equal to zero and solving for x, we
arrive at a representation of x∗ in terms of λ∗. The latter can usually be
determined as a value that satisfies all the constraints. The Karush-Kuhn-
Tucker (KKT) conditions constrain the dual variables corresponding to the
inequality constraints: λ∗i ≥ 0 and λ∗i ci(x

∗) = 0 for all i ∈ I.

3.1. VARIATIONAL INFERENCE TECHNIQUES 67

The maximum entropy problem is to find, among all distributions P (x) which
fulfil all moment constraints

EP [ri(x)] = αi, (3.8)

one that maximizes the differential entropy

H(P) = EP [− log P (x)] . (3.9)

As mentioned above, inequality constraints can also be dealt with, but we
avoid them here for clarity. See [CT91] for a thorough discussion of entropy
and related information-theoretic terms. We always have the “implicit” con-
straint r0 ≡ 1, α0 = 1, ensuring that P is a distribution. The Lagrangian
is

L(P, λ) =

∫

P (x) log P (x) dx −
∑

i

∫

P (x)ri(x) dx. (3.10)

Solving ∂L/∂P (x) = 0 for P (x) gives

Pλ(x) = Z(λ)−1 exp

(

∑

i6=0

λiri(x)

)

(3.11)

where the normalization constant is

Z(λ) =

∫

exp

(

∑

i6=0

λiri(x)

)

dx, (3.12)

called the partition function. Note that λ0 is not contained in λ. Knowing
the log partition function (w.r.t. λ) is highly important since we can ex-
press all expectations of products of the ri(x) over Pλ in terms of higher
order derivatives of log Z(λ). For example, we have (∂2/∂λi∂λj) log Z(λ) =
CovPλ

[ri(x)rj(x)]. Therefore, log Z(λ) is convex in λ.

We choose λ∗ such that (3.11) fulfils all the constraints, and write P ∗ =
Pλ∗. If P ′ is any other distribution satisfying the constraints, one can show
that H(P ∗) − H(P ′) = D(P ′||P ∗) ≥ 0, where D denotes the (differential)
relative entropy (see [CT91]), therefore the maximum H(P ∗) is unique (the
distribution P ∗ might not be unique). We can use the convex duality principle
to derive another expression for λ∗ which is sometimes useful. One can show
that

−H(P ∗; α) =
∑

i

λ∗i αi − log Z(λ∗). (3.13)

68 CHAPTER 3. VARIATIONAL AND BAYESIAN TECHNIQUES

Since the log partition function is convex, the function λtα − log Z(λ) is
concave. Its maximum point is obtained by equating the gradient w.r.t. λ to
zero, and this point is λ∗. Therefore:

−H(P ∗; α) = max
λ

(

λtα− log Z(λ)
)

, (3.14)

i.e. the negative entropy −H(P ∗; α) as a function of α and the log partition
function are a convex duality pair. If the right-hand side of (3.14) and/or its
gradient can be efficiently computed, any optimizer can be used to find λ∗.

Now consider a physical system, consisting of N identical subsystems. At any
time, each system is in exactly one of the configurations x ∈ X, with the
corresponding energy E(x). Let N(x) be the number of subsystems in con-
figuration x at a fixed time, and P (x) = N(x)/N the empirical distribution.
The total energy of the system Etot is constant over time:

1

N
Etot = E [E(x)] (3.15)

The vector of configurations for each system is called microstate, the distri-
bution P (x) macrostate. Every microstate corresponds to a macrostate, and
the most probable macrostate is one with the most microstates associated
(given that all microstates are equiprobable). For large N , the most probable
macrostate converges in probability against the maximum entropy distribu-
tion, given the moment constraint (3.15) (in fact, much stronger statements
can be proved using the theory of types, see [CT91], chapter 12). This distri-
bution is the Boltzmann distribution

P ∗(x) = Z(P ∗)−1 exp (−βE(x)) , (3.16)

where β = 1/T is the inverse temperature of the system, which stands in 1-1
relation to limN→∞ Etot/N . P ∗ is found by maximizing the Lagrangian

(−βΦ(P)) = −βEP [E(x)] + H(P). (3.17)

Φ(P) is called variational free energy. Φ(P ∗), evaluated at the Boltzmann
distribution, is called free energy. We have

(−βΦ(P ∗)) = log Z(P ∗). (3.18)

For large systems, it is usually infeasible to compute the free energy. But since
(−βΦ(P)) ≤ (−βΦ(P ∗)), the variational free energy for any distribution P
gives an upper bound on the free energy. The larger (3.17), the tighter the
bound is.

3.1. VARIATIONAL INFERENCE TECHNIQUES 69

3.1.3 Variational approximation of probabilistic infer-

ence

Here we establish a correspondence between variational free energy minimiza-
tion and approximative probabilistic inference. We also show up connections
to convex duality. Let P0(xv, xh) be a probability model over visible or evi-
dence variables xv and hidden or latent variables xh. Our goal is to compute
log P0(xv), the log probability of the evidence we have gained. Since we cre-
ate an “artificial” physical system, we can set β = 1. Define the energy of a
configuration xh as E(xh) = − log P0(xv, xh). This can be motivated from
information theory, since an optimal code needs approximately E(xh) “nats”
to encode (xv, xh), and this is directly related to the energy we need to send
this message over a continuous channel (e.g. a Gaussian one) with constant
noise level. More details about the relation between probability models and
codes are given below. We then have

−Φ(P) = EP [log P0(xv, xh)] + H(P). (3.19)

The partition function is

Z =

∫

exp(−E(xh)) dxh =

∫

P0(xv, xh) dxh = P0(xv), (3.20)

and the Boltzmann distribution is the posterior P (xh|xv). As above, the
value of (3.19) for any distribution P (xh) is a lower bound on the desired log
partition function:

log P0(xv) ≥ EP [log P0(xv, xh)] + H(P) (3.21)

This result can also be derived using convex duality (see subsection 3.1.1).
Let the space X consist of all functions φxv

(xh) = log P0(xv, xh). A vector
of this space can be regarded as a real vector whose components are indexed
by xh. The dual space Ξ is the space of distributions P (xh). Define f on X
as f(φ) = log

∫

exp(φ(xh)) dxh. One can show (see [Jaa97], section 2.A) that
f is convex. The convex dual f ∗(P) is the negative entropy −H(P). Using
(3.4), we have for each P ∈ Ξ:

log P0(xv) = f(φxv
) ≥ fP (φxv

) = (φxv
, P)− f ∗(P)

=

∫

P (xh) log P0(xv, xh) dxh + H(P),
(3.22)

70 CHAPTER 3. VARIATIONAL AND BAYESIAN TECHNIQUES

which is just (3.21). We can also easily compute the induced metric, as in-
troduced in subsection 3.1.1. Let P ∗ and φxv

be a corresponding pair. Then:

Df∗(P → P ∗) = f(φxv
)− fP (φxv

)

= log P0(xv)−
∫

P (xh) log P0(xv, xh) dxh −H(P)

=

∫

P (xh) log

(

P (xh)

P0(xv, xh)/P0(xv)

)

= D(P ||P0(·|xv)),

(3.23)

which is the relative entropy between the variational distribution P and the
posterior P0(xh|xv) = P ∗. The convex duality framework therefore suggests
to choose a family Ξ̃ of distributions such that D(P ||P0(·|xv)) can be effi-
ciently computed up to additive constants for each P ∈ Ξ̃, then to minimize
the metric with respect to P ∈ Ξ̃. Since the relative entropy is convex, this
optimization problem has a unique solution if Ξ̃ is convex. Otherwise, we can
search for a local minimum. By definition, D(P ||P0(·|xv)) is the difference
between the exact log marginal log P0(xv) (corresponding to the negative
free energy) and (3.19) (corresponding to the negative variational free en-
ergy). The way via convex duality seems to be overcomplex in this case,
but we think it gives a useful (graphical) intuition about the nature of the
variational approximation (see figure 3.1).

3.1.4 From inference to learning: The EM algorithm

In the last section, we dealt with first-level inference. Given some evidence xv

and a fixed probability model P0(xv, xh), we derived a tractable approxima-
tion to log P0(xv). Now we start from a family of models P0(xv, xh|θ), θ ∈ Θ
and try to infer θ given evidence xv. From the Bayesian point of view, the
best model is a sum over all members of the family, weighted by the pos-
terior distribution of θ. However, if we are restricted to use one model out
of the family, we have to look for another criterion of choice. The maximum
a-posteriori (MAP) method is to choose θ such as to maximize the posterior
of θ. The basic challenge for MAP is to maximize the log likelihood function
log P0(xv|θ), since the prior of θ is usually easy to optimize. The maximum-
likelihood (ML) method is to choose θ to maximize the log likelihood, which
corresponds to MAP with an improper prior. We discuss these methods in
more detail in subsection 3.2.1. Another idea would be to sample θ from
the posterior, this is referred to as the Gibbs method. The Gibbs method
has some theoretical advantages over the MAP method, but if the posterior

3.1. VARIATIONAL INFERENCE TECHNIQUES 71

is highly concentrated around its mode, the methods behave similarly. The
Gibbs method can be implemented using a Monte Carlo sampler.

The expectation-maximization (EM) algorithm is a general tool for finding
local maxima of marginal likelihoods like log P0(xv|θ) (see [DLR77],[HN97]).
It requires the computation of the expectation of the complete-data log likeli-
hood log P0(xv, xh|θ) over the posterior P0(xh|xv, θ0) and the maximization
of this criterion w.r.t. θ. In some cases, this computation is feasible while
the direct optimization of the marginal likelihood is not. However, usually
the posterior expectation is also infeasible and has to be approximated, for
example using the variational technique. Let Ξ̃ be a set of variational dis-
tributions such that the computation of EP [log P0(xv, xh|θ)] (as a function
of θ) and its gradient is feasible for all P ∈ Ξ̃. Furthermore we require that
the variational inference procedure discussed in subsection 3.1.3 is feasible
for every θ. Then, a generalized form of the EM algorithm can be used to
find a local maximum (P̂ , θ̂) of the criterion

L(P, θ) = EP [log P0(xv, xh|θ)] + H(P). (3.24)

Recall that this is the variational lower bound to log P0(xv|θ). If the posterior
P0(xh|xv, θ) is in Ξ̃ for all θ, this method coincides with the original EM
algorithm. However, it is very important to note that in general θ̂ will not be a
local maximum point of the marginal likelihood. If the conditional posteriors
for hyperparameter values around the true maximizer can only be poorly
represented by any of the variational distributions, the algorithm might prefer
a value θ̂ far from the true maximum point if the posterior conditioned on θ̂

can be fitted much better by a variational density. We can argue that if Ξ̃ is
a broad class, then θ̂ should have a reasonably large likelihood, as compared
to the scores attained by local maxima of the marginal likelihood function.
Furthermore, our goal is usually not to obtain a close approximation to a
maximum point θ, but to find a good proxy for the posterior

P0(xh|xv) =

∫

P0(xh|xv, θ)P0(θ|xv) dθ (3.25)

within the tractable class Ξ̃, and P̂ is surely a reasonable candidate. We will
first state the algorithm in the form given by [HN97] and afterwards show
how it can be derived as special case of a very simple optimization algorithm
for convex functions.

1. Choose any θ0 as starting point.

2. Maximize L(P, θt−1) w.r.t. P ∈ Ξ̃. Let Pt be the maximum point, i.e.
the best variational approximation to P (xh|xv, θt−1).

72 CHAPTER 3. VARIATIONAL AND BAYESIAN TECHNIQUES

3. Maximize L(Pt, θ) w.r.t. θ. Let θt be the maximum point. Go to 2.

This procedure convergences against a local maximum of L. Both maximiza-
tion steps need not be performed to high accuracy, especially during early
iterations. The global maximum in step 2 is the posterior P0(xh|xv, θt−1)
which however is usually not contained in Ξ̃.

Recall the discussion of subsection 3.1.1. Suppose we want to find a local
maximum of f(x) over some subset Xc ⊂ X. A very simple algorithm for
this purpose can be described as follows. Start with any x0 ∈ Xc. Given xt−1,
find the corresponding ξ. If f is differentiable (as we usually assume), we have
ξ = ∇f(xt−1). Consider the affine lower bound fξ. Now, if we find a xt such
that fξ(xt) > fξ(xt−1), we have f(xt) ≥ fξ(xt) > fξ(xt−1) = f(xt−1), and
xt−1 → xt means progress. This algorithm converges to a local maximum
where ξ ≈ 0. One can show that the EM algorithm is a special case of this
simple procedure.

Now suppose it is infeasible for general xt−1 ∈ Xc to find the corresponding
ξ and/or compute the affine bound fξ. If there is a subset Ξ̃ ⊂ Ξ such that
the bounds can be computed efficiently for all ξ ∈ Ξ̃, the following algorithm
can be used to find a joint local maximum of fξ(x), x ∈ Xc, ξ ∈ Ξ̃:

1. Choose any x0 ∈ Xc.

2. Maximize fξ(xt−1) w.r.t. ξ ∈ Ξ̃. This is equivalent to minimizing the
metric D(ξ → ξ′) where ξ′ corresponds to xt−1 (and need not be in Ξ̃).
Let ξt be the maximum point.

3. Maximize fξt
(x) w.r.t. x ∈ Xc. Let xt be the maximum point. Go to

2.

Figure 3.2 shows the operations involved in one step of the iteration, namely
finding the tangent hyperplane closest (w.r.t. to the Df∗ metric) to the tan-
gent at xt−1, and searching for a constrained maximum point on this (former)
tangent. In this figure, the local maximum of f and the lower bound fξ are
the same, but that is not true in general.

Much like in subsection 3.1.3, we specialize Xc to be the set of functions
φθ(xh) = log P0(xv, xh|θ) which can be identified with Θ. As above, we
use f(φ) = log

∫

exp(φ(xh)) dxh which is convex. The dual space Ξ is the
gradient space of f . It is easy to show that f(φθ) = log P0(xv|θ) and
∇f(φθ) = P (xh|xv, θ), i.e. the posterior. We choose Ξ̃ as space of varia-
tional distributions P (xh). Since the convex dual of f is f ∗(P) = −H(P),

3.1. VARIATIONAL INFERENCE TECHNIQUES 73

Ξ~

f (x)ξ

xt-1

ξ’f (x)

Xc

ξ ε Ξ
∼

xt

f(x)

x

Figure 3.2: Iteration of convex maximization algorithm.

we have the affine bounds

fP (φθ) = (P, φθ) + H(P) = EP [log P0(xv, xh|θ)] + H(P) (3.26)

which coincide with (3.24). This view should provide some useful graphical
intuition about the nature of the generalized EM algorithm.

3.1.5 Minimum description length and the bits-back

encoder

During this subsection, unlike all others, log denotes the logarithm to basis
2. Using the natural logarithm doesn’t invalidate any statement here, but we
would have to use the measurement unit “nats” instead of the familiar bits2.

We can justify the variational technique from an information-theoretic
viewpoint, applying the minimum description length (MDL) principle (see
[Ris86]) and the bits-back encoding scheme of [HVC93]. MDL builds on Kol-
mogorov complexity (see for example [CT91]) which suggests to measure the
stochastic complexity of a string of symbols by the length of the shortest
computer program which prints the string and halts. Given that the decoder

2We would have to deal with a nats-back encoder then.

74 CHAPTER 3. VARIATIONAL AND BAYESIAN TECHNIQUES

is an universal computer, transmitting the algorithmic description of a se-
quence instead of the sequence itself is clearly a universal optimal source
code, which links Kolmogorov complexity to coding and information theory.

To compress a sequence substantially, we have to find hidden structures
that can be described very much shorter than the sequence itself. This pro-
cess is called modeling. Any nontrivial model will include different sources
of randomness. First of all, adaptive models are usually parameterized by
weights, representing hidden variables. When a model is used to generate
data, the actual values of the hidden variables are sampled at random. The
(prior) distribution of the weights is part of the structural model descrip-
tion. Secondly, there are “destructive” random sources called noise. From
an information-theoretic viewpoint, noise transforms the exact predictions of
the data-generating model into the actual sample, and by doing so destroys
information about the values of the hidden variables in the model. The higher
the “noise level”, the more information is destroyed by the noise transfor-
mation. Since information is a symmetric measure, the noise also destroys
information the model weights contains about the data. The noise distribu-
tions are also part of the structural model description. We conclude that a
model resulting in an efficient description of a dataset has to be chosen such
that

1. There is a short description for the weights.

2. The noise level is low, i.e. given the weights (and therefore the deter-
ministic predictions of the model), there is a short description of the
data.

Within Kolmogorov complexity theory, the description of the model structure
and weights is called Kolmogorov sufficient statistic (see [CT91], chapter 7): It
achieves a description of the sequence up to (structureless) pure chance. The
idea of a trade-off between model complexity and accurate (low noise) de-
scription of the data is sometimes called Occam’s razor (see [Mac91],[Mac95]).
It is transcendent in natural science, stating that of two theories describing
an empirical phenomenon equally well, the conceptually easier one should
always be preferred. Occam’s razor is also the basis of Occam learning in
COLT (see [KV94]).

It therefore makes sense to prefer models which, if their structure is known to
both sender and receiver, allow to construct the shortest possible description
of given data. Suppose we are given a structure model H, parameterized
by a weight vector w, and a dataset D̃. The goal is to transmit a short
description of D̃ (which is quantized using equidistant bins of length δD)

3.1. VARIATIONAL INFERENCE TECHNIQUES 75

from a sender S to a receiver R. Both S and R know H and δD. We will
show that both the negative marginal log likelihood − log P (D̃|H) and its
variational approximation are (hopefully reasonably tight) upper bounds on
the minimum description length of D̃ given H3. The MDL principle thus
justifies the usage of these criteria for model selection.

The bits-back encoding scheme of [HVC93] has the reputation of being some-
what difficult to understand, because of the reason that S can (and has to)
actually transfer more information to R than just a unique description of
D̃. But looking at real-world situations of how a communication channel is
used, this assumption is very natural. Thus, assume there is another random
variable I ∼ P (I), independent of the random sources named above, and the
prior P (I) is known to S and R. At the beginning of the communication,
S samples a value I, and S wants to tell R about this value, apart from
transmitting D̃. The statement “transmitting k bits of information about I”
can be made concrete by assuming that both parties know a partition of the
range of I into 2k subsets, each having mass 2−k under the measure P (I). S
can tell R about the subset I lies in by sending the k-bit index of the subset,
and there is no shorter message inducing the same knowledge level at the
side of R. For example, if I ∼ U([0, 1)), S might just send the first k bits of
the binary expansion of I.

If T is a value in the range of a discrete random variable with distribution
P (T), we will use the statement “T can be encoded using − log P (T) bits”.
This is not strictly true, but there always exist codes with word length <
− log P (T)+ 2 bits for T , as shown in [CT91]. Conversely, we can use one of
these optimal coding trees to generate a sample T from P (T) using a sequence
of fair coins. Given that the outcome is T = t, the number of random bits
we actually used is also < − log P (t) + 2. However, universal constants can
be ignored within the MDL framework.

The bits-back coding scheme works as follows:

1. S computes the posterior distribution P (w|D̃) and samples a weight
vector w̃ from this distribution, quantized to equidistant bins of width
δw. The sampling requires − log(P (w̃|D̃)δw) unbiased random bits.
Here, δw is the quantization width for weights upon which S and R
agreed beforehand.

2. S encodes w̃ using the (quantized) prior distribution P (w). This needs
− log(P (w̃)δw) bits.

3Up to a constant only depending on the quantization width δD.

76 CHAPTER 3. VARIATIONAL AND BAYESIAN TECHNIQUES

3. S encodes the data D̃ using the (quantized) distribution P (D|w̃). This
needs − log(P (D̃|w̃)δD) bits. S sends both messages, at a total cost of

− log(P (w̃)δw)− log(P (D̃|w̃)δD) bits. (3.27)

4. R decodes w̃ using the prior P (w) and D̃ using the noise distribution
P (D|w̃).

Now, something is wrong here. The cost (3.27) depends on the quantization
δw and is huge for reasonably small accuracy. But note that R, after having
decoded w̃ and D̃, is able to reconstruct the sequence of bits S used to
sample w̃, by computing the posterior P (w|D̃) and building the same code
tree used by S to construct w̃. Now, what prevents S from using these bits
to send another message to R, containing information about I? The bits S
uses to sample w̃ have to be fair coins from the viewpoint of R only (not
knowing I), and can therefore be used to communicate − log(P (w̃|D̃)δw)
bits of information. Thus, we get a lot of bits back, and the cost of describing
D̃ is only

− log(P (w̃)δw)− log(P (D̃|w̃)δD) + log(P (w̃|D̃)δw)

= − log P (D̃)− log δD.
(3.28)

But what if the computation of the posterior P (w|D̃) is not feasible4? Sup-
pose there is a class Q(w|θ) of approximating distributions such that the
computation of a certain distance between Q(w|θ) and the posterior P (w|D̃)
is feasible for every θ. We will specify the distance afterwards. We now apply
the bits-back scheme as above, but replace the true posterior by the best
approximation Q(w|θ̃). The apparent cost is given by (3.27), but we get
− log(Q(w̃|θ̃)δw) bits back, and the cost of describing D̃ is (for fixed w̃)

− log(P (w̃)δw)− log(P (D̃|w̃)δD) + log(Q(w̃|θ̃)δw)

= − log P (D̃)− log δD − log
P (w̃|D̃)

Q(w̃|θ̃)
.

(3.29)

Since w̃ ∼ Q(w|θ̃) (if I is unknown), the expected description length is

− log P (D̃)− log δD + D(Q(·|θ̃)||P (·|D̃)) (3.30)

4Since MDL is not concerned about feasibility, we simply restrict the model (and en-
coder and decoder) such that only certain admissable operations are allowed.

3.2. BAYESIAN TECHNIQUES 77

which is easily recognized to be the variational free energy (3.19) using the
variational distribution Q(·|θ̃), up to a δD term. The best way to choose θ̃ is
to minimize the relative entropy in (3.30) or, equivalently, (3.30) itself, which
fixes the distance left unspecified above.

Hinton and van Camp [HVC93] called this special case of the variational tech-
nique ensemble learning. Instead of using a single fixed weight, we employ an
ensemble whose weights are given by the variational distribution Q(·|θ̃). The
optimal ensemble is the Bayesian one, using the posterior itself as weighting
distribution. If w is continuous, the most common variational distributions
are Gaussians. We can also employ mixtures of Gaussians (see [HVC93]). In
the latter case, the variational free energy is not analytically tractable, but
there is a simple upper bound that can be minimized instead.

