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ABSTRACT. We study the classical combined field integral equation formulations for
time-harmonic acoustic scattering by a sound soft bounded obstacle, namely the in-
direct formulation due to Brakhage-Werner/Leis/Panič, and the direct formulation
associated with the names of Burton and Miller. We obtain lower and upper bounds
on the condition numbers for these formulations, emphasising dependence on the fre-
quency, the geometry of the scatterer, and the coupling parameter. Of independent
interest we also obtain upper and lower bounds on the norms of two oscillatory integral
operators, namely the classical acoustic single- and double-layer potential operators.

1 Introduction

In this paper we consider the classical problem of scattering of a time-harmonic acous-
tic wave by a bounded, sound soft obstacle occupying a compact set Ω ⊂ R

d (d = 2 or
3) with Lipschitz boundary Γ. The wave propagates in the exterior domain Ωe = R

d\Ω
and we suppose that the medium of propagation in Ωe is homogeneous, isotropic and
at rest, and that a time harmonic (e−iωt time dependence) pressure field ui is incident
on Ω. Denoting by c > 0 the speed of sound, we assume that ui is an entire solution
of the Helmholtz (or reduced wave) equation with wave number k = ω/c > 0.

Then the problem we consider is to find the resulting time-harmonic acoustic
pressure field u which satisfies the Helmholtz equation

∆u+ k2u = 0 in Ωe (1.1)

and the sound soft boundary condition

u = 0 on Γ := ∂Ωe, (1.2)
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and is such that the scattered part of the field, us := u− ui, satisfies the Sommerfeld
radiation condition

∂us

∂r
− ikus = o(r−(d−1)/2) (1.3)

as r := |x| → ∞, uniformly in x̂ := x/r. (This latter condition expresses mathemati-
cally that the scattered field us is outgoing at infinity; see e.g. [13]). It is well known
that this problem has exactly one solution under the constraint that u and ∇u be
locally square integrable; see e.g. [24].

The aim of this paper is to understand the behaviour, in the important but difficult
high frequency limit k → ∞, of standard reformulations of this problem in terms of
second kind boundary integral equations. Let Φ(x, y) denote the standard free-space
fundamental solution of the Helmholtz equation, given, in the 2D and 3D cases, by

Φ(x, y) :=






i
4
H

(1)
0 (k|x− y|), d = 2,

eik|x−y|

4π|x− y| , d = 3,

(1.4)

for x, y ∈ R
d, x 6= y, where H

(1)
0 is the Hankel function of the first kind of order zero.

It was proposed independently by Brakhage & Werner [5], Leis [22], and Panič [28],
as a means to obtain an integral equation uniquely solvable at all wave numbers, to
look for a solution to the scattering problem in the form of the combined single- and
double-layer potential

us(x) :=

∫

Γ

∂Φ(x, y)

∂ν(y)
ϕ(y) ds(y) − iη

∫

Γ

Φ(x, y)ϕ(y) ds(y), x ∈ Ωe, (1.5)

for some non-zero value of the coupling parameter η ∈ R. (In this equation ∂/∂ν(y)
is the derivative in the normal direction, the unit normal ν(y) directed into Ωe.) It
follows from standard boundary trace results for single- and double-layer potentials
that us, given by (1.5), satisfies the scattering problem if and only if ϕ satisfies a
second kind boundary integral equation on Γ; see [13] and, for the Lipschitz case,
[26, 10]. This integral equation, in operator form, is

(I +Dk − iηSk) ϕ = g, (1.6)

where I is the identity operator, Sk and Dk are single- and double-layer potential
operators, defined by1

Skϕ(x) := 2

∫

Γ

Φ(x, y) ϕ(y) ds(y), x ∈ Γ, (1.7)

and

Dkϕ(x) := 2

∫

Γ

∂Φ(x, y)

∂ν(y)
ϕ(y) ds(y), x ∈ Γ, (1.8)

and g := −2ui|Γ is twice the Dirichlet data for the scattered field on Γ.

1Our notation follows that of [13]. Some other authors omit the factor 2 in front of the integral
signs in (1.7) and (1.8).
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We will study (1.6) as an operator equation on the space L2(Γ). For every ϕ ∈
L2(Γ), the right hand sides of (1.7) and (1.8) are well-defined almost everywhere on
Γ, with Dkϕ(x) understood as a Cauchy principal value, and both Sk and Dk are
bounded operators on L2(Γ); see e.g. [26, 25, 24]. Choosing η 6= 0 ensures that (1.6)
is uniquely solvable. Precisely,

Ak,η := I +Dk − iηSk (1.9)

is invertible as an operator on L2(Γ). That this is true generally for Lipschitz Γ is
shown in [26, 10]; for a detailed discussion of the operator Ak,η in the case when Γ
is C2 see [13]. We note further that, generalising this result, it is shown in [10] that
Ak,η is invertible as an operator on the Sobolev space Hs(Γ), for 0 ≤ s ≤ 1.

An alternative integral equation formulation of the scattering problem can be
obtained by applications of Green’s theorem. From [14, Theorem 3.12] and [24,
Theorems 7.15, 9.6] it follows that, if u satisfies the scattering problem, then a form
of Green’s representation theorem holds, namely

u(x) = ui(x) −
∫

Γ

Φ(x, y)
∂u

∂ν
(y) ds(y), x ∈ Ωe. (1.10)

The constraint that u and ∇u are locally square integrable in Ωe implies that (see
e.g. [24]) the normal derivative ∂u/∂ν in this equation is well-defined as an element
of the Sobolev space H−1/2(Γ). Two integral equations for ∂u/∂ν can be obtained by
taking the trace and the normal derivative, respectively, of (1.10), namely

Sk
∂u

∂ν
= 2ui (1.11)

and
∂u

∂ν
+D′

k

∂u

∂ν
= 2

∂ui

∂ν
. (1.12)

Here D′
k is the integral operator defined, for ϕ ∈ L2(Γ), by

D′
kϕ(x) := 2

∫

Γ

∂Φ(x, y)

∂ν(x)
ϕ(y) ds(y), x ∈ Γ. (1.13)

It is well known (e.g. [13]) that the integral equations (1.11) and (1.12) fail to
be uniquely solvable if −k2 is an eigenvalue of the Laplacian in Ω for, respectively,
homogeneous Dirichlet and Neumann boundary conditions on Γ, but that a uniquely
solvable integral equation is obtained by taking an appropriate linear combination of
these equations. Clearly, for every η ∈ R it follows from the above equations that

A′
k,η
∂u

∂ν
= f, (1.14)

where
A′

k,η := I +D′
k − iηSk (1.15)

and

f(x) := 2
∂ui

∂ν
(x) − 2iηui(x), x ∈ Γ.
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Observe that (see e.g. [25] for a proof in the general Lipschitz case) D′ is the transpose
of D and that S is its own transpose, so that A′ is the transpose of A in the same
sense, namely that

(φ,Ak,ηψ)Γ = (A′
k,ηφ, ψ)Γ, for φ ∈ L2(Γ), ψ ∈ L2(Γ), (1.16)

where (φ, ψ)Γ :=
∫
Γ
φψds. This identity implies that A′

k,η is also a bounded operator
on L2(Γ) with

‖A′
k,η‖ = ‖Ak,η‖, (1.17)

and that A′
k,η is invertible (as an operator on L2(Γ)) if and only if Ak,η is invertible.

Moreover, if they are both invertible, it holds that

‖A′
k,η

−1‖ = ‖A−1
k,η‖. (1.18)

In particular, Ak,η and also A′
k,η is invertible and (1.18) holds for η 6= 0. In fact (see

[10], [11, §4]), for η 6= 0, A′
k,η is invertible as an operator on the Sobolev space Hs(Γ),

for −1 ≤ s ≤ 0. Thus, noting that f ∈ L2(Γ), (1.14) has exactly one solution in
H−1/2(Γ) and this solution is in L2(Γ).

Our aim in this paper is to study the conditioning of the two standard integral
equation formulations, (1.6) and (1.14), of the exterior sound soft scattering problem.
Specifically we are interested in upper and lower bounds on the (identical) condition
numbers of Ak,η and A′

k,η, given by

cond A′
k,η = cond Ak,η = ‖Ak,η‖ ‖A−1

k,η‖,

and so we are interested in upper and lower bounds on the norms ‖Ak,η‖ = ‖A′
k,η‖

and ‖A−1
k,η‖ = ‖A′−1

k,η‖. Our emphasis is on understanding the dependence on the wave
number k, especially in the limit k → ∞, and on the coupling parameter η, and on
exploring the influence of the shape of Γ.

The questions we address have had some previous attention, starting with the
work of Kress and Spassov [19] and Kress [18] (and see [2, 3, 17, 8, 15, 4, 11]); we
will summarise these previous results in the next section. But we note that, with
the exception of recent bounds in [15, 4, 11], rigorous estimates valid in the limit
as k → ∞ have not been obtained. Moreover, research to date has focussed almost
entirely on the case when Γ is a circle or sphere where Fourier analysis methods
are possible. The estimates we will derive in this paper will address these gaps in
the literature and show that the behaviour of cond Ak,η as a function of k depends
strongly, and in a subtle way, on the geometry of Γ.

The plan of the rest of this paper is as follows. As already mentioned, in §2 we
discuss previous work, in particular what is known about ‖Sk‖, ‖Dk‖, ‖Ak,η‖, and
‖A−1

k,η‖ and their dependence on k and η in the special case of a circle and sphere. We

also recall a recent and rather sharp upper bound on ‖A−1
k,η‖ which applies (in 2D and

3D) whenever Γ is Lipschitz, piecewise smooth, and starlike. In particular, we point
out that this bound implies that commonly recommended choices of η, e.g. [18]

η = max

(
1

2R0
, k

)
,
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where 2R0 is the diameter of Γ, have the desirable property that ‖A−1
k,η‖ ≤ C for

k > 0, where the constant C depends (in an explicit way spelled out in §2) only on
the shape of Γ.

In §3 we obtain what look at first sight like fairly crude upper bounds on ‖Sk‖
and ‖Dk‖ (and hence obtain, by the triangle inequality, upper bounds on ‖Ak,η‖) for
general Lipschitz domains in 2D and 3D. These bounds are complemented in §4 by
a number of lower bounds on ‖Sk‖, ‖Dk‖, and ‖Ak,η‖, mostly for the 2D case. One
message from these lower bounds is that, at least in the 2D case, the simple upper
bounds in §3 turn out to be rather sharp in their dependence on k. Precisely, there
exist Lipschitz boundaries Γ for which the ratio of the upper to the lower bound: (i)
remains bounded as k → ∞ in the case of ‖Sk‖; (ii) increases arbitrarily slowly as
k → ∞ in the case of ‖Dk‖. A second message from these lower bounds is that the
behaviours of ‖Sk‖ and ‖Dk‖ as k → ∞ depend in subtle (and different) ways on the
geometry of Γ.

In §5 we analyse a particular example of a non-starlike domain. While the results
in §2 show that, with an appropriate choice of η, ‖A−1

k,η‖ = O(1) as k → ∞ when Γ

is starlike, in §5 we prove that ‖A−1
k,η‖, with the same choice of η, can grow as fast as

k9/10 as k → ∞ when the domain is non-starlike.
In §6 we summarise the results of sections 2-5 and examine their implications for

the condition number of Ak,η. The main message here is that conditioning in the limit
as k → ∞ depends strongly on the geometry of Γ, and that conditioning can be much
worse than in the case of a circle/sphere. For example, in 2D, and with the usual
choice η = k, our conclusion is that cond Ak,η = cond A′

k,η grows like k1/3 for a circle,

like k1/2 for a starlike polygon, and at least as fast as k7/5 for the trapping domains
studied in §5. We recommend that readers more interested in the results and their
implications for conditioning than in the details of the proofs read §6 before the rest
of the paper.

