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I Résumé
La  multiplication  des  catalogues  bibliographiques  électroniques  (archives  institutionnelles, 

catalogues  de  bibliothèque  ou  de  fournisseurs,  etc.)  met  à  la  disposition  des  spécialistes  de 

l'information documentaire de très grandes quantités de métadonnées qu'il s'agit de traiter en masse 

en vue d'objectifs  divers.  Une problématique importante  à ce niveau est  la  détermination de la 

similarité  entre  notices,  que  ce  soit  dans  une  optique  bibliographique  (décrivent-elles  le  même 

document ? Utilité pour la détection de doublons, l'étude du recouvrement entre collections...) ou 

plutôt thématique (suggestion de documents à l'usager,  mais aussi  gestion des contenus dans le 

cadre d'une politique documentaire locale ou en réseau, classification automatique de documents...).

Afin de répondre à ces besoins variés, nous proposons de créer un logiciel libre, multi-plateforme et 

flexible  permettant  l'implémentation  de nombreuses  stratégies  pour  la  comparaison des  notices. 

Dans une seconde phase, nous étudierons la pertinence et la performance de différents algorithmes 

face à une sélection de collections (taille, origine, type de documents décrits...).
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II Abstract
Due  to  the  multiplication  of  digital  bibliographic  catalogues  (open  repositories,  library  and 

bookseller catalogues), information specialists are facing the challenge of mass-processing huge 

amounts of metadata for various purposes. Among the many possible applications, determining the 

similarity  between  records  is  an  important  issue.  Such  a  similarity  can  be  interesting  from a 

bibliographic point of view (i.e., do the records describe the same document, the answer to which 

can be useful for deduplication or for collection overlap studies) as well as from a thematic point of 

view (suggestion of documents to the user, as well as content management within the framework of 

a library policy, automatic classification of documents, and so on).

In order to fulfil such various needs, we propose a flexible, open-source, multiplatform software 

tool supporting the implementation of multiple strategies for record comparisons. In a second step, 

we study the relevance and performance of several algorithms applied to a selection of collections 

(size, origin, document types...).
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III Introduction
In standard Library Information Systems (LIS), documents are represented by bibliographic records 

stored in standardized formats  (Rivier 2007, pp.60-65). Since the analogic documents themselves 

cannot be directly connected to the catalogue, they provide a compact description of the collection 

(containing  information  such  as  titles,  author  names,  subject  keywords,  abstracts,  physical 

description of material objects...), with which a user can interact more easily. With the advent of 

digital  libraries,  direct  access  to  documents  has  become  possible.  Nevertheless,  bibliographic 

records  have not  become useless:  they have been retained and generalized as metadata,  that  is 

structured digital data describing another digital object.

In the numerical era, it is trivial to observe that the duplication and communication of documents 

have become extremely simple, a quantum leap comparable with the one caused by the introduction 

of  the  printing  press  by  Gutenberg  in  Europe.  Of  course,  metadata  have  undergone  the  same 

mutation – a mutation made even easier by their structure and relatively small size, suitable for 

database applications. In the late 60s, the MARC (MAchine Readable Catalogue) standard for the 

representation of library records was established at the U.S. Library of Congress (Avram 1968), and 

soon  it  spread  to  many  libraries  worldwide.  As  integrated  library  systems  (ILS)  and  library 

networks evolved during the late 20th century, these records have become more and more openly 

available, first to other libraries and then to third parties and the general public – originally through 

more  or  less  user-friendly  online  catalogue  interfaces,  and  soon through more  direct  protocols 

allowing the retrieval of complete records for custom processing, such as Z39.50 and OAI-PMH2 

(Rivier 2007, pp.109-117). For librarians, it allows a rationalization of the cataloguing process: it is 

no  longer  necessary  for  each  library  to  enter  records  manually  for  documents  that  have  been 

catalogued somewhere else. For developers, it allows the creation of innovative applications based 

on a wealth of good-quality data.

The first application of record similarity determination is an almost immediate consequence of the 

above situation. Despite the advantage of harvesting records from others, there is still no central 

cataloguing authority. This means that the same document will frequently be catalogued by several 

independent sources (which could be libraries, institutional repositories, book or journal publishers, 

free  or  commercial  databases...),  yielding  similar  but  not  necessarily  identical  records.  If  we 

consider the ease of exchanging records, we see that the probability for one user of encountering 

two (or more) different records that actually describe the same document becomes significant. As 

long as we only talk about a few records at a time, it isn't a big deal and the human brain will notice 
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the  duplicates  easily  enough.  When we consider  thousands  or  millions  of  records,  we have  to 

recognize that despite its power, our distinguished organ is no longer up to the task. We need an 

automatic way to assess the similarity of two bibliographic records hidden among a large number of 

other bibliographic records, which can be useful for quality control or for comparative collection 

analyses. This problem is not new and various examples can be found in the literature, such as the 

Digital Index for Works in Computer Science (DIFWICS) (Hylton 1996), the QUALCAT project at 

the University of Bradford (Ridley 1992) and the creation of the COPAC union catalogue in Britain 

(Cousins 1998). It can be seen as a special case of the more general question of finding duplicate 

records in a database, which remains an active research topic today (Elmagarmid et al. 2007)

Another application of bibliographic similarity is information discovery. We would like to identify 

records that do not describe the same document, but rather documents similar to each other. One 

example  of  this  application  is  relevance  feedback  for  information  retrieval:  if  one  particular 

document has been selected as relevant by the user, the system will be able to suggest other similar 

documents with a reasonably high relevance probability. Another related example is information 

monitoring:  using  a  collection  of  records  representing  one's  needs,  it  is  possible  to  point  out 

automatically and periodically the most interesting documents amidst the torrent of new records 

offered by one or more information sources.

When it comes to similarity for information discovery, librarians can become users, too. In 1998, 

the International Federation of Library Associations and Institutions (IFLA) has proposed a new 

model of bibliographic description (IFLA 1998) called Functional Requirements for Bibliographic 

Records  (FRBR).  Broadly  speaking,  FRBR introduces  a  relationship between different  editions 

(called manifestations) of the same book (work or expression). The conversion to the new model of 

a large library catalogue, or a union catalogue for a library network, by human workers is not a 

project that library managers can hope to « sell » to the funding authorities – and probably not to 

librarians, either. The case for an automatic procedure is compelling (Freire et al. 2007).

If we broaden the scope, we can consider the collection not only as an ensemble of documents (or 

document representations) but as the ensemble of the subjects that they discuss. The analysis of the 

text elements of bibliographic records and their similarity from one record to the next provides a 

way of grouping documents according to their subject, in a pseudo-semantic way, and reveal the 

structure of the collection - which can be as large as an entire scientific field if a good specialized 

database or  subject  repository exists  -  with respect  to  its  information content.  There are  many 

possible goals to this grouping: automatic classification (an interesting application even for non-

digital  libraries),  clustering of  displayed  records  as  an  alternative  to  the  standard  (and  often 
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unattractive) interfaces of library catalogues and bibliographic databases), etc.

Turning back to a more literal similarity but looking beyond the bibliographic records to examine 

the digital documents as well, we find another important application: the detection of “plagiarism 

and covert multiple publication of the same data [that] are considered unacceptable because they 

undermine the public confidence in the scientific integrity” (Errami et al. 2009). Errami et al. wrote 

a text similarity based tool able to flag this kind of practices in the biomedical domain using the 

MEDLINE database (Medline 2007). An other plagiarism detection study using text similarity was 

conducted  on  the  arXiv.org  collections.  It  is  based  on  the  sentence  composition  of  fulltext 

documents (Sorokina et al. 2006). In the Swiss academic community, this topic is also a concern. 

For example, the universities of Geneva (Bargadaà 2008) and Lausanne, as well as EPFL (Bogadi 

2007) and the University of Zurich (ATS 2008) have publicly announced an anti-plagiarism policy. 

Various  plagiarism detection tools exist. All of them require a lot of computing power and a vast 

knowledge base.  So much so that institutions often choose commercially hosted solutions (like 

Turntin1, Compilatio2, or Ephorus3). There are of course open source academic plagiarism detection 

alternatives  like  Copy  Tracker4 and  free  of  charges  services  like  Plagium5,  SeeSources6 or 

eTBLAST7. These tools need to access a huge quantity of data because they face plagiarism in all 

academic fields.  To do so they seem to rely commonly on the powerful infrastructures of web 

search engines, and sometimes well structured metadata. For example, Plagium uses Yahoo's API, 

and eTBLAST is taking advantage of MEDLINE's metadata.

In this project, we have used the Python programming language to develop a flexible, open-source, 

multiplatform software  tool  supporting  the  implementation  of  multiple  strategies  for  automatic 

MARCXML  record  comparisons.  We  extracted  sample  data  sets  from  several  real-world 

collections,  namely  the  CERN Document  Server  (CERN 2009),  the  RERODOC digital  library 

(RERO 2009) and the ETH e-collection (ETHZ 2009). We demonstrate the application of our new 

tool for the detection of duplicate records: several detection strategies were used to identify artificial 

near-duplicates  added  to  our  test  collections.  Other  applications  like  information  monitoring, 

plagiarism detection, and visualization of collections in the form of graphs have also been briefly 

tested.

1 http://turnitin.com/  
2 http://www.compilatio.net/
3 http://www.ephorus.com  
4 http://sourceforge.net/projects/antiplag/    , http://copytracker.ec-lille.fr
5 http://www.plagium.com  
6 http://seesources.com/  
7 http://invention.swmed.edu/etblast/  
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IV Technical section

IV.1 MARCXML

MARCXML is an XML (eXtensible Markup Language) representation of the classic MARC format 

for library records  (Avram 1968).  The general  structure of the data  is  shown in  Figure 1.  It  is 

thoroughly described in an XML Schema hosted by the U.S. Library of Congress (LoC 2009). The 

top-level node is called collection, with any number of record nodes as children.

collection

(set of bibliographic records)

record record

controlfield
 tag= ”001”

controlfield 
tag=”005”

datafieldtag= ”123 ”
 ind1=”7” ind2 =”8”

datafieldtag=”456”

ind1=”9” ind2=” ”

subfield code=”a” subfield code=”z”

Figure 1: Tree structure of MARCXML collections.

Each record contains various  controlfield and datafield nodes. Both node types have a mandatory 

tag attribute with a 3-digit code. Furthermore, data fields carry two mandatory 1-character attributes 

ind1 and  ind2 (the attribute character can also be a space) and can contain zero or more  subfield 

nodes, with a 1-character code attribute. Only control fields and subfields contain actual character 

data, the difference being that control fields, limited to a few applications, contain only one single 

data  element  or  a  series  of  fixed-length  elements  (LoC  2008), whereas  subfield  content  is 

essentially  free-format  text  (barring  cataloguing  rule  constraints,  of  course).  The  cataloguing 

conventions assign a tag/ind1/ind2/code to a particular usage, such as 245/ / /a (spoken as 245$a by 

librarians) for the main title of a document.

For the sake of convenience, in the following text, we will call a field any MARCXML node able to 

contain actual data (controlfield or subfield).

IV.2 Text similarity and information retrieval models

Although  MARC  records  contain  highly  structured  data,  whose  natural habitat  is  the  library 

catalogue  database,  a  database-like  approach  is  not  always  the  best  way to  process  them.  For 
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example, as mentioned previously, MARC subfields contain free-format text, only limited by the 

cataloguing rules (with many variants and highly variable respect from the users) or the controls 

enforced by the cataloguing tool interface (quite variable as well). Thus one cannot always count on 

any field to contain anything more specific than text (such as numbers or dates), regardless of what 

the cataloguing rules say. Consequently, it can be useful to consider all kinds of text-comparison 

algorithms for the task of matching two records. A number of such methods have been developed 

along  the  years,  starting  with  the  simplest  character-to-character  comparison,  followed  by 

wildcards, fuzzy matching  (Navarro 2001), regular expressions  (Friedl 2006), and so on. These 

examples are of course just a short selection among many others, and an exhaustive list is certainly 

not our goal. In this work, we want to evaluate information retrieval methods. Broadly speaking, 

information retrieval can be defined as “[...] finding material (usually documents) of an unstructured 

nature (usually text) that satisfies an information need from within large collections (usually stored 

on  computers)”  (Manning  et  al.  2008,  p.1) Such  methods  are  normally  intended  to  find  the 

documents of a collection that provide the best possible match to a user-supplied query, based on 

statistical  properties  of  the document  content.  However,  the query itself  can also be seen  as  a 

document in its own right. This is where information retrieval meets our purpose: we will consider 

MARC records and their subfields as queries performed over a set of records from one or several 

collections.

IV.2.1 The Boolean model

In this information retrieval model, queries are expressed by a series of terms, which can be either 

words for which the system will search, connected by logical operators (the AND operator being an 

implicit default in general).  The system will analyse this query and retrieve the documents that 

contain the specified words, very much like a relational database. Depending on the operators used 

in the query, the system might have to retrieve intermediate result sets and calculate combinations: 

unions, intersections, differences. If the system is designed to support structured data, the user can 

specify  in  which  data  field  one  particular  term should  be  found  (a  typical  example  would  be 

author:Einstein AND year:1905).  More  elaborate  systems  will  also  understand  an 

extended  operator  vocabulary,  with  keywords  such  as  NEAR indicating  the  proximity  of  the 

connected terms in the requested documents.

This model gives the user a great deal of control over his query. However, the average user is rarely 

able  to  take  advantage  of  this  control,  due  to  the  non-intuitive  character  of  Boolean  logic. 

Furthermore,  it  is  extremely  sensitive  to  the  presence  or  absence  of  terms  in  the  query  and 
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documents. Documents that  match the query only partially will be completely neglected by the 

system, and spelling errors will have a serious impact on the results. Furthermore, the standard 

Boolean  system doesn't  provide  any way to  sort  the  resulting  documents  with  respect  to  their 

expected usefulness to the user (relevance ranking). In the hands of an inexperienced user, Boolean 

information retrieval systems will frequently return a huge number of hits with no clear usefulness 

(excessive recall in the case of too general a query) or no hits at all (if the query is too specific).

Although these inconveniences can be solved in part by assigning weights to the terms (Bookstein 

1980), in the so-called hybrid Boolean model (Savoy 1997), we see that the Boolean approach is not 

a good choice for our project. The terms of the queries will be largely out of our control since the 

field contents are given by the collection, and a rigid character string comparison are not suitable 

for some applications.

Wildcards and fuzzy searches

As mentioned in the above section, the variable form of words in natural text can be a problem for 

information retrieval systems. Such variations can be due to spelling errors, spelling variants (UK 

versus US English, spelling reforms in various countries) or even grammatical inflections  (singular 

versus plural  forms, case declensions in some languages,  etc.).  In order to retrieve the relevant 

documents regardless of such variations, the system needs to account for them in some way. Since 

this is likely to happen in our collections and play a role in our applications, we will briefly discuss 

a few examples and their possible use in our project.

In text documents, some writing systems will induce a variation of the script symbols, which may 

be reflected in the computer character encoding or not. An obvious example is the upper-case versus 

lower case form of the Roman (as well as Cyrillic and Greek) letters. In the current project, we will 

mostly deal with Western European languages so changing all text to lower case will be sufficient. 

However, should the program be used for languages using non-Roman alphabets, some parts of the 

code will have to be modified to deal with their specificities.

We have to mention wildcards due to their frequent availability in database systems. These special 

characters are inserted in the query to represent either one or several unspecified characters. Thus 

they can be used to represent words in a generalized form, accounting for spelling or grammatical 

differences – as long as these differences are not too large: the liberal use of wildcards in a query 

can easily lead to a serious loss of precision (c*t will match cat, cut, court, covenant...). As in the 

case of Boolean and proximity operators, this feature will not be used in our project.

A quantitative evaluation of the difference between two character strings is provided by the  edit  
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distance, that is the minimal number of characters that need to be modified (added/subtracted or 

substituted) to the first in order to obtain the second (Levenshtein 1966). If the distance between 

two strings  of  similar  lengths  is  much smaller  than the length of the shorter  string,  one might 

suppose that they are equivalent (thus a few spelling errors in a text will  be overlooked).  This 

method is currently used in various library applications, such as the open-source Greenstone digital 

library software (Greenstone 2009) - thanks to the underlying Lucene search engine (Apache 2009).

The  spell-checking  capability  of  the  Levenshtein  distance  makes  it  an  attractive  tool  for  our 

similarity engine, as we expect to observe relatively small distances when looking for duplicate 

records. We note that more tolerant techniques exist if one expects a high level of errors, such as the 

Soundex  method  (Knuth  1998,  p.394) (useful  for  people  names  typed  from  “noisy”  sources: 

handwritten text, phone calls...).

Grammatical  variations  can  be  taken  into  account  though  word stemming or  lemmatization 

(Manning et al. 2008, pp.30-33). These techniques will reduce inflected words to a simple invariant 

form (stem) before they are used for comparison or matching, which makes the query less sensitive 

to the syntax of the documents and more to their semantic content. Obviously, these techniques are 

language-dependent. For English, the best-known example is Porter's stemmer (Porter 1980), which 

is based on the empirical removal of suffixes. At this point, we have not included any such features 

in the program but adding it should be straightforward since a Python implementation is available 

from the reference web site (Gupta 2008).

IV.2.2 The vector model

Introducing the vector model

In the Boolean model, a document may either be match or not match at all by a query. There is no 

finer distinction than that. This is not appropriate in many situations (Manning et al. 2008, p.100). 

For example, a query like “pollution AND city AND environment AND co2 AND 

nox AND bicycle AND bus AND car AND train” will not match a document, even if 

just one of those syntagms is absent. It is obvious that the document could still be relevant to the 

query.  This flaw is crippling in our context because instead of trying to match relatively small 

queries to documents fields often of similar sizes are compared (like abstracts, titles). A dreadfully 

low recall would follow. Fortunately, the vector model solves this weakness by taking into account 

the similarity of the weights of each terms respectively in the query and in the documents. 
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Weighting

The weighting is based on the terms frequencies (tf), which are generally improved in two ways. 

The first improvement of the weight computation consists in getting rid of the effect produced by 

the  document  size  on  the  absolute  term  frequency.  The  weight  becomes  the  normalized  term 

frequency (ntf). There are plenty of variations to calculate this, like for example, simply dividing 

each term frequency by the total number of terms in a document. However, we retained a more 

sensitive approach:

ntf d ,t=
tf d ,t

maxdtf d ,t
(1)

Where ntf is the normalized term frequency, tf is the frequency in a given document, the indices d 

and  t refer respectively to document and term. This formula is a simple case of the well studied 

technique of maximum tf  normalization (Manning et al. 2008, p.117)

The second way to improve the weight computation consists in taking into account the fact that 

some  terms  are  less  important  than  others.  For  example,  in  a  collection  about  the  Python 

programming language, even if the term 'Python' will probably be well represented in documents, it 

will have no discriminating power at all. In addition, the most frequent words (first ranks in the Zipf 

distribution)  of  natural  language  documents  are  generally  function  words that  have  little  or 

ambiguous meaning (Rivier 2007). In other words, the normalized term frequency may be improved 

by balancing it with the  normalized inverse document frequency (nidf). Again, there are several 

ways to calculate this quantity. We retained a common and efficient one that is using a logarithm to 

sharpen the desired effect on the weight.

nidf t=ln 
N
df t

 (2)

Where:  nidf is the normalized inverse document frequency,  N is the number of documents in the 

collection,  dft refers to the frequency of documents containing the term  t (Manning et  al.  2008, 

p.108)Finally,  these  two  improvements  on  weight  computations  are  combined  in  the  tf-idf , 

respectively  ntf-nidf approach. The  ntf-nidf weight is simply the multiplication of the normalized 

term frequency (ntf) by the normalized inverse document frequency (nidf).

wdt=ntf d , t∗nidf t (3)

Vector space scoring and similarity

This operation consists in using each terms weight in a document and a query to produce a score, 
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representative of the similarity between document and query. This score is preferably normalized in 

the [0..1] interval for further use. The query terms weights and the document terms weights can be 

assimilated to vectors whose dimension equals the number of terms. After that, various methods for 

comparing or matching these vectors exist,  and studies  shown that  “no algorithms or approach 

distinguished  itself  as  being  greatly  superior  to  the  others”  (Noreault  et  al.  1981,  pp.60-61). 

Generally,  the  assumption  that  the  terms  are  independent,  or  orthogonal  in  linear  algebra 

terminology,  is  made.  It  is  the case of  the three vectorial  similarity  measurements  used in this 

project. This was however criticised (S. K. Wong et al. 1987).

In the following formulas:  w symbolises weights,  d a document,  q a query,  t a  term and  T the 

number of terms in the query.