3.2 Bayesian techniques

We only give a short discussion here such as to render the following chap-
ter self-contained. There are a lot of good sources for further reading, e.g.
[Bis95],[Mac91],[Nea96],[Mac95]. And if you have a really tricky question,
you are encouraged to visit David MacKay’s well-maintained Bayesian FAQ
page at: http://wol.ra.phy.cam.ac.uk/mackay/Bayes_FAQ.html

3.2.1 The evidence framework

As discussed in the introduction above, the Bayesian framework requires us
to specify prior distributions over latent variables, like for example weights
of a network. Priors are usually constructed in a hierarchical fashion (see sec-
tion 1.3.2). We choose a family of possible prior distributions, parameterized
by a hyperparameter. Specifying a hyperprior over this parameter induces an
effective prior over the latent variables. This procedure can be iterated, i.e.
we can write the hyperprior as a parametric mixture too, and so on. An ad-
vantage of the hierarchical approach is that we can generate very complicated
effective priors using simple manageable hyperpriors. A disadvantage is that
we have to deal with more variables and more (possibly intractable) Bayesian
sums or integrals. Consequently, more approximations have to be employed.
However, as we will see, some of these approximations reveal another ad-
vantage of hierarchical design, namely the adaption of hyperparameters to
the data. This seems odd, since the priors should be chosen before any data
is inspected, but it will become clear that the priors are indeed specified

78 CHAPTER 3. VARIATIONAL AND BAYESIAN TECHNIQUES

completely before any data comes into play. What is adapted is merely a
“working approximation” to the hyperprior.

The evidence framework proposed in [Mac91] shows how to perform an ap-
proximate Bayesian analysis using hierarchical priors. For simplicity, we will
assume a one-stage hierarchy. Following [WB98], we will show how to apply
the framework to probabilistic kernel regression classifiers. Recall the ma-
terial of subsection 1.3.2. We choose a hyperprior P (θ). Details about the
choice of hyperpriors are given in a seperate subsection below. If Pa(t∗|D, θ)
is an approximation to the conditioned predictive distribution, we can aver-
age this distribution over the posterior P (θ|D) to get an approximation to
the true predictive distribution P (t∗|D).

For reasonably complex models, we can neither normalize the posterior
nor compute the expectation. However, we can search for the maximum a-
posteriori (MAP) value θ̂ = argmaxθ P (θ|D) and approximate the predictive
distribution by Pa(t∗|D, θ̂). This is sometimes referred to as maximum like-
lihood II approach (see [Ber85]). In the limit of large datasets, P (θ|D) con-
verges in probability against a delta distribution, and the maximum points
for a sequence of growing datasets converge in probability against the posi-
tion of the peak, so the approximation is asymptotically exact. Much more
important is that the procedure often works well in practice for finite, small
dataset sizes, i.e. Pa(t∗|D, θ̂) can be used as good approximation of the true
predictive distribution. However, MAP has some severe caveats we have to
be aware of. The method is not invariant against nonlinear transformations
of the hyperparameter random variable, except in the special case of maxi-
mum likelihood (ML) which corresponds to using a constant improper prior
on the hyperparameters. Let θ̂ be the maximizer of the posterior P (θ|D).
If f is a nonlinear invertable function, γ = f(θ) and γ̂ the maximizer of
P (γ|D), then (in general) γ̂ 6= f(θ̂). Many Bayesians do not consider MAP
a Bayesian technique for this reason (among others), and we have to repeat
that a sound justification can only be given in the limit of large datasets. In
the case of a finite, maybe rather small dataset it is not possible to recom-
mend a particular kind of parameterization, since the best choice depends
on the model. The parameterization should be chosen such that the poste-
rior is not skew, although this is hard to test in complex models. Plots of
P (θ) and − log P (θ) (as part of the negative log posterior criterion to be
minimized) are helpful to visualize the contribution of the prior to MAP
in contrast to ML. The performance of the MAP discriminant might also
be compared to MCMC prediction if the latter can be performed feasibly.
A gross degradation in performance might indicate a poor parameterization
of the hyperparameters, but other possible reasons are shortcomings in the

3.2. BAYESIAN TECHNIQUES 79

model or poor quality of approximations. Another possibility to detect such
shortcomings is indicated in subsection 3.2.4.

We remark that exactly the same problem occurs with the parameterization
of latent variables if we determine a MAP configuration and predict using this
configuration alone instead of averaging all configurations. In the case where
Gaussian approximations like the Laplace technique or certain variational
methods are involved, one should always aim to choose the parameterization
of the latent variables such that the posterior is as much Gaussian-shaped
as possible. In certain special cases, an optimal choice can be advocated (see
[Mac98]).

Given that the log hyperprior log P (θ) can easily be maximized w.r.t. θ, the
basic challenge of MAP is to maximize the log evidence for D:

log P (D|θ) = log

∫

P (t, y|θ) dy (3.31)

Unfortunately, there is a name clash with the graphical models literature
which would call D the evidence and P (D|θ) the marginal likelihood of the
evidence (see subsection 3.1.4). The basic tool for evidence maximization
is the EM algorithm, as discussed in subsection 3.1.4, where the posterior
P (y|D, θt−1) in the E step is either computed exactly (like in Gaussian pro-
cess regression with Gaussian noise, see subsection 1.3.4) or approximately
(see subsection 1.3.5).

Note that, as discussed in subsection 3.1.5, the evidence maximization ap-
proach can also be motivated from an MDL viewpoint, i.e. using arguments
of information-theoretic origin.

3.2.2 Monte Carlo methods

Monte Carlo techniques are of immense importance in a growing num-
ber of fields including statistical physics and probabilistic inference. Con-
sequently, the literature is huge, and attempting a review here is beyond
our scope. Neal [Nea93] gives a detailed review and Neal [Nea96] is an
excellent source for Bayesian learning for neural networks using Markov
Chain Monte Carlo (MCMC) methods. Radford Neal provides free, sophis-
ticated MCMC software for neural networks and Gaussian processes at
http://www.cs.toronto.edu/~radford, and BUGS is a free package for
Gibbs sampling5 (see http://www.mrc-bsu.cam.ac.uk/bugs/).

5Gibbs sampling is a particularly simple and very popular kind of MCMC technique.

80 CHAPTER 3. VARIATIONAL AND BAYESIAN TECHNIQUES

If x ∼ P (x) and P and f are sufficiently regular, then

1

N

N
∑

n=1

f(xn) → E[f(x)] (3.32)

with probability 1, if the xi are independent samples from P . Moreover, the
variance of the left-hand side is (in probability) O(1/N) if f is bounded, thus
the speed of convergence is independent of details like the dimension of x.
Generating independent samples from P is usually difficult, but if we generate
a sequence of dependent samples in a way such that points far away from
each other in the sequence are “quasi” independent, (3.32) still works, either
by using all dependent points to compute the average or by picking points
mutually far from each other in the sequence and use the subsequence only.
Of course, the O(1/N) convergence behaviour is usually lost. This argument
can be made precise, by estimating the correlation function of the process
(f(xi))i (see [Nea93]).

Another problem is how to sample from P . Often, P cannot even be normal-
ized, and even if P (x) can be computed efficiently for every x, it is not clear
how to produce independent samples from P . MCMC uses an ergodic Markov
Chain with equilibrium or stationary distribution P . After a burn-in phase,
the chain settles down and produces (dependent) samples from its equilibrium
distribution. This sounds fairly easy, but the problem of MCMC sampling
remains a challenging one. No rigorous, general criterion to determine the
length of the burn-in phase has been found so far, although criteria have
been proposed which work under special conditions (see [PW96]). Cowles
and Carlin [CC96] give an overview over practical convergence diagnostics.
Furthermore, the lags between “quasi” independent points in the sequence
can usually only be strongly overestimated. Techniques to systematically de-
crease the length of the burn-in phase and the lags have been proposed. While
they work for large classes of distributions, P in a concrete problem often
has extremely nasty properties6 (for example if P is a posterior), and one can
never be sure that the MCMC sampler doesn’t fail completely for P . How-
ever, as with so many MC algorithms, MCMC is competetive in situations
where everything else that is known is definitively incorrect or infeasible.

3.2.3 Choice of hyperpriors

Let us begin by classifying parameters of a univariate density. If x ∼ p(x|θ)
and x+a ∼ p(x|θ +a) for any a, θ is called location parameter. For example,

6One would not need MCMC if P was simple.

3.2. BAYESIAN TECHNIQUES 81

the mean is a location parameter of a Gaussian. If x ∼ p(x|ρ) where ρ > 0,
and if ax ∼ p(x|aρ) for any a > 0, ρ is called scale parameter. The standard
deviation of a zero-mean Gaussian or the mean of a Gamma distribution
are examples for scale parameters. If x ∼ p(x|θ, ρ), ρ > 0, θ is a location
parameter for every fixed ρ and ax ∼ p(x|aθ, aρ) for every a > 0, θ and ρ are
a location-scale parameter pair.

The most commonly used hyperprior distributions are noninformative priors.
By definition, these priors contain no information at all about the parameter,
and usually they are not even distributions, since their integral over the range
of the parameter is not finite. Such priors are often called improper. The use
of improper priors is heavily criticized by Bayesians, since such a procedure
makes no sense at all within the Bayesian philosophy. Improper priors are
a constant source of errors in applications of “Bayesian” inference, for ex-
ample an MCMC implementation will almost surely fail if improper priors
are used. Other approaches like the evidence framework discussed above are
more robust against this misuse, but in general improper priors should be
regarded merely as a concession to people who criticize the subjectivity in
Bayesian analysis, and anybody else should try to avoid them whenever pos-
sible. The standard improper prior for location parameters is the flat uniform
one p(θ) ≡ 1. Noninformative priors for scale parameters should be uniform
on a log scale, i.e p(log ρ) ≡ 1 or p(ρ) = 1/ρ. Both priors cannot be normal-
ized. These choices can be motivated using arguments about invariances, see
[Bis95], [Ber85].

The use of conjugate priors is very popular in Bayesian statistics. A class
of distribution Γ is called conjugate w.r.t. a family of distributions P (x|θ)
if for any choice P (θ) ∈ Γ and any x the posterior P (θ|x) is also in Γ.
For example, if a class of prior distributions is conjugate w.r.t. the family
of noise distributions of a model, the posterior distribution is in the same
class as the prior, and the parameters usually can be determined easily. An
example would be Gaussian process regression with Gaussian noise, see sub-
section 1.3.4. In contrast to that, there are virtually no cases of analytically
tractable exact Bayesian analysis of a model with nonconjugate prior. If we
use hyperpriors conjugate w.r.t. the conditional prior distributions over la-
tent variables, we can compute the posterior of the hyperparameter given the
value of the latent variables, but the posterior of the hyperparameter given
the data usually remains intractable. There is an ongoing discussion between
advocates of the evidence framework and statisticians advising the use of
conjugate hyperpriors and early marginalization over the hyperparameters,
see [Mac93]. This might seem strange: Why should we approximate an inte-
gration crudely if we can do it analytically? The reason why intuition might

82 CHAPTER 3. VARIATIONAL AND BAYESIAN TECHNIQUES

go wrong here is that the true priors and likelihoods, obtained by integrat-
ing the hyperparameters out, are skew and usually give rise to skew-peaked
posteriors. Applying a Gaussian approximation to such a posterior might
introduce a larger error than approximating the (usually) more symmetric
conditional posterior and plug in the MAP hyperparameter values.

Even though the choice of hyperpriors remains a subjective one and de-
pends on the concrete situation, there are some broad and very useful classes
that can be considered. Gaussian distributions are suitable as hyperpriors
for location parameters. Their use can always be motivated using the maxi-
mum entropy principle (see subsection 1.3.3). Furthermore Gaussian distri-
butions P (θ) are conjugate w.r.t. conditional Gaussian distributions of the
form N(θ1, σ2I).

Scale parameters can be given Gaussian hyperpriors on the log scale, i.e.
P (log ρ) is Gaussian. An alternative is to use a Gamma prior on τ = ρ−2.
If ρ2 is a variance parameter, for example of a Gaussian prior, τ is called
precision parameter. The Γ(µ, α) distribution is defined as

P (τ |µ, α) =
(α/2µ)α/2

Γ(α/2)
τα/2−1 exp

(

− α

2µ
τ

)

I{τ>0}. (3.33)

It has mean µ and variance 2µ2/α. Gamma hyperpriors can be motivated us-
ing a conjugacy argument, see [Nea96], chapter 3.2.1. If some hidden variables
are conditionally i.i.d. zero-mean Gaussian with precision τ , and the latter
is given a Gamma hyperprior, the effective prior (obtained by integrating τ
out) is a t distribution, see [Nea96], chapter 4.1.

We finally remark that the parameters of hyperpriors have to be given con-
crete values when using a one-level design. This can be done by looking at
graphs of the hyperprior density for different values. Unless we have spe-
cific prior information, hyperpriors should be chosen such that their mass is
broadly uniformly distributed over a broad range of plausible values.

3.2.4 Evidence versus Cross Validation

This subsection broadly follows a discussion on David MacKay’s Bayesian
FAQ page at http://wol.ra.phy.cam.ac.uk/mackay/Bayes_FAQ.html.

A central issue when analyzing a statistical pattern recognition model is to
gain a good estimate of the generalization error. Let (x, t) be distributed
according to an unknown data distribution. Let D be an i.i.d. sample of size
n, drawn according to the data distribution. gn(x, D) denotes a classifier

3.2. BAYESIAN TECHNIQUES 83

trained on the sample D. The error of gn is defined as Ln = P (gn(x, D) 6= t).
Ln is a random variable depending on D. The generalization error is defined
as ELn, where the expectation is over the ensemble of samples of size n. The
generalization error depends on the sample size n.

An estimator of this quantity is a function7 depending on the training sam-
ple D and the model description, but not on the unknown, data-generating
distribution. An estimator is called unbiased if its expected value (over the
ensemble of samples) is equal to the generalization error. The cross valida-
tion (CV) estimator, also called rotation estimator (see [DGL96], chapters
24 and 31), is an unbiased estimator of the generalization error. It works by
partitioning the sample into K > 1 chunks Dk. For simplicity, let n/K be
an integer and all the chunks have the same size. For any k, we train the
machine on the sample D \ Dk and compute the test error on Dk. These
quantities are unbiased estimators of ELn−n/K , as is their arithmetic aver-
age, the rotation estimate. In the extreme case K = n, the estimator is called
leave-one-out cross validation estimator or deleted estimator. Note that the
estimator sacrifices no training points for validation purposes only (as does
for example the holdout or validation set estimator, see [DGL96]). However,
the computational cost is in general much larger than what is needed for the
holdout estimator, therefore the latter is often preferred in practice.

The CV estimator can be used for general loss functions. If yn(x, D) is
a predictor of y and g a loss function, we define the sample risk Ln =
E[g(t, yn(x, D))] where the expectation is over (x, t). The risk is EDLn and
depends on n. The leave-one-out CV estimator is

L̂n =
1

n

n
∑

i=1

g(ti, yn−1(xi, D \ {(xi, ti)})), (3.34)

and clearly EL̂n = ELn−1. For reasonably large n, this should be close to
ELn which is the risk we are really interested in. We will concentrate on
leave-one-out CV here.

Now let H be a model and P (D|H) its evidence. By factorization we obtain

− log P (D|H) =
n
∑

i=1

− log P (ti|t1, . . . , ti−1,H). (3.35)

Thereby, we have n! possibilities to order the sample points. One can plot
i versus − log P (ti|t1, . . . , ti−1,H) which will typically be a decreasing curve

7Or, more generally, a sequence of functions, one for each sample size n.

84 CHAPTER 3. VARIATIONAL AND BAYESIAN TECHNIQUES

(usually not monotonically) if the model is any worth. The curve is flat only
for models that don’t adapt to new data at all. The negative log evidence is
the “integral” under the curve, while leave-one-out CV averages the last term
in the sum over different orderings. Therefore, MacKay concludes that nega-
tive log evidence and leave-one-out CV are fundamentally different measures,
and the latter is expected to render a better estimate of ELn−1.

However, the evidence measure has some apparent advantages over the CV
score. The latter is subject to noise, and in general gradients w.r.t. model
parameters cannot be computed. If we have a model which performs poorly
on unseen data, CV might indicate this fact, but gives no suggestion for
how the model should be changed to achieve better performance. Indeed,
optimization of the CV score is usually done by trial-and-error, using grid
searches, and this is clearly infeasible for more than a very small number
of model parameters. Second, the naive way to compute the CV score is
demanding, rendering it impractical on large datasets. For special loss func-
tions or linear architectures, CV scores can be computed efficiently, see for
example [Wah90]. In the general case, computationally cheap upper bounds
on the CV score can sometimes be used, see [JH99], [Wah98].

MacKay concludes that in practice it is advisable (if it proves feasible) to use
both scores, namely to use the CV score to “validate” the evidence. Suppose
we variate certain parameters of the model and compute both scores for all
configurations. If we assume that the CV score is a good estimate of the
risk, and we observe a poor correlation between evidence and CV score,
we can conclude that evidence and risk are in disagreement. This might
indicate a structural deficiency of the model. Unless we have a good idea
about the Bayes risk of the data distribution8, information of this kind is
difficult to obtain using one of the methods alone. MacKay [Mac91] observed
this behaviour in experiments on real-world data.

8The Bayes risk (or error) is the infimum of E[Ln] over all (possibly randomized)
predictors.

Chapter 4

Bayesian model selection for

kernel regression classifiers

This chapter introduces a new variational Bayesian method for model selec-
tion among kernel regression classifiers which is applied to Gaussian process
and Support Vector classifiers. The previous chapter paves the way for the
techniques used here, but can be used in an encyclopedical fashion.

We compare the new method with several existing techniques for model selec-
tion. We finally present results of experiments done on a number of commonly
used real-world tasks and analyze these results.

4.1 Model selection techniques

Given a set of models H, we would like to select one that is supported most
by given data D, in the sense that it is able to predict future data from
the same source as D with smallest error or loss. Model selection is usually
applied if we are constrained to use one model out of the hypothesis space.
If this constraint is not given, mixtures over a subset or all of the hypothesis
space should be preferred (see [Bis95], section 9.6). The ideal weights in such
a mixture are posterior probabilities of the models, but many other weighting
schemes also do a good job. A particularly interesting technique to build up
a mixture is AdaBoost (and relatives), as discussed in subsection 2.2.1.

Model selection for kernel regression classifiers focusses on adapting free ker-
nel hyperparameters to given data. While for Gaussian process classifiers,
there are Bayesian approaches that usually work well in practice, model se-
lection is an important current issue in Support Vector learning. For a ker-

85

86 CHAPTER 4. BAYESIAN MODEL SELECTION

nel with a very small number of free parameters (e.g. a Radial Basis Func-
tion (RBF) kernel) techniques like cross validation (see subsection 3.2.4 and
[Wah98], [WLZ99]) can be applied. Wahba [WLZ99] shows how certain prox-
ies to the generalized approximative cross validation score can be obtained
without the need to actually run leave-one-out cross validation (which would
be quite expensive for large training set sizes). Jaakkola and Haussler [JH99]
use an upper bound one the leave-one-out score which can be evaluated ef-
ficiently. Campbell et al [CCST98] propose a method based on the Kernel
Adatron algorithm to adapt the width parameter of a RBF kernel to the
data, but they only consider the hard margin case which behaves very badly
for noisy data. Opper and Winther [OW99] use mean field techniques to
efficiently compute an approximation to the leave-one-out estimator.

Much recent interest is focussed on data-dependent PAC bounds (see dis-
cussion in subsection 1.2.4). [SSTSW99] Although these bounds are usually
quite loose, they can be used for model selection, in much the same way as
CV scores. The bounds are usually based either on Structural Risk Mini-
mization and the luckiness framework (see subsection 1.2.4) or the idea of
skeleton estimates. Empirical covering is an alternative to SRM with lucki-
ness functions, but is not practically feasible at the time. See [DGL96] for
details.

4.1.1 Bayesian model selection: Related work

Consider the evidence (as discussed in subsection 3.2.1) for a kernel regression
model:

P (t|θ) =

∫

exp

(

−
n
∑

i=1

g(ti, yi)

)

P (y|θ) dy

=

∫

exp

(

−
n
∑

i=1

g(ti, yi)

)

N(y|0, K(θ)) dy.

(4.1)

We will restrict ourselves to normalized loss functions g(ti, yi). If our loss
function is unnormalized, we can find a normalized approximation. A possible
way to find such an approximation is simply to normalize g, i.e. to replace
it by g(ti, yi) + log Z(yi) where Z(yi) = exp(−g(+1, yi)) + exp(−g(−1, yi)).
The reader might notice that we dropped the “noise variance” parameter
C which appears at various places in this thesis as a prefactor of g. In the
SVC case, we decided to fix C = 1 such that the SVC loss has the same
behaviour for large |y| as other common classification losses (see subsection

4.1. MODEL SELECTION TECHNIQUES 87

1.2.6). We leave the issue of a variable C (and therefore two different variance
parameters, namely C and the prior variance parameter) for future work.
For large or very small C, the normalized SVC loss (and all other normalized
classification losses discussed in subsection 1.2.6) is far from the unnormalized
one in the margin region. The latter one actually approaches an infinite step
at 1 (being the “loss” used by the hard margin Support Vector machine)
for large C. Intuitively we would expect to introduce more problems with
degeneracies than benefits by using two seperate variance parameters, but
practical exploration is required.

Bayesian model selection amounts to maximizing the log evidence plus a log
prior for θ. This can be done using the EM algorithm, employing exact or
approximate posterior distributions of the latent variables, as discussed in
subsection 3.1.4.

One point is worth commenting on here. What happens if we just use the “ev-
idence” (4.1) together with an unnormalized loss function? This will in gen-
eral introduce a systematic error into the framework, because

∫

P (D|θ) dD
depends on θ and the training set size n. See [Sol00] where this effect is
demonstrated on a toy example. Just normalizing (4.1) by this factor might
help, but the resulting “evidence” is not consistent w.r.t. marginalization,
as discussed in subsection 2.1.8. This inconsistency destroys the Bayesian
justification of the “evidence” as model selection criterion.