We finish this introduction by introducing some notation and properties relating
to Bessel functions that we shall use throughout. For m ∈ N0 := N ∪ {0} let Jm and
Ym denote the Bessel functions of order m of the first and second kinds, respectively,
and let H

(1)
m := Jm + iYm denote the Hankel function of the first kind of order m.

(Our notations and definitions follow [1].) Moreover, for t > 0 let

Mm(t) := |H(1)
m (t)|. (1.19)

We will use throughout the fact that Mm(t) is decreasing as t increases [34, §13.74].

An informative integral representation for H
(1)
0 is [27]

H
(1)
0 (t) = −2i

π
eit

∫ ∞

0

e−rt

r1/2(r − 2i)1/2
dr, t > 0, (1.20)

with ℜ(r − 2i)1/2 > 0 for r > 0, where ℜ denotes the real part of a complex number.

This representation implies, since H
(1)
1 = −H(1)

0

′
, that

H
(1)
1 (t) =

2i

π
eit

∫ ∞

0

(i − r)e−rt

r1/2(r − 2i)1/2
dr, t > 0. (1.21)
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From these representations follow the bounds

M0(t) ≤
2

π

∫ ∞

0

e−rt

(2r)1/2
dr =

√
2

πt
, t > 0, (1.22)

and

M1(t) ≤
2

π

∫ ∞

0

(
1

(2r)1/2
+ 1

)
e−rt dr =

√
2

πt
+

2

πt
, t > 0. (1.23)

From (1.21) we deduce moreover that, for t > 0,

e−itH
(1)
1 (t) +

2i

πt
=

2i

π

∫ ∞

0

(
(i − r)

r1/2(r − 2i)1/2
+ 1

)
e−rt dr

=
2i

π

∫ ∞

0

e−rt

r1/2(r − 2i)1/2(r1/2(r − 2i)1/2 + r − i)
dr.

From this identity, noting that ℑ(r1/2(r − 2i)1/2 + r − i) ≤ −1, it follows that

∣∣∣∣e
−itH

(1)
1 (t) +

2i

πt

∣∣∣∣ ≤
2

π

∫ ∞

0

e−rt

(2r)1/2
dr =

√
2

πt
, t > 0. (1.24)

The bounds (1.22), (1.23) and (1.24) are all sharp for large t since (e.g. [1])

H(1)
m (t) =

√
2

πt
exp(i(t− π/4 −mπ/2)) +O(t−3/2), as t→ ∞, (1.25)

and it holds similarly [1] that

H(1)
m

′
(t) =

√
2

πt
exp(i(t+ π/4 −mπ/2)) +O(t−3/2), as t→ ∞. (1.26)

It follows from (1.24) that (1.23) is also sharp for small t.
We will find the notation

Ψm(t) := e−itH(1)
m (t), t > 0, (1.27)

useful. Clearly |Ψm(t)| ≤Mm(t) and it follows from (1.25) and (1.26) that

Ψm(t) =

√
2

πt
exp(−i(π/4 +mπ/2)) +O(t−3/2), Ψ′

m(t) = O(t−3/2), as t→ ∞.

(1.28)
For m = 0 and 1 these asymptotics can alternatvely be deduced by applications of
Watson’s lemma to (1.20) and (1.21).

2 Previous results and the case of a circle or sphere

As noted in the introduction, previous studies of the conditioning and spectral prop-
erties of Ak,η or A′

k,η have focussed on the special case of circular and spherical Γ
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[19, 18, 2, 3, 17, 8, 15, 4]. We will summarise the results of these studies in this sec-
tion, and also recent bounds on ‖A−1

k,η‖ for more general geometries [11]. We note that
some of the above papers (e.g. [2, 3]) also make a similar study for the circle/sphere
of the conditioning of the Burton and Miller integral equation for the acoustic sound-
hard (Neumann) scattering problem [9], or for electromagnetic combined field integral
equations (e.g. [18]). In other related work, Warnick and Chew [33, 32, 31] study the
conditioning of matrix discretisations of the first kind integral equation (1.11) via
an approximate theoretical analysis and numerical experiments, obtaining simple ex-
plicit approximate upper and lower bounds for the condition number as a function of
k and the discretisation step size for several canonical 2D geometries (a circle, crack
and two parallel cracks) [31, Table 2].

In the case of circular and spherical Γ a very complete theory of conditioning
is possible, due to the fact that Ak,η and A′

k,η operate diagonally in the basis of
trigonometric polynomials (d = 2) or spherical harmonics (d = 3). The analysis is
further simplified by the fact that D′

k = Dk and so A′
k,η = Ak,η.

Suppose Γ is the unit circle, with parametrisation γ(t) = (cos t, sin t). With this
parametrisation L2(Γ) is isometrically isomorphic to L2[0, 2π]. We can write any
ϕ ∈ L2[0, 2π] = L2(Γ) as

ϕ(t) =
1

2π

∑

m∈Z

ϕ̂(m) exp(imt), where ϕ̂(m) :=

∫ 2π

0

ϕ(t) exp(−imt) dt,

in which case the L2-inner product and norm are given by (ϕ, ψ) = 1
2π

∑
m∈Z

ϕ̂(m)ψ̂(m)
and ‖ϕ‖2 = 1

2π

∑
m∈Z

|ϕ̂(m)|2 . Then (see [18, equation (4.4)] or [15, Lemma 1]), we
have the Fourier representation:

Ak,ηϕ(t) =
1

2π

∑

m∈Z

λk,η(m)ϕ̂(m) exp(imt) with λk,η(m) = πH
(1)
|m|(k)

[
ikJ ′

|m|(k) + ηJ|m|(k)
]
.

(2.1)
Note that λk,η(m) is the eigenvalue ofAk,η corresponding to the eigenfunction exp(±imt).
As argued in [18], since the eigenfunctions exp(imt), m ∈ Z, are a complete orthonor-
mal system in L2[0, 2π] = L2(Γ), it holds that

‖Ak,η‖ = sup
m∈N0

|λk,η(m)|, ‖A−1
k,η‖ =

(
inf

m∈N0

|λk,η(m)|
)−1

, (2.2)

so that

cond Ak,η =
supm∈N0

|λk,η(m)|
infm∈N0

|λk,η(m)| . (2.3)

The problem Ak,ηϕ = g, with g ∈ L2(Γ) = L2[0, 2π], can be recast in variational
form as ak,η(ϕ, ψ) = (g, ψ), where the sesquilinear form ak,η is given by

ak,η(ϕ, ψ) = (Ak,ηϕ, ψ) =
1

2π

∑

m∈Z

λk,η(m)ϕ̂(m)ψ̂(m). (2.4)

For ϕ ∈ L2(Γ),

ℜ(ak,η(ϕ, ϕ)) =
1

2π

∑

m∈Z

ℜ(λk,η(m))|ϕ̂(m)|2 ≥ αk,η‖ϕ‖2, (2.5)
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where
αk,η = inf

m∈N0

ℜ(λk,η(m)). (2.6)

The recent paper [15] obtains rigorous upper bounds on ‖ak,η‖ = ‖Ak,η‖ =
supm∈N0

|λk,η(m)| and lower bounds on αk,η. The results are worked out explicitly
for the case η = k (previously proposed as optimal for conditioning for the unit circle
when k ≥ 1 in e.g. [19, 2, 3]) and are that, for all sufficiently large k,

‖ak,k‖ = ‖Ak,k‖ ≤ Ck1/3, (2.7)

αk,k ≥ 1, (2.8)

with C a constant independent of k. Since ‖A−1
k,η‖ ≤ α−1

k,η, (2.8) implies that

‖A−1
k,k‖ ≤ 1, (2.9)

for all sufficiently large k. The bound (2.8) is very technical to prove whereas the
result (2.7) is somewhat easier, requiring only upper bounds for certain combinations
of Bessel functions which are readily available in [1].

For the case d = 3, when Γ is a sphere of unit radius, a similar analysis applies,
based on the fact that the integral operators on the sphere are diagonal operators in
the space of spherical harmonics. The corresponding expression for the symbol λk,η

is
λk,η(m) = ikh(1)

m (kj′m(k) + iηjm(k)) , (2.10)

where jm and h
(1)
m are the spherical Bessel and Hankel functions respectively. This

formula can be found, for example, in [18, 17] – see also [8]. The formulae (2.2) and
(2.3) hold also in the 3D case [18], with λk,η given by (2.10). It is shown in [15] that,
for all sufficiently large k, (2.7) holds also in the 3D case and that, for every C ′ > 1,
αk,k ≥ C ′ for all sufficiently large k. This implies that

‖A−1
k,k‖ ≤ 1

C ′ , (2.11)

for all sufficiently large k.
It is important to note that (2.7) was proved previously in the 3D case in the

thesis of Giebermann [17]. Further, the conjecture αk,η ≥ min(1, 2|η|/k) was made
in [17], backed up by numerical experiments and some asymptotic analysis of special
cases. Related results are in [8]. Recently a similar analysis to that in [17, 15], by
Banjai and Sauter [4], has led to a more refined and flexible upper bound on Ak,η

than (2.7) in the 3D case. They show that, for all sufficiently large k,

‖Dk‖ ≤ C, ‖Sk‖ ≤ Ck−2/3, (2.12)

for some constant C independent of k, which implies that

‖Ak,η‖ = ‖I +Dk − iηSk‖ ≤ 1 + ‖Dk‖ + |η| · ‖Sk‖ (2.13)

≤ 1 + C
(
1 + |η|k−2/3

)
. (2.14)

The choice |η| = k yields the same estimate as (2.7), whereas the choice |η| = k2/3

yields a k−independent bound for ‖Ak,η‖. This is employed in [4] to obtain improved
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error estimates for conventional Galerkin boundary element approximations of the
combined potential equation.

We remark that (2.8), which establishes coercivity for the combined potential
operator sesquilinear form ak,k for all sufficiently large k, moreover with a coercivity
constant independent of k, is of more use for the analysis of numerical methods than
the bounds on condition number implied by (2.7), (2.9), and (2.11). Since bounds on
‖ak,η‖ combined with coercivity ensure the stability and convergence of any Galerkin
scheme, this can be used to prove theorems about the convergence of special Galerkin
boundary integral equation methods for high frequency scattering problems. This
was the chief motivation for the analysis in [15].

Using completely different techniques (Rellich-type identities and subtle properties
of radiating solutions of the Helmholtz equation), bounds on ‖A−1

k,η‖ have also been
obtained recently in [11]. These apply for a general class of geometries, namely
whenever Ω is simply-connected, piecewise smooth and starlike. For the rest of this
section we assume, without loss of generality, that the origin lies in Ω (0 ∈ Ω). Then
the class of domains studied in [11] are those satisfying the following assumption
(Assumption 3 in [11]):

Assumption 2.1 Γ is Lipschitz and is C2 in a neighbourhood of almost every x ∈ Γ.
Further

δ− := ess inf
x∈Γ

x · ν(x) > 0.

Note that Assumption 2.1 holds, for example, if Ω is a starlike polyhedron (and
0 ∈ Ω), with δ− the distance from the origin to the nearest side of Γ.

Define

R0 := sup
x∈Γ

|x|, δ+ := ess sup
x∈Γ

x · ν(x), δ∗ := ess sup
x∈Γ

|x− (x · ν(x))ν(x)|.

