AntispamLab ™ - A Tool for Realistic Evaluation of Email
Spam Filters

Luis Hernandez
UPC, Spain

Iher8089@alu-etsetb.upc.edu

Slavisa Sarafijanovic
EPFL, Switzerland

slavisa.sarafijanovic@epfl.ch

ABSTRACT

The existing tools for testing spam filters evaluate a filter
instance by simply feeding it with a stream of emails, pos-
sibly also providing a feedback to the filter about the cor-
rectness of the detection. In such a scenario the evaluated
filter is disconnected from the network of email servers, fil-
ters, and users, which makes the approach inappropriate for
testing many of the filters that exploit some of the informa-
tion about spam bulkiness, users’ actions and social relations
among the users. Corresponding evaluation results might be
wrong, because the information that is normally used by the
filter is missing, incomplete or inappropriate.

In this paper we present a tool to test spam filters in a
very realistic scenario. Our tool consists of a set of Python
scripts for Unix/Linux. The tool takes as inputs the filter to
be tested and an affordable set of interconnected machines
(e.g., PlanetLab machines, or locally created virtual ma-
chines). When started from a central place, the tool uses the
provided machines to build a network of real email servers,
installs instances of the filter, deploys and runs simulated
email users and spammers, and computes the detection re-
sults statistic. Email servers are implemented using Postfix,
a standard Linux email server. Only per-email-server fil-
ters are currently supported; testing per-email-client filters
would require additional development of the tool. The size
of the created emailing network is constrained only by the
number of available PlanetLab or virtual machines. The run
time is much shorter then the simulated system time, due
to a time scaling mechanism. Testing a new filter is as sim-
ple as installing one copy of it in a real emailing network,
which unifies the jobs of a new filter development, testing
and prototyping. As an example of how to use the tool, we
test the SpamAssassin filter.

1. INTRODUCTION

1.1 Need for Better Spam-Filters Evaluation
Methods and Tools
Currently used methodology and tools for testing spam
filters are based on so-called batch testing methods and on-
line testing methods, borrowed from a mature and more

* Contact author.

CEAS 2007 - Fourth Conference on Email and Anti-Spangust 2-3, 2007,
Mountain View, California USA

Jean-Yves Le Boudec
EPFL, Switzerland

jean-yves.leboudec@epfl.ch

Raphael Naefen
EPFL, Switzerland

raphael.naefen@epfl.ch

general machine learning framework. A good survey of these
machine-learning testing techniques can be found in [10].

Batch (a.k.a. off-line) testing is the most simplified method
for evaluating spam filters. It is called “off-line” because it
separates the learning and testing phases. Used corpora of
labelled spam and good (a.k.a. ham) emails is, prior to the
testing, divided into the two sets, a training set and a testing
set. The filter is first trained using the first set, and then
tested using the second set. Sometimes a third, so-called
validation set is created from the corpora and used to opti-
mize the filter’s parameters during the training (in order to
avoid over-training and preserve the generality of learning).

Existing incremental (a.k.a. online) testing methods feed
a filter isolated from any emailing network with a stream of
emails and, immediately or with a delay, provide the feed-
back to the filter about the correctness of the detection for
each checked email.

Cormack and Bratko [4] show that cross-validation test-
ing (a batch technique) and on-line testing results are differ-
ent, suggesting that the validity of batch-tests results avail-
able in the literature is under question. In the same paper
the authors investigate how the use of preprocessed-email
databases, obtained by tokenization and/or obfuscation of
emails [1, 2], affects testing results as compared to tests
with a raw-email database. They show that pre-processing
substantially changes the evaluation results for many filters.
The overall conclusion that comes from their work is that
using filter inputs and testing methodology - that are as
realistic as possible - is important for proper testing and
comparison of spam filters.