Given the evidence criterion P (D|θ), how can we evaluate and maximize
it? A straightforward Laplace approximation like in the Gaussian process
classification case (as will be discussed in subsection 4.3.1, see also [WB98])
is the simplest option for most loss functions g(ti, yi). However, for the SVC
loss it is not applicable since the latter is not differentiable at tiyi = 1, and
this fact cannot be ignored: With very high probability at least one of the
patterns will lie on the margin in the final solution, i.e. tiŷi = 11. Sollich
[Sol99],[Sol00] suggests an approximation to P (D|θ) which works for the
unnormalized SVC loss, but cannot be applied to the normalized one. The
advantage of this formula is that it can be quickly evaluated given the SVC
solution with a rather small number of Support Vectors since it requires
the inversion of a matrix of size m only, where m is the number of essential
Support Vectors. The approximation can be modified to result in a continuous
expression (P. Sollich, personal communication), but without being able to
compute a gradient the optimization of this formula remains difficult. Sollich
presently uses sampling techniques like Monte Carlo chaining to deal with
the normalization factors.

1We called the corresponding xi essential Support Vectors above.

88 CHAPTER 4. BAYESIAN MODEL SELECTION

Another technique was proposed in [Kwo99]. The author replaces the step in
the Support Vector loss by a differentiable proxy and then uses an Eigenvalue
decomposition of the covariance matrix K. This is closely related to the
Laplace approximation discussed above. We (independently) spent some time
to do a similar thing, namely replacing the SVC loss by a series of functions
uniformly convergent to the loss. Performing the Laplace approximation and
taking the limit leads (of course) to divergence. Progress can be made by
subtracting off a term that only depends on the approximating series and
(unfortunately) the number of patterns with tiŷi 6= 1. Having done this, the
limit is finite and looks quite similar to the formula in [Kwo99]. However,
the limit of the Laplace approximations using the functions of the series
is a degenerate Gaussian whose variance is zero in the directions i with
tiŷi = 1, and we finally considered the Laplace approximation not a valid
technique in this case. Furthermore, Kwok [Kwo99] uses an unnormalized
joint distribution, which might lead to systematically wrong results of the
second-level inference, as discussed in subsection 4.1.1.

4.2 A variational technique for model selec-

tion

We suggest a variational method based on the idea of ensemble learning
[HVC93]. The latter technique has been successfully applied to Radial Basis
Function networks [BS97] and Multi-layer Perceptrons [BB97]. The basics of
variational techniques are discussed thoroughly in the previous chapter, but
the derivation here is (somewhat) self-contained.

4.2.1 Derivation of the algorithm

The log evidence cannot be efficiently evaluated, because we can neither
normalize the posterior P (y|t, θ) nor compute expectations over this distri-
bution. However, approximating the posterior by a variational distribution
P̃ from a suitably restricted model class Γ leads to a lower bound on the
log evidence whose value and gradient w.r.t. θ can be evaluated efficiently.
Within the class, the models are ranked using the (differential) relative en-
tropy (or Kullback-Leibler divergence): For fixed kernel parameters θ, we
choose the variational distribution that minimizes the relative entropy to the
true posterior. This minimization is equivalent to the maximization of the
lower bound w.r.t. the variational distribution, and therefore feasible.

4.2. A VARIATIONAL TECHNIQUE FOR MODEL SELECTION 89

We referred to the negative log evidence as free energy and to the negative of
the lower bound as variational free energy in the previous chapter, in accor-
dance to the physical origins. The latter is, for the variational distribution
P̃ :

F (P̃ , θ) = E− log P (t, y|θ)−H(P̃) (4.2)

where H(P̃) = E− log P̃ (y) denotes the differential entropy of P̃ and the
expectations are over P̃ . The joint distribution is

P (y, t|θ) = exp

(

−
n
∑

i=1

g(ti, yi)

)

P (y|θ), (4.3)

where the loss function g is assumed to be normalized. F can be written as
the free energy − log P (t|θ) plus the relative entropy between the posterior
P (y|t, θ) and its model P̃ :

F (P̃ , θ) = −
∫

P̃ (y) log

(

P (y|t, θ)P (t|θ)

P̃ (y)

)

dy

= − log P (t|θ) +

∫

P̃ (y) log

(

P̃ (y)

P (y|t, θ)

)

dy.

(4.4)

Thus, changing (P̃ , θ) such that F is decreased will enlarge the log evidence or
decrease the KL divergence and fit the model P̃ tighter to the posterior. Note
that, by the information inequality2 for the relative entropy (see [CT91]), F
is equal to the free energy iff P̃ is equal to the posterior almost everywhere.
In general, Γ will not be broad enough to contain the posteriors for all the θ

considered during optimization.

The model class Γ we are using is the family of Gaussians with factor-analyzed
covariance matrices:

Σ = D +

M
∑

j=1

cjc
t
j, (4.5)

where D is a diagonal matrix with positive entries and usually M � n. A
factor-analyzed covariance matrix is able to track and represent the most
important correlations between the component variables, as opposed to a di-
agonal matrix. This variational model class was suggested in [BB97], and we

2Which states that the relative entropy is nonnegative, and zero iff the compared dis-
tributions are equal almost everywhere.

90 CHAPTER 4. BAYESIAN MODEL SELECTION

will give an argument below why we think this class is suitable for approx-
imating posteriors of kernel methods too. The main reason for employing
a restricted class of Gaussians is that the reduced number of parameters
(compared to Gaussians with full covariance matrices) leads to a simpler
optimization problem which can be solved more efficiently. Gaussian distri-
butions with factor-analyzed covariances occur in factor analysis models, as
discussed in Appendix A.

To incorporate the distinction between normalized and unnormalized SVC
loss, let g̃(ti, yi) be any admissable loss function and g(ti, yi) = g̃(ti, yi) +
log Z(yi) be its normalized counterpart. Here, Z(yi) = exp(−g̃(+1, yi)) +
exp(−g̃(−1, yi)). This leads in an obvious way to the factorization F = F̃ +G,
where F̃ is the variational free energy based on the loss g̃, and

G = EP̃

[

∑

i

log Z(yi)

]

. (4.6)

G and its gradients w.r.t. P̃ will in general be intractable, but we can employ
any reasonably tight upper bound to retain the variational idea. If g̃ is already
normalized, Z ≡ 1 and G ≡ 0 can be ignored. We will concentrate on F̃ first.
For Gaussians P̃ = N(µ, Σ), F̃ can be computed relatively easy (at least
approximately):

F̃ (P̃ , θ) =

∫

P̃ (y)

(

n
∑

i=1

g̃(ti, yi)− log N(y|0, K)

)

dy −H(P̃)

=

n
∑

i=1

νi +
1

2
µtK−1µ +

1

2
tr
(

ΣK−1
)

+
1

2
log |K|

− 1

2
log |Σ| − n

2
,

(4.7)

where we define

νi = EP̃ [g̃(ti, yi)] =

∫

g̃(ti, yi)N(yi|µi, σ
2
i) dyi (4.8)

and diag Σ = (σ2
1, . . . , σ

2
n)t. The calculation of the gradients w.r.t. the pa-

rameters of P̃ and w.r.t. θ is demonstrated in Appendix C. Note that the
loss function g̃ does not have to be differentiable for the gradients to exist.
Although the algorithm is conceptually very simple, constructing an efficient
implementation is challenging. The notoriously bad O(n3) scaling of other
Bayesian Gaussian process techniques (see [WB98],[Gib97]) also affects the

4.2. A VARIATIONAL TECHNIQUE FOR MODEL SELECTION 91

variational algorithm, but further approximations might be applied to im-
prove on this. These issues are also discussed in the Appendices B and C.

Having obtained feasible formulas for F̃ and its gradients, we can optimize
F̃ using a nested loop algorithm as follows. In the inner loop we run an
optimizer to minimize F̃ w.r.t. P̃ for fixed θ. We used a conjugate gradients
optimizer since the number of parameters of P̃ is rather large. The outer
loop is an optimizer minimizing F̃ w.r.t. θ, and we chose a Quasi-Newton
method here since the dimension of Θ is usually rather small and gradients
w.r.t. θ are costly to evaluate. For questions about optimization, [Fle80] is
an excellent reference (see also [Lue84]).

Finally, we have to deal with the criterion part G of (4.6). If g̃ is the un-
normalized SVC loss, we can find a tight upper bound on G, as detailed in
Appendix C.2.3. This upper bound and its gradients w.r.t. P̃ can be evaluated
efficiently (in O(n)). Adding these to the corresponding terms for F̃ results
in the complete criterion and gradient for inner loop optimization. Since G
does not depend on θ, the outer loop optimization remains unchanged. We
mention that we can also replace the quite complicated expressions of the
bound on G by a simple approximation of G using numerical quadrature,
although this will in general not be an upper bound.

In the sequel we will assume, if not otherwise stated, that the νi (as defined
in (4.8)) are (tight bounds of) expectations over g(ti, yi) instead of g̃(ti, yi).

Technical remarks about optimization

Using the nested loop optimization technique detailed above, we quickly ran
into some technical problems. Since problems of a similar kind occur very
often in the context of variational Bayesian algorithms, we formulate the
problem and a possible solution in general terms. Suppose we are given a cri-
terion function of the form f(x) = miny h(x, y). We refer to x as evaluation
point, to f as true criterion, to h as upper bound (for reasons detailed below)
and to y as (hidden) state. These notations are used exclusively within this
subsection, and we urge the reader not to confuse them with global notations.
The general notation can be translated into the special case of the variational
algorithm discussed above via x → θ, y → P̃ , h → F̃ .

For every x we have f(x) = h(x, ŷ) for ŷ = argminy h(x, y). If the minimum
point is not unique, we arbitrarily choose one of the candidates. We refer
to ŷ as state corresponding to x. Let x0 some evaluation point and ŷ0 the
corresponding state. At first sight it seems to be hard to compute the gradient

92 CHAPTER 4. BAYESIAN MODEL SELECTION

of f at x0, but using the fact that ∇yh(x0, ŷ0) = 0 we have

∇xf(x0) = ∇xh(x0, ŷ0). (4.9)

To compute ∇xf(x0), we first determine ŷ0, then fix this state and compute
the gradient ∇xh(x0, ŷ0) while ignoring the dependency of ŷ0 on x0.

This method works fine in practice as long as the state ŷ0 corresponding to
x0 is always unique and can be determined to high accuracy3. If this is not the
case, we are in danger to run into the following problem. Suppose the gradient
of f at x0 is rather small. For a unit vector v and a small ε > 0 we would
expect the finite difference (f(x0 + εv)− f(x0))/ε be close to the projected
gradient (∇xf(x0))

tv. However, if the value of f at x0 and x0 +εv is “noisy”
due to inaccuracies in the determination of the corresponding states at these
points, the finite difference can be grossly wrong, and common line search
algorithms cannot cope with this fact (see discussion in subsection 5.2).

We suggest a solution to this problem which is based on the ideas which led
to a generalization of the EM algorithm (see [HN97]). This idea is discussed
in great detail in subsection 3.1.4. If ŷ0 is the state corresponding to x0, and
x is any point such that h(x, ŷ0) < h(x0, ŷ0), then we have

f(x) ≤ h(x, ŷ0) < h(x0, ŷ0) = f(x0), (4.10)

which means that decreasing the upper bound h(x, ŷ0) on f(x) is guaranteed
to decrease the true criterion too. If we therefore run into the problem stated
above, we can proceed by computing the state ŷ0 corresponding to x0, use
this to compute the gradient of f at x0 and to choose a search direction s

based on this gradient and some history, then fix the state ŷ0 and perform
the line search using the upper bound h(x, ŷ0) instead of the true criterion
f(x). This upper bound does not exhibit the “noise” problems detailed above
and can also be evaluated more efficiently than f(x).

The drawback of this replacement is of course that in general the line mini-
mum point x1 of the upper bound will not be a line minimum point of the
true criterion. This can be problematic when the modified line search is used
with optimizers like conjugate gradients which require fairly accurate line
searches on the true criterion. We therefore evaluate the gradient of f at x1

3An example seems to be the Laplace method for Gaussian process classification of
[WB98]. In this case, the state is the posterior mode which can be determined as (unique)
solution of a convex optimization problem. The problem can be solved by the Fisher
Scoring (or Newton-Raphson) algorithm which is of second order and stable for convex
settings.

4.2. A VARIATIONAL TECHNIQUE FOR MODEL SELECTION 93

and project it onto the search direction s. If the absolute value of this deriva-
tive is still too large, we start another line search from x1 using the upper
bound h(x, ŷ1) where ŷ1 corresponds to x1. The search direction for this
line search is −σs where σ is the sign of the projected gradient at x1. This
is iterated until the absolute value of the projected gradient is sufficiently
small.

To conclude, we now have two different options to perform a line search on
f(x) at any given time during the optimization. Either we base everything
on the true criterion, or we use the upper bound in the way described above.
The (optimal) scheduling between the two options depends strongly on the
course of the optimization so far. The extreme strategies are to use the upper
bound approximation only if the correct line search fails (which is what we
currently do) and to use the approximation for all line searches.

We finally note that our implementation (see also Appendix D) supports cri-
teria like f(x) generically, using a sophisticated interface for communication
between the criterion function object, the (generic) optimizer and the line
search method.

The reader might wonder what happens if the criterion h is also noisy in the
sense that finite differences of h are not reliable approximations of derivatives.
This problem occurs if h has a certain relative error (usually unsystematic)
which is not strongly correlated with the evaluation point. Approximations
such as those suggested in Appendix B and C include estimators and fall into
this category, so we are forced to address this problem. A possible solution
would be to employ a line search method which is fairly robust against noisy
criterion values. Such a method would focus mostly on gradient information,
and it has to be designed with care since the basic task of bracketing a line
minimum point is not trivial any more with noisy criteria. We are currently
working on this problem.

4.2.2 Factor-analyzed variational distributions

We show in subsection 5.2.1 that the best Gaussian variational approxima-
tion to the posterior P (y|t, θ) has a covariance of the form (K−1 + S)−1

where S is a diagonal matrix. Since we restrict ourselves to Gaussians with
factor-analyzed covariances, we cannot hope that the restricted class will
contain the best Gaussian approximation. However, it is easy to show, by
applying the Woodbury formula (see [PTVF92]), that if K is of the factor-
analyzed form with M factors, so is the covariance of the best Gaussian
approximation. Thus, by continuity, we might expect that if K is reasonable

94 CHAPTER 4. BAYESIAN MODEL SELECTION

well represented by a factor-analyzed matrix, tracking the prior variances
and strongest correlations in the data, then a Gaussian with factor-analyzed
covariance might do a good job in approximating the posterior, as compared
to the best Gaussian approximation. This argument is not a firm one, and
to derive a more precise result we would have to specialize to a particular
kernel and loss function. We show in subsection 5.2.1 how the best Gaussian
approximation might be computed using a sequential updating scheme, and
this could be used to perform an empirical study, at least for not too large
datasets.

4.2.3 MAP prediction

In this subsection, we assume for simplicity that the prior P (θ) is unin-
formative, i.e. that the log evidence (or marginal log likelihood) and the log
posterior log P (θ|D) are identical up to constants not depending on θ. There
is no loss in generality, since we can always add log P (θ) to the log evidence
which does not introduce any further complications.

Let θ̂ denote the MAP value for the hyperparameter vector found by the
algorithm described in this section. MAP prediction amounts to replacing
the true posterior P (θ|D) by the peak distribution δ(θ− θ̂) or, equivalently,
to approximating the full posterior P (y∗|x∗, D) by P (y∗|x∗, D, θ̂). Recall
the discussion of subsection 1.3.5. For notational convenience, we neglect
conditioning on θ̂ and x∗. If y∗ ∼ P (y∗|D) and y ∼ P (y|D), we have the
linear relation y∗ = qty + r where r ∼ N(0, k∗−qtk) independent of y. Note
that k∗, k and q = K−1k depend on x∗ and θ̂. Thus, if we approximate
the intractable posterior P (y|D) by a Gaussian, y∗ is Gaussian too, and the
moments of the two distributions are linearly related.

Let P̃ denote the variational approximation to the final conditioned poste-
rior P (y|D), and let µ and Σ denote mean and covariance of the Gaussian
distribution P̃ . Within our variational framework it is reasonable to employ
P̃ for prediction which, by the linear relation mentioned above, means that
we approximate the predictive distribution P (y∗|D) by

N(qtµ, qtΣq + k∗ − qtk). (4.11)

The variance of the predictive distribution can be used to derive error bars for
our predictions. The MAP discriminant uses the prediction vector ĉ = K−1µ

and predicts ŷ∗ = ĉtk. The cost of computing error bars is dominated by the
need to evaluate q = K−1k for every prediction point x∗ which can be
done in O(n2) using a conjugate gradients technique. If there are more test

4.2. A VARIATIONAL TECHNIQUE FOR MODEL SELECTION 95

points than training points, it pays to compute the Cholesky decomposition
of the covariance matrix K. If Σ has the factor-analyzed structure of (4.5),
an error bar can be computed in O(Mn) if q is given. This can be seen as
additional advantage of the restricted variational model class. We will refer
to the discriminant based on the approximation (4.11) as prediction based on
the model mean µ.

Alternatively we can derive an approximate MAP discriminant by replacing
P (y|D) by its Laplace approximation, as discussed in subsection 1.3.5. In this
case, the mode (or mean) of the predictive distribution is qtŷ where ŷ denotes
the mode of P (y|D). The discriminant uses the prediction vector ĉ = K−1ŷ

and predicts ŷ∗ = ĉtk. Error bars can be obtained using the variance in
(1.17). The computational cost is roughly the same as in the “model mean”
case, if some biconjugate gradients technique is employed (note that the
matrix in (1.17) is not symmetric). Alternatively, a LU decomposition of
I + WK might be considered. However, if the loss function of the model
is unnormalized and therefore ŷ cannot be regarded as mode of a proper
posterior, the computation of error bars is no longer possible. We will refer
to the discriminant based on the Laplace approximation as prediction based
on the posterior mode, even in the case of unnormalized loss functions.

Can we really justify prediction based on the posterior mode? It seems odd
to neglect the posterior approximation P̃ we employed so far to determine
θ̂ and to replace it by the Laplace approximation. Indeed, there is a subtle
danger we have to be aware of, as was discussed in subsection 3.1.4. If all
possible variational distributions are far from the true posterior conditioned
on the mode of the true evidence, θ̂ might be far from this mode, since it
might be the case that the true posterior conditioned on θ̂ can be fitted
more accurately by one of the variational distributions. In the sense of the
minimum overall coding cost (see discussion in subsection 3.1.5), it is still
reasonable to predict using θ̂ and P̃ , but plugging in θ̂ as approximation to
the mode of P (θ|D) and employing a local approximation (such as Laplace)
to P (y|D) can fail badly. There is no general answer to this problem. If
we favour prediction based on the posterior mode, we usually have a good
reason to do so, for example the sparsity of the discriminant in the SVC
case. By choosing a broad model class for the variational distributions, we
can decrease the likelihood that the conditioned posterior at the mode of
P (θ|D) is far from all these distributions. This gives some justification to
the conjecture that θ̂ is close to the mode of the true evidence. If we assume
that the latter is sharply peaked around its mode, we can plug θ̂ in. If
the posterior P (y|D) conditioned on θ̂ is well represented by its Laplace
approximation, prediction based on the posterior mode is reasonable. If the

96 CHAPTER 4. BAYESIAN MODEL SELECTION

loss g̃ is unnormalized, we replace it by a normalized approximation g and
use this approximation to determine θ̂. After plugging θ̂ in, we determine
ŷ as maximizer of the criterion which mimics the log posterior of y, but
employing the unnormalized loss g̃. Under the further assumption that ŷ is
a good approximation to the mode of the posterior P (y|D) incorporating
g, we can conclude that prediction using ŷ should work reasonably well. An
analysis of the accuracy of all these approximations to validate (or invalidate)
the conjectures is likeli to prove very difficult and is far out of the scope of
this work. The final justification is as always given by good performance on
real-world tasks.

4.3 Comparison with related methods

By revealing relations and similarities to other methods for Bayesian model
selection among kernel regression classifiers, we can gain some additional in-
sight into the method proposed in the previous section, as well as into the
role of variational methods among other approximation techniques in the
toolbox of a Bayesian analyst. Let us briefly recapitulate that one basis of
the variational technique is the use of families of bounds for convex func-
tions. If a function of interest happens not to be convex, we might arrive
at a convex expression by transforming the outputs or inputs of the func-
tion. An example is the logistic function σ(u) = (1 + exp(−u))−1 which is
sigmoid-shaped, but whose negative logarithm is strictly convex (such func-
tions are called log-concave). Jaakkola [Jaa97] gives a detailed discussion of
such transformations. If a function is piecewise convex, we can get an overall
bound by piecing together affine bounds. An example of this is the bound we
use on the criterion part (4.6) in subsection 4.2.1, see also Appendix C.2.3.

As discussed in chapter 3, affine lower bounds of convex functions can be
derived in a principled way, while (sensible) upper bounds usually depend on
more properties than just convexity. Replacing the function by the bound,
we trade loss of exactness for tractability. Whether the resulting approxima-
tion to the final criterion of interest (for example predictive probabilities) is
also a bound, depends on the way the “inner” approximations (which are
bounds) are combined. If the bounding property can be preserved, the varia-
tional method delivers precise confidence intervals for the wanted probabili-
ties, thus gives considerably stronger results than many other approximating
techniques. However, in most cases preservation is not possible or results in
too wide gaps between upper and lower bounds to be of practical use. In
this case, we can compare the variational technique directly with methods

4.3. COMPARISON WITH RELATED METHODS 97

that involve “inner approximations” by parameterized families which are not
bounds.

4.3.1 The Laplace method

The Laplace method, as described in [WB98], implements evidence max-
imization approximately by replacing the log of the joint distribution
P (t, y|θ) (as a function of y) by the Taylor series around its mode ŷ and
retaining only terms up to second order in δy. In general this works only
for differentiable loss functions and, as discussed in subsection 4.1.1, is not
applicable to the SVC loss. To circumvent further difficulties, we will re-
strict ourselves to the Bernoulli loss g(ti, yi) = − log σ(tiyi), introduced in
subsection 1.3.5.

This manipulation renders the evidence integral (4.1) tractable, and we end
up with

− log P (t|θ) ≈ Ψ(ŷ) +
1

2
log |K−1 + W | − n

2
log 2π, (4.12)

where Ψ(y) = − log P (t, y|θ) is given by (1.15) and K−1 + W is the Hes-
sian of Ψ evaluated at ŷ, being the mode of the posterior P (y|t, θ). Here,
W = ∇∇(− log P (t|y)) = diag(σ(ŷi)(1 − σ(ŷi)))i, evaluated at ŷ. The
derivatives of (4.12) can easily be obtained and plugged into a standard
optimizer. The algorithm contains the search for the mode ŷ as a subrou-
tine. Since Ψ is strictly convex, ŷ is easily found using the Newton-Raphson
(i.e. Fisher scoring) method. The computational burden of (4.12) is the log
determinant term which seems to be O(n3). Using approximations proposed
in [Ski89] (and discussed in Appendix B), one might be able to pull this down
to expected O(n2).