Then a main result in [11] is the following:

Theorem 2.2 Suppose that Assumption 2.1 holds and η ∈ R \ {0}. Then

‖A−1
k,η‖ = ‖A′

k,η
−1‖ ≤ B (2.15)

where

B :=
1

2
+

[(
δ+
δ−

+
4δ∗2

δ2
−

)[
δ+
δ−

(
k2

η2
+ 1

)
+
d− 2

δ−|η|
+
δ∗2

δ2
−

]
+

(1 + 2kR0)
2

2δ2
−η

2

]1/2

.

To understand this expression for B, suppose first that Γ is a circle or sphere, i.e.
Γ = {x : |x| = R0}. Then δ− = δ+ = R0 and δ∗ = 0 so

B = B0 :=
1

2
+

[
1 +

k2

η2
+
d− 2

R0|η|
+

(1 + 2kR0)
2

2R2
0η

2

]1/2

. (2.16)

In the general case, since δ− ≤ δ+ ≤ R0 and 0 ≤ δ∗ ≤ R0, it holds that B ≥ B0.
Note that the expression B blows up if k/|η| → ∞ or if δ+/δ− → ∞, or if δ−|η| → 0,
uniformly with respect to the values of other variables.
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A number of studies of the circle/sphere case have been concerned with making
a choice of η which is optimal in terms of minimising the condition number (2.3).
In particular, based on low frequency asymptotics and numerical calculations, the
optimal choice of η proposed in [18] is

η = max

(
1

2R0

, k

)
(2.17)

for the 3D case (and see [2, 3] for some further evidence supporting this choice).
Providing evidence that this is in fact a good choice whenever Γ is starlike in the
sense of Assumption 2.1, Theorem 2.2 shows that if η is chosen so that

max(l1R
−1
0 , l2k) ≤ |η| ≤ max(u1R

−1
0 , u2k), (2.18)

for some positive constants l1, l2, u1, and u2, then, for some constant C > 0, ‖A−1
k,η‖ =

‖A′
k,η

−1‖ ≤ C for k > 0. For example, choosing

η = R−1
0 + k, (2.19)

which satisfies (2.18) with l1 = l2 = 1 and u1 = u2 = 2, defining θ := R0/δ−, and
noting that δ+/δ− ≤ θ, δ∗/δ− ≤ θ, we see that Theorem 2.2 implies that

‖A−1
k,η‖ = ‖A′

k,η
−1‖ ≤ B ≤ 1

2
+ θ[2 + (1 + 4θ)(d+ θ)]. (2.20)

Based on computational experience, Bruno and Kunyansky [6, 7] recommend the
choice η = max(6T−1, k/π), where T is the diameter of the obstacle, which satis-
fies (2.18), this formula chosen on the basis of minimising the number of GMRES
iterations in an iterative solver.

3 Upper bounds on ‖Sk‖, ‖Dk‖ and ‖Ak,η‖ in the

general Lipschitz case

In this section we derive upper bounds on ‖Ak,η‖ from (1.9) which are explicit in
their dependence on the wave number k and the coupling parameter η, for both the
2D and the 3D case. To do this, we use the triangle inequality (2.13) together with
upper bounds on the norms ‖Sk‖ and ‖Dk‖. The only geometric restriction on our
scatterer Ω ⊂ R

d for now is our assumption throughout that it is Lipschitz, by which
we mean [24, §3] that Ω is compact and there exist finite families {Wi}, {Mi}, {fi}
and {Ωi} such that

(i) The family {Wi ⊂ R
d} is a finite open cover of the boundary Γ = ∂Ω;

(ii) Every Mi is a positive real number and every fi : R
d−1 → R is a Lipschitz

continuous function with |fi(ξ) − fi(η)| ≤Mi‖ξ − η‖ for all ξ, η ∈ R
d−1;

(iii) Every Ωi ⊂ R
d can be transformed, by a suitable rotation and translation, into

the hypograph {(ξ, z) ∈ R
d−1 × R : z ≤ fi(ξ)} of the corresponding fi;
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(iv) Ω and Ωi have the same intersection with Wi, for each i.

It is clear that the finite family of values {Mi} can be replaced by one global value
M = maxiMi. Moreover, for each x ∈ Γ and all i in our finite index set, let ε(x, i)
be the supremum of all ε > 0 for which the open Euclidean ε-neighbourhood Uε(x)
of x is contained in Wi (with ε(x, i) = 0 if x 6∈ Wi). Now put ε(x) = maxi ε(x, i)
and note that x 7→ ε(x) is a continuous function over the compact set Γ; so it attains
its minimum ε0 := ε(x0) at some point x0 ∈ Γ, which shows that ε0 > 0 since x0 is
covered by (and therefore an interior point of) at least one Wi. As a consequence,
we get that, for each x ∈ Γ, Uε0

(x) is contained in at least one Wi. This shows the
following:

Lemma 3.1 For every Lipschitz domain Ω, there are constants ε > 0 and M > 0
such that, for every x ∈ Γ = ∂Ω, there is a Lipschitz continuous function fx : R

d−1 →
R with Lipschitz constant M and an appropriate rotation and translation Ωx of the
hypograph {(ξ, z) ∈ R

d−1 × R : z ≤ fx(ξ)} of fx with Ω ∩ Uε(x) = Ωx ∩ Uε(x).

Throughout the paper we will say that Γ = ∂Ω is Lipschitz if Ω is a Lipschitz
domain.

Lemma 3.2 (cf. [30]) Let Ω ⊂ R
d be a Lipschitz domain. Then the following holds.

a) If d = 2 then

sup
x∈Γ

∫

Γ

1√
|x− y|

ds(y) < ∞.

b) If d = 3 then

sup
x∈Γ

∫

Γ

1

|x− y| ds(y) < ∞.

Proof. This follows easily from Lemma 3.1 by splitting the integrals over Γ into one
weakly singular integral over Γ ∩ Uε(x) and one integral over the (bounded) rest of
Γ.

Our main strategy in computing bounds on ‖Sk‖ and ‖Dk‖ is the following. Let

Tϕ(x) =

∫

Γ

κ(x, y)ϕ(y) ds(y), x ∈ Γ, (3.1)

denote an integral operator with a suitable kernel function κ(·, ·) on Γ × Γ. To show
that T is bounded and to estimate its operator norm as a mapping L2(Γ) → L2(Γ),
we show that it is bounded both as a mapping L1(Γ) → L1(Γ) and L∞(Γ) → L∞(Γ)
and use the Riesz-Thorin interpolation theorem (e.g. [23, Theorem 2.b.14]), which
says that

‖T‖ := ‖T‖L2→L2 ≤ ‖T‖1/2

L1→L1 · ‖T‖1/2
L∞→L∞ (3.2)

holds, where the two norms on the right are explicitly given by (e.g. [21])

‖T‖L1→L1 = ess sup
y∈Γ

∫

Γ

|κ(x, y)| ds(x) , ‖T‖L∞→L∞ = ess sup
x∈Γ

∫

Γ

|κ(x, y)| ds(y).
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In particular, if |κ(x, y)| = |κ(y, x)| for all x, y ∈ Γ, then ‖T‖L1→L1 and ‖T‖L∞→L∞

have the same value, and (3.2) simplifies to

‖T‖ ≤ ‖T‖L1→L1 = ‖T‖L∞→L∞. (3.3)

More generally, if κ̃(x, y) = κ̃(y, x) and |κ(x, y)| ≤ κ̃(x, y), for all x, y ∈ Γ, then it
follows from (3.2) that

‖T‖ ≤ ess sup
x∈Γ

∫

Γ

κ̃(x, y) ds(y). (3.4)

From (1.4) and (1.7) the kernel of the single-layer potential operator Sk in 2D is

κ(x, y) = i
2
H

(1)
0 (k|x − y|). Clearly, κ(x, y) = κ(y, x) for all x, y ∈ Γ, and therefore

the bound (3.3) applies. From (3.3) and (1.22) we see that

‖Sk‖ ≤ ess sup
x∈Γ

∫

Γ

∣∣∣∣
i

2
H

(1)
0 (k |x− y|)

∣∣∣∣ ds(y) ≤ C√
k

(3.5)

where

C :=

√
1

2π
ess sup

x∈Γ

∫

Γ

1√
|x− y|

ds(y) < ∞ (3.6)

by Lemma 3.2.
In 3D, the single-layer potential Sk is an integral operator (3.1) with kernel

κ(x, y) =
eik|x−y|

2π|x− y| , x, y ∈ Γ.

As in 2D, the kernel function κ(·, ·) is symmetric, and therefore the norm bound (3.3)
applies. Consequently,

‖Sk‖ ≤ ess sup
x∈Γ

∫

Γ

∣∣∣∣
eik|x−y|

2π|x− y|

∣∣∣∣ ds(y) =
1

2π
ess sup

x∈Γ

∫

Γ

ds(y)

|x− y| <∞, (3.7)

by Lemma 3.2.
We see that we have shown, in (3.5) and (3.7), the following theorem:

Theorem 3.3 If Γ is Lipschitz then there exists a positive constant c, dependent only
on Γ, such that

‖Sk‖ ≤ ck(d−3)/2

for k > 0.

The double-layer potential Dk in 2D is an integral operator (3.1) with kernel

2
∂Φ(x, y)

∂ν(y)
=

i

2
kH

(1)
1 (k|x− y|) x− y

|x− y| · ν(y) , x, y ∈ Γ. (3.8)

Noting that, for t > 0, |eit − 1| = 2| sin(t/2)| ≤ min(t, 2) ≤
√

2t and using (1.24) we
see that, for t > 0,

∣∣∣∣H
(1)
1 (t) +

2i

πt

∣∣∣∣ ≤
∣∣∣∣H

(1)
1 (t) +

2ieit

πt

∣∣∣∣+
2

πt
|eit − 1| ≤

(√
2

π
+

2
√

2

π

)
1√
t
. (3.9)
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Let D0 denote the double-layer potential operator for the Laplace case, whose
kernel is given by taking the limit k → 0 in (3.8), i.e. by replacing ikH

(1)
1 (k|x− y) by

2/(π|x− y|) in (3.8). Since D0 is independent of k and a bounded operator whenever
Ω is Lipschitz (e.g. [25]), and since ‖Dk‖ ≤ ‖Dk −D0‖ + ‖D0‖, it remains to bound
‖Dk −D0‖. The difference Dk −D0 is an integral operator (3.1) with kernel

κ(x, y) =

(
i

2
k H

(1)
1 (k|x− y|) − 1

π|x− y|

)
x− y

|x− y| · ν(y), x, y ∈ Γ.

Using (3.9) we see that |κ(x, y)| ≤ κ̃(x, y), where

κ̃(x, y) :=

(√
2

π
+

2
√

2

π

)
k1/2

2|x− y|1/2
.

Hence and from (3.4) it follows that ‖Dk −D0‖ ≤ C1k
1/2, with

C1 :=
1

2

(√
2

π
+

2
√

2

π

)
ess sup

x∈Γ

∫

Γ

1√
|x− y|

ds(y) < ∞

by Lemma 3.2. Thus

‖Dk‖ ≤ ‖Dk −D0‖ + ‖D0‖ ≤ C1

√
k + C2 (3.10)

with C2 := ‖D0‖.
In 3D the double-layer potential Dk is an integral operator (3.1) with kernel

2
∂Φ(x, y)

∂ν(y)
=

eik|x−y|

2π|x− y|3 (ik|x− y| − 1) (x− y) · ν(y), x, y ∈ Γ.

