The NERC Cluster Grid

Dan Bretherton, Jon Blower and Keith Haines

Reading e-Science Centre

www.resc.reading.ac.uk

Environmental Systems Science Centre University of Reading, UK

Outline of presentation

- What is a grid?
- Running climate models on HPC clusters belonging to other institutes
 - Climate models: Challenges for grid middleware
- G-Rex grid middleware
 - The climate scientist's view
 - The grid administrator's view
- The NERC Cluster Grid

STFC + Reading, Southampton and Oxford universities

Some grid related organisations

- NERC e-Science Centres
 - Reading e-Science Centre (ReSC) http://www.resc.reading.ac.uk/
 - National Institute for Environmental e-Science (NIEeS) - http://www.niees.ac.uk/
 - GridInfo: http://www.niees.ac.uk/grid_info.shtml
- e-Research South http://www.eresearchsouth.ac.uk/
- National Grid Service (NGS) http://www.grid-support.ac.uk/
- National e-Science Centre (NeSC) http://www.nesc.ac.uk/

A definition of "grid"

- From the NIEeS web site:
 - [A grid] "allows sharing of computing, application, data and storage resources".
 - "Grids...
 - cross geographic and institutional boundaries
 - lack central control
 - are dynamic
 - (computers join and leave in an uncoordinated fashion)."

Wide scope of grid computing

From Mike Mineter's presentation at NGS
 Application Developer's Course, NeSC Feb '07

Wide scope of grid computing

From Mike Mineter's presentation at NGS
 Application Developer's Course, NeSC Feb '07

Computational challenges of climate models

- Typical requirements
 - Parallel processing (MPI) with large number of processors (usually 20-100)
 - Long runs lasting several hours, sometimes days
 - Large volumes of output
 - Large number of separate output files

NEMO Ocean Model

- Main parameters of a typical 1/4° Global Assimilation run for one year:
 - Run with 80 processors
 - 48 hours per model year on a typical cluster
- Outputs 4 GB in 1000 separate files as diagnostics every 40 minutes
- Output for a one year run is roughly 300 GB, a total of 75000 separate files
 - But, disk quota on remote cluster is only 250 GB
- 50-year `Reanalysis` = 15 Tb

NERC climate community's grid middleware requirements

Background

- Many NERC institutes have their own HPC clusters
- Scientific collaborations benefit from sharing cluster resources
 - Scientists already doing this quite happily in traditional way
- The scientist's grid middleware requirements:
 - Deal with problem of small disk quotas on remote clusters
 - Minimal changes to scientific work-flow scripts
- The grid administrator's middleware requirements
 - Easy to set up and maintain
 - Minimal involvement of remote cluster administrators

G-Rex (Grid Remote Execution)

- Successor to Styx Grid Services
- "Light weight" middleware implemented in Java
 - Platform independent (but only tested on Linux)
- G-Rex server is a Web application
 - Runs inside a servlet container (only tested Apache Tomcat)
 - Allows applications to be exposed as Web services
- G-Rex client is command line program GRexRun
 - Behaves as if remote model were actually running on user's own computer
 - Remote model's output becomes output from GRexRun
 - Waits until end of model run before exiting

Deployment of a NEMO G-Rex service

NEMO service: SSH tunnel instead of open port

G-Rex features important to scientists

- Output transferred back to user during model runs
 - Job can be monitored easily
 - Defective jobs identified early avoids wasting CPU time
 - No data transfer delay at end of run
- Files deleted from server when transfer completed
 - Minimises accumulation of model output data
- GrexRun easily incorporated into existing scripts
 - GRexRun usually replaces mpirun
 - A typical GRexRun command to run NEMO model:

```
grexrun.sh http://user:passwd@host:port/GRex/nemo
input.tar.gz ORCA025
```

```
--drm-walltime 7:00:00 --drm-procs 81
```


Important for grid administrator - easy server installation and setup procedure:

Installation

Download tarball from Sourceforge and unpack

http://grex.svn.sourceforge.net/viewvc/grex/trunk/G-Rex

- Download and unpack Sun Java and Apache Tomcat
- Copy G-Rex/code/dist/G-Rex.war to Tomcat's webapps
- Talk to cluster's firewall admin. (SSH tunnel or open port?)

Setting up a service

- Write model launch script containing mpirun command
- Add a section in GRexConfig.xml for each service; specifies:
- (1) model launch script (2) input & output file patterns
- (3) expected and optional arguments (4) flagged options

NERC Cluster Grid

- 1600 processors in 5 clusters
 - (1) ESSC 64 processors (2) BAS 160 (3) PML 344 (4) POL 360
 (5) NOC 780
- G-Rex services
 - NEMO model: build and execution services
 - NEMO utilities: Data interpolation and aggregation
 - POLCOMS model: build and execution services
 - qstat (http://lovejoy.nerc-essc.ac.uk:8080/GridPortal/Portal)
 - qdel
 - Other services requests & suggestions welcome
- Ganglia load and performance monitoring system
 - See Web frontend: http://www.resc.rdg.ac.uk/ganglia/

Acknowledgement & Summary

- Thanks to NERC cluster admins. for interest and support of NERC Cluster Grid project
- Climate models produce lots of data
 - Usually much more than quota on other institutes' clusters
- G-Rex grid middleware has 3 key features:
 - Transfers output during runs, deletes from server
 - GRexRun easily integrated into scientific work-flow scripts
 - Web services easy to install and maintain
- NERC Cluster Grid 1600 procs, 5 clusters
 - G-Rex services for NEMO and POLCOMS