Salton's cosine

Because we are dealing with vectors it seems almost a natural solution: as the angle between the 

vectors  tends  to  0,  the  cosine similarity  will  approach 1.  On the other  hand if  the  vectors  are 

orthogonal the similarity will be 0. Algebraically it is expressed by the following formula (Lewis et 

al. 2006):

cosinus=
∑
t=1

T

wqt wdt

∑
t=1

T

wqt
2∑

t=1

T

wdt
2

(4)

Dice

Following a set-like approach, the Dice similarity measure (Lewis et al. 2006) represents the ratio 

of the intersection of two sets over their union. As the elements belonging to the intersection of the 

sets are taken twice into account in the denominator, the numerator is multiplied by two in order to 

compensate. 

Dice=
2∑

t=1

T

wqt wdt

∑
t=1

T

wqt
2
∑

t=1

T

wdt
2

(5)

Jaccard

The  Jaccard  measure  is  a  bit  similar  to  Dice's  (Lewis  et  al.  2006).  In  opposition  to  the  Dice 

equation, where the intersection was taken twice into account in the denominator, the Jaccard model 

subtracts this intersection, so that it is not necessary to multiply the numerator by two.
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Jaccard=
∑
t=1

T

w qt w dt

∑
t=1

T

wqt
2
∑

t=1

T

w dt
2
−∑

t=1

T

wqt wdt

(6)

IV.2.3 The probabilistic models

The goal  of  probabilistic  information  retrieval  models  is  to  rank documents  according  to  their 

relevance to a user's needs (Crestani et al. 1998). In order to achieve this goal, they require sound 

foundations based on formal probability and statistical theories and efficient ways to evaluate said 

relevance probabilities.

The basic justification of probabilistic models for information retrieval is the Probability Ranking 

Principle  (Robertson  1977),  according  to  which  an  information  retrieval  system  will  perform 

optimally when documents are sorted in order of decreasing probability of relevance to a user's 

needs, based on the available information. This is of course trivially true when perfect information 

is  available,  that  is  when  yes/no  relevance  judgements  are  known  for  all  documents  in  the 

collection: if the full collection is shown in the output, retrieving first the relevant documents and 

then the irrelevant ones is obviously the best possible way to present the results. In practice, the 

available  information  about  the  documents  and  the  user's  needs  will  always  be  incomplete. 

Expressing the user's need by a specific query and matching this query not with the documents but 

with metadata representations is just one cause of this incompleteness (Fuhr 1992), but certainly not 

the only one. Nevertheless, one can demonstrate without perfect knowledge the Probability Ranking 

Principle still holds for arbitrary documents. For example, let us assign a cost Cr to the retrieval of a 

relevant document and a higher cost  Ci to the retrieval of an irrelevant document (implying some 

kind of penalty when making the wrong decision). If we write the probability of document d with 

respect  to  query  q as  P(R/q,d),  we  can  express  the  rule  for  deciding  to  retrieve  one  specific 

document dk at a given point in the enumeration of the collection as:

C r P R /q ,d k C i1−P R/q ,d k ≤C r P R/q ,d jC i1−P R/q , d j (7)

for any document  dj that has not yet been retrieved, so as to minimize the expected cost. This is 

equivalent to:

C r−C iP R/ q , dk ≤C r−C iP R /q , d j (8)

And since Cr < Ci the rule becomes:

P R/q ,d k ≥P R /q ,d j (9)
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The challenge in probabilistic information retrieval models is to estimate these probabilities with 

sufficient accuracy, and several increasingly sophisticated approaches have been proposed in the 

past thirty years. Reviewing them all has been the subject of various articles (two of which have 

been cited earlier), and is beyond the scope of this report.  We will only briefly present what is 

perhaps  the  most  simple  probabilistic  model,  and  show  how  some  formulas  used  by  other 

information retrieval models can arise naturally from the probabilistic foundations (Manning et al. 

2008, pp.204-209).

With no loss of generality, we can replace the probability of relevance by the odds of relevance and 

rearrange probabilities using Bayes' theorem P(a/b) = P(b/a) P(a)/P(b):

OR /q ,d =
P R/q , d 
P  R/q , d 

=
P R/q 
P  R/q 

P d /R , q
P d / R , q

(10)

The first fraction is the odds of relevance for a given query and does not depend on the document. 

For pure ranking purposes, we can then neglect it. We now represent the document by a vector of 

binary numbers  dt = {0; 1} indicating the presence or the absence of term  t in document  d. The 

Binary Independence Model rests on the assumption that the terms contribute independently to the 

probability of relevance:

P d /R ,q
P d / R ,q

=∏
P d t /R ,q

P d t / R ,q
=∏

P d t=1/R , q

P d t=1/ R , q
∏

P d t=0 /R ,q

P d t=0 / R ,q
(11)

Let us define pt = P d t=1/R , q  and ut = P d t=1/ R , q , the probabilities of finding t in a 

relevant and in and irrelevant document, respectively. At this point, any value of t is allowed, so the 

expression remains somewhat inconvenient. We can simplify it greatly if we assume that terms not 

found in the query are as likely in relevant as in irrelevant documents. With this assumption, the 

product we need to evaluate becomes:

∏
t∈q∩d

p t

u t
∏

t∈q−d

1− pt

1−u t
(12)

where the first product runs over terms found in both the query and the document and the second 

one  over  terms  found  in  the  query  but  not  in  the  document.  We  can  make  the  second  part 

document-independent, and thus constant for a given query and negligible for ranking purposes, by 

simultaneously multiplying and dividing by (1 -  pt )/(1 – ut) for all terms found in both the query 

and the document, so that for all of these we need to evaluate the following:

pt

1−p t

1−ut

u t
(13)
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By taking the logarithm, we turn our product into a sum over all  query terms and the ranking 

function is finally

f =∑ log 
pt

1−p t

1−ut

ut

=∑ log 
p t

1− p t

log 
1−u t

u t

 (14)

Let us suppose that the number of relevant documents will be small with respect to the size of the 

collection. The irrelevant documents will then have essentially the same statistical properties as the 

whole collection and ut will be approximately equal to the document frequency of term t, divided by 

the total number of documents, N. Hence, if the term is not too frequent in the collection, we find:

log 
1−ut

ut

≈log 
N −df t

df t

≈log 
N
df t

 (15)

which justifies the use of the normalized inverse document frequency that we have already seen. We 

will not go further into the details.

In this project, we have implemented one probabilistic ranking function, based on the Okapi BM25 

weighting scheme  (Sparck Jones et al.  2000a) (Sparck Jones et al.  2000b). It uses a parametric 

formula  taking  into  account  the  frequency  of  the  query  terms  in  both  the  query  (tfq) and  the 

document (tfd), as well as the document length Ld: (Manning et al. 2008, p.214)

BM25=∑
t

log 
N
df t


k11 tf d

k 11−bb
Ld

Lav

tf d

k31 tf q

k 3tf q (16)

Lav is  the  average  document  length  in  the  collection  and  b a  scaling  parameter.  The  k1 and  k3 

parameter can be adjusted to optimize the performance of the system for a given collection, by 

tuning the importance of the query and document term frequencies in the evaluation.

IV.2.4 Global similarity computation

The methods presented above describe ways to  obtain similarities  by comparing  fields.  In  this 

project we want to compare records. There are of course an infinity of possibilities to combine the 

similarities  resulting  from  individual  fields  comparisons  into  a  global  value.  We  implemented 

several methods in our program, which we will present later on.

IV.3 Analysis of similarity output

IV.3.1 Sorting

A simple way to analyse similarity output is to sort the result in decreasing similarity order. In a 
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deduplication context, the most interesting candidates will then be found at the top of the output.

IV.3.2 Clustering

In the case of important sets of results with high and significant similarities the mere sorting may 

not be sufficient. For example, a high number of similar records might be better presented as groups 

rather than as a long list of uncorrelated pairs. This is where clustering becomes useful. This method 

also allows to represent graphically browsable results. Clustering consists in the fragmentation of a 

set of documents into subsets of similar documents called clusters. There are two types of clustering 

methods: a hierarchical approach and a heuristic approach, the later being faster but often of lesser 

quality than the former  (Manning et al.  2008, pp.321-368).  This project is based on the Python 

programming language and both kinds of clustering tools are already available in that context.

IV.4 The Python programming language

Python is an universal and efficient high level programming language. Universal, because it runs on 

most  operating systems and offers a  broad range of modules covering extensively all  fields  of 

computer sciences. Efficient, as well in its unique syntax as in its execution speed. 

Python has already found important applications in information retrieval. For example, Google uses 

it  extensively.  In fact  Guido van Rossum, the creator  of  Python is  currently  employed by that 

Mountain View company8.

Due to its specificities, it is ideal in the context of this project. The following language capabilities 

retained  our  attention  in  the  perspective  of  realising  this  project.  Many  of  the  following 

informations were found in (Lutz 2008, pp.3-20) and in (GNU Linux Magazine 2009) :

Portability: Python runs on and is generally included by default in major operating systems (Linux, 

SOLARIS / OpenSOLARIS, FreeBSD, OpenBSD, Darwin / MacOSX, Silicon Graphics IRIX, IBM 

AIX) and it is easy to install on Microsoft Windows. It is also available for many other systems like 

QNX, OS/2, BeOS, AROS, Windows CE, Symbian, Playstation, etc.9 

Syntax: This work involved a lot of prototyping and Python excels at that because its syntax is very 

expressive and synthetic, almost to the level of pseudo code. Furthermore, since indentation is used 

to  define logical  blocks,  a very clean style  of programming is  imposed,  which is  ideal  for the 

developers collaboration.  Among Python's useful syntactic features, we can mention  dictionaries 

(sometimes known as  associative  arrays in  other  programming languages).  Python dictionaries 

8 See: http://en.wikipedia.org/wiki/Guido_van_Rossum
9 http://www.python.org/download/other/  
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make it very easy to define database-like structures where an object can be accessed by means of a 

non-numeric key. An obvious application for our project is the retrieval of the frequency and inverse 

document  frequency associated with a given term.  Another  important  feature is  that  except  for 

reserved keywords, all program elements are computable objects whose members and methods are 

available to the programmer. This includes functions, which is instrumental in giving our program 

its flexibility.

Modularity: As mentioned previously, the nature of this project requires a great deal of modularity. 

Python is  highly modular  and makes  it  positively  easy to  create,  import  and  use  modules  and 

packages. Many high-level functionality are included in the standard modules library10 which ships 

with the interpretor, and are sufficient for the core of this similarity framework. The possibility to 

rely only on the standard library for this framework's core functionalities simplifies its deployment 

and  distribution.  In  addition,  Python's  impressive  external  modules  collections  (see  the  Python 

Package Index11), is also an asset in the perspective of developing advanced applications on top of 

the framework. For example, the ability to pilot Open Office12 is useful to extract text from most 

office files  in order  to  work on full-text  similarity.  An other  example is  NeworkX, a  powerful 

« package for the creation, manipulation, and study of the structure, dynamics, and functions of 

complex networks »13.  This is of course appropriate for analysing the similarity output files. To 

further this analysis, plenty of scientific packages are available, for instance matplotlib14 (a Matlab 

like tool) focusses on matrix manipulation. For purely statistical purposes, the rpy15 package allows 

to use GNU R-project resources from Python. 

Speed: The number of records comparisons required to analyse a collection increases dramatically 

with  the  records  cardinality,  and  bibliographic  collections  tends  to  be  big  and  become  huger. 

Clearly, speed is a central concern in our context. Python may seem to be quite slow compared with 

a  compiled language,  even  if  it  is  a  fast  interpreted  language.  However,  it  allows many speed 

optimisations. Of course, the clear programming style helps the programmer to make high level 

code  adjustments  to  yield  speed  optimisations.  Further  more,  a  formal  optimisation  can  be 

conducted on the basis of Python profiling tools16. In addition, Psyco17, an automatic speed enhancer 

(comparable with Just-in-Time compilers used for other interpreted languages) is available. Critical 

10 http://docs.python.org/3.1/modindex.html  
11 http://pypi.python.org/  
12 http://wiki.services.openoffice.org/wiki/Python  
13 http://networkx.lanl.gov/  
14 http://matplotlib.sourceforge.net/  
15 http://rpy.sourceforge.net/  
16 http://docs.python.org/library/profile.html  
17 http://psyco.sourceforge.net/  ]
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code may also be written in C: the principal Python interpreter is written in C as well as many 

modules (standard library and external). Fortran might also be used thanks to pyfortran18. 

Existing bibliographic applications:  Python is  used in a number of bibliographic open source 

applications: CDS Invenio19 (an Integrated Library System developed at CERN), PyBibtex20 (an 

improvement  over  BibTeX),  Bibus21 (references  mangagment  software),  PyBliographer22 

(bibliographic data manaement), Comix23 and Calibre24 (ebooks reading and management). The use 

of Python for the constitution of this framework might create synergies with some of theses projects 

in the future.

Multi-paradigms: object-oriented and functional programming are both fully supported. They can 

even be mixed within one script (it is not recommended). This project is almost entirely based on a 

functional programming approach (except for the XHTML and XML generation library used by 

several  applications).  Anyway,  object  oriented  methods  might  become  useful  in  the  future,  in 

particular to abstract interactions with SQL databases using an object relational mapper (ORM) like 

SQLAlchemy25 (several ORMs are available in Python). 

Web oriented : further developments of this project may lead to or become linked with existing 

web-based  applications.  For  starters,  web  based  GUIs  would  be  useful  because  they  are 

straightforward  to  implement,  cross-platform  and  easy  to  access  remotely.  Secondly,  libraries 

generally tend to strengthen their presence on the web. In that regard, Python is well equiped for 

web development. It is much faster than PHP (GNU Linux Magazine 2009), and offers modern and 

efficient web frameworks based on the view-model-controler (VMC) principles and using object 

relational mapping (ORM),. Two popular examples are Django26 and Zope27. By the way, Python 

comes with built-in HTTP service functionalities,  useful to build cross-platform Graphical User 

Interfaces  (GUIs).  Finally,  Python  works  well  with  the  popular  Apache2  web  server  via 

mod_python28 or mod_wsgi29.

18 http://sourceforge.net/projects/pyfortran/  
19 http://cdsware.cern.ch/invenio/  
20 http://pybtex.sourceforge.net/  
21 http://bibus-biblio.sourceforge.net/  
22 http://pybliographer.org/  
23 http://comix.sourceforge.net/  
24 http://calibre.kovidgoyal.net/  
25 http://www.sqlalchemy.org/  
26 http://www.djangoproject.com/  
27 http://www.zope.org/  
28 http://www.modpython.org/  
29 http://code.google.com/p/modwsgi/  
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V The MarcXimiL similarity framework
The name MarcXimiL was chosen to  underline this  tool's  function (similarity  analysis)  and its 

native input format (MARCXML).

V.1 Framework licencing and availability

The MarcXimiL framework is placed under the free and open source GNU General Public Licence 

3.0 (GPL 3.0)30. The framework's website is hosted by SourceForge, and its source code may be 

downloaded from there: http://marcximil.sourceforge.net

V.2 Framework portability

Currently,  the following versions  of Python are  supported:  2.4.x,  2.5.x,  2.6.x,  3.0.x,  3.1.x.  The 

framework's core has been tested on several operating systems with success: Linux (Ubuntu 9.04 , 

SuSE  10.0),  Solais  (OpenSolaris  2009.06  [OS  5.10]),  MacOSX  (10.5.7),  Windows  (XP-SP2, 

Seven).  On  all  these  systems  MarcXimiL works  out  of  the  box  and  with  these  OS's  default 

configuration, except on Windows in witch it is necessary to install Python.

This broad portability was possible because no other requirement than a basic Python installation is 

mandatory  for  the  framework's  core.  MarcXimiL  should  also  run  on  many  other  platforms, 

whenever  a  supported  version  of  Python  has  been  ported  on  them.  MarcXimiL  was  mostly 

developed on Ubuntu 9.04 using both Python 2.6.2 and 3.0.1.

V.3 Framework installation

V.3.1 Basic installation

Unpack the archive......done. All the core functionalities will work. No further setup is required.

NB: Windows users should download and install Python first: http://www.python.org/download/

V.3.2 Additional tools

The demonstration tools build on top of the framework are not as portable as the core for two 

reasons:

1. These  are  all  in  early  stage  of  development,  often  unstable,  and  only  provided  as  an 

illustration  of  the  possible  uses  of  MarcXimiL.  Generally,  their  portability  could  be 

improved a lot.

30 http://www.gnu.org/licenses/gpl.html  
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2. Some of these tools use modules that do not exist for all Python versions and/or platforms.

3. Python 3.x compatibility was privileged when possible in perspective of the future.

4. POSIX compliant systems were privileged over Windows.

The following table sums up the compatibility of the different tools coming with this framework:

Table 1: MarcXimiL compatibility

Component Description Supported OS Suported Python

Core – similarity.py Similarity analysis All:Linux, Mac, 
UNIX, Windows

All: >= 2.4.x
and 3.x

Core – batch.py Perform batch similarity analyses  Same as above  Same as above

Core – sort.py Sort and truncates the outputs  Same as above  Same as above

Core – colldescr.py Performs a statistical analysis of a collection  Same as above  Same as above

Core – oai.py OAI-PMH2 metadata harvesting  Same as above  Same as above

Core – text2xmlmarc.py Converts  VTLS  Virtua  text  MARC  to 
MARCXML.

 Same as above  Same as above

enrich.py (prototype) « More litke this » calalog enhancement  Same as above  Same as above

monitor.py (prototype) Infomation monitoring - using Invenio.
(downloading, analysing, presenting)

Linux 3.x

plagiarism.py (prototype) Managing knowledge base and detection. Linux >= 2.4.x (not 3.x)
Requiered:  UNO, 
OpenOffice, xpdf

visualize.py (prototype) 2D Graph generaion (output analysis) Linux >= 2.4.x (not 3.x), 
NetworkX

semantic.py (prototype) MARCXML  semantic  relations  editor  to 
create graphs with visualize.py

Linux 3.x

All these tools will work on Ubuntu 9.04. To install the required dependencies in one go just type in 

a shell (the right version of Python is selected automatically at execution):

 sudo apt­get install xpdf python­uno python­networkx python­matplotlib python3

On Windows, it is also possible to install several version of Python simultaneously and select the 

suitable version for each tool. This may be done by editing the .bat files and indicating within them 

the path of the desired interpreter (these files may be found in ./bin/windows.zip).

V.4 Framework structure

V.4.1 An introduction to this application's core structure

The programs structure reflects the determination to achieve three main goals:

1. portability made easy (automatic adaptation to the OS and Python version)
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2. simplicity of installation (installation is limited to unpacking the archive)

3. modularity (flexibility at all levels, whenever it is reasonably possible)

Portability was achieved by coding in a way that is supported as well in Python 2 and 3. Because 

Python 3 differs a bit from Python 2, a few version specific pieces of code had to be produced, and 

these are selected automatically as the Python version is detected at runtime. Older versions than 

2.4  are  not  supported,  because  of  the  lack  of  built-in  set  functionalities  that  are  vital  for  this 

application. 

The broad OS support is quite straight-forward in Python: complying with POSIX norms does the 

trick for most systems. It was however necessary to write specific equivalents for Windows that are 

automatically triggered if this OS is detected.

The simplicity  of installation was obtained by using relative paths.  Top level  scripts  detect  the 

current location and then modules are found and loaded on that basis. 

The modularity requirement was reached through the fragmentation of the framework in Python 

modules. Measures were taken in order to end up with thematic modules, that is to say, each level of 

flexibility is represented by a particular module containing a range of functions that perform similar 

tasks and that the end user may select according to their needs. All these options can be set up in the 

main configuration file.

V.4.2 Whithin the file system

This application is organized in a standard UNIX-like structure in the file system:

• ./bin/ top level scripts that the user may call directly

• ./doc/ documentation

• ./etc/ configuration files

• ./lib/ libraries, consisting of simple Python modules

• ./tmp/ temporary files, like the ones produced by OAI-PMH2 harvesting

• ./var/ data

• ./var/log/ log files and results output

• ./var/rec_cache/ fragments of loaded collection(s) dumped on disk to limit RAM usage

The most important files are:

• ./bin/similariy.py the main toplevel program

• ./etc/similarity_config.py the main configuration file

Most of the code may be found in the modules stored in the ./lib/ directory. The flexibility of this 
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application is  reflected by a  number of  thematic  modules:  as  mentioned before,  most  modules 

contain related functions among which users may choose the most adapted to their needs.

• load_records.py functions used to load MARCXML records

(called by the top level similarity.py script)

• parse_records.py functions importing data from MARCXML records

(called by load_records functions)

• compare_records.py functions determining the order of records comparison

within collection(s) (called by load_records functions)

• global_similarity.py functions to integrate the similarity of all fields in one value

(called by compare_records, through records_structure,

defined in the main configuration file)

• compare_fields.py functions used to compare fields

(called by globlal_similartiy functions)

• compare_fields_helpers.py algorithms needed by various functions in compare_fields

(called by compare_fields functions)

• output.py functions writing results and logs

(called by compare_records functions)

• globalvars.py global variables definitions, used by many modules

Other modules, that are not listed just above, are stored in that directory. These are not used by the 

framework's core but by applications built on top of it.