It is easy to relate the Laplace method to the variational technique introduced
above. Consider replacing the loss terms g(ti, yi) in the variational free energy
criterion (4.2) by second-order polynomials

ga,i(ti, yi|µi) = g(ti, µi) +
∂g

∂y
(ti, µi)(yi − µi) +

1

2

∂2g

∂y2
(ti, ŷi))(yi − µi)

2

= − log σ(tiµi)− tiσ(−tiµi)(yi − µi) +
1

2
wi(yi − µi)

2.

(4.13)

Note that µi is the only free parameters of this family of polynomials, the
prefactor wi of the quadratic part is fixed as a function of ŷi. This changes the
criterion F to Fa, where the latter additionally depends on µ = (µi)i. Note

98 CHAPTER 4. BAYESIAN MODEL SELECTION

that Fa is not in general an upper bound on the free energy − log P (t|θ).
Consider minimizing Fa w.r.t. µ and an arbitrary variational distribution P̃
over y. Let a and Σ be mean and covariance matrix of P̃ . Then we have

Fa(µ) = τ + πt(a− µ) +
1

2
(a− µ)tW (a− µ) + const, (4.14)

where τ =
∑

i g(ti, µi), π = (∂g(ti, µi)/∂µi)i and “const” does not depend
on µ. Setting the derivative equal to zero and noting that g is strictly convex,
we get µ = a. We identify these parameter vectors, arriving at

Fa(µ) = τ +
1

2
tr
(

W + K−1
)

Σ +
1

2
µtK−1µ−H(P̃) + const, (4.15)

where “const” is independent of P̃ . Setting the derivative w.r.t. µ equal
to zero, we have π + K−1µ = 0. A brief look at (1.15) shows that µ

must be the posterior mode ŷ. Furthermore, (4.15) can be written (up to
constants which only depends on the mean µ of P̃) as relative entropy
D(P̃ ||N(µ, (K−1+W)−1)). Putting all together, we see that Fa is minimized
over µ and unrestricted P̃ by setting µ = ŷ and P̃ = N(ŷ, (K−1 + W)−1).
P̃ is the approximation of the posterior employed by the Laplace method.
Evaluating Fa at this minimum point gives

Fa(θ) = − log P (t, ŷ|θ) +
1

2
log
∣

∣K−1 + W
∣

∣− n

2
log(2π) + n, (4.16)

which is equal to (4.12) up to a constant.

How does this compare to the variational technique? Both methods introduce
parametric approximations to arrive at a criterion that can be maximized
efficiently. Both maximize this criterion w.r.t. the parameters of the approx-
imation in an inner and w.r.t. θ in an outer loop. The variational method
derives the approximation by replacing the true posterior in the free energy
integral by a variational distribution, thus arriving at the variational free
energy which is a true upper bound for any P̃ . This has the advantage that
in the inner loop the algorithm will always choose the best approximation
within the tractable family4. On the other hand, the Laplace method mod-
ifies the log joint distribution within the free energy integral such that the
posterior becomes Gaussian. While P̃ employed by the Laplace method is
the exact posterior of this modified joint distribution, it is in general not the
best Gaussian approximation to the posterior of the true joint distribution.

4In the sense of relative entropy distance. This is of course a weak argument for someone
who doesn’t accept this distance, but we have given sufficient motivation above.

4.3. COMPARISON WITH RELATED METHODS 99

Recall the discussion in subsection 3.1.5, where the EM algorithm and the
variational technique are motivated using an MDL argument. Instead of de-
scription length we will use the term “information”, and we will not be con-
cerned about issues of quantization. We refer to [CT91] for an introduction
to informatic-theoretic concepts like entropy (or (self) information), relative
entropy and their joint and conditional versions. Consider the equation

− log P (t|θ) + H(P (y|t, θ)) = EP (y|t,θ) [− log P (t, y|θ)] . (4.17)

The right-hand side is the joint information of the event that the targets are t

and of the random variable y ∼ P (y|t, θ). This is the sum of the information
of the t event and the uncertainty in y, sampled from the posterior. The
variational approximation is based on a modification of this equation:

− log P (t|θ) + H(P̃) + D(P̃ ||P (y|t, θ)) = EP̃ [− log P (t, y|θ)] . (4.18)

This relation can be described using the following setting. Suppose the t

event occurs and a variable y is sampled. Our knowledge about y is that it
is sampled from P (y|t, θ), but accidentally the true sampling distribution is
P̃ , a fact that is unknown to us. Under these circumstances, the right-hand
side is the information of the t event and of the random variable y, from our
point of view.

The left-hand side is the information we get from achieving the knowledge
that the targets have the value t. The left-hand side decomposes this in-
formation into the information of the t event, the uncertainty in y ∼ P̃
(originating from the sampling) and a relative entropy term measuring the
error of assuming P (y|t, θ) as sampling distribution while the true one is P̃ .
This is the usual interpretation put forward in case of the relative entropy
(see [CT91]).

On the other hand, the Laplace approximation of the log evidence is local
around ŷ, and the error has no information-theoretic interpretation. We can
get an idea of the nature of this approximation if we compare it to the
variational one with P̃ (y) = N(ŷ , (K−1 +W)−1). If error denotes the error
of the Laplace approximation, we have

− log P (t|θ) + H(P̃) + error = − log P (t, ŷ|θ) +
n

2
. (4.19)

The right-hand side of this equation is an approximation to the right-hand
side of (4.18), obtained by replacing the negative log joint distribution by
its second-order Taylor expansion around ŷ. If we continue this expansion
by including higher-order terms, error tends to the relative entropy term in
(4.18).

100 CHAPTER 4. BAYESIAN MODEL SELECTION

This analysis suggests using the variational method introduced above, but
employing the variational distribution P̃ = N(ŷ, (K−1 + W)−1). It will be
interesting to compare this method with the Laplace algorithm and the vari-
ational algorithm based on distributions with factor-analyzed covariances.
The figures in subsection 4.4.2 give some intuition.

4.3.2 Another variational method

Gibbs [Gib97] introduced a variational method for inference and learning
in Gaussian process classification models which is based on local approx-
imations of the logistic function, being the Bernoulli loss function intro-
duced above. He employs upper and lower bounds suggested in [Jaa97] to
derive different approximations to the predictive distribution. Since we fo-
cus here on approximations of the evidence, we only need to apply an up-
per bound to the Bernoulli loss g(t, y) = − log σ(ty). We follow the deriva-
tion in [Jaa97], Appendix 3.B. Obviously, since g(t, y) is convex, there is
no affine upper bound, but we can nevertheless apply the convex dual-
ity principle as follows. If we manage to transform input and/or output
of − log σ(y) linearly such that the resulting function f̃(x) is symmetric
in x and concave in x2, we can use an affine upper bound on f , where
f(x2) = f̃(x). Transforming back, this results in a quadratic upper bound
for the original function. We have − log σ(y) = −y/2 + f̃(x) where x = y
and f̃(x) = f(x2) = log(exp(−x/2) + exp(x/2)). f is concave in x2, thus by
convex duality we have the tangents as upper bounds:

f(x2) ≤ (x2 − ξ2)∇ξ2f(ξ2) + f(ξ2) (4.20)

Here, ξ is a variational parameter. The bound is exact iff x2 = ξ2. With
λ(ξ) = ∇ξ2f(ξ2) = tanh(ξ/2)/4ξ = (σ(ξ) − 1/2)/2ξ, we finally have the
upper bound

− log σ(ty) ≤ − log σ(ξ)− 1

2
(ty − ξ) + λ(ξ)(y2 − ξ2), (4.21)

a quadratic which touches the loss at ±ξ. Now, replacing the loss terms in
the evidence integral by their bounds, we get an analytically tractable upper
bound on the free energy − log P (t|θ) which is minimized in turn w.r.t. the
variational parameters ξ = (ξi)i and the hyperparameters θ. It is interesting
to note that this algorithm can be modified to yield simultaneous upper and
lower bounds on the free energy. The latter bound employs the convexity of
the Bernoulli loss and is derived straightforwardly from the convex duality
principle. However, the affine bounds used to construct the lower bound are

4.3. COMPARISON WITH RELATED METHODS 101

usually quite loose, and the free energy is usually closer to the upper than
to the lower bound.

Note that the upper bound on the Bernoulli loss is a very special one. It
is not obvious how to find a tractable upper bound on the normalized SVC
loss which is not even differentiable everywhere. In this context “tractable”
means that the Gaussian evidence integral becomes analytically tractable
once the loss is replaced by its bound. This narrows down the class of pos-
sible functional forms for such bounds. For example, the idea of piecing to-
gether bounds to attack piecewise defined functions cannot be applied. The
variational free energy framework breaks down the problem to simple one-
dimensional expectations over loss terms which are almost trivial to bound
or approximate.

The variational approach of [Gib97] differs from the generic variational free
energy minimization algorithm discussed above. Very much like the Laplace
method of the previous subsection, we introduce a parametric family of ap-
proximations to the loss function. Plugging these in for the true loss terms
renders the posterior Gaussian and the evidence integral tractable. However,
since the polynomial approximation employed here are also upper bounds,
the final criterion is an upper bound of the free energy for all values of the
variational parameters, which justifies the inner loop minimization w.r.t. ξ.
Note that the “posterior” derived from the normalized bound of the joint
distribution is in general not the best Gaussian approximation of the true
posterior in terms of relative entropy distance. The former distribution is a
Gaussian with mean (1/2)(K−1+2Λ)−1t and covariance (K−1+2Λ)−1, where
Λ = diag(λ(ξi))i, evaluated at the maximum point ξ. A direct comparison
between the algorithms follows along the lines of the discussion in the pre-
vious subsection. The algorithm of this section has no obvious information-
theoretic motivation.

Jaakkola and Haussler [JH99] suggest a sequential version of the varia-
tional algorithm of [Gib97]. There, the posterior of y(·) is approximated by
propagating Gaussian approximations to the distributions P (y(·)|Di), Di =
{(x1, t1), . . . , (xi, ti)}, starting from the Gaussian process prior. This is done
by employing the quadratic upper bound on the Bernoulli loss discussed
above. The resulting approximation to the posterior will in general be worse
than that employed by the algorithm in [Gib97] and also depend on the or-
dering in which the training points are presented, but it can be computed
extremely fast. A modification of the algorithm to implement evidence max-
imization is straightforward.

102 CHAPTER 4. BAYESIAN MODEL SELECTION

4.4 Experiments and results

The variational Bayesian model selection algorithm described above was eval-
uated on a number of datasets from the UCI machine learning repository and
the DELVE archive of the University of Toronto5, namely Leptograpsus crabs
(crabs), Pima Indian diabetes (pima), Wisconsin Breast Cancer (wdbc), Ring-
norm (ringnorm), Twonorm (twonorm) and Waveform (waveform) (class 1
against 2). We refer to these repositories for detailed documentations. In
each case we normalized the whole set to zero mean, unit variance in all
input columns, picked a training set of desired size at random and used the
rest for testing. We chose (for X = R

d) the squared-exponential kernel (see
[Wil97])

K(x, x′|θ) = C

(

exp

(

− 1

2d

d
∑

i=1

wi(xi − x′i)
2

)

+ v

)

, (4.22)

being a widely used “standard” kernel for Gaussian processes and Support
Vector machines. All parameters are constrained to be positive, and we en-
forced this constraint by representing a parameter θi as ν2

i where νi was
optimized without constraints. We refer to C as variance parameter, to v
as bias parameter and to the wi as inverse squared length scales, or simply
relevance factors. The quantities 1/

√
wi are known as length scales in the

literature (see [Nea97],[Mac97]). The number of factors in the representa-
tion (4.5) of the covariance matrix Σ of the variational distribution was 3
in all cases. The kernel parameters were initialized by sampling from rather
broad log uniform distributions, but our experiments indicated that the algo-
rithm is fairly invariant w.r.t. this initialization. The mean of the variational
distribution was initialized with the minimizer of the SVC criterion (1.20).
Although this initialization seems reasonable, we observed in all cases a very
fast decrease in the criterion value during the first few inner loop steps which
indicates that the initial variational distribution is far from the best one.
We conjecture that the inner loop optimization is also fairly invariant w.r.t.
initialization and that time and space required for the SVC optimization can
be saved by simply using a fixed or random initial variational distribution.
We have not investigated this question in detail.

Although the optimization of the variational distribution for fixed hyper-
parameters is not a convex problem, our experience in all cases was that
convergence to a (possibly local) minimum was independent from the start-
ing point and seemed not to get stuck in shallow local minima. The O(n3)

5See http://www.cs.utoronto.ca/∼delve and
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

4.4. EXPERIMENTS AND RESULTS 103

train test Var. GP GP Var. SVM SVM Lin.
Name

size size ŷ µ Lapl. ŷ µ 10-CV discr.

crabs 80 120 3 4 4 4 4 4 3
pima 200 332 66 66 68 64 66 67 67
wdbc 300 269 11 11 8 10 10 9 19
twonorm 300 7100 233 224 297 260 223 163 207
ringnorm 400 7000 119 124 184 129 126 160 1763
waveform 800 2504 206 204 221 211 206 197 220

Table 4.1: Number of test errors for various methods. None of the methods
employed a hyperprior.

running time scaling behaviour somewhat limits the scope of the algorithm6,
but we hope to be able to improve on that (see section 5.2).

The experiments were done using the normalized SVC loss and the Bernoulli
loss. For the normalized SVC loss, we evaluated two different discriminants,
namely prediction based on the model mean and prediction based on the
posterior mode. The model mean discriminant is abbreviated as µ discrimi-
nant, while we abbreviate the posterior mode discriminant as ŷ discriminant.
These types of discriminants are discussed in subsection 4.2.3.

For comparison we trained a Gaussian Process classifier with the MAP
Laplace method of [WB98] and a Support Vector machine using 10-fold cross
validation to select the free parameters. In contrast to [WB98], the results in
table 4.1 for the MAP Laplace method were obtained without employing a
hyperprior. Experiments with a hyperprior are discussed in subsection 4.4.1.
In the cross validation case we constrained the relevance factors wi of the ker-
nel (4.22) to be equal (it is infeasible to adapt d + 2 hyperparameters to the
data using cross validation) and dropped the v parameter while using a bias
parameter for the SVM. Error bars were not computed. The baseline method
was a linear discriminant trained to minimize the squared error. Table 4.1
shows the test errors the different methods attained on the datasets.

What conclusions can be drawn from these results as well as those which are
presented further below? A proper frequentist statistical test for significant
differences between the methods requires that these methods are trained and
tested on many independently drawn datasets from the same source (see
[Ras96] for a thorough discussion of test designs for this purpose). While this
is possible for large or artificially created datasets, it is clearly unsuitable for

6The largest training set we used was an extract of 800 cases from Waveform.

104 CHAPTER 4. BAYESIAN MODEL SELECTION

small real-world datasets. The commonly used practice is to randomly select
training and test set of fixed sizes from the given base set and compute a
sample test error. This is repeated many times, and the final estimate of the
test error is the average over all the sample errors. This procedure is more
robust against noise introduced by the random selection of training and test
sets as well as other random sources such as those used for initialization of
the method. However, it is not clear at all how to base a rigorous frequen-
tist statistical test on this estimator (as test statistic), i.e. how to compute
confidence intervals or p values, even if very simple assumptions about the
nature of the noise are made. Furthermore, many Bayesians criticize frequen-
tist tests severely. For some it is doubtful if any conclusions can ever be drawn
from the result of such a test (see [Ber85] for details). Anyway, the results
presented here are based on single runs and therefore subject to noise. The
major reason for this design was limited time7. We conclude that although
differences in performance between the methods can be observed on each
datasets, we cannot test these differences in a rigorous frequentist statistical
manner without investing much more time and labour, and this labour may
be wasted considering the fact that most of the real-world datasets available
are so small that they cannot be a faithful representation of their underlying
source. We finally remark that a Bayesian test might overcome this difficulty,
but such issues would lead us far out of scope (see [Ras96]).

The absence of rigorous statistical tests should not stop us from comment-
ing the results we obtained on single runs, since this is common practice in
the literature up until today. The ranking of the new variational algorithm
within the list of considered methods is diverse, from which we conclude that
its performance is comparable to the best algorithms known so far. These
results have of course to be regarded in combination with how much effort
was necessary to produce them. It took us almost a whole day and a lot
of user interactions to do the cross validation model selection. The rule-of-
thumb that a lot of Support Vectors at the upper bound indicate too large a
parameter C in (4.22) failed for at least two of these sets, so we had to start
with very coarse grids and sweep through several stages of refinement. We
finally selected the parameter vector giving rise to the best score in the last
stage. If there were several best vectors, we selected the one resulting in the
smallest number of Support Vectors.

7On the majority of the dataset-method combinations we actually did multiple runs
after minor changes in the code of the optimizers. Significant differences between these runs
were not observed. The presented results are all computed using the latest code version
prior to submission of this thesis.

4.4. EXPERIMENTS AND RESULTS 105

Let us have a closer look at the results for each dataset. On some of the
sets, an effect called automatic relevance determination (see [Nea97]) can
nicely be observed. If an input dimension of the training set contains very
little information about the target, Bayesian model selection methods will
tend to favour very small values for the corresponding relevance factor wi

in the squared-exponential kernel, so that this input dimension is effectively
ignored. Apart from rendering additional structural information about the
data distribution, this feature can also be used to speed up predictions on
large test sets, since we can savely ignore terms corresponding to very small
wi when evaluating the kernel (4.22). This form of “input sparsity” should be
seen in constrast to the sparsity in the dual variables of a SVM. In combina-
tion, they render quite efficient discriminants. Note that ARD can easily be
generalized by preprocessing the data by a linear nondiagonal transform be-
fore feeding it into the squared-exponential kernel and learning the transform
by means of Bayesian model selection. The transform could be unconstrained
or of some particular form, see for example Appendix A. Work in this direc-
tion has been done by Vivarelli and Williams [VW99]. ARD was observed
on crabs (focussed on dimensions 2,3), pima (ignored 3,4), wdbc (largest rele-
vance factor on 24, many dimensions effectively ignored), waveform (largest
relevance factors on 9,10,11,16,17, ignored 1,2,3,6). ringnorm and twonorm
exhibited no ARD effects8. All Bayesian methods behaved somewhat similar
w.r.t. ARD on the datasets, in the sense that the sets of strongly preferred
and ignored dimensions were highly overlapping (the figures above are from
the intersections). Table 4.2 shows the final variance parameter value C, and
table 4.3 shows the Support Vector statistics for each dataset (in case of
SVM discriminants). We discriminate between Support Vectors at the upper
bound C and essential Support Vectors which lie in (0, C). Some additional
comments follow.

It is rather difficult to draw conclusions from the variance parameter values
in table 4.2, since we are dealing with real-world data which might have a lot
of good explanations with rather different variances. The values chosen by
the Bayesian methods seem to be rather large in comparison with the values
chosen by cross validation. There are several possible explanations for this
fact. First, for most of the datasets there were always parameter vectors with
quite large C which attained almost as good a CV score as the “best” vector,
and the CV score is known to be a noisy quantity9. Second, since we tied the
relevance factors in the squared-exponential kernel for the CV experiments,

8This is not surprising, since in both cases the class-conditioned densities are spherical
Gaussians, and the class means are related by µ1 = −µ

−1.
9It is strongly quantized for rather small datasets in the first place.

106 CHAPTER 4. BAYESIAN MODEL SELECTION

Var. GP GP Lapl. Var. SVM SVM
Name

(No HP) (No HP) (No HP) 10-CV

crabs 1324 1075 571 1000
pima 251 12.7 79.5 31
wdbc 1619 910.5 401.4 300
twonorm 49.2 532.7 24.1 9
ringnorm 33 112.8 19.6 1
waveform 606.9 60.3 249.7 1.5

Table 4.2: Variance parameter chosen by different methods. HP: Hyperprior.

Var. SVM Var. SVM SVM
Name

(No HP) (LN HP) 10-CV

crabs 6,5 8,6 8,7
pima 100,7 102,6 101,8
wdbc 13,5 6,9 16,14
twonorm 0,83 0,71 180,11
ringnorm 0,117 0,107 73,48
waveform 133,17 122,25 35,425

Table 4.3: Support Vector statistics. The figures are the number of SV at the
upper bound C, followed by the number of essential SV. HP: Hyperprior,
LN: Lognormal (see text and subsection 4.4.1).

4.4. EXPERIMENTS AND RESULTS 107

the model was not able to perform ARD, i.e. concentrate on some input
dimensions and ignore others. Therefore, a very sharp decision boundary as
chosen by the Bayesian methods is not optimal for this model. Finally, we did
not use hyperpriors with the Bayesian algorithms, and large hyperparameter
values were not penalized. We investigate the hyperprior issue in more detail
in subsection 4.4.1 below.

The SV statistics for the datasets twonorm, ringnorm and waveform differ
strongly between the variational method and the cross validation solution,
as do the test errors. Again, a direct comparison is difficult since the kernels
are different and the statistics noisy. On ringnorm, the variational method
has found a better solution by employing a larger variance parameter (C = 1
found by CV seems to be too small). Consequently, the CV solution mistook
important variations in the data as noise, which can also be seen in the SV
statistics (many dual variables at the upper bound C indicate a high noise
assumption). All in all, the model chosen by CV was too simple to give good
generalization. On twonorm (two Gaussians with rather strong overlap), the
situation is inverted. Again, the model chosen by CV is simpler than the one
selected by the variational method, but this time the simpler model general-
ized better while the complex model exhibited overfitting10. The underlying
simplicity can also be inferred from the very good performance of the simple
linear discriminant. Rather surprisingly, the Laplace GPC method exhibited
extreme overfitting on this dataset.

