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Abstract We study the local times of fractional Brownian motions for all temporal
dimensions, N , spatial dimensions d and Hurst parameters H for which local times
exist. We establish a Hölder continuity result that is a refinement of Xiao (Probab Th
Rel Fields 109:129–157, 1997). Our approach is an adaptation of the more general
attack of Xiao (Probab Th Rel Fields 109:129–157, 1997) using ideas of Baraka and
Mountford (1997, to appear), the principal result of this latter paper is contained in
this article.
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1 Introduction and main results

In this paper we wish to apply and generalise techniques of Baraka and Mountford
(1997) (see also Mountford 2007; Mountford and Nualart 2004; Xiao 2007) to refine
results of Xiao (1997) for the local times of fractional Brownian motions.
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126 D. Baraka et al.

To recall, fractional Brownian motions of parameter 0 < H < 1 are centred, path
continuous, real-valued Gaussian processes

Y =
{

Y (t), t ∈ R
N
}

→ R (1.1)

with Y (0) = 0 and covariance function

Cov
(
Y (t),Y (s)

) = 1

2

(
|t |2H + |s|2H − |t − s|2H

)
,

where |·| is the Euclidean norm in R
N . Note that for N = 1, H = 1

2 , we have classical
Brownian motion. This fully specifies the distribution of the process (see, e.g., Adler
1981; Samorodnitsky and Taqqu 1994).

We can then form the d-dimensional fractional Brownian motion X = {X(t), t ∈
R

N } by adjoining d independent copies of Y

X(t) = (
X1(t) · · · , Xd(t)

)
, ∀t ∈ R

N . (1.2)

It is sometimes called an (N , d) fractional Brownian motion with index H .
The standard methods of Geman and Horowitz (1980) can be used to show the

existence of local times in the case N > d H ; where for I ⊆ R
N bounded (here

and in the following, an interval in R
N will simply be the Cartesian product of one

dimensional intervals) and x ∈ R
d

Lx (I ) = lim
ε↓0

1

Cdεd
λN

{
t ∈ I : |X(t)− x | < ε

}
, (1.3)

where λN is Lebesgue measure on N -dimensional Euclidean space and Cd is the vol-
ume of the unit ball in d-dimensional Euclidean space. On the other hand, if d H ≥ N ,
the results in Talagrand (1995, 1998) imply that for every I ⊆ R

N , λd(X(I )) = 0
almost surely. Hence X has no local times on I . Hence, an (N , d) fractional Brownian
motion X has local times if and only if N > d H . From this point on we assume that
this inequality holds.

Of course much is known, and has been known of the properties of these local
times for Brownian motion. For fractional Brownian motions, with fewer tools avail-
able, things are less complete. Nevertheless one has (see Kasahara et al. 1999; Xiao
1997, 2006)

lim sup
x↑∞

− log P
(
L0
([0, 1]N

)
> x

)

x
N

d H

< C1.1 < ∞, (1.4)

lim inf
x↑∞

− log P
(
L0
([0, 1]N

)
> x

)

x
N

d H

> C1.2 > 0, (1.5)
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Hölder properties of local times for fractional Brownian motions 127

at least for N = 1 in the case of (1.5). For higher dimensions (i.e., N > 1), see Sect. 2,
though this is implicit in Xiao (2006). Recently, Mountford et al. (2008), based on this
result, showed that in fact there exists a constant C1.3 = C(N , d, H) so that

lim
x↑∞

− log P
(
L0([0, 1]N ) > x

)

x
N

d H

= C1.3. (1.6)

This enabled Xiao (1997) to establish (indeed a wider class of Gaussian processes
was considered),

(A) For φ the function t N−d H
(
log log

( 1
t

)) Hd
N and I an interval of R

N

L0(I ) > 0 implies mφ{t : t ∈ I, X(t) = 0} > 0,

(B) mφ{t ∈ I : X(t) = 0} ≤ C L0(I ) for some finite constant C . Here mφ denotes
the Hausdorff measure with respect to φ; see Rogers (1998).

(C) If for interval B ⊆ R
N one defines L∗(B) = supx Lx (B), then for all T > 0

there exists C < ∞ so that

sup
|B| ↓ 0

B ⊆ [−T, T ]N

L∗(B)
ψ(|B|) ≤ C

where ψ(x) = x N−d H (log
1

x
)

Hd
N and |B| denotes the diameter of B.

A recent paper (Baraka and Mountford 2008) showed, in fact, that the results of (A)
and (B) could be improved to

Theorem 1 There exists a constant C1.4 = C(N , d, H) ∈ (0,∞) so that for N >

d H, for all finite interval I

mφ{t : t ∈ I, X(t) = 0} = C1.4L0(I ).

And Baraka and Mountford (1997) considered fractional Brownian motions with
N = 1 and showed.

Theorem 2 For X = {X(t), t ∈ R} a d-dimensional fractional Brownian motion
with index H

lim sup
t↓0

L0 ([0, t])
t1−d H

(
log log

( 1
t

))d H
= C1.5 ∈ (0,∞).

We will develop these ideas to show this result in all temporal dimensions.
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128 D. Baraka et al.

Theorem 3 For X = {X(t), t ∈ R
N } a (N , d) fractional Brownian motion with index

H, there exists a finite constant C1.6 = C(N , d, H) such that

lim sup
t↓0

L0
([0, t]N

)

t N−d H
(
log log

( 1
t

)) d H
N

= C1.6. (1.7)

And also show

Theorem 4 For X = {X(t), t ∈ R
N } a (N , d) fractional Brownian motion with index

H and T > 0 fixed, there exists a finite constant C1.7 = C(N , d, H) such that

lim
δ↓0

sup
B ⊂ [−T, T ]N

|B| = δ

L∗(B)

δN−d H (log 1
δ
)

d H
N

= C1.7. (1.8)

In both instances the basic question is how to create enough independent or essen-
tially independent trials. This is done via the exploitation of a white noise represen-
tation of the fractional Brownian motion. We “create” independence via substituting
independent white noise over secondary regions: we use the representation (see, e.g.,
Embrechts and Maejima 2002 or Samorodnitsky and Taqqu 1994)

Xi (t) = CN ,H

∫

RN

(
1

|x − t | N
2 −H

− 1

|x | N
2 −H

)
dẆi (x) (1.9)

for Ẇi independent white noise on R
N . A useful comparison process is

X
′
i (t) = CN ,H

∫

RN

(
1

|x − t | N
2 −H

− 1

|x | N
2 −H

)
dẆ

′
i (x) (1.10)

for

Ẇ
′
i (x) = Ẇi (x) for x ∈ I

= Żi (x) elsewhere,

where Żi is a white noise independent of Ẇ and of Ż j for j 
= i . Here typically
we take I to be an interval but in Sect. 3 we take I to be an interval with an inner
subinterval removed.