The TREC Spam Evaluation Toolkit [5] is probably the
most realistic and widely used, publicly available, testing
tool to date. It uses a classic online-testing method that
models the filter input only by a simple stream of messages
and the feedback about the correctness of their classifica-
tion. We may say that this tool is the defacto standard
for the evaluation and comparison of spam filters. Having
a standard tool for testing spam filters is important, as it
makes the comparison of a new filter with those evaluated
and presented in the literature more easy, manageable and
meaningful.

Despite its wide acceptance, the TREC tool does not
account for the real emailing network scenario in which a
filter might obtain and use certain inputs that come from
the whole network of email servers, users and other filters.
For example, if a filter exploits the bulkiness of DCC-like
similarity-signatures derived from emails [6], the filtering re-
sults may depend on the ongoing spam pattern, i.e. on the

content and timing of the emails observed by other users
and filters; and they might also depend on the explicit or
implicit feedback from different users about spam messages
they receive. Such inputs are not properly provided by the
TREC tool".

There are many other inputs, beside those listed in the
example above, that are used by some existing filters or
could be used by future filters and that are not well or not
at all represented with the currently available testing tools.

1.2 Our Approach to Providing More Realis-
tic Inputs to Tested Filters

It seems to us that the only way to feed an arbitrary filter
with proper and realistic inputs is to provide a testing en-
vironment that properly represents all elements from a real
emailing network: emails in their original syntax; users with
their behavior and communication patterns; spamming tech-
niques; communication between servers, filters, and email-
reading programs; and timing of the events in the whole
emailing network. Different approaches are possible in or-
der to try to achieve this generally stated requirement.

The approach of having one isolated copy of the tested
filter (as the TREC tool does) and of simulating any in-
puts the filter would normally use from the network has
its drawbacks. Testing a filter that uses a new collaborative
antispam technique would require a modelling and program-
ming work in order to simulate the filter inputs that come
from other filters and/or users. Moreover, modelling and
simulation simplifications may be necessary in many cases
and, if not done carefully, may lead to inaccurate filter in-
puts and inaccurate testing results. It seems that it could
be much simpler and safer to try using multiple copies of
the tested filter and directly generating such inputs. The
complex phenomena that arise from the interaction of many
elements are sometimes easier to recreate than to under-
stand and model properly.

Another approach would be to simulate all the emailing
network elements. Simulating a network of email servers
itself and providing interfaces from each server to spam fil-
ters and email-reading programs seems to be feasible: The
only functions of the network of email servers is to physi-
cally transfer emails from senders to the recipients with a
variable (and usually small) delay and to do some simple
additional processing jobs such as adding headers, handling
non-existing recipients, deciding whether to relay emails,
and forwarding emails to a filter if configured to do so. These
functions alone seem to be simple to simulate within one ma-
chine. It also seems to be straightforward to add to such a
simulator functions of email-reading programs, email users,
and spamming.

On the contrary, when the inclusion of a filter to be tested
is considered, it seems that the above mentioned “simulate
everything” approach comes also with many difficulties and
drawbacks. One drawback is related to the support of state-
ful filters, i.e. the filters that keep some state about pro-

! Actually the TREC tool has unused potential for support-
ing more realistic tests in certain cases: some inputs from
the network to the filter could be simulated and added to the
TREC tool, like answers to the DCC queries, for example.
However, such an approach to keep one tested filter and to
simulate any inputs it would normally use from the network
has its drawbacks (discussed within Section 1.2).

tected accounts (most of the existing filters are stateful).
This support would require each filter instance to be run
separately, possibly leading to the CPU and active memory
scalability problems. Disk space could also be a problem,
because the memory space of the email accounts of all the
users would have to be instantiated on the machine on which
the simulation runs.

As it seems that building a one-machine simulator of the
whole emailing network would have scalability problems,
making this simulator distributed would probably be re-
quired in order to support emailing networks of meaning-
ful size. Further, this would require implementing some in-
tercommunication among the distributed simulator parts,
under the constraint that the whole distributed simulator
should still keep the simulated events properly ordered, which
again increases implementation difficulties and the risk of
having some undesired simplifications. Though simulating
the functions of a network of email servers within one ma-
chine seems to be simple, implementing these functions within
a distributed simulator might not be easy, may require some
unwanted simplifications, and may cause some unexpected
side effects.