4.4.1 Hyperpriors

The experiments described above were done without hyperpriors. To inves-
tigate the effect of hyperpriors, we repeated the experiments employing the
lognormal hyperprior used in [WB98]. This prior can be described as fol-
lows. If θ = (w1, . . . , wd, v, C)t is the hyperparameter vector for the squared-
exponential kernel (4.22), transform θ via γ = log θ and place a Gaussian
prior with mean −3 ·1 and covariance 9 ·I on the variable γ. The MAP value
θ̂ is then found by optimizing the posterior

P (γ|D) ∝ P (D|θ = e
�

)P (γ). (4.23)

If γ̂ is the maximizer, we choose θ̂ = exp(γ̂). Note that this is in gen-
eral different from directly maximizing P (θ|D), since MAP is not invariant

10Note that overfitting is impossible within a full Bayesian analysis. However, here we
effectively select a single model instead of averaging over all models, and this can result
in overfitting.

108 CHAPTER 4. BAYESIAN MODEL SELECTION

GP Lapl. Var. GP (LN HP) Var. SVM (LN HP)
Name

(LN HP) ŷ µ ŷ µ

crabs 4 4 4 6 4
pima 67 66 66 66 66
wdbc 10 10 10 9 10
twonorm 284 230 231 271 233
ringnorm 209 127 121 136 124
waveform 216 217 214 208 213

Table 4.4: Number of test errors for various methods. HP: Hyperprior, LN:
Lognormal (see text).

Name GP Lapl. Var. GP Var. SVM
(LN HP) (LN HP) (LN HP)

crabs 255 482.8 203.1
pima 31.2 80.2 25.3
wdbc 272 757.1 343.6
twonorm 308.9 47.0 22.1
ringnorm 133.5 31.9 17.4
waveform 50.2 494.7 206.7

Table 4.5: Variance parameter chosen by different methods. HP: Hyperprior,
LN: Lognormal (see text).

against reparameterization (see also subsection 3.2.1). We chose this partic-
ular parameterization simply to be able to compare our results with those in
[WB98].

Although this prior is very broad, it penalizes large and very small values
of the hyperparameters. We undertook a series of experiments with the vari-
ational and the Laplace GPC method using the lognormal hyperprior de-
scribed above. The results are given in table 4.4. Table 4.5 shows the final
values of the variance parameter C. The Support Vector statistics can be
found in table 4.3.

Let us compare the results among the different GPC algorithms for each
dataset and point out some effects of using a (broad) hyperprior. On crabs,
all methods performed identically, and the hyperprior has the effect of avoid-
ing very large values of C, although in this case, by the simplicity of the
dataset, even C values larger than 1000 (the value chosen by CV) do not

4.4. EXPERIMENTS AND RESULTS 109

result in overfitting. Furthermore, the relevance factors wi of the kernel are
prevented from becoming very small11. On pima, the variational method per-
forms insignificantly better than the Laplace algorithm. The prior effects are
similar to the crabs case.

wdbc is a very small set with a large number of input dimensions, and both the
Laplace and the variational algorithm for GPC and SVC needed an unusually
large amount of running time before reaching stable minima. The Laplace
GPC algorithm without hyperprior found a good solution by using a rather
large variance parameter and focussing on only 8 dimensions. Dimension 24
was considered by far as most important. In this case, using the lognormal
prior prevented the algorithm from choosing this solution, since this prior
severely penalizes very small relevance factor and large C values. The vari-
ational GPC algorithm found another solution focussing on 10 dimensions
and considering dimension 21 by far as most important. Employing a log-
normal hyperprior lead to a (insignificantly) better solution using a smaller
C value and relevance factor values bounded away from 0. Note that if we
consider both solutions (found by the Laplace and the variational method) as
good approximations to the true situations, we hereby encounter a situation
where two quite different hypotheses are ranked highly under the posterior
and would both contribute significantly to the exact Bayesian solution.

twonorm consists of two overlapping spherical Gaussians in high-dimensional
space. The Bayes classifier is a hyperplane, which partly explains the very
good performance of the simple linear discriminant. Since the class centers
are placed at −a · 1 and a · 1, we would not expect any ARD effects, and
except for the ignorance of component 3 by the Laplace method without
hyperprior we indeed observed none for any of the Bayesian methods. The
Laplace method exhibited strong overfitting by choosing a much too large C
value, this failure was somewhat alleviated by the hyperprior. For the varia-
tional method, prediction based on the model mean outperformed predictions
based on the posterior mode. This might be an instance of the problem men-
tioned in subsection 3.1.4, namely that sometimes variational free energy
techniques prefer a solution at a θ̂ rather far from a free energy minimum
point, because the posterior conditioned on θ̂ can be fitted much better by
a variational distribution than the one at the true minimizer.

ringnorm consists of two Gaussian clusters, one inside the other. There is
no hope to seperate the classes by a linear discriminant, but the variational
GPC method does quite well. The Laplace GPC method is again affected

11This is a weakness of this prior, since we want unimportant dimensions to be switched
off completely.

110 CHAPTER 4. BAYESIAN MODEL SELECTION

1: Var. SVM, No HP (ŷ) 5: Var. GP, No HP (ŷ) 9: GP Lapl., No HP
2: Var. SVM, No HP (µ) 6: Var. GP, No HP (µ) 10: GP Lapl., LN HP
3: Var. SVM, LN HP (ŷ) 7: Var. GP, LN HP (ŷ) 11: SVM, 10-CV
4: Var. SVM, LN HP (µ) 8: Var. GP, LN HP (µ) 12: Lin. discr.

Table 4.6: Legend for box plots of figure 4.1.

by overfitting, which is somewhat alleviated by using a hyperprior. No ARD
effects were observed, except that the Laplace GPC algorithm switched off
dimension 20. The θ̂ values chosen by the variational methods with and
without hyperprior are quite similar, and the difference in their performances
is probably due to chance.

For the waveform dataset we used the largest training set of all experiments.
Not only was the optimization process based on the exactly computed cri-
terion slow, but also the number of variational parameters (describing the
variational distribution P̃) is rather large. The variational algorithm outper-
forms the Laplace method, but again the differences in the test error are not
significant. The variational method without hyperpriors employed a rather
large variance parameter and exhibited ARD effects. It focussed on the di-
mensions 11,10,9,16,17,12 and switched off the dimensions 3,2,6. The same
method with lognormal hyperpriors gave worse results, the relevance factors
ranged from 0.0019 (dimension 2) to 0.1213 (dimension 11). The Laplace
method used much smaller values of C. The usage of a lognormal hyperprior
was slightly beneficial in this case.

The same kind of comparison can be done between the variational SVC al-
gorithm and the solutions determined by 10-fold CV. The results are not
significantly different except for the sets twonorm and ringnorm. The easy
set twonorm was handled well by CV, but the variational SVC method did
a surprisingly bad job. Note also the significant difference in test error be-
tween prediction based on the model mean and on the “posterior mode” ŷ.
This might indicate that we encountered the problem discussed in subsection
4.2.3. On ringnorm, the variational method outperformed the CV solution
significantly.

The series of box plots in figure 4.1 allows a direct comparison of the runs of
all considered methods on the datasets. The legend is given in table 4.6.

4.4. EXPERIMENTS AND RESULTS 111

1 2 3 4 5 6 7 8 9 10 11 12
2

2.5

3

3.5

4

4.5

5

5.5

6

method

te
st

 e
rro

r

crabs dataset

1 2 3 4 5 6 7 8 9 10 11 12
60

61

62

63

64

65

66

67

68

69

70

method

te
st

 e
rro

r

pima dataset

1 2 3 4 5 6 7 8 9 10 11 12
0

2

4

6

8

10

12

14

16

18

20

method

te
st

 e
rro

r

wdbc dataset

1 2 3 4 5 6 7 8 9 10 11 12
100

120

140

160

180

200

220

240

260

280

300

method

te
st

 e
rro

r

twonorm dataset

1 2 3 4 5 6 7 8 9 10 11
0

50

100

150

200

250

method

te
st

 e
rro

r

ringnorm dataset

1 2 3 4 5 6 7 8 9 10 11 12
150

160

170

180

190

200

210

220

230

method

te
st

 e
rro

r

waveform dataset

Figure 4.1: Comparison of test error of different methods. The legend is given
in table 4.6.

4.4.2 Using the Gaussian from the Laplace method as

variational density

At the end of subsection 4.3.1 we mentioned that it is natural to ask whether
the Gaussian approximation to the posterior employed by the Laplace
method (which depends only on local information at the posterior mode)
would be a good variational approximation to the posterior in the sense of the
relative entropy metric. In this subsection, we refer to this particular distri-
bution as “Laplace Gaussian”. The variational algorithm which employs the
Laplace Gaussian as posterior approximation is called “variational Laplace”

112 CHAPTER 4. BAYESIAN MODEL SELECTION

method. Even though a local approximation seems to be very restrictive,
the covariance matrix of the Laplace Gaussian is not of factor-analyzed form
and might therefore outperform the best variational density with restricted
covariance matrix.

We have not evaluated the variational Laplace algorithm explicitely, for the
following reasons. First of all, there is no theoretical justification for using
the Laplace Gaussian as variational approximation, since it is determined by
criteria which are not related to the natural metric in this case, the relative
entropy (see subsection 4.3.1). If we want to improve the variational algo-
rithm, the correct thing to do is to broaden the variational model class (see
also subsection 5.2.1). Second, the variational Laplace method is only appli-
cable if the original Laplace method is, while the variational technique using
factor-analyzed covariances is more general and works for nondifferentiable
loss functions like the SVC loss. However, the question is of general interest,
and the experiments described as follows might give some insights. We spe-
cialize to the GPC Bernoulli loss and do not employ hyperpriors. Following
the θ trajectory for the variational method with factor-analyzed covariances
during the outer loop optimization, we obtained a sequence θ1, θ2, . . . where
θi is the hyperparameter vector value at which the i-th line search began.
At each θi we computed the Laplace Gaussian approximation to the con-
ditioned posterior P (y|D, θi) and, using this approximation as variational
density P̃L, the variational free energy criterion F (P̃L, θi). This value can
then be compared to the value of F (P̃ , θi) where P̃ is the best variational
approximation to P (y|D, θi) with a factor-analyzed covariance matrix. The
graphs of figure 4.2 show both criteria for various datasets.

Commenting on these figures is rather difficult, since the evaluations took
part at points along learning trajectories which might not be representa-
tive. At least we can observe that on these trajectories the globally fitted
(but restricted) variational density consistently outperforms the locally fit-
ted Laplace Gaussian. A nice example is the figure 4.2 for the twonorm
dataset where the fit of the Laplace Gaussian is poor compared to the global
approximation. This might be an explanation for the bad performance of the
Laplace algorithm on this dataset (see table 4.4). The same argumentation
applies to the ringnorm dataset. On crabs and pima the fit of the Laplace
Gaussian is as good as the global fit. We did not produce these protocols for
waveform and wdbc.

4.4. EXPERIMENTS AND RESULTS 113

0 5 10 15 20 25 30 35
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Factor−anal.
Laplace

crabs

0 5 10 15 20 25 30 35 40
0.5

0.55

0.6

0.65

0.7

0.75

Factor−anal.
Laplace

pima
0 2 4 6 8 10 12 14 16 18 20

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Factor−anal.
Laplace

twonorm

0 5 10 15 20 25 30 35
0.2

0.25

0.3

0.35

0.4

0.45

0.5

Factor−anal.
Laplace

ringnorm

Figure 4.2: Criterion curves for several datasets. “Factor-anal.” is the vari-
ational free energy criterion minimized during the optimization. “Laplace”
is computed in the same way, but using the Laplace approximation to the
posterior instead of the best variational approximation with restricted co-
variance.

4.4.3 Evidence approximation of Laplace method

It is interesting to compare the approximation (4.12) to the negative log
evidence employed by the Laplace GPC method with the upper bound F
used by the variational algorithm with Bernoulli loss. The approximation is
clearly poor if it renders values larger than F for fixed θ. For real-world data,
the true evidence cannot be computed, therefore we cannot decide for fixed θ

if the approximation or the bound is closer to the truth. A large gap between
approximation and bound might indicate that the bound is poor, or that the
approximation renders a much too small value, or both. Figure 4.3 collects
plots of these two criteria which were again sampled along trajectories of
the variational algorithm, as described in subsection 4.4.2. Note that these
trajectories might not be a representative region for typical θ values.

114 CHAPTER 4. BAYESIAN MODEL SELECTION

0 5 10 15 20 25 30 35
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Iterations

Var. upper bound
Laplace approx.

crabs

0 5 10 15 20 25 30 35
0.5

0.55

0.6

0.65

0.7

0.75

Iterations

Var. upper bound
Laplace approx.

pima

0 5 10 15 20 25
0.2

0.25

0.3

0.35

0.4

0.45

Iterations

Var. upper bound
Laplace approx.

twonorm

0 5 10 15 20 25 30 35
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Iterations

Var. upper bound
Laplace approx.

ringnorm

0 10 20 30 40 50 60 70 80 90 100
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Iterations

Var. upper bound
Laplace approx.

wdbc

0 10 20 30 40 50 60 70 80
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Iterations

Var. upper bound
Laplace approx.

waveform

Figure 4.3: Comparison of Laplace approximation of the negative log evidence
with the variational upper bound.

Chapter 5

Conclusions and future work

5.1 Conclusions

We have presented a common probabilistic framework for kernel or spline
smoothing methods including popular architectures such as Gaussian pro-
cesses and Support Vector machines. We identified the problem of unnor-
malized loss functions and suggested a general technique to overcome this
problem at least approximately. We gave an intuitive interpretation of the
effect an unnormalized loss function can induce, by comparing Support Vec-
tor classification to Gaussian process classification as a nonparametric gen-
eralization of logistic regression. This interpretation relates SVC to boosting
techniques.

We proposed a variational Bayesian model selection algorithm for general
normalized loss functions. This algorithm has a wider applicability than
other Bayesian techniques based on the Laplace approximation and exhibits
comparable performance in cases where both techniques can be used. Ex-
periments on real-world datasets (see section 4.4) show that the variational
algorithm is competitive with powerful state-of-the-art techniques. Like other
Bayesian techniques, but unlike frequentist techniques such as cross valida-
tion, the variational method can simultaneously adapt a large number of free
kernel parameters without any user interaction. Thus, Bayesian techniques
like automatic relevance determination can be employed to gain additional
knowledge about the data and to derive more efficient discriminants. In the
present work, we restricted ourselves to model selection, i.e. employed a MAP
approach, but MCMC techniques to build Bayesian committees will be con-
sidered in future work (see section 5.2).

The wider scope of this thesis is to provide a bridge between the fields of

115

116 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

probabilistic Bayesian techniques and Statistical Learning Theory as applied
to kernel methods, although the emphasis is clearly on the former domain.
We therefore chose to include some material of tutorial nature, and we hope
that the text will prove useful as an introduction into modern Bayesian tech-
niques to researchers in the field of Learning Theory. Furthermore, we have,
neglecting any mathematical rigor, tried to shed some intuitive light on im-
portant SLT topics like the margin distribution, data-dependent error bounds
and the field of boosting algorithms. The latter has an enormous practical
impact without yet being completely understood in theoretical terms, and
we hope that our comments are of interest to researchers in the Bayesian
probabilistic modelling field.

Nonparametric discriminative techniques begin to transdencent their origi-
nally quite small field of applications. To date they have been mainly used
for classification, regression estimation and smoothing problems with fixed-
sized attribute vectors. However, recently complex problems like structure
learning in graphical models (see [JMJ99]) or classification over spaces of
variable-length sequences (see [JH98]) have been attacked. In the wider fu-
ture, our new approach might also be applied to a broader range of problems.
Obviously this requires an efficient, powerful and easy-to-use implementation
which we hope to be able to provide and distribute in the public domain.
Appendix D gives some preliminary details. In short, it is our opinion that a
method can only achieve a widespread practical utility if it is powerful but
also easy to use for non-experts in the field, i.e. if the method is as automa-
tized as possible, without a large number of free parameters to be fiddled with
“until it works”1. A further requirement, especially if the technique is quite
complicated inside its black box, is free availability of code whose interface is
generic enough to allow the method to be plugged into larger systems. The
ultimate goal is a large toolbox with a common generic interface, which can
be used by researchers to “plug-and-play”, to compare methods and to build
large systems using the methods that are suited best to solve their problems.
Obviously, there is still a long way to go . . .

5.2 Future work

In this section, we mention possible extensions to the work presented in this
thesis. Some of them have already been worked out in considerable detail, as
shown below.

1A striking counter-example seems to be the multi-layer perceptron, but automatic
Bayesian techniques have found widespread application in this field too.

5.2. FUTURE WORK 117

The running time behaviour of the variational algorithm proposed here and
of Bayesian methods for Gaussian Processes in general is notoriously bad,
namely O(n3) in general, where n is the training set size. Powerful approx-
imations suggested by Skilling (see Appendix B) have been successfully ap-
plied to Bayesian Gaussian Processes in [Gib97], and we show in Appendix C
that it should be possible to improve the scaling of our variational algorithm
dramatically by employing these methods. We are currently working on pro-
viding code to test this conjecture. However, applying Skilling’s techniques to
the variational algorithm discussed above is, at least in our experience so far,
not at all a straightforward task. The tridiagonal version of a Conjugate Gra-
dients optimizer required to compute the Skilling bounds has to be designed
very carefully to avoid numerical instabilities. Even a perfectly stable im-
plementation of these approximations delivers only estimates of the required
quantities whose relative errors cannot be decreased arbitrarily (see discus-
sion in Appendix B). An optimizer based on such a “noisy” criterion has to
be designed with care, since standard techniques like bracketing a minimum
point only work up to a certain accuracy determined by the noise variance.
In fact, we encounter one of these unusual situations where approximate
gradient information about a criterion is much more reliable than approx-
imate information about the criterion values at different points, and most
standard optimizers do not work well in such situations. The recent paper
[BWB99] deals with the same problem of a “noisy” criterion in the context
of reinforcement learning. The authors suggest the relatively straightforward
gradient-based line search function GSEARCH in combination with a conju-
gate gradients optimizer.

Another promising idea, namely dropping the factor-analyzed covariance ma-
trix constraint when modeling the variational distribution in the algorithm
discussed above and using a sequential approach to optimize free parameters,
has already been worked out in some detail, but even though preliminary
tests have been done, no conclusions can be drawn so far. We describe this
approach in the following subsection.

In the present thesis we advocate using a proper generative model which is
in a sense “close” to the improper SVC model and then viewing the SVC
solution as efficient approximation of the solution for the proper model (see
subsection 2.1.7). Given the proper model, we can employ Bayesian tech-
niques, then use the SVC approximation whenever applicable. For example,
we can grow a Bayesian committee of SV classifiers by replacing the MAP
optimization by an MCMC method which produces samples θ1, . . . , θN from
the posterior P (θ|D) or at least from a reasonable approximation. The com-
mittee discriminant is simply the arithmetic average of the discriminants

118 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

conditioned on θ1, . . . , θN . Note that although the expert discriminants are
computed as inner products, the mixture discriminant cannot be written as a
single inner product. Therefore, a mixture discriminant is a nontrivial exten-
sion of the concept of a linear smoother such as a Gaussian process or a SVM.
As mentioned above, we can base the expert discriminants either on the SVC
solution (in this case, they are sparse) or on the mean of the final variational
distribution. It would be interesting to compare such committees to MAP
discriminants or committees trained by boosting (see subsection 2.2.1) and
cross validation.

We close with some technical details which might or might not be improved
upon in the future. The present implementation uses four n× n matrices of
double precision floating point numbers. This can be reduced to two such ma-
trices if some running time performance is sacrificed. For general covariance
kernels, we currently see no way to improve upon the O(n2) storage space
scaling. Even if we apply Skilling approximations, it is essential that we can
multiply arbitrary vectors with kernel covariance matrices very efficiently
which means that the actual kernel matrix must be kept in memory. One
might consider an artificial sparsification using quantization ideas, but the
quantification noise is likely to spoil the optimization. For special problems, a
careful choice of the kernel function can render covariances of a special struc-
ture which can be stored and computed with very efficiently (see [Sto99]),
but the range of applicability of such techniques is usually rather limited.

5.2.1 Sequential updating of the variational distribu-

tion

While choosing Gaussians as variational distributions seems to be essential
for tractability2, the further restriction of the covariances to factor-analyzed
form is merely done to reduce the computational demands. As we show now,
there is a family of covariances with even fewer degrees of freedom which
nevertheless includes the covariance matrix of the best Gaussian variational
approximation to the posterior3. Ignoring terms which do not depend on the

2We know of no other family of multivariate densities that would render the evaluation
of the variational free energy and its gradients tractable.

3From a theoretical point of view, the number of degrees of freedom of the model
class does not have to be restricted, since there is no danger of overfitting. But in general
we expect the optimization of the variational parameters to be easier in practice if their
number is small.

5.2. FUTURE WORK 119

variational density P̃ = N(µ, Σ), the criterion to minimize is

F (P̃) =
n
∑

i=1

νi +
1

2
µtK−1µ +

1

2
tr
(

ΣK−1
)

− 1

2
log |Σ|. (5.1)

Define π = (∂νi/∂µi)i and W = diag(2∂νi/∂σ2
i)i. The gradients are

∂F/∂µ = π + K−1µ,

∂F/∂Σ =
1

2

(

W + K−1 − Σ−1
)

.
(5.2)

Setting these equal to zero, we arrive at the stationary conditions

µ = −Kπ, Σ =
(

K−1 + W
)−1

. (5.3)

This is a coupled nonlinear system of equations, but solving by iteration (as
commonly done in variational techniques) is clearly infeasible because of the
inversion required in every step. Note that at the minimum, the covariance
has the form (K−1 + D)−1, where D is a diagonal matrix. Therefore, the
family of Gaussians with unconstrained mean and covariance of this partic-
ular form contains the best variational approximation to the posterior. The
family has only 2n degrees of freedom, as opposed to (M +1)n for the factor-
analyzed covariances class. For common g (e.g. the SVC loss), W contains
only positive entries, and we can restrict D to have elements ≥ 0, e.g. by
parameterizing D = E2. This has the advantage of automatically keeping Σ
positive definite.