If we are interested in X(t), t ∈ [t0, t0 + h] (here we adopt the convention for
t0 = ((t0)1, (t0)2, . . . , (t0)N ), h ∈ R+ that t0 + h is the element of R

N such that
t0 +h = ((t0)1 +h, (t0)2 +h, . . . , (t0)N +h) and [t0, t0 +h] = {t : ∀ i, (t0)i ≤ ti ≤
(t0)i +h}) and we take comparison process X ′(t)with interval I = [t0−V, t0+h+V ],
where V >> h, then for every 1 ≤ i ≤ d and all s, t ∈ [t0, t0 + h]
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Hölder properties of local times for fractional Brownian motions 129

Cov
(

Xi (t)− Xi (t0),
(
Xi (s)− Xi (t0)

)−
(

X
′
i (s)− X

′
i (t0)

))

= E

[(
Xi (t)− Xi (t0)

) ((
Xi (s)− Xi (t0)

)−
(

X
′
i (s)− X

′
i (t0)

))]

= C2
N ,H

∫

I c

(
1

|x−t | N
2 −H

− 1

|x−t0|
N
2 −H

)(
1

|x−s| N
2 −H

− 1

|x−t0|
N
2 −H

)
dx

≤ C
|t − t0||s − t0|

V 2−2H
(1.11)

for universal C . Using this inequality one can show that

E

[(
L X

0

([0, 0 + h])− L X ′
0

([0, 0 + h])
)2
]

= 2
∫

[0,1]N

∫

[0,1]N

ds dt
(

Ps,t (0, 0)− P
′
s,t (0, 0)

)

is small, for Ps,t (0, 0) the joint density at (0, 0) for
(
X(t), X(s)

)
and P

′
s,t (0, 0) that

at (0, 0) for
(
X(t), X ′(s)

)
(and so for

(
X(s), X ′(t)

)
.

This we will see, is sufficient to show Theorem 3. However, for Theorem 4 we will
require superior bound for this difference.

In Sect. 2 we prove (1.5) for N > 1. This result is used to prove Theorem 3 in
Sect. 3. In Sect. 4 we show a LND property for a certain process. This will be used,
in Sect. 5, to found a bound on local times differences between the comparison and
original process. Section 6, using some results of Sects. 4 and 5, is devoted to the
proof of the analogous version of (1.6) for the supremum of the local time. Finally, in
Sect. 7, we prove Theorem 4 using the result of Sect. 5.

Unspecified positive and finite constants will be denote by C,C1,C2, . . . which
may have different values from line to line. Specific constants in section i will be
denoted by Ci.1,Ci.2, . . ..

2 Tail probability of local times

In this section, we show (1.4) and (1.5) and generalize the result of Kasahara et al.
(1999) to (N , d) fractional Brownian motion with N > 1. We prove that

Theorem 5 If X = {X(t), t ∈ R
N } is a (N , d) fractional Brownian motion with index

0 < H < 1, then

− log P

(
L0([0, 1]N ) > x

)
≈ x N/d H as x → ∞. (2.1)

Where f ≈ g means 0 < lim inf x→∞ f (x)/g(x) ≤ lim supx→∞ f (x)/g(x) < ∞.
This result is necessary to prove that the limit in (1.6) is strictly between 0 and ∞, see
Mountford et al. (2008).
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130 D. Baraka et al.

Our basic tool for the proof is the following Tauberian theorem obtained by
Kasahara (1978, Theorem 4).

Theorem 6 Let Z be a positive random variable and let φ(·) be a function which
varies regularly at ∞ with exponent 0 < α < 1. Then

− log P (Z > φ(x)) ≈ x as x → ∞

holds if and only if

E[Zn]1/n ≈ φ(n) as n → ∞.

Let φ(n) = nd H/N . Since φ−1(x) = x N/d H , then Theorem 5 is equivalent to

Theorem 7

E

[
L0

(
[0, 1]N

)n]1/n ≈ nd H/N as n → ∞. (2.2)

For the upper bound we have the result of Xiao (1997) where it was proved that
there exists a positive finite constant C such that

E

[
L0

(
[0, 1]N

)n] ≤ Cn (n!)d H/N . (2.3)

Using the Stirling formula,

n! ≈ √
2πn

nn

en
as n → ∞,

we obtain the following

Proposition 1 Let X = {X(t), t ∈ R
N } be a d-dimensional fractional Brownian

motion with index 0 < H < 1, then there exists a positive finite constant C such that

E

[
L0

(
[0, 1]N

)n]1/n ≤ C nd H/N as n → ∞. (2.4)

For the lower bound, we start with the following lemma, whose proof will be given
at the end of this section,

Lemma 1 Let V ∼ Binom
(

n, n
1−N

N

)
, so

P

(
V − n1/N ≤ −n1/(2N )x

)
≤ e−x2/4. (2.5)

Since X1, . . . , Xd are independent copies of Y , we can write, see Geman and Horowitz
(1980),
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Hölder properties of local times for fractional Brownian motions 131

E

[
L0

(
[0, 1]N

)n] =
∫

[0,1]N

dt1 . . .

∫

[0,1]N

dtn pt1,...,tn
(0, . . . , 0)

= (2π)nd/2
∫

[0,1]N

dt1 . . .

∫

[0,1]N

dtn detCov
[
Y (t1), . . . ,Y (tn)

]−d/2
, (2.6)

where pt1,...,tn
(0, . . . , 0) denote the density at (0, . . . , 0) of the random vector(

X(t1), . . . , X(tn)
)

and detCov
[
Y (t1), . . . ,Y (tn)

]
the determinant of the covari-

ance matrix of the random vector
(
Y (t1), . . . ,Y (tn)

)
. For any permutation π for

{1, 2, . . . , n}

detCov
[
Y (t1), . . . ,Y (tn)

] = Var
(
Y (tπ(1))

) n∏
i=2

Var
(
Y (tπ(i))|Y (tπ(1)), . . . ,Y (tπ(i−1))

)

≤ Var
(
Y (tπ(1))

) n∏
i=2

Var
(
Y (tπ(i))|Y (tπ(i−1))

)
. (2.7)

To simplify, we denote π(i) = (i) when π is given.
We will use a probabilistic interpretation of the integral in (2.6) as

E

[
detCov

(
Y (T 1), . . . ,Y (T n)

)−d/2
]
, (2.8)

where the n points T i = (T 1
i , . . . , T N

i ), i = 1, . . . , n are uniformly distributed on
[0, 1]N . So we divide [0, 1]N in n subcubes with side of length n−1/N . The subcubes
are

[
(i − 1)n−1/N , i n−1/N

]

=
[
(i1 − 1)n−1/N ; i1n−1/N ] × · · · × [(iN − 1)n−1/N ; iN n−1/N

]
(2.9)

with i j ∈ {1, 2, . . . , n1/N }, 1 ≤ j ≤ N . We expect about one point in each subcube.