Due to the above discussed possible drawbacks of the
“simulate everything” approach, we decided to not simu-
late the network of email servers, but to simply build it by
running multiple instances of real email servers. In order to
keep the testing system as realistic as possible, but also in
order to make it compatible with different environments in
which it can be deployed and used, we decide to deploy (in-
stall) each email server on a separate virtual machine (VM).
The complete testing system is deployed either on an al-
ready available set of VMs, such is PlanetLab [7], or VMs
can be created locally on a provided set of real machines.

Installing each email server on a separate VM enables
standard (and thus fully realistic) email server installation,
configuration, and inter-communication; it also provides com-
patibility between our tool and the operating system of the
machines on which the testing system is to be deployed and
used.

We deploy other testing system components also on the
VMs, for the same reasons as with the email servers. An
email user and his email-reading program are simulated by
a Python script instance that is put on a separate VM for
each user. Spamming is simulated using the same approach
as for simulating email users.

To implement the tool, we use shell scripting and Python
[9], because the two together support very well networking
tasks, working with files and automating the procedures.
We automate all the testing procedures: deploying of the
system, running tests, and collecting and processing the re-
sults.

1.3 Organization of The Paper

In the next section (Section 2) we explain the requirements
and typical steps for using our testing tool, and we explain
what the tool does, i.e. which services for evaluating spam
filters it provides. In Section 3 we explain how we implement
the tool and how the tool does its job. In Section 4 we
illustrate use of the tool, by testing the SpamAssassin filter.
In Section 5 we conclude the work presented in this paper.
In Section 6 we discuss future work proposals.

Other PlanetLab Machines
P ¥ I’

Y 1 Y 2 Wi N

Master
Machine

{a) PlanetLab environment

V¥Ms host VMs host VYMs host
Master W 1 W b1
Machine
W ke G W K
LAN

{b) Local LAM environment

Figure 1: THE AntispamLab TOOL CAN BE USED IN TWO TESTING ENVIRONMENTS: (a) In the PlanetLab
environment, the tool is run from one PlanetLab machine (master machine), and it sees each other PlanetLab machine
i just as a virtual machine (VM i) reachable over the Internet. The tool deploys the testing system onto these VMs
(i.e., it creates a network of email servers, filters, and simulated users and spammers), runs tests, and collects and
processes the filtering results. To use the tool in this environment, one must have a PlanetLab user account.

(b) In the local-LAN environment, the user of the tool needs to create multiple VMs using the VM image provided
with the tool, and to run a local DNS server that maps the names of the created VMs into their IP addresses. For this
to work, the used real machines are required to support Xen, an open-source virtualization software for Linux/Unix.
As the delay in the Internet is very small compared to the intervals between an email user events, both environments

should provide very similar testing conditions.

2. WHAT THE TOOL DOES AND HOW IT
CAN BE USED
The purpose of this section is to give, without going into
the implementation details, more information to people in-
terested in testing spam filters and wanting to decide whether
our tool would serve their needs and what they would have
to have and do in order to use the tool.

2.1 Requirements for Using The Tool

As shown and explained in Figure 1, the main requirement
to use the tool is to either have a PlanetLab [7] account?,
or to provide a set of local-LAN machines with Xen [12] vir-
tualization software support. PlanetLab is mainly available
for university researchers. Local-LAN environment can be
made using dedicated machines, or using spare CPU and
memory of already existing machines. The only require-
ments for the local-LAN machines are to allow remote ssh
access, and to allow running Xen and starting VMs over
the obtained ssh terminal. The number of VMs that can
be started on a real machine depends on the available RAM
memory and disk space. With the current implementation,
it isgneeded 256 MB of RAM and 4 GB of disk space per
VM®©.

2.2 Services Provided by The Tool

Automated Deployment of The Testing System.
Deploying the complete testing system, which includes the
installation of multiple email servers, filters, users and spam-
mers on the set of provided networked virtual machine, is
completely automated by running only one tool script.