As in 2D, the operator D0 is bounded on L2(Γ) whenever Ω is Lipschitz (e.g. [25]). So
it again remains to bound ‖Dk −D0‖. The difference Dk −D0 is an integral operator
(3.1) with kernel

κ(x, y) =
1

2π|x− y|3
(
eik|x−y|(ik|x− y| − 1) + 1

)
(x− y) · ν(y), x, y ∈ Γ.

To bound Dk −D0 the following auxiliary result is useful.

Lemma 3.4 For t ≥ 0, it holds that |eit(it− 1) + 1| ≤ 2t.

Proof. If t ≥ 2 then |eit(it− 1) + 1| ≤ t+ 2 ≤ 2t. If 0 < t < 2 put f(t) = eit(it − 1)
and note that

|eit(it− 1) + 1| = |f(t) − f(0)| =

∣∣∣∣
∫ t

0

f ′(s) ds

∣∣∣∣ ≤
∫ t

0

| − seis| ds =
t2

2
≤ t.

This lemma implies that |κ(x, y)| ≤ k(π|x− y|)−1, for x, y ∈ Γ, so that, by (3.4),

‖Dk −D0‖ ≤ k

π
ess sup

x∈Γ

∫

Γ

ds(y)

|x− y| <∞,
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by Lemma 3.2, and consequently

‖Dk‖ ≤ ‖Dk −D0‖ + ‖D0‖ ≤ C3 k + C4, (3.11)

where

C3 :=
1

π
ess sup

x∈Γ

∫

Γ

1

|x− y| ds(y) and C4 := ‖D0‖.

We see that we have shown, in (3.10) and (3.11), the following theorem:

Theorem 3.5 If Γ is Lipschitz then there exist positive constants c1 and c2, depen-
dent only on Γ, such that

‖Dk‖ ≤ c1k
(d−1)/2 + c2

for k > 0.

Combining the bounds (3.5), (3.7), (3.10), (3.11), with (2.13), we see that we have
shown the following result for the general Lipschitz case.

Theorem 3.6 If Γ is Lipschitz then there exist positive constants c1 and c2, depen-
dent only on Γ, such that

‖Ak,η‖ ≤ 1 + c1k
(d−1)/2 + c2|η|k(d−3)/2, (3.12)

for all k > 0.

We note that in 2D (d = 2), for the case Γ simply-connected and smooth, this bound
was shown previously, for all sufficiently large k, in [15].

4 Lower bounds

In this section, complementing the results of the previous section, we derive lower
bounds on ‖Sk‖, ‖Dk‖, and ‖Ak,η‖. We will focus mainly on the 2D case and our
technique throughout will be one of choosing ϕk ∈ L2(Γ) (whose value depends on
k) with the aim of maximising one of ‖Skϕk‖, ‖Dkϕk‖, or ‖Ak,ηϕk‖. Our first result
is something of an exception in that we obtain lower bounds on both ‖Ak,η‖ and its
inverse, in both the 2D and 3D cases. This simple lemma follows from the fact that
Sk and Dk are smoothing operators on smooth parts of Γ.

Lemma 4.1 In both 2D and 3D, if a part of Γ is C1, then ‖Ak,η‖ ≥ 1, ‖A−1
k,η‖ ≥ 1.

Proof. Choose x∗ ∈ Γ such that Γ is C1 in a neighbourhood of x∗. Let t∗ be a unit
tangent vector at x∗. For ǫ > 0 let Γǫ := {x ∈ Γ : |x− x∗| < ǫ} and let χǫ denote the
characteristic function of Γǫ, i.e. χǫ(x) := 1, x ∈ Γǫ, := 0 for x ∈ Γ\Γǫ. For ǫ > 0 and
n ∈ N let φn,ǫ(x) := exp(inx · t∗)χǫ(x), x ∈ Γ. Then χǫ ∈ L2(Γ) so that φn,ǫ ∈ L2(Γ)
for all n ∈ N. Further, if ǫ is small enough it is easy to see by the Riemann-Lebesgue
lemma that φn,ǫ ⇀ 0 as n → ∞, where ⇀ denotes weak convergence in L2(Γ).
Moreoever, for ǫ sufficiently small, the mappings φ 7→ Skχǫφ and φ 7→ Dkχǫφ, from
L2(Γ) to L2(Γ), are compact operators, the first mapping since the kernel of S is
weakly singular, the second due to a result of Fabes et al. [16] (that the double-layer
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potential operator is a compact operator on the boundary of bounded C1 domains).
Since an operator B is a compact operator on a Hilbert space if and only if weakly
convergent sequences are mapped to strongly convergent sequences, it follows, if ǫ is
sufficiently small, that ‖Skφn,ǫ‖ = ‖Skχǫφn,ǫ‖ → 0 and ‖Dkφn,ǫ‖ = ‖Dkχǫφn,ǫ‖ → 0 as
n → ∞, so that ‖Ak,ηφn,ǫ‖ → ‖φn,ǫ‖. Since ‖A−1

k,η‖−1 ≤ ‖Ak,ηφn,ǫ‖/‖φn,ǫ‖ ≤ ‖Ak,η‖,
the result follows.

In the next two theorems we construct lower bounds which show that the up-
per bounds (3.5) and (3.10) are sharp in their dependence on k, in that there exist
Lipschitz domains for which these bounds are achieved or arbitrarily closely achieved.

Theorem 4.2 In the 2D case, if Γ contains a straight line section of length a, then

‖Sk‖ ≥
√

a

πk
+O(k−1)

as k → ∞ and

‖Ak,η‖ ≥ |η|
√

a

πk
− 1 +O(|η|k−1)

as k → ∞, uniformly in η.

Proof. Let Γ̃ be a straight line section of Γ of length a. Without loss of generality we
can choose the axes Ox1x2 of the Cartesian coordinate system so that Γ̃ = {(x1, 0) :
0 ≤ x1 ≤ a}. Define φ ∈ L2(Γ) by φ(x) := exp(ikx1), x1 ∈ Γ̃, φ(x) := 0, otherwise.
Then, defining ψ := Skφ and ψ̃(u) := ψ((u/k, 0)), 0 ≤ u ≤ κ := ka, it holds that

‖ψ‖2 ≥
∫ a

0

|ψ((s, 0))|2 ds = k−1

∫ κ

0

|ψ̃(u)|2 du.

Further, for 0 ≤ u ≤ κ,

|ψ̃(u)| =
1

2

∣∣∣∣
∫ a

0

H
(1)
0 (k|u/k − t|)eikt dt

∣∣∣∣

=
1

2k

∣∣∣∣

∫ κ

0

H
(1)
0 (|u− v|)eiv dv

∣∣∣∣

=
1

2k
|χ1(u) + χ2(u)| ,

where, for 0 ≤ u ≤ κ,

χ1(u) :=

∫ u

0

H
(1)
0 (u− v)eiv dv, χ2(u) :=

∫ κ

u

H
(1)
0 (v − u)eiv dv.

Recalling that Ψ0 is defined by (1.27), we have that

|χ1(u)| =

∣∣∣∣

∫ u

0

Ψ0(u− v) dv

∣∣∣∣ =
∣∣∣∣

∫ u

0

Ψ0(v) dv

∣∣∣∣

and

|χ2(u)| =

∣∣∣∣
∫ κ

u

Ψ0(v − u)e2iv dv

∣∣∣∣ =
∣∣∣∣
∫ κ−u

0

Ψ0(v)e
2iv dv

∣∣∣∣ .
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Using (1.28), and integrating by parts in the case of χ2, we see that, as k → ∞,

|χ1(u)| = 2

√
2u

π
+O(1), |χ2(u)| = O(1),

uniformly for 0 ≤ u ≤ κ. Thus, uniformly for 0 ≤ u ≤ κ,

ψ̃(u) = k−1

√
2u

π
+O(k−1)

so that

‖ψ‖ ≥
{∫ a

0

|ψ((s, 0))|2 ds
}1/2

= k−1/2

{∫ κ

0

|ψ̃(u)|2 du
}1/2

=
a√
πk

+O(k−1).

It follows that

‖Sk‖ ≥ ‖ψ‖
‖φ‖ =

√
a

πk
+O(k−1).

To obtain the lower bound on Ak,η, defining ψ′ := Ak,ηφ, we see that ψ′(x) =
φ(x) − iηψ(x), for x ∈ Γ̃. Thus

‖Ak,η‖ ≥ ‖ψ′‖
‖φ‖ ≥ {

∫ a

0
|ψ′((s, 0))|2 ds}1/2

‖φ‖

≥ |η|{
∫ a

0
|ψ((s, 0))|2 ds}1/2

‖φ‖ − 1

≥ |η|
√

a

πk
− 1 +O(|η|k−1).

In the case that Γ is a straight line of length a, the lower bound on ‖Sk‖ in the
above theorem is particularly close to the upper bound (3.5)-(3.6) which predicts that

‖Sk‖ ≤
√

1

2πk
sup

0≤s≤a

∫ a

0

1√
|s− t|

dt =

√
2

πk

∫ a/2

0

dt√
t

= 2

√
a

πk
.

Theorem 4.3 In the 2D case, if c : (0,∞) → (0,∞) is such that c(k) = o(k1/2) as
k → ∞, then there exists a Lipschitz Γ such that ‖Dk‖ ≥ c(k) for all sufficiently large
k.

Proof. It is convenient to first construct a function c̃ : (0,∞) → (0,∞) which is
continuously differentiable, satisfies c̃(k) ≥ c(k) for all sufficiently large k, and is such
that g(k) := c̃(k)k−1/2 is strictly decreasing on (0,∞), with g(k) → ∞ as k → 0 and
g(k) → 0, g′(k) → 0 as k → ∞, so that g is a diffeomorphism on (0,∞), whose inverse
we will denote by g−1. Then the proof is completed by showing that ‖Dk‖ ≥ c̃(k) for
all sufficiently large k.

To achieve this construction, we first define g1 : [0,∞) → (0,∞) by g1(k) := 1,
0 < k ≤ 1 and

g1(k) := min

(
1 , sup

s≥k

c(s)

s1/2

)
, k > 1.
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We see that g1 is decreasing and so measurable and that g1(k) ≥ c(k)/k1/2 for all
sufficiently large k. Next define g2 : [0,∞) → (0,∞) by g2(k) := 1, 0 < k ≤ 1

and g2(k) :=
∫ k

k−1
g1(s) ds, k > 1. Clearly g2 is decreasing and continuous and

g2(k) ≥ g1(k), k > 0. Now, define an := min{k ≥ 0 : g2(k) ≤ 1/n}, n ∈ N, so
that 0 = a1 < a2 < · · · , and define g3 : [0,∞) → (0,∞) by the requirement that
g3(an) = 2/n, n ∈ N, and that g3 is linear on [an, an+1], for each n. Then g3 is strictly
decreasing, g3(k) → 0 as k → ∞, and, for n ∈ N and k ∈ [an, an+1],

g3(k) > g3(an+1) = 2(n+ 1)−1 ≥ n−1 = g2(an) ≥ g2(k) ≥ g1(k).

Next, defining g4 : (0,∞) → (0,∞) by

g4(k) :=

{
g3(1)k−1, 0 < k < 1,
g3(k), k > 1,

we see that g4 is strictly decreasing and continuous. Finally, defining g : (0,∞) →
(0,∞) by

g(k) :=
2

k

∫ k

k/2

g4(s) ds, k > 0,

we see that

g(k) ≥ g4(k) ≥ g1(k) ≥ c(k)

k1/2

for all sufficiently large k, so that g(k) → 0 as k → 0 and c̃(k) := k1/2g(k) ≥ c(k).
Further, g is continuously differentiable with

g′(k) = − 2

k2

∫ k

k/2

g4(s) ds +
2

k
g4(k) − 1

k
g4(

k

2
)

≤ − 2

k2

k

2
g4(k) +

2

k
g4(k) − 1

k
g4(

k

2
)

=
1

k

(
g4(k) − g4

(
k

2

))
< 0,

and, for k > 2, g(k) ≤ g4(k/2) = g3(k/2) → 0 as k → ∞, so that also g′(k) → 0 as
k → ∞.