V.5 Framework execution phases

V.5.1 Loading records

The first important phase in a similarity analysis process will load one or more collections. To do 

this, the function records_load in the load_records module is called on each collection by the top 

level similarity.py script (N.B.: all modules are stored in ./lib). The XML collection is then loaded 

within a global variable.  This make it  accessible to the various modules that  will  work with it 

without having to duplicate it in memory, because it might be quite large.

V.5.2 Parsing fields

An efficient  parsing  on  big  collections  excluded  the  use  of  a  DOM  parser.  That  is  why  the 

records_load function will call the micro_dom function that was written to speed up the parsing. 

Micro_dom  parses  the  MARCXML and  returns  sequentially  all  records  in  the  form of  XML 
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strings.  These  much smaller  elements  are  then  analysed  by  the  Python minidom parser:  fields 

selected in the configuration file will be looked up. Since there are three types of MARC fields, 

three different functions will be applied: parse_controlfield, parse_nonrep and parse_multi. These 

functions are located in the parse_records module. A fourth function enables to concatenate fields. 

This permits to analyse related fields together such as a the title-subtitle pair.

V.5.3 Pre-processing of fields

Each extracted field is then submitted by the records_load function to the represent_field function 

that has been selected for that field in the main configuration file. Depending on what function was 

chosen,  the  field  will  either  be  returned  untouched  (if  a  RAW similarity  function  family  was 

associated to the field, this will be explained more fully below), or trigger a pre-processing (if a 

two-pass  similarity  function  is  involved,  like  the  ones  in  the  WC,  SHINGLES,  or  INITIALS 

families).  This  stage  was  introduced there  for  speed  optimization  reasons:  by running  the  pre-

processing within the loading phase, one additional pass through the records is avoided later. The 

pre-processing will generally involve a text normalisation (diacritics, punctuation, and so on are 

normalized by the  functions  of  the compare_field_helpers.py module).  On top  of  that,  specific 

procedures related to the comparison function associated with a field will be executed.

V.5.4 The caching subsystem

The loaded, parsed and sometimes pre-processed records are progressively stored into the caching 

subsystem. The goal of this device is to limit memory usage in the case of very large collections. 

The general principle is that a fixed number (defined in the main configuration file) of records are 

stored  in  RAM  for  each  loaded  collection.  The  rest  is  dumped  to  the  hard  drive  in  the 

./var/rec_cache directory. To do so, each collection is divided into segments of the same size that are 

serialized on the hard drive using a powerful built-in Python objects representation format called 

Pickle.  This  is  managed directly  by the  records_load  function.  Individual  hard  disk caches  are 

created for each loaded collection.

At  comparison  time,  when  a  record  is  needed,  it  may  be  called  up  by  the  get_cached_record 

function, located in the compare_records module. This function will directly return a record if it is 

stored in the RAM cache (that takes the form of a global dictionary named globalvars.reccache). 

Otherwise, the segment containing the record is automatically loaded into the RAM cache and then 

the record is returned. If the RAM cache is already full, the oldest records it contains are eliminated 

prior to storing the new ones. In other words, the RAM cache follows simply the first in first out 
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(FIFO)  queue  principle.  The  order  or  arrivals  of  record  in  the  RAM  cache  is  stored  in 

globalvars.rec_cache_queue.

V.5.5 Managing comparisons

After loading the records, the records_load function comes to an end, and the program flows back to 

the similarity.py top level script.  The function records_comp is then called up. This function is 

selected  in  the  main  configuration  file.  But  these  functions  are  actually  defined  in  the 

compare_records module. They define the order and the way in which records are compared with 

each other. The three most important ones are:

1. records_comp_single: This function may be used if only one collection is loaded. It will 

execute a comparison of all records within that collection with each other. That is to say 

each pair of records is only compared once: for example if the record A has been compared 

with the record B, B will not be compared to A afterwards. In other words, the comparisons 

will follow a triangular matrix pattern. This is useful because the similarity computation 

functions built in this framework are generally symmetrical in the sense that the (A, B) and 

the (B, A) comparisons will produce the same result. For this reason this comparison pattern 

will save almost half the process duration. This records_comp function is the best option for 

de-duplication purposes applied to one collection.

2. records_comp_2collections_caching : This function may only be used if two collections 

are loaded.  All  the records of the first  collection are compared to all  the records of the 

second. It is useful for information monitoring. That is to say to use a collection of known 

interesting records to find similar ones in an unknown flow of records. This function may be 

applied  to  plagiarism  detection  as  well:  a  collection  representing  parts  (sentences  or 

paragraphs) of the document to check for plagiarism can be compared with a collection of 

the parts of a set of documents that are plagiarized candidates.

3. records_comp_multiple_caching: This function can be used with any number of loaded 

collections. All possible comparisons will be made. The function will compare all records of 

each collections with the records of the other collections as well as each collection's records 

amongst themselves. For now, it is not put in practical use, but it is described here because 

of its general aspect.

In  all  cases  the  record_comp  functions  will  call  up  the  record_rules  defined  in  the  main 

configuration file on each selected pairs of records. The record_rules, points to a function of the 

global_similarity module and is used to control the execution of field comparisons within a record 
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and compute global similarities between records pairs. 

All records_comp functions share a common programming interface and they are defined as follows 

(simplified example) :

Code sample 1: Example records_comp function

def records_comp_2collections( record_type, apply_rules, output_function ):

    from similarity_config import INPUT_FILES

    # writing header to output

    dummy_result=record_type.copy()

    dummy_result['similarity']=0.0

    output_function(dummy_result,0.0,'head')

    # executing comparisons

    collection_i = 0

    collection_j = 1

    for ri in range(globalvars.rec_cache_n[INPUT_FILES[collection_i]]):

        for rj in range(globalvars.rec_cache_n[INPUT_FILES[collection_j]]):

            output_function( apply_rules( record_type, \

                    get_cached_record(ri, INPUT_FILES[collection_i]), \

                    get_cached_record(rj, INPUT_FILES[collection_j]) ), \

                    globalvars.output_threshold )

    # writing footer to output

    output_function(dummy_result,0.0,'tail')

This type of function must be aware of 5 variables:

1. apply_rules: a pointer to a global similarity computation functions. These are described in 

the next sub-section. This pointer is set up in the main configuration file.

2. record_type: this information must be passed down to the 'apply_rules' function

3. output_function: a pointer to the selected output function. This pointer is set up in the main 

configuration file. The output is written within the execution of the record_comp function.

4. INPUT_FILES: so that the program knows which collections were loaded. 

5. globalvars.reccache:  necessary  to  be  able  to  access  the  cached  records  through  the 

get_cached_record function.

V.5.6 Computing the global similarity

The global_similarity module functions are designed to compute a global similarity for each records 
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pair on the basis of the similarities of the fields the records pairs are constituted of. These functions 

will  also  control  the  execution  of  field  comparison  within  a  record. This  permits  speed 

optimisations, for example by means of functions that will stop field comparisons as fast as possible 

if certain conditions are met. Strategies have been developed that take advantage of this capability.

All  global similarity functions share a common programming interface and they are defined as 

follows:

 def global_similarity_function(record_structure, rec1, rec2):

The  record  structure  parameter  contains  the  definition  of  each  field.  It  comes  from  the  main 

configuration file. The rec1 and rec2 represent the records to be compared.

The fields of a record may be accessed using a for loop on the record_structure variable. A field 

comparison can be executed as follows (example for the 'doi' field defined in the main configuration 

file), assigning the result to an element of an output dictionary:

 output['doi'] = execute_comp('doi', record_structure, rec1, rec2)

If one or both of the compared field are missing None (an empty Python variable) is returned.

The global similarity is simply called 'similarity', for example:

 output['similarity'] = max( [ output['doi'], output['title'] ] )

A description of a selection of global similarity functions follows.

Maxsim

The similarity is computed for all selected fields, and the global similarity is simply the maximum 

similarity between the fields. When that function is used, the 'recids' field must be defined in the 

main configuration file and should represent some kind of digital identifiers. That field will only be 

used for output purposes.

As this function is the shortest of the global similarity function its full code is given here:

Code sample 2: Maxsim global similarity function

def maxsim(record_structure, rec1, rec2):

    output = {}

    output['recids'] = execute_comp('recids', record_structure, rec1, rec2)

    output['similarity'] = 0.0

    for field in record_structure:

       output_field = execute_comp(field, record_structure, rec1, rec2)
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              if   (output_field   is   not   None)   and   (not 
type(output_field)==type('abc'))):

           if output_field > output['similarity']:

               output['similarity'] = output_field

    return output

The test (not type(output_field)==type('abc'))) is necessary because some fields, 

like the record identifiers are simply concatenated with a separator so that a trace of what was 

compared is transmitted to the output. This concatenation is performed by the fields_concat__raw 

located in the compare_field module. With this test, we make sure that only numerical or  None 

values are actually used for the global similarity value.

Means 

In this range of global similarity functions, similarity is systematically computed for all selected 

fields and the global similarity returned is based on the mean similarity of all fields. Our program 

proposes  three  types  of  weighted  means:  the  geometric  mean  (function:  geometric_mean),  the 

harmonic mean (function: harmonic_mean) and the arithmetic mean (function: arithmetic_mean). 

For each field, the weights must be set up in the main configuration file (this will be explained 

afterwards).

We note that although the records identifiers (recids) are not strictly mandatory for this strategy, 

they are practically required in order to make the program output understandable.

Breakout means 

These  three functions  are  almost  the  same as  the above means,  with field  comparisons  run in 

alphabetical order. However, if any field comparison yields a similarity under 0.8, the function will 

skip all subsequent field comparisons for the current record and replace them with the dummy value 

1e-42.  The  three  corresponding  function  names  are  harmonic_mean_breakout, 

arithmetic_mean_breakout and geometric_mean_breakout.

Boundaries

This  strategy  computes  the  global  similarity  using  the  weighted  arithmetic  average.  There  are 

however two variations with the weighted arithmetic mean function:

1. for each field, a 'threshold' parameter enables avoiding to take a field into account if it is not 

reached (this threshold is user defined in the similarity main configuration file)
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2. the  'global-threshold'  parameter,  user  defined  in  the  same way,  enables  to  return  global 

similarity = 1e-10 if it is not reached

The 'recids' field is mandatory in the main configuration file and must be set up to accommodate 

record identifiers. That field will only be used for output purposes.

Boundaries_max

In this strategy, the global similarity is based on a maximum value, a bit like the maxsim function 

presented previously. There are however two differences:

1. for each field, a 'threshold' parameter enables avoiding to take a field into account if it is not 

reached (this threshold is user defined in the similarity main configuration file)

2. the  'global-threshold'  parameter,  user  defined  in  the  same way,  enables  to  return  global 

similarity = 1e-10 if it is not reached

The 'recids' field is mandatory in the main configuration file and must be setup to contain record 

identifiers. That field will only be used for output purposes.

Ubiquist

This function uses the following fields, that  must be defined with these exact identifiers in the 

similarity configuration file:

• recids : record identifiers (only for output purposes)

• title_dice : title similarity

• authors : authors similarity

• year : years of publication similarity

• doi : digital object identifiers

• abstract : the abstract

The comparison of these fields are all executed (it is not well optimized for speed). Then a sequence 

of operations is started:

1. Base global similarity is set to a low value of 1e-10

2. If two identical digital object identifiers are found, the global similarity will be set to 1.0 and 

the treatment stops.

3. Otherwise, if the authors similarity is >= 0.85 and the year similarity is >=0.9 the global 
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similarity is set temporarily to 0.85 * the authors similarity. The idea here is that if a similar 

group of authors publishes in defined period of time (two years), the records are likely to be 

at least related. Or they might be near duplicates. The output is 0.85 * the authors similarity, 

in order not to give too much importance to the authors similarity. For example, if only one 

author is involved and that this person has a common surname too much false positives 

could be generated. The value of 0.85 was empirically because it seems to be a critical 

similarity value returned by other algorithms (Dice...), in the sense that pairs of fields that 

show an higher similarity than this are often real duplicates.

4. Then the abstract  an the title  similarity  is  computed.  And the maximum is taken of the 

temporary global similarity, the title similarity and the abstract simlarity.

Abstract_fallback

The returned global similarity is simply the abstract similarity which is generally a very informative 

field. If at least one abstract is missing in a compared pair of record, this function will attempt to 

compute and return the title similarity as the global similarity.

This function uses the following fields, that  must be defined with these exact identifiers in the 

similarity configuration file:

• recids: record identifiers (only for output purposes)

• title: title similarity

• abstract: abstract similarity

V.5.7 Comparison functions

All comparison functions share a common programming interface:

def   functionname__ENDING(fieldtype,   field1,   field2,   options   = 

None)

First  we note  that  the comparison functions are divided into several  families depending on the 

required preprocessing. The function family is indicated by the ending of the function name, with 

two underline characters acting as a separator. The fieldtype argument is an identifier for the 

field or fields to compare,  field1 and  field2 are the field contents for both records in the 

current pair. The options argument, with an empty default value, is reserved for future use.
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RAW family

In this function family, the field contents are directly compared pairwise, without any influence of 

the rest of the collection.

years_comp__raw()

comparison of publication years, the result value is set to 1 minus 0.1 times the difference between 

the two record dates, in years, provided that the first four characters of the compared fields can be 

interpreted as an integer number. The minimal returned value is 0.

identifiers_comp__raw()

standard string comparison, after removal of possible line breaks, dashes ('-'), and tabulations. This 

function is case-insensitive, and it will ignore the following prefixes: 'doi:', 'pmid:', 'issn:', 'isbn:', '-', 

'oai:'.

freq_comp__raw()

comparison of the terms and term frequencies, taking only one pair of records into account. For 

each  term found in  both  fields  A and B,  the  score  is  raised  by  1.0  minus  the  term frequency 

difference in A and B divided by the sum of the term frequencies. The term frequency for each term 

found only in A or B is then subtracted from the score.

freq_comp_norm__raw()

same as freq_comp__raw() except for an ad hoc normalization:

freq comp normraw  A , B=
1
2
{

2 freq comp raw A , B
freq comp raw A , A freq comp raw B , B

1}

authors_comp__raw()

set-theoretical comparison of two author lists (number of elements in the intersection of the sets, 

divided by the number of elements in the union of both => 1.0 if the sets are identical). Authors 

names are normalized prior to comparison: only the last name and the first initial of the first name is 

considered. If a comma is present, the words before it as considered to be last names, otherwise the 

last word of the field is taken as the last name.

items_comp__raw()

set-theoretical  similarity  calculation;  this  function  returns  the  ratio  of  the  number  of  elements 

(typically: words) common to fields A and B divided by the the number of distinct elements in A 

and B.
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levenshtein_comp__raw()

fuzzy comparison based on the Levenshtein edit distance between two strings (Levenshtein 1966), 

normalized  as  a  decaying  exponential  exp(-L/Lpar),  where  Lpar is  a  field-specific  configurable 

parameter related to the tolerance one assigns to the function. The Levenshtein distance calculation 

itself is performed using the Python implementation of Hetland (Hetland n.d.)

fields_concat__raw()

this function is not really a comparison, as it only produces the concatenation of the fields with a 

separator. However, it is useful to keep it in the RAW family of comparison functions as it makes it 

easy to display the field contents in the output while retaining the normal syntax of the matching 

patterns.

WC family

The functions of this family use a global, collection-wide dictionary of terms and term frequencies 

for the relevant fields, which has to be built before the record similarity calculations can start.

ntfnidf_vectorcosine__wc()

calculation of the  vector-model  ranking function  (Salton et  al.  1975),  using the  cosine distance 

definition  (Salton  1991),  normalized  term  frequencies  (ntf)  and  normalized  inverse  document 

frequencies (nidf). Unlike in the normal use of the vector model, the product of the two vectors is 

performed over  all  terms of  both  fields.  For  our  similarity  calculations,  there  is  no  distinction 

between the “query” and the “document” so we treat them as equals.

ntfnidf_vectorjaccard__wc()

same as above, but using the Jaccard distance definition.

ntfnidf_vectordice__wc()

same as above, but using the Dice distance definition.

okapibm25__wc()

calculation  of  the  Okapi  BM25 probabilistic  ranking  function  (Manning  et  al.  2008,  p.214), 

modified to yield a result in the [0.0; 1.0]. For an ad hoc normalisation, we divide the standard 

function by (k1+1)*(k3+1)*Tq, where  k1 and  k3  are the adjustable BM25 parameters and  Tq is the 

number of terms in the field content considered as the query. One has to note that the maximal value 

is in general not obtained by comparing one document with itself. Furthermore, the function is not 
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invariant with respect to the permutation of its arguments: BM25(d1,d2) != BM25(d2,d1).

INITIALS family

In this family, the initial character of each term is extracted instead of the full field content.

items_comp__initals()

the INITIALS equivalent to items_comp__raw. 

SHINGLES family

This family is very similar to the WC family. But instead of counting words it counts so-called 

word bags, that is to say all possible groups of n adjacent words. In this case n is set by default to 4, 

as suggested in the literature. This practice is usually applied in information retrieval to detect near 

duplicates. Its interest by contrast with the previously presented strategies is that it takes the order 

of words into account (Manning et al. 2008, p.403).

V.5.8 Writing output

As mentioned earlier,  the result  of  the comparison of record pairs  is  finally transmitted by the 

records_comp function  to  the  output  function  selected  in  similarity  configuration  file,  and  the 

records_comp function moves to the next pair of records, and so on. When the last pair of records 

has been compared, the program comes to an end. In addition, a threshold on the global similarity 

may be setup to reduce the output size: if the score is less than the threshold, the result is not written 

to the output.

Several output functions can be selected:

report_quickndirty()

This  function  is  available  mostly  for  testing  purposes.  It  simply  converts  the  pair  similarity 

computation result (a Python dictionary) to a string. This string is written to the  results.log 

file, followed by a new line character.

report_tab()

Each pair of compared records is stored on one line. The fields of the similarity computation results 

(including  the  global  similarity,  the  individual  scores  for  each  field  and record  identifiers)  are 

written in tabulation-separated columns, in the alphabetical order of the field names. The first line 

describes the columns content. In this form, the results are easy to read in a spreadsheet application, 

as in statistical environments like GNU R-Project, or manipulated with *NIX utilities like sort, 

awk, split, grep, head, tail, wc, etc.
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report_xml()

The report_xml function saves the results in an ad-hoc xml format, for future machine to machine 

data exchanges: this XML can easily be converted into other XML formats, for example by means 

of  an  XSLT  processor  for  example.  The  XML  tree  structure  is  simple,  with  a 

<similarity_output> root node containing a number of <result> nodes corresponding to 

all record-pair comparisons. Each <result> in turns contains <field> subnodes corresponding 

to  each  field  of  the  record  structure,  plus  the  global  similarity  as  above.  The  field  name and 

similarity values are in turn contained in the <name> and <data> subnodes of a <field>.

This is how it should look in the configuration file:

    report = report_tab

    globalvars.output_threshold = 0.3 # use ­1 to output everthing

By default, the output file is stored in ./var/log.

All output functions share the same interface, with 3 input arguments and no output:

comp_result: the Python dictionary result produced by the record comparison function.

threshold: the minimal global value for which the result will be written to the output file, as 

specified by the globalvars.output_threshold variable.

param: a character string with the default value 'body'. When the magical values 'head' or 'tail' are 

given (typically at the beginning and the end of the record comparison loop), the output function 

will  produce  the  relevant  header  and  ending  for  a  particular  file  format  (examples:  the  XML 

heading and root node opening for report_XML and the column titles for report_tab).

V.6 Program setup

All user definable options may be set up in the main configuration file ./etc/similarity_config.py. 

They deal essentially with the selection of collections to analyse, the structure of the records of 

interest, and the presentation of results.

V.6.1 Selection of collections

One or more MARCXML collection can be loaded at a time. The collection file must be located in 

the ./var/ directory. Note that Unicode UTF-8 character encoding is mandatory. On *NIX systems 

one can easily convert encodings using the iconv utility31.

31 http://www.gnu.org/software/libiconv/documentation/libiconv/iconv.1.html  
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A configuration file snippet follows. It will load a collection named « marcxml-collection.xml ». In 

addition, the order of records comparison within collection(s) is set up. In this case, all possible 

record pairs will be compared only once. This set up is reasonable for deduplication.

INPUT_FILES = ['marcxml­collection.xml']
records_comp = records_comp_single

Another configuration allows to load two collections, and then compare the records of the former 

collection to the records in the latter. This set up is useful for collection overlap studies, as well as 

for information monitoring, that is to say to use a collection of known records to find similar ones in 

an  unknown flow  of  records.  Another  application  is  plagiarism detection:  comparing  a  set  of 

potentially plagiarized data with a set of original documents.