By fixing all i j , 2 ≤ j ≤ N and moving i1 along [1, 2, . . . , n1/N ], we get n
N−1

N

columns each containing n1/N subcubes. The first column C1 is

[0; 1] ×
[
0; n−1/N

]
× · · · ×

[
0; n−1/N

]
.

Let V = (V1, . . . , V
n

N−1
N
), where Vk is the number of points in the column Ck, k =

1, . . . , n
N−1

N . Vk has a binomial distribution of parameters (n, n
1−N

N ) and if

Ak =
{

Vk − n1/N ≥ −n1/(2N ) log n
}

and A = ∩k Ak,
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132 D. Baraka et al.

we have by Lemma 1 that P(Ac
k) ≤ e− 1

4 log2 n . Hence

P(A) = 1 − P

(
∪n1−1/N

k=1 Ac
k

)

≥ 1 − n1−1/N e− 1
4 log2 n

= 1 − n
N−1

N − 1
4 log n ≥ 1

2
for n big enough. (2.10)

Since for all i , Var
(
Y (T (i))|Y (T (i−1))

) ≤ 1 and in each column the same argument
holds, then we can consider only the column C1. It will be enough from (2.6)–(2.8)
and (2.10) to understand

E

[
V1∏

i=1

1

Var
(
Y (T (i))|Y (T (i−1))

)d/2

∣∣∣∣∣ V

]n1−1/N

on event A. (2.11)

We choose the permutation π such that

T (i) ∈ C1 ⇔ i ≤ V1 and 0 = T 1
(0) ≤ T 1

(1) ≤ T 1
(2) ≤ · · · ≤ T 1

(V1)
,

where T 1 is the first coordinate of T and analogously for other columns.
Since all points are in the same column, we have for i = 1, . . . , V1

Var
(
Y (T (i))|Y (T (i−1))

) ≤ (
T (i)−T (i−1)

)2H ≤
[(

T 1
(i)−T 1

(i−1)

)
+ (N−1)n−1/N

]2H
.

If (Ui )
V1
i=0 are iid exp(λ) then

(
T 1
(i) − T 1

(i−1)

)V1

i=1
=D

(
Ui∑V1

j=0 U j

)V1

i=1

, see Ross

(1996), and the expectation in (2.11) is greater than

E

[
V1∏

i=1

((
T 1
(i) − T 1

(i−1)

)
+ (N − 1)n−1/N

)−d H ∣∣∣V
]

= E

⎡
⎣

V1∏
i=1

(
Ui∑V1

j=0 U j

+ N − 1

n1/N

)−d H
⎤
⎦

≥ E

[
V1∏

i=1

(
2Ui + (N − 1)

n1/N

)−d H

I∑V1
j=0 U j ≥ n1/N

2

]
. (2.12)

We can write
V1∏

i=1

(2Ui + (N − 1)) = exp

(
V1∑

i=1

log (2Ui + (N − 1))

)
, where the

variables log(2Ui +(N −1)) are iid. Letµ (∈ (0,∞)) be the expectation of log(2Ui +
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Hölder properties of local times for fractional Brownian motions 133

(N − 1)), then using the strong law of large numbers when V1 ↗ ∞, we have with
probability 1

V1∏
i=1

(2Ui + (N − 1)) ≤ e2µV1 and
V1∑
j=0

U j ≥ 3

4
V1.

Then on the event A

E

[
V1∏

i=1

(
2Ui + (N − 1)

n1/N

)−d H

I∑V1
j=0 U j ≥ n1/N

2

]
≥ 1

2

(
e2µ

n1/N

)−d H V1

. (2.13)

We have (on A)

(n1/N )d H V1e−2µd H V1 ≥ (n1/N )d H(n1/N −n1/(2N ) log n) · e−2µd H(n1/N +n1/(2N ) log n)

≥
(

n1/N e2µ
)−d Hn1/(2N ) log n ·

(
n1/N

e2µ

)d Hn1/N

,

and

[(
e2µ

n1/N

)−d H V1
]n1−1/N

≥
(

n1/N e2µ
)−d Hn1−1/2N ·log n ·

(
n1/N

e2µ

)d Hn

. (2.14)

Finally, from (2.6), (2.11)–(2.14) and arguing similarly for the other columns, we have

E

[
L0([0, 1]N )n

]

≥ (2π)nd/2 1

2

(
1

2

)n1−1/N (
n1/N e2µ

)−d Hn1−1/(2N )·log n ·
(

n1/N

e2µ

)d Hn

. (2.15)

This implies, when n → ∞, that there exists a finite constant C such that

E

[
L0([0, 1]N )n

] 1
n ≥ C nd H/N , (2.16)

and this completes the proof of Theorem 5.

Proof of Lemma 1 Let X = V − n1/N so we can write

X =
n∑

i=1

Ii − n1/N , where Ii ∼ Bernoulli
(

n
1−N

N

)
.
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134 D. Baraka et al.

For a > 0 small,

E

[
e−a X

]
= ean1/N

E

[
e−a

∑
Ii
]

= ean1/N
[
e−an

1−N
N + (1 − n

1−N
N )

]n

= ean1/N

[
1 + (e−a − 1)n

1
N

n

]n

≤ ean1/N
e(e

−a−1)n1/N
Taylor’s development of log x as x small

= e(e
−a+a−1)n1/N

≤ ea2n1/N
since e−a + a − 1 ≤ a2

We have for all a > 0 small,

P

(
V − n1/N ≤ −n1/(2N )x

)
≤

E

[
e−a(V −n1/N )

]

ea(n1/(2N )x)

= ea2n1/N

ean1/(2N )x
= en1/N a2−an1/(2N )x . (2.17)

We choose a which minimize (2.17), i.e., a = x
2n1/(2N ) . We find

P

(
V − n1/N ≤ −n1/(2N )x

)
≤ e−x2/4.

��

3 Law of the iterated logarithm

As noted in the introduction, in this section we consider the comparison processes
derived from non-interval choices of I . The reason for this choice of I is that we will
seek a collection of independent comparison processes.

We consider the collection In := In,β = [−nβ, nβ ]N \[−n−β, n−β ]N . The param-
eter β is for the moment unspecified but will be large. We first show that if β is taken
large enough and X ′n is the comparison process based on I = In , then for all n large

E

[(
L X

0

(
[0, 1]N

)
−L X ′n

0

(
[0, 1]N

))2
]

= 2
∫

[0,1]N×[0,1]N

(
Ps,t (0, 0)−P

′
s,t (0, 0)

)
dsdt

≤ 1

n2 (3.1)

(for more details, see Baraka and Mountford 1997).
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Hölder properties of local times for fractional Brownian motions 135

We first take a constant α > max{3/H, 3/(N − d H)} and consider

∫

[0, 1]N × [0, 1]N

|t − s| < 1/nα

(
Ps,t (0, 0)− P

′
s,t (0, 0)

)
ds dt . (3.2)

Note that Ps,t (0, 0) ≥ P
′
s,t (0, 0) and by the positivity of densities, (3.2) is bounded

by

∫

[0, 1]N × [0, 1]N

|t − s| < 1/nα

Ps,t (0, 0) ds dt = 2
∫

[0, 1]N × [0, 1]N

|t − s| < 1/nα, |s| < |t |

Ps,t (0, 0) ds dt . (3.3)

This latter expression (by the LND property or more simply by direct computation) is
bounded by

C
∫

[0, 1]N × [0, 1]N

|t − s| < 1/nα, |s| < |t |

1

|s|d H

1

|t − s|d H
ds dt, (3.4)

for some universal C . (3.4) is easily seen to be bounded by

C
∫

[0,1]N

1

|s|d H
ds

∫

|t |<1/nα

1

|t |d H
dt .