To proceed with the remainder of the proof, define f̃ ∈ C1(R) by

f̃(s) :=

{
0, s ≤ 0,

[g−1(
√
s)]

−1/2
s, s > 0.

Note that, with this definition, f̃(s) is strictly increasing as s increases for s > 0.
Further, since, as s → 0+, g−1(s) → ∞ and g−1′(s) = [g′(g−1(s))]−1 → 0, it follows
that f̃(s) = o(s) and f̃ ′(s) → 0 as s → 0+ (so that f̃ ∈ C1(R)). Next choose
f ∈ C0,1(R) so that 0 ≤ f(s) ≤ f̃(s), for s ∈ R, and so that, for some a > 0 and
L > 4

√
2π, f(s) = 0 for s ≥ a and |f ′(s)| = L for all but a finite set of values of s

in (0, a). For example, this can be achieved by choosing a so that 0 ≤ f ′(s) ≤ L on
(0, a), and then constructing the graph of f on the interval (0, a) by drawing a line
with gradient −L up from the point (a, 0) until it meets the graph of f̃ , then drawing
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a line of gradient L from this intersection point to the x-axis at some point (0, a1),
then repeating this construction ad infinitem. Let Γ̃ := {(s, f(s)) : −a ≤ s ≤ a}, and
choose Γ so that it is Lipschitz and contains Γ̃ (e.g. form Γ by joining the two ends
of Γ̃ at (±a, 0) by a smooth arc, tangential to the x-axis at (±a, 0)).

Having constructed Γ in this way, choose ǫ so that 0 < ǫ < a and define φ ∈ L2(Γ)
by φ(x) = exp(−ikx1), if x ∈ Γ̃ and 0 ≤ x1 ≤ ǫ, = 0, otherwise, and let ψ = Dkφ.
Then for x ∈ Γ̃ with −a ≤ x1 ≤ −a/2 it follows from (3.8) that

|ψ(x)| =
k

2

∣∣∣∣∣

∫ ǫ

0

H
(1)
1 (k

√
(x1 − t)2 + (f(t))2 )

f(t) + (x1 − t)f ′(t)√
(x1 − t)2 + (f(t))2

e−ikt dt

∣∣∣∣∣ .

Now, choosing ǫ dependent on k so that ǫ→ 0 as k → ∞, we see using (1.25) that

|ψ(x)| =
Lk

2

√
2

πk
(−x1)

−1/2

∣∣∣∣

∫ ǫ

0

exp(ik(
√

(x1 − t)2 + (f(t))2 + (x1 − t))) dt

∣∣∣∣

+O(ǫk−1/2) + o(ǫ2k1/2)

as k → ∞, uniformly for −a ≤ x1 ≤ −a/2. Now, for −a ≤ x1 ≤ −a/2, 0 ≤ t ≤ ǫ,

0 ≤
√

(x1 − t)2 + (f(t))2 + (x1 − t)

=
(f(t))2

√
(x1 − t)2 + (f(t))2 − (x1 − t)

≤ (f(t))2

2(t− x1)
≤ (f̃(ǫ))2

a
.

Choosing ǫ so that ǫ = (g(k))2 for all sufficiently large k, we see that k(f̃(ǫ))2 =
ǫ2 → 0 as k → ∞. Thus, for every 0 < θ < 1 it holds for −a ≤ x1 ≤ a/2 and all
sufficiently large k that

|ψ(x)| ≥ Lθk1/2ǫ√
2π(−x1)

≥ Lθ√
2πa

k1/2(g(k))2

so that

‖ψ‖2 ≥ Lθ√
2πa

k1/2(g(k))2

√
a

2
=

Lθ

2
√
π
k1/2(g(k))2.

Since ‖φ‖2 = (1 + L2)1/4ǫ1/2, it follows that, for all sufficiently large k,

‖Dk‖ ≥ ‖ψ‖2

‖φ‖2

≥ Lθk1/2

2
√
π(1 + L2)1/4

g(k) ≥ L1/2θc̃(k)

2
√
π21/4

.

Choosing θ = 2
√
π21/4/L1/2 which is < 1 since L > 4

√
2π, we see that we have shown

that ‖Dk‖ ≥ c̃(k).
The construction in the proof of Theorem 4.2 can be adapted to obtain the lower

bounds on ‖Sk‖ and ‖Ak,η‖ in the next theorem.

Theorem 4.4 Suppose (in the 2D case) that Γ is locally C2 in a neighbourhood of
some point x∗ on the boundary. Then, for some constants C > 0 and k0 > 0 it holds
for all k ≥ k0 and all η ∈ R that

‖Sk‖ ≥ Ck−2/3 and ‖Ak,η‖ ≥ C|η|k−2/3.

18



More generally, adopt a local coordinate system OX1X2 with origin at x∗ and the
X1 axis in the tangential direction at x∗, so that, near x∗, Γ coincides with the curve
{x∗ + t∗X1 + n∗f(X1) : X1 ∈ R}, for some f ∈ C2(R) with f(0) = f ′(0) = 0; here t∗

and n∗ are the unit tangent and normal vectors at x∗. Then if, for some N ∈ N, Γ is
locally CN+1 near x∗, i.e. f ∈ CN+1(R), and if also f ′(0) = f (2)(0) = · · · = f (N)(0) =
0, then there exist C > 0 and k0 > 0 such that

‖Sk‖ ≥ Ck−(N+1)/(2N+1) and ‖Ak,η‖ ≥ C|η|k−(N+1)/(2N+1)

for all k ≥ k0 and all η ∈ R.

Proof. We adopt the local coordinate system OX1X2, choose β ∈ (0, 1), set α = 1−β2,
and suppose that f ∈ CN+1(R) with f ′(0) = · · · = f (N)(0) = 0. Then, for all ǫ
sufficiently small, it holds that Γ± ⊂ Γ, where Γ− := {x∗ + t∗X1 + n∗f(X1) : −ǫ <
X1 < 0} and Γ+ := {x∗ + t∗X1 + n∗f(X1) : αǫ < X1 < ǫ}. Let φ(y) := exp(iky · t∗),
for y ∈ Γ−, := 0, otherwise. Then, for all ǫ sufficiently small, it holds for x =
x∗ + t∗s+ n∗f(s) ∈ Γ+ that

|Skφ(x)| =
1

2

∣∣∣∣
∫ 0

−ǫ

H
(1)
0

(
k
√

(s− t)2 + (f(s) − f(t))2
)

eiktW (t) dt

∣∣∣∣ ,

where W (t) :=
√

1 + (f ′(t))2. Defining F (z) = 1
2
exp(iπ/4)Ψ0(z), where Ψ0 is as

defined at the end of §1, we have

|Skφ(x)| =

∣∣∣∣

∫ 0

−ǫ

exp(i[kg(s, t) − π/4])F (k(s− t)w(s, t))W (t) dt

∣∣∣∣ ,

where

w(s, t) :=

√

1 +
(f(s) − f(t))2

(s− t)2

and g(s, t) := (s− t)(w(s, t) − 1). Now, by Taylor’s theorem, for |r| ≤ ǫ,

f ′(r) =
rN

N !
f (N+1)(ξ),

for some ξ between 0 and r, so that, for −ǫ ≤ t ≤ 0, 0 ≤ s ≤ ǫ,

|f ′(r)| =

∣∣∣∣

∫ s

t

f ′(r) dr

∣∣∣∣ ≤ |s− t|ǫNMN,ǫ,

where

MN,ǫ := max
−ǫ≤ξ≤ǫ

|f (N+1)(ξ)|
N !

.

Thus

0 ≤ (f(s) − f(t))2

(s− t)2
≤ ǫ2NM2

N,ǫ,

and so

0 ≤ g(s, t) ≤ 2ǫ
[√

1 + ǫ2NM2
N,ǫ − 1

]
≤ ǫ2N+1M2

N,ǫ.
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Now choose θ > 0 and

ǫ =

(
π

2k(MN,0 + θ/N !)2

)1/(2N+1)

.

Then, for all k sufficiently large, it holds that

MN,ǫ ≤MN,0 + θ/N !. (4.1)

so that
0 ≤ kg(s, t) ≤ kǫ2N+1(MN,ǫ)

2 ≤ π

2
.

Thus, and using (1.28), we see that, uniformly for x ∈ Γ+ (i.e. for αǫ ≤ s ≤ ǫ),

|Skφ(x)| =

√
1

2π

∣∣∣∣

∫ 0

−ǫ

exp(i[kg(s, t) − π/4])

(k(s− t))1/2
W (t) dt

∣∣∣∣+O(ǫ(kǫ)−3/2)

≥
√

1

4πkǫ

∫ 0

−ǫ

cos(kg(s, t) − π/4) dt+O(ǫ−1/2k−3/2)

≥
√

1

4πkǫ
ǫ cos(π/4) +O(ǫ−1/2k−3/2)

=

√
ǫ

8πk

(
1 +O(ǫ−1k−1)

)
.

Thus, as k → ∞,

‖Skφ‖2 ≥
∫

Γ+

|Sφ|2 ds ≥ (1 − α)ǫ2

8πk
(1 + o(1)) (4.2)

while

‖φ‖2 =

∫

Γ−

ds ∼ ǫ. (4.3)

So, as k → ∞,

‖Sk‖ ≥ ‖Sφ‖
‖φ‖ ≥

√
(1 − α)ǫ

8πk
(1 + o(1))

≥ β CN(θ) k−(N+1)/(2N+1) (1 + o(1)),

where

CN(θ) =

√
1

8π

(√
π

2

N !

|f (N+1)(0)| + θ

)1/(2N+1)

.

Since θ > 0 and β ∈ (0, 1) are arbitrary, it follows in the case f (N+1)(0) = 0 that
‖Sk‖k(N+1)/(2N+1) → ∞ as k → ∞ while, in the case that f (N+1)(0) 6= 0,

‖Sk‖ ≥ CN(0) k−(N+1)/(2N+1) (1 + o(1)). (4.4)

The above gives the lower bound on ‖Sk‖. To obtain the lower bound on ‖Ak,η‖
we observe that, for all ǫ sufficiently small, it holds for x = x∗ + t∗s + n∗f(s) ∈ Γ+

that

|Dkφ(x)| ≤ k

2

∫ 0

−ǫ

|H(1)
1 (k(s− t)w(s, t)) |

(s− t)w(s, t)
|v(s, t)|W (t) dt,
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where

|v(s, t)| = |f(s) − f(t) − (s− t)f ′(t)| =
(s− t)2

2
|f ′′(ξ)|,

for some ξ between s and t, so that |ξ| ≤ ǫ. Applying Taylor’s theorem again, we see
that

|v(s− t)| ≤ (s− t)2

2
NMN,ǫǫ

N−1.

Noting also the bound (1.23), we see that

|Dkφ(x)| ≤ kNMN,ǫǫ
N−1

2

∫ 0

−ǫ

(
1

πk
+

√
s− t

2πk

)

W (t) dt ≤ NMN,ǫǫ
N

2π

(
1 +

√
ǫkπ
)

(1 + o(1)),

as k → ∞, uniformly for x ∈ Γ+. Thus, where ‖·‖+ =
{∫

Γ+
| · |2ds

}1/2

is a shorthand

for the L2 norm on Γ+,

‖Dkφ‖+ ≤ βNMN,ǫǫ
N+1/2

2π

(
1 +

√
ǫkπ
)

(1 + o(1)).

