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Abstract

Monitoring biological relevant reactions on the single molecule level based on fluorescence spectroscopy
techniques has become one of the most promising approaches for understanding a variety of phenomena
in biophysics, biochemistry and life science. By applying techniques of fluorescence spectroscopy to
labeled biomolecules a manifold of important parameters becomes accessible. For example, molecular
dynamics, energy transfer, and ligand–receptor reactionscan be monitored at the molecular level. This
huge application field was and still is a major drive for innovative optical methods as it opens the door
for new quantitative insights of molecular interactions ona truly micro- and nano-scopic scale.

This thesis contributes new single molecule detection (SMD) concepts, correlation analysis and optical
correlation spectroscopy to study fluorophores or labeled biomolecules close to a surface. The search
beyond the classical confocal volume towards improved confinement was a key objective.

In a first approach, fluorescence correlation spectroscopy (FCS) using near field light sources to
achieve highly confined observation volumes for detecting and measuring fluorophores up to micromolar
concentration was investigated. In a second approach, FCS and fluorescence intensity distribution analy-
sis (FIDA) based on dual-color total internal reflection fluorescence (TIRF) microscopy was conceived
to achieve a common observation volume for dual-color fluorescence measurements.

This resulted in two novel fluorescence fluctuation spectroscopy instruments providing observation
volumes of less than 100al. The first instrument generates a near field observation volume around and
inside nano-apertures in an opaque metal film. Back-illumination of such an aperture results in a highly
confined excitation field at the distal aperture exit. This instrument was characterized with FCS and
observation volumes as small as 30al were measured. The second instrument confines the observation
volume with total internal reflection (TIR) at a glass–waterinterface. Today, the last-generation instru-
ment provides a dual-color ps pulsed excitation and time-resolved detection for coincidence analysis
and time-correlated single photon counting. It was characterized with FCS and FIDA and observation
volumes of 70al to 100al were achieved. Moreover, the presence of the interface favors emission into
the optically denser medium, such that nearly 60% of the emitted fluorescence can be collected. This
very efficient light collection resulted in a two- to three-fold stronger fluorescence signal and led to a
high signal to background ratio, which makes this instrument particularly suitable for SMD studies on
surfaces.

In parallel to these experimental investigations, a theoretical analysis of the total SMD process in-
cluding an analysis of optical focus fields, molecule–interface interactions, as well as the collection and
detection efficiency was performed. This analysis was used as a guideline for steady instrument improve-
ments and for the understanding of the SMD process.

Finally, SMD concepts were applied for a first investigationof in vitro expression of an odorant re-
ceptor and for monitoring the vectorial insertion into a solid-supported lipid membrane. These receptors
were incorporated and immobilized in the lipid membrane. With increasing expression time, an increas-
ing amount of receptors as well as an increasing aggregationwas observed. The incorporation density and
the receptor aggregation were investigated with TIRF microscopy and image correlation spectroscopy.

Key words: Single molecule detection; Fluorescence microscopy; Fluctuation spectroscopy; Correlation spec-
troscopy; Evanescent field; Total internal reflection; Artificial membrane; Odorant receptor.
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Kurzfassung

Die Beobachtung biologisch relevanter Reaktionen auf Einzelmolekülebene mittels Fluoreszenzspek-
troskopie ist eine der vielversprechendsten Methoden fürdas Verständnis vieler Phänomene in der Bio-
physik, der Biochemie und in den Lebenswissenschaften geworden. Eine Vielzahl von wichtigen Pa-
rametern wurde durch Fluoreszenzspektroskopie von fluoreszierenden Biomolekülen zugänglich. Zum
Beispiel können die Dynamik von Molekülen, Energietransfers und Ligand–Rezeptor-Reaktionen auf
Einzelmolekülebene gemessen werden. Dieses grosse Anwendungsgebiet förderte und fordert weiterhin
innovative optische Konzepte, da diese neuen Methoden einen Zugang zu quantitativen Einblicken in die
Interaktion von Molekülen im Mikro- und Nanometer-Masstab erlauben.

Diese Arbeit stellt neue Konzepte zur Einzelmoleküldetektion sowie zur Korrelationsanalyse und
-spektroskopie vor, um fluoreszierende Farbstoffe oder Biomoleküle an Oberflächen zu untersuchen. Ein
ständiges Hautpziel war die Suche nach deutlich kleinerenBeobachtungsvolumen als mittels klassischer
Technik erreicht werden können.

In einem ersten Ansatz wurden Fluoreszenz-Korrelations-Spektroskopie (FCS) und Nahfeld-Licht-
quellen untersucht, um immer kleinere Beobachtungsvolumen zur Detektierung und Charakterisierung
von Farbstoffen bis zu einer mikromolaren Konzentration zu erreichen. Ineinem zweiten Ansatz wur-
den FCS und Fluoreszenz-Intensitäts-Verteilungs-Analysen (FIDA) im evaneszenten Lichtfeld eines in-
tern total reflektierten Laserstrahls entwickelt, um ein überlappendes Beobachtungsvolumen für Zwei-
farbmessungen an der Oberfläche zu erzeugen.

Daraus ergaben sich zwei neuartige Messinstrumente für Fluoreszenzspektroskopie, welche Beobach-
tungsvolumen von 100al oder weniger erreichen. Das erste Instrument erzeugt dieses Beobachtungsvo-
lumen im optischen Nahfeld eines Nanolochs durch einen undurchsichtigen Metallfilm. Die rückseitige
Beleuchtung eines Nanolochs führt zu einem Lichtfeld an der Austrittsöffnung, welches auf die Dimen-
sion derÖffnung beschränkt bleibt. Dieses Instrument wurde mittels FCS charakterisiert und Beobach-
tungsvolumen bis hinunter zu 30al gemessen. Das zweite Instrument schränkt das Beobachtungsvolu-
men ein, indem es einen Laserstrahl an der Deckglas–Wasser-Grenzfläche intern total reflektiert (TIRF).
Der aktuelle Aufbau ermöglicht gepulste Anregung mit ps-Laserpulsen und zeitaufgelöste Messun-
gen zur Koinzidenzanalyse und zeitkorrelierter Einzelphotonenspektroskopie. Dieses Instrument wurde
mit FCS und FIDA charakterisiert und Beobachtungsvolumen von 70al bis 100al gemessen. Die nahe
Glasoberfläche begünstigt die Fluoreszenzabstrahlung in das optisch dichtere Medium, so dass fast 60%
der Gesamtfluoreszenz erfasst werden kann. Diese sehr hohe Lichtausbeute ergab ein zwei- bis dreifach
helleres Signal und führte zu einem hohen Signal-zu-Hintergrund-Verhältnis, welches das Instrument für
die Einzelmoleküldetektion an Oberflächen prädestiniert.

Parallel zu den experimentellen Arbeiten wurde eine vollständige theoretische Analyse des komplet-
ten Vorgangs der Einzelmoleküldetektion durchgeführt.Diese Analyse beinhaltet eine Untersuchung
von optischen Fokusfeldern, der Interaktion von Molekülen mit der Oberfläche, sowie der Detektionsef-
fizienz. Sie diente als Leitfaden zur fortwährenden Verbesserung der Messinstrumente und vertiefte das
Verständnis des Messvorgangs.

Schliesslich wurden Methoden der Einzelmoleküldetektion angewendet, um erste Untersuchungen des
gerichtetenin-vitro-Einbaus von Geruchsrezeptoren in fixierten Lipidmembranen durchzuführen. Die
Geruchsrezeptoren wurden in die Membran eingebaut und darin immobilisiert. Mit zunehmender Ein-
baudauer wurde eine erhöhte Einbaudichte sowie eine verstärkte Aggregierung von Rezeptoren nachge-
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wiesen. Einbaudichte und Aggregierung wurden mittels TIRF-Mikroskopie sowie Bildverarbeitung und
Korrelationsanalyse gemessen.

Schlüsselẅorter: Einzelmoleküldetektion; Fluoreszenzmikroskopie; Fluktuationsspektroskopie; Korrelations-
spektroskopie; Evaneszentes Feld; Totale interne Reflektion; Künstliche Membrane; Geruchsrezeptor.

OCIS Codes: (170.0180) Mikroskopie; (170.2520) Fluoreszenzmikroskopie; (300.2530) Fluoreszenz, Laser-
induziert; (170.6280) Spektroskopie, Fluoreszenz und Lumineszenz; (240.6690) Oberflächenwellen; (240.6490)
Spektroskopie, Oberfläche; (220.2560)Fokus; (070.2580)Fourieroptik; (260.1960) Diffraktionstheorie; (050.1220)
Öffnungen; (160.3900) Metalle; (100.2000) Digitale Bildverarbeitung; (100.2960) Bildanalyse.
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Chapter 1

Introduction

In the past three decades, fluorescence imaging and spectroscopy became an integral part in life science,
cellular and molecular biology, and medicine. Research in these fields is more and more driven by the
availability of specific labeling and sensitive measurement techniques. The combination of bright fluores-
cent markers with ultra-sensitive measurement instrumentation enabled investigations down to the single
molecule level with unprecedented spatio-temporal resolution and sensitivity. Progress in microscopy,
detector and signal processing technology still continuespushing fluorescence techniques to ever-new
horizons.

Classical fluorescence microscopy and fluorescence lifetime imaging (FLIM) [1, 2, 3] allow localiz-
ing and identifying cellular structures within tissue or sub-cellular structures within cells. Fluorescence
(time-)correlation spectroscopy (FCS) [4, 5], fluorescence intensity distribution analysis (FIDA) [6, 7],
fluorescence recovery after photo-bleaching (FRAP) [8], fluorescence image correlation spectroscopy
(ICS) [70], Förster resonant energy transfer (FRET) [10] and many other techniques are suitable for
characterizing samples at the molecular level. In addition, multi-parameter fluorescence detection and
fluorescence burst analysis [11] allow characterizing and identifying single molecules. All these tech-
niques rely on the Stokes shift between the excitation lightand the induced fluorescence emission as
well as state of the art instrumentation. Whereas the Stokesshift allows a very selective chromatic filter-
ing to separate the fluorescence emission from the excitation light, the instrument should also provide a
high collection efficiency of the fluorescence emission and an efficient shot-noise limited single photon
detection. Altogether, these features contribute to a highsignal to background ratio (SBR) as well as
an unprecedented signal to noise ratio (SNR). A corner stonewas set in the late 1980s, when the first
individual fluorophores in a biologically relevant environment were observed [12]. This break-through
opened a vast field of fluorescence imaging and spectroscopy applications and marked the renaissance of
single molecule detection(SMD) [13]. It marked also the transition from former time-resolved flash lamp
techniques to a much simpler instrumentation: the confocalmicroscope [14]. Thanks to its compactness,
robustness, efficiency and ease-of-use, the confocal microscope became rapidly thebase platform for vir-
tually all fluorescence techniques. Since the very beginnings, fluorescence spectroscopy was extensively
applied for investigating processes at the nanometer scale, i.e. chemical reactions [15], enzyme activity
[16], molecular motors [17], intra-cellular transport andsignaling [18]. Reviews of SMD applications are
found in [5, 19, 20]; and Wazawa and Ueda [21] reviewed SMD imaging techniques and applications.

A very interesting class of fluorescence techniques featuring single-molecule sensitivity is fluores-
cence fluctuation spectroscopy (FFS). Whereas imaging techniques rely on the (time-)average fluores-
cence intensity, FFS regroups techniques analyzing spatio-temporal fluctuations of the fluorescence in-
tensity. These fluctuations are caused by various kinetic processes in the sample, i.e. translational and ro-
tational diffusion due to thermal (Brownian) motion, active or passive transport, flow and triplet blinking.
In principle, every process manifesting itself in a fluctuating fluorescence intensity can be investigated
with FFS. For observing and measuring these fluctuations with high fidelity, the detection system must
follow the time course of these photon events, i.e. the totaldetection bandwidth must be high enough for
capturing the signal content encoded in the detected photontrace. Single photon detectors, i.e. avalanche
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photo diodes (APD), and digital signal processing are commonly used for that purpose. In addition, the
observation volume must be small enough to observe only a fewfluorophores simultaneously. FFS exper-
iments in the 1970s and 1980s usually involved large sampling volumes populated by several thousand
molecules. Due to the minute fluctuations around the averageintensity, these measurements last typically
several hours or even a day before achieving a sufficient SNR. However, using a confocal microscope the
overall measurement time was substantially shortened to afew seconds[14]. A well-defined sampling
volume smaller than 1fl is essential to achieve short measurements.
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Figure 1.1: Evolution of the sampling volume and optimal concentration range for FFS measurements.
The boxes outline the gap to bridge for single molecule DNA sequencing.

The evolution of the observation volume (sampling volume) in the past decades is outlined in figure
1.1, which indicates not only the progress but as well a trendtowards applying FFS for higher concentra-
tions. The indicated concentration range corresponds to a populationN of 3–15 molecules in this volume.
Rigler et al. [14] and Schwille et al. [18] used confocal microscopes with a numerical aperture (NA) of
0.9 and 1.2, respectively. Hassler et al. [22] and Ruckstuhlet al. [23] used an epi-illumination total inter-
nal reflection fluorescence (epi-TIRF) setup. An objective with & 1.45 NA allowed obtaining a sampling
volume of less than 50al. Kastrup et al. [24] generated nanoscale focal volumes by stimulated emission
depletion (STED). To date, STED is the only method that can create nanoscale volumesinsidethe bulk
sample, e.g. it does neither rely on optical near fields nor ona constrained sample volume. Levene et al.
[25] proposed an evanescent epi-illumination at the bottomof a nano-aperture in a metal film. Except for
fabrication issues, this method allows principally to reach sampling volumes far less than 1al. A similar
concept using nano-channels in a transparent medium was proposed by Webb et al. [26].

The framework of this thesis was the development and the characterization of novel FFS concepts
achieving sampling volumes significantly smaller than in the far field diffraction limit. This work was
motivated by recent single enzyme investigations and receptor–ligand measurements. Single enzyme
observation basically requires immobilizing the enzyme and feeding a fluorescent educt or obtaining a
fluorescent product. Real-time observation of the enzyme activity is a true SMD application based on the
ability to observe single educt molecules or the processingof substrate molecules. At room temperature
or above, FFS is the method of choice because of its high SMD sensitivity and its fast time response. In
consequence, at least the educt, the enzyme–educt/product complex or the product must be fluorescent.
Immobilization is important because moving enzymes could not be observed for longer than the diffusion
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time, which is typically a few milliseconds only. Recently,horseradish peroxidase was studied when
oxidizing a quenched fluorophore and forming a fluorescent product [27]. This experimental scheme is
relatively simple because only the product is bright, whichallows SMD nearly regardless of the educt
concentration.

As the sampling volume is the overlap volume of the excitation and the detectionin the sample, re-
ducing the excitation, the detection and/or the sample volume confines it. Near a surface, evanescent or
plasmonic excitation reduces the excitation volume [28, 29] and anisotropic fluorescence emission re-
duces the detection volume [4, 7, 8, 22]. Besides a minute sampling volume, a high average brightness is
desirable to overcome shot noise, background light and detector noise. Whatever confinement is used, the
detection optics will rely on a high NA objective to maximizethe detection efficiency and to confine the
detection volume simultaneously. In this work, we focused on the confinement of the excitation volume.
In a first investigation, we designed, fabricated and characterized nanohole arrays with sub-wavelength
aperture diameters (section 3.1). In contrast to previous studies by Levene et al. [25] and Rigneault et al.
[30], we proposed a trans-illumination concept for obtaining a small excitation volume above the aper-
tures without restricting the sample volume. Although promising results were obtained, we abandoned
these investigations due to the hole-to-hole variations, the sample preparation and handling. Instead, we
enhanced a novel total internal reflection excitation scheme for dual-color excitation and detection (sec-
tion 3.2). This versatile instrument achieves similar excitation volumes as with the nanoholes but offers
a quite simple and inexpensive sample preparation and handling. It was then used for characterizing the
insertion of membrane proteins into a solid-supported planar lipid membrane (section 3.3).

This thesis is organized as follows:

Chapter 2 gives an overview on fluorescence and instrumentation, which form the basis for FFS
measurements. It presents the calculation of the core characteristic of any FFS instrument, namely the
sampling volume and the fluorescence signal. This calculation integrates the excitation field, the response
of the fluorophore and its interaction with the environment,as well as the detection efficiency of the col-
lection optics. Chapter 3 summarizes the experiments and discusses key results. The FFS techniques
relevant for these measurements are outlined. Limitationsand artifacts are discussed and improvements
are suggested. Section 3.1 presents a novel near field excitation for FFS measurements, which was able
to provide sampling volumes as small as 30al. Section 3.2 outlines a novel dual-color total internal reflec-
tion FFS instrument. An excellent performance for coincidence measurements was achieved. Section 3.3
presents an investigation of odorant receptors in a solid-supported lipid membrane. The measurements
and first results are discussed. Chapter 4 and 5 list the author’s articles and conference contributions,
respectively. Finally, conclusions are drawn in chapter 6.



Chapter 2

Theory

Any FFS process can be described as a step-by-step process, e.g. a total process from excitation light–
matter interaction until final detection and signal analysis. This chapter analyzes the FFS process with a
special emphasis on the photonic and optical aspects. The FFS process is outlined in figure 2.1, signal
processing and data analysis are summarized in chapter 3 with the corresponding measurements.
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Figure 2.1: Overview of FFS methods for single molecule detection. OP: object plane, PP: conjugated
pinhole plane. (a) Excitation light, (b) excitation band-pass filter, (c) focusing optics, (d) excitation (solid
line) and detection (dashed line) volumes, (e) collection optics, (f) emission band-pass filter, (g) tube
lens, (h) pinhole, (i) single photon detector.

Reprinted from Leutenegger et al. [2] with permission by American Chemical Society.

The excitation light (a) is spectrally filtered with a band-pass filter (b) and focused into the sample (c).
The excitation field within the sample is well confined to provide a small open volume (d: solid) that
is the excitation volume where the labeled molecules are excited. The induced fluorescence emission
is collected (e) from within a small open detection volume (d: dashed) encompassing the excitation
volume. A band-pass filter (f) separates the emission spectrum from the excitation spectrum (b). The
fluorescence emission is then imaged (g) onto the pinhole (h), which provides a spatial filtering and
defines the detection volume (d: dashed). A single photon detector (i) detects the fluorescence photons
as a sequence of single photon events. Finally, this photon trace is numerically processed to extract
information on the measured fluorescent sample.

Classically, a broadband light source (incandescent lamp)is used for fluorescence microscopy. How-
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ever, laser light provides a much better defined source for obtaining a well-confined diffraction limited ex-
citation volume. Therefore, the excitation light (a) was modeled as monochromatic and spatio-temporally
coherent. An additional excitation filter (b) is usually required to block stray emission, i.e. blue/UV light
from gas lasers (pump light) or red/IR light from solid-state lasers (spontaneous emission). The biolog-
ical sample under investigation is contained in a solvent, i.e. water. The induced fluorescence is due to
auto-fluorescent or specifically labeled structures. If notimmobilized, these samples diffuse and rotate
freely due to thermal motion. The fluorophore is described asa dipole absorbing photons at the excita-
tion wavelengthλex and emitting fluorescence within a wavelength rangeλ f l , whereλ f l & λex for single
photon excitation.

As usual, we omit the time dependency exp (−iωt), whereω = 2πc0/λ is the angular frequency,c0 the
speed of light andλ the wavelength in free space. And we assume a relative magnetic permeabilityµr of
1 for all materials. Therefore, the refraction indexn is given by the dielectric permittivityεr = n2.
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Under these assumptions, we decompose the general FFS process as:

1. the excitation field~Eex(~r , t),

2. the excitation cross-section←→σ ex(~r ,Ω) and the excitation rateτ−1
ex(~r ,Ω, t) of the fluorophore,

3. the photo-physical and photo-chemical response of the fluorophore,

4. the emission rateRf l(~r,Ω, t) of the fluorophore,

5. the emitted field~E f l(~r ,Ω) from the fluorophore and

6. the detection efficiencyQf l(~r ,Ω) of this radiation,

7. which yield finally the detected fluorescence signalI (t) from the sample.

All these quantities vary in general with the position~r = (x, y, z) and the dipole orientationΩ = (Θ, ϕ)
of the fluorophore, as well as with the wavelength of excitation and emission. The subscript refers to
the wavelength used for calculating the corresponding quantity. A graphical representation is outlined in
figure 2.2.

The main result of this description is the detected fluorescence signalI (t) from the sample. As stated
above, further processing and the analysis ofI (t) is presented together with measurement results in the
following chapter 3.

2.1 Excitation field

The calculation of the excitation field for confocal excitation with high NA objectives was recently
published by Leutenegger et al. [3] (annexed). It is based onthe vectorial Debye diffraction integral
expressed as a particular Fourier transform of the incidentfield in the aperture of a microscope objective.
The efficient implementation allows the calculation of the excitation field ~Eex(~r, t) within a 3D volume
near the focus. With an 1.20 NA water immersion objective, excitation volumes of 0.3fl to 0.6fl are
calculated forλex = 488nm and 633nm, respectively. At a glass–water interface,excitation volumes
of about 70al can be achieved with a 1.45 NA oil immersion objective. Figure 2.3 shows an example
calculation for ax-polarized excitation atλex = 488nm.

Figure 2.3: Intensity distribution near the focus of a 1.45 NA oil immersion objective. The iso-surfaces
showI(~r) = e−1...−4I(0) in the sample.
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In addition, in reference [7] (annexed), we showed results obtained with confined excitation volumes
in the near field of sub-wavelength apertures in an opaque gold layer. With circular apertures ofλex/3
diameter, sampling volumes of about 50al forλex = 633nm were measured (see section 3.1). However,
the gold added a significant background, which was very sensitive to small irregularities in the nano-
apertures resulting from fabrication.

2.2 Excitation rate

This analysis is based on a classical description of absorption and re-emission, i.e. the fluorophore is
described as an absorbing and emitting dipole. Any intrinsic fluorophore process can be integrated in a
quantum-mechanical description, which will result in a semi-classical analysis of absorption and fluo-
rescence. However, this is not of importance within the framework of this description as all molecule-
specific processes are given with the absorption and emission spectra and lifetime parameters. A detailed
quantum-mechanical description was recently given by Girard et al. [31].

Assuming a quickly rotating fluorophore, the absorption cross-sectionσex is isotropic (time average).
Such a fluorophore absorbs photons at a rate

τ−1
ex(~r, t) =

σex(~r)
~ωex

Iex(~r , t) (2.1)

whereIex is the excitation intensity given by

Iex(~r, t) =
1
2

√

ε0

µ0
Re(n) ~E∗Tex (~r, t) ~Eex(~r , t) . (2.2)

~E∗Tex denotes the conjugate transpose of the electric field vector. This isotropic description is valid if the
mean excitation timeτex is much longer than the mean rotation timeτr of the molecule. Otherwise, the
orientation of the fluorophore has to be taken into account. The excitation rate is then given by

τ−1
ex(~r ,Ω, t) =

Re(n)
2~ωex

√

ε0

µ0

~E∗Tex (~r, t)←→σ ex(~r,Ω) ~Eex(~r , t) . (2.3)

For a fluorophore with a single absorption transition dipole, the orientation dependent absorption cross-
section is a diagonal tensor.