The drawback of this parameterization is the complicated relation between
D and Σ. Any optimization strategy for F must necessarily recompute diag Σ
after each change of D, because the νi and the corresponding gradients π

and W depend on this diagonal. The computation is O(n3) if D is changed
arbitrarily, which would be infeasible. However, a feasible optimization of F
might be achieved using a sequential update strategy, i.e. changing only a
small number of components of D in each iteration. Naive sequential updat-
ing would use a fixed schedule to run over the parameters of D and optimize
F w.r.t. each of them seperately. This is a special case of a working set method
which maintains a working set (or window) I ⊂ {1, . . . , n}, K = |I| � n and
optimizes F w.r.t. to the parameters indexed by I. I is then moved over the
complete index set, using either a fixed schedule or a working set selection
heuristic. The sequential minimal optimization (SMO) algorithm for Support
Vector classification [Pla98] is an example for the latter case. The rationale
behind using a selection heuristic rather than a fixed selection schedule is
that in many optimization tasks, given a particular dataset, not all of the

120 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

free model parameters are equally important when optimizing the criterion.
Often, an algorithm can concentrate on a small set of parameters most of
the time, without running less efficiently than an algorithm with a fixed fair
selection schedule. A good selection heuristic should manage to find this par-
ticular subset, at least approximately. Of course, some care is required when
implementing such a heuristic-based working set optimization, we have to
avoid getting caught in spurious minima.

Given that a selection heuristic can be identified which can be expected to
work well in the sense discussed above, sequential updating can be imple-
mented very efficiently using an implicit storage structure. By this we mean
a structure which supports lazy evaluation strategies. This is made precise
below. The sequential updating algorithm employs iterations of the form:

1. Do several Newton steps to update the mean µ.

2. Select a working set I ⊂ {1, . . . , n}, K = |I| � n, using a selection
heuristic. The goal of the heuristic would be to select these components
in D which affect F most if changed.

3. Optimize F w.r.t. DI (the subscript I denotes a reduction of the cor-
responding entity to the components with indices in I). Thereby keep
track of Σ, at least in an implicit form (see below). The diagonal of Σ
is maintained explicitely.

The optimization of F w.r.t. µ can be done using the Newton-Raphson al-
gorithm. The Hessian of F w.r.t. µ is B + K−1 where B = diag(∂2νi/∂µ2

i)i,
and we have the Newton step:

µ′ = Ka, a = (I + BK)−1(π + Bµ). (5.4)

Note that the gradient ∇µ′F is π′+a, and the gradient norm can be used in
a stopping criterion. Note that optimization to a high accuracy is necessary
only during later iterations.

We postpone the issue of a selection heuristic and concentrate on optimizing
F w.r.t. DI where the working set I is given. First experiments with a Newton
optimization failed, so we switched to a simple line search along the negative
gradient. The latter is given by

∂F/∂DI =

(

1

2
vt

i(D −W)vi

)

i∈I

, (5.5)

where vi = Σei denote the columns of Σ. Note that the gradient depends only
on those columns of Σ whose indices are in I. This “locality” characteristic

5.2. FUTURE WORK 121

allows us to use an implicit storage structure for Σ, as discussed below. The
criterion F itself does not have the same locality characteristic, i.e. we cannot
update it using the columns I of Σ only. Therefore, the line search has to be
based on gradient information only, which might prove to be quite unstable,
since we cannot bracket the line minimum point.

Trading memory space for efficiency, we choose the following implicit storage
structure for Σ:

vi = v̂i + Σα(i), (5.6)

where α(i) ∈ R
n is usually sparse and α

(i)
i = 0. vi is called explicit iff α(i) = 0,

implicit otherwise. vj is called parent of vi if α
(i)
j 6= 0. The representation

induces a directed graph with the vi being the vertices and an edge from vj

to vi iff α
(i)
j 6= 0. We need the graph to be acyclic, i.e. its transitive hull must

be a semi-ordering. We start with an explicit Σ matrix, i.e. α(i) = 0 for all
i. We maintain at any time an ordering o(·) of {1, . . . , n} which is consistent
with the transitive hull of the graph, i.e. vj → · · · → vi iff o(j) < o(i).

We will see shortly that to optimize F w.r.t. DI using a line search and to
maintain the implicit representation of Σ, we only need the columns vi, i ∈ I
and the diagonal diag Σ of the covariance in explicit form. After having chosen
a working set I, we therefore have to ensure that the columns corresponding
to I are known explicitely. This can be done using a straightforward stack-
based algorithm which marks the vi, i ∈ I as well as all their ancestors.
We then run over {1, . . . , n} following the ordering o(·) and compute each
marked column vi as a linear combination of v̂i and its parents (which, by
definition of o(·), are explicit at this time).

We introduce the notation AJ,K = (αj,k)j∈J,k∈K where J, K are ordered sub-
sets of {1, . . . , n}. The complete index set is abbreviated with a dot, i.e.
AJ,• = (αj,k)j∈J,k. If J or K contain only one element, we drop the set
braces. Updating DI to D̃I = DI + ∆I can be done using the Woodbury
formula (see [PTVF92]). If U = I•,I , then

Σ̃ =
(

Σ−1 + U∆IU
t
)−1

= Σ− ΣU∆I

(

I + U tΣU∆I

)−1
U tΣ

= Σ− Σ•,I∆I (I + ΣI,I∆I)
−1 Σt

•,I .
(5.7)

Note that the update term only depends on vi, i ∈ I. We have

ṽj = vj − Σ•,I∆I (I + ΣI,I∆I)
−1 Σt

j,I. (5.8)

It follows that Σ̃•,I = Σ•,IM , where M = I − ∆I(I + ΣI,I∆I)
−1Σt

I,I . This
allows an explicit update of the “working set” columns.

122 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

The columns vi, i 6∈ I will only be updated implicitely, by modifying the
weights α(i). Let

ṽi = vi + Σ̃•,Iγi (5.9)

and Γ = (γi,j)i,j = (γ1, . . . , γn) ∈ R
K,n (recall that K = |I|). Using (5.8) it is

easy to see that Γ = −∆IΣ
t
•,I . Furthermore, we have to take into account that

the parents of vi have also been changed according to (5.9). Some algebra
reveals the final update equation

α̃
(i)
l = α

(i)
l + γl,i −

∑

k

α
(i)
k γl,k, l ∈ I, (5.10)

and α̃
(i)
l = α

(i)
l for all l 6∈ I. Using (5.9), we also have the explicit update

equation for diag Σ:

σ̃2
i = σ2

i + Σ̃i,Iγi (5.11)

This completes the description of the optimization on the working set I.
During the line search, we work on copies of Σ•,I and diag Σ and only update
these (explicitely). After the line search has terminated, resulting in the step
∆I , we in addition perform an implicit update of columns not in the working
set, as described above.

The issue of choosing a working set selection heuristic is sometimes supported
by the nature of the optimization problem, for example in the Support Vec-
tor classification case (see [Pla98]). In the case of the variational sequential
updating algorithm, such a support is not given, and we are only beginning
to explore some ideas. A good selection heuristic for the working set would
be of course to compute ∇DF and select the indices of the largest elements.
However, to compute this gradient we need the complete covariance Σ in
explicit form, and the idea of a implicit storage structure could not be ap-
plied in this case. In contrast to that, ∇ΣF = (1/2)(W −D), which can be
computed using µ and diag Σ only. From (5.5) we have

∂F

∂di
=

n
∑

k=1

∂F

∂σ2
k

(−vi,k), (5.12)

where D = diag(d1, . . . , dn) and vi = (vi,1, . . . , vi,n)t. If we assume that Σ is
strongly diagonal dominant, we can approximate this by

∂F

∂di

≈ −σ2
i

∂F

∂σ2
i

. (5.13)

5.2. FUTURE WORK 123

This suggests computing −(diag Σ)∇ΣF and choosing the indices of the
largest components. Although the assumption is too strong in reality, Σ ex-
hibits diagonal dominance to a certain degree if K does and D contains only
positive elements. Thus, the heuristic might prove useful in practice.

Bibliography

[Ant97] Martin Anthony. Probabilistic analysis of learning in artificial
neural networks: The PAC model and its variants. Neural Com-
puting Surveys, 1:1–47, 1997.

[Bar98] Peter Bartlett. The sample complexity of pattern classification
with neural networks: The size of the weights is more important
than the size of the network. IEEE Transactions on Information
Theory, 2(44):525–536, 1998.

[BB97] David Barber and Christopher Bishop. Ensemble learning for
multi-layer networks. In Advances in Neural Information Pro-
cessing Systems 10, pages 395–401. MIT Press, 1997.

[Ber85] James O. Berger. Statistical Decision Theory and Bayesian
Analysis. Springer, 2nd edition, 1985.

[Bis95] Christopher Bishop. Neural Networks for Pattern Recognition.
Clarendon Press, Oxford, 1995.

[Bre96] Leo Breiman. Arcing classifiers. Technical report, University of
California, Berkeley, 1996.

[Bre97] Leo Breiman. Prediction games and arcing algorithms. Techni-
cal Report 504, University of California, Berkeley, 1997.

[BS97] David Barber and Bernhard Schottky. Radial basis functions:
A Bayesian treatment. In Advances in Neural Information Pro-
cessing Systems 10, pages 402–408. MIT Press, 1997.

[BSW96] Christopher Bishop, Markus Svensen, and Christopher K.I.
Williams. GTM: The generative topographic mapping. Techni-
cal Report 15, NCRG, Aston University, April 1996.

124

BIBLIOGRAPHY 125

[Bur98a] Christopher Burges. Geometry and invariance in kernel based
methods. In Schölkopf et al. [SBS98], pages 89–116.

[Bur98b] Christopher Burges. A tutorial on support vector machines for
pattern recognition. Data Mining and Knowledge Discovery,
2(2):121–167, 1998.

[BWB99] Jonathan Baxter, Lex Weaver, and Peter Bartlett. Direct
gradient-based reinforcement learning: Ii. gradient ascent algo-
rithms and experiments. Technical report, Australian National
University, September 1999.

[CC96] M. Cowles and B. Carlin. Markov chain Monte Carlo conver-
gence diagnostics – a comparative review. Journal of the Amer-
ican Statistical Association, 91(434):337–348, 1996.

[CCST98] Colin Campbell, Nello Cristianini, and John Shawe-Taylor. Dy-
namically adapting kernels in Support Vector machines. Tech-
nical Report 17, Royal Holloway College, London, 1998.

[Cre93] Noel Cressie. Statistics for Spatial Data. Wiley series in prob-
ability and mathematical statistics. Wiley, 2nd edition, 1993.

[CT91] Thomas Cover and Joy Thomas. Elements of Information The-
ory. Series in Telecommunications. John Wiley & Sons, 1st
edition, 1991.

[Dev86] Luc Devroye. Nonuniform Random Variate Generation.
Springer, New York, 1986.

[DGL96] L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of
Pattern Recognition. Applications of Mathematics: Stochastic
Modelling and Applied Probability. Springer, 1st edition, 1996.

[DLR77] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the
Royal Statistical Society B, 39:1–38, 1977.

[Fel71] William H. Feller. An Introduction to Probability Theory and
its Applications, volume 2. John Wiley & Sons, 2nd edition,
1971.

[FHT98] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Addi-
tive logistic regression: a statistical view of boosting. Technical
report, Department of Statistics, Stanford University, 1998.

126 BIBLIOGRAPHY

[Fle80] Roger Fletcher. Practical Methods of Optimization: Uncon-
strained Optimization, volume 1. John Wiley & Sons, 1980.

[Fri99] Jerome Friedman. Greedy function approximation: a gradient
boosting machine. Technical report, CSIRO CMIS, 1999.

[FS96] Y. Freund and R. Schapire. Experiments with a new boost-
ing algorithm. In Machine Learning: Proceedings of the 13th
international conference, 1996.

[Gib97] Mark N. Gibbs. Bayesian Gaussian Processes for Regression
and Classification. PhD thesis, University of Cambridge, 1997.

[GS92] G. Grimmett and D. Stirzaker. Probability and Random Pro-
cesses. Oxford Science Publications. Clarendon Press, Oxford,
2nd edition, 1992.

[GS94] P.J. Green and Bernhard Silverman. Nonparametric Regression
and Generalized Linear Models. Monographs on Statistics and
Probability. Chapman & Hall, 1994.

[Hal57] P. Halmos. Introduction to Hilbert Space and the Theory of
Spectral Multiplicity. Chelsea, New York, 1957.

[HKS94] David Haussler, Michael Kearns, and Robert Schapire. Bounds
on the sample complexity of Bayesian learning using informa-
tion theory and the VC dimension. Machine Learning, 14:83–
113, 1994.

[HN97] G. E. Hinton and R. M. Neal. A new view on the EM algorithm
that justifies incremental and other variants. In Jordan [Jor97].

[HS52] M. Hestenes and E. Stiefel. Methods of conjugate gradients
for solving linear systems. Journal Res. Nat. Bur. Standards,
49:409, 1952.

[Hub81] P. Huber. Robust Statistics. Wiley, New York, 1981.

[HVC93] G. E. Hinton and D. Van Camp. Keeping neural networks sim-
ple by minimizing the description length of the weights. In
Conference on Computational Learning Theory 6, pages 5–13.
Morgan Kaufmann, 1993.

BIBLIOGRAPHY 127

[Jaa97] Tommi Jaakkola. Variational methods for inference and estima-
tion in graphical models. PhD thesis, Massachusetts Institute
of Technology, Cambridge, MA, 1997.

[Jaa99] Tommi Jaakkola. Class notes 6.892 machine learning seminar,
mit. 1999.

[Jay82] E. T. Jaynes. Papers on Probability, Statistics and Statistical
Physics. Reidel, Dordrecht, 1982.

[JH98] Tommi S. Jaakkola and David Haussler. Exploiting generative
models in discriminative classifiers. In M. Kearns, S. Solla, and
D. Cohn, editors, Advances in Neural Information Processing
Systems 11, 1998.

[JH99] Tommi Jaakkola and David Haussler. Probabilistic kernel re-
gression models. In D. Heckerman and J. Whittaker, editors,
Workshop on Artificial Intelligence and Statistics 7. Morgan
Kaufmann, 1999.

[JHD99] Tommi Jaakkola, David Haussler, and M. Diekhans. Using the
Fisher kernel method to detect remote protein homologies. In
Proceedings of ISMB, 1999.

[JMJ99] T. Jaakkola, M. Meila, and T. Jebara. Maximum en-
tropy discrimination. Technical Report MIT-AITR 1668,
Massachusetts Institute of Technology, August 1999. See
http://www.ai.mit.edu/~tommi/papers.html.

[Joa98] Thorsten Joachims. Making large-scale SVM learning practical.
In Schölkopf et al. [SBS98], pages 169–184.

[Jor97] M. I. Jordan, editor. Learning in Graphical Models. Kluwer,
1997.

[KV94] M. Kearns and U. Vazirani. An Introduction to Computational
Learning Theory. MIT Press, Cambridge, 1994.

[Kwo99] James Tin-Tau Kwok. Integrating the evidence framework and
the Support Vector machine. Submitted to ESANN 99, 1999.

[Lue84] David G. Luenberger. Linear and Nonlinear Programming.
Addison-Wesley, 2nd edition, 1984.

128 BIBLIOGRAPHY

[Mac91] David MacKay. Bayesian Methods for Adaptive Models. PhD
thesis, California Institute of Technology, 1991.

[Mac93] David MacKay. Hyperparameters: optimize, or integrate out?
In Proceedings of Maxent, 1993.

[Mac95] D. MacKay. Probable networks and plausible predictions – a
review of practical Bayesian methods for supervised neural net-
works. Network — Computation in Neural Systems, 6(3):469–
505, 1995.

[Mac97] D. MacKay. Introduction to Gaussian processes. Tech-
nical report, Cambridge University, UK, 1997. See
http://wol.ra.phy.cam.ac.uk/mackay/README.html.

[Mac98] David J.C. MacKay. Choice of basis for Laplace approximation.
Machine Learning, 33(1), October 1998.

[MBB98] Llew Mason, Peter Bartlett, and Jonathan Baxter. Improved
generalization through explicit optimization of margins. Tech-
nical report, Australian National University, 1998. To appear
in Machine Learning.

[McA99a] David McAllester. PAC-Bayesian model averaging. In Con-
ference on Computational Learning Theory 12, pages 164–170,
1999.

[McA99b] David McAllester. Some PAC-Bayesian theorems. Machine
Learning, 37(3):355–363, 1999.

[MN83] P. McCullach and J.A. Nelder. Generalized Linear Models.
Number 37 in Monographs on Statistics and Applied Proba-
bility. Chapman & Hall, 1st edition, 1983.

[MOR98] Klaus-Robert Müller, Takashi Onoda, and Gunnar Rätsch. Soft
margins for AdaBoost. Technical Report NeuroCOLT2-TR-
1998-021, GMD FIRST, Berlin, 1998.

[Nea93] R. M. Neal. Probabilistic inference using Markov chain monte
carlo methods. Technical report, University of Toronto, 1993.

[Nea96] Radford M. Neal. Bayesian Learning for Neural Networks.
Number 118 in Lecture Notes in Statistics. Springer New York,
1996.

BIBLIOGRAPHY 129

[Nea97] Radford M. Neal. Monte Carlo implementation of Gaussian pro-
cess models for Bayesian classification and regression. Technical
Report 9702, Department of Statistics, University of Toronto,
January 1997.

[OW99] M. Opper and O. Winther. Gaussian process classification
and SVM: Mean field results and leave-one-out estimator. In
A. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans, edi-
tors, Advances in Large Margin Classifiers. MIT Press, 1999.

[OW00] Manfred Opper and Ole Winther. Gaussian processes for
classification: Mean field algorithms. Neural Computation,
12(11):2655–2684, 2000.

[Pla98] John C. Platt. Fast training of support vector machines using
sequential minimal optimization. In Schölkopf et al. [SBS98],
pages 185–208.

[PTVF92] William H. Press, Saul A. Teukolsky, William T. Vetterling,
and Brian P. Flannery. Numerical Recipes in C. Cambridge
University Press, 2nd edition, 1992.

[PW96] J. Propp and D. Wilson. Exact sampling with coupled Markov
chains and applications to statistical mechanics. Random Struc-
tures and Algorithms, 9(1–2):223–252, 1996.

[Ras96] C. E. Rasmussen. Evaluation of Gaussian Processes and Other
Methods for Nonlinear Regression. PhD thesis, University of
Toronto, 1996.

[RG99] S. Roweis and Z. Ghahramani. A unifying review of linear Gaus-
sian models. Neural Computation, 11(2), 1999.

[Rip96] Brian D. Ripley. Pattern Recognition for Neural Networks.
Cambridge University Press, 1996.

[Ris86] J. Rissanen. Stochastic complexity and modeling. Annals of
Statistics, 14(3):1080–1100, 1986.

[Roc70] R. Rockafellar. Convex Analysis. Princeton University Press,
1970.

[Row98] S. Roweis. EM algorithms for PCA and SPCA. In M. Jordan,
M. Kearns, and S. Solla, editors, Advances in Neural Informa-
tion Processing Systems 10, pages 626–632. MIT Press, 1998.

130 BIBLIOGRAPHY

[SBS98] B. Schölkopf, C. Burges, and A. Smola, editors. Advances in
Kernel Methods: Support Vector Learning. MIT Press, 1998.

[Sch64] I. J. Schönberg. Spline functions and the problem of graduation.
In Proc. Nat. Acad. Sci., volume 52, pages 947–950, 1964.

[SFBL98] R. Schapire, Y. Freund, P. Bartlett, and W. S. Lee. Boosting
the margin: A new explanation for the effectiveness of voting
methods. Annals of Statistics, 26(5):1651–1686, 1998.

[Ski89] John Skilling, editor. Maximum Entropy and Bayesian Methods.
Cambridge University Press, 1989.

[Sol99] Peter Sollich. Probabilistic interpretations and Bayesian meth-
ods for Support Vector machines. In Proceedings of ICANN 99,
1999.

[Sol00] Peter Sollich. Probabilistic methods for support vector ma-
chines. In S. Solla, T. Leen, and K.-R. Müller, editors, Advances
in Neural Information Processing Systems 12, pages 349–355.
MIT Press, 2000.

[SS98] R. Schapire and Yoram Singer. Improved boosting algorithms
using confidence-rated predictions. In Proceedings of the 11th
annual conference on computational learning theory, 1998.

[SSM98] A. Smola, B. Schölkopf, and K. Müller. General cost functions
for Support Vector regression. In Australian Congress on Neural
Networks, 1998.

[SSSV97] Bernhard Schölkopf, P. Simard, Alexander Smola, and
Vladimir N. Vapnik. Prior knowledge in Support Vector ker-
nels. In Advances in Neural Information Processing Systems
10, 1997.

[SSTSW99] B. Schölkopf, J. Shawe-Taylor, A. J. Smola, and R. C.
Williamson. Generalization bounds via the eigenvalues of the
Gram matrix. Technical Report TR-1999-035, NeuroCOLT,
Royal Holloway College, London, 1999.

[STBWA96] John Shawe-Taylor, Peter Bartlett, Robert Williamson, and
Martin Anthony. A framework for Structural Risk Minimiza-
tion. In 9th ACM Conference on Computational Learning The-
ory, pages 68–76, 1996.

BIBLIOGRAPHY 131

[Sto99] Amos Storkey. Truncated covariance matrices and Toeplitz
methods in Gaussian processes. In Proceedings of the Inter-
national Conference on Artificial Neural Networks (ICANN),
1999.

[TB98] M. Tipping and C. Bishop. Mixtures of probabilistic princi-
pal component analyzers. Neural Computation, 11(2):443–482,
1998.

[Vap95] Vladimir N. Vapnik. The Nature of Statistical Learning Theory.
Springer, 1995.

[Vap98] Vladimir N. Vapnik. Statistical Learning Theory. Wiley, 1st
edition, 1998.

[VW99] F. Vivarelli and C. K. I. Williams. Discovering hidden features
with Gaussian process regression. In M. Kearns, S. Solla, and
D. Cohn, editors, Advances in Neural Information Processing
Systems 11. MIT Press, 1999.

[Wah90] Grace Wahba. Spline Models for Observational Data. CBMS-
NSF Regional Conference Series. SIAM Society for Industrial
and Applied Mathematics, 1990.

[Wah98] Grace Wahba. Support vector machines, reproducing kernel
Hilbert spaces and the randomized GACV. In Schölkopf et al.
[SBS98], pages 69–88.

[WB98] Christopher K. I. Williams and David Barber. Bayesian classifi-
cation with Gaussian processes. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 20(12):1342–1351, 1998.

[Wil96] Christopher K. I. Williams. Computing with infinite networks.
In Advances in Neural Information Processing Systems 9. MIT
Press, 1996.

[Wil97] Christopher K. I. Williams. Prediction with Gaussian processes:
From linear regression to linear prediction and beyond. In Jor-
dan [Jor97].

[WLZ99] Grace Wahba, Yi Lin, and Hao Zhang. Generalized approxima-
tive cross validation for Support Vector machines, or, another
way to look at margin-like quantities. Technical Report 1006,
Department of Statistics, University of Wisconsin, 1999. Avail-
able at http://www.stat.wisc.edu/~wahba/.