Automated Test Runs and Results Processing. Per-

2The user of a PlanetLab account is assigned a VM on each
real PlanetLab machine that she/he wants to use. So the
user owns by himself a very large network of VMs.

3These numbers can be considerably lowered by using a
lighter image for running the VMs.

forming a test that consists of multiple independent runs of
the testing system, collecting all the filtering results to a cen-
tral place (from which the test is started), and processing
them to get the confidence intervals for the true positive and
false positive detection rates is also completely automated
by running only one tool script.

Supported Filters. The tool supports two major stan-
dard interfaces used by per-email-server filters: SMTP and
pipe. It does not currently support testing of per-email-
client filters. Another constraint is that only the filters that
can be installed on Linux/Unix are currently supported.

Supported Filter Inputs. The architecture of the test-
ing system provides almost all filter inputs that exist in a
real email-network: emails in their original syntax and with
headers that correspond to the current communication pat-
terns and timing in the simulated emailing network; feed-
backs from the users; any other inputs that might come from
the simulated network of email servers, filters, users, and
spammers. The current implementation does not support
all these inputs correctly. For example, the emails sent and
received by a user are random samples (from the database)
and do not represent well the profile of a real user (the pro-
file might be used by some filters). Solving such problems
requires some additional implementation work.

Time Scaling for Fast Testing. The tool implements
a time scaling mechanism (explained in Section 3.4) that
allows the run time of the tests to be much shorter then the
simulated time, without affecting the testing results?.

2.3 Using and Checking The Tool

To use the AntispamLab tool, one should first download it
from [3] to one VM from the provided VMs set. Thereafter
that VM is called the master machine.

4 Actually this is true for majority of the filters, but it is not
for those that take into the account the time values present
in the headers, in which case the tests should be run with
the time scale equal to 1 (no scaling).

The tool contains two simple filter examples: one SMTP
and one pipe filter. The tool is configured with the default
test parameters, which define the filter to be tested (the pipe
example filter), the emailing network size, the number runs
within the test, simulated time of one run, time scale, etc. In
order deploy the default testing system and to perform the
default test (within the PlanetLab), the user of the tool has
to provide the following inputs to the tool: his username on
the PlanetLab, a list of PlanetLab nodes associated to his
account and his PlanetLab key for remote ssh (PlanetLab
documentation explains how to get this key). Such inputs
also need to be provided if the tool is to be used on the VMs
created locally (i.e., created using the VM image provided
with the tool).

The two main scripts (for deploying the testing system
and for performing a test) report to the screen of the master
machine certain details on the deployment or test progress,
which might be useful for locating problems if something
goes wrong.

Once the tool is deployed and the default test is per-
formed, the results of the test may be used for checking
if the system works as expected. The checking is possible
because the default example filter marks an email as spam
with a given probability that depends on whether the email
is really spam (which is known by the testing system). That
means that the expected detection results are known for this
filter. If the confidence intervals of the observed detection
results contain the expected detection results, the testing
system probably works well®.

2.4 Testing A New Filter

As already mentioned, our tool supports only per-email-
server filters that can be installed on a Linux/Unix. As
installing such a filter requires (in principle) only the instal-
lation files to be provided and the installation commands
to be run, we were able to automate the deployment and
testing of a new filter.

A user wishing to test a new filter that uses one of the two
supported interfaces should provide: all the files needed to
install the filter (zipped under the name defined by our tool
and copied into the defined tool folder); list of commands
used to install and start the filter (written into a shell-script
file of the tool); the type of the tested filter (SMTP or pipe)
typed as a parameter into the main configuration file of the
tool. Once the test is started, the deployment of the files, the
installation and starting of the filters is done automatically
by the tool.