←→σ ex(~r ,Ω) = σex(~r)





















| cosϕ sinΘ| 0 0
0 | sinϕ sinΘ| 0
0 0 | cosΘ|





















(2.4)

2.3 Fluorescence

The Jablonski diagram 2.4 outlines the molecular energy levels and electronic states as well as the tran-
sitions governing fluorescence.S0 is the ground state of the fluorophore,S1 the first excited state andT1

the lowest triplet state. In thermal equilibrium, the occupation probability of the energy levels is given
by the Maxwell-Boltzmann distribution. The energy differences betweenS0 and the excited states are
sufficiently large that within a very good approximation all fluorophores are inS0. τ f l , τnr, τisc andτT1
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Figure 2.4: Molecular energy levels, electronic states andtransition rates (τ−1
xx). Thin lines indicate vibra-

tion and rotation sub-levels of the electronic states.

are the fluorescence lifetime, the non-radiative transition lifetime (internal conversion), the intersystem
crossing lifetime and the triplet state lifetime, respectively. τex is the average excitation time as calculated
previously.

When absorbing a photon (blue↑) with wavelengthλex the fluorophore becomes excited, that means
it transits fromS0 to one of the excited singlet statesSn. The absorption is strongest if the photon energy
matches the energy difference for a transitionS0 → S1. If the absorbed photon energy is higher, the
excess energy is usually dissipated within a few picoseconds down to the first excited stateS1 (black

 

), that is the fluorophore does not stay inSn.

After the absorption, the fluorophore relaxes to a low sublevel of S1 before it returns toS0 or transits
to T1 by a non-radiative intersystem crossing. A radiative transition to S0 (green↓) leads to the emission
of a fluorescence photon with wavelengthλ f l > λex. Internal conversion toS0 (black

 

) is mostly due
to collisions with solvent molecules inducing energy transfer or dissipation. From the triplet stateT1,
the fluorophore returns toS0 (dark red

→

) by emission of a phosphorescence photon (λph > λ f l) or by
energy dissipation. Because the transitionsS1 → T1 andT1 → S0 are spin-forbidden, they occur only
with low probability. This makes the triplet stateT1 metastable with a lifetimeτT1 in the range of micro-
to milliseconds or even longer, whereas the lifetimeτS1 of the excited stateS1 is only a few nanoseconds.

The fluorescence process is described in standard textbooks, i.e. Lakowicz [32]. A short summary is
given in the appendix A. Taking into account justS0, S1 andT1 and solving for the occupation probability
PS1, the average rate of fluorescence emissions per molecule is obtained:

Rf l =
qf l

τex+ τS1 + qiscτT1

(2.5)

whereτS1 = (τ−1
f l + τ

−1
nr + τ

−1
isc)
−1 is the singlet state lifetime,qf l = τS1/τ f l is the fluorescence quantum

yield andqisc = τS1/τisc is the intersystem crossing probability. The denominatorτex + τS1 + qiscτT1
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corresponds to the average cycle time. At strong excitation, τex → 0 and the fluorescence emission
saturates as exemplified by figure 2.5 for Rhodamine Green in water. If this fluorophore is excited near
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Figure 2.5: Saturation of Rhodamine Green in water for excitation intensitiesIex above the saturation
intensity Iex,sat = 1.65mW/µm2. Assuming a quantum yieldqf l = 52%, the maximal emission rate is
Rf l,max= 87MHz.

its absorption peak in a confocal configuration with a 1.20 NAwater immersion objective, it is not
uncommon to reach detection count rates of& 100kHz per molecule (kCPM). For instance, a focused
laser beam with a power of 400µW atλex = 488nm or 160µW atλex = 514nm results in an emission rate
Rf l ≈ 25MHz. The average brightness̄B can then be as high as about 200kCPM depending on filtering,
transmission and detection losses.

As a rule of thumb, an input powerPex & 100µW results in a fluorescence powerPf l . 1pW/molecule
on the detector. For single molecule detection it is therefore of vital importance to detect no more than
about 10−9 Pex of laser light (background). On a confocal microscope for instance,. 0.1% of the laser
power is back scattered in the sampling volume (far from optical interfaces). The dichroic mirror trans-
mits≈ 1% of this laser light and the band pass filter a fraction of≈ 10−6, respectively. In this example,
only a fraction. 10−11 of the initial laser light reaches the detector which results in a background count
rate of≈ 1kHz and a signal to background ratio (SBR)& 100.

So far, we assumed that the fluorophore characteristics do not alter with time. But real fluorophores
undergo chemical interactions and/or permanent structural changes. For instance, bleaching is an irre-
versible chemical or structural modification of the fluorophore blocking the fluorescence emission. As a
major consequence, the information yield per fluorophore isultimately bleaching-limited.

As such, bleaching is a rather complicated phenomenon due tothe many possible pathways [33, 34,
35, 36]. Figure 2.4 just outlines one of the major processes,namely the photodecomposition of the
fluorophore at a rate 1/τbl from the triplet stateT1. Bleaching fromT1 is important because (a) the triplet
state is long-lived, that means that energy transfer to collision partners is likely, and because (b) oxygen
is an efficient triplet quencher, thereby becoming a radical. In addition, indirect bleaching fromT1 is
probable if secondary excitations by light toTn occurs because the energy of higher excited states can be
sufficient to photo-dissociate the fluorophore directly.

In general, every excited state can be associated with a bleaching rate accounting for all potential
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bleaching processes initiated from that state. From the first excited statesS1 andT1, bleaching is mainly
attributed to chemical reactions with binding partners as the fluorophore’s excitation energy significantly
lowers the activation barrier. From higher excited statesSn and Tn, bleaching due to broken chemi-
cal bonds can become significant or even dominant. In consequence, the overall survival time of the
fluorophore depends strongly on the excitation intensity. Figure 2.6 sketches the average number of
fluorescence photons per fluorophoreNbl versus the excitation intensityIex. For weak excitation,Nbl
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Figure 2.6: Average number of photon emissions before bleaching Nbl versus excitation intensityIex. Nbl

decreases due toT1 → Tn excitations, which become significant at about the saturation intensity in this
example.

is maximum and does not depend onIex. Introducing a bleaching rateτ−1
bl,ss from statess, the average

bleaching probabilityqbl per cycle is expressed as

qbl = 1−
∏

ss

(

1− qbl,ss
)

= 1−
(

1−
τS1

τbl,S1

) (

1− qisc
τT1

τbl,T1

)

(2.6)

whereqbl,ss = τ
−1
bl,ss · occupation time/cycle is the bleaching probability from statess. The average

fluorescence yield per fluorophore is then simply

Nbl =
qf l

qbl
. (2.7)

At medium excitation, secondary triplet excitationT1→ Tn becomes significant (red↑) andNbl decreases
[37, 38, 39]. Taking into account only triplet transitionsT1 ↔ Tn whereτ−1

ex,T1
= σex,T1 Iex/~ωex is the

mean excitation rateT1→ Tn, the bleaching yield fromTn is given by

qbl,Tn = 1−
(

1−
τTn

τbl,Tn

)qiscτT1/τex,T1

(2.8)

where the exponent is the average number ofT1 → Tn excitations per cycle. For strong excitation, even
secondary singlet excitationsS1 → Sn are possible andNbl is further decreased. Fluorescence measure-
ments are commonly performed at weak to medium excitation conditions. However, strong excitation
is easily encountered with pico- or femtosecond pulsed laser excitation, even if the average excitation
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intensity is lower than for cw excitation. For instance, two-photon excitation can efficiently excite many
fluorophores due to the broad two-photon absorption spectra. But it is known to enhance bleaching by
exciting higher singlet statesSn and/or high vibration levels ofS1.

2.4 Emission close to planar interfaces

The previous section 2.3 described a fluorophore residing inside a homogeneous medium, e.g. far from
any interface. This section describes the interaction of the fluorophore with planar layers and calculates
the emission rateRf l(~r ,Ω, t).

The decay rateΓ of an electronic state defines the overall rate of all de-excitation channels from that
state. In general,Γ contains a radiative decayΓem and a non-radiative decayΓnr and is simply

Γ(~r,Ω) = Γem(~r ,Ω) + Γnr . (2.9)

Γem is associated with electromagnetic radiation in, and interaction with, the environment; whereasΓnr

stands for any non-electromagnetic dissipation, i.e. an intrinsic relaxation. The presence of a layered
structure affects the radiative decayΓem of the fluorophore because it modifies the local density of states
(LDOS). For instance, a high index medium in the near field of the fluorophore increases the LDOS at
the fluorophore position. In consequence,Γem increases, or equivalentlyτS1 is shortened, because more
radiation modes are available. On the other hand,Γnr is assumed to depend only on the fluorophore’s
microenvironment. Therefore,Γnr is not affected by the position and orientation dependent LDOS but
rather by adsorption to a surface.

The dissipated power in a semi-classical picture is given bythe dipole–light interaction. In a quantum-
mechanical description, the dissipated power is analyzed with the transition probabilities and results in
equivalent formulae. In the following, the dissipated power of a point dipole with fixed dipole moment~µ
is calculated for two cases:

a) inside a homogeneous medium, e.g. far from interfaces, and

b) near a planar structured medium, e.g. near planar interfaces.

First, case (a) is calculated as reference for obtaining theradiative enhancement factorγ(~r ,Ω) in case (b).
BecauseΓem = P/~ω, the radiative enhancementγ(~r ,Ω) = Γem(~r ,Ω)/Γem,∞ is reproduced by the ratio
P(~r ,Ω)/P∞, where the subscript∞ indicates the unperturbed case (a). In this context, we should keep in
mind that the dissipated power describes the total power emitted via the dipole field, i.e. photon emission
as well as radiative loss.

In the late seventies, Lukosz calculated the emission of electric and magnetic dipoles near a planar
dielectric interface [40, 41]. In the eighties, Burghardt and Thompson [42] and Hellen and Axelrod [43]
refined the calculation for TIRF microscopy. Recently, Novotny [44] revisited the theory for calculat-
ing the light field of interacting dipolar particles; and Mertz [45] unified the description of a classical
dipole near a dielectric interface with a simple input–output formalism based on the Lorentz reciprocity
theorem. The following description relies on the general ideas given by Ford and Webber [46]. This
description is particularly advantageous because only theelectric field at the dipole position is required
for calculating the dissipated power. Figure 2.7 introduces the coordinate system for the calculation. The
total dissipated power of a point dipole (fluorophore) at position ~r0 is given by

P =
ω

2
Im

(

~µ∗ · ~E(~r0)
)

(2.10)
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Figure 2.7: Dipole~µ located at~r0 above the first interface.n1 is the refraction index of the upper half-
space (z > 0) around the dipole.nm is the refraction index of the lower half-space (z < −d) andni the
refraction indices of the intermediate layers (−d < z< 0).

where~µ is the dipole moment and~E(~r) the electric field radiated by this dipole. The dipole is described
as a current source~j(~r) = −iω~µ δ(~r − ~r0) in medium 1 and the radiated field has to fulfill the Maxwell
equations.

~∇ × ~E(~r) = µ0
∂

∂t
~H(~r) ~∇ × ~H(~r) + ε0ε1

∂

∂t
~E(~r) = ~j(~r) (2.11)

Using time harmonic fields and a plane wave expansion

~E(~r) =
∫

~Ek exp (i~k · ~r) d~k (2.12)

the Maxwell equations (2.11) read as

~k× (~k× ~Ek) + k2
1
~Ek = −ω2µ0~µ δ(~r − ~r0) . (2.13)

Solving for the electric field~Ek propagating along~k yields

~Ek = −µ0 exp (−i~k · ~r0)
ω2

k2
1















~µ +
~k× (~k × ~µ)

k2 − k2
1















. (2.14)

Substituting this expression in (2.12) and splitting the lateral and axial integration, an integral represen-
tation of the radiated field is obtained.

~E(~r) = −µ0
ω2

k2
1

∫

d~kxy exp
(

i~kxy · (~r − ~r0)
)

×
+∞
∫

−∞

dkz















~µ +
~k× (~k× ~µ)

k2
z − k2

1z















exp(ikz(z− z0))

(2.15)
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The kz integral is a contour integral in the complex plane, which can be evaluated using the complex
residues at the first order poleskz = ±k1z. With ~k1 = ~kxy + ~k1z(z− z0)/|z− z0|, the electric field is then

~E(~r) = −2πµ0
ω2

k2
1

∫

d~kxy exp
(

i~kxy · (~r − ~r0)
)

×
{

δ(z− z0)~µz+
i

2k1z

~k1 × (~k1 × ~µ) exp(ik1z|z− z0|)
}

.

(2.16)

The first term does not contribute to the dissipated power because it is real valued. The second term is
imaginary only forkxy < k1, which is the far field radiation domain in medium 1. Now, the dissipated
power is obtained with (2.10) and

~E(~r0) = −iπµ0
ω2

k2
1

∫

kxy<k1

d~kxy

k1z

~k1 × (~k1 × ~µ) (2.17)

Integrating over all directions of~kxy yields

P∞ =
π2µ0ω

3

2k2
1

k1
∫

0

dkxy
kxy

k1z

(

2k2
xy|~µz|2 + (2k2

1 − k2
xy)|~µxy|2

)

, (2.18)

and the dissipated power is finally given by

P∞ =
2
3
π2µ0ω

3k1|~µ|2 . (2.19)

Note Equation (2.16) describes the electric field by the couplingbetween the dipole moment~µ and the
electric field ~Ek, i.e. by a projection of~µ onto ~Ek. The projection is expressed by~k1 × (~k1 × ~µ), which
requires particular attention if Im

(

~k1

)

, 0. This is taken into account using equation (2.20) below.

In the second case (b) where the dipole is near to planar interfaces, the radiation towards the interfaces
is partially reflected and interferes with the direct radiation ~Ed of the dipole as outlined in figure 2.8. The
calculation involves the reflection coefficientsr p,s

1m at the interfacesn1→ nm for p- ands-polarized fields
~Ep,s

k . Therefore, the field in equation (2.16) is separated in thep- ands-polarized components using the
vector identity

−~k1 × (~k1 × ~µ) = (~p · ~µ)~p+ (~s · ~µ)~s (2.20)

where~p = kxy~ez + k1z~exy and~s= k1~ez × ~exy with the unit vectors~exy = ~kxy/kxy and~ez = (0, 0, 1). Hence,
the first term gives thep-polarized component~Ep

k and the second thes-polarized component~Es
k. Using

this in equation (2.16), the field propagating towards the interfaces is

~E↓(~r) =iπµ0
ω2

k2
1

∫

d~kxy

k1z
exp

(

i~kxy · (~r − ~r0) − ik1z(z− z0)
)

{

(~p · ~µ)~p+ (~s · ~µ)~s
}

. (2.21)
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Figure 2.8: Coupling of the dipole moment~µ with the electric fields.Ed represents the direct dipole field,
Er the reflected field andEt the transmitted field.~s is perpendicular to the incidence plane, whereas~p, ~q
and~o are parallel to the incidence plane.

The total field in the region 0< z < z0 is this downward propagating dipole field plus an upward
propagating reflected field. Upon reflection, thep-polarized component becomes proportional to~q =
kxy~ez − k1z~exy. Therefore, the total field in this region is

~E↓↑(~r) = iπµ0
ω2

k2
1

∫

d~kxy

k1z
exp

(

i~kxy · (~r − ~r0) + ik1zz0

)

×
{

(~p · ~µ)
(

exp (−ik1zz)~p+ r p
1m exp (ik1zz)~q

)

+ (~s · ~µ)
(

exp (−ik1zz) + rs
1m exp (ik1zz)

)

~s
}

(2.22)

wherer p,s
1m are the reflection coefficients on the structuren1 to nm for p- ands-polarizations. The power

dissipated by the dipole in the presence of the planar interfaces is obtained by inserting (2.22) in (2.10).
Integrating over all directions of~kxy, the dissipated power for a dipole at position~r is

P(~r,Ω) =
π2µ0ω

3

2k2
1

Re

∞
∫

0

dkxy
kxy

k1z

{

2k2
xy

(

1+ r p
1m exp (2ik1zz)

)

|~µz|2

+
[

k2
1

(

1+ rs
1m exp (2ik1zz)

)

+ |~µxy|2k2
1z

(

1− r p
1m exp (2ik1zz)

)]

|~µxy|2
}

(2.23)

The dissipated power in case (b) can be rewritten asP∞ plus a contribution∆Pz(~r,Ω) from ~µz per-
pendicular to the structure and a contribution∆Pxy(~r ,Ω) from ~µxy parallel to the interfaces. That is
P(~r ,Ω) = P∞ + ∆Pz(~r ,Ω) + ∆Pxy(~r ,Ω) with

∆Pz(~r ,Ω) =
π2µ0ω

3

k2
1

Re

∞
∫

0

dkxy
kxy

k1z
exp (2ik1zz)k

2
xyr

p
1m|~µz|2 and (2.24)

∆Pxy(~r ,Ω) =
π2µ0ω

3

2k2
1

Re

∞
∫

0

dkxy
kxy

k1z
exp (2ik1zz)(k

2
1rs

1m − k2
1zr

p
1m)|~µxy|2 . (2.25)
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Figure 2.9 shows results for a horizontal and a vertical dipole near an air–glass and a water–glass inter-
face, respectively. The dissipated power is significantly enhanced if the dipole-interface distance is less
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Figure 2.9: Enhanced power dissipated by a vertical and a horizontal dipole near an interface.

than aboutλ f l/5. For the horizontal dipole, the power enhancement shows anoscillation caused by the
interferences between the direct and the reflected field in medium 1 (air, water). For the vertical dipole,
the enhancement simply decreases with increasing distance(approximately exponentially). In addition,
the enhancement is significantly stronger for the vertical dipole, which reflects the stronger coupling of
thep-polarized near field in medium 1 to waves propagating at super-critical angles in the denser medium
2 (glass).

Now, the interaction of a fluorophore with planar interfacescan be calculated. Taking into account
that |~µz| = |~µ| cosΘ and |~µxy| = |~µ| sinΘ, the radiative enhancement factorγ(~r ,Ω) is given by 1+
∆Pz(~r,Ω)/P∞ + ∆Pxy(~r ,Ω)/P∞.

γ(~r ,Ω) = 1+
3

4k3
1

Re

∞
∫

0

dkxy
kxy

k1z
exp (2ik1zz)

{

2k2
xyr

p
1m cos2Θ + (k2

1rs
1m − k2

1zr
p
1m) sin2Θ

}

(2.26)

In the limit z→ ∞, the integral vanishes which corresponds to the homogeneous case (a).

As shown in the Jablonski diagram (figure 2.4), the singlet stateS1 decays via three decay channels.
The fluorescence decay is attributed toΓem and the other decay channels are attributed toΓnr, namely
non-radiative decay and intersystem crossing. The fluorescence decay rate is nowγ f l(~r ,Ω)/τ f l , which
reduces the singlet state lifetime to

τ′S1
=

(

γ f l

τ f l
+

1
τnr
+

1
τisc

)−1

=
τS1

γ f l qf l + 1− qf l
. (2.27)

The quantum yield is increased to

q′f l =
τ′S1

τ′f l

=
γ f l qf l

γ f l qf l + 1− qf l
(2.28)
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and the probability of intersystem crossing is decreased to

q′isc =
qisc

γ f l qf l + 1− qf l
. (2.29)

In addition, the triplet decay rate is increased. Assuming the radiative decay (phosphorescence) with
probabilityqph, the triplet state lifetime reduces to

τ′T1
=

τT1

γph qph + 1− qph
. (2.30)

In summary, the vicinity of a planar structure affects the rate of the electromagnetic emissions of the
fluorophore. This influence manifests itself as a modification of the excited state lifetimes as well as the
fluorescence quantum yield. The emission rate, e.g. the rateof the fluorescence transition as given by
equation (2.5), is in the general case given by

Rf l(~r ,Ω, t) = γ f l(~r ,Ω)
qf l

τS1

P′S1
(t) . (2.31)

We should keep in mind thatRf l(~r ,Ω, t) is the radiation rate into different channels. This radiation is
either transmitted to the far field in medium 1 orm, coupled to a wave-guide mode or surface plasmon,
or absorbed in the structure. For instance, if the fluorophore approaches a metal, its emission rate will
significantly increase as well asq′f l does. But this increased emission is counter-balanced by anincreased
energy dissipation, i.e. due to electron-hole excitationsin the metal. For a fluorophore–metal distance
. 20nm, the energy loss becomes so dominant that the observable fluorescence intensity is effectively
lower than that far from the metal (c.f. also [47, 48]).

2.5 Emitted dipole field

In this section, the far field emission is calculated in view of describing the collection efficiency by
the microscope objective. For this purpose, the radiated far field is described as a plane wave spectrum
according to equation (2.12). Analogous to (2.16), (2.21) and (2.22), in medium 1 it is given by the dipole
field superimposed by the reflected field, both propagating towards the collection optics.

~E�k = iπµ0
ω2

k2
1

exp (−i~k1 · ~r0)
k1z

×
{(

~q · ~µ + (~p · ~µ)r p
1m exp (2ik1zz0)

)

~q+ (~s · ~µ)
(

1+ rs
1m exp (2ik1zz0)

)

~s
}

(2.32)

The far field spectrum in mediumm is given by the transmitted downward propagating field. The trans-
mission coefficients through the structure are given byt1m = tm1k1z/kmz and the field spectrum is

~E�k = iπµ0
ω2

k2
1

exp (−i~k1 · ~r0)
kmz

(

(~p · ~µ)tp
m1~o+ (~s · ~µ)ts

m1~s
)

exp (−ikmzd) (2.33)

whered is the total thickness of all layers and~o = kxy~ez + kmz~exy.

Figure 2.10 shows the far field spectrum emitted by a horizontal dipole along thex-axis. In case (a),
i.e. no interface, the dipole radiates homogeneously around its axis (thin lines outline thexzandyzcross-
sections). In case (b), i.e. on a glass–water interface, thedipole radiates mainly into two lobes in the
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Figure 2.10: Radiated angular power density∝ |~Ek|2 for a horizontal dipole along thex-axis (arrow). The
dipole is located at the glass–water interface.

yz-plane (thick lines). The maximum radiation indicates the critical angle for total internal reflection at
the interface. The total radiated power increases by less than 10%, but more than 69% of the radiation is
directed into the glass. Compared with case (a), the radiated power is substantially increased in the glass
whereas it is decreased by about 33% in the water.

The emitted field~E f l(~r ,Ω) can be calculated from these far field spectra of a dipole at position~r with
orientationΩ. This representation as a~k spectrum of thep- and s-polarized components is required
anyhow for calculating the propagation to the pinhole in section 2.6. We would like to emphasize that it
is important to consider the fluorophore as afixed powerdipole, whose power is imposed by the current
emission rate. Therefore, we could requirePf l(~r,Ω) = Rf l(~r ,Ω, t)~ω for normalizing the dipole moment
|~µ(~r ,Ω)| right here. Instead, we include this normalization in the detection efficiency when dividing the
detected power byPf l(~r ,Ω) for obtaining the detection efficiencyQf l(~r,Ω).

2.6 Detection efficiency

The detection efficiency can be considered as the complementary part of the excitation field. In the
following, it is defined by the probability of receiving a photon in the detection aperture (pinhole) if
this photon was emitted at position~r by a fluorophore with dipole orientationΩ. Figure 2.11 summa-
rizes the calculation of the detection efficiencyQf l(~r ,Ω), which is accomplished by calculating the ratio
qdT f lPp(~r ,Ω)/Pf l(~r ,Ω) with Pp the power transmitted through the pinhole.qd is the quantum yield of
the detector andT f l the transmission efficiency of the filter set, both at the fluorescence wavelengthλ f l .