INPUT_FILES = ['collection1.xml', 'collection2.xml']
records_comp = records_comp_2collections_caching

A more general function enables to load as many collection collections as wanted and then compare 

each loaded record with all the others (within an between collections).

INPUT_FILES = ['c1.xml', 'c2.xml', 'c3.xml']
records_comp = records_comp_multiple_caching

V.6.2 Structure of records & similarity

A part of the configuration file is used to:

• select the fields to be analysed within each record,

• select their name in the output, 

• select the parsing function used to extract each field,

• select the similarity function to be apply to each field (with optional parameters)

• select the function that will compute each record pair global similarity value

This is done like this:

Code sample 3: Example record structure definition

record_structure = { \
        '01recid'   :{'marc'      : '001',
                      'weight'    : 0,
                      'parse­func': parse_controlfield,
                      'comp­func' : fields_concat__raw },
        '02year'    :{'marc'      : '260  c',
                      'weight'    : 1,
                      'parse­func': parse_nonrep,
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                      'comp­func' : years_comp__raw },
        '03authors' :{'marc'      : ['100  a', '700 a'],
                      'weight'    : 3,
                      'parse­func': parse_multi,
                      'comp­func' : authors_comp__raw },
        '04title'   :{'marc'      : '245  a',
                      'weight'    : 3,
                      'parse­func': parse_nonrep,
                      'comp­func' : levenshtein_raw },
        '05title'   :{'marc'      : '245  a',
                      'weight'    : 3,
                      'parse­func': parse_nonrep,
                      'comp­func' : 
ntfnidf_vectordice_comp__wc },
        '06abstract':{'marc'      : '520  a',
                      'weight'    : 3,
                      'parse­func': parse_nonrep,
                      'comp­func' : 
ntfnidf_vectordice_comp__wc }}

        record_rules = geometric_mean

The keys on the left, like '01recid', are used to label the results in the output.

The marc keys are used to select the fields to analyse. There are 3 types of MARC fields:

1. Controlfields, composed of only 3 digits ('001' for example), and they are parsed by the 

parse_controlfield function which is selected with the 'parse-func' key

2. Non-repeatable fields  (i.e. fields that may appear only once according to the cataloguing 

convention), identified by 3 digits, two indicators and a subfield code, for example: '245  a' 

(in this case the two indicators are not used and represented by a space). This type of field is 

parsed using parse_nonrep as parsing function ('parse-func').

3. Repeatable fields, like authors ('100  a' and '700  a') are parsed by the parse_rep function. 

This function is capable of extracting several repeatable fields at once. Here, it will take the 

primary author (in '100  a') as well as the other authors (in '700  a'). 

The comp­func keys are used to select the similarity comparison functions.

Finally, record_rules enables to choose the global similarity function, the weighted geometric mean 

is used in this example. That is why each field as been given a 'weight' parameter. All similarity 

functions return values between 0.0 and 1.0, except if at least one of the two compared fields is non 

existent in a record. In that case, None is returned and the geometric mean function will ignore that 
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field.

Note that the same field may be selected more than once. In the above example, different similarity 

algorithms are applied to the '245  a' field. This is useful, because when the global similarity is 

computed, some strategies might for example take the maximal value several occurrences. It makes 

sense for example if one similarity function is good at detecting misspellings (like the Levenshtein 

function) while the other is better at detecting permutations, additions and suppression of words 

(like the Dice function).

V.6.3 Caching options

In order to limit the memory usage while processing very large collections, one may configure the 

caching subsystem, which is  activated by default.  The caching subsystem fragments the loaded 

collection(s) and writes the fragments on the hard drive. It is possible to set up the number of 

records stored in RAM and the number of records composing the fragments. Twenty thousands 

records  will  typically  take  something  between  500Mo  and  1Go  in  RAM.  But  this  can  vary 

depending on the record structure and the average length of fields.  For good performance,  one 

should use the largest possible RAM cache..

In the configuration files, the parameters may by adjusted like so:

Code sample 4: Example record cache parameters

    # activating cache

    globalvars.caching = True

    # segment length (in records) for hard disk storage

    globalvars.rec_cache_segment_length = 300

    # cache length (in records) stored in RAM 

    globalvars.rec_cache_length = 30000

V.6.4 Other options

Similarity configuration is flexible, and quite a lot of functions are available. For a more accurate 

view  of  the  possibilities  take  a  look  at  the  demo  similarity  configuration  files,  stored  in 

./etc/configuration-examples .

V.7 Additionnal tools

Some additional utilities were written to help working with this framework. They are all located in 
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the ./bin/ folder.

V.7.1 oai.py

This tool will perform a basic OAI-PMH2 harvesting in order to download MARCXML collections 

from data providers. It can be set up via the ./etc/oai_config.py file, which offer the basic  OAI-

PMH2 harvesting options, except that it is for now limited to the MARCXML format (Dublin Core 

is  not  supported).  The harvesting consists  in  downloading OAI-MARCXML fragments that  are 

subsequently converted to simple MARCXML and reassembled into one single collection. More 

informations on the protocol may be found on the OAI-PMH2 official specification web page32.

This is an example of oai.py configuration options in ./etc/oai_config.py:

Code sample 5: Example oai_config.py file for OAI-PMH2 record harvesting

    # harvesting timing

    oai_politeness_delay = 60 # delay between queries in seconds

    oai_error_delay = 600 # if an error occurs, wait this amount

    oai_error_retries = 5 # tolerated errors before aborting

    # harvesing setup

    oai_baseurl = 'http://cdsweb.cern.ch/oai2d/'

    oai_metadataPrefix = 'marcxml' # do not change that

    oai_from = '2008­10­01' # Optional: may be set to None

    oai_until = '2008­10­08' # Optional: may be set to None

    oai_set = None # Optional: may be set to None

At  the  end  of  the  run,  the  harvested  collection  is  transferred  in  the  ./var  directory,  where  all 

collections are stored. It is renamed according to the the date and time when the harvesting was 

started using the following pattern: YYYYMMDD-hhmmss.xml .

V.7.2 batch.py

This utility runs the MarcXimiL program in batch mode with a series of similarity configuration 

files. 

SYNTAX: ./batch.py [<config­files­directory>]

It  will  look  for  files  named  after  the  flowing  pattern:  similarity_config__*  (note  the  double 

32 http://www.openarchives.org/OAI/openarchivesprotocol.html  
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underscore before the *) . Then, a directory in ./var/log/ named after the current date and time will 

be created to store the outputs., e.g.: ./var/log/20100324-122536 

For each configuration file found, an output will be created and named after the configuration file in 

question using the * part of the pattern and adding .dat at the end of it. Furthermore, the duration of 

each process if measured and written in a file named after the same pattern *.dat.duration. 

By default, this script will look for configuration files in ./etc/ . But if it is given an argument, it will 

consider it as a directory and look for the configuration files in ./etc/that_directory 

V.7.3 sort.py

This script will sort a tabulated output file according to the global similarity, and then truncate it to 

1000 lines of output plus the first line containing headers. 

SYNTAX: ./sort.py [<directory­to­process>] 

The *.dat files in ./var/log will be used by default, in particular ./var/log/output.dat, which is the 

program  default  output  file.  Alternatively  it  is  possible  to  specify  a  sub-directory  located  in 

./var/log, for example 20101128-190150 

WARNING: This script is not optimized and may take a lot of time and resources while processing 

long logs. To avoid this, use a statistical analysis tool like GNU R-Project or set up a reasonably 

high output threshold in the similarity configuration file.

V.7.4 colldescr.py

This  program  will  perform  a  statistical  analysis  of  a  MARCXML collection.  The  displayed 

information may help understand the composition of the collection,  and therefore to set up the 

MarcXimiL framework more efficiently. 

The following informations will be returned to the standard output: 

• the number of records in the collection 

• the average number of fields by record 

• for each subfield: the percentage of its presence throughout the collection, and its average 

length

SYNTAX: colldescr.py <collection_name.xml> 

The collection will be looked-up in the ./var directory, where all collections are stored. 
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V.7.5 check.py

This script gives informations about the software packages installed on your system that may be 

used by MarcXimiL. If these packages are absent, the script will tell you in what way they could be 

useful and how to get them.

V.7.6 text2xmlmarc.py

This utility converts VTLS Virtua text MARC to MARCXML.

V.7.7 Additional libraries

Two additional libraries have been developed and included in MarcXimiL. They are not used by the 

framework's core applications, but they contain useful functions for building tools on top of it:

1. toox.py is a pure Python object oriented XHTML and XML generation library. It is used to 

generate web interfaces and could also be applied to generate XML outputs.

2. marcxmlload.py is a pure Python library enabling to read and load MARCXML collections 

in Python data structures.

V.7.8 Other tools

Other tools may be found in the ./bin folder. These are application prototypes build on top of this 

framework to  illustrate  its  possibilities.  They are  in  early  stages  of  development  and are  quite 

unstable. A full description of these is found the “Future developments” section.

V.8 Distribution of the development tasks

As this project is subject to academic evaluation, the developers equitably shared the work load as 

described in Table 2.

Table 2: Work distribution

What AB JK Comment

Requirements and general schema X X Working together.

Initial prototype  X First basic but functional structure, including loading and 
parsing functions, text normalisation, word and frequencies 
computations, identifiers concatenation, author and date 
comparison functions.

Two-pass processing schema and tests X X Working together.

Two-pass processing implementaiton X WC and initials families comparison algorithms, including 
Jacquard, Dice, Salton, OKAPI.

Caching subsystem X RAM usage limitation

Levenshtein comparison X Experimental similarity computation
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What AB JK Comment

Global similarity : classic means X Weighted arithmetic, geometric and harmonic means.

Global similarity : breakout means X Based on means but intended to be faster

Global similarity : custom strategies X Ubiquist, abstract_fallack, boundaries*, etc.

Test strategies and collections X X Double blind test

Results evaluation X X Doubble blind test, and then working together 

Results discussion and conclusions X X Working together

Global similarity integrated strategies X X Working together

Report redaction X X Attibution of parts following original workload. 

Related tools X Visualize.py (2D net), batch.py, sort.py, check.py, etc.

Generalisation of OS and Python versions 
(windows, python 3.x)

X X Both developpers did their best to make it happen, and JKs 
actions to support Windows, Python 3.x , Python 2.4.x and 
2.5.x as well were quite light. 

V.9 Tests

V.9.1 Methodology

The  tests  were  performed  using  a  double-blind  methodology.  Both  developers  independently 

extracted several sets of 1990 MARC records from selected sources, and duplicated 10 of them with 

various  alterations  for  a  total  of  2000 records.  In  the  same  manner,  both  developers  used  the 

MarcXimiL framework to  create  strategies  and record  structures  optimized  for  criteria  such  as 

speed, precision,  etc. The test collections were communicated to the other author with minimal 

information  (dataset  origin,  specific  changes  in  the  MARC  field  definitions).  Each  developer 

applied  his  own strategies  to  all  available  collections,  and  sent  his  results  for  up  to  1000 top 

similarities  back  to  the  collection  creator  for  precision  evaluation.  The  processing  time  was 

measured by our own batch.py utility while running the program under minimal system load (only 

the default desktop environment and a terminal window).

The raw precision at fixed recall values was evaluated by counting the occurrences of the created 

near-duplicates among the top  N similarity  scores  (N = 10,  20,  50).  The remaining pairs  were 

identified as raw noise. Corrected values were obtained by examining the raw noise and removing 

the observed duplicates that were already part of the collection.

V.9.2 Test collections

CERNa dataset

The datasets of CERN 'a' through 'd' collections are based on the same 1990 records. These were 

simply the last 1990 records added to the articles collection the 4th of August 2009 stored within the 
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CERN Document Server.33

In the CERNa dataset, the first 10 records of the 1990-record collection were duplicated and 1 field 

was modified in each duplicate records. The affected fields were 100__$a (first author), 700__$a 

(general author), 245__$a (main title), 260__$c (year) and 520__$a (abstract). The changes were as 

follows:

1187507: truncated title(1 word out of 6).

1187474: truncated title (3 words out of 12).

1187449: truncated title (3 words out of 7).

1187448: author first names were removed.

1187436: several authors were removed (6 out of 14).

1187432: the only author name was misspelled (one error in the last name, one in the first name).

1187427: two sentences in the abstract were moved inside the field.

1187408: two sentences in the abstract were removed.

1187403: the date was changed by one year.

1187394: the date was changed by two years.

CERNb dataset

The CERNb dataset was built with the same method as the CERNa dataset, except that two fields 

were modified in the duplicate records.

1187507: truncated title (1 word out of 6), several authors removed (2 out of 4).

1187474: truncated title (3 words out of 12), the abstract was removed.

1187449: truncated title (3 words out of 7), the date was changed by two years.

1187448: the authors' first names were removed and the date changed by three years.

1187436:  several  authors  were  removed (6  out  of  14)  and 3 sentences  were  moved inside  the 

abstract.

1187432: the only author's name was misspelled, as well as the title (5 misspelled word out of 11). 

There is no date.

1187427: two sentences were moved inside the abstract field. The title was misspelled (4 misspelled 

33 http://cdsweb.cern.ch  
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words out of 12).

1187408: two sentences were removed from abstract and the date was changed by three years.

1187403: the date was changed by one year and the title misspelled (5 misspelled words out of 21).

1187394: the date was changed by two years and one authors was removed (1 out of 2).

CERNc dataset

The CERNc dataset was built with the same method as the CERNa dataset, except that three fields 

were modified in all duplicate records..

1187507: truncated title (1 word out of 6). Some authors were deleted (2 out of 4). One sentence 

was removed from the abstract.

1187474: truncated title (3 words out of 12). The abstract and 1 author (out of 2) were removed.

1187449: truncated title (3 words out of 7). The date was changed by two years. The abstract was 

removed.

1187448: the authors' first names were removed. The date was changed by three years and the title 

totally modified.

1187436: several authors were removed (6 out of 14). 3 sentences were moved inside the abstract. 

The title was misspelled (2 misspelled words out of 12).

1187432: the only author was misspelled, as well as the title misspelled (5 misspelled words out of 

11). The date was changed by one year.

1187427: two sentences were moved inside the abstract.  The title was misspelled (4 misspelled 

words out of 12) and the date changed by six years.

1187408: two sentences were deleted from the abstract. The date was changed by 2 years

1187403: The date was changed by one year. The title was misspelled (5 misspelled words out of 

21) and one authors removed (1 out of 4).

1187394: The date was changed by two years. One author was removed (1 out of 2) and the title 

was truncated (2 words out of 13).

CERNd dataset

The CERNd dataset was built with the same method as the CERNa dataset, but with more serious 

alterations: All abstracts were removed, and half the dates were changed by 1 year. Fields 773 were 
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removed (all subfields: document source, such as journal title for an article, etc.). In addition, titles 

as well as digital identifiers (035__$a) variations were made:

1187507: 1 word was misspelled in the title.

1187474: 2 words were misspelled in the title.

1187449: 2 words were misspelled in the title.

1187448: 3 words were misspelled in the title.

1187436: 4 words were misspelled in the title.

1187432: 1 word was misspelled in the title, the digital identifier was removed.

1187427: 2 words were misspelled in the title, the digital identifier was removed.

1187408: 2 words were misspelled in the title, the digital identifier was removed.

1187403: 3 words were misspelled in the title, the digital identifier was removed.

1187394: 4 words were misspelled in the title, the digital identifier was removed.

ETHZ1 dataset

The ETHZ1 was built  by harvesting the ETH e-collection using the OAI-PMH protocol.  Three 

records were extracted at fixed positions from the first 663 batches of 30 records exported by the 

ETHZ server, and one more was added from the 715th batch. Ten records were extracted at fixed 

positions  (10 20 30 50 80 130 210 340 550 890) in the initial  collection of 1990 records and 

modified with the aim of reproducing real-world errors or variant interpretations of the cataloguing 

rules. The altered fields were 245__$a (main title), 245__$b (subtitle), 260__$a (year), 700__$a 

(author), 900__$a (PhD advisor)

10.3929/ethz-a-000080552: the PhD advisors were added to the authors.

10.3929/ethz-a-000085328:  one  compound  word  was  modified  in  the  title  (oxydo-réduction  -> 

oxydoréduction)

10.3929/ethz-a-000085643:  the  German  umlauts  in  the  title  were  replaced  by  the  vowel  +  e 

spelling.

10.3929/ethz-a-000086597: the authors' first names were replaced by initials.

10.3929/ethz-a-000087872: the German umlauts were replaced by the vowel + e spelling in the 

title, and the year was deleted.
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10.3929/ethz-a-000089154: no change.

10.3929/ethz-a-000090875:  an  artificial  umlaut  was  added  to  the  author's  name  (Brunner  -> 

Brünner)

10.3929/ethz-a-000096651: the subtitle was removed.

10.3929/ethz-a-000152441: a variant title 245__$i was changed into a subtitle 245__$b.

10.3929/ethz-a-000578009: the subtitle was merged into the main title.

ETHZ2 dataset

The  ETHZ2  dataset  was  built  from the  same  original  data  as  for  ETHZ1,  but  with  different 

positions in the first 663 record batches of the OAI-PMH export.

10.3929/ethz-a-000081089: one Greek letter in the title was changed to its full name in Roman 

characters (α-Melanotropin -> alpha-Melanotropin).

10.3929/ethz-a-000085338: the author was deleted and replaced by one of the PhD advisors.

10.3929/ethz-a-000085653: square brackets were added at the beginning and end of the title, as 

used by cataloguers to indicate an artificial title attributed to the document.

10.3929/ethz-a-000087354: one German umlaut in the title was replaced by the base vowel.

10.3929/ethz-a-000087882: the author's middle name was removed.

10.3929/ethz-a-000089164: the first few words of the title "Contribution à l'" were removed

10.3929/ethz-a-000090885:  the author's  first  name was replaced by an initial  and the year  was 

deleted.

10.3929/ethz-a-000096662:  the  author's  name was  changed  from the  standatd  last  Name,  First  

Name order to First Name Last Name (without comma).

10.3929/ethz-a-000153723: two characters were exchanged in the title (Polyedern -> Polyedren).

10.3929/ethz-a-000578047: a TeX-notation subscript was changed in the title (N_2 → N-2) and an 

artificial umlaut was added to the author's name.

RERO1 dataset

The  initial  data  for  the  RERO1  and  RERO2  datasets  were  harvested  from  the  RERO  DOC 

repository using the OAI-PMH protocol. About 3300 records were harvested in batches of 500. The 

1990 reference records in the RERO1 dataset were extracted from batches 0 to 2 (500 records each) 
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and the first 490 records of batch 3. The duplicated records were selected at the same positions as 

for the ETHZ datasets.

7391: the journal title was changed to an abbreviated form. The Van particle of an author name was 

moved  to  imitate  a  frequent  confusion  with  such  name  (Gogh,  Vicent  van versus  van  Gogh, 

Vincent).

7808: parentheses were removed in the title. For one author, the French compound first name was 

replaced by two isolated initials.

7830: accented letters in the names of 2 authors were replaced by the base vowel. One character 

was added at the end of the last word of the title.

7853: a comma was replaced by a colon in the title. The journal title was replaced by an abbreviated 

form.

7890: a punctuation error in the first author's name was corrected. The HTML tags included in the 

title (<i>, </i>) were deleted.

8017: an umlaut in the title was replaced by the base vowel. The HTML tags included in the title 

(<i>, </i>) were deleted.

8164: the authors' full names were replaced by a Pubmed-like form (Last Name, Initial without  

punctuation). A likely variant journal title was used, and one word was abbreviated in the main title.

8344: one author and the year were deleted.

8708: two author names were modified (one two-syllable Chinese first name given as one word was 

divided into two; Mac Raighne was replaced by McRaighne). The dashes in the title were deleted.

9280: an e was added to one title word. The date given in the YYYY-MM-DD format was replaced 

by the year YYYY.

RERO2 dataset

The reference records of the RERO2 dataset were obtained from the RERO DOC OAI-PMH export 

by combining batches 2 to 4 and the first 490 records of batch 5. Since the total size of the RERO 

DOC collection,  some overlap had to be accepted in the reference records.  However,  the fixed 

positions of the duplicated records within the reference set ensure their uniqueness.

4121: ñ was changed to n in one author's name. Part of the main title was turned into a subtitle.

4140: <i> HTML tags were inserted into the title. The order of the authors was modified, and an 
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umlaut was removed from one of them.

4151: in the main title, pseudospectral was changed to pseudo spectral.

4205: a patronymic name was added to an author with a Russian name. An article was added to the 

main title and the journal title was changed to an abbreviated form.

4326: the complete title was replaced by a space.

4817: both one-syllable first names of a Chinese author were merged into a single word. A typo was 

inserted in one title word.