132 BIBLIOGRAPHY

[WR96] Christopher K. I. Williams and Carl E. Rasmussen. Gaussian
processes for regression. In Advances in Neural Information
Processing Systems 8. MIT Press, 1996.

[WV00] C. K. I. Williams and F. Vivarelli. Upper and lower bounds on
the learning curve for Gaussian processes. Machine Learning,
40(1):77–102, 2000.

Appendix A

Factor-analyzed covariances

A.1 Origins of factor-analyzed covariances

Standard maximum likelihood factor analysis models describe the distribution
of observed continuous variables as Gaussian with factor-analyzed covariance
matrix. We use this family of distributions in the variational algorithm de-
scribed above, and although we gave some evidence to support this choice
in our special case, we think it is useful to mention briefly the origins of
this family here. Factor analysis is a special case of a linear Gaussian model,
among a lot of other architectures developed in seperation, as discussed in
the comprehensive review [RG99]. We broadly follow this work here. A linear
Gaussian model consists of two discrete-time processes and can be described
by the equations

xt+1 = φ (Axt + wt) ,

yt = Cxt + vt.
(A.1)

(wt)t and (vt)t are temporally white Gaussian processes with wt ∼
N(0, Q), vt ∼ N(0, R), and independent of each other. Here, xt ∈ R

M , yt ∈
R

n, M < n. If φ is either the identity or the winner-takes-all mapping
φ(x) = eargmaxj xj

, inference (i.e. filtering, smoothing) is easy for these mod-
els, and the EM algorithm (as discussed in section 3.1.4) can be used for
parameter learning (i.e. system identification).

Consider A = 0 and φ as identity. Then xt = wt, i.e. a white Gaussian
process, and yt is also temporally white with yt ∼ N(0, CQC t+R). W.l.o.g.
we can set Q = I, and with l.o.g., we will assume that R is diagonal. Then,
yt ∼ N(0, CCt + R) with C ∈ R

n,M , which is the standard factor analysis

133

134 APPENDIX A. FACTOR-ANALYZED COVARIANCES

model. Note that CC t =
∑

j cjc
t
j if cj are the columns of C, and compare

this to (4.5). For M � n, the rationale behind this model is that the high-
dimensional data is generated by latent “causes” in a much lower-dimensional
space, but then corrupted by noise which obscures the simple structure. This
is of course a form of capacity control (see [BSW96] for a generalization of
this idea). The assumption of white Gaussian noise is artificial, but allows to
solve this model analytically.

If we further restrict the model by assuming R = σ2I, we arrive at sensible
principal component analysis (SPCA) or probabilistic principal component
analysis (PPCA) (see [Row98],[TB98]). We note that narrowing down our
variational model class in this way would allow us to apply Skilling approx-
imation techniques to speed up the variational algorithm for large datasets,
but we are not yet sure if this decrease in modeling power is acceptable for
our purposes. This issue is discussed in section C.2.

Appendix B

Skilling approximations

A number of powerful approximation techniques applicable to Bayesian anal-
ysis have been suggested in [Ski89], and some of them have been applied to
Gaussian processes in [Gib97]. These techniques should have a wide applica-
bility in all sorts of optimization problems, and we give a short introduction
here, as they can be applied in an efficient implementation of the variational
model selection algorithm described in this thesis.

B.1 Conjugate gradients optimization

Let us first recall some well-known facts about conjugate gradients (CG) op-
timization of quadratic functions. For more details see [Lue84] or [Fle80].
Hestenes and Stiefel [HS52] suggested the use of conjugate gradients to effi-
ciently solve large sparse linear systems. Much later the algorithm was gen-
eralized by Fletcher and Reeves (see [Fle80] for citations and more details on
the history) to cope with nonlinear criteria and quickly became the method
of choice to attack very large unconstrained nonlinear systems with linear
storage requirements only.

We concentrate on the following problem: Given a symmetric, positive defi-
nite matrix C ∈ R

n,n and a residue vector b, maximize

Q(y) = bty − 1

2
ytCy. (B.1)

The unique maximum point is ŷ = C−1b. The basic idea of conjugate gradi-
ents is to construct the nested sequence of subspaces Sr = [b, Cb, . . . , Cr−1b]1

1Sr is spanned by the vectors inside the brackets.

135

136 APPENDIX B. SKILLING APPROXIMATIONS

and a sequence yr such that yr is the maximum point of (B.1) within Sr.
After r ≤ n steps, we have dim Sr < r for the first time, i.e. the exist a
polynomial p such that Cp(C)b − b = 0, or p(C)b = C−1b. Therefore, ŷ

must be in Sr and yr = ŷ, since the latter is the unconstrained maximum
point. The conjugate gradients algorithm is able to build the sequence yr us-
ing one matrix-vector multiplication involving C and some O(n) operations
per iteration. We will not go into details of the algorithm, but only describe
some properties we need for our purposes here. Sr is spanned by the gradients
g1, . . . , gr where gi = ∇Q(yi) = b−Cyi. By definition, gj is orthogonal to
Sj−1, therefore the gradient set is an orthogonal base of Sr. Let er = gr/‖gr‖
and Er = (e1, . . . , er) ∈ R

n,r. Then we have Et
rEr = Ir, and it is easy to

show from the CG update equations that T r = Et
rCEr is tridiagonal.

If C is not sparse, it seems that we don’t gain a great deal by using the
CG method. In general, we cannot hope that the C ib become linearly de-
pendent for r significantly smaller than n. We therefore need O(n) steps,
each being O(n2), which is the same as an ordinary O(n3) decomposition
method. However, we can stop the algorithm after r � n iterations and use
yr as an approximation to ŷ. But why use CG to derive an approximative
solution? Consider an arbitrary optimization method for (B.1) which outputs
yr = Pr−1(C)b after the r-th iteration, where Pr−1 is a polynomial of degree
≤ r − 1. This is a large subclass of the set of all optimization methods re-
stricted to one matrix-vector multiplication and a constant number of O(n)
operations per iteration. The CG algorithm is optimal within this subclass,
since it outputs the maximum point of (B.1) within Sr. If we write

E(y) =
1

2
(y − ŷ)tC(y − ŷ) = −Q(y) +

1

2
btC−1b, (B.2)

one can show (see [Lue84]) that

E(yr+1) ≤ min
Pr

max
λi

(1 + λiPr(λi))E(y0), (B.3)

where the minimum is over all polynomials of degree ≤ r and the maximum
is over the spectrum of C. Choosing special polynomials one can show that
the typical behaviour of CG exhibits a very fast increase of Q in the first
r � n iterations.

B.2 Convergence bounds for CG

By exploiting the tridiagonal form of C in the base spanned by the normalized
gradients and using a cleverly chosen parallel CG problem alongside with

B.2. CONVERGENCE BOUNDS FOR CG 137

(B.1), Skilling shows how to obtain rigorous bounds on Qmax = Q(ŷ) if
C exhibits a particular form which occurs often in the context of Bayesian
analysis.

Let A be positive semidefinite. We observe that any CG problem using the
matrix C = αI + θA, α ≥ 0, θ > 0 and the residue b gives rise to the same
sequence of subspaces Sr. Note that in the case C ∝ A the maximum point
might not be unique and the sequence yr produced by CG is only one out
of an infinite number of possibilities, but all these give rise to the unique
sequence Qr = Q(yr) of consecutive maxima within Sr.

We consider the case C = αI+A. This situation arises naturally in Bayesian
analysis if we have a Gaussian prior with covariance αI on some latent vari-
ables y and search for the posterior mode. In this setting A corresponds to
the Hessian of the likelihood for a certain fixed y, and the Newton-Raphson
step to update y involves solving a linear system with matrix C. If we start
with y1 = 0, the CG iterations render an increasing sequence of lower bounds

0 = Q1 ≤ Q2 ≤ · · · ≤ Qmax =
1

2
btC−1b (B.4)

on the maximum Qmax. Furthermore, the orthogonal base is built up in Er.
Now consider the related problem to maximize

Q∗(y∗) = btAy∗ − 1

2
y∗tCAy∗. (B.5)

CG can be generalized to compute a (non unique) sequence y∗r such that y∗r
maximizes (B.5) over Sr, by transforming x = A1/2y∗ and v = A1/2b, thus

Q∗(y∗) = vtx − 1

2
xtCx, (B.6)

writing down the CG equations for the latter problem and undoing the trans-
form by dropping the leading A1/2 matrices in the equations. This is possible
since, by the special form of C, we have CA1/2 = A1/2C. Starting with
y∗1 = 0, we have the sequence of lower bounds

0 = Q∗
1 ≤ Q∗

2 ≤ · · · ≤ Q∗
max =

1

2
btC−1Ab. (B.7)

Now, here’s the trick:

Q∗
r + αQmax ≤ Q∗

max + αQmax =
1

2
btb, (B.8)

138 APPENDIX B. SKILLING APPROXIMATIONS

which gives us a decreasing sequence of upper bounds on Qmax. All in all we
have for any r

Qr ≤ Qmax ≤ α−1

(

1

2
btb−Q∗

r

)

. (B.9)

If Gr denotes the difference between upper and lower bound after iteration
r, we know that Qmax − Qr ≤ Gr. Let δyr = yr − ŷ. We can bound ‖δyr‖
as follows: Qmax − Qr = (1/2)δyt

rCδyr ≥ (α/2)δyt
rδyr, since α is a lower

bound on all eigenvalues of C. Thus

‖δyr‖2 ≤ 2Gr

α
. (B.10)

However, this bound proved to be quite loose in our experiments.

A straightforward implementation of these ideas would run both CG algo-
rithms in parallel, requiring 3 matrix-vector multiplications per iteration.
However, by exploiting the simple structure of C and related matrices like
CA in the gradient basis, we can compute the Q∗

r (and therefore the upper
bound) with negligible additional cost alongside the CG optimization of (B.1).
The details of an implementation are, however, tedious and will not be given
here. Several manipulations of the basic scheme have to be done to ensure
stability. For example, it is wise to compute the orthonormal bases of the Sr

using CG on A instead of the original C = αI +A (as mentioned above, the
subspaces are the same, see [Gib97] for some details). We plan to compile our
“practical experiences” with this algorithm in a seperate technical report.

Remark In the above derivation, we implicitely assumed the starting point
y1 = 0. This is suboptimal if we have a good guess for ŷ. Choosing 0 as
starting point has the advantage that the original algorithm can be converted
into a numerically more stable form (see [Gib97] for details). Some special
applications of the algorithm, such as estimating log |C| (as discussed in the
next section) require the choice y0 = 0. In any other case, our implementation
usually starts with y0 specified by the user. If the optimization fails, we try
again, starting at 0 and employing the more stable version.

B.3 Rotationally invariant functions

Other terms frequently arising during Bayesian analysis are determinants
and traces. These are special cases of functions f(C) which are rotationally
invariant in the sense that f(C) = f(UCU t) for any rotation U . f can be

B.3. ROTATIONALLY INVARIANT FUNCTIONS 139

written as f(C) = g(λ1, . . . , λn) where {λi} is the spectrum of C and g is
invariant against permutations of its arguments. An important special case is
given by choosing an arbitrary scalar function φ, defining φ(C) = Uφ(D)U t

where C = UDU t is the spectral (or singular value) decomposition of C,
and setting f(C) = trφ(C). Note some special cases:

• φ = (·)−1 gives f(C) = tr C−1

• φ = log gives f(C) = log |C|

Consider an algorithm which chooses a seed r ∼ P (r), computes rtφ(C)r
and estimates f(C) on the basis of this information. If C is chosen uniformly,
we have no reason to prefer a particular seed r over Ur for any rotation
U , so we can choose a spherical distribution P (r). The simplest choice is
P (r) = N(0, I). The estimator x = rtφ(C)r has mean Ex = tr φ(C) = f(C)
and variance 2 tr(φ(C)2). For large n, both terms grow as O(n) (they are
traces), therefore the relative error is O(1/

√
n). The estimate gets better as

the dimension grows, there is blessing instead of curse in the latter! If we
draw L seeds ri independently from P (r) and take the sample average, the
relative error is O(1/

√
Ln). Therefore, if the term rtφ(C)r can be computed

or approximated efficiently, we have an excellent estimator for f(C).

If φ = (·)−1, x is called randomized trace estimator. We have to compute
terms x = rtC−1r. This can be done approximately using the CG technique
described in the previous section. Note that since Qmax = (1/2)rtC−1r =
x/2, the algorithm gives rigorous upper and lower bounds on the term of
interest with negligible extra cost relative to the usual CG algorithm. The
randomized trace estimator together with the CG method can also be used
to estimate trace terms like trC−1B or more complicated combinations of
C−1 and other matrices. However, in such cases usually no upper bounds on
x can be given.

Skilling also shows how to estimate f(C) = log |C| which corresponds to
φ = log, and the estimator averages x = rt log(C)r. This requires starting
the CG optimization with y0 = 0 (see discussion above). After the r-th
iteration we have T r = Et

rCEr. We now approximate x by replacing C by
ErT rE

t
r. The latter matrix has rank r and is identical to C for r = n. Let

LDLt be the spectral decomposition of T r. We have

x̃ = rtErL log(D)LtEt
rr. (B.11)

The computation of D from T r is O(r2) using for example the QL algorithm
with implicit shifting (see [PTVF92]), and v = LtEt

rr is a byproduct of this

140 APPENDIX B. SKILLING APPROXIMATIONS

method. Rigorous upper and lower bounds on x can also be computed with
negligible extra cost, as described in [Ski89]. Especially it turns out that x̃ is
a rigorous lower bound on x.

Appendix C

The variational free energy and

its gradients

In this chapter, we compute the gradients of the variational free energy cri-
terion of subsection 4.2.1. We show how to compute or approximate the
gradients and the criterion efficiently, using techniques described in chapter
B of the appendix.

C.1 The gradients

We will begin by deriving the expressions for F and its gradients and after
that give some comments on how to efficiently approximate them. Recall the
definition (4.2) of the variational free energy F (P̃ , θ). From an implementa-
tional viewpoint it is advantageous to normalize F by dividing through n,
we will do so in what follows. Recall the definition of ν = (νi)i from (4.8).
The one-dimensional Gaussian expection can, depending on the actual loss
function g, either be computed analytically or approximated using numer-
ical quadrature. We will return to this issue below, but will assume in the
following that νi is differentiable w.r.t. µi and σ2

i . This is clearly the case for
differentiable g, but it is important to note that this is not a necessary condi-
tion. The family Γ of variational distributions P̃ was introduced in subsection
4.2.1. From (4.7) we have

F (P̃ , θ) =
1

n

n
∑

i=1

νi +
1

2n
µtK−1µ +

1

2n
tr
(

ΣK−1
)

+
1

2n
log |K| − 1

2n
log |Σ| − 1

2
.

(C.1)

141

142 APPENDIX C. VARIATIONAL FREE ENERGY AND GRADIENTS

Differentiating w.r.t. the parameters of P̃ , we arrive at

∇ � F =
1

n

((

∂νi

∂µi

)

i

+ K−1µ

)

∇ΣF =
1

n

(

diag

(

∂νi

∂σ2
i

)

i

+
1

2
K−1 − 1

2
Σ−1

)

.

(C.2)

Recall the structure of Σ, defined by (4.5) and let W = diag(∂νi/∂σ2
i)i. We

end up with

∇ � F =
1

n

(

W +
1

2
diag K−1 − 1

2
diag Σ−1

)

∇ �
j
F =

1

n

(

2Wcj + K−1cj − Σ−1cj

)

.

(C.3)

Now consider the gradient of F w.r.t. θ for fixed P̃ . We have

∇ � F = − 1

2n

(

(

K−1µ
) (

K−1µ
)t

+ K−1ΣK−1 −K−1
)

, (C.4)

therefore

∇θi
F = − 1

2n

(

(

K−1µ
)t

Gi

(

K−1µ
)

+ tr
(

K−1
(

ΣK−1 − I
)

Gi

)

)

, (C.5)

where Gi = ∂K/∂θi and θi denotes the i-th component of θ.

C.2 Efficient computation or approximation

Because of the special structure of the covariance Σ, we can compute
log |Σ|, diag Σ−1 and Σ−1cj, j = 1, . . . , M efficiently using the Sherman–
Morrison formula (see [PTVF92], p.73). Let Σ0 = D and Σi = Σi−1 +
cic

t
i, Di = diag Σ−1

i and vij = Σ−1
i cj. Our aim is to calculate DM and

vMj, j = 1, . . . , M . This can easily be done using a dynamic programming
approach in which we retain the entities vi−1,j and Di−1 to compute vi,j and
Di. For i = 0, we have D0 = D−1 and v0j = D−1cj. In the i-th step, we
first compute βi = (1 + ct

ivi−1,i)
−1, then

vi,j = vi−1,j − βi

(

ct
jvi−1,i

)

vi−1,i (C.6)

and

Di = Di−1 − βi diag
(

vi−1,iv
t
i−1,i

)

. (C.7)

C.2. EFFICIENT COMPUTATION OR APPROXIMATION 143

The log determinant of Σ can be computed using the identity

log |Σi| = log |Σi−1|+ log |I + vi−1,ic
t
i| = log |Σi−1|+ log(1 + vt

i−1,ici)

(C.8)

and noting that the update term is just − log βi. Every step is O(Mn), so
we have an overall cost of O(M 2n). We have to store the vectors vi,j, j =
1, . . . , M and some further O(n) vectors, so the storage cost is O(Mn).

If n is not too large, it might be feasible to recompute the inverse of K

after each change of θ. In this case the computation of the criterion and the
gradient w.r.t. the parameters of P̃ is straightforward. The gradient w.r.t. θ

(C.5) is more problematic since the right trace term is cubic in n, even if the
inverse of the covariance is known.

In general, we can resort to approximations suggested in [Ski89]. We give a
description of these techniques in Appendix B. Consider (C.1). K−1µ is ap-
proximated using CG, the trace term by using the randomized trace method
together with CG to compute vi = K−1ui for N(0, I) random vectors ui.
The same vectors can be used during all iterations of the inner loop. log |K|
can be estimated using the technique described in section B.3. This is done
alongside the computation of the vi, with virtually no additional cost. Now
to (C.5). Using the same sample {ui} as above, we compute wi = K−1Σui,
using CG. Note that alongside the trace term in (C.1) can be estimated at
no extra cost, using

tr ΣK−1 ≈ 1

L

L
∑

j=1

ut
jwj. (C.9)

The estimate for the trace in (C.5) is

1

L

L
∑

j=1

wt
jGivj. (C.10)

∇ � F in (C.3) remains problematic because diag K−1 cannot be estimated
efficiently using Skilling’s techniques. If an inversion (via Cholesky decom-
position, see [PTVF92]) of K per outer loop iteration can be afforded, this
should be considered. Doing so would render all applications of CG superflu-
ous, and the only remaining approximation would be the trace term in (C.5)1.
Actually, diag K−1 can be computed from the Cholesky decomposition of K

1Another matrix multiplication is needed to compute this gradient exactly.

144 APPENDIX C. VARIATIONAL FREE ENERGY AND GRADIENTS

in O(n2), and log |K| is a byproduct. Computing only the decomposition
requires roughly half of the time needed to invert K. Another option is to
narrow down the class of admissable covariances Σ. For example, imposing
D = (α/n)I, α > 02 for the diagonal part of Σ reduces the degrees of freedom
of Σ by n− 1 only, while the problematic gradient changes to

∇αF =
1

n2

(

trW +
1

2
tr
(

Σ−1 −K−1
)

)

(C.11)

which can be approximated using the randomized trace method. In fact,
the estimate of trK−1 is a byproduct of the computation of the vi vectors
described above. This manipulation also simplifies the computation of (C.1)
since

tr
(

ΣK−1
)

=
α

n
trK−1 +

M
∑

j=1

ct
jK

−1cj, (C.12)

and all the quantities involved have to be computed for (C.3) anyway. How-
ever, more experiments have to be done to decide whether the reduced class
of variational distributions can compete with the original factor-analyzed
covariances class.

We now give detailed descriptions of the computations. To bring in some
structure, we first identify some “building blocks” and then show how to
combine them to compute the quantities we need. We describe the approxi-
mative computations using the reduced variational class (with D = αI) since
the exact computations are trivial. When giving running time estimates, we
assume that the CG method described in chapter B requires a number of
iterations independent of the dimension n until a sufficiently small gap be-
tween upper and lower bound of Qmax is achieved. This is surely wrong in
a worst case sense and we don’t know if it holds in the expected case, using
some sensible distribution over the linear system matrices. We expect K not
to be sparse, so we count O(n2) for matrix-vector multiplications involving
the covariance. The building blocks are:

1. Draw L independent sample points ui from N(0, I) and approximate
vi = K−1ui. Alongside the computation of the vi, the approximations
to tr K−1 and log |K| can be accumulated at virtually no extra cost.
The cost of this block is O(Ln2).

2. Approximate wi = K−1Σui, i = 1, . . . , L. Alongside, an estimate (C.9)
of tr ΣK−1 can be accumulated at no extra cost. Note that, given the

2We choose the parameterization α = γ2 to fulfil this constraint automatically.

C.2. EFFICIENT COMPUTATION OR APPROXIMATION 145

di vectors from block 4, the wi can be calculated using no Skilling
approximation at all:

wi =
α

n
vi +

M
∑

j=1

(

ut
icj

)

dj, (C.13)

and tr ΣK−1 can be computed via (C.12). In this case, the cost of the
block is O(LMn). If the di are not used, the cost is O(Ln2).

3. Compute the νi and its gradients. This can either be done exactly or
using numerical quadrature, depending on the loss function g. The cost
is O(n).

4. Approximate di = K−1ci, i = 1, . . . , M . The cost is O(Mn2).

5. Approximate m = K−1µ. The cost is O(n2).

6. Compute trΣ−1, log |Σ| and Σ−1cj using the techniques described
above. If only log |Σ| is required, there is a faster method. The cost
of this block is O(M 2n).

An outer loop iteration of the variational free energy minimization method
can now be described as follows:

1. Compute the covariance matrix K.

2. Prepare for the inner loop by performing block 1.

3. Inner loop. Minimize F w.r.t. P̃ . Every step requires the evaluation of
the gradient ∇P̃F , i.e. blocks 3, 4,5 and full 6.