Pp(~r ,Ω) is obtained by integrating the intensity falling on the pinhole. This requires calculating the
electromagnetic field in the pinhole planeP. Using the superscriptsp and s for the p- and s-polarized
components, the calculation of the field in the pinhole can besubdivided into three steps:

Step 1 The fluorescence emission is collected by the high NA objective.

The emitted field~Ek in the direction of the wavevector~k is calculated based on equations (2.32)
or (2.33). The field~Eo collected by the objective is essentially~Ek, but the phase is referenced to the
object focusFo. Reversing the calculation of the excitation field in [3] (annexed) leads to the field~Ea
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Figure 2.11: Calculation of the electromagnetic field in thepinhole planeP.

in the objective apertureA (the reciprocity in optics was recently reviewed by Potton [49]). Considering
mediumnm as the immersion medium allows us to identifynt = nm andkt = km. Recall thatf andR
are the focal length and the aperture radius of the objectivewith numerical aperture NA. Then, equations
(1,8) in [3] read as

x, y =
R

k0NA
kx,y and d~kxy =

(

k0NA
R

)2

dxdy . (2.34)

The electric field arriving at the apertureA is then

Ep,s
a (x, y) =

k0NA
R

tp,s
ta Ep,s

o (kx, ky) (2.35)

The transmission coefficientstat given by equations (21,22) in [3] were calculated from the apertureA to
the immersion. For the reverse direction, they are given bytta = nttat (A is in air).

Figure 2.12a shows the electric field|~Ea| in the apertureA of a 1.45 NA oil immersion objective
observing a dipole in the focus at the coverslip–sample interface. For ax-oriented dipole (left), the
field is relatively homogeneous at sub-critical angles (NA< 1.33). At super-critical angles, it exhibits a
significant increase in particular perpendicular to the dipole axis, e.g. along they-axis. Along thex-axis,
the field vanishes right at the critical angle. The vertical dipole (right) emits a rotationally symmetric
field (p-polarized), which is particularly strong at super-critical angles.

Step 2 The fluorescence emission is propagated to the tube lens.

Because the field distribution inA can be described as paraxial and the propagation distancezp − za &

120mm, the Fresnel approximation for this free space propagation can be applied. In general, the Fresnel
approximation is valid for

(zp − za)3 � π

4λ
max

(

(xa − xp)2 + (ya − yp)2
)2
. (2.36)

This is a sufficient condition, which would demand a propagation distancezp−za & 500mm. However, if
the main contribution of the field~Et at point (xp, yp, zp) comes from points (xa, ya, za) close to (xa, ya, zp),
the Fresnel approximation is also valid for smaller propagation distances. This is achieved with the
pseudo-paraxial Fresnel transformation for removing the wave front tilt [50] and an equivalent transform
[51, 52] for reducing the wave front curvature.
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(a) Electric field| ~Ea| in the apertureA. (b) Electric field| ~Ep| at the pinholeP.

Figure 2.12: Electric fields in the aperture of a 1.45 NA oil immersion objective (a) and at the pinhole
(b) for a dipole at the coverslip–sample interface. The circle in (b) indicates the�50µm pinhole. The left
half-pictures show the field of the horizontal dipole. The field of the vertical dipole is shown in the right
half-pictures.

Step 3 The fluorescence emission is focused onto the pinhole.

The field ~Ep near the focusFi in the pinhole plane is calculated with the Debye diffraction integral
following the method by Leutenegger et al. [3]. If the focusing angles are small, the Fraunhofer approx-
imation may be used.

Figure 2.12b shows the electric field|~Ep| at the pinholeP. The image of the horizontal dipole resembles
a deformed Airy pattern, whereas the field of the vertical dipole is strongest in a ring around the axis.

Figure 2.13: Detection efficiency of a 1.45 NA oil immersion objective focused on the cover glass–water
interface. The iso-surfaces showQf l(~r) = e−1...−4Qf l(0) in the sample.

Figure 2.13 shows the average detection efficiency for a 1.45 NA oil immersion objective observing
randomly oriented fluorophores emitting at a wavelengthλ f l = 525nm near the glass–sample interface.
The projected pinhole diameter is 0.5µm on the interface, which results in a hemi ellipsoidal detection
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volume of 0.7µm base diameter and 0.5µm axial extension. AssumingqdT f l = 1, the peak detection
efficiency at the focus is about 27%, which is about 4–5× better than with a 1.20 NA water immersion
objective collecting fluorescence emitted into the sample half-space (i.e. used by Lieto et al. [28]).

2.7 Fluorescence signal

In fluorescence fluctuation spectroscopy, the detected fluorescence signal is given as

I (t) =
"

Qf l(~r ,Ω)c(~r ,Ω, t)Rf l(~r ,Ω, t) dΩ d~r (2.37)

wherec(~r ,Ω, t) is the sample concentration and orientation density givenby the concentrationc(~r , t) at
position~r times the probabilityP(Ω, t) of occupying the orientationΩ. I (t) is the count rate of photon
detections, which is equivalent to the number of detection events within a short time interval∆t in the
photon traceU(t) as shown in figure 2.1.

The observed count rate summarizes the spatio-temporal distribution and orientation of fluorophores,
their emission rate and the detection efficiency. I (t) forms the basis of every FFS experiment and the
subsequent analysis principally evaluates its temporal evolution and/or its distribution. However, an ana-
lysis based on equation (2.37) is rather complex and cumbersome, in particular if the time-dependency
needs to be taken into account as with FCS for instance. Fortunately, a number of simplifications apply
for the majority of measurement cases. For instance, if the translational diffusion is much slower than
the rotational diffusion and the lifetimeτS1 of the excited state much longer than the mean rotation time
τr , the orientation dependency as a whole can be evaluated a priori. The excitation rate is then given by
equation (2.3) and (2.4) averaged over all orientationsΩ.

τ−1
ex(~r , t) =

π
∫

0

dΘ

+π
∫

−π

P(Ω(Θ, ϕ), t) τ−1
ex(~r,Ω(Θ, ϕ), t) dϕ (2.38)

Further assuming a homogeneous angular distributionP(Ω, t) = 1/4π, the excitation rate is given by

τ−1
ex(~r , t) =

1
3

(

τ−1
ex(~r ,Ωz, t) + τ

−1
ex(~r ,Ωx, t) + τ

−1
ex(~r ,Ωy, t)

)

(2.39)

where the terms are the excitation rates forz-, x- andy-oriented fluorophores. Of course, this is exactly
the isotropic excitation rate described by equation (2.1).Because ofτS1 � τr , the emission anisotropy
is not correlated with the excitation anisotropy and the emission rateRf l(~r, t) can be calculated with
equations (2.27) to (2.31) using the average enhancement factorsγ f l(~r) andγph(~r), where

γ f l,ph(~r) =
1
3

(

γ f l,ph(~r ,Ωz) + γ f l,ph(~r ,Ωx) + γ f l,ph(~r,Ωy)
)

. (2.40)

Similarly, the average detection efficiency at~r is obtained by

Qf l(~r) =
1
3

(

Qf l(~r ,Ωz) + Qf l(~r ,Ωx) + Qf l(~r ,Ωy)
)

. (2.41)

Therefore, equation (2.37) simplifies to the common isotropic expression

I (t) =
∫

Qf l(~r)c(~r , t)Rf l(~r , t) dV . (2.42)



2.7. Fluorescence signal 31

This isotropic description also applies for measuring a large number of randomly oriented fluorophores,
such that the anisotropic fluorescence response is averagedout.

Note that the time-averaged responseQf l(~r)Rf l(~r) is the brightness profileB(~r), that is the detected
count rate from a fluorophore at position~r. Neglecting fluorescence saturation, the brightness profile is
commonly approximated byB(~r) ≈ σexqf lQf l(~r)Iex(~r)/~ωex and represents the point spread function
(PSF) of the measurement system, also called molecule detection efficiency (MDE). Calculation exam-
ples are given in the following chapter.



Chapter 3

Experiments

3.1 Near field excitation on structured surfaces

Scanning near field optical microscope (SNOM) is a well-known near field imaging technique. SNOM
probes are typically metal-coated conical glass fibers ending with or without an aperture at the fiber
apex. Apertureless probes are sensing through plasmonic interaction between the sample and the fiber
core. They are typically used as near field sensors, whose resolution beyond the diffraction limit is due to
the sharp metal tip at the apex (in the order of 50nm to 100nm).On the other hand, SNOM probes with
a nano-aperture have a relatively flat uncoated apex, which exposes the fiber end directly within the near
field of the interrogated sample. The light transmission is sufficiently high for applying these probes as
efficient near field light sensors.

Motivated by the search for ever smaller sampling volumes (compare figure 1.1), near field illumi-
nation concepts were recently adopted for FFS as the NA of conventional optics cannot be increased
substantially beyond 1.45 with glass substrates or 1.65 with sapphire substrates. For instance, Levene et
al. [25] were among the first using near field excitation for FCS by exploiting the confinement of the
sampling volume inside a sub-wavelength sized aperture through a supported metal film. The aperture
diameter was about an order of magnitude smaller than the wavelength. Epi-illumination of such an aper-
ture creates a strongly evanescent field inside the aperture, hence a very confined excitation volume at
the entry. In addition, fluorescence detection is efficient at the very bottom of the aperture and in partic-
ular at the aperture edge. The sampling volume was showed to be� 1al allowing micromolar sample
concentrations.

Using FCS, we characterized the light confinement obtained with nano-structured surfaces (c.f. Leu-
tenegger et al. [7] in the annex). Adopting the principle of an aperture SNOM probe, we calculated the
light transmission through a metallic aperture as well as the light distribution at its exit. Figure 3.1 shows
the light distribution through the back-illuminated aperture. The excitation wavelengthλex was 633nm
and the laser beam was focused with an effective NA of about 0.6. Figure 3.1a sketches the electric field
through the aperture (� = 150nm, 150nm thick gold layer on glass substrate). The incident field isx-
polarized and propagates through the aperture mainly via surface plasmons on the aperture wall at the left
and right. These surface plasmons are efficiently excited because the local polarization is perpendicular
to the aperture wall (gold–water interface). At the aperture exit (z= 150nm), the field is strongest within
two crescent-shaped volumes near the aperture rim as shown in figure 3.1b. The plasmonic fine structure
extends up to about 50nm above the aperture. It is then enclosed by an ellipsoid-like volume withx-, y-
andz-half-axes of about 140nm, 100nm and 80nm, respectively.

Figure 3.2 shows a first array of nano-apertures in a 150nm thick gold film. In this array, the apertures
had a diameter of 420nm and were aligned on a square grid with 2.5µm lattice. This figure exemplifies
irregularities of the aperture rims of±20nm. Improved fabrication procedures led to irregularities of less
than±10nm. The following measurements were performed on these improved arrays.

FCS measurements were performed using an aqueous Cy5 solution of 12nM or 30nM fluorophore
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(a) Sketch of the electric field in thexz-cross-section
through the aperture.

(b) Calculated excitation intensity profile above
the aperture.

Figure 3.1: Light distribution inside and above a nano-aperture in a gold film.

Figure 3.2: Array of�420nm apertures in a 150nm thick gold film.

concentration. This sample was filled in a 90µm gap between the structured gold layer and a glass cov-
erslip. The induced fluorescence was collected through the coverslip with a 1.20 NA water immersion
objective (C-Apochromat 40× 1.20w, Carl Zeiss) and imaged on a multimode fiber with 38µm, 50µm or
100µm core diameter. A single photon counting module (SPCM-AQR-14-FC, PerkinElmer) detected the
photon sequence. This photon trace was then correlated witha hardware correlator (Flex99OEM-12C,
Correlator.com) and the correlation curveG(τ) was analyzed using a non-linear least squares fit on the
model curve.

For FCS, the normalized auto-correlationG(τ) of the photon traceI (t) given by

G(τ) =
〈I (t)I (t + τ)〉
〈I (t)〉 〈I (t + τ)〉

= (T − τ)

T−τ
∫

0

I (t)I (t + τ) dt

T−τ
∫

0

I (t) dt
T
∫

τ

I (t) dt

(3.1)

is compared against a model curve calculated with the brightness profileB(~r) and the diffusion properties
of the sample. For a standard three-dimensional GaussianB(~r) and unconstrained diffusion, an analytical
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model curve can be derived [5, 20, 53, 54, 55].
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(3.2)

whereG∞ ≈ 1 is the correlation amplitude in the long lag time limitτ → ∞, N is the average number
of molecules in the sampling volume,τd is the lateral diffusion time,K is the ratio of axial over lateral
extension of the sampling volume,Pt is the triplet state population andτt is the correlation time of this
triplet state population.IB is the background count rate and〈I〉 is the mean count rate (fluorescence
intensity and background).γ was assumed to be 1/2 because of the half-ellipsoid excitation volume [8].
It is evident that the effective brightness profile is not 3D Gaussian and the diffusion is at least partially
constrained near the aperture. Despite of the crude approximations, this simple model equation provided
reasonable fits as figure 3.3 shows. In free liquid and for the 490nm aperture, equation (3.2) fits well with

0.1us 1.0us 10us 0.1ms 1.0ms 10ms 0.1s
1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

1.16

0.1us 1.0us 10us 0.1ms 1.0ms 10ms 0.1s
−20

−15

−10

−5

0

5

10

15

20

τ

τ

G
(τ

) r(
τ)

[1
0−

3 ]

Figure 3.3: Auto-correlations and fitsG(τ) versus lag timeτ for aperture diameters of 125nm (blue
circles), 490nm (red points) and for free liquid (black dotted) measured with a Cy5 concentration of
30nM. Inset: Fit residualsr(τ) = G f it/G(τ) − 1.

Reprinted from Leutenegger et al. [7] with permission by Optics Express.

low residuals. Deviations were mainly observed for� . 200nm because the volume inside the aperture
becomes comparable to the volume above the aperture. For the125nm aperture for instance, the fit shows
significant residuals and even a bias at large lag times. Nevertheless, the extracted diffusion timeτd is a
good approximation because it accounts only for the diffusion in thexy-plane. In addition, the number
of moleculesN depends mainly on the correlation amplitudeG(0) and the triplet probability and is only
slightly affected by the choice of the diffusion model.

It is worth noting that the trans–cis isomerization processof the Cy5 molecule was fitted with the
triplet state parameters.1 Widengren and Schwille [54] studied this process with FCS and found the
triplet state population neglectable for excitation intensities. 30kW/cm2, which is also the case here.
The isomerization process dominated the shape of the correlation curve forτ . 10µs, resulting in an
apparent triplet state population of≈ 40%.

1 The isomerization as well as the triplet formation are both described by the same model curve, which easily confuses the
attribution of a feature in the measured correlation curve to a particular molecular process.
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Figure 3.4: Diffusion time assuming a three-dimensional Gaussian PSF.

Figure 3.4 shows the lateral diffusion timeτd measured on apertures with various diameters. The
diffusion time was expected to scale with the aperture area, thatis τd ∝ �

2, up to an upper bound
of ≈ 250µs, which is set by the diameter of the focal spot (≈ 700nm). A nearly linear increase was
observed for aperture diameters from 125nm to 520nm. Calculations of the excitation volumes showed
that the sampling volumeV should scale with at leastτ3/2d because the axial extension of the volume
decreases faster than

√
�. This leads to a sampling volume of≈ 30al above 150nm apertures, this is a

16× confinement of the sampling volume compared to the unconstrained confocal sampling volume.

We measured further the average numberN of fluorophores in the sampling volume for a Cy5 concen-
tration of 12nM and 30nM. Even thoughN is a direct measure ofV, the measured values scattered in a
much broader range due to two major reasons:

1. N is more sensitive to variations in the excitation field profile thanτd. In fact, without knowledge
of the excitation rate and the detection efficiency in the entire sampling volume,N cannot be nor-
malized accurately. The excitation rate was expected to be linearly proportional to the calculated
excitation intensity, which was far from the saturation level of the fluorophore. A full theoretical
calculation would take account of the detection efficiency and the fluorescence process as well.

2. N is affected by the signal to background ratio (SBR) whereasτd is not. Unfortunately, the gold
layer added a significant background because of electron-hole pair formation and luminescent re-
combination. In addition, fabrication irregularities ledto randomly distributed gold nano-particles
inside the apertures and on the rims. This gold ”dust” was particularly luminescent, such that the
background rate varied easily an order of magnitude betweenthe different apertures.

Despite these issues,N showed a 6× better confined sampling volume than without the aperture. In sum-
mary, back-illumination of apertures with sub-wavelengthdiameter results in a confined near field above
the aperture. This near field excitation is suitable for FFS but suffers from background luminescence
depending upon the choice of the excitation wavelength and the metal. Trans-illumination provides an
improved sample mobility compared to an epi-illumination scheme, where the diffusion of the sample is
much more affected due to the vicinity of surfaces all around the molecules.

The background issue can be better mastered with silver and in particular with aluminum films (Rigneault
et al. [30]). However, these metals are not inert when in contact with water, that is corrosion may become
a limiting factor. Ultimately, the aperture could be sealedwith a dielectric, i.e. filled with glass, which
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would completely suppress sample diffusion inside the aperture. Such a sealing would further increase
the intensity transmitted through the aperture and would provide a tool for observing the activity of
immobilized enzymes for instance.

3.2 Dual-color total internal reflection fluorescence fluctuation spectroscopy

As outlined above, near field excitation with nanoholes provides confined, individually addressable ex-
citation volumes suitable for FFS. These small volumes wellbelow the far field diffraction limit are a
matter of choice for investigating samples at micromolar biomolecule concentrations. However, the fab-
rication and handling needs more improvements before becoming a versatile platform for biological ex-
periments. Nevertheless, the demand for smaller sampling volumes motivated by applications demanding
higher concentration persists. Therefore, we investigated a different approach for achieving small sam-
pling volumes with comparably simple sample preparation. Motivated by promising experiments with a
novel total internal reflection FCS setup by Hassler et al. [22], a next generation TIR-FCS instrument for
dual-color investigations was developed and characterized (c.f. Leutenegger et al. [4] in the annex).
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Figure 3.5: Current dual-color TIR-FFS and imaging platform.

Figure 3.5 outlines the current state of this next generation instrument. It is now the platform for
dual-color FFS measurements in the evanescent field createdby TIR at the coverslip–sample interface.
It provides TIR fluorescence microscopy and dual-color confocal FFS measurements as well. Two ps
diode lasers (Sepia II PDL 828 system with LDH-D-C-470 and LDH-D-C-635B laser heads, PicoQuant)
provide linearly polarized beams with 635nm and 467nm center wavelengths, respectively. The laser
powers are controlled by neutral density filters in additionto the control setting of the laser driver. The
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beams are passed through polarization maintaining fibers for cleaning up the lateral beam profile. After
collimation to ane−2 diameter of. 2mm (TIRF) or≈ 10mm (confocal), they are aligned coaxially to
the microscope objective using two beam steerers. Laser-line clean-up filters (z467/20x and z635/20x,
Chroma) ensure well-defined excitation spectra. A dichroicmirror (z488bcm, Chroma) combines the
beams and an achromatic lens (f = 130mm) focuses them into the back-focal plane (BFP) of the high
NA oil immersion objective (α-Plan-Fluar 100× 1.45, Carl Zeiss), which results in circular areas with
e−2 diameters of≈ 16µm (blue) and≈ 20µm (red) at the coverslip–sample interface. In the BFP, a lateral
offset of the beam foci of≈ 2.3mm results in a super-critical angle illumination, i.e. inan evanescent field
excitation as outlined in figure 3.6. The sample is mounted ona 150µm thick glass coverslip, which is

Figure 3.6: Excitation field created with a p-polarized plane wave incident at a super-critical angle. The
incident wave is reflected back into the glass. The black lineoutlines the glass–water interface. In the
water above the interface, an evanescent rotating field is induced.

positioned with axyz-translation stage (ULTRAlign 561D withµDrive Controller ESA-C, Newport). In
this epi-illumination setup, the fluorescent light is collected with the same high NA objective and focused
directly onto the active areas of�50µm of the single photon detectors (PDM 50ct, MPD). A dichroic
mirror (DML625, Omega) splits the green and red fluorescencelight, whereas the combination of the
main dichroic mirror (z470/635rpc, Chroma) and band-pass filters (Chroma HQ540/80m and Omega
520DF40; Chroma HQ690/80m and Omega 685DF70) block the back-reflected laser light by more than
10 orders of magnitude. The fluorescence signals are recorded with a PicoHarp 300 system (PicoQuant)
and simultaneously correlated with a hardware correlator (Flex02-08D, Correlator.com). For TIRF imag-
ing, a flip mirror redirects the fluorescence light on a sensitive electron-multiplying CCD camera (Luca
DL-658M-TIL, Andor).

The focusing lens and the main dichroic mirror are laterallymoveable for positioning the beam foci
off-axis in the BFP of the objective. This allows an independentadjustment of the excitation angle while
keeping the beams focused on the BFP of the objective. A confocal configuration is achieved by remov-
ing the focusing lens and by centering the collimated beams in the BFP. Due to the chromatic length
aberration of the TIRF objective, a common pinhole cannot beinserted.2 Therefore, the confocal con-
figuration as well as excitation-independent detection paths is required for aligning the single photon
detectors mutually.

A first concept of this next generation instrument was equipped with two cw lasers (c.f. Leuteneg-

2 The vendor specifies a chromatic focus drift of 650nm fromλ = 540nm to 690nm, which is magnified to 6.5mm in the
pinhole plane.
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ger et al. [4] in the annex). It was tested for single moleculecoincidence analysis. A synthetic binding
assay of three fluorescent samples was used for this first performance check. Dilute solutions of free
Cy5 and Rhodamine Green (RhG) were used as singly labeled reference samples. A mixture of these
two solutions formed then the non-binding two-color reference. A 40 base pair double-stranded DNA
labeled with AlexaFluor488 and Cy5 (Carl Zeiss cross-correlation standard) served as binding two-color
reference. A NaCl/EDTA/TRIS pH 8.0 buffer prevented denaturation of the DNA sample upon dilution
of all samples to about 10nM concentration. The binding reference was then mixed in parts with the non-
binding reference. These mixtures were measured and analyzed with two-color global FCS (2CG-FCS,
Eggeling et al. [10]) and two-dimensional fluorescence intensity distribution analysis (2D-FIDA, Kask et
al. [56]). The FCS analysis was based on the model equation for TIR-FCS recently derived by Hassler et
al. [8, 22] and model equations for cross-correlation analysis [57, 10]. The 2D-FIDA analysis was based
on the standard confocal analysis with parameters adapted to match the evanescent brightness profile.
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Figure 3.7: Auto- and cross-correlations and fits on the model curves. Circles: green autocorrelation.
Bold points: red autocorrelation. Dots: green-red cross-correlation. Inset: fit residualsG f it/G(τ) − 1.

Reprinted from Leutenegger et al. [4] with permission by Journal of Biomedical Optics.

Figure 3.7 shows auto- and cross-correlation curves for (a)the non-binding reference and (b) the
binding reference, respectively, both measured during 20s. Because the total count rates were only about
50kHz to 100kHz in each channel, the signal to noise ratio (SNR) was low in particular at short lag
timesτ . 5µs. The fit residuals clearly show the resulting scattering ofthe measured correlation curves.
However, this low SNR mainly affected the estimation of the triplet parameters, which were not critical
for obtaining the fraction of bound molecules accurately.