The bound α > 3/(N − d H) ensures that this is less than C ′/n3 for some universal
C ′ which is sufficient for our needs. We have in almost identical fashion that

∫

[0, 1]N × [0, 1]N

|t | or |s| < 1/nα

Ps,t (0, 0) ds dt ≤ 2C ′/n3. (3.5)

We now turn to bounding the integral over {(s, t) ∈ [0, 1]N × [0, 1]N : |s|, |t |,
|s − t | ≥ 1/nα}. First we have, as in Baraka and Mountford (1997),

Ps,t (0, 0) =
(

1

2π

1

σX (s)

1

σX (t)

1√
1 − ρ(s, t)2

)d

, (3.6)

where ρ(s, t) is the correlation between X1(s) and X1(t). Since the one dimensional
distributions of X and X ′n are the same, we have equally

P ′
s,t (0, 0) =

(
1

2π

1

σX (s)

1

σX (t)

1√
1 − ρ′(s, t)2

)d

, (3.7)
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where ρ′(s, t) is the correlation between X1(s) and X ′n
1 (t) [and so between X ′n

1 (s)
and X1(t)]. It follows from (3.6) and (3.7) that

∣∣∣Ps,t (0, 0)− P ′
s,t (0, 0)

∣∣∣

≤ 2d−1

(
1

2π

1

σX (s)

1

σX (t)

(
1√

1 − ρ(s, t)2
− 1√

1 − ρ′(s, t)2

))d

. (3.8)

Now

|ρ(s, t)− ρ′(s, t)| =
∣∣∣∣∣
E
(
X1(t)X1(s)

)− E
(
X1(t)X ′

1(s)
)

σX (s)σX (t)

∣∣∣∣∣ . (3.9)

Similar to (1.11), the numerator of (3.9) is equal to

C2
N ,H

∫

I c
n

(
1

|x−t |N/2−H
− 1

|x |N/2−H

)(
1

|x−s|N/2−H
− 1

|x |N/2−H

)
dx

= C2
N ,H

∫

[−n−β ,n−β ]N

(
1

|x−t |N/2−H
− 1

|x |N/2−H

)(
1

|x−s|N/2−H
− 1

|x |N/2−H

)
dx

+ C2
N ,H

∫

RN \[−nβ ,nβ ]N

(
1

|x−t |N/2−H
− 1

|x |N/2−H

)(
1

|x−s|N/2−H
− 1

|x |N/2−H

)
dx .

(3.10)

Recall that we are interested in (s, t) pairs such that {(s, t) : |s|, |t |, |s−t | ≥ 1/nα}.
For the first integral we have the simple bound (given α < β and n large)

C2
N ,H

∫

[−n−β ,n−β ]N

1

|x |N−2H
dx ≤ C ′′/n(2H)β . (3.11)

For the second integral we use (1.11) to obtain similarly the bound C ′′/n(2−2H)β .

Note that if s and t are both ≥ n−α , then σX (s) and σX (t) are both bounded below by
1/nαH . This and (3.11) together yield the bound

|ρ(s, t)− ρ′(s, t)| ≤ C1

(
n−2(β−α)H + n−2(β(1−H)−αH)

)
. (3.12)

Furthermore if |s − t | ≥ n−α , then we have for a universal constant C2 that√
1 − ρ(s, t)2 ≥ C2n−αH >> |ρ(s, t)− ρ′(s, t)|.
It only remains to apply elementary calculus and (3.12) to see that

∣∣∣∣∣
1√

1−ρ(s, t)2
− 1√

1−ρ′(s, t)2

∣∣∣∣∣ ≤ C3

n−3αH

(
n−2(β−α)H +n−2(β(1−H)−αH)

)
, (3.13)

which will be less than
1

n3 for n large provided β was chosen sufficiently large.
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It is now clear that (3.1) follows from (3.5), (3.8) and (3.13). Consequently we have

P

( ∣∣∣L X
0

(
[0, 1]N

)
− L X ′

0

(
[0, 1]N

)∣∣∣ ≥ 1
)

≤ C

n2 (3.14)

for some C < ∞. By scaling we immediately have

P

( ∣∣∣L X
0

(
[0, h]N

)
− L X ′

0

(
[0, h]N

)∣∣∣ ≥ hN−Hd
)

≤ C

n2 . (3.15)

for X ′ the comparison process derived from In .

Applying the first Borel-Cantelli lemma to the events

An =
{∣∣∣L X

0

(
[0, 2−n]N

)
− L X ′

0

(
[0, 2−n]N

)∣∣∣ ≥ 2−n(N−Hd)
}

we have

P(lim sup
n→∞

An) = 0. (3.16)

Now choose a sequence 1 � n0 < n1 < · · · as follows. Given ni let ni+1 be the
smallest positive integer so that

2−ni+1(ni+1)
β <

2−ni

nβi
.

We have easily
ni+1 − ni

log2 ni
→ 2β.

The point is that the comparison processes X
′
i derived from Ini are (or more accurately

may be taken to be) independent.
By (2.1) we can choose a constant h, depending on N , H, and d only, such that

Bi =
{

L
X

′
i

0

(
[0, 2−ni ]N

)
≥ h2−ni (N−Hd)(log ni )

Hd
N

}

has probability ≥ C√
ni

.

And so given our bounds on ni+1 − ni

∑
P(Bi ) = ∞.

By the independence of the processes X
′
i and the second Borel-Cantelli lemma, we

have

P(lim sup
i↑∞

Bi ) = 1.
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Given (3.16) we conclude that almost surely

lim sup
n→∞

{
L X

0

(
[0, 2−ni ]N

)
≥ h2−ni (N−Hd)

(
(log ni )

Hd
N − 1

)}

occurs. That is

lim sup
r↓0

L X
0

([0, r ]N
)

r N−Hd
(
log log 1

r

) Hd
N

≥ h.

Now let us fix g and let X
′
be the comparison process derived from I = [−g, g]N .

It is easy to establish that

lim sup
r↓0

L X
0

([0, r ]N
)− L X

′
0

([0, r ]N
)

r N−Hd
(
log log 1

r

) Hd
N

= 0 almost surely.