From this inequality, (4.2), and (4.3), and recalling that φ = 0 on Γ+, it follows that

‖Ak,η‖ ≥ ‖Ak,ηφ‖
‖φ‖

≥ ‖Dkφ− iηSkφ‖+

‖φ‖
≥ |η|β CN(θ) k−(N+1)/(2N+1) (1 + o(1))

−βNMN,ǫǫ
N

2π

(
1 +

√
ǫkπ
)

(1 + o(1))

≥ |η|β CN(θ) k−(N+1)/(2N+1) (1 + o(1)) − βN

2
√

2
(1 + o(1)),

where to get this last inequality we use (4.1) and the definition of ǫ. Recalling that
θ > 0 and β ∈ (0, 1) are arbitrary, we see that:

(i) if f (N+1)(0) = 0 and |η| & k(N+1)/(2N+1), then ‖Ak,η‖ → ∞ and ‖Ak,η‖k(N+1)/(2N+1)/|η| →
∞ as k → ∞;

(ii) if f (N+1)(0) 6= 0 and |η|k−(N+1)/(2N+1) → ∞, then

‖Ak,η‖ ≥ |η|CN(0) k−(N+1)/(2N+1) (1 + o(1)), (4.5)

as k → ∞;
(iii) if f (N+1)(0) 6= 0 and |η| ≈ k(N+1)/(2N+1), then

‖Ak,η‖ ≥ |η|CN(0) k−(N+1)/(2N+1) − N

2
√

2
+ o(1), (4.6)

as k → ∞.

We note that the bound (4.4) in fact gives a quantitative lower bound on ‖Sk‖ in
the limit k → ∞. Similarly, (4.5) and (4.6) are quantitative lower bounds on ‖Ak,η‖.
Noting that f ′′(0) is the curvature at x∗, we have, for example, the following corollary
by applying these equations with N = 1.
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Corollary 4.5 Suppose (in the 2D case) that Γ is locally C2 in a neighbourhood of
some point x∗ on the boundary and let R be the radius of curvature at x∗. If R = ∞,
then ‖Sk‖k2/3 → ∞; if also, for some constant C > 0, |η| ≥ Ck2/3, then ‖Ak,η‖ → ∞
and ‖Ak,η‖k2/3/|η| → ∞ as k → ∞. If R <∞, then, as k → ∞,

‖Sk‖ ≥ 1

2

(
R

π

)1/3

(2k)−2/3(1 + o(1)). (4.7)

If R <∞ and |η|k−2/3 → ∞ as k → ∞, then

‖Ak,η‖ ≥ |η|
2

(
R

π

)1/3

(2k)−2/3(1 + o(1)),

while, if |η| ≈ k2/3, then

‖Ak,η‖ ≥ |η|
2

(
R

π

)1/3

(2k)−2/3 − 1

2
√

2
+ o(1).

Note that the upper bound (2.12) on ‖Sk‖ (which holds for a circle as well as for a
sphere [15]) shows that the lower bound on ‖Sk‖ implied by Theorem 4.4 in the case
of a circle is sharp in its dependence on k. It follows from (3.5) that the lower bound
implied by Theorem 4.4 is sharp in its dependence on k also in the limit N → ∞
when k−(N+1)/(2N+1) → k−1/2.

The next two theorems obtain lower bounds on ‖Dk‖ by somewhat similar argu-
ments. The conditions of Theorem 4.6 are satisfied, for example, if Γ is a polygon.
(Choose x1 to be a corner of the polygon and x2 to be some point on an adjacent
side.)

Theorem 4.6 In the 2D case, suppose x1 and x2 are distinct points on Γ, that Γ is
C1 in one-sided neighbourhoods Γ1 and Γ2 of x1 and x2, and that (x1 − x2) · ν(x) = 0
for x ∈ Γ2 while x1 − x2 is not parallel to Γ1 at x1. Then, for some constants C > 0
and k0 > 0, it holds for all k ≥ k0 that ‖Dk‖ ≥ Ck1/4.

Proof. We assume, without loss of generality, that the neighbourhoods Γ1 and Γ2

are chosen so that the distance between Γ1 and Γ2 is strictly positive. Let û :=
(x2 − x1)/|x2 − x1| and note that (x − x1)/|x − x1| = û for x ∈ Γ2. Choose ǫ > 0,
define φ ∈ L2(Γ) by φ(y) = exp(−ikû · (x1 − y)) if y ∈ Γ1 with |x1 − y| < ǫ, = 0
otherwise, and let ψ = Dkφ. Let Γ1

ǫ = {y ∈ Γ1 : |y − x1| < ǫ}. Then it follows from
(3.8) that

|ψ(x)| =
k

2

∣∣∣∣

∫

Γ1
ǫ

H
(1)
1 (k|x− y|) x− y

|x− y| · ν(y) e−ikû·(x1−y) ds(y)

∣∣∣∣ .

Choosing ǫ dependent on k so that ǫ → 0 as k → ∞ we see, using (1.25), that,
uniformly for x ∈ Γ2,

|ψ(x)| =

√
k

2π|x− x1| |û · ν(x
1)|
∣∣∣∣
∫

Γ1
ǫ

exp
(
ik[|x− y| − û · (x1 − y)]

)
ds(y)

∣∣∣∣

+ o(k−1/2) + o(ǫk1/2) (4.8)
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as k → ∞. Now, uniformly for x ∈ Γ2,

|x− y| = |x− x1| +
x− x1

|x− x1| · (x
1 − y) + O(ǫ2)

= |x− x1| + û · (x1 − y) + O(ǫ2).

Thus, choosing ǫ = ck−1/2 with c > 0 sufficiently small, we can ensure that, for all
sufficiently large k,

k
∣∣∣ |x− y| − û · (x1 − y) − |x− x1|

∣∣∣ ≤ π

4
(4.9)

for x ∈ Γ2, so that
∣∣∣∣
∫

Γ1
ǫ

exp
(
ik[|x− y| − û · (x1 − y)]

)
ds(y)

∣∣∣∣ ≥ ǫ√
2

=
ck−1/2

√
2

(4.10)

and

|ψ(x)| ≥ c|û · ν(x1)|
2
√
π|x− x1|

+ o(k−1/2) (4.11)

uniformly for x ∈ Γ2 as k → ∞. Thus, and since

‖φ‖2 =

∣∣∣∣

∫

Γ1
ǫ

ds(y)

∣∣∣∣
1/2

= O(k1/4) (4.12)

we see that, for some constant c > 0,

‖Dk‖ ≥ ‖ψ‖2

‖φ‖2
≥ ck1/4

for all sufficiently large k.
The conditions of the first part of the next theorem are satisfied with N = 0 by

some pair of points x1 and x2 whenever Γ is C1. Thus the theorem implies that if Γ
is C1 then, for some constant C > 0, ‖Dk‖ ≥ C for all sufficiently large k, a result
which (cf. (2.12)) appears to be sharp in the case when Γ is a circle. Note also that,
in the limit N → ∞, the second part of the theorem recovers (almost) Theorem 4.6.

Theorem 4.7 In the 2D case, suppose x1 and x2 are distinct points on Γ, and that,
for some N ∈ N0, Γ is C1 and CN+1 in one-sided neighbourhoods Γ1 and Γ2 of x1

and x2, respectively, and that x1 − x2 is not parallel to Γ1 at x1. Without loss of
generality, choose Γ2 so that, for some ǫ̃ > 0 and f ∈ CN+1(R) with f(0) = 0,

Γ2 = {x2 + tû+ f(t)n̂ : 0 ≤ t ≤ ǫ̃}

where û = (x2 − x1)/|x1 − x2| and n̂ are orthogonal unit vectors, and suppose that,
for some N ∈ N0,

f (0)(0) = f (1)(0) = · · · = f (N)(0) = 0. (4.13)

Then there exist C > 0 and k0 > 0 such that

‖Dk‖ ≥ CkN/(4N+4)

for all k > k0.
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Proof. Defining φ,Γ1
ǫ and ψ as in the proof of Theorem 4.6 and, without loss of

generality, choosing ǫ̃ and ǫ dependent on k so that ǫ̃ → 0 and ǫ → 0 as k → ∞, we
see from (4.8) that, uniformly for x ∈ Γ2,

|ψ(x)| =

√
k

2π|x2 − x1| |û · ν(x
1)|
∣∣∣∣

∫

Γ1
ǫ

exp
(
ik[|x− y| − û · (x1 − y)]

)
ds(y)

∣∣∣∣

+ o(k−1/2) + o(ǫk−1/2)

as k → ∞. Further, uniformly for x ∈ Γ2 and y ∈ Γ1
ǫ ,

|x− y| = |x− x1| +
x− x1

|x− x1| · (x
1 − y) + O(ǫ2)

as k → ∞. Moreover, on Γ2, x = x2 + tû + f(t)n̂, for some t ∈ [0, ǫ̂], so that, where
g(t) := f(t)|x2 − x1|/(|x2 − x1| + t),

x− x1

|x− x1| =
û+ g(t)n̂

|û+ g(t)n̂| =
û+ g(t)n̂√
1 + (g(t))2

.

It follows from (4.13) that f(t) = O(tN+1) as t → 0 so that g(t) = O(tN+1) as t → 0
and so

|x− y| = |x− x1| + û · (x1 − y) + O(ǫ̃N+1ǫ) + O(ǫ2)

as k → ∞. Thus, choosing ǫ = ck−1/2 and ǫ̃ = c̃k−1/(2N+2) with c > 0 and c̃ > 0
sufficiently small, we can ensure that, for all sufficiently large k, (4.9) holds for x ∈ Γ2,
so that (4.10) and (4.11) hold uniformly for x ∈ Γ2 as k → ∞. Thus

‖ψ‖2 ≥ c

2

|û · ν(x1)|√
π|x2 − x1|

ǫ̃1/2

and, noting (4.12), we see that, for some constant C > 0,

‖Dk‖ ≥ ‖ψ‖2

‖φ‖2

≥ Ck1/4k−1/(4N+4) = CkN/(4N+4),

for all sufficiently large k.

5 A lower bound on ‖A−1
k,η‖ for trapping domains

In this section we give an example of a Lipschitz domain Ω with boundary Γ for
which ‖A−1

k,η‖ grows as k → ∞, provided |η| ≤ Ck for some constant C. By Theorem

2.2 (which implies that ‖A−1
k,η‖ = O(1) as k → ∞ if |η| = k), such a domain cannot

be starlike in the sense of Assumption 2.1, and in particular cannot be convex. The
precise rate of growth and the class of domain for which this growth rate is achieved
are specified in the following theorem.
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Figure 1: “Trapping” domain Ωe is the exterior of the domain shown and contains
the square Q := [0, 2a] × [−a, a]

Theorem 5.1 There exists C > 0 such that, if Γ is Lipschitz and Ωe contains a
square of side length 2a, two parallel sides of which form part of Γ, and if k = mπ/2a,
for some positive integer m, and η ∈ R \ {0}, then

‖A−1
k,η‖ ≥ C (ka)9/10

(
1 +

|η|
k

)−1

. (5.1)

The proof of the theorem is given below. It will depend on the following useful
identity.

Lemma 5.2 Suppose D is a Lipschitz domain in R
2 with boundary ∂D. Then

ik

∫

D

exp(ikφ(y))f(y)dy =

∫

∂D

∂φ

∂n
(y)

f(y)

|∇φ(y)|2 exp(ikφ(y))ds(y)

−
∫

D

∇.
[

f(y)

|∇φ(y)|2∇φ(y)

]
exp(ikφ(y))dy, (5.2)

for all f and φ for which the right-hand side is finite.