For free diffusion, the following model equation was used

Gmn(τ) = Gmn∞ + γmn

(

1− Bm

Im

) (

1− Bn

In

) ∑

QmiQniNiDmni(τ)
∑

QmiNi ·
∑

QniNi
+Gmntexp

(

− τ
τmnt

)

. (3.3)

Here, indicesm andn represent the green and red detection channels; henceGgg andGrr are the auto-
correlations of the signals in the green and red detection channels, respectively, andGgr the cross-
correlation of both signals. The indexi represents the diffusing species:g for RhG, r for Cy5 andc
for the dsDNA.B is the measured background count rate andI the total count rate.Qmi is the count rate
per molecule (CPM) in channelm of speciesi. Ni are the number of molecules in the effective sampling
volume.Gmnt andτmnt are the triplet amplitudes and the triplet correlation times respectively.
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The first termGmn∞ ≈ 1 is the offset at infinite lag timeτ. The shape factorγmn of the observation
volume was assumed to be 1/2 for all correlations channels. It turned out later that it should be rather 1/4
as calculated below. However, the following relative concentration measurements were not affected by
this change in the shape factors. The next two terms correct the correlation amplitudes for the signal to
background ratio (SBR) in each detection channel. The fraction normalizes the correlated intensity fluc-
tuation with the product of the background-free fluorescence signals in the detection channels.Dmni(τ)
describes the diffusion and is given by (c.f. Hassler et al. [8])

Dmni(τ) =

(

1+
τ

τixy

)−1 {√

τ

πτiz
+

(

1−
τ

2τiz

)

erfcx

(√

τ

4τiz

)}

(3.4)

whereτiz andτixy are the axial and lateral diffusion times of speciesi, respectively. The scaled comple-
mentary error function is given by erfcx (x) = exp (x2) erfc (x). Finally, the last term accounts for the
triplet blinking at short lag times.

In order to minimize the number of parameters, a perfect overlap of the sampling volumes was as-
sumed, e.g. the diffusion times were assumed to be independent of the auto- and cross-correlations. The
brightness of free fluorophores was assumed to be equal to thebrightness of the fluorophores linked to
the dsDNA. Moreover, the triplet blinking of all fluorophores were fit together for each correlation chan-
nel. A multidimensional least-squares Gauss-Newton algorithm was used to fit the experimental data to
these model equations.
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(a) Two-color global FCS analysis.
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(b) Two-dimensional FIDA analysis.

Figure 3.8: Coincidence analysis of a dual-color DNA sample(cross-correlation standard). The legends
indicate the measurement timesT and the statistical significanceZ′ of the coincidence analysis. A sig-
nificanceZ′ > 0.5 is considered sufficient for high-throughput screening.

Reprinted from Leutenegger et al. [4] with permission by Journal of Biomedical Optics.

Figure 3.8 shows the measured fraction of bound sample versus the mixed fraction. The measured
fraction of dsDNA scaled linearly with the mixed fraction from 1% (non-binding reference) to 25%
(binding reference). The lower measured fraction was attributed to an excess of molecules with a single
green label and to non-ideal overlap of the sampling volumes. Photo-bleaching of the red label during
the two-color excitation possibly further enhanced the excess of green labels (Eggeling et al. [58]). To
reduce its influence, the excitation intensities were lowered to. 10µW/µm2 such that the concentration
of Cy5 was no longer diminished during the measurement. The overlap of the sampling volumes was
estimated to about 60%.
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As figure 3.8 shows, the accuracy of the FCS analysis benefitedfrom increased measurement times
whereas FIDA did not. For measurement timesT < 10s per run, the FCS analysis did not track mixed
fractions> 50% but saturated at a value of about 13%. However, the statistical significance is still suffi-
cient even forT = 5s due to the lower variance compared with FIDA. In addition,2CG-FCS provided a
net improvement over 2D-FIDA forT > 10s because FCS accounts not only for the intensity distribution
but also for the different diffusion properties of the biomolecules.

Figure 3.9: Brightness profileB(~r) for TIR-FFS withλex = 470nm,λ f l = 525nm and a projected pinhole
of �500nm. The sampling volume has a diameter of 700nm and penetrates 120nm into the sample. Note
that thez-axis is magnified twice.

Figure 3.9 shows the brightness profileB(~r) obtained with a 1.45 NA oil immersion objective when
observing RhG near to the coverslip–sample interface.B(~r) was calculated with the detection efficiency
Qf l(~r) shown in section 2.6 and the excitation intensity isIex(~r) = Iexexp (2ikzz). The excitation source
was focused at the edge of the aperture corresponding to NAex = 1.42, which resulted in a super-critical

excitation angle and an evanescent field withkz = 2π
√

n2
s − NA2

ex/λex and the excitation wavelength is
λex = 470nm. According to equations (4–6) by Wohland et al. [55], the sampling volume isV = 17al and
the effective sampling volume isVe f f = 68al, e.g. the shape factorγ = 1/3.95 is close to the theoretical
value of 1/4. For an excitation wavelengthλex = 635nm and a fluorescence wavelength ofλ f l = 670nm,
the corresponding values areV = 24al,Ve f f = 103al andγ = 1/4.27.

The correlation amplitudes shown in figure 3.7 indicate a background correctedVe f f of 870al in the
green channel and 170al in the red channel. The sampling volume for the red channel is in good agree-
ment with the calculation. The slight discrepancy is presumably due to a lower excitation angle (i.e.
1.38–1.40 NA).3 In contrast, the measuredVe f f in the green channel is 12 times larger than expected.
Interestingly, the diffusion time of RhG was increased by only 15% compared to Cy5, which suggests
a sampling volume of at most 200al. The large discrepancy is probably due to an increased RhG con-
centration near to the coverslip surface. In contrast to Cy5, transient sticking of RhG was observed even
with oxygen plasma cleaned coverslips. In combination witha low sample concentration and negligible
photo-bleaching, transiently bound RhG can considerably increase the average number of fluorophores
in the sample volume. If the fluorophores are immobilized forseconds or longer, their emission increases
the background count rate without leaving a significant trace in the correlation curve. Assuming this
worst case, the background would need to be only 3× stronger, which could be caused just by a single
immobilized molecule.4

3 This is partially due to the chromatic aberration of the microscope objective, which becomes evident when setting the ex-
citation angle close to the critical angle, where the blue beam was already evanescent whilst the red beam was still propagating.

4 Here, the fluorescence emission at the surface is taken twicethe average emission in the effective sampling volume. These
values correspond with binding experiments by Hassler et al. [8], see next footnote.
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We conclude this section with an estimation of the achievable count rate in TIR-FFS. EstimatingT f l

as product of 90% transmission through the dichroic mirror and 85% transmission through the emission
filters and blocking 60% of the fluorescence emission (i.e. near IR emission), the filter set transmits only
T f l ≈ 30% of the fluorescence emission. The detection efficiencyqd is specified to be 55% in the green
range. Overall the peak detection efficiency is estimated at about 4.5%, which would lead to a peak count
rate of about 4MHz when saturating RhG (c.f. figure 2.5) and assuming a quantum yieldqf l = 50% only
(> 94% in methanol). However, when measuring Rhodamine derivates, the count rate never exceeded
2MHz, which suggests a quantum yield of 25% or less in water solution!5 With a quantum yield close to
100%, a single fluorophore could drive the detectors into saturation.

In summary, the novel dual-color TIR-FFS instrument provides an excellent platform for binding
studies and enzyme measurements. We characterized the performance for dual-color binding studies with
a synthetic binding assay. The measurements are in good agreement with theoretical predictions outlined
in the previous chapter. Major deviations were assigned to chromatic aberrations of the objective and
immobilization of RhG, respectively.

The current implementation is able to measure the fluorescence lifetime simultaneously with the cor-
relation curves. Within a few minutes, it can be modified for single or dual-color TIRF microscopy and
dual-color or polarization sensitive TIR-FFS or confocal FFS. The sampling volume achieved with TIR-
FCS is about 2.5× larger than with the nanoholes. But the simple, cost- and time-efficient sample han-
dling is a major advantage of this TIR-FFS instrument. The background and photo-bleaching issues are
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Figure 3.10: Pulsed interleaved excitation and time-resolved detection. The blue and red laser pulses
are interleaved to avoid simultaneous exposure of the sample. In addition, corresponding detection win-
dows select photon events within specific delays, such that the fluorescence signal is maximized whereas
background events and detector noise are minimized.

now better mastered with pulsed interleaved excitation (PIE, c.f. Muller et al. [59]) and time-correlated
single photon counting (TCSPC, c.f. Erdmann et al. [60]) shown in figure 3.10. TCSPC allows to mask
Raman scattered light and ”ps-delay” luminescence as well as detector noise by using a well-defined
detection window, which allows optimizing the signal to noise ratio (SNR). PIE avoids exposing the
fluorophores to several wavelengths simultaneously, whichis in particular favorable for reducing photo-
bleaching of red fluorophores. Despite of PIE, combined dual-color detection with a single detector is
no option because of the chromatic length aberration of the objective. Unfortunately, the beam shaping
with polarization maintaining single mode fibers introduced a significant astigmatism in the output beam.

5 See Hassler et al. [8]. The count rate per molecule was at maximum 1.8MHz including a shape factor of 3.4 due to
the sampling volume. But transiently bound Rhodamine molecules were observed with a count rate of 500kHz to 800kHz.
Additional confocal measurements confirmed an upper limit between 500kHz and 600kHz of the average count rate.
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This issue was diminished by coupling the beam through an index-matched oil–coverslip arrangement
at the fiber output. However, some astigmatism is still present, which deteriors the confocal sampling
volume in particular. Fortunately, TIR-FFS is less affected because the excitation volume is defined by
the incidence angle alone. Though, the maximum excitation angle was slightly lowered because of the
larger beam through the objective.

3.3 Imaging of G protein-coupled receptors in solid-supported planar lipid
membranes

Membrane proteins are important in medicine and life science and play a fundamental role in cell sig-
naling and trans-membrane transport. However, membrane proteins such as G protein-coupled receptors
(GPCRs) require a lipid bilayer membrane for a correct folding, i.e. a vectorial incorporation for full
receptor functioning is mandatory. The common approach of synthesis in a living cell followed by iso-
lation and reincorporation into a model system is complicated, if not impossible, because the functional
structure of the protein is likely to be disordered, incomplete or even destroyed. GPCRs are particularly
difficult to isolate as a functioning protein, as improper folding already affects their ability of recogniz-
ing ligands. Recent advances in synthetic biology by Robelek et al. [61, 62] avoid the isolation issue
by an in vitro expression process of membrane proteins in the presence of model membranes. Thereby,
the proteins are continuously incorporated into the model membranes and correctly folded during their
expression.

Robelek et al. [62] observed the vectorial and functional incorporation of OR5 in a solid-supported
tethered lipid membrane (tBLM). OR5 is an odorant receptor from Rattus norvegicusbelonging to the
vast GPCR family. The incorporation and orientation of the protein was shown by immunolabeling in
combination with surface plasmon enhanced fluorescence spectroscopy (SPFS) and reversible ligand
binding was shown by surface-enhanced infrared reflection absorption spectroscopy (SEIRAS). Receptor
activation, i.e. upon ligand binding, is of primary interest in cell signaling and signal transduction. In
general, the activation event itself and the conformation change of the receptor cannot be measured
because this would very likely inhibit the receptor function. But based on induced events in the signaling
cascade, a few methods for measuring the activation of GPCRswere developped. For instance, Heyse et
al. [63] and Bieri et al. [64] observed the dissociation of the G protein from solid-supported membranes
upon photo-activation of incorporated Rhodopsin, which led to a mass change measurable with surface
plasmon resonance. In addition, several investigations showed that receptor–ligand binding considerably
slows down the diffusion of these receptors, which is in general attributed to an aggregation of GPCRs
(homo- or hetero-polymerization) in the cell membrane to launch the signaling cascade. For instance, Lill
et al. [65] investigated the signaling kinetics of the neurokinin 1 receptor (NK1R). Initially, this receptor
was found to diffuse either fast (D ≈ 0.21µm2/s) in domains of�1.1µm or slow (D ≈ 0.011µm2/s)
within domains of�180nm, but to slow down significantly within 1s after signaling.

In cooperation with R. Robelek and E.-K. Sinner, Max-PlanckInstitut für Polymerforschung, Mainz,
Germany, we quantified the incorporation density and the translational mobility of OR5 using TIRF
imaging and confocal FCS measurements. Whereas SPFS and SEIRAS measure the average signal from
an area of a few mm2, TIRF imaging allows localization and detection of single OR5 receptors in the
membrane. The aim of this investigation was to detect receptor–ligand binding by monitoring the lateral
mobility of OR5 receptors in these artificial membranes (c.f. the review on FCS studies in model mem-
branes by Kahya and Schwille [66]). The receptor mobility was investigated with FCS and fluorescence
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recovery after photo-bleaching (FRAP) showing that the OR5was well immobilized within the reso-
lution limits of our instrumentation. The incorporation density in the membrane was further analyzed
with TIRF microscopy and image analysis, which shows that the OR5 density and aggregation increased
steadily with expression time.

�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������

SSSSS SSSSSSSSSS SSSSSS

COO

SSSSS SSSSS SSSSSSSSSSSSSSS

Coverslip
Au/Cr film

bilayer

P19 linker

Lipid

VSV tag

Antibody Cy5

OR5

Figure 3.11: Solid-supported planar lipid membrane assembly with incorporated GCPR. The lipid bilayer
consists of a first DMPE monolayer and a second lipid layer from spread PC vesicles. The VSV affinity
tag was immunolabeled with a fluorescently labeled antibody.

Figure 3.11 outlines the solid-supported tBLM assembly with an incorporated OR5 receptor. The
tBLM was prepared on a thin chromium–gold layer of. 5.0nm thickness (see section 3.3.1). The re-
ceptor was expressed with a vesicular stomatitis virus (VSV) affinity tag at one terminal. This VSV tag
served as target for immunolabeling with a fluorescently labeled antibody. This antibody was labeled
with two Cy5 fluorophores (average, inferred from FCS of a 5nMantibody solution). In contrast to the
SPFS measurements, no secondary antibody was required due to the higher detection sensitivity. To
probe the orientation of inserted OR5 proteins, cDNA constructs with alternative positions for the tag
sequence were used: one cDNA coded for a C-terminal VSV affinity tag, the other for an N-terminal
VSV affinity tag.

All experiments were performed in a flow-through microfluidic cell containing a reaction chamber of
about 50µl volume. This chamber was sealed with the metal-coated coverslip providing a window for
TIRF measurements. Two inlets at the extremities of the reaction chamber allowed to push/pull liquids
through the chamber.

In first control experiments, the background of the metal-coated coverslips and PBS solution was
measured. Without chromium, FCS measurements on 5.0nm goldfilms suffered from an uncorrelated
background count rate of> 3MHz, whereas the chromium–gold sandwich led to. 150kHz background
at identical conditions. Therefore, all subsequent experiments were carried out on combined chromium–
gold films. Compared to bare coverslips, the coating loweredthe observed brightness of the Cy5 fluo-
rophores by about 50% at identical excitation conditions. The relevant detection loss was estimated to be
about 30%.6 The presence of tBLMs lowered the background by as much as 30%, possibly due to the
lower amount of surface enhanced Raman scattering from water in contact with the metal coating. The
quality of the tBLMs was verified by incubation with the anti-VSV–Cy5 (AV–Cy5) for 10min prior to
the OR5 expression. TIRF images showed that the AV–Cy5 associated only at very few nanometric sites,

6 The excitation loss could be compensated by increasing the laser power.
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(a) 15min. (b) 30min. (c) 60min.

(d) 90min. (e) 60min (negative control).

Figure 3.12: Background corrected and normalized membraneimages versus expression time. The neg-
ative control (e) corresponds to 60min incorporation of OR5with a VSV tag at the C’ terminus.

in average about one site per 20µm× 20µm area. This association was attributed to defects in the tBLM
assembly, i.e. a missing top layer (imperfect vesicle spreading) or a small defect in the underlying metal
coating. As these defects showed up much brighter than any other feature, they were readily identified
and excluded from further analysis. Finally, it was confirmed that the incorporation of the OR5 did not
affect the background.

In a next investigation, the vectorial incorporation of OR5was confirmed. Figure 3.12 shows repre-
sentative background corrected and normalized membrane images. Image (a) to (d) show the increase in
the spot density and brightness with increasing expressiontime. Image (e) shows the negative control at
60min expression of OR5 with the VSV tag at the C’ terminus. Ifthe OR5 is fully incorporated and well
oriented, this terminus is buried between the lipid membrane and the metal-coated coverslip as sketched
in figure 3.11. This means, the anti-VSV–Cy5 marker should not be able to bind the tag. Indeed, only a
few markers were monitored versus about 150 spots in case of the N’ terminal tag. These measurements
confirm the main results by Robelek et al. [62] as they show

1. the vectorial incorporation and

2. the complete incorporation of OR5,

3. the absence of incompletely fused vesicles, and

4. the excellent quality of the artificial membrane, which isintact and nearly defect–free,

In a first attempt, we tried to measure the receptor mobility with FCS. The dual-color instrument with
its possibility to measure in a TIRF or confocal configuration was used in the confocal mode. Thereby,
premature bleaching of neighboring OR5–AV–Cy5 complexes was minimized. Figure 3.13a shows the
intensity traces of a sequence of 5×20s measurements on incorporated OR5 (90min expression time) and
a trace amount of AV–Cy5 still present after flushing the reaction chamber. The total intensity was com-
posed of three components: a fast bleaching component (39%), a slowly bleaching component (35%), and
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Figure 3.13: Intensity traces and FCS correlation curves, all taken at the same membrane position.

a ”non-bleaching” component (26%) consisting of background and diffusing AV–Cy5. The fast bleach-
ing fraction had a characteristic bleaching time of about 2.0s, whereas the slow bleaching occurred at
a time scale of about 36s. The fast component was attributed to photo-bleaching close to the excitation
focus. The slow component was attributed to photo-bleaching within a larger area of about 1µm diameter
covered by the first side lobes of the excitation field. A few intensity bursts att ≈ 40s were presumably
due to non-specifically binding AV–Cy5. Figure 3.13b shows the corresponding auto-correlation curves.
The strong initial bleaching resulted in a stretched decrease of the correlation amplitude. The second
correlation curve represents mainly the intensity bursts with a characteristic time of 5ms to 10ms. The
remaining curves are all very similar and represent the diffusion of AV–Cy5 in solution with a diffusion
time τd ≈ 0.15ms. Before the last measurement, the excitation was interrupted for 150s. We observed
an almost perfect on-take of the fluorescence intensity after this interruption. This effect was further
investigated as it could stem (a) from diffusing OR5 in the membrane, (b) an exchange of AV–Cy5
complexes or (c) a small focus drift caused by the piezo-electric positioning device. Firstly, the focus
position was verified and a small defocus was tracked and corrected. Indeed, the defocus stretched the
diffusion curves shown in figure 3.13b. Secondly, remaining or dissociated AV–Cy5 were flushed with
5ml PBS. As a result, except of afterpulsing for lag timesτ . 5µs, no significant correlation amplitude
was measured anymore. This result was reproduced on variousmembrane positions and for several sam-
ples. We concluded that if the OR5 diffuses, it must be so slow that it is below the detection limit set by
photo-bleaching.

Thirdly, slow diffusion was monitored with fluorescence recovery after photo-bleaching (FRAP). First,
the Cy5 was photo-bleached along a few lines and an image was captured. Later, the same area was im-
aged several times for checking for recovery after bleaching. Figure 3.14 shows the result of these FRAP
experiments. Image 3.14a and 3.14b were taken with 6.5min time lapse. The difference image 3.14c
shows that the receptors along the single line did not move (up-right corner). The bottom darkened due
to a slight focus drift, which moved the excitation area upwards. Inside the ”U”, a single spot became
much brighter, whereas two spots at the right just disappeared. However, the photo-bleached features did
not recover nor a ”edge” moving of the bleached pattern couldbe observed. This finding was confirmed
with several FRAP measurements on this sample. For an expression time of 90min, we never monitored
moving receptors although hundreds of CCD images were takenfrom several samples. Taking into ac-
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(a) Image att = 0min. (b) Image att = 6.5min. (c) Difference image (a)-(b).

Figure 3.14: FRAP experiment. A line and a ”U” were bleached and immediately imaged (a). After
6.5min, a second image was taken (b). The difference picture is shown in (c).

count the densely packed, corkscrew-shaped P19 linker immobilizing the tBLM and winding up with the
α-helices of the receptor, it would have been surprising if the OR5 diffused above the resolution limit of
our instrumentation. Constrained diffusion within small domains was monitored, in particular at low ex-
pression levels favoring OR5 monomers, but the diffusion was typically limited to domains of. �200nm
(data not shown). These findings are supported by recent studies on GPCRs in living cells and in sup-
ported membranes. For instance, Jacquier et al. [67] investigated the trafficking of the human odorant
receptor OR17-40 in living cells and analyzed their mobility with single particle tracking. The OR17-40
was found to diffuse with a diffusion constant in the order of 0.02µm2/s. About 40% were found im-
mobile or constrained within domains of≈ �190nm, 49% were diffusing within domains of�300nm
to �550nm and about 11% were freely diffusing. Moreover, Perez et al. [68] showed that GPCRs im-
mobilize upon preparation of supported membranes. These membranes were prepared by detaching the
upper part of a cell membrane using a poly-L-lysine substrate. Whereas FRAP experiments performed on
living cell membranes showed fast and complete recovery of bleached domains, no recovery was found
on supported membranes stating that nearly all GPCRs were immobilized.

We would like to point out that single particle tracking based on TIRF images may be deceptive be-
cause the orientation of the observed fluorophore affects the shape of the PSF. When imaging partially
immobilized fluorophores as the AV–Cy5, the fluorophore rotation is constrained (just slow and/or lim-
ited angular distribution), such that its image appears to wiggle around if the fluorophore changes its
orientation. Wiggling was frequently observed at low expression levels, but limited to an area compa-
rable to the PSF size (see section 3.3.4). The mobility of theOR5 requires further investigation, as the
preliminary analysis did not differentiate between translational and rotational mobility.

Furthermore, the OR5 incorporation density and aggregation was analyzed. Two methods were ap-
plied: image segmentation to calculate the spot density SD or Airy density AD and ICS to retrieve the
cluster density CD. These methods are briefly introduced in section 3.3.2 and 3.3.3. In a first approach,
image segmentation was applied as outlined in figure 3.15. The Airy density AD (an improved esti-
mate of the spot density) was then readily obtained with equation (3.18). Figure 3.16 shows the AD
monitored at different expression levels obtained by varying the expressiontime in steps from 15min to
90min. The data points fitted in excellent agreement on a second order polynomial function of the form
AD(t) = AD1(t− t0)+AD2(t− t0)2. Whether it should fit to this model curve or not is questionable, but it



3.3. Membrane proteins 47

(a) OR5–AV–Cy5 complexes. (b) LoG(3) filtered image. (c) Segmented image.