3. HOW THE TOOL WORKS, AND HOW
ITIS IMPLEMENTED

3.1 Deployment of A Testing System and A

Test Execution

As PlanetLab nodes are seen by our deployment tool as
VMs, in both PlanetLab and local-LAN scenarios the de-
ployment procedure is the same. In Figure 2 it is explained
how the tool deploys the testing system and how it controls
a test execution. Sections 3.2-3.4 contain the additional de-

5Though this checking does not prove the correctness of the
testing system, it gives a strong indication that everything
runs as expected. This checking helped use to discover few
bugs in the system during its development.

tails about how different testing system components and
features are implemented.

3.2 Implementation of Main Components

Use of Real Email Servers. The tool installs and
uses multiple instances of the Postfix [8] email server, a well
known and widely used Linux email server. Each instance is
installed and started via a small set of commands executed
by a tool script (the tool also provides and installs certain
packages needed to install and start Postfix, as these pack-
ages are not part of the PlanetLab VMs).

Simulating Email Users. The program that simulates
an email user and its email-client program is written in
Python. The functions of email-reading programs are simply
implemented using the original IMAP function calls avail-
able in Python. The currently implemented model of the
user is very simple. The intervals between the events at
which a user checks for new emails are i.i.d. and gener-
ated uniformly between zero and a maximum value that is
a testing system parameter. The times at which the user
sends emails are generated in the same way. The user se-
lects the recipient(s) of sent emails randomly among all the
users present in the system (excluding self).

Simulating Spamming Process. Spamming is mod-
elled and simulated in the same way as a normal email
user is, with the differences that in the spamming case the
sent emails are taken from the spam and not from the ham
database, and the average inter-sending time is much smaller
then for a simulated normal email-user.

Modelling and Using Email Databases. Within our
tool we provide the databases of spam and ham messages,
which are taken from the SpamAssassin [11] repositories
(we use spam repository 20030228 _spam_2.tar.bz2 and ham
repository 20021010_easy_ham.tar.bz2). The databases are
simply two folders (spam and ham) containing enumerated
raw email files, and can be easily replaced by using other
email repositories.

3.3 Filter Inputs

Feedback from Email Users. We implement only one
type of feedback from email users to filters, to serve as an ex-
ample. This is illustrated and explained in Figure 3. Other
explicit or implicit feedbacks can be implemented in a simi-
lar way (events of standard deleting of emails by email users
without scrolling through their content, for example).

Spam
eer Filter
press "delete as spam”
"delete feedback
asspam*| e .
button | patch |
¥ move — Mmaove

IMAP |M955499 map
Client server

message .
» Mailbox

Figure 3: “DELETE AS SPAM” FEEDBACK FROM
EMAIL USERS TO SPAM FILTERS: In order to de-
tect triggered-by-user events of “deleting as spam” some
messages and report them to the filter that protects the
user, we patch IMAP server.

Master Machine Vi WM WM+ MR+ T2

Filter Files Email Email User User
'!—| Server Server + +
. 1" Other Files Email Email
Antispamlab -~ " B = Client || Client
tool ;‘ Master Scripts

i A * * x
! fos _ : : :
' | put source files, ! ! !
Interconnection | i Inatall configure, || ; :
1 1 1 1]
{Internet or local-LAR) e |imcaledieuts |y W it

Figure 2: DEPLOYING THE TESTING SYSTEM AND PERFORMING A TEST. As explained in Figure 1, the
testing system can be deployed on a provided set of virtual machines. Initially, all the files of the AntispamLab tool are
put on one machine, which is then called the master machine (it can be a virtual machine (VM), or a real machine).
There are two master scripts of the tool that can be executed from the master machine: the deploy script and the
perform-a-test script. The deploy script first checks the availability of the VMs from the list of VMs provided by the
user of the tool. Then it deploys the emailing network of N1 email servers and N2 email-users per server (N1 and
N2 are configurable): It does ssh to N14+N1*N2 machines, puts on each machine the files needed for installing the
corresponding components, runs email-servers and filters, and reports to the screen of the master machine whether
the complete deployment was successful. In the case of a deployment failure on a VM, that VM is skipped and others
are used (so the deploy script may try more then N14+N1*N2 machines). After a successful deployment, email servers
and filters run, but email messages are not exchanged. Now the perform-a-test script can be executed. This script
starts and controls a test, which consists of multiple runs of the complete system. It first sends the signals to the
programs that simulate email users and clients to start. These programs are active for the duration of a test run
(equal approximately to the simulated time divided by the time scale factor, see Section 3.4). Then they stop and
send the detection reports (as observed by email users) to the perform-a-test script. After receiving all reports, the
perform-a-test script makes the run log, cleans the data from the finished run, and starts another run. When all logs of
all runs are collected (or some of them might time out and get discarded) the overall detection results with confidence
intervals are computed and printed to the screen of the master machine.