Proof. By the divergence theorem,

∫

∂D

∂φ

∂n
(y)

f(y)

|∇φ(y)|2 exp(ikφ(y))ds(y) =

∫

D

∇.
[

f(y)

|∇φ(y)|2∇φ(y) exp(ikφ(y))

]
dy.

The required result follows by applying the product rule to the right-hand side.
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Note that (5.2) appears in [20, §5] for the case when D is a simplex. There it is the
starting point for asymptotic expansions of oscillatory integrals on multidimensional
simplices. For that purpose a certain “non-resonance condition” on φ is imposed.
However this condition is not required for the simpler case (of one integration by
parts) which we consider here. Note that the requirement that the right-hand side of
(5.2) is finite can typically be attained by requiring f and g to be sufficiently smooth
and ∇φ not to vanish on D (i.e. no stationary points of the oscillator φ).

Proof of Theorem 5.1. Throughout the proof we shall use the notation A . B when
A/B is bounded by a constant which is independent of m and independent of the
quantity ǫ introduced in (5.21) below. In the case when A/B is also a function of
position x on some part of Γ, we require that the constant be also independent of
x. We write A ∼ B when A . B and B . A. Note that the constraint on k that
2ka = mπ, for some m ∈ N, implies that ka ≥ π/2 > 1.

We shall construct specific w, f ∈ L2(Γ) such that

A′
k,ηw = f, (5.3)

‖w‖ & a1/2k, (5.4)

‖f‖ . a−4/10k1/10 (1 + |η|/k) , (5.5)

from which the result follows directly, on recalling that ‖A′−1
η,k ‖ = ‖A−1

η,k‖.
To construct w and f , without loss of generality we can assume that the square

Q := [0, 2a]× [−a, a] is contained in Ωe and that the sides {(0, x2) : x2 ∈ [−a, a]} and
{(2a, x2) : x2 ∈ [−a, a]} form part of Γ (see Figure 1). Then consider the function u
defined on Ωe by

u(y) :=

{
sin(ky1)F (y2/a), x ∈ Q,
0, x ∈ Ωe\Q, (5.6)

where F (t) = (1 − t2)2 (cf. [11]). Clearly u and ∇u are continuous on Ωe and u
satisfies

∆u+ k2u = g on Ωe, (5.7)

and (since 2ka = mπ) u = 0 on Γ, (5.8)

where

g(y) =

{
a−2 sin(ky1)F

′′(y2/a), x ∈ Q,
0, x ∈ Ωe\Q.

(5.9)

Moreover u clearly satisfies the Sommerfeld radiation condition in the far field.
Another solution of (5.7) which is valid in all of R

2 and also satisfies the radiation
condition is the Newtonian potential

uN(x) :=

∫

R2

Φ(x, y)g(y)dy. (5.10)

Since uN also satisfies the homogeneous Helmholtz equation in the bounded domain
Ω, we can write the relation between the Dirichlet and Neumann traces of uN as

[
uN

∂uN/∂ν

]
=

1

2

[
I −Dk Sk

−Hk I +D′
k

] [
uN

∂uN/∂ν

]
, (5.11)
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where Hk is the usual hypersingular operator on Γ. (The matrix on the right-hand
side is usually called the Calderón projector. Note that its form is slightly different
to usual since our operators Dk, Sk, Hk here contain a multiplicative factor of 2.)

Also, since ũ := u − uN satisfies the homogeneous Helmholtz equation in Ωe

together with the radiation condition, we have, analogously,
[
ũ
∂ũ/∂ν

]
=

1

2

[
I +Dk −Sk

Hk I −D′
k

] [
ũ
∂ũ/∂ν

]
. (5.12)

Thus, subtracting the first entries of each of (5.11) and (5.12) and using (5.8), we
obtain

Sk
∂u

∂ν
= 2uN . (5.13)

Similarly, subtracting the second entries of (5.11) and (5.12) yields

(I +D′
k)
∂u

∂ν
= 2

∂uN

∂ν
. (5.14)

Hence, combining (5.13) (multiplied by iη) with (5.14) we obtain (5.3) with

w :=
∂u

∂ν
and f := 2

(
∂uN

∂ν
− iηuN

)
. (5.15)

Now, to obtain (5.4), an easy calculation (recalling 2ka = mπ), shows

‖w‖2 = 2

∫ a

−a

k2|F (y2/a)|2dy2 & ak2. (5.16)

To complete the proof we must prove (5.5) where f is given by (5.15). We begin this
by estimating ‖uN‖. To do this we combine (5.10) and (5.9) to obtain, for x ∈ Γ,

uN(x) =
2∑

j=1

uN
j (x), where uN

j (x) =

∫

Q

exp(ikφj(x, y))fj(k, x, y)dy, (5.17)

with φj(x, y) := |x− y| + (−1)jy1,

fj(k, x, y) := (−1)j a
−2

2i
F ′′(y2/a)Ψ0(k|x− y|),

and Ψ0 defined by (1.27). We shall prove the required estimate for the oscillatory
integral uN

1 (the case uN
2 is analogous). The phase function for uN

1 satisfies

∇φ1(x, y) =
y − x

|y − x| − (1, 0)T . (5.18)

(Here and in the reminder of the proof, all differentiation is performed with respect
to y.) To estimate uN

1 (x) for x ∈ Γ, we distinguish three cases:

(1) x1 = 0 and x2 ∈ [−a, a],
(2) x1 < 0 and x2 ∈ [−a, a],
(3) x1 ≥ 2a or x2 6∈ [−a, a].




 (5.19)
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It turns out that the dominant case is (1). We analyse this in detail first and then
explain briefly why cases (2) and (3) are less significant. In case (1), φ1 has a line
of stationary points {(s, x2) : s ∈ [0, 2a]} in Q, with x at its left hand end (see Figure
2). Then, for any ǫ satisfying

k−1 ≤ ǫ ≤ a , (5.20)

we divide the square Q into a strip enclosing the stationary line,

Qx,ǫ := {(s, x2 + t) : s ∈ [0, 2a] , t ∈ [−ǫ, ǫ]} ∩Q, (5.21)

and the remainder Q̃x,ǫ := Q\Qx,ǫ. (Note that Q̃x,ǫ consists of one rectangle if x2 <
−a+ ǫ or x2 > a− ǫ and two rectangles otherwise.) Then

uN
1 (x) =

∫

Qx,ǫ

exp(ikφ1(x, y))f1(k, x, y)dy +

∫

Q̃x,ǫ

exp(ikφ1(x, y))f1(k, x, y)dy

=: uN
1,ǫ(x) + ũN

1,ǫ(x). (5.22)
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Figure 2: The square Q and the strip Qx,ǫ where x = (0, x2) ∈ Γ. The shaded area is
a typical rectangle R.

Using the fact that M0 satisfies the bound (1.22) we estimate uN
1,ǫ(x) as follows:

|uN
1,ǫ(x)| ≤ a−2

∫

Qx,ǫ

M0(k|x− y|) |F ′′(y2/a)| dy

. a−2k−1/2

∫

Qx,ǫ

|x− y|−1/2dy = a−2k−1/2

∫ 2a

0

∫ ǫ

−ǫ

(s2 + t2)−1/4 dsdt

≤ a−2k−1/2ǫ

∫ 2a

0

t−1/2dt . a−3/2k−1/2ǫ. (5.23)
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Turning to ũN
1,ǫ(x), without loss of generality consider the case when Q̃x,ǫ consists

of two rectangles and let R be the rectangle with y2 > x2. (That is the shaded
rectangle in Figure 2.) Then, by Lemma 5.2,

ik

∫

R

exp(ikφ1(x, y))f1(k, x, y)dy

=

∫

∂R

∂φ1(x, y)

∂n(y)

f1(k, x, y)

|∇φ1(x, y)|2
exp(ikφ1(x, y))ds(y)

−
∫

R

f1(k, x, y)
1

|∇φ1(x, y)|2
∆φ1(x, y) exp(ikφ1(x, y))dy

−
∫

R

f1(k, x, y)∇
(

1

|∇φ1(x, y)|2
)
.∇φ1(x, y) exp(ikφ1(x, y))dy

−
∫

R

∇f1(k, x, y).∇φ1(x, y)

|∇φ1(x, y)|2
exp(ikφ1(x, y))dy

=: T1 + T2 + T3 + T4. (5.24)

We estimate each term on the right-hand side of (5.24). First, by definition of
Qx,ǫ, |∇φ1(x, y)| & a−1ǫ, for y ∈ Qx,ǫ, and so, using the bound (1.22),

|T1| . a−1ǫ−1

∫

∂R

M0(k|x−y|)ds(y) . a−1ǫ−1k−1/2

∫

∂R

|y−x|−1/2ds(y) . a−1/2k−1/2ǫ−1.

(5.25)
Next,

|T4| . aǫ−1

∫

R

|∇f1(k, x, y)|dy

. a−1ǫ−1

{
a−1

∫

R

|F ′′′(y2/a)| |Ψ0(k|x− y|)|dy

+

∫

R

|F ′′(y2/a)| |∇ (Ψ0(k|x− y|)) |dy
}

. a−1ǫ−1

{
a−1

∫

R

M0(k|x− y|)dy + k

∫

R

|Ψ′
0(k|x− y|)|dy

}

. a−1ǫ−1

{
a−1k−1/2

∫

R

|x− y|−1/2dy + k−1/2

∫

R

|x− y|−3/2dy

}
,(5.26)

where to obtain this last line we use (1.22) and (1.28) and that k|x− y| ≥ kǫ ≥ 1 for
y ∈ R. Now, taking polar coordinates about x and using (1.22), we obtain

∫

R

|x− y|−1/2dy ≤
∫ π/2

0

∫ 2
√

2a

ǫ

r−1/2rdrdθ . a3/2. (5.27)

Similarly,

∫

R

|x− y|−3/2dy . a1/2. (5.28)
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Combining the last two results with (5.26) we obtain for T4 the same estimate as for
T1:

|T4| . a−1/2k−1/2ǫ−1. (5.29)

The terms T2 and T3 need slightly more careful estimation. Recalling that we
are dealing with Case (1), so that x = (0, x2), and using formula (5.18), the following
formulae are easily verified:

|∇φ1(x, y)|2 =
2

|y − x| (|y − x| − y1) , (5.30)

and

∇
(

1

|∇φ1(x, y)|2
)
.∇φ1(x, y) = − 1

2|y − x|

(
y2 − x2

|y − x| − y1

)2

. (5.31)

Now consider the term T2. Note first that it follows easily from (5.18) that
∆φ1(x, y) = |y − x|−1 and hence,using (5.30) and (1.22), we have

|T2| .