Figure 3.15: Image segmentation analysis.

allowed at least to extract the initial increase and to extrapolate the leadtime. A leadtimet0 of 8.0min was
estimated from the fit, e.g. OR5 were fully expressed and incorporated within about 8min. With increas-
ing expression time, the OR5 density increased linearly with AD1 = 0.019µm−2min−1 up to about 30min.
In the time window of 20min to 30min, the AD variations were particularly low as a result of a homo-
geneous OR5 distribution in combination with an optimal image contrast and low noise. For even longer
expression times, the increase of the AD slowed down with a curvature AD2 = −7.6 · 10−5

µm−2min−2.
At t = 130 min, the AD would achieve a maximum of about 1.2µm−2. Taking into account that the
evaluation method limits the AD to about 2/3A ≈ 2.5µm−2, a saturating model curve given by

AD′(t) = AD′1
(t − t0)ts

(t − t0) + ts
(3.5)

was tested. This model curve matched equally well to the measured AD7 for AD′1 = 0.020µm−2min−1

and ts = 135min. Hence, the upper bound of AD< 2.7µm−2 was a pure artifact introduced by the
evaluation method.

We concluded that the amount of expressed and incorporated OR5 increased linearly with expression
time by about 0.020µm−2min−1. The expression and incorporation of a single OR5 lasted about 8.0min,
which is in good agreement with our expectations.

In a second approach, the membrane images were evaluated with ICS as described in section 3.3.2.
The results are shown in figure 3.17a, whereas figure 3.17b exemplifies a spatial auto-correlation and the
corresponding fit on a 2D Gaussian model curve. The measured cluster density CD was about 3× larger
than the AD. As the cluster density accounts not only for the number of spots but also for the distribu-
tion of the spot brightness, CD> AD was expected. Excluding the data points at 15min and 60min, a
linear regression on the data was performed (outlined as thin solid line). The leadtime was estimated to
be 7.6min, which is in good agreement with the image segmentation analysis. The CD increased with
time by 0.065µm−2min−1, that is about 3.2 × AD′1. However, the relative scattering of the CD data is
significantly larger than for the AD data. The evaluation at 15min expression time was strongly biased
by the low signal to noise ratio (see figure 3.12a). Therefore, the estimation of the CD is about an order
of magnitude larger than expected. The evaluation at 22min to 45min expression time was much more re-
liable due to good image contrast and a low number of bright spots. At 60min, nearly all images showed

7 Not shown because hardly discernable from the polynomial fit.
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Figure 3.16: Airy density versus expression timet. Thin solid curve: fit on second order polynomial. The
black dotted line indicates a linear increase estimated with the first three data points.

large-scale aggregates which led to auto-correlation curves with large waistw. As the contribution to the
auto-correlation amplitude is proportional to the square of the feature brightness, these bright large-scale
aggregates were the only detectable feature. The resultingCD at 60min represents therefore the density
of large-scale aggregates instead of the protein density. At 90min, large aggregates were also monitored
but they were organized rather in beads than clouds, which seems to be well mastered with the ICS fits.

Taking into account only well-defined data points at 20min to45min, a linear increase in CD of
0.11µm−2min−1 was monitored. Extrapolation to CD= 0 would indicate a leadtime of 17min, which
is clearly disproved by the presence of many spots in images taken after 15min OR5 expression (fig-
ure 3.12a). The introduction of a transient up to about 20minand a limited processivity around 60min
would correct for the overestimation of the leadtime as wellas the overestimation of the CD at 90min.
An improved ICS analysis and a more robust estimation of the CD are required to investigate this point
further.

In summary, the vectorial and complete insertion of OR5 receptors into an artificial tethered membrane
assembly was shown. Fluorescence spectroscopy (FCS and FRAP) showed that the incorporated recep-
tors were immobilized. The incorporation density was monitored with ICS and image segmentation. It
was shown that the amount or OR5 increased with expression time up to a few receptors or aggregates
perµm2 within 90min. Moreover, the mean time for expressing and incorporating a single receptor was
estimated to about 8min. Comparing OR5 distributions at different expression times revealed that the first
OR5 were incorporated at random positions. Thereafter, a tendency of incorporating several OR5 side-
by-side was observed, presumably due to Ribosomes staying in contact with the membrane in between
two expression cycles.

Image segmentation and spot analysis were very robust but did systematically underestimate the OR5
density. The ICS analysis provides, at least in principle, an unbiased estimation of the receptor density.
Despite these first results, a more detailed study is needed in order to get a robust analysis with a relative
scatter of 10% or less instead of about 50%. Preliminary FCS measurements were performed in order to
monitor receptor–ligand binding. Due to the immobilized receptors, these measurements suffered from
rapid photo-bleaching of the Cy5 labels. Future experiments should benefit from the dual-color perfor-
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Figure 3.17: Measured cluster density. (a) Thin solid line:linear regression on data points at 22min to
45min and 90min. Thin dotted line: linear regression on datapoints at 22min to 45min with suggested
on-set transition and processivity limit. (b) Mesh: fit on 2DGaussian model curve.

mance of our TIR-FFS instrument. For instance, Förster resonant energy transfer in combination with
dual-color TIRF imaging should enable monitoring the aggregation of receptors or the receptor–G pro-
tein interaction upon ligand binding.

In order to achieve translational diffusion of incorporated GPCRs, future investigations are in prepa-
ration to render the artificial membrane more fluid. The density and nature of the attachment layer is of
particular interest for achieving an optimal compromise between lateral mobility and axial immobility.
Using a small amount of fluorescently labeled lipid molecules, the lateral membrane mobility will be
monitored with FCS. The axial mobility of the membrane is already subject of investigation with optical
coherence tomography (OCT) and spectral interferometry.

3.3.1 Sample preparation

Preparation of chromium–gold layer Standard glass coverslips (150µm thick, Menzel-Gläser, Braunschweig,
Germany) were cleaned and sonicated for 20min in 2% Hellmanex II (Hellma, Müllheim/Baden, Gemany), rinsed
with bidistilled water, dried and oxygen plasma cleaned. Planar gold surfaces were prepared by evaporating a
1.5nm thick chromium adhesion layer (99.99%, œrlikon balzers coating, Brügg, Switzerland) and a 3.5nm thick
gold layer (> 99.99%, Metalor technologies SA, Neuchâtel, Switzerland) inan Edwards Auto 306 evaporation
system at 5· 10−6mbar. The evaporation rate was kept below 0.5nm/min. A thin chromium adhesion layer was
required to obtain a hard gold coating (pale gray-brown) instead of porous and granulous gold deposits (brilliant
blue appearance). Adding the chromium layer also lowered the background luminescence of the gold film by more
than an order of magnitude.

Preparation of tBLM The tBLM were then prepared in a flow cell following the protocol by Robelek et al. [62].
This preparation of the tBLM was recently monitored with surface plasmon resonance spectroscopy by Wiltschi et
al. [69].
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In vitro expression of OR5-VSV A ”T7 TNT Quick in vitro expression system” (Promega, USA) was used. The
reactions were prepared according to the supplier’s instruction. The incubation was performed in a thermoblock at
30.3˚C± 0.3˚C for 15min to 90min.

Labeling of the OR5-VSV The OR5-VSV was immunolabeledin situ by incubating with Cy5 labeled anti-
VSV primary antibodies. After 10min, the excess labels wererinsed with PBS solution while monitoring the
content of free labels with confocal FCS measurements. The PBS solution was then exchanged against a Gloxy
antioxidant/PBS solution, which reduced the photo-bleaching to about 1/3 as compared to PBS.

3.3.2 Image correlation spectroscopy

The random spatial distribution of the incorporated OR5 wasanalyzed with image correlation spectroscopy (ICS).
This method and its limitations were discussed in detail by Petersen et al. in reference [70]. ICS analyzes the spatial
auto- or cross-correlation of the imagesI andJ. The spatial cross-correlationC of I andJ is defined by

C(∆x,∆y) = I (x, y) ? J(x, y) =

+∞"

−∞

I (x+ ∆x, y+ ∆y)J(x, y) dxdy (3.6)

where∆x and∆y are the lag distances. As usual, the spatial auto-correlation is obtained by settingJ = I . For
digital images, the fast Fourier transform can be used for calculating the correlation as a convolution ofI (−x,−y)
andJ(x, y). Similar to equation (3.1) for FCS, the normalized spatialcross-correlation is given by (〈〉 denotes the
spatial average)

G(∆x,∆y) =
I ? J
〈I〉 〈J〉

=
〈I (x+ ∆x, y+ ∆y)J(x, y)〉
〈I (x+ ∆x, y+ ∆y)〉 〈J(x, y)〉

. (3.7)

With this equation, ”infinitely” large images of homogeneously excited samples can be treated as the lateral ex-
tent is unbounded. For treating images of finite extensions,a symmetric normalization should be applied. This
normalization was introduced in equation (3.1) to deal withshort measurements. For ICS, a general maskW can
be introduced for defining a weighted average with weightW(x, y) ∈ [0, 1] at point (x, y). Equation (3.7) is then
generalized for images of finite size and arbitrary shape (defined byW , 0), e.g.

G(∆~r) = (W?W)
I ? J

(I ?W)(W? J)
(3.8)

with ∆~r = (∆x,∆y). The prefactor corresponds to the factor (T − τ) in equation (3.1), as it stands for the cumulated
weight at lag distances∆x and∆y, whereas the denominator is the product of the weighted average of the images
I andJ. The performance of this normalization is outlined in figure3.18. The correlation amplitudeG0 of about
0.2 is reproduced to less than 5% difference independently of the choice of the maskW. At large lag distances, the
difference∆G is dominated by stochastic noise with zero mean and about 0.01 amplitude.

The correlation amplitudeG0 is defined by

G0 = lim
∆r→0

(G(∆~r)) − lim
∆r→∞

(G(∆~r)) = lim
∆r→0

(G(∆~r)) −G∞ (3.9)

where the offsetG∞ ≈ 1 is the correlation amplitude at large lag distances. The amplitudeG0 equals the variance
of the normalized intensity fluctuations. If the intensity is an accurate representation of the sample density, its
variance is also the variance of the density fluctuations, which equals the inverse of the average occupation number
Np:

G0 =

〈

(I − 〈I〉)2
〉

〈I〉2
= var (δnI (~r)) = var (δnc(~r)) =

1
Np

(3.10)
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(a) Image intensityI with uniform
maskW = 1.

(b) Auto-correlationGI×I (∆~r).

(c) Image intensityJ with star-shaped
maskW.

(d) Difference∆G = GI×I −GJ×J.

Figure 3.18: Invariance of the auto-correlationG(∆~r) for different masksW(x, y). The images were 256×256 pixels
in size. In order to emphasize the correlation amplitude near the coordinate origin,G(∆~r) is represented in polar
coordinates with logarithmic radius∆r. The correlation is represented for lag distances∆r ≤ 100pixel. The black
curve represents the average amplitude along the radius.

The occupation numberNp gives the number of receptors (particles) in the observation volume, which is defined
by the PSF of the TIRF microscope. Considering the EMCCD camera (Andor Luca, monochrome) as an array
of square sized pixels (9µm × 9µm, 80% fill factor) in a 10µm grid, the PSF for a single active element can be
calculated as described in chapter 2. In this study, it is sufficient to calculate a cross-section for a fluorophore 10nm
above the glass interface as this is approximately the glass–(OR5–AV–Cy5) distance. According to Petersen et al.
[70], the receptor density is therefore given by the clusterdensity

CD =
1

G0A
=

Np

A
(3.11)

whereA is the area of this PSF cross-section:

A =
1

PSF(0)

∫

PSF(~r) d~r (3.12)

If the cross-section is approximately Gaussian with waistw, the area can be estimated by fittingG(∆~r) on a 2D
Gaussian centered near the origin. The model function for fitting the spatial image correlation is therefore given by

G(∆~r) = G∞ +G0 exp

(

−|∆~r − ~r0|2

w2

)

(3.13)
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where~r0 accounts for small image drifts in cross-correlation measurements. The waist of the fitted Gaussian is
defined by the PSF. Hence, the areaA can be estimated byA ≈ πw2.

Fitting Images of single receptors or small receptor aggregates show intensity spots of the size of the PSF. This
size can be measured independently for unspecifically binding molecules. If the fitted waistw differs by more than
about 30%, the data should be rejected as the image probably contains features similar or larger in size than the
PSF. Alternatively, these features can be masked by defininga matching windowW. Due to the limited size of
the images, the offsetG∞ shows variations in the order of

√
NA/NA, whereNA is the number of PSF areas in the

window W. It was shown that the fit should include only data in the correlation functionG(∆~r) for ∆r . 3w [71].
Using proper normalization this constraint can be relaxed to ∆r . s/2, wheres is the smallest dimension in the
windowW.

Corrections In general, the intensity fluctuations are due to several sources, i.e. the sample of interest (s), non-
specific fluorescence (ns), auto-fluorescence (a) and background (wn). Except the background, these sources show
fluctuations with the characteristic dimension of the PSF. The background has the characteristics of white noise
and contributes not to the correlation except at the origin where it can be dominant. Therefore, the amplitudeG(0)
at the origin was excluded from the fits. Assuming that these sources are independent as they are from different
components, the measured correlation is given by

g(∆~r) =
∑

i

gi(∆~r) 〈I i〉2 (3.14)

wheregi(∆~r) = Gi(∆~r) − 1 is the correlation ofδI i(x, y) = I i(x, y) − 〈I i〉, that isgi∞ ≈ 0 andg0 = G0. The fitted
correlation amplitudeG0 can be corrected according to

Gs0 =
G0 〈I〉2 −Gns0 〈Ins〉2 −Ga0 〈Ia〉2

(〈I〉 − 〈Ins〉 − 〈Ia〉 − 〈Iwn〉)2
. (3.15)

Analysis The instrument background, the auto-luminescence of the metal-coated coverslip and the auto-fluores-
cence of the bare tBLM was measured a priori. This combined backgroundIwn(x, y) had white-noise characteristics
as the auto-correlation confirmed (see figure 3.19). The slowvariation stems from the envelope of the background
intensity as outlined in figure 3.20a. Instead of correctingthe background contribution with equation (3.15), the
background was subtracted from the image intensity a priori. This was required for normalizing the image intensity
with the inhomogeneous excitation intensityIex(x, y). The excitation intensity was estimated by fitting the average
background corrected intensity of a large number of images on a model distribution (modulated 2D Gaussian). The
correlation was then performed on the homogenized imagesIc given by

Ic =
I − Iwn

Pex
(3.16)

wherePex is the fitted excitation intensity profile but normalized to unit amplitude. Figure 3.20 outlines the applied
correction.

The contribution from non-specific fluorescence and auto-fluorescence was estimated by measuring a sample
prepared according to the protocol given in section 3.3.1, but with no coding DNA added to thein vitro expression
Ansatz. Thereby, the membrane was exposed to the expressionAnsatz as well as the labeled antibody. However,
these contributions turned out to be negligible, such that the OR5 cluster density was estimated directly with
equation (3.11).

3.3.3 Image segmentation

If the cluster density CD is lower than about 1/A, whereA is the PSF cross-section (see section 3.3.4), individual
spots can be resolved. In this case, image segmentation methods can estimate the CD based on a spot analysis.
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Figure 3.19: Background correlationGwn(∆~r). The projected CCD pixel size is 100nm.

(a) BackgroundIwn. (b) Excitation profilePex.

(c) Measured imageI . (d) Corrected imageIc.

Figure 3.20: Applied image correction. The background (a) was first subtracted from the measured image (c). The
result was then divided by the excitation profile (b). The correlation was performed on the corrected image (d),
where the windowW covers the region wherePex(x, y) > 0.2, that is an elliptical area of 23µm× 15µm extension
on the membrane.

Spot density For calculating the spot density SD, the images were first filtered with a Laplacian-of-Gaussian
filter of width 3 (LoG(3), see figure 3.21) to remove noise and enhance the edges [72]. A threshold was then
applied and the resulting segments were analyzed in shape and brightness. The spot density is readily given by

SD=
Ns

Aex
(3.17)

whereNs is the number of spots (segments) identified in the excitation areaAex of the image.

As figure 3.15c shows, the applied segmentation method foundthe majority of spots but with areas proportional
to the spot brightness. The spot density yields a lower boundof the OR5 density as it accounts large aggregates
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Figure 3.21: Laplacian-of-Gaussian filter of width 3. All units in pixel (100nm).

(a) Image PSF. (b) Auto-correlated PSF.

Figure 3.22: Imaging point spread function and its auto-correlation.

exactly like a single receptor. Therefore, at least a first order correction should be applied to account for the area
of large aggregates.

Airy density Given the spot areaAs, the number of spotsNs can be estimated with the cumulated spot area
normalized by the PSF cross-sectionA. Therewith,Ns accounts forAs and would be biased by the spot brightness
if no further correction were applied. For instance, dim spots were identified as small spots of a few image pixels
only as exemplified in figure 3.15c. This bias can be correctedin first order by taking the maximum brightness
Is of each spot into account. For a given LoG filter and thresholdsetting, the relationAs(Is) can be estimated
by calculating the segment areaAPSF(Is) obtained for the measured PSF image with identical peak brightness
Is. Taking the peak brightness as parameter is justified as it ismost likely included in the segmented spot area.
Therefore, an improved estimation of the receptor density is given by

AD =
1

Aex

∑ As

APSF(Is)
(3.18)

which we called area or Airy density asNs is estimated based on the PSF cross-section. The Airy density removes
the bias caused by large-scale aggregation, but removing the bias due to micro-aggregation within an area. A
requires further investigation.

A second order correction would consist in breaking large spots into segments of an areaAs ≈ A. Thereby, large
intensity fluctuations within a spot could be taken into account. This correction was not required as the few very
large spots had a quite narrow intensity distribution, suchthat the correction factors for sub-segments would not
scatter much.



3.3. Membrane proteins 55

3.3.4 Point spread function

The detection PSF was measured by averaging the image of several bright spots. Figure 3.22a shows the measured
PSF, which was in good agreement with an Airy pattern except for an asymmetry in the Airy rings. This asymmetry
might be due to a partially polarized fluorescence emission.However, the bright spots used for this measurement
were attributed to a large number of Cy5, such that the polarization should be neglectable. The PSF cross-section
was evaluated with equation (3.12) andA = 0.26µm2 was obtained. This corresponds to a waistw = 0.29µm,
which is in excellent agreement with the calculated Airy radius of 0.28µm for a wavelength of 670nm. The auto-
correlation of the measured PSF served as reference for classifying the ICS fits (wPSF= 0.47µm).



Chapter 4

List of articles

The results of this thesis have been partially published as indicated in the author’s publication list. Some
of the publications are only indirectly related to FFS, but served for several experimental and theoretical
details.

Articles [10, 9] In cooperation with B. Karamata, a fast Monte-Carlo simulation for calculating mul-
tiple scattering in optical coherence tomography (OCT) wasdeveloped. This simulation tool allowed
predicting wide-field OCT measurements with high accuracy.Subsequently, a similar Monte-Carlo sim-
ulation tool for predicting FFS measurements was developed(unpublished work). This fast FFS simula-
tion integrates the entire FFS process outlined in chapter 2, Brownian diffusion of the sample molecules
as well as active/passive transport or flow. The result of a simulated experiment is the raw detected photon
trace, which exhibits stochastic fluctuations as real experimental FFS data.

Patent [5] The fast focus field calculation algorithm developed and described in [3] was used for the
Bessel beam simulation and analysis.
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Chapter 6

Conclusions and outlook

Two novel methods for performing fluorescence fluctuation spectroscopy (FFS) and fluorescence imag-
ing on surfaces were developed. For the first concept, the near fields of sub-wavelength sized nano-
apertures were used for exciting fluorophores in strongly confined volumes. For the second method, the
evanescent field created by total internal reflection (TIR) at a glass–water interface was used for two-
color excitation of fluorophores in the vicinity of the coverslip. These methods were characterized by
calculating the observation volumes and by measuring the FFS performance with test samples. Finally,
TIR excitation was applied for investigating odorant receptors in solid-supported planar lipid membranes.

Inspired by scanning near field optical microscopy (SNOM), we investigated the confinement of the
observation volume in the near field of nano-apertures through an opaque gold film. Back-illumination
of these sub-wavelength sized apertures resulted in a strongly confined excitation field near the distal
aperture exit. For apertures with a diameter of 1/5 of the free space wavelength, observation volumes
as small as 30al were achieved, which is less than 1/10 of state of the art confocal far field observation
volumes. These observation volumes had a lateral extent of about 200nm× 250nm and an axial extent
of less than 100nm. The performance of this excitation method was characterized with fluorescence
correlation spectroscopy (FCS). These FCS measurements showed a substantial reduction of the diffusion
time τd, e.g. the average transit time of fluorophores through the observation volume, which was in
good agreement with theory. A significant reduction of the average numberN of fluorophores within the
observation volume was measured. The reduction ofN was less pronounced than the estimation based
onτd and calculations becauseN is strongly affected by the signal to background ratio (SBR) whereasτd
is not. Auto-luminescence of the gold mask as well as Raman scattering added a significant background,
which varied up to an order of magnitude due to hole-to-hole fabrication irregularities. AlthoughN is a
direct measure of the observation volume, the variation of the SBR significantly lowered the accuracy
for the precise determination ofN. Nevertheless, a SBR of 5 was achieved for nanoholes with�150nm,
which is as good as or even better than currently achieved in epi-illumination nanohole experiments by
Levene and Rigneault.

Future work should first focus on a further decrease of the background as well as its variation. This can
be achieved to a large extent by selecting other materials, i.e. aluminum masks on fused silica substrates
as used by Rigneault and Webb. The major advantage of gold is its outstanding corrosion resistance in
biological environments and its excellent biocompatibility, which can be of decisive advantage for long-
term studies. Combined with microfluidic chips, the aperture masks will allow automated batch investi-
gations of a full sequence of samples per nanohole. In addition, these nanohole masks are a promising
platform for monitoring biological processesin vivo with unprecedented spatio-temporal resolution as
for instance trans-membrane transport or cell signaling. Further, a suitable FCS model curve should be
developed for improving the accuracy and persistence of thefitted parameters. The development of this
FCS model curve will include the entire FFS process outlinedin chapter 2, e.g. the calculation of the
excitation field, the absorption and fluorescence re-emission as well as the detection efficiency. Option-
ally, the apertures could be filled and sealed with a dielectric material to provide a flat surface, which
would also completely suppress diffusion inside the apertures and probably simplify the modeling. We
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are convinced that a SNOM-type near field excitation is suitable for FFS measurements with solutions
of micromolar fluorophore concentration. Currently, sample handling and mask fabrication are still not-
so-simple issues for routine application. The choice of biocompatible, non-corrosive, low-background
materials will be crucial for a future multi-color multi-spot FFS platform forin vitro andin vivo studies
at natural sample concentrations and with high spatio-temporal resolution.

In the ongoing search for improved confinement of the excitation field, a novel dual-color TIR-FFS
setup was developed and characterized. Two cw lasers provided a dual-color TIR excitation at 488nm and
633nm wavelength, respectively. The induced fluorescence was separated into a green channel (500nm
to 540nm) and a red channel (650nm to 720nm) for single photondetection. The proposed setup features
a common observation volume that is confined to the proximityof the coverslip surface. A theoretical
analysis of the complete FFS process including the excitation field, the response of the fluorophore and
its interaction with the surface, as well as the collection and detection efficiency was performed. These
numerical calculations yielded an observation volume of 71al in the green channel and 103al in the red
channel, which penetrate only about 120nm into the sample. Due to the high numerical aperture of the
collection optics (1.45 NA), the system provides outstanding detection efficiency close to the coverslip
surface. Very high photon count rates up to 650kHz per molecule were achieved for freely diffusing
fluorophores. These count rates were approximately two-fold higher than obtained with state of the art
confocal FCS instruments.