That is, the r.v. lim supr↓0
L X

0

([0,r ]N
)

r N−Hd
(

log log 1
r

) Hd
N

is independent of σ(Ẇ (x), x ∈ I c).

The arbitrariness of g and the zero-one law in Pitt and Tran (1979) give the triviality
of

lim sup
r↓0

L X
0 ([0, r ]N )

r N−Hd(log log 1
r )

Hd
N

and we are done.
Remark that with a little more work, we can identify the constant C1.6.

4 The non-strong LND property for process U

Let U = {U (t) : t ∈ [−b, b]N } a process with values in R
d defined by

Ui (t) = CN ,H

∫

[−a,a]N

f (x, t) dẆi (x), (4.1)

where f (x, t) = 1

|x − t |N/2−H
− 1

|x |N/2−H
, Ẇ is a d-dimensional white noise on

R
N and a >> b.

Proposition 2 For any integer r ≥ 2, there exists a positive constant Cr > 0 such
that for any t1, . . . , tr ∈ [−b, b]N we have
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Var
(
U (t1)|U (t i ), 2 ≤ i ≤ r

) ≥ Cr h2H , (4.2)

where h = min{|t1|; |t1 − t i |, i ≥ 2}.

Proof In fact (4.2) is equivalent to prove that for r ≥ 1, there exists a constant Cr > 0
such that for any reals a1, . . . , ar ∈ R and any t1, . . . , tr ∈ [−b, b]N , we have

E

⎡
⎣
(

U (t1)−
r∑

i=2

aiU (t i )

)2
⎤
⎦ ≥ Cr h2H , (4.3)

where h = min{|t1|; |t1 − t i |, i ≥ 2}.
Since that it is evident for r = 1, we will arguing inductively (although the inductive
hypothesis will only be used for case 2 below) and suppose that there exists a constant
Cr−1 > 0 such that for any reals a1, . . . , ar−1 ∈ R and any t1, . . . , tr−1 ∈ [−b, b]N ,
we have

E

⎡
⎣
(

U (t1)−
r−1∑
i=2

aiU (t i )

)2⎤
⎦ ≥ Cr−1h′2H , (4.4)

where h′ = min{|t1|; |t1 − t i |, r − 1 ≥ i ≥ 2}. We distinguish two cases.

1. If max2≤i≤r |ai | ≤ 1. Let Ir = {x : |x − t1| ≤ h/k}, where k is large enough and
will be specified in each case.
(a) If N/2 − H > 0: for x ∈ Ir ,

|x | ≥
(

1 − 1

k

)
h ≥ (k − 1)|x − t1| and |x − t i | ≥ (k − 1)|x − t1|; i ≥ 2

this implies that

f (t1, x) = 1

|x−t1|N/2−H
− 1

|x |N/2−H
≥
(

1− 1

(k−1)N/2−H

)
1

|x−t1|N/2−H

and for each i ≥ 2

| f (t i , x)| =
∣∣∣∣

1

|x−t1|N/2−H
− 1

|x |N/2−H

∣∣∣∣ ≤ 2

(k−1)N/2−H

1

|x−t1|N/2−H
.
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So

E

⎡
⎣
(

U (t1)−
r∑

i=2

aiU (t i )

)2
⎤
⎦ =

∫

[−a,a]N

(
f (t1, x)−

r∑
i=2

ai f (t i , x)

)2

dx

≥
∫

Ir

(
f (t1, x)−

r∑
i=2

ai f (t i , x)

)2

dx

If
2r

(k−1)N/2−H
< 1 : ≥

(
1− 2r

(k−1)N/2−H

)2 ∫

Ir

1

|x−t1|N−2H
dx

≥ Cr.1h2H . (4.5)

In this case, it is sufficient to take k such that (k − 1)N/2−H > 2r and Cr.1
is a constant which depend only on r .

(b) If N/2 − H < 0 : this implies that N = 1 and H > 1/2. Let

g(x) = |x |H−1/2 +
r∑

i=2

ai

(
|x − ti |H−1/2 − |x |H−1/2

)
.

We have for |x − t1| ≤ h
2

|g′(x)| ≤ (H − 1/2)

[
|x |H−3/2 +

r∑
i=2

|ai |
(
|x − ti |H−3/2 + |x |H−3/2

)]

≤ (H − 1/2)

(
h

2

)H−3/2
(

1 + 2
r∑

i=2

|ai |
)

≤ 2r(H − 1/2)

(
h

2

)H−3/2

.

Let Jr =
{

x : 2h

k
≤ |x − t1| ≤ 3h

k

}
. Remark that for x ∈ Jr and y ∈ Ir ,

we have

|x − t1| − |y − t1| ≥
(

2h

k

)H−1/2

−
(

h

k

)H−1/2

= (2H−1/2 − 1)

(
h

k

)H−1/2

= C4.1hH−1/2.

and

|g(x)− g(y)| ≤ max
z∈Ir ∪Jr

|g′(z)||x − y| ≤ 2r(H − 1/2)

(
h

2

)H−3/2

· 4h

k
.
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We take k such that 2r(H − 1/2)
( 1

2

)H−3/2 · 4
k ≤ C4.1

4 , this implies that

k3/2−H ≥ 8r(H − 1/2)

2H−3/2(2H−1/2 − 1)
.

Suppose that
∣∣|x − t1|H−1/2 − g(x)

∣∣ ≥ C4.1
4 hH−1/2, so for all x ∈ Ir

E

⎡
⎣
(

U (t1)−
r∑

i=2

aiU (ti )

)2
⎤
⎦ ≥

∫

Ir

(
|x − t1|H−1/2 − g(x)

)2
dx

≥ C2
4.1

16
h2H−1 × 2h

k
= Cr.2h2H . (4.6)

If not, there exists y ∈ Ir such that
∣∣∣|y − t1|H−1/2 − g(y)

∣∣∣ < C4.1

4
hH−1/2.

But for x ∈ Jr we have

∣∣∣|x − t1|H−1/2 − g(x)
∣∣∣ ≥ |x − t1|H−1/2 − |y − t1|H−1/2 − |g(x)− g(y)|

−
∣∣∣|y − t1|H−1/2 − g(y)

∣∣∣

≥ C4.1hH−1/2 − C4.1

4
hH−1/2 − C4.1

4
hH−1/2

= C4.1

2
hH−1/2.

Since

∫ (
|x − t1|H−1/2 − g(x)

)2
dx ≥

∫

Jr

(
|x − t1|H−1/2 − g(x)

)2
dx,

we conclude that

E

⎡
⎣
(

U (t1)−
r∑

i=2

aiU (ti )

)2
⎤
⎦ ≥ Cr.3 h2H . (4.7)

(c) If N/2− H = 0: this implies that N = 1 and H = 1/2 and we have classical
Brownian motion.