5020:  two author  names  were  modified  by  removing  diacritics  (1  umlaut  and  1  cedilla).  Two 

modifications on highly specialized terms were applied to the title (pre-Variscan ->  prevariscan; 

north-Gondwanan → north Gondwanan).

5382: for all authors with an abbreviated compound first name, the initials were replaced by two 

artificial  full  names  (J.-C. →  Jean  Claude).  One  compound  word  in  the  title  was  split 

(groundwater → ground water).

5800: full first names were replaced by initials. TeX-notation indices in the title were replaced by 

regular numbers.

6388: the punctuation of the title was modified and a dash was added. The year was deleted. A typo 

was inserted in the 2nd author's name.

Test collections statistical properties

Statistical properties of the test collections were gathered automatically by the colldescr.py script 

(Table 3).

Table 3: Field statistics for the test collections. Percentage of presence of the subfield in the collection (P), average 
length of the field in characters (L).
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 001 0247 a 035 a 100 a 245 a 260 c 269 c 520  a 700 a 773 c 773 g 773 t 9001 a

CERNa P 100  -  -  98  100  99  35 35  416  -  -  -  -

 L 7  -  -  12  64  4  10 728  10  -  -  -  -

CERNb P 100  -  -  98  100  99  35 35  415  -  -  -  -

 L 7  -  -  12  64  4  10 728  10  -  -  -  -

CERNc P 100  -  -  98  100  99  35 34  415  -  -  -  -

 L 7  -  -  12  64  4  10 728  10  -  -  -  -

CERNd P 100  -  88  98  100  99  35 -  415  -  -  -  -

 L 7  -  13  12  64  4  10 -  10  -  -  -  -

ETHZ1 P 1  100  0  1  100  99  - 0  109  -  -  -  168

 L 9  24  15  16  74  4  - 17  16  -  -  -  16

ETHZ2 P 1  100  0  0  100  99  - 0  111  -  -  -  168

 L 9  24  14  17  74  4  - 17  16  -  -  -  16

RERO1 P 100  -  0  99  100  -  99 92  317  8  99  100  -

 L 4  -  10  16  93  -  6 1097  15  47  16  33  -

RERO2 P 100  -  0  99  100  -  97 78  298  13  100  100  -

 L 4  -  9  16  92  -  5 1059  14  41  17  35  -

V.9.3 Test strategies

In  the  double  blind  test,  each  author  developed  several  deduplication  strategies.  Concretely,  a 

strategy takes the form of a MarcXimiL configuration file (with small variations for each dataset 

since homologous fields are sometimes tagged with different MARC fields by institutions). In this 

section, these strategies have been put together and are described in details.

2geom, 2geombreak and okapigeom strategies

The 2 geom and 2geombreak strategies use the geometric and geometric_break methods with the 

same record structure, with the aim of examining the effect of the breakout option on speed and 

precision. The field labels are therefore given names whose alphabetical order reflect their supposed 

importance for duplicate detection. The record identifiers are examined first and directly passed to 

the output (no comparison is performed), followed by the year, document title (including a possible 

secondary  title),  authors  (including  thesis  supervisors)  and source  information.  Considering  the 

significant differences in cataloguing practices between the RERO and ETHZ collections, several 

fields (identifier, year) are included in two different instances so that they are properly taken into 

account. In general, all fields have been given the same weight in the geometric mean, but the title 

was assumed to be more important and its weight was doubled.

The title similarity is computed the vector model and Dice's similarity measure. The author list is 

analysed  in  two  steps,  first  by  considering  only  the  initials  and  then  the  full  last  names,  the 
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hypothesis being that the  first comparison might be faster but less precise. Thus, in the breakout 

strategy, it would make sense to perform the quick comparison first so that the second one can be 

avoided most of the time. Finally,  the source information (MARC 773), crucially important for 

articles, is analysed first by comparing the initials of the source title (which may be found in full 

form  or  abbreviated  form  depending  on  the  cataloguing  rules  and  their  more  or  less  serious 

enforcement), then by computing the Levenshtein distance between the fields that contain the page 

information.  We  note  that  both  these  comparisons  are  unreliable  when  dealing  with  poorly 

documented collections. Cataloguing standards tend to vary quite a lot for this MARC field.

Code sample 6: Record structure for the 2geom and 2geombreak strategies

record_structure = { \
    '01recid'        : {'marc'      : '001',
                      'weight'    : 0,
                      'parse­func': parse_controlfield,
                      'comp­func' : fields_concat__raw },
    '01recid2'       : {'marc'      : ['0247 a'],
                      'weight'    : 0,
                      'parse­func': parse_concat,
                      'comp­func' : fields_concat__raw },
    '02year'         : {'marc'      : '260  c',
                      'weight'    : 1,
                      'parse­func': parse_nonrep,
                      'comp­func' : years_comp__raw },
    '03year2'         : {'marc'      : '269  c',
                      'weight'    : 1,
                      'parse­func': parse_nonrep,
                      'comp­func' : years_comp__raw },
    '04title'        : {'marc'      : ['245  a', '245  b'],
                        'weight'    : 2,
                        'parse­func': parse_concat,
                        'comp­func' : ntfnidf_vectordice_comp__wc },
    '05authors1'      : {'marc'      : ['100  a', '700  a', '9001 a'],
                         'weight'    : 1,
                         'parse­func': parse_concat,
                         'comp­func' : items_comp__initials },
    '05authors2'      : {'marc'      : ['100  a', '700  a', '9001 a'],
                         'weight'    : 1,
                         'parse­func': parse_multi,
                         'comp­func' : authors_comp__raw },
    '06source1'      : {'marc'      : ['773  t', '7112 a'],
                       'weight'    : 1,
                       'parse­func': parse_concat,
                       'comp­func' : items_comp__initials },
    '07sourceinfo'   : {'marc'      : ['773  g', '773  c'],
                       'weight'    : 1,
                       'parse­func': parse_concat,
                       'comp­func' : levenshtein_comp__raw } }

The okapigeom strategy substitutes the probabilistic Okapi BM25 formula to the vector-model Dice 

similarity measure for the  computation of the title similarity.
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Initials and initialsbreak strategies

The goal of the initials strategy is to perform a very fast comparison while still  considering all 

important  fields for the duplicate  detection.  For this,  the record structure used with the 2geom 

strategy  was  modified  at  the  title  and  author  levels:  for  both  fields,  a  simple  set-theoretical 

comparison of initials is performed.

Code sample 7: Record structure for the initials and initialsbreak strategies

record_structure = { \
    '01recid'        : {'marc'      : '001',
                      'weight'    : 0,
                      'parse­func': parse_controlfield,
                      'comp­func' : fields_concat__raw },
    '01recid2'       : {'marc'      : ['0247 a'],
                      'weight'    : 0,
                      'parse­func': parse_concat,
                      'comp­func' : fields_concat__raw },
    '02year'         : {'marc'      : '260  c',
                      'weight'    : 1,
                      'parse­func': parse_nonrep,
                      'comp­func' : years_comp__raw },
    '03year2'         : {'marc'      : '269  c',
                      'weight'    : 1,
                      'parse­func': parse_nonrep,
                      'comp­func' : years_comp__raw },
    '04title'        : {'marc'      : ['245  a', '245  b'],
                        'weight'    : 2,
                        'parse­func': parse_concat,
                        'comp­func' : items_comp__initials },
    '05authors1'      : {'marc'      : ['100  a', '700  a', '9001 a'],
                         'weight'    : 1,
                         'parse­func': parse_concat,
                         'comp­func' : items_comp__initials },
    '06source1'      : {'marc'      : ['773  t', '7112 a'],
                       'weight'    : 1,
                       'parse­func': parse_concat,
                       'comp­func' : items_comp__initials },
    '07sourceinfo'   : {'marc'      : ['773  g', '773  c'],
                       'weight'    : 1,
                       'parse­func': parse_concat,
                      'comp­func' : levenshtein_comp__raw } }

Again, a breakout variant was introduced, yielding the initials_breakout strategy.

Abstract Fallback strategy

This  strategy  is  based  on  the  principle  that  the  abstract  field  (520$a)  is  generally  longer  and 

therefore contains more information (see Table 3). Because this field is long, the Dice-based vector 

similarity algorithm was used. For instance, the Levenshtein similarity algorithm is much to slow 

for that  purpose.  The Dice algorithm was privileged over Salton's cosine and Jaccard functions 
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because preliminary tests showed that it was a touch more efficient in the similarity value obtained.

Unfortunately, the abstract field is not always present, even in article collections. In this case, the 

strategy falls back on the titles when it happens, because this field is almost always present.

To  implement  this  strategy,  the  abstract_fallback  global  similarity  function  that  we  described 

previously was written.

In the configuration file, the key points of this strategy are defined as follows:

Code sample 8: Program configuration for the abstract_fallback strategy

    INPUT_FILES = ['collection.xml']
    records_comp = records_comp_single
    report = report_tab
    globalvars.output_threshold = 0.3
    record_structure = { \
        'recids'   : {'marc'      : '001',
                      'parse­func': parse_controlfield,
                      'comp­func' : fields_concat__raw },
        'title'    : {'marc'      : '245  a',
                      'parse­func': parse_nonrep,
                      'comp­func' : ntfnidf_vectordice_comp__wc},
        'abstract' : {'marc'      : '520  a',
                      'parse­func': parse_nonrep,
                      'comp­func' : ntfnidf_vectordice_comp__wc}}
    record_rules = abstract_fallback

Boundaries_max strategy

This strategy is based on the principle that, it often is interesting to take fields into account only if 

they meet certain conditions. Therefore, it allows the end user to specify two optional parameters 

for each field:

1. 'threshold' : if this threshold is not attained for that fields similarity, that value will not be 

used in the global similarity computation

2. 'global-threshold' : if this threshold is not reached, a minimal global similarity for the record 

pair will be returned. The treatment stops at once.

To implement this strategy, the boundaries_max global similarity function that we described earlier 

was implemented.

A generic strategy was devised on that basis:

• The 'year' field is used to impose a low global record similarity between two record if they 

were published more than five years apart. This is done to avoid useless computations. In 
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deed, publications that are more than 5 years apart are unlikely to be near duplicates, even a 

preprint and a corresponding article that would be published a long time afterwards (NB: 

This is not valid in some academic domains, like economy).  Practically,  this is done by 

setting a 'global-threshold' parameter of 0.5, on a year_comp__raw similarity output. NB: 

this  last  function  calculates  the  difference  in  years  between  the  fields  and  returns  1  – 

0.1*(difference in years) as field similarity.

• The 'title' and 'abstract' fields are then analysed with a Dice based vectorial similarity field 

function. If either of these analyses returns a value lower than 0.5, the corresponding field is 

ignored. This way, because the global output threshold is set to 0.4, the similarity output file 

will generally be of acceptable length.

• Then the maximal field similarity is returns as global similarity, or a minimal value of 1e-10 

is return if not applicable. 

Code sample 9: Program configuration for the boundaries_max strategy

  INPUT_FILES = ['collection.xml']
  report = report_tab
  globalvars.output_threshold = 0.4
  record_structure = { \
        'recids'  : { 'marc'      : '001',
                      'parse­func': parse_controlfield,
                      'comp­func' : fields_concat__raw },
        'year'   :   {'marc'      : '260  c',
                      'global­threshold' : 0.5,
                      'parse­func': parse_nonrep,
                      'comp­func' : years_comp__raw },
        'title'  :   {'marc'      : '245  a',
                      'threshold' : 0.5,
                      'parse­func': parse_nonrep,
                      'comp­func' : 
ntfnidf_vectordice_comp__wc },
        'abstract':  {'marc'      : '520  a',
                      'threshold' : 0.5,
                      'parse­func': parse_nonrep,
                      'comp­func' : ntfnidf_vectordice_comp__wc}}
    record_rules = boundaries_max

NB:  An  other  strategy  called  Boundaries  is  available.  It  is  based  on  the  same  principles  than 

Boundaries  Max,  however  the  global  similarity  returned  is  a  weighted  average  of  the  fields 

similarities  that  meet  their  thresholds.  This  second Boundaries  strategy was not  studied  in  this 

report, because preliminary tests showed that it is generally less effective than Boundaries Max.
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Geometric_jk strategy

This  strategy  is  based  on  a  classic  weighted  average.  The  geometric  mean  was  used  since 

preliminary tests showed that it yielded a better recall in the first results than the arithmetic and 

harmonic versions.

A relatively small selection of fields was selected for the mean: year, authors, title, abstract. This 

fields were chosen, since they are the most important bibliographic fields that are present in almost 

all types of records (articles, preprints, books, periodicals). The abstract field is more frequent in 

preprints and articles than in other types of records, but it was included nonetheless because it was 

considered as is informative input when it is there.

In preliminary tests on a limited amount of records, several weighting strategies were tested. In 

most cases the weighting does not seem to do much difference. However, it seemed that attributing 

less importance to the year was slightly more effective.

Concretely, this strategy is defined as follows:

Code sample 10: Program configuration for the geometric_jk strategy

    INPUT_FILES = ['collection.xml']
    records_comp = records_comp_single
    report = report_tab
    globalvars.output_threshold = 0.3
    record_structure = { \
        '01recid'        : {'marc'      : '001',
                            'weight'    : 0,
                            'parse­func': parse_controlfield,
                            'comp­func' : fields_concat__raw },
        '02year'         : {'marc'      : '260  c',
                            'weight'    : 1,
                            'parse­func': parse_nonrep,
                            'comp­func' : years_comp__raw },
        '03authors'      : {'marc'      : ['100  a', '700 a'],
                            'weight'    : 3,
                            'parse­func': parse_multi,
                            'comp­func' : authors_comp__raw },
        '05title'        : {'marc'      : '245  a',
                            'weight'    : 3,
                            'parse­func': parse_nonrep,
                            'comp­func' : \
                                  ntfnidf_vectordice_comp__wc },
        '05abstract'     : {'marc'      : '520  a',
                            'weight'    : 3,
                            'parse­func': parse_nonrep,
                            'comp­func' : \
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                                  ntfnidf_vectordice_comp__wc } }
    record_rules = geometric_mean

Maxsim strategy

This strategy is a simplified boundaries_max strategy: it will return the maximum field similarity as 

global similarity for a record (no thresholds can be defined). But it was set up in a way that was not 

exploited in boundaries_max.

The title similarity is computed twice using two different algorithms. The first is the Dice vector 

similarity function, and the second is based on the Levenshtein edit distance. While the former is 

good  at  detecting  words  permutations,  deletions  and  additions,  the  latter  is  good  at  detecting 

misspellings. Because the maximal field similarity is then computed, the best characteristics of each 

algorithm are reflected in the global similarity depending on the compared record pair.

This strategy is defined as follows:

Code sample 11: Program configuration for the maxsim strategy

  INPUT_FILES = ['collection.xml']
  records_comp = records_comp_single
  report = report_tab
  globalvars.output_threshold = 0.4
  record_structure = { \
    'recids'            : {'marc'      : '001',
                           'parse­func': parse_controlfield,
                           'comp­func' : fields_concat__raw },
    'title_levenshtein' : {'marc' : '245  a',
                           'parse­func': parse_nonrep,
                           'comp­func' : levenshtein_comp__raw },
    'title_dice'        : {'marc'      : '245  a',
                           'parse­func': parse_nonrep,
                           'comp­func' : \
                                 ntfnidf_vectordice_comp__wc },
    'abstract'          : {'marc'      : '520  a',
                           'parse­func': parse_nonrep,
                           'comp­func' : \
                                 ntfnidf_vectordice_comp__wc}}
     record_rules = maxsim

Ubiquist strategy

This strategy uses the bibliometric properties of most collections to estimate similarities between 

records. To do so, a succession of tests is applied in order to obtain the global record similarity, as 

already  previously  described  in  the  'Computing  the  global  similarity'  section  dedicated  to  the 
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Ubiquist function.

This strategy's formal definition follows:

Code sample 12: Program configuration for the ubiquist strategy

    INPUT_FILES = ['collection.xml']
    records_comp = records_comp_single
    globalvars.output_threshold = 0.65
    record_structure = { \
        'recids'        : {'marc'      : '001',
                           'parse­func': parse_controlfield,
                           'comp­func' : fields_concat__raw },
        'doi':            {'marc' : '035  a',
                           'parse­func': parse_nonrep,
                           'comp­func' : identifiers_comp__raw},
        'authors'       : {'marc'      : ['100  a', '700  a'],
                           'parse­func': parse_multi,
                           'comp­func' : authors_comp__raw },
        'year'          : {'marc' : '260  c',
                           'parse­func': parse_nonrep,
                           'comp­func' : years_comp__raw },
        'title_dice'      : {'marc'      : '245  a',
                             'parse­func': parse_nonrep,
                             'comp­func' : \
                                  ntfnidf_vectordice_comp__wc },
        'abstract'        : {'marc'      : '520  a',
                             'parse­func': parse_nonrep,
                             'comp­func' : \ 
                                  ntfnidf_vectordice_comp__wc } }
        record_rules = ubiquist

V.9.4 Quantitative results

Recall

Results were obtained separately in the double blind test, and then put together in the following 

table. The processing time was measured by running all tests on Ubuntu 9.04 with Psyco on a Dell 

Optiplex 760, equiped with Intel Duo CPUs (E7400 @ 2.80Ghz) and 3 Gb of RAM.

Table 4 reports the number of retrieved duplicate pairs among the first 10, 20 and 50 top similarity 

scores for all combinations of strategies and collections, as well the processing time for each test.

Table 4: Results - recall on test collections for all strategies

Collection Strategy Recall 10 Recall 20 Recall 50 Time [minutes]

CERNa 2geom 5 8 8  7.40

CERNa 2geombreak 6 8 9  5.93
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Collection Strategy Recall 10 Recall 20 Recall 50 Time [minutes]

CERNa abstract_fallback 9 9 10  3.85

CERNa boundaries_max 10 10 10  4.28

CERNa geometric_jk 6 8 8  4.92

CERNa initials 6 8 9  4.18

CERNa initialsbreak 8 8 9  3.90

CERNa okapigeom 5 8 8  6.38

CERNa maxsim 10 10 10 50.42

CERNa ubiquist 10 10 10  6.43

CERNb 2geom 3 4 8  7.35

CERNb 2geombreak 3 3 4  5.93

CERNb abstract_fallback 8 9 10  3.92

CERNb boundaries_max 9 9 10  4.23

CERNb geometric_jk 4 7 8  4.93

CERNb initials 5 6 8  4.2

CERNb initialsbreak 5 5 7  3.98

CERNb okapigeom 3 5 8  6.35

CERNb maxsim 9 9 9 51.6

CERNb ubiquist 9 9 10  6.53

CERNc 2geom 1 2 7  7.37

CERNc 2geombreak 3 3 5  5.98

CERNc abstract_fallback 6 7 8  3.88

CERNc boundaries_max 7 7 8  4.23

CERNc geometric_jk 3 7 8  4.93

CERNc initials 4 5 7  4.33

CERNc initialsbreak 5 5 7  3.88

CERNc okapigeom 3 3 7  6.37

CERNc maxsim 7 8 8 50.17

CERNc ubiquist 7 8 8  6.45

CERNd 2geom 4 4 6  7.45

CERNd 2geombreak 3 3 5  6.02

CERNd abstract_fallback 2 3 5  2.88

CERNd boundaries_max 2 3 5  3.17

CERNd geometric_jk 3 5 8  3.77

CERNd initials 7 7 7  4.17

CERNd initialsbreak 7 7 10  3.92

CERNd okapigeom 3 5 6  6.43

CERNd maxsim 4 4 8 49.12

CERNd ubiquist 7 9 10  5.58

ETHZ1 2geom 9 9 9  6.60
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Collection Strategy Recall 10 Recall 20 Recall 50 Time [minutes]

ETHZ1 2geombreak 6 10 10  5.17

ETHZ1 abstract_fallback 3 7 10  2.82

ETHZ1 boundaries_max 3 7 10  3.03

ETHZ1 geometric_jk 6 10 10  3.15

ETHZ1 initials 9 10 10  4.08

ETHZ1 initialsbreak 10 10 10  3.78

ETHZ1 okapigeom 8 9 10  5.53

ETHZ1 ubiquist 5 6 7  4.33

ETHZ2 2geom 10 10 10  6.68

ETHZ1 maxsim 3 7 10 65.02

ETHZ2 2geombreak 10 10 10  5.17

ETHZ2 abstract_fallback 7 6 10  2.82

ETHZ2 boundaries_max 5 9 10  3.07

ETHZ2 geometric_jk 7 9 10  3.17

ETHZ2 initials 9 9 9  4.10

ETHZ2 initialsbreak 8 8 9  3.88

ETHZ2 okapigeom 9 10 10  5.55

ETHZ2 ubiquist 5 6 7  4.32

ETHZ2 maxsim 5 10 10 63.15

RERO1 2geom 8 10 10  12.65

RERO1 2geombreak 6 8 9  9.05

RERO1 abstract_fallback 4 7 10  12.35

RERO1 boundaries_max 0 2 10  13.58

RERO1 geometric_jk 2 8 9  14.73

RERO1 initials 10 10 10  9.53

RERO1 initialsbreak 9 9 10  8.93

RERO1 okapigeom 6 9 10  11.4

RERO1 ubiquist 7 10 10  16.67

RERO1 maxsim 0 3 10 16.65

RERO2  2geom 5 7 10 10.46 

RERO2  2geombreak 3 6 8 13.80 

RERO2  abstract_fallback 4 7 10 9.46 

RERO2  boundaries_max 3 4 10 10.50 

RERO2  geometric_jk 2 4 8 11.19 

RERO2  initials 9 10 10 10.53 

RERO2  initialsbreak 6 6 9 10.05 

RERO2  okapigeom 10 10 10 12.61 

RERO2  ubiquist 8 10 10 12.91 

RERO2 maxsim 3 4 10 102.34
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In order to show the retrieval performance of each strategy in a more visual way and identify their 

possible weak points, we analyse the position of each duplicate pair in the output file in Table 5. For 

each duplicated record, we report whether the pair was found:

• +++ in the first 10 results , 

• ++ in the first 20 results , 

• + in the first 50 results ,

• the cell is left empty if the record is detected after the position 50

Table 5: Individual records recall for all strategies.