Dual-color TIR-FFS measurements were performed using a double-stranded doubly labeled DNA
strand as dual-color sample and standard fluorophores as single-color samples. A two-color global FCS
(2CG-FCS) analysis revealed an excellent performance for coincidence studies, e.g. the measured frac-
tion of a dual-color sample scaled linearly with the fraction that was present in solution. Based on this
analysis, the overlap of the observation volume was estimated to be 60%, which is close to the theoreti-
cal maximum. However, the measured observation volumes were substantially larger than the theoretical
calculations. In the red channel, the measured observationvolume was about 60% larger than predicted,
which is presumably due to a lower excitation angle resulting in a significantly deeper penetration of the
evanescent excitation field. In the green channel, the measured observation volume was 12× larger than
expected, whereas the diffusion timeτd was in good agreement with the predictions. This substantial
discrepancy was attributed to fluorophores immobilizing atthe coverslip and contributing a significant
background. This unspecific binding at the coverslip is hardly suppressed completely. Hence, a SBR. 3
was achieved with 10nM sample concentration as this TIR-FFSinstrument was designed for higher con-
centrations. Indeed, samples with 100nM to 200nM concentration yield an optimal SBR& 25, whereas
standard far field confocal instrumentation is better suited at nanomolar sample concentration.

In addition, a two-dimensional fluorescence intensity distribution analysis (2D-FIDA) was performed.
The 2D-FIDA results confirmed the suitability for coincidence studies and led to equivalent results as
the 2CG-FCS analysis. For measurement times of 10s or longer, 2CG-FCS provided a superior statistical
significance for coincidence studies. For shorter measurement times however, 2D-FIDA outperformed
2CG-FCS mainly because 2CG-FCS did not track fractions of more than 50% of the dual-color sample
in this case.

The dual-color TIR-FFS set-up allows a TIR mode as well as a confocal configuration. This possibility
proved to be helpful for specific demands, for instance when the bleaching aspects are of importance.
This modification of the excitation mode is relatively simple but still prone to slight misalignments in the
excitation paths. Ideally, a simple shutter for selecting confocal or TIR mode could switch the excitation,
such that the alignment is no longer affected.
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A further extension of this setup was introduced recently. Using ps pulsed laser excitation, time-
resolved single photon detection and adding a fast and sensitive CCD array, image correlation microscopy
can be performed. The ps pulsed laser excitation and the time-resolved single photon detection provide
an excellent tool for lifetime measurements, as well as for circumventing excessive photo-bleaching and
background. Photo-bleaching is diminished using pulsed interleaved excitation (PIE) to avoid simulta-
neous dual-color exposure of fluorophores, which generatesbleaching of red fluorophores in particular.
The background is better mastered by introducing a time gateretaining only delayed photons (fluores-
cence). Benefiting from the very high photon count rate, the EMCCD camera is able of imaging single
fluorophores at video rate.

With this new instrument, thein vitro expression of an odorant receptor (OR5) and its incorporation
into a solid-supported planar lipid membrane were investigated. Complete vectorial insertion of OR5
receptors into an artificial tethered membrane assembly wasachieved. FCS and FRAP showed that the
incorporated receptors were immobilized within the resolution limit of our instrument. Preliminary FCS
measurements were performed in order to monitor receptor–ligand binding. Due to the immobilized re-
ceptors, these measurements suffered from rapid photo-bleaching of the Cy5 labels. The incorporation
density was monitored with ICS and image analysis and found to increase with expression time up to
a few receptors or aggregates perµm2 within 90min. An average time of 8min for expressing and in-
corporating a single receptor was measured. Comparing OR5 distributions at different expression times
revealed that the first OR5 were incorporated at random positions. Thereafter, a tendency of incorporat-
ing several OR5 side-by-side was observed, presumably due to Ribosomes staying in contact with the
membrane in between two expression cycles.

Image segmentation and spot analysis proved to be robust butled to a systematic underestimation of
the OR5 density. Their major advantage is the localization of receptors and aggregates, which allows
investigating their mutual organization. On the other hand, the ICS analysis provides in principle an
unbiased estimation of the receptor density. Despite first results, a more detailed study is needed in order
to achieve a robust ICS analysis with a relative scatter of 10% or better. If performed with confocal laser
scanning microscopy (LSM), ICS is yet a robust tool for estimating cluster densities and colocalization
probabilities.

To our knowledge, this is the first successful investigationof the in vitro expression and incorporation
into artificial membranes at the single molecule level. Thisfirst achievement relied on our dual-color TIR-
FFS and TIRF imaging instrument, which provides a unique platform for detailed membrane studies. In
order to achieve translational diffusion of incorporated GPCRs, future investigations are in preparation to
render the artificial membrane more fluid. The density and nature of the attachment layer is of particular
interest for achieving an optimal compromise between lateral mobility and axial immobility. The axial
mobility of the membrane is already subject of investigation with optical coherence tomography (OCT)
and spectral interferometry. Future experiments are planned to benefit from the dual-color performance
of our TIR-FFS instrument. For instance, Förster resonantenergy transfer in combination with dual-
color TIRF imaging should enable monitoring the aggregation of receptors or the receptor–G protein
interaction upon ligand binding.

In summary, new concepts for confining the observation volume in FFS experiments were developed
and characterized. For this purpose, the calculation of theobservation volume was outlined and a versatile
dual-color TIR-FFS instrument was build. This instrument forms now the base platform for single- or
dual-color FFS investigations on surfaces as well as for TIRF microscopy. Finally, this novel platform
was successfully applied to study the incorporation of an odorant receptor in a planar lipid membrane.
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31. C. Girard, O. J. F. Martin, G. Lévèque, G. Colas des Francs, A. Dereux, ”Generalized Bloch equations for
optical interactions in confined geometries,” Chem. Phys. Lett.404,44–48 (2005).

32. J. R. Lakowicz,Principles of fluorescence spectroscopy,3rd ed., Springer, New York, ISBN 978-0-387-31278-
1 (2006).

33. H. Gratz, A. Penzkofer, C. Abels, R.-M. Szeimies, M. Landthaler, W. Bäumler, ”Photo-isomerisation, triplet
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Appendix A

Rate equations governing fluorescence

Here, then-state model is approximated with a three-state model taking into account the ground state
S0, the excited stateS1 and the triplet stateT1. Pss denotes the occupation probability of the electronic
statessandRxx = Pss/τxx the transition rate per molecule. The following rate equations describe then
the evolution of the occupation probabilities.

d
dt

PS0 =
PS1

τ f l
+

PS1

τnr
+

PT1

τT1

−
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τex
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dt
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The singlet lifetimeτS1 is

τS1 =

(

1
τ f l
+

1
τnr
+

1
τisc

)−1

. (A.5)

In a dynamic equilibrium at constant excitation rate, the variations of the occupation probabilities vanish.
Solving for the occupation probabilityPS1 yields the average rate of fluorescence emissions per molecule.

Rf l =
1
τ f l

(

1+
τT1

τisc
+
τex

τS1

)−1

=
qf l

τex+ τS1 + qiscτT1

(A.6)

qf l = τS1/τ f l is the fluorescence quantum yield andqisc = τS1/τisc is the intersystem crossing probability.
The denominatorτex+ τS1 + qiscτT1 corresponds to the average cycle time. The occupation probability
of the triplet state is given by

PT1 =

(

1+
τisc

τT1

(
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qiscτT1
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The limits of (A.6) and (A.7) for strong excitation (e.g.τex→ 0) are

lim
Iex→∞

Rf l = Rf l,max=
1
τ f l
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τisc

)−1

and (A.8)

lim
Iex→∞
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. (A.9)

The saturation limit is defined byPS0 = 50% whereRf l = Rf l,max/2, which corresponds toτex =

τS1 + qiscτT1 and

Iex,sat =
~ωex

σexτS1

(

1+
τT1

τisc

)−1

, respectively. (A.10)
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Fluorescence fluctuation spectroscopy based on an evanescent field excitation
scheme leads to an alternative concept for single molecule detection with interest-
ing experimental features. This concept is described and analyzed regarding the
total fluorescence process including excitation, fluorescence emission and collec-
tion close to a dielectric interface. The realized experimental scheme showed su-
perior performance of this concept with substantially enhanced molecular bright-
ness when compared to the classical confocal setup based on water immersion
objectives. Selected applications in life sciences including dual-color surface flu-
orescence correlation spectroscopy, enzyme kinetics and receptor–ligand binding
are underlining the interest of this experimental approach.

Introduction

Fluorescence fluctuation spectroscopy (FFS) is a general designation for the observation of the fluo-
rescence process at the single molecule level. A well-knowntechnique for single molecule detection
is fluorescence correlation spectroscopy (FCS), which was conceived to study kinetic and dynamic
processes through the statistical analysis of fluctuationsat thermodynamic equilibrium(1). The
temporal correlation of the photon emission trace of a molecular system (generally a biomolecule
specifically labeled with a fluorophore) allows accessing the characteristic rates and velocities of the
underlying molecular system. With an appropriate model of the molecular system, these character-
istic rates and velocities can be extracted. For example, fluctuations in the number of few fluorescent
particles unravel the diffusion dynamics within a highly confined sampling volume.
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The principal concept was already described in the early 70’s by the first paper on this topic
by Magde et al.(2). A real renaissance arrived in 1993 with the introduction ofthe confocal illumi-
nation scheme for FCS by Rigler et al.(3). Since then FCS has been developed towards probably
the most important technique for single molecule detection(SMD). FCS allows measuring rates of
binding/unbinding reactions(4, 5), coefficients of translational and rotational diffusion(6, 7, 8, 9),
conformational states and a manifold of photophysical parameters(10, 11, 12)of the induced fluo-
rescent process.

For FFS the confocal illumination scheme led to a highly confined excitation and detection
volume. Alternative optical schemes for confining the excitation volume, for instance evanescent
field excitation, were demonstrated already in the 80’s(13, 14). However, they did not show a
performance comparable to confocal FFS for single moleculedetection.

In this contribution, we summarize and present numerous recent results of total internal reflec-
tion FCS, i.e. single molecule detection in the proximity ofdielectric surfaces, emphasizing interest-
ing features which overcome the past limitations of evanescent field FCS(15, 16). First, we outline
the general aspects of FFS for SMD and describe the essentialsteps of a FFS measurement. In the
following, a novel dual-color setup for SMD at surfaces is presented(17). This setup enables high
photon count rates per molecule well beyond count rates known from classical excitation schemes.
Finally, we demonstrate this concept on selected biological applications, such as enzymatic catalysis
and monitoring of membrane embedded proteins.

The fluorescence fluctuation process

FFS applied to SMD involves recording and analyzing traces of emitted fluorescence photons ema-
nating from a tiny probe volume. Figure 1 outlines the instrumental chain including the molecular
fluorescence process as happening in a typical SMD experiment. The excitation light at wavelength
λex is tightly focused into the sample and generates a highly confined excitation volume as indicated
in figure 1d in solid-line ellipse. Fluorescently labeled biomolecules diffusing through this confined
light field are excited and emit photons at a wavelengthλ f l > λex. These fluorescence photons are
partly gathered by the collection optics. A dielectric band-pass filter rejects residual excitation light
and suppresses Raman scattered light contributions.1

The fluorescence photons are focused onto the pinhole rejecting stray and out-of-focus light.
The pinhole and the collection optics determine the detection volume as indicated in figure 1d in
dashed-line ellipse. For optimum FFS measurements, the excitation and detection volume must be
perfectly matched, i.e. the pinhole must be in a conjugated position to the excitation volume. The
diameter of the pinhole determines the lateral extent of thedetection volume and is chosen according
to the criteria of diffraction-limited imaging.

The single photon detector – typically an avalanche photo diode (APD) driven in counting
mode – detects the arrival of fluorescence photons. The recorded photon trace is finally evaluated
according to the chosen FFS method, i.e. the sequence of detection events is numerically processed
for yielding information about the investigated sample.

FFS retrieves essential information about biomolecules byanalyzing the fluctuations of the
fluorescence intensityI (t) during a short time intervalT. Typical sources for these fluctuations are
particle motions through the sampling volume via diffusion and flow, the stochastic nature of the

1 Raman scattering of individual particles is many orders of magnitude weaker than fluorescence. However, the high
solvent concentration (55M for water) largely compensatesthis low efficiency, making Raman scattering one of the most
important background sources.
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Figure 1: Overview of FFS methods for single molecule detection. OP: object plane, PP: conju-
gated pinhole plane. (a) Excitation light, (b) excitation band-pass filter, (c) focusing op-
tics, (d) excitation (solid line) and detection (dashed line) volumes, (e) collection optics,
(f) emission band-pass filter, (g) tube lens, (h) pinhole, (i) single photon detector.

photophysical response of the fluorophores, for instance singlet or triplet transitions, and variations
of the quantum yield with the molecular environment or binding/unbinding reactions.

A low number of particles within the sampling volume causes high relative fluctuations of the
fluorescence intensity rendering FFS measurements more robust. Therefore, a very small excitation
volume is required, which is normally achieved with a high numerical aperture (NA) objective.
Excitation volumes as low asVex≈ 0.3fl are not uncommon for measuring particle concentrations
in the range up to≈ 100nM.

The fluorescence emission of individual fluorophores is veryweak. Consequently, the collection
optics should capture as much fluorescence photons as possible, which demands the use of high NA
optics. Furthermore, since the fluorescence intensity is typically 8 to 10 orders of magnitude weaker
than the excitation intensity, dichroic filters must block the excitation light by at least 9 to 11 orders
of magnitude for obtaining a good signal to noise ratio (SNR). An excitation band-pass filter is
used in front of the focusing optics for achieving a spectrally pure excitation, which is subsequently
blocked efficiently by a complementary emission band-pass filter.

In summary, FFS relies on instrumental features, such as thegeneration of a confined sampling
volume, the high collection efficiency of the observation system, the detection of single photons,
the processing of these photon events as well as the stochastic characteristics of the investigated
molecular system.

In the following sub-section, we describe, compare and analyze in detail the sampling volume,
in particular for an evanescent field excitation. The dipoleresponse and its interaction with a di-
electric substrate within the framework of the molecule detection efficiency will be considered in
detail as a relevant model for the overall FFS process. Finally, fluorescence correlation spectroscopy
(FCS) as a prominent member of FFS techniques will be described in the context of SMD.
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Molecule detection efficiency and confined sampling volume

The analysis and interpretation of the fluctuation statistics obtained with FFS measurements requires
knowledge of the excitation and detection volume and the detected fluorescence brightness profile,
i.e. the molecule detection efficiency (MDE) of the fluorescent particle at position~r. The brightness
Q(~r) of a single fluorophore is determined by its photophysical properties, the excitation intensity
Φ(~r)hc/λex (whereΦ(~r) is the excitation photon flux,h Planck’s constant,c the speed of light and
λex the excitation wavelength), the collection efficiencyC(~r) and the pinhole transmission efficiency
T(~r).2

The fluorophore’s brightness is given by

Q(~r) = qdRf l(~r)C(~r)T(~r) (1)

with qd being the detection quantum yield.3 Rf l(~r) describes the average fluorescence emission rate
and is expressed as

Rf l(~r) =
qf l(~r)

τex(~r)+ τS(~r)+qisc(~r)τT (~r)
(2)

whereqf l is the fluorescence quantum yield,τex the average excitation time,τS the excited state
lifetime, qisc the transition probability of the singlet-triplet intersystem crossing, andτT the triplet
state lifetime. Assuming fast rotation of the fluorophore, the absorption atλex is isotropic and the
excitation rate readsτ−1

ex = σabsΦ(~r), with σabs representing the absorption cross-section at wave-
lengthλex. It is worth mentioning that the fluorophore’s brightnessQ(~r) saturates for high excitation
intensities. Usually, the excitation intensity is kept in the linear regime (well below saturation); oth-
erwise, saturation effects would introduce artifacts in the recorded photon traces.

In general, the fluorophore’s brightnessQ(~r) varies with position. Particularly, the fluorophore’s
photophysical parameters become distance-dependent neara surface, as the presence of the surface
modifies the local density of states, and consequently also the transition rates between the fluo-
rophore’s electronic states(18, 19). Additionally, the proximity of the fluorophore to the dielectric
surface, modeled as a dipole emitter close to a dielectric substrate(20, 21, 22), results in a defor-
mation of the angular power density of the dipole emission, thus altering essentially the collection
efficiencyCEF(~r).

Figure 2 depicts the calculated radiation profile of a fluorophore at the coverslip–sample inter-
facez= 0. The fluorophore is located at the origin of the coordinate system with a dipole moment
~µ0 ‖ (1,0,1). The polar plot indicates the anisotropic and asymmetricangular power density. Thin
straight lines represent the critical angle of refraction in the coverslip (z< 0) and thick lines show
the radiated power density in thex = 0 andy= 0 planes. For comparison, the power density of an
identical dipole~µ0 in an isotropic environment is shown in thin lines.

In close vicinity to the coverslip, the dipole ”senses” the higher refraction index of the coverslip
and radiates power into the coverslip not only at sub-critical angles but also at super-critical angles.
This effect stems from the evanescent coupling of the dipole’s near field to propagating waves in the
coverslip. The power radiated at super-critical angles significantly enhances the total power radiated
into the coverslip. However, wave propagation in the samplespace is diminished due to destructive
interference between the direct radiation and the back-reflection at the interface.

2 The pinhole transmission efficiency is frequently approximated by convolving the projected pinhole with the point-
spread function of the collection optics. However, a complete wave-optical calculation has to account for the anisotropic
emission of fluorophores close to a surface.

3 The productC(~r)T(~r) is the so-called collection efficiency functionCEF(~r ).
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Figure 2: Anisotropic dipole radiation profile modeling a fluorophore at a glass–water interface.
The critical angle is indicated by straight lines. Depending on distance and dipole orien-
tation, this radiation profile shows a pronounced anisotropy and asymmetry.

Figure 3 compares the power collection efficiency of two optical collection schemes, system
I, a trans-illumination scheme and system II, an epi-illumination scheme. The power collection
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Figure 3: Collected power versus fluorophore position. The glass coverslip (z< 0) has a refraction
index of 1.520 and the water sample 1.335, respectively. In the region of an evanescent
excitation field (z< λex/3), the trans-illumination setup I with a NA of 1.20 collects less
power (dotted curve) than the epi-illumination reference system (P0 ≡ 1), whereas the
epi-illumination setup II with a NA of 1.45 collects two times more power (solid curve).
The enhanced power collection of system II compared to system I is represented by the
dashed curve.

efficiency is computed with respect to system 0 gathering the power P0 from a randomly oriented
fluorophore located at a distancez> 0 from a glass–water interface using a 1.20NA water immersion
objective positioned atz< 0. The dotted line describes the fluorescence powerP1 collected by
system I, consisting of a 1.20NA water immersion objective positioned atz > 0. The observed
undulation stems from interference of direct and reflected fluorescence radiation at the interface.
Note that this optical collection configuration is commonlyemployed in prism-based evanescent
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field excitation setups(23). The solid curve shows the fluorescence powerP2 collected by system II
comprising a 1.45NA oil immersion objective positioned atz< 0. The exponential decrease (up to
z≈ λ f l) results from the reduced coupling of the fluorophore emission located far from the interface.
Finally, the enhancement factorP2/P1 is plotted in dashed line. It is notable that forz< λex/3,
the epi-illumination setup II achieves a two-fold increasein power collection efficiency compared
to the trans-illumination setup I. This difference is caused by the increased radiation towards the
coverslip and the high collection efficiency of the high NA objective collecting the substantial light
contribution beyond the critical angle.

Figure 4 depicts brightness profilesQ(~r) of an evanescent field epi-illumination scheme em-
ploying a 1.45NA oil immersion objective focused at the glass–water interface atz= 0 (system
II). Using Equation (1), the brightness calculations were performed assuming excitation and aver-

Figure 4: Brightness profiles Q(~r) at the coverslip–sample interface. The iso-surfaces Q(~r) equal
e−1, e−2, e−3 and e−4 of the maximum brightness.

age emission wavelengths ofλex= 488nm and̄λ f l = 525nm, respectively, and a projected pinhole
diameter of 0.5µm at the glass–water interface. Figure 4a is computed for an evanescent field ex-
citation on a circular area of 16µm diameter (c.f. figure 5a). This results in a cylindrical sampling
volume of approximatelyπ(0.3µm)20.1µm. Figure 4b shows the calculations for a linearly polarized
field focused to a diffraction-limited spot at the glass–water interface (c.f. figure 5b), resulting in a
hemi-ellipsoidal sampling volume of 0.4µm and 0.3µm semi-axes and az-axis dimension of 0.2µm,
respectively.

The effective sampling volumeVe f f is determined by integratingQ(~r) over the entire volume
(24, 25), that is

Ve f f =

($
Q(~r)d~r

)2

/

$
(

Q(~r)
)2 d~r (3)

yielding 39al for total internal reflection (TIR) excitation and 22al for confocal excitation(26, 27,
28). For comparison, confocal excitation with a 1.20NA water immersion objective yields a sam-
pling volumeVe f f ≈ 250al in liquid. Therefore, FFS at the surface measures particle concentrations
in the range up to≈ 1µM instead of≈ 100nM in liquid with state-of-the-art instrumentation.

Fluorescence correlation spectroscopy

In this sub-section, we introduce an important member of FFS, namely fluorescence correlation
spectroscopy (FCS). FCS is based on the temporal intensity auto- or cross-correlation analyses of
the photon traces(1). Whereas auto-correlations obtained from single photon traces yield informa-
tion about particle mobility, particle concentration, as well as kinetics of other fluorescence fluc-
tuation sources, cross-correlations computed using two photon traces provide information mainly
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about correlated particle motions and binding kinetics. Incoincidence studies, the auto- and cross-
correlations are simultaneously measured, enabling, for example, the evaluation of the fraction of
bound particles in binding/unbinding experiments. The temporal correlation functionGm×n(τ) is
given by

Gm×n(τ) =
〈Im(t)In(t+ τ)〉
〈Im(t)〉〈In(t)〉

= (T − τ)

T−τ
∫

0

Im(t)In(t+ τ)dt

T−τ
∫

0

Im(t)dt ·
T
∫

τ

In(t)dt

(4)

with τ being the lag time,T the measurement interval, andIm andIn the count rates (intensities) in
the detection channelsmandn, respectively. For example,GA×A is the temporal auto-correlation of
a single channel A, andGA×B is the temporal cross-correlation between channels A and B.

It is important to point out that FFS methods assume that the observed process is stationary in
time and position, i.e. at steady state.4 However, FFS experiments are usually carried out assuming
that the process issufficientlystationary in time that is the sample does not alter significantly during
the measurement. Position stationarity is requested primarily if the observation point is scanned
during the measurement.

Typically, parameterized model equations are used for describing the temporal correlations
Gm×n(τ). For instance, model equations of temporal auto-correlations are usually given by

G(τ) =G∞+G0D(τ)K(τ)

(

1+
Pt

1−Pt
exp

(

− τ
τt

))

(5)

whereG∞ ≈ 1 is the correlation amplitude at infinite lag time andG0 the amplitude of the particle
motion.D(τ) represents diffusion/flow processes andK(τ) reads for kinetic processes (e.g. chemical
reactions). Finally,Pt andτt are the triplet probability and the correlation time of the triplet state,
respectively.