2. If max
2≤i≤r

|ai | > 1: without loss of generality, we take ar = max2≤i≤r ai . Let

h2 = min{|tr |; |tr − t i |, i ≤ r} and Cr.4 = min(Cr.1,Cr.2,Cr.3).
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a. If |ar |hH
2 ≥ √

δhH where δ = min(Cr.4,Cr−1)/2,

E

⎡
⎣
(

U (t1)−
r∑

i=2

aiU (t i )

)2
⎤
⎦

= |ar |2E

⎡
⎣
(

U (tr )−
r−1∑
i=1

ai

ar
U (t i )

)2⎤
⎦ (where a1 = −1)

≥ |ar |2Cr.4 h2H
2 ≥ Cr.5 h2H .

b. If |ar |hH
2 <

√
δhH , i.e., is small w.r.t. h. We will proceed inductively.

E

⎡
⎣
(

U (t1)−
r∑

i=2

aiU (t i )

)2
⎤
⎦

1/2

= E

⎡
⎣
(

U (t1)−
r−1∑
i=2

a′
iU (t i )− ar

(
U (tr )− U (tr−1)

))2⎤
⎦

1/2

≥
⎧⎨
⎩E

⎡
⎣
(

U (t1)−
r−1∑
i=2

a′
iU (t i )

)2⎤
⎦
⎫⎬
⎭

1/2

−|ar |
{
E

[(
U (tr )− U (tr−1)

)2
]}1/2

≥ √
Cr−1hH − |ar |hH

2 ≥ √
Cr.6 hH .

We conclude by taking Cr = min(Cr.4,Cr.5,Cr.6). ��

5 A bound on local times differences

In this section we achieve a better bound for the difference between the local time for
our original process and that for a comparison process.

We let Ż be an independent white noise and we fix a parameter h > 0, h will be
small so h1−ε � h.

We write

X
′
(t) = CN ,H

∫

RN

(
1

|x − t | N
2 −H

− 1

|x | N
2 −H

)
dẆ ′(x)

for

Ẇ ′(x) = Ẇ (x) x ∈ [−h1−ε, h1−ε]N

= Ż(x) x /∈ [−h1−ε, h1−ε]N
.

123



Hölder properties of local times for fractional Brownian motions 143

Then we have

X(t) = U (t)+ V (t)

X ′(t) = U (t)+ V ′(t)

for

U (t) = CN ,H

∫

x∈[−h1−ε ,h1−ε ]N

(
1

|x − t | N
2 −H

− 1

|x | N
2 −H

)
dẆ ′(x)

= CN ,H

∫

x∈[−h1−ε ,h1−ε ]N

(
1

|x − t | N
2 −H

− 1

|x | N
2 −H

)
dẆ (x).

Then by design U , V , V ′ are independent processes.

We will study L X
0 ([−h, h]N )− L X ′

0 ([−h, h]N ). The first point to be made is

Lemma 2 For ε > 0 and h small, there exists a constant c > 0 such that

P

(
sup

t∈[−h,h]N
|V (t)| ≥ hH h(2−H) ε3

)
≤ K e−ch−(2−H) ε3

.

This lemma follows from a routine application of the Gaussian isoperimetric inequal-
ity, see, e.g., Talagrand (1995, Lemma 2.1).

Remark Obviously this bound holds also for process V ′(t), t ∈ [−h, h]N .

The significance is that the bound hH h(2−H) ε3 (for h small) is very small compared
to hH the “typical” size of |X(t)| for t ∈ [−h, h]N .

Let A be the event

{
sup

t∈[−h,h]N
|V (t)|, sup

t∈[−h,h]N
|V ′(t)| ≤ hH h(2−H) ε3

}
.

We consider (see, e.g., Baraka and Mountford 1997)

E

[(
L X

0 ([−h, h]N )− L X ′
0 ([−h, h]N )

)2k∣∣A
]

= E

⎡
⎢⎣

∫

(Rd )2k

dz1 · · · dz2k

∫

([−h,h]N )2k

2k∏
j=1

(
eiz j ·X(t j ) − eiz j ·X ′(t j )

)
dt1 · · · dt2k

∣∣A

⎤
⎥⎦
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= E

⎡
⎢⎣

∫

(Rd )2k

dz1 · · · dz2k

∫

([−h,h]N )2k

ei
∑2k

j=1 z j ·U (t j )

×
2k∏
j=1

[
eiz j ·V (t j ) − eiz j ·V

′
(t j )

]
dt1 · · · dt2k

∣∣A
⎤
⎦ . (5.1)

As in Geman and Horowitz (1980), Geman et al. (1984) and Xiao (1997) we now use
the inequality

|eix − ei y | ≤ 2γ−1 |x − y|γ

for 0 < γ < 1 to derive that, on the event A,

2k∏
j=1

∣∣∣∣eiz j ·V (t j ) − eiz j ·V
′
(t j )

∣∣∣∣ ≤
⎛
⎝

2k∏
j=1

|z j |γ
⎞
⎠ 22kγ h2kγ H h(2−H) ε3 γ 2k .

So, and here it is crucial that U is independent of V and V
′
,

E

[(
L X

0 ([−h, h]N )−L X ′
0 ([−h, h]N )

)2k ∣∣A
]

= 22kγ
∫

(Rd )
2k

2k∏
j=1

dz j

∫

([−h,h]N )2k

E

⎡
⎣

2k∏
j=1

(
eiz j ·X(t j )−eiz j ·X

′
(t j )

)∣∣∣∣ A

⎤
⎦

2k∏
j=1

dt j

≤ 22kγ
∫

(Rd )
2k

2k∏
j=1

dz j

∫

([−h,h]N )2k

e− 1
2 Var(

∑2k
1 z j ·U (t j ))

×
2k∏
j=1

|z j |γ h2kγ H h(2−H) ε3 2γ k
2k∏
j=1

dt j

= 22kγ h2kγ H h(2−H) ε3 2γ k
∫

(Rd )
2k

2k∏
j=1

|z j |γ dz j

∫

([−h,h]N )2k

e− 1
2 Var(

∑2k
1 z j ·U (t j ))

2k∏
j=1

dt j .

(5.2)

We emphasize that for the moment γ is not fixed.
It is here that we use the (non-strong) LND property of the process

{
U (t) : t ∈

[−h, h]N
}
, shown in Proposition 2 to obtain the bound

Var

⎛
⎝

2k∑
j=1

z j .U (t j )

⎞
⎠ ≥ Ck

2k∑
1

|z j |2 |t∗j |2H
,
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where |t∗j | = min
i 
= j

{|t j |, |t j − t i |}. So

∫

(Rd )
2k

e− 1
2 Var

∑2k
1 z j ·U (t j )

2k∏
j=1

|z j |γ dz j ≤
∫

(Rd )
2k

e− 1
2 Cn

∑ |z j |2(t∗j )2H
2k∏
j=1

|z j |γ dz j

=
2k∏
j=1

∫

Rd

|z j |γ e− 1
2 Cn |z j |2|t∗j |2H

dz j

= Ck,γ

2k∏
j=1

1

|t∗j |H(d+γ ) ,

for a universal constant Ck,γ .
Putting this in the above expression yields

E

[(
L X

0 ([−h, h]N )− L X ′
0 ([−h, h]N )

)2k
∣∣∣∣ A

]

≤ h2kγ H h(2−H) ε3 2γ k
∫

([−h,h]N )2k

2k∏
j=1

dt j

|t∗j |H(d+γ ) .