Inputs from Other Filters. Our tool supports the de-
ployment of multiple instances of a tested filter; these in-
stances can communicate in the same way as they do in real
life. The inputs that depend on other filters and users, but
that are obtained from another networked antispam com-
ponent (such is DCC) can be obtained by simply using an
already existing such component, or by instantiating it (if
its source code is available and the required resources are
available) or a simulated copy of it within a VM by the user
of the tool.

Support of Standard Email Format. The standard
format of the emails fed to a tested filter, including correct
header information that is adjusted to each separate run of
the system, is naturally supported by the architecture of the
testing system: The script that simulates a user and her/his
emailing program may easily create appropriate header fields
for each sent email, and use only the email content and the
“Subject” field of the emails taken from spam and ham email
repositories®; the email servers that relay the emails also add
the appropriate header fields.

3.4 Time Scaling Mechanism

We exploit large empty slots that are typically present
between the events in the testing system components, and
we implement a simple time scaling mechanism that allows
to better use available CPU of the VMs an speed up the
testing. The basic idea is to scale-down the starting times
of all the scheduled events using the same factor, but also

5Not yet completely supported by the current tool imple-
mentation.

to control the event collisions (that may be caused by this
scaling) in a way that will prevent the scaling from affecting
the testing results and still provide a considerable testing
speedup. The way we implemented the time scaling mecha-
nisms is illustrated and explained in Figure 4.

4. ANEXAMPLEOFHOWTOTESTANEW
FILTER: TESTING SPAMASSASSIN

In order to test the SpamAssassin filter [11], we followed
the general procedure explained in Section 2.4. We also
follow the detailed procedure given in the README.txt file
of the tool package, which points to the concrete files to be
replaced.

We replace the default content of the file filter.tar.gz:

pipefilter.py

by the content that corresponds to SpamAssassin (we find
the .rpm dependency-files needed for installing SpamAssas-
sin by trying to install it once manually):

perl-Digest-HMAC-1.01-12.noarch.rpm
perl-Digest-SHA1-2.07-4.1386.rpm
perl-HTML-Parser-3.35-5.1386.rpm
perl-HTML-Tagset-3.03-29.noarch.rpm
perl-Net-DNS-0.45-3.i386.rpm
perl-Time-HiRes-1.55-2.i386.rpm
spamassassin-2.63-8.1386.rpm

We replace the default content of the file filter_install.sh:

mv pipefilter.py /usr/local
cp defaults.cfg /usr/local

[O (O | t

v

-
N [1] L
I + [y 'y [* L
i)

T5=4 | L_| ‘_ET_'

[] eventis executed on time | eventis delayed it eventis not executed

4 scheduled start-time di, di' i-th event delay M runis aborted

Figure 4: TIME SCALING MECHANISM. Start of each event (upper arrows) is scaled by the time scale factor TS.
As this is done with all the independent events in the testing systems (and these are in our case only email-users), the
relative order of the events stays approximately the same, and so the detection results should not change. The relative
order is only approximately the same because the scaling of the events may lead to events overlaps and delays in cases
when it would not happen without scaling. If these overlaps are small, they may be neglected (because there is also
variable network delay which causes the same effect in both our testing system and in the real emailing networks).
In the example the delay d3 is tolerated. The delay d5 is not tolerated because it is above a threshold, which will
cause the run to be aborted (as previously explain a test consists of multiple runs; only successful runs are used for
computing the detection statistic). In order to allow higher values of the time scaling factor and a better resistance of
the tests to the abortions, we apply an additional rule that is not shown on this figure: we allow a predefined number
of consecutive overlaps (a parameter) in order to give more chance to the system to recover in the cases when the delay
is only temporary accumulating due to some short-time slow-down of one or more machines on which the system runs.
The presence of possible side effects caused by the time scaling (that could impact the testing results) can always be

checked using additional tests with TS=1. A typical value of TS that works well within the PlanetLab is 60.