Dual-color total internal reflection FCS setup

Total internal reflection FCS proved to be a versatile tool for studying particle motion and pho-
tophysics on a single molecule level near a substrate. Its outstanding performance due to the
fluorophore-substrate interaction makes epi-illumination TIR-FCS a method of choice for biolog-
ically driven applications at the surface, for instance, membrane studies and enzymatic reactions.
Very recently, we proposed a new setup for dual-color TIR-FCS (16, 17).

Figure 5 outlines the dual-color epi-fluorescence setup allowing both TIR and confocal exci-
tation. A 18mW HeNe laser (633nm: LHRP-1701, Laser 2000, Weßling, Germany) and a 22mW
solid-state laser (488nm: Protera™ 488-15, Novalux, Sunnyvale, CA) provided two linearly polar-
ized beams with 633nm and 488nm wavelength, respectively. These beams were expanded to an
e−2 diameter of≈ 2mm and collinearly aligned to the microscope objective (BE& BS: 2.5× beam
expanders & periscope beam steerers). The laser powers werecontrolled by neutral density filters.
Laser-line clean-up filters (CF: Chroma5 Z488/10x (blue); Chroma Z633/10x (red)) assured spec-
trally pure excitations, which were combined by a dichroic mirror (BC: Chroma Z488bcm). An

4 It is assumed that the investigated sample is ergodic, i.e. the temporal average equals the ensemble (spatial) average.
5 Chroma Technology Corp., Brattleboro, VT
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Figure 5: Dual-color TIR-FFS setup with confocal and evanescent epi-illumination at the
coverslip–sample surface.

achromatic lens (FC:f = 130mm) focused the beams into the back-focal plane (BFP) of the high
NA oil immersion objective (α-Plan-Fluar 100×1.45 with Immersol™ 518F, Carl Zeiss Jena, Jena,
Germany), which resulted in circular areas withe−2 diameters of≈ 16µm (blue) and≈ 20µm (red)
at the coverslip–sample interface, respectively. In the BFP, a lateral beam focus offset of≈ 2.3mm
resulted in a super-critical angle illumination, i.e. in anevanescent field excitation. The sample was
a droplet (containing biomolecules in low concentration) on a 150µm thick glass coverslip mounted
on axyz-translation stage (ULTRAlign 561D withµDrive Controller ESA-C, Newport Corp., Darm-
stadt, Germany).

In this epi-illumination setup, the fluorescent light was collected with the same high NA ob-
jective, focused onto the pinholes and detected via the single photon detectors. The pinholes were
realized by two multimode fibers with a core diameter of 50µm (ASY50/105 silica fibers, Thorlabs
Inc., Grünberg, Germany). A dichroic mirror (BS: Omega6 DML625) separated the green and red
fluorescence light, whereas the combination of the main dichroic mirror and band-pass filters (BF:
Chroma HQ540/80m and Omega 520DF40 (green); Chroma HQ690/80m and Omega 685DF70

6 Omega Optical Inc., Brattleboro, V
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(red)) blocked the back-reflected laser light by more than 10orders of magnitude. The fluorescence
light was detected by fiber-coupled single photon counting modules (APD: SPCM-AQR-14-FC,
PerkinElmer Optoelectronics, Wiesbaden, Germany), whosesignals were recorded and correlated
with a USB hardware correlator (Flex02-08D, Correlator.com, Bridgewater, NJ) linked to a stan-
dard PC. Within this setup, the focusing lens, theλ/4 plate (PL: OWIS, Staufen, Germany) and
the main dichroic mirror (DM: Omega DM488/633) combination was laterally shifted by a linear
translator, thereby positioning the beam foci off-axis in the BFP of the objective. This allows an
independent excitation angle adjustment while keeping thebeams focused on the BFP of the objec-
tive. As already mentioned, the configuration can easily be changed to a confocal epi-illumination
by removing the focusing lens and by centering the collimated beams in the BFP.

Applications from photophysics to life sciences

Single molecule coincidence assay measured with dual-color TIR-FCS

A synthetic binding assay based on free Rhodamine Green (RhG), Cyanine5 (Cy5) fluorophores and
a 40mer double-stranded desoxyribonucleic acid (dsDNA) labeled with Alexa488 and Cy5 (Zeiss
cross-correlation standard) was investigated using the dual-color TIR-FCS system(17). The laser
settings were optimized with the dsDNA sample, whereas the background was measured using a
NaCl/EDTA/TRIS pH 8.0 buffer. Different mixtures of the double-labeled dsDNA solution with a
solution of 9nM RhG/ 50nM Cy5 were investigated and measured during 20s. Plasma cleaning of
the coverslips was found to be a necessary processing step and improved the SNR due to a strong
suppression of unspecific binding at the glass surface.

The amplitudes of the experimental auto-correlation curves were corrected for afterpulsing and
for background to avoid systematic biases(28). The following model equation was used for the FCS
analysis of these three diffusing species:

Gmn(τ) =Gmn∞+
1
2

(

1− Bm

Im

)(

1− Bn

In

) ∑

QmiQniNi Dmni(τ)
∑

QmiNi ·
∑

QniNi
(6)

+Gmntexp

(

− τ
τmnt

)

Here, indicesm andn represent the green and red detection channels; hence,Ggg andGrr are the
auto-correlations andGgr the cross-correlation.B is the average background count rate andI the
average total count rate.B and I were used for background correction of the diffusion amplitude.
The indexi represents the diffusing species:g for RhG, r for Cy5 andc for the dsDNA.Qmi is
the average brightness in channelm of speciesi, Ni are the average number of molecules in the
sampling volumes.QmiQniNi is the joint count rate of speciesi in both detection channels, whereas
QmiNi andQniNi are the count rates in either channel.Gmnt andτmnt are the amplitudes and the
correlation times of photophysical relaxations, such as triplet state population or isomerization. It
was assumed thatτmnt is much shorter than the diffusion times, which allows writing the triplet
contribution as an additional term, thus simplifying the model. Dmni describes the diffusion and is
given by

Dmni(τ) =

(

1+
τ

τixy

)−1 (√

τ

πτiz
+

(

1− τ
2τiz

)

erfcx

(√

τ

4τiz

))

(7)
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whereτiz andτixy are the axial and lateral diffusion times of speciesi, respectively, and the scaled
complementary error function reads as erfcx(x) = exp(x2)erfc(x). A multidimensional least-squares
Gauss-Newton algorithm was used to fit the experimental datato the above model equations.

Figure 6 demonstrates the auto- and cross-correlation curves obtained for the dsDNA sample.
With a mixture of free fluorophores, the cross-correlation amplitude (Gbr ≈ 1) was very small com-
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Figure 6: 2C-TIR-FCCS correlation curves and fits. Grr , Gbb and Gbr > 1 were measured with dou-
bly labeled dsDNA. Gbr ≈ 1 was measured with a solution of RhG and Cy5 fluorophores.

pared to the auto-correlation amplitudes. Thin solid linesshow the fits with the model equations
(6).

For τ > 10µs, the fit residuals were lower than 10−2. For smaller lag times, shot noise and
afterpulsing reduced the signal to noise ratio. The measured fraction of dsDNA scaled linearly
with the mixed fraction from≈ 1% (no dsDNA) to≈ 28% (only dsDNA) with a relative scatter
of ≈ ±15%. The measured fraction was at best one third of the mixed fraction due to an excess
of molecules with a single green label, possibly further enhanced by photobleaching of the red
label during the two-color excitation(29). The overlap of the sampling volumes was estimated to
be≈ 60%, which is close to the theoretical maximum. To reduce theinfluence of photobleaching,
we used excitation intensities of≈ 10µW/mm2. The molecular brightness was about two times
higher compared to a confocal epi-illumination employing a1.20NA water immersion objective at
identical excitation intensities(16). The diffusion times of the dsDNA wereτz ≈ 51µs axially and
τxy ≈ 2.3ms laterally. With an evanescent field depth of 160nm and a waistradius of 370nm, the
diffusion constant was calculated to beD ≈ 1.5 ·10−7cm2/s, which is about 22% of the estimated
diffusion constantDDNA ≈ 6.8 · 10−7cm2/s for a rod-like molecule with 24Å diameter and 140Å
length. We attribute the differences mainly to an increased hydrodynamic drag near the interface
and unspecific binding (ionic interaction between DNA and coverslip).

This study demonstrated dual-color single molecule FCCS measurements based on epi-
illumination TIR. This TIR-FCCS concept offers distinct advantages to confocal FCCS for co-
incidence assays at solid/liquid surfaces, in particular by virtue of the much higher fluorescence
collection efficiency and the high confinement of the excitation field at the surface.
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Single enzyme reaction kinetics measured with TIR-FFS

We investigated the kinetics of the catalytic cycle of single horseradish peroxidase enzymes when
hydrogen peroxide (H2O2) as an electron donor is processed for oxidizing (dihydro)Rhodamine
123, thereby generating Rhodamine 123 (Rh123)(30 and references therein).

Horseradish peroxidase is a 44kDa heme protein, which efficiently catalyses the decompo-
sition of H2O2 in the presence of hydrogen donors. For these experiments, we used the fluoro-
genic substrate (dihydro)Rh123 as hydrogen donor. After oxidation, it yields the highly fluorescing
Rh123. The enzyme, the substrate and the enzyme-substrate complex are non-fluorescent. How-
ever, the product and the enzyme-product complex are fluorescent. For each catalytic cycle, two
(dihydro)Rh123 are bound to the horseradish peroxidase andturned over into Rh123, which finally
dissociate from the enzyme. Edman and Rigler(30)suggested that the enzyme retains some confor-
mation memory resulting in a fluctuating enzyme activity, which is non-Markovian by nature. In a
simplified model, the enzyme processes the substrate at a very high rate if it runs along a precondi-
tioned reaction pathway, which is supposed to correspond toan ”active conformation”. In contrast,
the enzyme processes the substrate at a very low rate if following a sub-optimal reaction pathway
i.e. the ”inactive conformation”. It is supposed that once apathway is adopted it favors the substrate
processing due to some persistent structural information (conformation memory) retained between
consecutive catalytic cycles. Overall, this leads to a fluctuating processing rate whenever the en-
zyme is changing the pathway i.e. the catalytic cycle. The production rate of a single enzyme can
be observed by detecting the Rh123 emission at the single enzyme-single molecule level. As the
evanescent excitation confines the excitation to the surface-immobilized enzyme, the background
is efficiently reduced, which translates in an increased SNR when measuring the enzyme activity.
For illustration, figure 7 shows a typical photon trace during a short interval. Fluorescence bursts
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Figure 7: Photon trace of a single horseradish peroxidase producing Rh123.

indicate periods of high enzyme activity. Interruptions are due to inactive periods(31, 32).

Membrane protein detection by image correlation microscopy

Sinner et al. recently published a novel method for in vitro synthesis of complex mammalian mem-
brane proteins into artificial planar lipid membrane structures. The cellular extract of rabbit reticulo-
cytes contains the protein synthesis machinery for de novo synthesis of an olfactory receptor species
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starting from the mere DNA from the receptor. We are investigating the density of the inserted re-
ceptor proteins by image correlation microscopy(33)using evanescent excitation at the surface. For
instance, figure 8 shows the fluorescently labeled antibodies tagging affinity labels of the individ-
ual membrane proteins. The excitation area has a diameter ofabout 20µm. High-resolution image

Figure 8: Image of labeled membrane proteins inserted into an artificial planar membrane surface.

correlation microscopy, i.e. the spatio-temporal auto-correlation of the membrane proteins, yields
information about the spatial protein distribution (incorporation density) as well as the protein mo-
bility (diffusion in the membrane)(34).

Conclusions

Dual-color total internal reflection fluorescence fluctuation spectroscopy provides substantial im-
provements compared to other existing confocal or evanescent illumination FFS setups used for
single molecule studies at surfaces. Evanescent field excitation by total internal reflection at the
coverslip–sample interface and the enhanced fluorescence detection efficiency within the evanes-
cent field are major benefits for investigating biological processes and materials immobilized on
glass slides. Fluorescent labeling of molecules in combination with very efficient fluorescence de-
tection features a high signal to noise ratio for single molecule detection and imaging. In addition,
dual-color excitation and detection improve the selectivity in coincidence measurements.
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Fast focus field calculations
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Abstract: We present a fast calculation of the electromagnetic field near
the focus of an objective with a high numerical aperture (NA). Instead of
direct integration, the vectorial Debye diffraction integral is evaluated with
the fast Fourier transform for calculating the electromagnetic field in the
entire focal region. We generalize this concept with the chirp z transform
for obtaining a flexible sampling grid and an additional gainin computation
speed. Under the conditions for the validity of the Debye integral repre-
sentation, our method yields the amplitude, phase and polarization of the
focus field for an arbitrary paraxial input field on the objective. We present
two case studies by calculating the focus fields of a 40× 1.20 NA water
immersion objective for different amplitude distributions of the input field,
and a 100× 1.45 NA oil immersion objective containing evanescent field
contributions for both linearly and radially polarized input fields.

© 2006 Optical Society of America

OCIS codes: (220.2560) Optical design and fabrication, focus; (260.1960) Physical optics,
diffraction theory; (070.2580) Fourier optics and optical signal processing, Fourier optics;
(180.0180) Microscopy.
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1. Introduction

The plane wave spectrum (PWS) method is a well-known and efficient technique for calculating
the propagation and diffraction of electromagnetic (EM) fields. Its efficiency lies in the ability
to propagate EM fields from one plane to another using the fastFourier transform (FFT).

In microscopy this concept is the essence of the Debye approximation and is often used for
the calculation of the EM field [1, 2, 3] near the focus of high numerical aperture (NA) objec-
tives. Török et al. considerably expanded this concept for studying the focal field distribution
and its distortions in stratified media commonly encountered in optical microscopy [5]. For a
general and historical review on diffraction theory the reader is referred to Stamnes [6].

However, for focal field calculations in microscopy, in particular for optical systems with
high NA, this classical problem turns into a computational challenge due to the highly oscil-
latory behavior of the involved functions. In addition, polarization effects cannot be neglected
rendering this calculation long and tedious. Recent techniques in microscopy and tomography
such as the extended focus field [7], microscopy beyond the Abbe resolution limit and point-
spread function engineering as advanced by S. Hell and his group [8], or rigorous ab initio
calculations for fluorescence fluctuation spectroscopy [9]amplify the demand for fast focal
field calculations.

In this paper we revisit the Debye approximation and proposea novel and flexible implemen-
tation of the Debye integral incorporating the effects of amplitude, phase and polarization in an
overall manner. This new implementation is particularly suited for rapid numerical evaluation
and requires substantially less effort for calculating the amplitude, phase and polarization of an
EM field distribution generated by a high NA microscope objective.

The organization of this paper is as follows: Section 2 introduces the Debye approximation,
i.e. the general framework and formulae used in the remainder of this work. Section 3 outlines
the implementation based on the fast Fourier transform (FFT) and establishes the sampling and
border conditions for obtaining accurate numerical results. Finally, section 4 presents selected
examples, firstly the calculation of the EM field for a 40×1.20 NA water immersion microscope
objective, and secondly, for a 100× 1.45 NA oil immersion objective taking into account the
evanescent field contribution.

2. The Debye diffraction integral as Fourier transform

This section establishes the basic formalism based on the Debye diffraction integral and the
formulation of this integral as a Fourier transform. The basic optical layout and the respective
coordinate systems are shown in Fig. 1. We assume that this optical setup, i.e. the imaging
system obeys Abbe’s sine condition (as usually fulfilled formicroscope objectives).

A coherent, monochromatic wave field parallel to the opticalaxis crosses the aperture stop
A, propagates towards the principal planeP1 and is transferred to the principal planeP2. At
P2, the wave field is refracted and focused towards the focal point F2. The pointP lies on the
principal planeP2 and illustrates the focusing of a ray atP2 towards the focal pointF2. The
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Fig. 1. Optical setup. The objective is represented by the aperture stopA with radiusR, the
principal planesP1 andP2 with vertex pointsV1 andV2, and the fociF1 andF2. The focal
length f is given asf = F1V1. The pointP is the intersection point of a ray withP2 and
shows the relation of the positionr atP1 of the incident wave~Ei to the propagation angleθ
atP2 of the transmitted wave~Et .

spherical surfaceP2 is centered atF2 and the deflection angleθ at the positionP is given by

sinθ =
r
R

NA
nt

(1)

wherer is the off-axis coordinate of the incident wave,R the aperture stop radius,NA the
numerical aperture of the objective andnt the index of refraction behind theP2 surface. In our
setup, the apertureA is placed in the back focal plane, which results in a telecentric imaging
system.

Instead of the principal planes, pupils are frequently usedfor modeling the wave propagation
through the objective. However, diffraction at the aperture stopinside the objectiveis not obvi-
ous if the incident wave is transferred directly from the entrance pupil to the exit pupil. Within
our representation, the wave propagation from the apertureplaneA to the principal planeP1

is easily calculated with the PWS method or in most cases based on classical Fourier optics
principles.

The incident field~Ei (r,φ) at P1 is decomposed into a radial component (p-polarized) and a
tangential component (s-polarized). The unit vectors for p- and s-polarization are

~ep =


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cosφ
sinφ

0
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






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
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



and ~es =




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




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



−sinφ
cosφ

0
















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

(2)

whereφ is the azimuth angle around thez-axis. Upon transmission, the unit vector~ep is de-
flected byθ and becomes

~er =





















cosφcosθ
sinφcosθ

sinθ








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
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

. (3)
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Hence, the amplitude, phase and polarization of the transmitted field atP2 is

~Et(θ,φ) = tp

(

~Ei ·~ep

)

~er + ts
(

~Ei ·~es

)

~es (4)

wheretp(θ,φ) andts(θ,φ) are the transmission coefficients (viz pupil function, apodization) for
p- and s-polarization, respectively. Accumulated phase distortions, i.e. aberrations atP2, as well
as attenuations, i.e. amplitude factors, are integrated inthe complex parameterstp andts. As
we assume the incident field to be paraxial, the axial component Eiz is small against the lateral
componentsEix,y and can be neglected even if the incident phase is not constant. In the Debye
approximation, the transmitted field~Et is theplane wave spectrumof the focus field~E near
F2. Hence, the electric field~E at a point (x,y,z) is obtained by integrating the propagated plane
waves, viz

~E(x,y,z) = − i f
λ0

"

Ω

~Et(θ,φ)ei(kzz−kxx−kyy) dΩ

= − i f
λ0

Θ
∫

0

sinθ

2π
∫

0

~Et(θ,φ)ei(kzz−kxx−kyy) dφdθ .

(5)

The phase factoreikzz accounts for the phase accumulation when propagating alongthez-axis,
whereas the terme−i(kxx+kyy) represents the phase difference of the wave front at off-axis points
(x,y,z) with respect to the on-axis point (0,0,z). The integration extends over the solid angleΩ
under whichP2 is observed atF2, i.e. sinΘ = NA/nt. The wave vector~kt is given in spherical
coordinatesθ andφ by

~kt(θ,φ) = k0nt












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
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−cosφsinθ
−sinφsinθ

cosθ





















where k0 =
2π
λ0
. (6)

The evaluation of Eq. (5) is usually performed with a direct numerical integration taking into
account the coordinate transformations, which results in the Richard-Wolf integral representa-
tion [2, 3]. Instead of the common ansatz, a (θ,φ)-sampling keeping dΩ= sinθdθdφ constant is
obtained by using cosθm = 1−m∆Θ with m∈ N. Form∈ {1...M} andn ∈ {1...N}, the sampling
grid is defined by

θm= arccos

























1−m
1−

√

1−NA2/n2
t

M

























and φn =

(

n−
1
2

)

2π
N
. (7)

At θ = 0, a sampling point with a weight of dΩ = πθ21/4 is added. Besides minimizing the
number of sampling points alongθ, the calculation of the integrand and its integration can be
merged in a single matrix product resulting in a further reduction of the computation time [4].

The outlined evaluation of the Debye diffraction integral (5) is quite fast, but still much
slower than the conventional computation of a Fraunhofer diffraction integral. However, Eq.
(5) can be easily rewritten as a Fourier transform by splitting the phase factor into a lateral and
an axial term, and by performing the integration overP1 instead ofP2. Using Eq. (1) and (6),
the integration step dΩ for a sampling overP2 is projected ontoP1, which yields

dΩ =

(

NA
Rnt

)2 r dr dφ
cosθ

=

(

NA
Rnt

)2 dxdy
cosθ

=
1

k2
t

dkxdky

cosθ
. (8)
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Insertion of this sampling step into Eq. (5) results in

~E(x,y,z) = − i f

λ0k2
t

"

r<R

(

~Et(θ,φ)eikzz/cosθ
)

e−i(kxx+kyy) dkxdky . (9)

Extending now the integration over (kx,ky) ∈R2 by setting| ~Et|= 0 for r >Rallows to rewrite the
Debye diffraction integral as a Fourier transform of the weighted field~Et, which finally results
in

~E(x,y,z) = − i f

λ0k2
t

F
(

~Et(θ,φ)eikzz/cosθ
)

. (10)

This is the main result of this work. The Debye integral is nowexpressed as a Fourier transform
of the field distribution in the apertureA. The similarity of this expression with the conventional
Fraunhofer diffraction integral is obvious. For a low NA imaging system, theweighting factor
is approximated by 1/cosθ ≈ 1 and Eq. (10) is equivalent to the Fraunhofer diffraction integral.

3. Numerical implementation

The numerical implementation is straightforward. A fast Fourier transform (FFT) of the
weighted field atP2 is used for the numerical evaluation of Eq. (10). For an equidistant sam-
pling kx = m∆K andky = n∆K with ∆K = k0NA/M, viz M sampling points over the aperture
radius, the sampling points onP2 are

θmn= arcsin

(

∆K
kt

√

m2+n2

)

and φmn= arctan
( n
m

)

for |m|, |n| ≤ M. (11)

Multiplication of the integration step (∆K)2 with the prefactor of Eq. (10) yields the numerical
implementation of Eq. (10) as

~E(xkl,ykl,z) = −
iR2

λ0 f M2
FFT

(

eikzmnz ~Et(θmn,φmn)/cosθmn

)

. (12)

Typically, the FFT is more than 100× faster than the direct integration of Eq. (5) with matrix
multiplication. A good accuracy is achieved for 4M2 & 100×100 sampling points overΩ, but
care has to be taken in order to avoid artifacts due to sampling and aliasing. Subsequently, the
necessary conditions for obtaining accurate results are investigated [10].

3.1. Sampling condition

The propagation factoreikzz in Eq. (10) has to be calculated with high resolution for accurate
results [11]. This imposes a condition on the phase discretization, i.e. the phasekzz must not
change by more thanπ between neighboring sampling points in the aperture planeA. With

kz =

√

k2
t −k2

xy, the sampling condition can be expressed as

max

∣

∣

∣

∣

∣

∣

d(kzz)
dkxy

∣

∣

∣

∣

∣

∣

=max

∣

∣

∣

∣

∣

∣

z
kxy

kz

∣

∣

∣

∣

∣

∣

=max|ztanθ| <
π

∆K
(13)

where∆K = k0NA/M and max|tanθ| = NA/
√

n2
t −NA2. This immediately leads to a condition

for the minimum number of sampling points

M >
2NA2

√

n2
t −NA2

|z|
λ0
, (14)
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solely determined by the system parameters. For the numerical evaluation, an oversampling
of about 3× is sufficient for improving the accuracy of the result. In addition,a lower limit
of M & 50 reveals necessary for an accurate sampling ofφ. Deviations from these sampling
conditions result in granular artifacts as seen in Fig. 3(a). As a typical value forM, we have
chosenM = 125 for the focus field calculation of a 1.20 NA water immersion objective (see
the example 4.1). A high accuracy is obtained for|z| . 25λ0, corresponding to≈ 12 µm at a
wavelength of 488 nm.