Now it follows easily that

∫

([−h,h]N )2k

2k∏
j=1

dt j

|t∗j |H(d+γ )

is bounded by Fk(hN−H(d+γ ))2k and so for some universal C ′
k,γ we have

E

[(
L X

0

(
[−h, h]N

)
− L X ′

0 ([−h, h]N )
)2k

∣∣∣∣ A

]
≤ C ′

k,γ

(
hN−d H

)2k
h(2−H) ε3 2γ k .

We may take γ to be any value between 0 and 1 so we have shown

Proposition 3 For X and X ′ as above and any integer k we have

E

[(
L X

0 ([−h, h]N )− L X ′
0 ([−h, h]N )

)2k ∣∣A
]

≤ C ′
k,γ (h

N−d H )2k h
ε
3 2k .

Corollary 1 For ε ∈ (0, 1), there exists a constant Cε so that for h sufficiently small

P

(∣∣L X
0 ([−h, h]N )− L X ′

0 ([−h, h]N )
∣∣ ≥ hN−d H

)
≤ Cε h2N .
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Proof We first apply Tchebychev’s bound :

P

(∣∣L X
0 ([−h, h]N )− L X ′

0 ([−h, h]N )
∣∣ ≥ hN−d H

∣∣A
)

≤ 1

(hN−d H )2k
E

[(
L X

0 ([−h, h]N )− L X ′
0 ([−h, h]N )

)2k∣∣A
]
.

By Proposition 3 with ε
3 2k > 2N and the bounds for P(A) furnished by Lemma 2 we

obtain the result. ��

6 Tail probabilities for L∗

In this section we show

Proposition 4 For C1.3 the constant of (1.6), we have

lim
x↑∞

− log P
(
L∗([0, 1]N ) > x

)

x
N

d H

= C1.3.

This is a reasonable result in the sense that for this order, there are essentially a poly-
nomial in x number of reasonable chances to obtain a large deviation for L∗([0, 1]N ).

The key lemmas, found in Xiao (1997) are

Lemma 3 (see Xiao 1997, Lemma 2.7) For γ > 0, ∃ β, α > 0 so that

P

(
|Lu

(
[0, 1]N

)
− Lv

(
[0, 1]N

)
| ≥ |u − v|β

)
≤ e−α|u−v|−γ .

We will apply the lemma with γ > N
d H .

Lemma 4 (see Talagrand 1995, Lemma 2.1; Xiao 1997, Lemma 3.1) There exists
C > 0 such that for x large

P

(
sup

s∈[0,1]N
|X(s)| ≥ x

)
≤ e−Cx2

.

Lemma 5 For each ε > 0 and C1.3 the constant of (1.6), there exists constant K < ∞
so that

∀x ∈ R
d , P

(
Lx

(
[0, 1]N

)
≥ y

)
≤ K e−y

N
d H C1.3(1−ε).

Proof Let W = Lx
([0, 1]N

)
and Z = L0

([0, 1]N
)
. Since the centred normal law

has its maximum density at 0, we have

EW n ≤ EZn, ∀n ≥ 1.
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Using (1.6) for n large, we can write for each ε > 0

P(W ≥ y) ≤ E[W n]
yn

≤ E[Zn]
yn

which for large n ≤ (n!)d H/N

yn(C1.3 − ε/100)
d Hn

N

.

The result follows by an appropriate choice of n given y as in Xiao (1997). ��
Corollary 2 ∀ γ > N

d H , ∃ k < ∞ so that for x ≥ 1

P

(
∃|u|, |v| ≤ xγ : Lu([0, 1]N )− Lv([0, 1]N ) > 1, |u − v| ≤ 1

xk

)
≤ ke−x

2N
d H
.

Proof It is enough to show that there exists a constant k so that the inequality holds
for x large.

Since the local times Lw
([0, 1]N

)
are continuous functions of the spatial variablew,

it is enough to show for D dense in [−xγ , xγ ]N outside a set of appropriately small
probability that

sup
u, v ∈ D

|u − v| ≤ x−k

Lu([0, 1]N )− Lv([0, 1]N ) ≤ 1. (6.1)

First we choose 2−(l+1) ≤ x−k < 2−l and consider

Vl = 2−l
Z

N ∩ [−2xγ , 2xγ ]N , l = k, k + 1, . . .

The event

sup
u, v ∈ D

|u − v| ≤ x−k

Lu([0, 1]N )− Lv([0, 1]N ) > 1

is contained in

⋃
u, v ∈ Vk

|u − v|∞ = 2−k

{∣∣∣Lu([0, 1]N )− Lv([0, 1]N )

∣∣∣ > 1

3

}

∪
⋃
v∈Vk

⎧⎨
⎩ sup

y∈D∩[v,v+2−k ]

∣∣∣L y([0, 1]N )− Lv([0, 1]N )

∣∣∣ ≥ 1

3

⎫⎬
⎭.

The first event has probability bounded by K 2k N e−x− 3N
d H for some finite K by

Lemma 3, if k is sufficiently large, which will be less than e−x
− 2N

d H

3 for x large.
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It remains to consider the second event. This is contained in

∞⋃
l=k

⎧⎪⎨
⎪⎩

sup
u, v ∈ Vl

|u − v|1 = 2−l

Lu([0, 1]N )− Lv([0, 1]N ) ≥ C

(l − k + 1)2

⎫⎪⎬
⎪⎭

for C = C(N ).
And so by Lemma 3 for some C ′ < ∞,

P

⎛
⎜⎝ sup

v ∈ Vk
u ∈ [v, v + 2−k ]

∣∣∣Lu([0, 1]N )− Lv([0, 1]N )

∣∣∣> 1

3

⎞
⎟⎠≤

∞∑
l=k

2Nl xγ N e−C ′((l−k+1)22l
)3N/d H

≤ e−x
2N
d H

3

if x is large. ��
Proof of Proposition 4 Given (1.6) it is only necessarily to derive the desired upper
bound for the probability. We show that the event

{L∗([0, 1]N ) > x} (6.2)

can be written as a union of events of appropriate probabilities.
First choose γ so that γ > N

d H . Let

A1 =
{

sup
s∈[0,1]N

|X(s)| > xγ
}
.

By Lemma 4, we have

P(A1) ≤ e−Cx2γ
.