by the content that corresponds to SpamAssassin (we find
the commands needed for installing SpamAssassin in the
original SpamAssassin instructions from SpamAssassin web
page; as we use the SpamAssassin filter in the “pipe” mode,
no command is needed to start the filter as a separate pro-
cess):

rpm -i perlx
rpm -i spamassassin-2.63-8.i386.rpm

We set the simulated time to 3 hours, the time scale to
60, and the number of runs to 15. Other parameters of the
test can be checked from the published tool source code, in
the main configuration file setupvalues.cfg. We obtain the
following test results:

Parsed 15 logs. Stat. relev: 15 (100.0%)

Mean TP ratio: 72794951866

0.7
Mean FP ratio: 0.0

[CI-lower , CI-upper] (seed=1)
TP: [0.73441829584244445, 0.8043137254901962]
FP: [0.0, 0.0]

The observed true positive detection is 0.77, with the con-
fidence interval [0.73, 0.80]. False detections were not ob-
served during the test. The execution time of each run was
about 5 minutes (higher then 3 minutes due to the system
restarts and feedback collecting). All the test details, along
with the execution log, can be found on the AntispamLab
web page [3].

5. CONCLUSION

In this paper, we have presented a new system for testing
spam filters. We have implemented a tool that automates
the deployment and use of the testing system. One impor-
tant feature of the system is that it enables, thanks to its
architecture, feeding of tested filters with very realistic in-
puts. For these possibilities to come fully into the effect,
we need to improve some components of the tool, especially
the models of email users and spamming, as the rest of the
system represents well a real emailing network. Another
important feature of the system is its compatibility to the
operating system of the machines on which it can be used,
which is achieved by use of the VMs and a standard (Plan-
etLab compatible) VM image.

The time-scaling mechanism provided within the tool is
very useful for saving time when doing many evaluations
of one or more filters. We also implement an example of
the feedback from email users to spam filters (the “delete as
spam” feedback), showing how implementing such feedbacks
(from email users to spam filters) is convenient within our
tool.

While the current implementation of the tool allows to au-
tomatically output the detection ratios observed for a tested
filter, it is important to mention that realistic measuring of
the CPU, memory and network traffic used by the tested
filter is also well supported by the tool. To obtain these ad-
ditional performance metrics, one should simply make use of
the operating system monitoring tools that are already avail-
able on the VMs on which the testing system gets deployed.

These additional metrics are needed, for example, in order
to assess resistance of a spam filter or the whole emailing
network to denial of service attacks by spammers. An ex-
ample of such an attack is simply overloading the filters and
the emailing network by randomly generated emails: this
attack could make the email service temporary unavailable
if, for example, it causes the filters to create the traffic for
collaborative filtering that becomes too huge and congests
the network. In a time when the availability is becoming a
crucial requirement posed on the information systems, be-
ing able to observe these additional metrics is also becoming
very important.

Automated tool use and its implementation with Python
and shell scripts promise rapid further development of the
tool and easy use of it. Another advantage of the tool is that
the job of testing a new filter is approximately equivalent to
the job of installing one copy of it in the real system, as we
have illustrated on the SpamAssassin example.

In bottom line, we see the current design and implemen-
tation of the tool as a good framework toward more realistic
testing of spam filters. As the tool recreates an emailing
network, it might also be useful for testing other emailing
network elements.