+++ : the record was retrieved in the 10 first results ; ++ in the 20 first results ; + in the 50 first results.

 2geom
break

2geom  initials
break

initials  Okapi
geom

boundaries
_max

abstract ubiquist geometric maxsim

CERNa|
1187394

+++ +++ +++ +++ ++ +++ +++ +++ +++ +++

CERNa|
1187403

+++ +++ +++ +++ +++ +++ +++ + +++ +++

CERNa|
1187408

+++ +++ +++ +++ +++ +++ + +++ +++ +++

CERNa|
1187427

+++ +++ +++ +++ +++ +++ +++ +++ +++ +++

CERNa|
1187432

++ +++ +++ +++ +++ +++ +++

CERNa|
1187436

+++ ++ +++ +++ ++ +++ +++ +++ +++ +++

CERNa|
1187448

++ +++ +++ +++ +++

CERNa|
1187449

++ ++ ++ +++ +++ +++ +++ ++ +++

CERNa|
1187474

+ ++ + ++ +++ +++ +++ ++ +++

CERNa|
1187507

+++ +++ ++ ++ +++ +++ +++ +++ +++ +++

CERNb|
1187394

+++ + + ++ + +++ +++ +++ +++ +++

CERNb|
1187403

+ +++ +++ + +++ +++ + ++ +++

CERNb|
1187408

+++ +++ +++ +++ ++ +++ +++ +++

CERNb|
1187427

+ +++ +++ + +++ +++ +++ + +++

CERNb|
1187432

+++ +++ +++ +++ +++ +++
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 2geom
break

2geom  initials
break

initials  Okapi
geom

boundaries
_max

abstract ubiquist geometric maxsim

CERNb|
1187436

+++ +++ +++ +++ ++ +++ +++ +++ +++ +++

CERNb|
1187448

+++ +++ +++ +++

CERNb|
1187449

++ + + +++ +++ +++ +++ ++ +++

CERNb|
1187474

+ +++ + ++ + + ++

CERNb|
1187507

+++ + +++ +++ +++ +++ +++ +++

CERNc|
1187394

+++ + + ++ + +++ +++ +++ +++ +++

CERNc|
1187403

+ +++ +++ + +++ +++ + ++ +++

CERNc|
1187408

+++ +++ +++ +++ +++ +++ ++ +++ +++ +++

CERNc|
1187427

+++ +++ + +++

CERNc|
1187432

+++ +++ +++ +++ +++ +++

CERNc|
1187436

+ + +++ +++ + +++ +++ +++ +++ +++

CERNc|
1187448

+++ +++ +++ +++

CERNc|
1187449

++ + + +++ ++

CERNc|
1187474

+ + + + + + ++

CERNc|
1187507

+++ + +++ +++ ++ ++ ++

CERNd|
1187394

+++ +++ +++ +++ +++ +++ +++ +++ +++ +++

CERNd|
1187403

+++ +++ +++ +++ +++ +++ +++ + +++ +++

CERNd|
1187408

+ +++ +++ ++ + +

CERNd|
1187427

+ +++ +++ +++ ++ + + ++ ++ +

CERNd|
1187432

+++ +++ +++ +++ +++ ++ ++ ++ +++ +++

CERNd|
1187436

+++ +

CERNd|
1187448

+++ +

CERNd|
1187449

+++ +++ + +++ +
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 2geom
break

2geom  initials
break

initials  Okapi
geom

boundaries
_max

abstract ubiquist geometric maxsim

CERNd|
1187474

+ +++ +++ +++ + +

CERNd|
1187507

+ + + +++ ++ +++

ETHZ1|
10.3929/e
thz-a-
00008055
2

+++ +++ +++ ++ ++ + + +++ ++ ++

ETHZ1|
10.3929/e
thz-a-
00008532
8

+++ +++ +++ +++ +++ ++ ++ ++ ++

ETHZ1|
10.3929/e
thz-a-
00008564
3

+++ ++ +++ +++ +++ + + ++ +

ETHZ1|
10.3929/e
thz-a-
00008659
7

+++ +++ +++ +++ +++ ++ ++ +++ +++ ++

ETHZ1|
10.3929/e
thz-a-
00008787
2

+++ +++ + +++ ++

ETHZ1|
10.3929/e
thz-a-
00008915
4

+++ +++ +++ +++ +++ ++ ++ +++ +++ ++

ETHZ1|
10.3929/e
thz-a-
00009087
5

+++ +++ +++ +++ +++ +++ +++ ++ +++ +++

ETHZ1|
10.3929/e
thz-a-
00009665
1

+++ ++ +++ +++ +++ +++ +++ +++ +++ +++

ETHZ1|
10.3929/e
thz-a-
00015244
1

+++ ++ +++ +++ +++ +++ +++ +++ +++ +++

ETHZ1|
10.3929/e
thz-a-

+++ +++ +++ +++ +++ + + + ++ +
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 2geom
break

2geom  initials
break

initials  Okapi
geom

boundaries
_max

abstract ubiquist geometric maxsim

00057800
9

ETHZ2|
10.3929/e
thz-a-
00008108
9

+++ +++ +++ +++ ++ ++ ++ + ++ ++

ETHZ2|
10.3929/e
thz-a-
00008533
8

++ ++ + ++ +++ ++ ++ +++ +++

ETHZ2|
10.3929/e
thz-a-
00008565
3

++ ++ ++ +++ + + + + ++

ETHZ2|
10.3929/e
thz-a-
00008735
4

+++ +++ +++ +++ +++ +++ ++ +++ +++ +++

ETHZ2|
10.3929/e
thz-a-
00008788
2

+++ +++ +++ +++ +++ +++ + +++ +++ +++

ETHZ2|
10.3929/e
thz-a-
00008916
4

+++ +++ +++ +++ +++ ++ ++ ++ ++ ++

ETHZ2|
10.3929/e
thz-a-
00009088
5

+++ +++ +++ +++ +++ +++ +++ +++ ++ +++

ETHZ2|
10.3929/e
thz-a-
00009666
2

+++ +++ +++ +++ +++ +++ +++ +++ +++ +++

ETHZ2|
10.3929/e
thz-a-
00015372
3

+++ +++ +++ +++ +++ ++ ++ ++ ++ ++

ETHZ2|
10.3929/e
thz-a-
00057804
7

+++ +++ +++ +++ ++ ++ ++ ++ ++ ++
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 2geom
break

2geom  initials
break

initials  Okapi
geom

boundaries
_max

abstract ubiquist geometric maxsim

RERO1|
4121

+++ +++ +++ +++ ++ + + ++ ++ +

RERO1|
4140

+++ +++ +++ +++ ++ + + ++ ++ +

RERO1|
4151

+++ +++ +++ +++ +++ + + +++ ++ +

RERO1|
4205

+++ +++ +++ +++ +++ + + +++ ++ +

RERO1|
4326

+++ +++ +++ +++ +++ + + +++ ++ +

RERO1|
4817

+ +++ +++ +++ +++ + + +++ ++ +

RERO1|
5020

++ +++ +++ ++ + + +++ + +

RERO1|
5382

++ +++ + +++ +++ + ++ +++ ++ ++

RERO1|
5800

+++ +++ +++ +++ +++ ++ ++ +++ +++ ++

RERO1|
6388

++ ++ +++ +++ + ++ ++ ++ ++ ++

RERO2|
7391

++ ++ + +++ +++ + + ++ ++ +

RERO2|
7808

++ +++ + +++ +++ + + +++ ++ +

RERO2|
7830

++ ++ +++ +++ ++ + + ++ + +

RERO2|
7853

+++ +++ +++ +++ +++ + + +++ ++ +

RERO2|
7890

+ +++ +++ ++ + ++ +++ +

RERO2|
8017

+ ++ ++ + ++ +++ +

RERO2|
8164

+ +++ +++ +++ ++ ++ +++ +++ + ++

RERO2|
8344

+++ +++ +++ +++ +++ +++ +++ +++ +++ +++

RERO2|
8708

+ + + +++ + +++ +++ ++ + +++

RERO2|
9280

+++ +++ +++ +++ +++ +++ +++ +++ + +++

Speed estimations

In  order  to  estimate  performances,  timing  measurements  were  performed.  These  were 

systematically  performed  as  no  other  application  was  running  (except  sometimes  top).  Most 

measurements were made in Ubuntu, and the X11 server and Gnome were systematically running. 
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In  order  to  estimate  the  accuracy  of  these  measurements,  the  same  similarity  calculation  was 

executed  20  times.  The  mean  duration  was  of  12.4  minutes.  The  standard  deviation  was  0.08 

minutes, and the difference between the longest and the shortest duration was 0.33 minutes, which 

represents approximatively 3% of the average duration. This shows that theses measurements are 

accurate enough to compare the relative speed between strategies.

Speed and operating system

The duration in minutes of a batch similarity computation based on three different collection of 

2000 records, using a geometric mean on 5 fields (Ids, title:Dice, date, authors, abstract:Dice ) has 

been measured on a Dell Latitude D620 (Intel Core Duo T2400 at 1.83GHz, 1Go RAM) . This 

machine was set up with a dual boot Windows XP/SP2 and Ubuntu 9.04.

Table 6: Timing [minutes] according to the operating system and Python version

Collection Ubuntu 
Py 2.6.2

Ubuntu Py 
2.6.2
Psyco

Ubuntu
Py 3.0.1

XP
Py 2.4.3

XP
Py 2.5.4

XP
Py 2.5.4
Psyco

XP
Py 3.1.0

CERNa 11.8 8.9 10.9 10.4 11.5 8.6 8.8

ETHZ1 7.3 5.9 7.2 6.6 7.1 5.8 6.0

RERO1 34.4 26.3 26.6 30.4 34.2 25.6 20.4

Total 53.6 41.0 44.7 47.7 58.8 40.0 35.5

Speed and number of records

To estimate this, a CERN articles collection was downloaded the same way as the CERNa through 

CERNd collections except that 16'000 records were stored. The collections listed below correspond 

respectively to the 500, 1'000, 2'000, 4'000, 8'000, 16'000 first records of the downloaded data set. 

These estimations were performed on 3 strategies:

• Abstract_fallback, that systematically computes abstract similarity if applicable.

• Initials, a geometrical mean on a fast function applied to many fields.

• Initialsbreak, the same as just above but using a « breakout mean » strategy.
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Table 7: Timing [minutes] dependance on the collection length. 

Number of Records Abstract_fallback Initials InitialsBreak

500 0.3 0.2 0.2

1000 1.0 0.6 0.6

2000 4.2 3.0 3.1

4000 23.6 16.9 15.1

8000 166.7 103.1 96.1

16000 1073.2 762.2 726.0

V.9.5 Discussion

Efficiency of strategies

Let us examine the average recall of each strategy on all collections considering the first 10, 20 and 

50 results on Table 4. The values are reported in Table 8.

Table 8: Average recall values for the test strategies

Strategy Recall 10 Recall 20 Recall 50 Average Timing [min]

2geom 5.6 6.8 8.5 7.0 8.3

2geombreak 5.0 6.4 7.5 6.3 7.1

abstract_fallback 5.4 6.9 9.1 7.1 5.3

boundaries_max 4.9 6.4 9.1 6.8 5.8

geometric_jk 4.1 7.3 8.6 6.7 6.4

initials 7.4 8.1 8.8 8.1 5.6

initialsbreak 7.3 7.3 8.9 7.8 5.3

maxsim 5.1 6.9 9.4 7.1 56.1

okapigeom 5.9 7.4 8.6 7.3 7.6

ubiquist 7.2 8.5 9.0 8.2 7.9

At most levels, the ubiquist method is the winner. The exceptions to this are the recall at 10 records, 

where the initials and initialsbreak obtain a slightly better grade, and the recall at 50 records, for 

which the abstract_fallback, boundaries_max and maxsim methods perform marginally better.

However, the three best  unrelated strategies that give the highest recall in the 10 first results are 

ubiquist, initials and okapigeom. Indeed, initialsbreak and abstract_fallback must be left aside if 

unrelated strategies are considered: initialsbreak is similar to initials (a bit faster, but less efficient at 

R20) and abstract_fallback is similar to ubiquist (though much simpler and less efficient).

Even the best strategy is not capable of retrieving all 10 test records in the top 10 positions for all 

collections. Initials has got an average of 7.4.

The ubiquist method probably owes part of its success to the carefully chosen threshold parameters 
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used for the various fields. Thanks to these numbers, the impact of the individual field similarity 

functions on the overall score can be fine tuned. The loss in generality is clearly compensated by the 

precision gain. Taking the abstract into account also appears to be a winning strategy. From the 

point of view of information retrieval, the abstract considerably enriches the number of terms in the 

“query”, which automatically makes a vector-space or probabilistic approach more precise. At the 

very least, we can expect that a high abstract similarity combined with other very similar fields to 

indicate a close relationship between two records, worthy of closer inspection.

If we compare the breakout strategies with their full-calculation equivalents, we observe a decrease 

in precision. This is not surprising since this strategy essentially involves overlooking various field 

comparisons for the sake of speed. Nevertheless, the decrease in precision remains small enough on 

average, so that the breakout strategies remain competitive compared with the other strategies. This 

shows  that  breaking  out  of  a  record  similarity  calculation  when  some  ad  hoc  condition  is 

encountered is a valid option for speed optimizations – provided that the breakout test is adequate 

for the considered collection.

The okapigeom method is conceptually a modification of the 2geom strategy where the title/subtitle 

comparison uses the probabilistic  Okapi  BM25 formula rather  than the Dice distance from the 

vector-space model. On average, it performs slightly better than the 2geom equivalent, and with 

shorter computation times, so one might be tempted to use it systematically as a replacement for 

field comparisons based on the vector-space model. Furthermore, we used the default values for its 

various  numerical  parameters,  so  one  can  imagine  that  the  precision  would  be  improved  by 

optimizing these parameters for a given collection. However, the BM25 function has at least one 

drawback: the resulting value is in not normalized in the form we found in the literature. In this 

project,  we  modified  the  function  to  ensure  that  the  result  would  remain  within  the  [0.0;1.0] 

domain, but this patch is far from optimal. Even if the results are properly distributed according to 

the similarity of the record pairs, we cannot predict the absolute values for arbitrary collections. It 

will thus be difficult to apply any method that would be based on a threshold value, whether for the 

global  comparison  strategy  (such  as  our  breakout  methods)  or  for  output  or  post-processing. 

Moreover, it makes the human control of the detected duplicates more tedious, with no clear way to 

decide when this control should stop. As a consequence, we feel that this method is not suitable for 

the specific application presented here.

Both the initials and the initialsbreak strategy performed surprisingly well in our tests. Despite the 

rather bold assumption of representing whole MARC fields contents by the initials of their terms 

without even considering their order in the field, these methods are only surpassed by the ubiquist 
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strategy as far as the mean average precision is concerned. They are also among the fastest in our 

tests. Indeed, they can be seen as a loose variant of the well-established technique of generating 

keys or hash functions based on the abbreviated forms of selected field contents, and performing the 

duplicate detection analysis over these codes (Goyal 1987). However, it is not certain that this result 

could be extrapolated to arbitrary collections. As more and more records are processed in a large 

collection, the probability of collisions between codes generated from unrelated records increases. 

Furthermore, if the content of the fields becomes richer (a likely example would be the author list of 

many CERN publications, where hundreds of people are acknowledged), the probability of using up 

most of the alphabet becomes fairly high.

The maxsim, boundaries_max and abstract_fallback share a common behaviour as far as precision 

is  concerned.  On one hand, their  average precision at  10 records is  not better  than that of the 

geometric mean methods. On the other hand, we observe that our duplicate pairs almost always 

appear within the top 50 similarity scores. The maxsim and boundaries_max methods clearly favour 

recall over precision: the maximal similarity score is returned, overlooking the less similar fields. 

As for the abstract_fallback method, it  is  meant more as a demonstration of the discriminating 

power of information retrieval methods than as a real duplicate detection strategy. The fact that it 

still manages to obtain a decent grade proves the usefulness of the approach.

Complementarity of strategies

Some  of  our  engineered  duplicates  are  harder  to  find  than  others.  In  order  to  measure  this 

numerically, grades were assigned based on the data in Table 5 as follows (blank cell → 0 ; + → 1 ; 

++ → 2 ; +++ → 3).

For each test record, the maximal, the minimal and the average values were computed over all 

strategies. The results are displayed in Figure  2. The 'max' data set shows that amongst all tested 

strategies, at least one was able to retrieve each engineered duplicate within the 10 first results 

(there is only one exception on the 80 near-duplicates). This is quite an achievement because, there 

are 10 near-duplicates in each collection that have a valid reason to be in the 10 first results.
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Figure 2: Qualitative recall according to Table 5 for all test records (sorted by average score)

In  other  words,  even  if  no  single  strategy  is  capable  of  retrieving  all  10  test  records  in  all 

collections,  at  least  one  of  our  strategies  almost  always  succeeded  (with  one  exception):  our 

strategies are complementary.

Fortunately, the integration of several outputs is straightforward and can be done automatically: all 

n first duplicate candidates pairs of each strategy can be gathered together, then the identical pairs 

regrouped, their similarity adjusted, and the results sorted again. 

The most difficult part is to identify the most efficient and complementary strategies.

Using Table  5 helps analysing our best strategies under a different angle: how often did each of 

these strategy yield the best performance in the top 10 results (compared to the other strategies, 

even if it is a tie)? The results are summed up in Table 9.

Table 9: Percentage of best recall at 10 records for the initials, ubiquist and okapigeom strategies

Strategy Percentage of the best performance in the top 10

Initials 73%

Ubiquist 66%

Okapigeom 50%

From this point of view, initials is the most efficient strategy because it was the best in the retrieval 

in 73% of the cases. But, what is the complementarity of these three strategies? This can be read on 

the Table 5, too. 
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• In 93% of the cases, initials  OR ubiquist  performed the best  job compared to the other 

strategies. But in 46% of the cases initials AND ubiquist achieved the best marks together. 

So, 47% of the duplicates that they detect are not common to them.

• In 96% of the cases, initials OR ubiquist OR okapigeom performed the best job compared to 

the  other  strategies.  But  in  29%  of  the  cases  initials  AND  ubiquist  AND  okapigeom 

achieved the best marks together. So, 67% of the duplicates they detect are not common to 

the three.

In summary, these results show that the combined use of these 2 or 3 strategies is sufficient to detect 

the vast majority of the test duplicates because they are quite complementary. 

Recall analysis

In a few cases, these strategies combined were not able to detect all test duplicates within the 10 

first results. In absolute numbers only 6 of our 80 test duplicates are problematic. They may be 

subdivided as follows:

3 records were not found at all (even with considering the 3 best strategies combined) (Table 10). 3 

records were found only in combining the 3 strategies (2 strategies were not enough) (Table 11).

Table 10: Recall failures at 10 for the initials, ubiquist and okapigeom strategies

Identifier Comments

ETHZ2|
10.3929/ethz-a-
000085338

The initials strategy failed totally (not in the 50 first) in this case, but ubiquist and okapigeom 
found it in the first 20 results, so it is not catastrophic. It must be noted that exceptionally 
boundaries_max got it in the top 10. The modification applied was simple and quite likely: the 
main author was replaced by a PhD advisor.

CERNb|1187474 The title was truncated (3 words out of 12) and the abstract removed. But okapigeom was still 
able to get it in the 20 first results. The best score was this time exceptionally performed by the 
2geom strategy. 

CERNc|1187474 This is a very tough case. Only one strategy managed to get it in the first 20 records: the 
geometric strategy. In addition to the CERNb|1187474 modifications described above 1 author 
out of 3 was removed. 