Now choose k according to Corollary 2 and choose a collection of points x1, x2, . . . , x R
with R ≤ K2x N (k+γ ) for some universal K2 so that

sup
|y|≤xγ

inf
i

|y − xi | <
1

xk
.

Let

A2 =
{

sup
|y|≤xγ

inf |L y([0, 1]N )− Lxi
([0, 1]N )| > 1

}

123



Hölder properties of local times for fractional Brownian motions 149

and

A3 = {∃ i ≤ R : Lxi
([0, 1]N ) ≥ x − 1}.

Then we have by Corollary 2 and Lemma 5 that for x large

P(A2) ≤ ke−x
2N
d H and P(A3) ≤ K2x N (k+γ )e−x

N
d H C1.3(1−ε).

The result now follows from

{
Lx ([0, 1]N ) > x

} ⊆ A1 ∪ A2 ∪ A3

and the arbitrariness of ε. ��

7 Proof of Theorem 4

Given the results of Sects. 2 and 3, the proof of Theorem 4 is standard. We give the
proof for the interval [−1, 1]N but it will be evident from the proof that the extension
to general intervals is simply a notational exercise.

As is usual it will suffice to fix ε > 0 and to show that

lim sup
δ↓0

sup
B ⊆ [−1, 1]N

|B| = δ

L∗(B)
ψ(|B|) ≤ 1 + ε, (7.1)

where ψ(x) = x N−d H log
( 1

x

) d H
N
(

N
C1.3

) d H
N

, and

lim inf
δ↓0

sup
B ⊆ [−1, 1]N

|B| = δ

L∗|B|
ψ(|B|) > 1 − ε. (7.2)

We start with (7.1). Let σ � 1, in a manner depending on ε to be specified later.
Consider intervals of the form

I (i, σ, j) = [i(1 + σ)− j , i(1 + σ)− j + (1 + σ)− j ] for i ∈ σ

2
Z

N .

Let J ( j, σ ) be the collection of i so that I (i, σ, j) ⊂ [−1, 1]N . Obviously for some
constant K , |J ( j, σ )| ≤ K

σ N (1 + σ) j N .
Let A( j, σ ) be the event

⋃
i∈J ( j,σ )

{
L∗(I (i, σ, j)) ≥ ψ((1 + σ)− j )(1 + σ)

}
.
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Then, by stationarity of intervals,

P (A( j, σ )) ≤ K

σ N
(1 + σ) j N

P

(
L∗(I (0, σ, j)) > ψ(1 + σ)− j (1 + σ)

)

≤ K

σ N
(1 + σ)− j N ((1+ σ

2 )
N

d H −1).

Thus, by the first Borel-Cantelli lemma ∃ j0 = j0(w) so that for j ≥ j0, A( j, σ )
does not occur. This implies that for δ < (1+σ)−( j0+2) and V an interval in [−1, 1]N

of length less than δ, there exists an interval I (i, σ, j) containing V where σ ∈(
(1 + σ)−( j+2), (1 + σ)−( j+1)

)
.

By the positivity of local times

L∗(V ) ≤ L∗(I (i, σ, j)) ≤ (1 + σ)ψ((1 + σ)− j )

≤ (1 + σ)1+2(N−d H)ψ(δ)

≤ (1 + ε)ψ(δ) if σ was fixed sufficiently small.

For the inequality (7.2) we again fix σ << 1 (whose relation with ε will be fixed
later). We consider the intervals I (i, σ, j) as before but now with i ∈ (1 + σ)σ j

Z
N .

Denote by H(σ, j) the collection of i so that I (i, σ, j) ⊂ [−1, 1]N and i ∈ (1 + σ)+σ j

Z
N . It is clear that for some constant K > 0, |H(σ, j)| ≥ K (1 + σ)N (1−σ).
The point is that if K (i, σ, j) is the cube with side length (1+σ)− j (1−σ)

3 and the same
centre as I (i, σ, j) then the K (i, σ, j) are disjoint for i ∈ H(σ, j).

We suppose, enlarging the probability space if necessary, that we have white noises
Zi , i ∈ H(σ, j), independent of each other and of the underlying white noise W . We
define the comparison processes

Xi (t) = CN ,H

∫

K (i,σ, j)

(
1

|x − t | N
2 −H

− 1

|x | N
2 −H

)
dẆ (x)

+ CN ,H

∫

K (i,σ, j)c

(
1

|x − t | N
2 −H

− 1

|x | N
2 −H

)
d Ż i (x).

By the disjointness of the sets K (i, σ, j) and the independence of the white noises
Zi , the processes Xi are independent. We define the events

A(i, j) =
{

L Xi

Xi (t i )
(I (i, σ, j)) ≥ ψ(1 + σ)− j )(1 − ε)+ (1 + σ)− j )N−Hd

}
,

where t i is the central point of interval I (i .σ, j). By the definition of constant C1.3
and thus the function ψ , we have for all j large,

∀i, P
(

A(i, j)
) ≥ (1 + σ)− j N (1−ε/2)

123



Hölder properties of local times for fractional Brownian motions 151

Then, provided σ < ε/4 << 1, for j large

P

⎛
⎝ ⋂

I∈H(σ, j)

A(i, j)c

⎞
⎠ ≤ (1 − (1 + σ) j N (1−ε/2))K (1+σ)N j (1−σ) ≤ e−(1+σ) jε/4

.

But now consider the events

B(i, j) =
{∣∣∣L Xi

Xi (t i )
(I (i, σ, j))− L X

X (t i )
(I (i, σ, j))

∣∣∣ ≥ (1 + σ) j (N−Hd)
}
.

By Proposition 3, P(∪i B(i, j)) < (1 + σ) j N (1 + σ)−2 j N ≤ (1 + σ)− j N for j
large. So we have

P

(
sup

i
L∗(I (i, σ, j)) ≥ ψ((1 + σ)− j )(1 − ε)

)

≥ P

(
sup

i
L X

X (t i )
(I (i, σ, j)) ≥ ψ((1 + σ)− j )(1 − ε)

)

≥ 1 − P

⎛
⎝⋂

i

A(i, j)c

⎞
⎠− P

⎛
⎝⋃

i

B(i, j)

⎞
⎠.

This last bound is easily seen to be greater than 1 − 2(1 + σ)− j for j large.
Thus by the first Borel-Cantelli lemma we have a.s. for all j large

sup
B ⊂ [−1, 1]N

|B| = (1 + σ)− j

L∗(B) ≥ ψ(|B|)(1 − ε).

For general δ small enough we can find j so that δ ∈ [(1 + σ)−( j+1), (1 + σ)− j )

and so by monotonicity of local times we have (for δ small)

sup
B ⊂ [−1, 1]N

|B| = δ

L∗(B) ≥ ψ(|B|/(1 + σ))(1 − ε).

The result follows immediately from the arbitrariness of σ and ε.
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