∫

R

|f1(k, x, y)|
1

(|y − x| − y1)
dy

≤ a−2

∫

R

M0(k|x− y|) 1

(|y − x| − y1)
dy

. a−2k−1/2ǫ−1/2

∫

R

1

(|y − x| − y1)
dy. (5.32)

Then, rewriting (5.32) using polar coordinates centred at x = (0, x2), we obtain

|T2| . a−2k−1/2ǫ−1/2

∫ π/2

sin−1(ǫ/2a)

∫ 2
√

2a

0

1

(r − r cos θ)
rdrdθ

. a−1k−1/2ǫ−1/2

∫ π/2

sin−1(ǫ/2a)

1

(1 − cos θ)
dθ

. a−1k−1/2ǫ−1/2

∫ π/2

sin−1(ǫ/2a)

θ−2dθ . k−1/2ǫ−3/2 . (5.33)

Finally, to estimate T3, we employ (5.31) and proceed as in (5.32)–(5.33) to obtain

|T3| . a−2k−1/2ǫ−1/2

∫

R

1

|y − x|

(
y2 − x2

|y − x| − y1

)2

dy

= a−2k−1/2ǫ−1/2

∫ π/2

sin−1(ǫ/2a)

∫ 2
√

2a

0

1

r

(
r sin θ

r − r cos θ

)2

rdrdθ

. a−1k−1/2ǫ−1/2

∫ π/2

sin−1(ǫ/2a)

θ−2dθ ∼ k−1/2ǫ−3/2. (5.34)

Combining the estimates (5.25), (5.29), (5.33), (5.34) with (5.24) and recalling that
R is a typical rectangle in Q̃x,ǫ, we obtain

|ũN
1,ǫ(x)| . k−3/2ǫ−3/2. (5.35)
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Note also that the estimates in (5.25), (5.29) are smaller than those in (5.33), (5.34)
but we have to use the worst of the four to get (5.35).

Now, choosing ǫ to equilibriate the estimates (5.35) and (5.23), we arrive at the
choice ǫ = a3/5k−2/5 (which also satisfies the requirement (5.20)) and yields the final
estimate uniformly for x satisfying case (1):

|uN
1 (x)| . a−9/10k−9/10. (5.36)

It is not difficult to check that the same estimate holds also in case (2). In this case
φ1 has the same line of stationary points as in case (1) and all the same manipulations
hold to obtain the same bound uniformly for x satisfying case (2). In case (3) the
phase of the integrand of uN

1 has no stationary points. A similar argument can be
applied if x is within a distance ǫ of R. If x is further away then Lemma 5.2 can be
applied on all of Q yielding again the same estimate, uniformly for x satisfying case
(3). Therefore, since uN

2 is estimated using exactly the same argument, we obtain

‖uN‖ . a−4/10k−9/10. (5.37)

We now consider ∂uN/∂ν, for which the argument is very similar. First, mimicking
(5.17), we write (∂uN/∂ν)(x) =

∑2
j=1 u

N
ν,j(x), where

uN
ν,j(x) =

∫

Q

exp(ikφj(x, y))fν,j(k, x, y)dy, x ∈ Γ, (5.38)

with φj defined as above,

fν,j(k, x, y) := (−1)j(a−2k/2i)F ′′(y2/a)
(y − x).ν(x)

|y − x| Ψ1(k|x− y|),

and Ψ1 defined by (1.27). Again without loss of generality it is sufficient to estimate
‖uN

ν,1‖. The three cases (5.19) have again to be considered, but we discuss only case
(1). As before, define the decomposition uN

ν,1 = uN
ν,1,ǫ + ũN

ν,1,ǫ by simply replacing f1

by fν,1 in (5.22). Let Uǫ(x) denote the ball centred at x of radius ǫ. Recalling the
bound (1.23) and that kǫ ≥ 1 by (5.20), a variation on the argument in (5.23) yields

|uN
ν,1,ǫ(x)| . a−2k

∫

Qǫ

M1(k|x− y|)dy

= a−2k

{∫

U2ǫ(x)

(k|x− y|)−1 dy +

∫

Qǫ

(k|x− y|)−1/2 dy

}

. a−2ǫ+ a−3/2ǫk1/2 . a−3/2k1/2ǫ, (5.39)

where in the last step we used that kǫ ≥ 1.
To estimate ũν,1,ǫ, we replace f1 by fν,1 in (5.24) and, calling the corresponding

terms (T1)ν , . . . , (T4)ν, we estimate each of these terms in turn. Firstly, using (1.23)
and that and since k|x− y| ≥ kǫ ≥ 1 for y ∈ R,

|(T1)ν| . a−1kǫ−1

∫

∂R

M1(k|y − x|)ds(y) . a−1/2k1/2ǫ−1 . (5.40)
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Next, analogously to (5.26), and using (1.23) and (1.28)), we have

|(T4)ν| . aǫ−1

∫

R

|∇fν,1(k, x, y)|dy

. a−1kǫ−1

{
a−1

∫

R

M1(k|x− y|)dy + k

∫

R

|Ψ′
1(k|x− y|)|dy

}

. a−1kǫ−1
{
a−1[a3/2k−1/2] + k[a1/2k−3/2]

}
∼ a−1/2k1/2ǫ−1 . (5.41)

Finally the estimates for (T2)ν and (T3)ν are easily achieved from the previous
arguments. For (T2)ν , follow (5.32) and (5.33) to obtain

|(T2)ν | . a−2k

∫

R

|M1(k|x− y|)| 1

(|y − x| − y1)
dy

. a−2k1/2ǫ−1/2

∫

R

1

(|y − x| − y1)
dy . k1/2ǫ−3/2. (5.42)

Similarly |(T3)ν| . k1/2ǫ−3/2 and gathering all these estimates we obtain

|ũN
ν,1,ǫ(x)| . k−1/2ǫ−3/2 .

Comparing this with (5.39), we see that again the choice ǫ = a3/5k−2/5 equilibriates the
estimates, yielding |uN

ν,1(x)| . a−9/10k1/10, uniformly for x ∈ Γ, and, consequently,

‖∂uN/∂ν‖ . a−4/10k1/10 . (5.43)

Combining (5.43) with (5.37) we obtain (5.5) and the proof is complete.

6 Bounds on cond Ak,η and concluding remarks

In this section we summarise, in a convenient form for the reader, the theoretical
results obtained in the previous sections, and explore their implications in terms
of upper and lower bounds on the (identical) condition numbers of Ak,η and A′

k,η.
We remind the reader first of all that (1.17) and (1.18) hold so that cond A′

k,η =
cond Ak,η ≥ ‖Ak,η A

−1
k,η‖ = 1.

In the case of a general Lipschitz domain we have only the bound (3.12). For
a piecewise C1 Lipschitz domain we have also that Lemma 4.1 holds so that

1 ≤ ‖Ak,η‖ . 1 + k(d−1)/2 + |η|k(d−3)/2. (6.1)

(In this section we write A . B if, for some constant c > 0 dependent only on Ω,
A ≤ cB for all k > 0, and write A ∼ B if A . B and B . A.) In the case when Γ
is Lipschitz, piecewise C2 and starlike, satisfying Assumption 2.1, we have also,
from Lemma 4.1 and Theorem 2.2, that

1 ≤ ‖A−1
k,η‖ . 1 +

1 + k

|η| . (6.2)
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Combining this equation with (6.1), we see that

1 ≤ cond Ak,η .
(
1 + k(d−1)/2 + |η|k(d−3)/2

)(
1 +

1 + k

|η|

)
. 1 + k(d−1)/2, (6.3)

if |η| ∼ 1 + k (e.g. if one chooses specifically η given by (2.17) or (2.19)).
The only other result we have for the 3D case (d = 3) is the bound (2.14) for

the case of a sphere. Combining that bound with (6.1) and (6.2), we have for the
sphere that

1 ≤ cond Ak,η .
(
1 + |η|(1 + k)−2/3

)(
1 +

1 + k

|η|

)
. 1 + k1/3, (6.4)

if |η| ∼ 1 + kp, for some p ∈ [2
3
, 1].

We turn now specifically to the 2D case, for which we have additionally the many
lower bounds of §4. We note moreoever that, adapting the arguments of §3 which
show that ‖Dk − D0‖ → 0 as k → 0, we can show that Sk depends continuously in

norm on k for k > 0 and that, thanks to the asymptotic behaviour of H
(1)
0 for small

argument, ‖Sk‖ → ∞ logarithmically as k → 0 (see [12] for more detail). Since also
Sk 6= 0 for k > 0, it follows that ‖Sk‖ is bounded below on (0, k0) for every k0 > 0
while ‖Dk‖ is bounded above by (3.10). These observations can be put together with
the lower bounds for k → ∞ in §4 to deduce lower bounds which hold for all k > 0.
Specifically, for the circle it follows from these observations, (2.7), (3.5), (6.2), (2.7),
and Corollary 4.5, that, for η = k,

1 + k1/3 . ‖Ak,η‖ . 1 + k−1/2 + k1/3, (6.5)

that ‖A−1
k,η‖ = 1 for all sufficiently large k, and that

1 + k1/3 . cond Ak,η . 1 + k−1/2 + k1/3. (6.6)

For any 2D Lipschitz piecewise C2 boundary2, applying (6.1) and Corollary
4.5 we have

1 + |η|(1 + k)−2/3 . ‖Ak,η‖ . 1 + k1/2 + |η|k−1/2, (6.7)

so that, for any starlike 2D Lipschitz piecewise C2 boundary for which (6.2)
also holds,

1 + |η|(1 + k)−2/3 . cond Ak,η .
(
1 + k1/2 + |η|k−1/2

)(
1 +

1 + k

|η|

)
. (6.8)

If Γ is not strictly convex, i.e. has zero curvature at some point on Γ, then the
sharper lower bounds of Theorem 4.2 or 4.4 apply. For example, if Γ is a polygon,
then, combining Theorem 4.2 with (6.1), we see that

1 + |η|(1 + k)−1/2 . ‖Ak,η‖ . 1 + k1/2 + |η|k−1/2. (6.9)

2A 2D Lipschitz piecewise C2 boundary is precisely a boundary Γ consisting of a finite number
of C2 arcs, with the corner angles where the arcs connect in the range (0, 2π), so excluding cusps.

33



Thus, for a starlike polygon,

1 + |η|(1 + k)−1/2 . cond Ak,η .
(
1 + k1/2 + |η|k−1/2

)(
1 +

1 + k

|η|

)
. (6.10)

In particular, for |η| ∼ 1 + k,

1 + k1/2 . cond Ak,η . 1 + k−1/2 + k1/2. (6.11)

We finish this section by bounding the condition number for trapping obstacles
that satisfy the conditions of Theorem 5.1 (see Figure 1). For such trapping ob-
stacles, which contain two straight parallel sides, distance a apart, separated by the
medium of propagation we have, from Theorem 4.2 and (6.1), that, if k = mπ/(2a)
for some m ∈ N, then

1 + |η|(1 + k)−1/2 . ‖Ak,η‖ . 1 + k1/2 + |η|k−1/2. (6.12)

Thus, applying Theorem 5.1,

cond Ak,η & (1 + |η|(1 + k)−1/2)k9/10

(
1 +

|η|
k

)−1

. (6.13)

In particular, if |η| ∼ 1 + kp, for some p ≥ 0, then this bound implies that

cond Ak,η & 1 + kq, (6.14)

with q = 9/10 for 0 ≤ p ≤ 1/2, q = p + 4/10, for 1/2 ≤ p ≤ 1, and q = 14/10 for
p ≥ 1, including for the usual choice η ∼ 1 + k.

In conclusion, we note that our results show that, asymptotically as k → ∞, the
conditioning of Ak,η depends hugely on the geometry of Γ. In particular, for the usual
choice η ∼ 1+k, recommended e.g. in [18, 6], we have shown that cond Ak,η ∼ k1/3 as
k → ∞ for the case of a circle, cond Ak,η ∼ k1/2 for the case of a starlike polygon, while
cond Ak,η & k14/10, for all sufficiently large k satisfying the condition k = mπ/(2a) for
some m ∈ N, when Γ is the boundary of a trapping obstacle satisfying the conditions
of Theorem 5.1.

In [12] we investigate these trends in more detail, and show the same effects on
the discrete level, when the boundary integral equations are discretised by a Galerkin
boundary element method, applying a mixture of theoretical analysis and numerical
experiment.
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