6. FUTURE WORK

The main future job is improving the models of email users
and spamming. Email users should be modelled more com-
pletely by taking into account the facts such as: content-
profiles of the users, the communication patterns regard-
ing social contacts of the users, replying and forwarding
of emails. While using the existing spam/ham databases,
user modelling can still be considerably improved. Building
and using more realistic and per-user specific spam/ham
databases is a new requirement posed by our tool, which
would enable modelling of the email users and their com-
munication to be even more complete and realistic.

The modelling of the process of spamming should addi-
tionally take into account the facts such as: different content-
obfuscation techniques used by spammers, sender-obfuscation
techniques, use of botnets (the networks of hacked comput-
ers) for sending spam.

Another important future job is evaluating more spam fil-
ters and comparing the results of the tests obtained with
our tool against the results of the tests obtained with other
tools, in order to try to identify and show expected advan-
tages or drawbacks of our testing system as compared to
other testing systems.

The current implementation of our tool uses only Postfix
as the email server. Supporting a windows-operating-system
based email server, such as Exchange, would make the tool
usable by a larger community of antispam people. We also
plan to support the evaluation of per-email-client (i.e. per
user) installed spam filters. These goal seem to be achievable
by adding new modules to the existing implementation of
the tool.

While the currently used and very simple time scaling
mechanism already provides good testing speedup (60 times
speedup worked very well for us), it doesn’t prevent from
loosing some runs of the test if a machine on which a com-
ponent of the testing system runs becomes very slow. In-
stead of using simple time scaling and detection of critical
event collisions, we consider use of the well known “virtual
time” concept and an appropriate synchronization scheme

in order to allow the simulated time in the testing system to
advance as fast as it is allowed by the available computation
resources.

In simulations done on a single machine, the “virtual time”
concept means using a scheduler of all the events within the
simulated system, and updating the simulated time and ex-
ecuting the next event immediately after the current event
is finished. In our distributed system we could, for ex-
ample, use a scheduler per testing system component, and
re-synchronize the schedulers frequently enough in order to
keep all the events within the testing system synchronized
up to a small time error that is acceptable and known not
to affect the tests significantly.

7. ACKNOWLEDGMENTS

The work presented in this paper was supported (in part)
by the National Competence Center in Research on Mobile
Information and Communication Systems (NCCR-MICS), a
center supported by the Swiss National Science Foundation,
under the grant number 5005-67322.

Special thanks to Marc Andre-Luthi, for his advice re-
garding some implementation choices and help in some wired
“installation doesn’t work” cases.

8. REFERENCES

[1] I. Androutsopoulos, J. Koutsias, K. Chandrinos,

G. Paliouras, and C. Spyropoulos. An evaluation of
naive bayesian anti-spam filtering. In Proc. of the
workshop on Machine Learning in the New
Information Age, 2000.

[2] I. Androutsopoulos, G. Paliouras, and E. Michelakis.
Learning to filter unsolicited commercial e-mail. Tech.
Rep. 2004/2, NCSR Demokritos, October 2004.

[3] AntispamLab. Project web page.
http://lcawww.epfl.ch/ssarafij/antispamlab/, March
2007.

[4] G. V. Cormack and A. Bratko. Batch and online spam
filter comparison. In Conference on Email and
Anti-Spam, CEAS 2006, Mountain View, CA, July
2006.

[5] G. V. Cormack and T. R. Lynam. Overview of the
trec 2005 spam evaluation track. In Fourteenth Text
REtrieval Conference (TREC-2005), Gaithersburg,
MD, 2005.

] DCC. http://www.dcc-servers.net/dec/, Feb 2007.

] PlanetLab. http://www.planet-lab.org/, Jan 2007.

] Postfix. http://www.postfix.org/, Jan 2007.

| Python. http://www.python.org/, Jan 2007.

| F. Sebastiani. Machine learning in automated text
categorization. ACM Computing Surveys, 34(1):1-47,
2002.

[11] SpamAssassin. http://spamassassin.org/, Jan 2007.

[12] Xen. http://sourceforge.net/projects/xen/, Jan 2007.