4. Update of θ. The covariance K and the ui and vi vectors can be
recycled. We need blocks 2 and 5 to compute the gradients ∇θi

F . If
K < L, it pays to precede block 2 by 4 and to use the di vectors.
The computation of the relevant part of F is no big additional burden.
Depending on the optimizer used in the inner loop, we might also be
able to recycle m and the di vectors.

As for the choice of L, i.e. the number of terms in the randomized trace and
log determinant estimates we observed in preliminary experiments that as
long as n is reasonably large, L can be chosen very small without affecting
the relative accuracy very much. However, we have to bear in mind that
these estimates have a certain relative error which can spoil an optimizer

146 APPENDIX C. VARIATIONAL FREE ENERGY AND GRADIENTS

that expects the criterion values to be very accurate. An optimizer fed with
the approximative quantities discussed above should use a stopping criterion
based on gradient size, not on running differences of criterion values. Fur-
thermore, the line search routine has to be designed with some care to be
able to bracket a line minimum based on noisy criterion values (see discus-
sion in section 5.2). The choice of M is a modeling decision, being a classical
trade-off between model accuracy and computational efficiency.

C.2.1 The variance parameter

Note that if the variance parameter C of the kernel K becomes large, compu-
tations based on the covariance matrix K and its inverse can cause numerical
instabilities. We found it necessary to separate C from the other kernel pa-
rameters in θ, i.e. substituting K = CR into (C.1) which results in

F (P̃ , θ) =
1

n

n
∑

i=1

νi +
1

2Cn
µtR−1µ +

1

2Cn
tr
(

ΣR−1
)

+
1

2n
log |R|+ 1

2
log C − 1

2n
log |Σ| − 1

2
.

(C.14)

C.2.2 Computation of loss-related terms

Some comments about the computation of νi and its derivatives are in order.
For special choices of the loss function g, the integral of (4.8) can be solved
analytically. The unnormalized SVC loss g(t, y) = [1 − ty]+ is such a case,
since

νi =

∫

[1− tiy]+N(y|µi, σ
2
i) dy

= −
∫ 0

−∞

uN(u|tiµi − 1, σ2
i)

=

∫ 0

−∞

(−u + (tiµi − 1)− (tiµi − 1))N(u|tiµi − 1, σ2
i) du

=

∫ 0

−∞

(

σ2
i

d

du
N(u|tiµi − 1, σ2

i) + (1− tiµi)N(u|tiµi − 1, σ2
i)

)

du

= σ2
i N(0|tiµi − 1, σ2

i) + (1− tiµi)P (σiU + tiµi − 1 ≤ 0)

=
σi√
2π

exp

(

−1

2

(

1− tiµi

σi

)2
)

+ (1− tiµi)Φ

(

1− tiµi

σ

)

,

(C.15)

C.2. EFFICIENT COMPUTATION OR APPROXIMATION 147

where U ∼ N(0, 1). The derivatives in this case are

∂νi

∂µi

= −tiΦ

(

1− tiµi

σi

)

(C.16)

and

∂νi

∂σ2
i

=
1√
8πσi

exp

(

−1

2

(

1− tiµi

σi

)2
)

. (C.17)

We also have

∂2νi

∂µ2
i

=
1√
2πσi

exp

(

−1

2

(

1− tiµi

σi

)2
)

= 2
∂νi

∂σ2
i

. (C.18)

If (4.8) is not analytically tractable, we may resort to numerical quadra-
ture techniques like Gaussian quadrature (see [PTVF92], p.154). If g is well-
behaved in the sense that we can interchange differentiation and integration,
we have

∂νi

∂µi
=

∂

∂µi

∫

g(ti, yi)N(yi|µi, σ
2
i) dyi

=

∫

g(ti, yi)
yi − µi

σ2
i

N(yi|µi, σ
2
i) dyi

(C.19)

and

∂νi

∂σ2
i

=
∂

∂σ2
i

∫

−g(ti, yi)N(yi|µi, σ
2
i) dyi

=

∫

−g(ti, yi)
(yi − µi)

2

σ3
i

N(yi|µi, σ
2
i) dyi,

(C.20)

which are Gaussian expectations themselves. If g is differentiable and a linear
quadrature scheme is used, the derivatives of the quadrature approximation
are identical to the quadrature approximation of the expectation over the
derivatives of g. This is the case for the Bernoulli loss g(t, y) = log(1 +
exp(−ty)).

C.2.3 Upper bound on loss normalization factor

In the previous subsection we have been concerned with the unnormalized
SVC loss g(t, y) = [1 − ty]+ only. However, we decided to replace this by

148 APPENDIX C. VARIATIONAL FREE ENERGY AND GRADIENTS

its normalized counterpart, corresponding to the noise distribution (2.18),
therefore we have to find an approximation to

∫

log Z(y)N(y|µ, σ2) dy (C.21)

where

Z(y) = exp(−C[1− y]+) + exp(−C[1 + y]+) (C.22)

is the normalization factor. In the following we describe a tight upper bound
to (C.21) which can easily be evaluated. Although we could also employ a
simple quadrature scheme, we feel more comfortable with the bound since it
matches the nondifferentiable form of the function almost perfectly. Figure
C.1 plots log Z(y) against y. The plan is to use different tight upper bounds
for the parts y < −1, y ∈ [−1, 1] and y > 1. Each of the bounds is parame-
terized by a variational parameter, but it turns out that we can solve for the
optimal values of these parameters analytically.

−4 −3 −2 −1 0 1 2 3 4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

y

log Z(y)
Upper bound

Figure C.1: Log normalization factor of SVC noise distribution for C = 1.
Also shown is a member of the family of variational upper bounds we are
using. The parameters are not optimized.

All three bounds are derived using the principle of convex duality, as de-
scribed in subsection 3.1.1. First note that log x is concave and has the con-

C.2. EFFICIENT COMPUTATION OR APPROXIMATION 149

cave dual log λ + 1. For |y| > 1, we therefore have

log Z(y) = log (1 + exp(−C(1 + |y|)))
≤ λ (1 + exp(−C(1 + |y|)))− log λ− 1.

(C.23)

We choose different variational parameters for the two cases, λ1 for y < −1
and λ3 for y > 1. The bound (C.23) is exact for λ = σ(C(1 + |y|)) ∈ [1/2, 1).

For y ∈ [−1, 1] we employ the quadratic upper bound described in subsection
4.3.2. Following along these lines, we arrive at

log Z(y) = log 2 cosh(Cy)− C

≤ λ(ξ)(4C2y2 − ξ2) + log 2 cosh(ξ/2)− C.
(C.24)

Here, λ(ξ) = tanh(ξ/2)/(4ξ). (C.24) is exact for ξ = ±2Cy. The parameter
of this bound will be referred to as ξ2, and λ2 = λ(ξ2).

Denote the value of (C.21) by I. Plugging in the upper bound for log Z(y) and
doing the integral over the Gaussian gives B ≥ I. Note that B still depends
on the variational parameters. We will do the latter integral in three steps,
i.e. B = B1 + B2 + B3. We abbreviate N(y|µ, σ2) by N(y). Also, in slight
abuse of notation, let Φ(y) be the c.d.f. of N(µ, σ2)3.

B1 =

∫ −1

−∞

(λ1 (1 + exp(−C(1− y)))− log λ1 − 1)N(y) dy

= (λ1 − log λ1 − 1)Φ(−1)

+ λ1
1√

2πσ2

∫ −1

−∞

exp

(

− 1

2σ2
(y − µ− Cσ2)2 + C(µ− 1) +

1

2
σ2C2

)

dy

= (λ1 − log λ1 − 1)Φ(−1)

+ λ1 exp

(

C(µ− 1) +
1

2
σ2C2

)

Φ(−1− Cσ2).

(C.25)

B3 is easy now,

B3 =

∫ ∞

1

(λ3 (1 + exp(−C(1 + y)))− log λ3 − 1) N(y) dy

=

∫ −1

−∞

(λ3 (1 + exp(−C(1− y)))− log λ3 − 1)N(y| − µ, σ2) dy

= (λ3 − log λ3 − 1)(1− Φ(1))

+ λ3 exp

(

C(−µ− 1) +
1

2
σ2C2

)

(1− Φ(1 + Cσ2)),

(C.26)

3Everywhere else in this thesis, Φ denotes the c.d.f. of N(0, 1).

150 APPENDIX C. VARIATIONAL FREE ENERGY AND GRADIENTS

using the derivation of B1 with µ → −µ and λ1 → λ3. The calculation of B2

is the most tedious part. We begin by noting the fact

y2N(y) =
∂

∂y

(

−σ2(y + µ)N(y)
)

+ (µ2 + σ2)N(y). (C.27)

Thus,
∫ 1

−1

y2N(y) dy = (µ2 + σ2) (Φ(1)− Φ(−1))

+ σ2(µ− 1)N(−1)− σ2(µ + 1)N(1).

(C.28)

Throwing all together, we have

B2 =

∫ 1

−1

(

λ2

(

4C2y2 − ξ2
2

)

+ log 2 cosh(ξ2/2)− C
)

N(y) dy

=
(

−λ2ξ
2
2 + log 2 cosh(ξ2/2)− C + 4C2λ2(µ

2 + σ2)
)

(Φ(1)− Φ(−1))

+ 4C2λ2σ
2 ((µ− 1)N(−1)− (µ + 1)N(1)) .

(C.29)

It turns out that the best values for the variational parameters of B1, B2

and B3 can be determined analytically, and substituting them back gives
the tightest possible bounds within the family. Writing (C.25) in the short
notation

B1 = (λ1 − log λ1 − 1)Φ(−1) + λ1 exp(−A1) (C.30)

where

A1 = C(1− µ)− 1

2
σ2C2 − log Φ(−1− Cσ2), (C.31)

differentiating w.r.t. λ1, equating to zero and solving for λ1, we arrive at

λ1 =
Φ(−1)

Φ(−1) + exp(−A1)
= σ (A1 + log Φ(−1)) . (C.32)

Plugging this back into (C.30), we have

B1 = Φ(−1) log

(

1 +
exp(−A1)

Φ(−1)

)

. (C.33)

Along the same lines, we arrive at

B3 = (1− Φ(1)) log

(

1 +
exp(−A3)

1− Φ(1)

)

(C.34)

C.2. EFFICIENT COMPUTATION OR APPROXIMATION 151

where

A3 = C(µ + 1)− 1

2
σ2C2 − log(1− Φ(1 + Cσ2)). (C.35)

Furthermore, the derivative of (C.29) w.r.t. ξ2 can be written as

∂B2

∂ξ2

=
(

−λ′2ξ
2
2 + λ′24C

2(µ2 + σ2)
)

A2,1 + λ′24C
2A2,2 (C.36)

where

A2,1 = Φ(1)− Φ(−1),

A2,2 = σ2 ((µ− 1)N(−1)− (µ + 1)N(1)) .
(C.37)

Here we used ∂ log(2 cosh(ξ2/2))/∂ξ2 = 2ξ2λ2. Equating this to zero and
noting that λ′2 < 0 for all ξ2 > 0, we have

ξ2 = 2C
√

µ2 + σ2 + A2,2/A2,1. (C.38)

Plugging this into (C.29) we arrive at

B2 = A2,1 (log 2 cosh(ξ2/2)− C) . (C.39)

Finally, we have to compute the derivatives of B w.r.t. µ and σ2. The deriva-
tion is tedious, and we only present the results here.

∂B1

∂µ
= g1(−1)B1 + λ1e

−A1

(

C + g1(−1− Cσ2)− g1(−1)
)

(C.40)

where g1(x) = ∂ log Φ(x)/∂µ = −N(x)/Φ(x).

∂B1

∂σ2
= h1(−1)B1 + λ1e

−A1

(1

2
C2 + h1(−1− Cσ2)− h1(−1)

+ Cg1(−1− Cσ2)
)

(C.41)

where h1(x) = ∂ log Φ(x)/∂σ2 = g1(x)(x− µ)/2σ2.

∂B3

∂µ
= g3(1)B3 + λ3e

−A3

(

−C + g3(1 + Cσ2)− g3(1)
)

(C.42)

where g3(x) = ∂ log(1− Φ(x))/∂µ = N(x)/(1− Φ(x)).

∂B3

∂σ2
= h3(1)B3 + λ3e

−A1

(

1

2
C2 + h3(1 + Cσ2)− h3(1)

− Cg3(1 + Cσ2)

) (C.43)

152 APPENDIX C. VARIATIONAL FREE ENERGY AND GRADIENTS

where h3(x) = ∂ log(1− Φ(x))/∂σ2 = g3(x)(x− µ)/2σ2.

∂B2

∂µ
= g2(1)B2 + 4C2λ2A2,1

(

2µ + g2(1)

(

σ2 + 1− µ2 − A2,2

A2,1

))

(C.44)

where g2(x) = ∂ log(Φ(x)−Φ(−x))/∂µ = (N(−x)−N(x))/(Φ(x)−Φ(−x)).

∂B2

∂σ2
= h2(1)B2 + 4C2λ2A2,1

(

1 +
A2,2

2σ2A2,1

+ h2(1)

(

1− µ2 − A2,2

A2,1

)) (C.45)

where h2(x) = ∂ log(Φ(x) − Φ(−x))/∂σ2 = ((−x − µ)N(−x) − (x −
µ)N(x))/(2σ2(Φ(x)− Φ(−x))).

The value and derivatives of B1 cannot be computed numerically stable if
(−1− µ)/σ � 0, since in this case both Φ(−1) and exp(−A1) are extremely
small. Noting that log Z(y) > 0 for y < −1 and using (C.25) with λ1 = 1,
we have the trivial bounds 0 ≤ B1 ≤ exp(−A1). Therefore, if exp(−A1) < ε
for a small constant ε, we can safely ignore B1 and its derivatives. The same
problem and solution applies to B3 and exp(−A3). The formulas for B2 and
its gradients are unstable if both (±1−µ)/σ are� 0, or both are� 0. In these
cases, A2,1 and A2,2 are both very close to zero which causes the problem.
Consider the case (±1 − µ)/σ � 0. Noting that log Z(y) ≥ log 2 − C for
y ∈ [−1, 1] and plugging ξ2 = 2C into (C.29), we see that

(log 2− C)A2,1 ≤ B2 ≤
(

log 2 coshC − C +
1

2
C tanhC

(

µ2 + σ2 − 1
)

)

A2,1

+
1

2
C tanh CA2,2,

(C.46)

therefore B2 is itself very close to zero. If the absolute values of these upper
and lower bounds on B2 are both smaller than ε, we can ignore B2 and its
derivatives. The case (±1− µ)/σ � 0 is dealt with in a similar fashion.

Appendix D

The STATSIM system

In this chapter, we briefly outline the purpose, structure and features of the
STATSIM system within which all the programs for the experiments of this
thesis have been implemented. The system is not completely implemented at
present, and large parts of the code are not tested yet, but it will hopefully
grow to realize its design at some distant time . . .

D.1 Purpose and goals

The principal goal of the STATSIM design is to offer an alternative to creep-
ing slow Matlab code on the one hand, and dirty C implementations, user-
controlled by command line arguments and cryptic parameter files1 on the
other hand. Matlab is great for prototyping, but is awfully slow in execution
of iterative code. Even more important, Matlab’s memory management is
poor, and it simply cannot be used for problems that demand by their very
nature a large amount of direct memory space. The algorithms developed in
this thesis are of this kind, and the use of Matlab was out of question from
the beginning. Matlab also lacks the structure of an object-oriented language,
and it is very difficult to implement large systems in a clear way.

On the other hand, an interactive user interface is nice to play with ideas,
to create complicated structures and to run a variety of algorithms on them,
without the need of tediously complicated control files or steady recompila-
tion of the system. Above all, this applies to object-oriented interfaces, and

1We must admit that the present version of the system is controlled by a cryptic
parameter file.

153

154 APPENDIX D. THE STATSIM SYSTEM

therefore we designed such an interface for STATSIM, realized as extension
of the well-known Tcl shell.

Another goal of STATSIM is that one should be able to incorporate foreign
existing code easily into the system. A stub compiler is provided to automat-
ically generate code to bind new classes into the user interface of the system.
The clear object-oriented design of STATSIM makes it very easy to link in
new code without risking interference with other parts of the system.

STATSIM was designed to be highly extensible. As an example, the optimiza-
tion algorithms encoded within the system act on abstract criterion function
classes and can therefore be used to optimize anything from simple bench-
mark criteria to neural networks or criteria which itself incorporate nested
optimization problems2. On the other hand, we paid special attention from
the beginning to retain high efficiency, especially in memory management.
Almost all interfaces to algorithms allow the user optionally to pass buffers
for the required memory. The user itself can decide what level of control he
wants to keep over memory management. The technique of mask objects al-
lows to impose a “virtual” object structure on parts of a simple buffer, thus
reducing the need for copying objects to a minimum. For example, the com-
plete set of weights of a neural network can be stored as a vector, allowing
a generic optimizer to operate on, but at the same time the weights between
two layers can be accessed as matrices, and methods from the matrix library
can be applied as if the buffer chunk would be a real matrix object.

D.1.1 Programs we built on

It would be a waste of time to develop any large system from scratch.
STATSIM is developed in C++ and requires, at least under Sun Solaris
systems, a later version of the EGCS compiler to be built3. Many routines
from the Numerical Recipes distribution [PTVF92] are incorporated. The
excellent reference [Dev86] was extensively used to implement the random
number generation module. The final user interface will be implemented as
extension of the Tcl/Tk shell. The interface code between C++ and Tcl/Tk
is generated using the SWIG interface generator. Both Tcl/Tk and SWIG
are freely available in the public domain.

2Indeed, the algorithm presented in this thesis, together with Skilling approximations
(as suggested above) requires the use of four levels of different nested optimizations.

3EGCS is the current label of the GNU C/C++/Fortran compiler family.

D.2. SYSTEM STRUCTURE 155

D.2 System structure

The coarse structure is a module hierarchy which is flat at present. Each
module contains a number of classes which mostly interact with other classes
in the same module. The basic modules are interface (code managing the
user interface), matrix (matrix library), rando (random number generators for
common distributions), optimize (selection of optimizers), data (management
of large datasets), mlp (multi layer perceptrons), mcmc (Markov Chain Monte
Carlo code), gp (Gaussian process code), svm (Support Vector code, including
the algorithms proposed in this thesis).

D.2.1 Optimization: An example

To give an idea of how STATSIM combines generic code with efficiency we
will have a look at the optimize module. All optimizers operate on criterion
functions of the abstract base class CritFunc. Any CritFunc implementation
maintains a reference to the actual evaluation point of the criterion and must
provide methods to evaluate the criterion and its gradient there. Note that
for many real-world criterion functions, the evaluation of the gradient can
be done very efficiently by reusing quantities that were computed during the
evaluation of the criterion itself, and/or vice versa. Examples are multi layer
perceptrons or the F criterion of the variational algorithm proposed in this
thesis. Therefore, CritFunc also provides methods for criterion and gradient
evaluation given that the last evaluation of one of them took place at the same
evaluation point. The generic optimizers use this facility whenever possible.

The usual optimizers return the optimal point, the criterion value there and
some statistics. Sometimes, results of more complicated structure need to
be returned and/or accumulated during optimization. The class ResultSet
provides a generic interface for such cases. An implementation always stores
a reference to the corresponding CritFunc object. Every time an element
of the result set should be acquired or accumulated, the optimizer notifies
the ResultSet object. The latter one communicates with the CritFunc which
provides services to pass the required information to the ResultSet. Finally,
the user can apply methods of the ResultSet to read the result out. Note
that the ResultSet object is completely decoupled from the optimization
process itself. A nice example of this interplay is the realization of a Markov
Chain Monte Carlo method using the dynamics of a energy criterion. The
CritFunc object maintains the details of the criterion and the current state of
the chain. The ResultSet object accumulates statistics based on samples or
simply stores them. It might also analyze the samples to determine the length

156 APPENDIX D. THE STATSIM SYSTEM

of the burnin phase (in which chain states are discarded) or the right time to
stop. The algorithm itself can be coded independently of all these concerns
and therefore used without modification in a great number of configurations.

D.2.2 Sketch of the user interface

The user interface is object-oriented. The system knows a number of classes.
Most of these classes can be directly instantiated by the user, an instance
is called object. Objects may refer to other objects to create an object hi-
erarchy. Class hierarchies are currently not supported. Each object consists
of methods, attributes and subobjects. Attributes have simple, unstructured
datatypes like string, int or float. A subobject is an object itself (single), a vec-
tor of objects (array) or a list of objects organized as a hashtable (hashmap).
Arrays and hashmaps are potentially heterogenous. An object is either top-
level or the son of another object (i.e. subobject or part of a subobject). An
object explicitely created by the user is called bound (it is bound to a Tcl
variable), as opposed to free objects generated implicitely.

A watchdog system takes care that no object is destroyed if there still exist
other objects referring to it. A bound object can only be destroyed by the
user itself. If the binding between a Tcl variable and its associated objects
gets lost, the object is maintained in a lost list and can be recovered. It is
also possible to keep references to a bound or free object in Tcl variables and
use them like pointers. However, this is not considered as a binding, and the
association is not supervised by the watchdog.

Linking existing code as new class into the user interface requires the specifi-
cation of a quite large amount of C++ code to interface the SWIG generator
which in turn creates code for the communication between Tcl/Tk and the
C++ program. However, most of this work can be automatized using a stub
compiler which assembles the C++ code given a description of the class, its
attributes and methods, the parameters and options of the methods, and so
on. Even though the present prototype version of the stub compiler is quite
rudimentary, it allows to link new classes into the system requiring only very
small efforts from the programmer.

D.3 Status Quo

We have given a sketch of the design of STATSIM and how it hopefully will
look like when completed. The present version includes a large matrix library

D.3. STATUS QUO 157

(heavily borrowing from Numerical Recipes), a small random number li-
brary, a set of optimizers like conjugate gradients, Quasi-Newton, Levenberg-
Marquardt, an implementation of the Skilling techniques discussed in the
appendix above, code for Gaussian process classification using evidence max-
imization or the hybrid Monte Carlo algorithm, an SMO optimizer (see
[Pla98]) for Support Vector classification, a generic class for cross validation
and the code to compute criterion and gradients for the algorithm discussed
in this thesis.

The system is at present controlled by a command file of a very simple struc-
ture. The user interface described above is almost completely implemented,
and a rudimentary version featuring some matrix and vector classes can be
executed. A prototype of the stub compiler was used to create the interface
code for these classes.

The system will be put into the public domain as soon as it will have been
developed so far that it can be handled without frustration by other people
than the author. If the reader is interested in parts of the code, he is invited
to contact us.