Table 11: Near-duplicates identified by the combination of all 3 best strategies

Identifier Comments

ETHZ2|
10.3929/ethz-a-
000085653

Square brackets were added around the title (this is a catalogue rule indicating that an artificial 
title was attributed to the document). Okapigeom made the difference. However, ubiquist and 
initials managed to place it in the first 20 results.

CERNc|1187449 The title was truncated (3 word out of 7). The date was changed by 2 years. The abstract was 
removed... and the okapigeom strategy was able to put it in the first 10 results!

CERNc|1187507 Half of the authors were deleted (2 out of 4), The title was truncated (1 word out of 6), and 2 
sentences were cut out of the abstract. Ubiquist was able to place this duplicate in the first 20 
results, but initials failed totally (it was not even in the first 50 results). However, okapigeom 
succeed in getting it in the top ten.

75



The average curve on Figure 2 is related to the difficulty to find each duplicate. Let us consider the 

records that were in average the hardest to return in the top ten:

• In the 10 most difficult duplicates to find (lowest average), 9 belong to the CERNc and 

CERNd collections.  This is  not surprising because these two collections contain the test 

records that were most heavily modified: At least three fields of significance were altered in 

each record.

• The 10th trickiest duplicate is the RERO2|8017, in which HTML tags were added in the title 

and a diacritic suppressed. It can reasonably be assumed that the diacritic removal had no 

effect, because these are eliminated in the text preprocessing. The HTML tags adjacent to 

one particular word are not frequent and must have produced an important impact on the 

title similarities because of their nidf.

• The 11th trickiest  duplicate is the ETHZ1|10.3929/ethz-a-000087872. The title contains a 

misspelling and the date field was removed. Misspellings may have quite a lot of impact: 

they can cause the removal of one indexation term as well as the introduction of a rare term 

that  will  have  a  strong  impact  because  of  its  nidf. Unsurprisingly,  the  initials  strategy 

performed well: is not affected by misspellings unless they touch the first character. The 

maxsim function,  that  is  good at  detecting misspellings  because it  uses  the Levenshtein 

algorithm did also well. 

• The 12th hardest  test  record  to  find  was  CERNb|1187448.  All  authors  first  names were 

removed.  Effectively,  none  of  them  was  recognized  because  of  the  way  the  author 

comparison function works. And the date was changed by 3 years, which is more than the 

breakout means based strategies as well as other strategies will tolerate (2 years). But the 

boundaries max, abstract fallback and ubiquist strategies that use the abstract were able to 

surmount this difficulty. 

The  4  easiest  duplicates  to  find  have  all  an  average  of  3.0,  which  means  that  they  were 

systematically retrieved in the 10 first results by all strategies: 

1. CERNa|1187427 : the only modification was to move 2 sentences within the abstract. This 

was easy to spot since all  algorithms that were applied to  abstracts  are  based on therm 

frequencies.

2. RERO2|8344 : one author was removed (many strategies do not use the author field, and the 

ones that do take other parameters into account), and the year deleted.
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3. ETHZ2|10.3929/ethz-a-000096662:  The  author  name  format  was  change  from  one 

supported format to another supported format (lastname, firstname → firstname lastname)

4. CERNd|1187394 : Only the title field was touched.

The 8 next easiest duplicates to find have all an average of 2.9 (they were retrieved in the 10 first 

results by many strategies): 

• CERNc|1187408 : two sentences were cut out of a long abstract, the year changed by 2 years 

(this is tolerated in all strategies that use the date field).

• CERNb|1187436 : authors were removed (6 out of 14, and the author similarity stays over 

50%), the abstract remixed (this does not affect term frequencies based algorithms applied to 

abstracts).

• CERNa|1187394 : date changed by two years : this is tolerated in all strategies (if they use 

the date field at all).

• ETHZ1|10.3929/ethz-a-000152441: the subtitle was changed by a variant. Many strategies 

do not use the subtitle field. The others tolerate variations.

• ETHZ2|10.3929/ethz-a-000090885: the author first name was replaced by an initial (in the 

author normalisation, this is done anyway and has therfore no effect), and the date removed

• ETHZ2|10.3929/ethz-a-000087354 : a diacritic was removed from a title... this has no effect 

because all diacritics are removed in the text normalisation process.

• ETHZ1|10.3929/ethz-a-000090875 : a diacritic was added to an author name... this has no 

effect because all diacritics are removed in the text normalisation process.

• ETHZ1|10.3929/ethz-a-000096651: the subtitle was removed. Many strategies do not use 

the subtitle field. The others tolerate variations.

Together, the analysis of the 12 respectively easiest and hardest to find test duplicates shows that:

• In summary, the difficulty to find a duplicate seems particularly linked to the number of 

fields that were altered, and then of course to the severity of the alterations. The failures to 

place a duplicate in the 10 (or 20) first results happen often when 3 fields or more have been 

altered.

• If one field has been reasonably altered in a record, it will be returned in the top 10 results 

by  most  strategies,  whichever  field  the  alteration  concerns.  With  a  proper  strategy,  the 

following alterations are well detected:
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◦ removing up to one third of authors 

◦ removing up to one third of a title

◦ removing a few sentences in an abstract

◦ changing the publication date by up to two years

◦ words permutations have in general no effect (except in Levenshtein based algorithms... 

and shingling algorithms, that were not tested in this part of this report)

◦ punctuation and diacritics are normalised, their alteration has generally no effect

◦ author  format  variations  don't  have  much  influence  (order  of  first  and  last  names, 

abbreviated first names...)

• misspelled words in a title produce more effect than their deletion

• many strategies will still work if a few fields are deleted

Noise analysis

Now, let us examine the false positives within the 10 highest similarities, i.e.  the noise, for the 

methods that obtained a reasonably good grade on a given collection (more than 5 duplicates found 

in the first 10 results) as they can provide useful inspiration for strategy refinements. False positives 

are generally due to similar records that may in some cases be considered as duplicates or just 

similar records that are both justified. Two documents published by the same authors, and whose 

titles  differ  only by one letter  (sometimes even articles in the same issue of a journal)  are not 

unheard of. (Lavanchy 1977) and (Tecon 1979) are examples of such a pathological case. Thus, if 

highly similar but distinct records are known to exist within a collection, it would be useful to mark 

them as  such  (by  a  specific  field  or  by  adding  them to  a  stop  list)  so  that  the  program can 

automatically skip them in the analysis.

a) CERN collections

As expected,  the abstract_fallback,  boundaries_max, ubiquist  and maxsim strategies yielded the 

best results on the CERNa collection. These methods were originally developed to process this very 

collection (CERN records with not too many field alterations) so this is essentially a confirmation.

We got  more  or  less  equivalent  results  with  the  2geom (Table  12),  2geombreak,  geometric_jk 

(Table 13), and okapigeom (Table 14) methods. Except for the last one, the noise in the 2geombreak 

results was identical to the one with the 2geom method.
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Table 12: Noise pairs reported by 2geom for the CERNa collection

Identifiers Comments

1181589 | 1181575 The same author presented his work under the same title at 2 different conferences, with 
different abstracts

1185026 | 1185023 The author published two articles with the same titles, published in the same year in 2 
different journals

1186848 | 1186846 Parts 1 and 2 of a continuing work, with titles different by 1 word, written over 2 years 
and distributed as preprints

1182408 | 1182407 Identical records except for 1 author and the page information

1182864 | 1182862 The same authors wrote 2 reports with very similar (but clearly different) titles

Table 13:Noise pairs reported by geometric_jk for the CERNa collection

Identifiers Comments

1178196 | 1178188 2 norms with 2 different subtitles (no author)

1182949 | 1182948 The titles differ by just one word, 

1182408 | 1182407 See 2geom results

1185026 | 1185023 See 2geom results

Table 14: Noise pairs reported by okapigeom for the CERNa collection

Identifiers Comments

1185026 | 1185023 See 2geom results

1181589 | 1181575 See 2geom results

1182408 | 1182407 See 2geom results

1181140 | 1181137 2 preprints written in the same year by largely identical authors. The title of one document 
is a part of the title of the other

1182817 | 1182633 The same authors (in a different order) presented 2 contributions to the same conference, 
with 3 words out of 4 composing the shorter title also found in the longer one.

Table 15: Noise pairs reported by initials for the CERNa collection

Identifiers Comments

1179074 | 1179072 Some shared words in the title, a majority of shared authors

1181925 | 1178561 Apparently the conference proceedings and article versions of the same work (one title 
contains an annotation, otherwise identical)

1182567 | 1182501 The conference name is the only identical feature of the records

1182987 | 1182271 Many shared words in the title, as well as shared authors, presented to the same 
conference.

There is also a significant overlap between the noise records generated by all 4 methods. Since they 

share a common fundamental approach to the problem (evaluation of the global similarity as the 

geometric mean of the individual field values),  this  is probably not surprising.  As noted in the 

general  discussion  of  the  ubiquist  strategy,  adding  the  abstract  to  the  comparison  fields  might 

improve the performance of these vector-space-model methods with this particular collection. The 

CERN Document Server generally contains rich metadata with the abstract available in most cases.
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Table 16: Noise pairs reported by initialsbreak for the CERNa collection

Identifiers Comments

1179074 | 1179072 See initials results

1181925 | 117856 See initials results

1182987 | 1182271 See initials results

1185052 | 1185041 Two articles by the same authors, with similar titles, 
published after a 2-year interval

The initials and initialsbreak methods obtained quite good results as well, but the noise records 

already show some cases of the hash collisions mentioned earlier (Tables 15 and 16). This suggests 

that this method for the field content representation should not be used for larger collections than 

ours. As mentioned earlier, enriching our comparison data with abstract might have a negative effect 

in this case. Obviously an abstract will contain a broader vocabulary than a title, which means that 

more varied initials will be found and that the intersect of two sets extracted from arbitrary records 

should increase on average.

The  CERNb,  CERNc  and  CERNd  results  show  an  increasing  error  rate,  which  is  natural 

considering their construction. In particular, the methods based on a geometric mean suffer from a 

marked  performance  loss  going  from the  CERNa  to  the  CERNb  collection.  Only  the  initials, 

initialsbreak  and  ubiquist  retain  a  reasonable  detection  efficiency  with  the  CERNd  collection. 

Except for one pseudo-hash collision for the initials strategy, the origin of the noise pairs for theses 

methods (Tables 17 and 18) seem to be curable with minor changes in the field and record similarity 

computations.

Table 17: Noise pairs reported by initials for the CERNd collection

Identifiers Comments

1179074 | 1179072 2 papers with many identical title words (but in a different 
order) by essentially the same authors

1181925 | 1178561 Preprint and final published version of the same work

1182567 | 1182501 Titles and authors are totally unrelated, but the papers 
were presented at the same conference

Table 18: Noise pairs reported by ubiquist for the CERNd collection

Identifiers Comments

1187324 | 1187320 2 contributions with the same main title at the same 
conference, with different secondary titles, by two 
different authors

1178196 | 1178188 2 norms with different subtitles (no author)

1182949 | 1182948 2 contributions at the same conference, one shared author 
and titles differ by just one word
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b) ETHZ1

The performance  of  the  methods  developed with  this  collection  in  mind (2geom,  2geombreak, 

initials, initialsbreak, okapigeom) was good. In general, 90% of the duplicates were discovered in 

the top 20 similarity values if not the top 10 values. This holds for the geometric_jk method as well, 

which  demonstrates  again  its  close  relationship  with  the  other  geometric  mean  methods.  The 

abstract_fallback,boundaries_max, ubiquist and maxsim had more problems but managed to find all 

duplicates within the top 50 similarity scores. It is interesting to note that for this collection with 

few abstracts, the ubiquist method did not shine as brightly as with the CERN collections.

Table 19: Noise pairs reported by 2geombreak for the ETHZ1 collection

Identifiers Comments

10.3929/ethz-a-005552594 | 
10.3929/ethz-a-005589693

2 different authors produced dissertations with the same title on the same year.

10.3929/ethz-a-005431188 | 
10.3929/ethz-a-005431667

Same problem as above with another title

10.3929/ethz-a-005394500 | 
10.3929/ethz-a-005431667 

Same problem as #2, except for a minor change in the title.

10.3929/ethz-a-005394500 | 
10.3929/ethz-a-005431188 

Same problem as #2 and #3, forming a triplet of near duplicates

Table 20: Noise pairs reported by geometric_jk for the ETHZ1 collection

Identifiers Comments

10.3929/ethz-a-005552594 | 
10.3929/ethz-a-005589693

See 2geombreak results

10.3929/ethz-a-005431188 | 
10.3929/ethz-a-005431667 

See 2geombreak results

10.3929/ethz-a-000362933 | 
10.3929/ethz-a-000494141

Same problem as above with another title

10.3929/ethz-a-005394500 | 
10.3929/ethz-a-005431667 

See 2geombreak results

Once again, the abstract could be a useful way to distinguish between the documents produced by 

several students based on the same assignment by a teacher. However, the precision improvement 

will  not  be  as  important  for  records  from the  ETH e-Collection  as  for  those  from the  CERN 

Document  Server.  Indeed,  ETHZ1 and ETHZ2 are usually  derivatives  from the NEBIS library 

network union catalogue, which tends to emphasize formal cataloguing over record enrichment.

The initials method shows another example of hash collision (Table 21).

Table 21: Noise pairs reported by initials for the ETHZ1 collection

Identifiers Comments

10.3929/ethz-a-004288363 | 
10.3929/ethz-a-004756575 

Several words are shared in the titles, 2 authors share the same initials
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c) ETHZ2

The precision results with the ETHZ2 are similar to those with the ETHZ1 collection, except for the 

maxsim method which shows an improvement (all duplicate pairs were found within the top 20 

similarity values).

The geometric_jk was not as good as the 2geom, 2geombreak and okapigeom method in this case.

Table 22: Noise pairs reported by geometric_jk for the ETHZ2 collection

Identifiers Comments

10.3929/ethz-a-005395825 | 
10.3929/ethz-a-005396163 

2 different authors produced dissertations with the same title on the same year.

10.3929/ethz-a-005395824 | 
10.3929/ethz-a-005395825

Same problem as above with another title

10.3929/ethz-a-005395824 | 
10.3929/ethz-a-005396163 

Same problem as #2

The okapigeom produced one noise record pair with many differences between the two records 

(Table 23). The lack of an absolute scale for the Okapi BM25 might be a cause. 

Table 23: Noise pairs reported by okapigeom for the ETHZ2 collection

Identifiers Comments

10.3929/ethz-a-004292962 | 
10.3929/ethz-a-004292980 

Two volumes of a work, with different subtitles and some variant authors.

Table 24: Noise pairs reported by initials for the ETHZ2 collection

Identifiers Comments

10.3929/ethz-a-004325635 | 
10.3929/ethz-a-004325666 

A majority of shared words in the title and one shared author

d) RERO1

The initials strategy yielded very good results for this collection, with the others generally able to 

report  most duplicate pairs within their  top 20 similarity scores.  The exceptions to this  are the 

methods that tend to favour recall over precision: abstract_fallback, maxsim and boundaries_max. 

The geometric_jk strategy performed more poorly than its 2geom and okapigeom (developed with a 

better knowledge of the collection's field structure).

Table 25: Noise pairs reported by 2geom for the RERO1 collection

Identifiers Comments

8410 | 8414 English records for two versions of the same article, published in English and 
Japanese respectively (as noted in the title and the journal name – the pagination is 
almost identical). 

8104 | 8526 Only one word is different in the titles, which appears to be a mistake after fulltext 
examination. This might be counted as an actual duplicate, or at least as a case 
requiring human intervention
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Table 26: Noise pairs reported by okapigeom for the RERO1 collection

Identifiers Comments

4186 | 4187 Parts I and II (in Roman numbers) published over 2 years

8410 | 8414 See 2geom results

6387 | 6388 The same authors wrote two articles with very similar titles, published in the same 
journal at a few pages from each other.

8064 | 8065 Two parts of an ongoing work (with different subtitles) were published in two 
consecutive issues of the same journal.

Table 27: Noise pairs reported by initialsbreak for the RERO1 collection

Identifiers Comments

4186 | 4187 See okapigeom results

Table 28: Noise pairs reported by ubiquist for the RERO1 collection 

Identifiers Comments

8410 | 8414 See 2geom results

5269 | 5270 The authors wrote 2 articles with rather different titles, but the abstracts are 
identical. Fulltext examination shows that the abstracts should be different, although 
similar. This is not actually a duplicate, but certainly something that requires 
cleaning up.

6672 | 6674 Same problem as #2, but the titles are closer and the real abstracts qualitatively 
farther from each other. The publication years are different as well.

e) RERO2

With the exceptions of the initials, okapigeom (with a perfect score) and ubiquist methods, most 

results were mediocre to poor.

Table 29: Noise pairs reported by initials for the RERO2 collection

Identifiers Comments

11499 | 11504 The author wrote two articles with the same title, published in the same journal on 
two consecutive years. This particular case was often found in the top 10 or 20 
similarity values with the other methods

Table 30: Noise pairs reported by ubiquist for the RERO2 collection

Identifiers Comments

8410 | 8414 English records for two versions of the same article, published in English and 
Japanese respectively (as noted in the title and the journal name – the pagination is 
almost identical)

11176 | 11261 The same work was presented once to a conference and once as a book chapter

Improvement suggestions for the presented methods

We have discussed the limitations of the initials strategy, which temperate its generally good results. 

Nevertheless the fact that hash functions and complex keys are frequently used in the literature 

suggests that good precision could be achieved with somewhat larger collections already with minor 
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improvements  to  the  method.  Instead  of  initials,  digrams or  trigrams  could  be  used,  as  in  the 

construction of the DIFWICS database (Hylton 1996), or even methods such as Soundex.

The methods based on a geometric mean will by significantly improved if they can take advantage 

of  an  abstract.  However,  its  availability  is  far  from constant  from one  collection  to  the  other. 

Fortunately, the general trend in digital as well as classic libraries is to systematically enrich the 

records with information that the users might find useful. The abstract is a good example of such 

value-adding data, so we can hope that it will be included more and more commonly in the future.

The ubiquist  stategy did a very good job on average.  Nevertheless, its  efficiency appears to be 

adversely  affected  by  the  absence  of  abstracts  in  a  collection,  especially  when  the  variations 

between near duplicates happen in the title. In such cases, even alterations by a few characters can 

be  tricky  (see  for  example  the  ETHZ  10.3929/ethz-a-000085328,  10.3929/ethz-a-000085643, 

10.3929/ethz-a-000578009, 10.3929/ethz-a-000081089 and 10.3929/ethz-a-000085653 records). To 

guard against this problem, a better treatment of other fields would be helpful. Inclusion of the 

subtitle  field  245__$b  in  the  comparison  is  one  easy  step  into  that  direction,  which  will  be 

beneficial for records derived from classic library records, with sophisticated field use but sparse 

text content.  Source information,  such as journal titles, volumes and pages is clearly useful for 

articles,  book chapters,  etc.,  but  in  order  to  take advantage of  it  a  good documentation  of  the 

cataloguing rules for the examined collection is required as many different conventions exist.

Finally, as discussed earlier, the complementarity of some strategies suggests that combining their 

outputs, for example by adding the global similarities, will result in a very precise detection. Of 

course, the computational cost will be higher.

Speed and operating system

As shown in Table  7, the duration of the same similarity calculations varies between interpreter 

versions, due to the presence of Psyco, and between operating systems... but not very much so.

Windows XP was approximatively 10% faster than Ubuntu, while both using Python 2.6.2, the 

latest stable version of the Python 2 branch (which is for now the most important branch since many 

important python modules have not been ported to the 3 branches).

However,  no  Pysco  binaries  are  available  for  Python  2.6.2  on  Windows.  And  using  Psyco  on 

Ubuntu reverses the situation, and the run on Ubuntu becomes almost 15% faster than on XP.

Because Python 3.1.x has been improved, its use on XP is ~25% faster than python 2.6.2 again on 
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XP and ~15% faster than Python 2.6.2 with Psyco on Ubuntu. Python 3.1 will be integrated in 

Ubuntu in the October 2009 release (9.10).

Speed and number of records

Analyses of collections of more than 10'000 records will generally take more than one our on an 

average desktop computer. This is not fast enough, but it can luckily be improved in several ways 

discussed in the next section.
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VI Perspectives and next developments

VI.1 Developments of the similarity framework itself

The framework is stable... but it can be improved!

VI.1.1 Speed optimisations

This is probably the very next aspect that will be tackled, because there is a lot of useful possible 

improvements:

Using multiprocessing

When running alone one multiple  core machines,  MarcXimiL will  generally  be assigned about 

100%  of  one  CPU.  The  other  core(s)  will  stay  quite  idle.  Introduced  in  Python  2.6,  a 

multiprocessing  module  can  help  take  advantage  of  all  CPUs.  Due  to  the  flexibility  of  the 

framework it could easily be introduced at the record comparison functions level (functions of the 

compare_records module). These functions determine the pairs of records that are compared as well 

as the order in which it is done. The use of the multiprocessing module could simply replace the 

loop that iterates over record pairs comparisons and execute them in parallel.

High level code optimisations

Use python profiling tools to detect the functions that take the most resources and optimize them.

Compile the most critical functions

Compiled code is generally faster than Python. It could be done in C, the compilation managed by 

Python seamlessly at execution time if a GCC compiler is installed on the system.

Optimise global similarity functions

The functions that compute the global similarity also pilot the execution of each field comparison. If 

any field comparison is not required it should not be executed. For example, let's consider the case 

of a pair of records flaged with two different digital object identifier (DOI) of the same family (for 

example two PubMed Identifiers or PMIDs). A deduplication strategy could return at once 0.0 as 

the  global  similarity  and stop immediately  the treatment  for  this  pair  of  records.  This  solution 

becomes more compelling as the use of DOI becomes more frequent and well organized.
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Intelligent record_comp functions

These functions determine the pairs of records that will be compared as well as the order in which it 

will be done. Presently, they are quite basic. It is for example possible to compare all records of all 

loaded collections with each other. An existing speed improvement consist in comparing each pair 

of records only once (if A is compared to B, B will not be compared to A later). This is useful 

because most of the similarity functions built in this framework are symmetrical in that regard.

It would be even better to use this level to avoid doing potentially useless calculation. A lead could 

be to sort the records using an intelligent criteria (this is much faster than a similarity analysis) and 

then  perform  a  full  similarity  only  on  adjacent  records  (in  the  broad  sense  of  the  term). 

Pre-clustering can also be used to reduce the number of full  comparisons by several  orders of 

magnitude, as shown by various authors (De Melo & Lopes 2005)

VI.1.2 MarcXimiL as a Python package

It would be useful to make a few adjustments to permit the importation of this framework as a 

package in external Python programs, like CDS Invenio. A Python package is a coherent set of 

modules that may be registered in the Python Package Index34 and that is often takes the form of an 

'egg', the Python package distribution format. This would also be helpful for the development of a 

graphical user interface, which is the subject of the next paragraph.

VI.1.3 Graphical user interface (GUI)

Such a tool would probably help new users to discover the capabilities of this framework. Even if 

the similarity configuration file is quite straight forward to understand and customize, a GUI might 

make the difference for users who are not accustomed to edit files (and this application also runs on 

Windows).

A nice GUI could be written using asynchronous JavaScript and XML (AJAX) in conjunction with 

the Python built-in web service capabilities and the MarcXimiL toox.py library for XHTML and 

XML generation. Thus no other software requirement other than a browser would be necessary, and 

remote access would be immediately added to the program capabilities.

On a related topic,  a few modifications would permit to show the progression of the similarity 

computation process. This would be welcome, since it is often quite long. Another nice feature 

related to the interface would be a function capable of estimating the duration of a run on the basis 

the progression.

34 http://pypi.python.org/pypi
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VI.1.4 XML validation

A fast  MARCXML validation tool in pure Python could be an asset:  The similarity framework 

requires strictly and valid MARCXML. However, no validation test is performed prior to a run. 

Presently, the only way to make sure a collection is valid is to use an external tool like xmllint35 

(UNIX, Linux, MacOSX) in conjunction with the MARCXML Document Type Definition (DTD)36.

VI.1.5 Limiting memory usage while loading collections

As the records are loaded, a lot of RAM is used for large collections. It is quite easy to remedy to 

that. However, it is not urgent since a critical RAM usage (like 4Gb) only concerns big collections 

of at least 50'000 records (it depends of course on the records structure and content). Before speed 

optimisations, analysing such a collection would take a quite long time to process anyway, and 

therefore the case should therefore not present itself at the moment. Furthermore, large collections 

are frequently delivered in chunks of manageable size, which our program could easily load in 

sequence. In any case, the if a critical usage of RAM is reached, the operating systems swap can 

kick in and help in that regard. Yet another way to manage big collections could be to use CDS 

Invenio.

VI.1.6 Using CDS Invenio data directly

As  Invenio  is  written  in  Python,  it  is  easy  to  import  its  search  engine  within  MarcXimiL. 

Essentially, only three short modifications are required:

1. Instead of importing collections using file names in the configuration file, Invenio requests 

must be used. 

2. The loading of records must be skipped, and the globalvars.reccache filled with the recids 

corresponding to the collection.

3. The get_cached_record function must be adapted too lookup records in Invenio.

An  Invenio  search  can  be  performed  in  just  two  lines  of  code  from  within  MarcXimiL,  as 

documented in the Invenio search engine API documentation37:

      >>> # import the function:
      >>> from invenio.search_engine import perform_request_search
      >>> # get all hits in a collection:
      >>> perform_request_search(cc="ARTICLES")

35 http://www.xmlsoft.org/xmllint.html  
36 http://www.loc.gov/marc/marcxml.html  
37 http://invenio-demo.cern.ch/help/hacking/search-engine-api  
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VI.2 Developments on top of the framework

Because of the flexibility of MarcXimiL, many interesting developments are possible on top of it. 

For demonstration purposes, applications prototypes are already bundled with the framework. These 

tools are potentially useful and should be developed further.

VI.2.1 Monitor.py

This application prototype enables MarcXimiL is  to perform information  monitoring on servers 

running CDS Invenio. Presently monitor.py is in early stage of development and is only provided as 

an example of this framework's capabilities. It is located in the ./bin folder .

The tool uses a knowledge base of articles deemed interesting by the user and filters on that basis 

potentially interesting the latest additions made on the server that are automatically downloaded. 

The similarity filtering is done on the basis of titles, abstracts and authors.

Monitor.py is already capable of learning from the users, who can mark retrieved records that they 

find  of  interest.  This  system could  easily  be  improved  by  learning  users  needs  through  their 

behaviour, for instance by detecting the retrieved documents that they open.

The tricky part  will  be to render this tool attractive for the end user.  This involves a nice and 

reactive interface. For reactivity purposes, it would probably be best if the download of new records 

and similarity analysis are executed in the background on a regular basis. The current web based 

interface could be retained and improved using the AJAX technology and an elegant design. An 

applet running directly on the user's desktop would certainly be a real asset.  This way, the user 

could  be  kept  transparently  informed of  incoming references  and,  if  interested,  visualize  them 

directly by the simple expedient of one click in the CDS Invenio server. For now, the interface is 

provided by an ad-hoc lightweight HTTP server and browsable at http://127.0.0.1:8888. 

An interesting aspect of this application for librarians might be to take care of the initial set up for 

their  users:  They could create  the initial  knowledge base collection (the reference used to  find 

similar articles in data flows on the web), by filling it with the metadata of their user's publications 

and related work. Librarians may also improve the performances by setting up the incoming data 

flow using well chosen queries as well as appropriated data sources.
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Another improvement of this tool would be to extend its compatibility with other types of data 

sources like PubMed for example. This particular example would be straightforward because their 

XML format can easily be converted to the MARCXML format and a well documented public API 

called EUtils38 is available. 

VI.2.2 Visualize.py

This application prototype enables to visualize similarity results in the form of a graph. In short, this 

is a way to assess quickly the relations between records, even in a complex and extended set of 

documents. Many applications may be derived from this tool. But presently visualize.py is in early 

stage of development and is provided as an example of this framework's capabilities. It is located in 

the ./bin folder. This tool may be use it on any similarity output file, typically ./var/log/output.dat .

38 http://eutils.ncbi.nlm.nih.gov/entrez/query/static/eutils_help.html  
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The simplest but not very useful way to use visualize.py is to show graphically potential duplicates, 

triplicates and so on. A more interesting development would be to add the ability to assign colours 

to subsets of records based on an analysis of fields related to record contents (like subject headings, 

decimal  classification and/or  abstracts),  and finally  represent  everything on a  graph.  The result 

would provide would be a quick overview of the domains covered by the collection.

Another use of visualize.py is to assess automatically the links between the services and resources 

of a library and derive a tool to guide its uses to the resources they need. This has a lot of potential, 

since many expensive databases are under-used because users simply do not know about them. A 

quick test of this was conducted on a simplified structure of a medical library. The structures in 

Figures  5 and  6 was defined semantically  using concepts  listed in  a  MARC field,  on which a 

similarity analysis was performed.
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Even though this graph is derived of a hastily generated data set, and might at first seem messy, the 

results are very interesting. In this case, playing with this tool permitted to identify five entry points 

from which it is possible to access all studied resources of the library in only one click, namely: 'Un 

article', 'Un livre', 'Une thèse', 'Evidence Based Medicine', and 'Une information'. 

A web application could then be devised on that basis and display these entry points. If a user is 
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Figure 6: A visual representation of ressources and services of a library: zoom.



looking for an article he would move his mouse over 'Un article', and the following options would 

be suggested to him (these options are represented by the graph's edges):

1. Visit the 'PubMed' bibliographic database

2. Use the Web of Science database

3. Lookup impact factors

4. Order an article on line 'Commandes d'articles'

5. Browse the medical journals collection 'Journaux BFM'

6. Browse the institutional journal collection 'Journaux UNIGE' 

7. Open the institutional repository 'Archive ouverte UNIGE'

In this example, only a few services and resources are listed, and already quite a complex network 

binds them together. In reality, most libraries provide many more services and resources than that. 

Because resources and services are thematically linked with others, it becomes a real challenge to 

present them in a comprehensive way on websites. And even if a good solution is found, every time 

a resource or service is removed or added a lot of updating is required. This tool has the potential 

automatise these tasks. Besides, MarcXimiL comes with a prototype called semantic.py, that will 

assist in managing the collections used to generate the graphs (see below).

SYNTAX: ./visualize.py   similarity_file_name.dat   label_column 

similarity_column 

• WARNING: the path of similarity_file_name.dat is relative to ./var/log/

• the label column is the one in witch the identifiers of the compared records are stored. The 

column numeration starts at 0

• the similarity_column is the column this script will use to generate the graph. 

Example: ./visualize.py output.dat 0 1 

The  NetworkX  package  is  required.  On  Ubuntu  install  it  using  « sudo  apt-get  install  python-

networkx ». Binaries are available for Windows on the NetworkX website.
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VI.2.3 Semantic.py

This tool will  assist managing MARCXML collections describing semantically linked concepts. 

The  obtained  collections  may  be  used  to  generate  graphs  using  the  previously  presented 

visualize.py utility.

This is a graphical tool. The interface is served on a local port by an ad-hoc light-weight Python 

web server. It enables to:

• navigate within a collection

• create records

• delete records

• visualize and edit records in a simple way (no knowledge of MARC is required)

• visualize the records in MARC

Screenshots:

Browsing a collection:

Editing a record:
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Displaying the same record in MARC format:
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Figure 8: The semantic.py interface - editing semantic bonds

Figure 9: The semantic.py interface - Displaying MARC.



VI.2.4 Plagiarism.py

As mentioned in the introduction,  plagiarism detection is fashionable and universities are gearing 

up to face that problem. They often chose centralized commercial tools. Such tools require much 

computing power and massive access to data on the web, and therefore often rely on the powerful 

infrastructures of web search engines. But the search engines are not precisely adapted for that use, 

and other more direct approaches could possibly be more efficient. In addition, even with this use of 

search engines, plagiarism checking with this kind of commercial tools takes time and therefore end 

users  (professors,  etc.)  will  use  them only  if  a  document  seems really  suspicious.  This  is  not 

optimal. 

For those reasons, the path followed in a  plagiarism study on arXiv  (Sorokina et al. 2006) seems 

most interesting: all full-text documents were directly compared with each other in one domain of 

knowledge. Such a plagiarism detection scheme could perhaps be developed and optimized thanks 

to the MarcXimiL framework. In many cases, the detection could be speeded up in studing the 

potential plagiarized documents only amongst groups of related document determined using the 

metadata associated to them. Of course, this approach is only valid in the context of specialized 

publications within fields that possess quite complete thematic repositories (like arXiv or the future 

Inspire  in  high  energy  physics),  or  at  least  well  structured  metadata  databases  (like  in  the 

biomedical domain with PubMed). This strategy would not be applicable to students exercises at a 

level that may allow to plagiarise websites such as Wikipedia, Ask, Google Answers, Le Guichet du 

Savoir, and so forth. 

Our technical approach differs of the one that was successfully applied in the previously mentioned 

arXiv study.  While  they based their  analysis  on the document's  sentences  composition,  we use 

whole paragraphs that are compared with the shingling algorithm and a global output threshold of 

0.05. 

In  order  to  quickly  assess  this  tool's  potential,  a  knowledge  base  was  built  with  12  articles 

downloaded  from the  English  Wikipedia  on  August  25,  2009:  Voltaire,  Rousseau,  D'Alambert, 

Bastille,  Charles_XII_of_Sweden,  Edward_Gibbon,  Geneva,  Leibniz,  Louis_XV, 

Pierre_Louis_Maupertuis, Poitou, William_Shakespeare. These articles were selected because they 

have all connections with the Voltaire article (they are all linked from that article). In total 1090 

paragraphs were extracted and stored (very short paragraphs were automatically left aside).

The knowledge base having been set up, the Wikipedia article on Rimbaud was downloaded and 

tested for  plagiarism against  it.  At this  point,  most paragraphs were not detected as plagiarized 
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candidates. A couple of them were selected (one in the knowledge base and one in the Rimbaud 

document). Both paragraphs number 8 met the non-detection requirement and were retained. In the 

Rimbaud document, paragraph 8 is made of 4 sentences, 110 words, and 724 characters. It was then 

duplicated and modified 16 times. Modifications 1 to 4 were performed as follows:

1. The first  sentence was replaced with the first sentence of paragraph 8 from the Voltaire 

article.

2. The first  2  sentences  were  replaced  with  the  first  2  sentences  of  paragraph 8  from the 

Voltaire article.

3. The first  3  sentences  were  replaced  with  the  first  3  sentences  of  paragraph 8  from the 

Voltaire article.

4. The first  4  sentences  were  replaced  with  the  first  4  sentences  of  paragraph 8  from the 

article.

Modifications 5 through 8 were applied on top of the first 4 modifications: each sentence that was 

added previously was fractioned in two around its middle and the parts were per mutated.

Modifications 9 to 12 were applied on top of the first 4 modifications: each sentence that was added 

previously was truncated of one word.

Modifications 13 to 16 were applied on top of the first 4 modifications: each sentence that was 

added previously was truncated of two words.

The plagiarism check of this altered Rimbaud document returned 45 suspected paragraphs. Among 

these 45, the 16 altered paragraphs were returned. The results were sorted and Wikipedia specific 

noise was removed manually: This noise was due to the following paragraphs: «  Text is available 

under the Creative Commons Attribution-ShareAlike License; additional terms may apply. […] », 

« Hidden categories: All articles with unsourced statements [...] », « .Wikiquote has a collection of 

quotations related to:[...] ». After this specific noise removal there were 22 possible candidates left 

containing the 16 records to find.

Even if the knowledge base was quite small, it shows that plagiarism.py works to a certain extent 

and that the MarcXimiL framework can be used for plagiarism detection. However this tool remains 

a  prototype  and  some  obvious  features  are  missing,  like  the  ability  not  to  report  a  possible 

plagiarism if a rightful citation was made.

Some of the modified paragraphs that were successfully detected as plagiarised in the previous test 

were also submitted in on-line plagiarism detection tools. Plagium, that looks up Wikipedia through 
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Yahoo,  was  able  to  detect  some of  the  plagiarisms but  not  all  even if  the Voltaire  article  was 

scanned! The modified paragraphs 1, 5, 9, and 13 were submited and the link to the Voltaire page 

was not detected in the cases 5 and 13. The same paragraphs were then submitted to SeeSources, 

that failed only on number 13. In this paragraph, the plagiarised sentence to find was originally 

made of 22 words, and two of them were removed. This simple modification sufficed to fool both 

on-line  tools.  Plagiarism.py  did  not  fail.  However  the  comparison  is  quite  unfair,  since 

plagiarism.py's knowledge base was a lot smaller than the others and a scale effect might very well 

be involved.

Plagiarism.py supports most popular formats: PDF, DOC, ODT, PPT, ODP, XLS, ODS, HTML, 

among others. Documents may be loaded from the local file system or downloaded directly from 

the web if  an URL is  given.  Moreover,  a range of tests  should be done to optimise recall  and 

precision in that context. This tool may be used as follows:

SYNTAX: plagiarism.py [[­a] <URI>] [­c]

NB: <URI> may be an URL or local file name.

OPTIONS

-a : will add data in <URI> to the knowledge base used for plagiarism detection.

EXAMPLES

Perform plagiarism detection:

• plagiarism.py Thesis.doc

Add documents to plagiarism knowledge base:

• plagiarism.py ­a Article.ods

• plagiarism.py ­a Article.doc

• plagiarism.py ­a Article.html

Clear knowledge base

• plagiarism.py ­c 

Required:

1. The python_uno module (doc, odt, html, etc. importation through OpenOffice) On Ubuntu: 

sudo apt­get install python­uno 

2. OpenOffice (soffice.bin) running in server mode on port 2002. On Ubuntu you may execute 
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the  following  command  to  achive  this:  /usr/bin/soffice   ­headless 

­invisible '­accept=socket,host=localhost,port=2002;urp;'

3. xpdf (because pdftotext comes with it). On Ubuntu: sudo apt­get install xpdf

VI.2.5 Enrich.py

This little tool is designed to enrich a catalogue with references to similar records.

The principle is quite simple and straightforward : a similarity output file is analysed and only the 

record pairs that have a global similarity higher than a parametrisable threshold are retained. Then, 

these record pairs are used to generate a new MARCXML collection in which each record that was 

retained is present and contains only one customisable field that simply lists all the references of the 

records that are similar to it.

A tool like the CDS Invenio Library Integrated System comes with out of the box capabilities to 

update its records on that basis. Practically, it is quite straightforward:

    bibupload ­a collection.xml   # just adds the fields to the existing records

    bibupload ­c collection.xml   # corrects the fields if present 

In Invenio, it is then easy to set up display templates using the BibFormat web interface in order to 

propose a « More like this » section to the end users. NB: Invenio already has that functionality 

(called Similar Records), but it is a bit slow... this would probably be faster. Anyway, this principle 

can also be applied to other bibliographic repositories.
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VII Conclusion
Using the Python programming language, we have developed a flexible, open-source, multiplatform 

software tool supporting the implementation of multiple strategies for record comparisons. In order 

to test  our program, we have implemented several  strategies for the detection of near-duplicate 

records  and applied  them to  the  analysis  of  several  data  sets  built  from real-world  collections 

(CERN, ETH E-Collection, RERO DOC).

Most of our strategies are capable of finding a duplicate record if only one or two fields were 

altered reasonably. Reasonable alterations are for example: removing up to one third of the authors 

or of a title, removing a few sentences in an abstract, changing the publication date of up to two 

years,  any word permutations,  punctuation modification,  or diacritic  variation,  variations  in  the 

author format, even deletion of entire fields.

Among our strategies, the ones we called ubiquist and initals yield the best precision in the first 10 

results.  These  strategies  are  handy  to  perform a  quick  duplicate  detection.  On the  other  hand, 

maxim, boundaries max, and abstract fallback have a better recall within the 50 first results. They 

are  therefore adapted to  do a more exhaustive but  longer  detection,  involving a careful  human 

examination.

The  combination  of  our  three  best  but  unrelated  strategies  (ubiquist,  initials  and  okapigeom) 

produces outstanding results: for each test near-duplicate record at least one of them was able to 

place it  in the top 10 results  in 96% of the cases.  Generally,  it  seems that the combination of 

complementary  strategies  is  an  excellent  approach  for  an  efficient  duplicate  detection.  New 

strategies might be derived from the combination of ubiquist and initials, possibly with the addition 

of di/trigrams or Soundex field similarity functions.

On that basis a good recipe to set up a deduplication configuration for any collection might be:

1. Develop or fine tune a few efficient strategies based on different underlying principles. A 

good starting point would be the strategies shipping with MarcXimiL, as they are flexible 

and varied.

2. Identify the best strategies that are complementary.

3. Run them in batch (MarcXimiL permits to do that easily)

We have shown that MarcXimiL is an good tool for deduplication, but its speed is not yet sufficient 

for a routine use on medium to large collections. But it has got a lot more potential than that specific 

application  due  to  its  flexibility.  Some applications  prototypes  packaged within  the  framework 
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demonstrate  its  capabilities  in  information  monitoring,  detection  of  plagiarism,  visualization  of 

collections in the form of graphs, etc.

Several improvements can and will be made to MarcXimiL. The most important are: 

• A speed optimisation.  The  framework is  quite  slow on collections  of  more than  10'000 

records. There are many ways to tackle this.

• Adding a graphical user interface is generally useful.

• Adding the ability to use the framework directly within other Python applications might be 

useful as well.
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