0

0

0 0

Fig. 2. Two-dimensional fast Fourier transform FFT
(

~Et/cosθ
)

= ~E(x,y,0) limited to the

region of interest (dotted square). Left: Field~Et , aperture matrix padded with zeros (dotted
rectangle). Center: FFT along the first dimension, cropped and padded with zeros. Right:
FFT along the second dimension. The arrows indicate the transformed dimension.

3.2. Sampling step

The focus field~E is obtained for the sampling positions (m∆x,n∆y,z). With ∆k = 2π/N∆r and
∆r = f∆K/kt, the sampling step in thexy-plane is

∆x= ∆y= f
∆k
kt
=

M
N
λ0

NA
(15)

whereN > 4M is the number of FFT sampling points per transformed dimension (see also Fig.
2, where the arrows span over 2M+1 samples and the padded dimension overN samples). For
optimal FFT performance, it is best to setN = 2s with s∈ N. Respecting the condition (14),M
can be adjusted to fit∆x and∆y. Along thez-direction, the sampling can be chosen arbitrarily
by respecting the limits given above.

3.3. Aliasing suppression

Due to the Debye diffraction integral expressed in Eq. (10), the field~Et is the plane wave
spectrum of the focus field~E. Usually, the smallest area (aperture matrix) containing~Et , 0 is
transformed (see Fig. 2). The spectral producteikzz× ~Et/cosθ in Eq. (10) represents a spatial
convolution~E = F

(

eikzz
)

∗ F
(

~Et/cosθ
)

. In general, the result of the convolution is non-zero
on an area larger than the aperture size, which may cause aliasing [12]. Therefore, the aper-
ture matrix is enlarged by zero padding to at least twice its dimensions before performing the
transform. In a final step, simple cropping of the transform output removes the padding.

Because we are only interested in the field near the focus, typically over a range of several
wavelengths, we limit the computation of the FFT to this region of interest (Fig. 2). The trans-
mitted field ~Et is padded with zeros along the first dimension. In this dimension, the FFT is
calculated and the result cropped. Along the second dimension, the same procedure is applied
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on the intermediate result. Zero padding simultaneously suppresses aliasing and refines the
sampling grid for the focus field. Using two one-dimensionalFFTs with intermediate cropping
and zero padding minimizes the numerical processing cost.

3.4. Aperture rim smoothing

(a) Sharp, binary sampling (b) Smooth sampling

Fig. 3. Spectrum (logarithmic scale) with binary sampling of the aperture rim (a), respec-
tively with smoothing as given by Eq. (16) (b). Binary sampling leads to discretization
errors at the aperture rim, which results in granular artifacts at high frequencies. Therefore,
(a) is only accurate at low frequencies over. 20% of the focal field. In (b) these artifacts
are almost suppressed for& 70% of the focal field.
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Fig. 4. Comparison of cross-sections through the ’sharp’ and ’smooth’ focal fields.

Figure 3 shows the spectra log|FFT(U)| for a circular aperture with radiusR. As already
stated, the fieldU vanishes outside the aperture forr > R, whereas inside the aperture for
r < R, the field is given asU = U0. This discretization leads to a serrated aperture rim inducing
granular artifacts at higher frequencies. Hence, the expected Airy function is only seen at low
frequencies (central region in Fig. 3(a), please note the logarithmic scale). A smooth sampling
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of the aperture rim improves the accuracy of the spectrum [13]. In Fig. (Fig. 3(b)) the rim was
sampled with the hyperbolic tangent as

U(r) =
1
2

(

1+ tanh

(

1.5
∆R

(R− r)

))

U0 (16)

where∆R= R/30 was the sampling step. The granular artifacts are efficiently reduced and the
FFT approximates the Airy function with a good accuracy overa much larger area. Figure 4
shows a comparison of cross-sections of the spectra on the meridianky = 0. Overall, for values
|kx|> 60×2π/256∆R, the ’sharp’ spectrum shows granular artifacts, whereas the ’smooth’ spec-
trum approximates well the Airy function.

3.5. Generalization based on the chirp z transform

We demonstrated the importance of zero padding while respecting the sampling condition (14).
These constraints led to a minimal number of sampling pointsN = 2s for the FFT (s∈ N). The
corresponding number of sampling pointsM over the aperture radius often exceeds the ini-
tial guess based Eq. (14). In such cases, the chirp z transform (CZT) is computationally faster
than the FFT. In summary, the CZT (a) allows breaking the relationship betweenM andN, (b)
allows an implicit frequency offset, and (c) internalizes the zero padding. Applying this gener-
alization, we adapted the sampling step in the focus field independently of the sampling step in
the input field, introduced an additional shift of the regionof interest, and finally improved the
computational efficiency.

Let zm ∀m∈ [0,M−1] be a discrete representation of a spatial signalz(r =m∆r). The discrete
Fourier transform (DFT) at a frequencyk= n∆k ∀ n ∈ [0,N−1] is then obtained with

Fn =

M−1
∑

m=0

zme−imn∆k . (17)

The FFT is a particular case of the DFT with∆k = 2π/M∆r andN = M. For∆k < 2π/M∆r, a
zero padding is implicitly contained in Eq. (17). Comparingthe DFT with the CZT defined by

Zn =

M−1
∑

m=0

zma−mwmn (18)

yieldsa= 1 andw= e−i∆k for obtaining the DFT as a particular case of the general CZT.Setting
a= eik0 shifts the frequency domain byk0 (see above). Furthermore, Eq. (18) can be rewritten
as a convolution

Zn = wn2/2
M−1
∑

m=0

zma−mwm2/2 ·w−(n−m)2/2 =

((

zma−mwm2/2
)

∗
(

w−m2/2
))

wn2/2 (19)

that can be evaluated using two (M+N−1) point FFTs (a third one can be precomputed) [14].

Z = CZTa,w (z) = wn2/2FFT−1
(

FFT
(

zma−mwm2/2
)

· FFT
(

w−m2/2
))

(20)

Based on the CZT, our computation method can be extended for low NA systems or for focus
fields with a large axial span. In such cases, the sampling grid becomes distorted over the focus
depth [15, 16]. But within the framework of the CZT, this distortion can be compensated by a
non-linear scaling proportional to the effective NA under which the apertureA is observed atP2

from a point (0,0,z) on the axis. As a result, the sampling∆k depends upon the axial position
z, i.e.∆k(z) = ∆k(0) f /( f +z) with ∆k(0)= ∆k as defined before. Using the CZT, the additional
calculations remain restricted to the repeated computation of FFT

(

w−m2/2
)

becausew varies
now withz.
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4. Selected examples

This section presents example calculations for two high NA microscope objectives. In the first
example of a 1.20 NA water immersion objective, the variation of different amplitude distribu-
tions (apodization) in the apertureA are discussed. For the second example, a 1.45 NA oil
immersion objective was chosen as used in total internal reflection microscopy. The refraction
at a cover glass-water interface at the focus is added and theeffect of different polarization
distributions in the aperture planeA are discussed.

Before presenting these specific examples, the transmission coefficientstp and ts between
the principal planesP1 andP2 need to be defined. We present the microscope objective as an
optical system of only 2 optical interfaces and a convex interface into the immersion medium
nt. To this end, the three interfaces provide a physical model for deflection anglesθ ∈ [0,π/2).
The amplitude transmission efficiency, i.e. apodization, and the polarization are obtained based
on the Fresnel equations.

If the glass lens has an index of refractionng and the immersion mediumnt, the Fresnel
transmission coefficients are calculated for the succession of the air(na)–glass(ng)–air(na)–
immersion(nt) interfaces. The corresponding deflection angleθi j at each interface was chosen
proportional to the difference of the index of refraction, vizθi j ∝ |ni − n j |. With na = 1, the
Fresnel transmission coefficients are then

tp =
1
nt



















1−














2ng− (n2
g+1)cosθag

(n2
g−1)cosθag















2
















2−2nt cosθat

2nt − (n2
t +1)cosθat

(21)

for p-polarization and

ts=



















1−














n2
g−2ngcosθag+1

n2
g−1















2
















2−2nt cosθat

n2
t −2nt cosθat+1

(22)

for s-polarization, respectively.

4.1. 1.20 NA water immersion objective

Figure 5 shows the focus intensity for a nearly uniform and a Gaussian illumination in the
back aperture of a 1.20 NA water immersion objective. For∆x= ∆y= 20 nm,∆z= 50 nm and
M = 100, a 2.0 GHz Pentium 4 processor computed the field within a volume of 3µm×3 µm×
5 µm i.e. 150×150×100 sampling points in less than 40 seconds. Taking the symmetry into
account, the volume was further extended to 6µm×6 µm×10µm.

In Fig. 5(a), the aperture was overfilled and the resulting focus field shows the well-known
symmetry break of vectorial focus fields, for comparison theAiry profile was added. In Fig.
5(b), the aperture was underfilled to about 60% and the field becomes approximately gaussian.
Figure 6 shows the electric fields along two major axes through the focus. For an overfilled
aperture, the Airy profile (based on a scalar, paraxial approximation) is a good estimation of
the electric field along they-axis. For an underfilled aperture, the diameter of the central lobe is
≈ 25% larger but the side lobes vanish quickly. In both cases, the polarization leads to a larger
x-extension compared to they-extension.

Figure 7 and 8 show the intensity on the major planes through the focus. The polarization
dependent extensions of the lobes along the major axesx andy creates a transition zone where
the fringe contrast is diminished.
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(a) Overfilled aperture (b) Underfilled aperture

Fig. 5. Intensity distribution at the focus of a 1.20 NA waterimmersion objective for a
x-polarized laser beam with a wavelength ofλ0 = 488 nm. The aperture had a diameter
of 6.5 mm and thee−2 beam diameter was 10 mm (a) and 4 mm (b), respectively. The
iso-intensity surfaces show the surfacesI(x,y,z) = e−1...−4max(I ).
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Fig. 6. Electric field profiles along thex- andy-axes, respectively, for the 40× 1.20 NA
water immersion objective with overfilled and underfilled aperture. The full laser beam
power was 1 mW. The Airy profile is given for comparison.
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Fig. 7. Cross-sections through the focus intensity distribution of Fig. 5(a). The full laser
beam power was 1 mW.

10
4

10
5

10
6

10
7

10
8

10
9

−4

−2

0

2

4

−4 −2 0 2 4−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x [µm]

y
[µ

m
]

z [µm]

z
[µ

m
]

I
[W
/m

2
]

Fig. 8. Cross-sections through the focus intensity distribution of Fig. 5(b). The full laser
beam power was 1 mW.
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4.2. 1.45 NA oil immersion objective

As a second example, we calculate the focus field of an objective designed for total internal
reflection fluorescence (TIRF). The objective uses immersion oil with an index of refraction
matching the cover slip. Its NA of 1.45 is higher than the index of refraction of the sample
(ns = 1.33, aqueous solution). This generates a partially evanescent focus field at the cover
slip–sample interface. Depending upon the illumination ofthe aperture, the focus field can be
fully propagating or fully evanescent. A fully propagatingfield can be calculated easily with
the procedure outlined above. However, the evanescent fieldcontribution needs an additional
consideration for obtaining the total focus field.

First we determine the plane wave spectrum~Et at the immersion oil–cover slip interface.
Next, the refraction at this interface and the cover slip–sample interface is calculated in or-
der to obtain the plane wave spectrum~Es in the sample (water). Finally, applying the Fourier
transform on the weighted and propagated spectrumeikzz~Es/cosθ yields the focus field. As
before, the angleθ and the weighting factor 1/cosθ are calculated in the immersion oil. But
concerning the sampling condition, a specific issue relatedto the cover slip–sample interface
(14) needs to be considered. The highest anglesθ result in total internal reflection at the cover
slip–sample interface. At the critical angleθc = arcsin(ns/nt), kz vanishes. For higher angles,
kz takes an imaginary value and the sampling condition (14) is relaxed becauseeikzz becomes
just an amplitude factor. The problem arises atθc where the sampling condition (13) results in a
singularity. LetM′ be the number of sampling points overθ < θc. For avoiding this singularity
at θc, the sampling is chosen such that (M′ +1/2)∆K = ks, i.e. θc falls between two sampling
points. InsertingM = (M′+1/2)NA/ns,

kxy = ks
M′

M′ +1/2
and kz = ks

√
M′ +1/4

M′ +1/2
(23)

into Eq. (13) then yields a generalized sampling condition

M & 4nsNA
z2

λ2
0

. (24)

A 7× oversampling is used for improving the accuracy of the result, in particular at off-axis
points. In addition, a lower limit ofM & 100 was used for|z| → 0.

Because the field is calculated in the sample space,~kt is replaced by

~ks(θ,φ) = k0ns


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(25)

wherenssinθ′ = nt sinθ. The unit vector~er for p-polarization becomes

~er =





















cosφcosθ′

sinφcosθ′
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



















. (26)

Figure 9 shows the focus field of a 100×1.45 NA oil immersion objective. The aperture of the
objective was overfilled, resulting in a partially evanescent field at the focus, where the cover
slip–sample (water) interface was placed. As for the formerexample, the central lobe extends
less in they- than thex-direction for linear polarization (Fig. 9(a)). The focal volume is reduced
to about 1/8 compared to the former water immersion objective. Selecting a radially polarized
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(a) Linearx-polarization (b) Radial polarization

Fig. 9. Intensity distribution near the focus of a 1.45 NA oilimmersion objective for a laser
beam with a wavelength ofλ0= 488 nm. The aperture had a diameter of 5.5 mm and thee−2

beam diameter was 10 mm. The iso-intensity surfaces show thesurfacesI(x,y,z) = e−1...−4I(0)
in the sample space.
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Fig. 10. Cross-sections through the focus intensity distribution of Fig. 9(a). The full laser
beam power was 1 mW.

input field results in a rotationally symmetric focus field asshown in Fig. 9(b). On the optical
axis, the electric field becomes purelyz-polarized. For a distancez. 0.3 µm, thisz-component
is dominant. Further away from the cover slip–sample interface, thexy-components prevail,
which results in an annular field distribution.

The fine structure at the interface is due to the evanescent wave contribution with incidence
angles above the critical angle. For instance, Fig. 12 showsthe weighted fieldEs/cosθ for the
linear polarization. At the critical angle (NA= 1.33), the field amplitude approximately doubles,
hence marking the abrupt transition from propagating to evanescent fields.

5. Conclusions

We showed a fast and simple implementation of the vectorial Debye integral for calculating the
focus field of high NA objectives for arbitrary amplitude, phase and polarization distributions
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Fig. 11. Cross-sections through the focus intensity distribution of Fig. 9(b). The full laser
beam power was 1 mW.
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Fig. 12. FieldEs/cosθ of Fig. 9(a). ForNA< 1.33, the field corresponds to a free propaga-
tion in the sample space, whereas forNA> 1.33 an evanescent field is induced.

of the input field. The numerical evaluation with the fast Fourier transform is extremely fast and
allows a high flexibility of the input field. The result is accurate under the conditions for the
validity of the Debye integral representation of focused fields [17, 18] and the given sampling
conditions. For low NA, it converges quite naturally to a focus field given by the Fraunhofer
approximation. With the chirp z transform, we extended our calculations to low NA focus
fields requesting a non-linear scaling as shown by Li and Hsu [15, 16]. Table 1 summarizes the
performance of the different calculation methods on a personal computer.

In addition, we used a generalized pupil function (apodization) of high NA objectives taking
into account amplitude and polarization distributions. The pupil function incorporates wave
front aberrations as contained in real objectives as well asFresnel transmission coefficients.
Based on these Fresnel coefficients, it is straightforward to include wave propagation through
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Method Input fields,
constraints

Integration Output Computation time
(for 1003 points)

Classic Analytic functions
(rotational symmetry)

Quadrature of
Bessel functions

Points 20 min to hours

Direct Any, high NA
(polar sampling)

Matrix product Lines ≈ 30 min

FFT Any, high NA
(carteesian sampling)

FFT xy planes ≈ 1 min

CZT Any
(carteesian sampling)

CZT xy planes ≈ 30 s

Table 1. Performance of different calculation methods.

stratified media.
In summary, our method allows fast and accurate calculations of the focus field in the entire

focal region, which opens the path to fast simulations for point spread function engineering and
image deconvolution in three-dimensional light microscopy.
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Abstract. We present the development and first applica-
tion of a novel dual-color total internal reflection �TIR�
fluorescence system for single-molecule coincidence
analysis and fluorescence cross-correlation spectroscopy
�FCCS�. As a performance analysis, we measured a syn-
thetic DNA-binding assay, demonstrating this dual-color
TIR-FCCS approach to be a suitable method for measuring
coincidence assays such as biochemical binding, fusion,
or signal transduction at solid/liquid interfaces. Due to the
very high numerical aperture of the epi-illumination con-
figuration, our setup provides a very high fluorescence
collection efficiency resulting in a two- to three-fold in-
crease in molecular brightness compared to conventional
confocal FCCS. Further improvements have been
achieved through global analysis of the spectroscopic
data. © 2006 Society of Photo-Optical Instrumentation Engineers.
�DOI: 10.1117/1.2221714�

Keywords: fluorescence spectroscopy; laser-induced fluorescence;
correlation.
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Total internal reflection fluorescence microscopy �TIR-
FM� is an important tool in life science. Taking advantage of
a very thin ��100 nm� optical excitation depth formed by an
evanescent wave above a glass substrate, TIR fluorescence
detection achieves an exceptional axial resolution and allows
for the study of important cellular processes, in particular at
or near the cellular membrane.1 Prominent biological applica-
tions of TIR-FM include real-time in vivo observations of
dynamics of molecular motors,2,3 or of various membrane
trafficking events, such as vesicle fusion or signal transduc-
tion after receptor binding.4,5 To extend the sensitivity and
observation of such cellular assays, it is important to combine
TIR-FM with fluorescence measurement and single-molecule
fluctuation analysis. Fluorescence correlation spectroscopy
enables to expose biological reactivity such as binding events
on the basis of temporal fluctuations in the fluorescence emis-
sion of single molecules.6,7 Dual-color fluorescence cross-

correlation spectroscopy �FCCS� represents a further develop-
ment of fluctuation spectroscopy, which achieves a
significantly improved selectivity and applicability.8 FCCS in-
stitutes two differently colored labels and realizes the distinc-
tion between coinciding and separated occurrence of these
labels. It thus introduces a useful tool to monitor various bio-
logical assays including molecular binding between two dif-
ferently labeled binding partners. Typically, FCCS is based on
a confocal epi-illumination microscope with multicolor laser
excitation and single-photon detection. Nonetheless, for sev-
eral applications, TIR illumination can provide further ben-
efits, for instance when ligands interacting with receptors im-
mobilized onto a surface are to be studied.9–12 First, in TIR-
FCCS the molecules are only excited near the glass-sample
interface, which simplifies the discrimination between freely
diffusing and immobilized particles. Second, the most impor-
tant prerequisite for efficient single-molecule detection is a
high fluorescence count rate per molecule �CPM�. Using TIR
excitation and exploiting the anisotropic emission of the fluo-
rescence generated at the glass-sample interface, much higher
CPM can be extracted from the investigated molecules.13

In this work, we present for the first time a dual-color
excitation scheme for TIR single-molecule detection, which
enables us to perform FCCS at glass-sample interfaces with
high sensitivity. The improved performance of TIR-FCCS was
verified on a synthetic binding assay, including dual-labeled
double-stranded DNA molecules in aqueous solution, demon-
strating its potential for biological and cellular applications.

Figure 1 shows our dual-color TIR-FCCS setup. Two lin-
ear polarized laser beams were expanded to an e−2 diameter of
�2 mm and collinearly aligned to the microscope objective
�BE & BS; beam expansion 2.5��. The laser powers were
controlled by neutral density filters. An achromatic lens fo-
cused the beams into the back-focal plane �BFP� of the
high numerical aperture �NA� oil immersion objective
��-Plan-Fluar 100�1.45 with Immersoil™ 518F, Carl Zeiss
Jena, Jena, Germany�, which resulted in circular spots with
e−2 diameters at the cover slide-sample interface of �16 �m
�blue� and �20 �m �red�, respectively. In the BFP, a beam
foci offset of �2.3 mm from the optical axis resulted in a
super-critical angle illumination, i.e., a z-confinement below
100 nm resulting from the evanescent field excitation.

Due to the epi-illumination, the fluorescent light was col-
lected with the same high NA objective toward the pinholes
and the single-photon detectors. The pinholes were realized
by two multimode fibers with a core diameter of 50 �m. Di-
chroic mirrors and bandpass filters blocked the back-reflected
laser light by more than OD10 and provided an excellent fil-
tering of the green and red fluorescence. The fluorescence
photons were detected by fiber-coupled single photon count-
ing modules �SPCM-AQR-14-FC, PerkinElmer Optoelectron-
ics, Wiesbaden, Germany; ASY50/105 silica fibers, Thorlabs
Inc., Grünberg, Germany�, whose signals �number of photons
over time� were recorded and correlated with a USB hardware
correlator �Flex02-08D, Correlator.com, Bridgewater, New
Jersey�. A focusing lens, a � /4 plate, and a dichroic mirror
were moved in one block by a linear translator for adjusting
the position of the beam foci in the BFP of the objective. In
this way, the excitation angle could be adjusted without alter-
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ing the optical path length between the focusing lens and the
objective. The configuration can easily be changed to a con-
ventional confocal epi-illumination by removing the focusing
lens and by centering the collimated beams in the BFP.

As a synthetic binding assay, we used free rhodamine
green �RhG� and Cy5 fluophores, and a 40 base pair double-
stranded DNA labeled with Alexa488 and Cy5 �Zeiss cross-
correlation standard�. The laser powers were optimized with
the dsDNA sample and the background was measured with a
NaCl/EDTA/TRIS pH 8.0 buffer. The cross talk between the
detection channels was calibrated with free 10-nM RhG and
50-nM Cy5, respectively. For cross-correlation measure-
ments, different mixtures of the double-labeled dsDNA

sample and free 9-nM RhG/50-nM Cy5 solutions were used
and investigated with identical laser powers during a time
interval of 20 s. Plasma cleaning of the cover slides improved
the results due to a strong suppression of unspecific binding at
the glass surface.

For free diffusion the following model equation was
used:13

Gmn��� = Gmn� +
1

2
�1 −

Bm

Im
��1 −

Bn

In
�� QmiQniNiDmni���

� QmiNi � QniNi

+ Gmnt exp�−
�

�mnt
� .

Here, indices m and n represent the green and red detection
channels; hence Ggg and Grr are the autocorrelations of the
signals in the green and red detection channels, respectively,
and Ggr is the cross-correlation of both signals. The index i
represents the diffusing species: g for RhG, r for Cy5, and c
for the dsDNA. Also, B is the measured background count
rate, I is the total count rate, Qmi is the CPM in channel m of
species i, Ni are the number of molecules in the effective
sampling volume, Gmnt and �mnt are the triplet amplitudes and
the triplet correlation times, respectively, Gmn��1 are the
offsets at infinite lag time �, and Dmni describes the diffusion
and is given by13

Dmni��� = �1 +
�

�ixy
�−1�� �

��iz
+ �1 −

�

2�iz
�erfcx�� �

4�iz
�	

where �iz and �ixy are the axial and lateral diffusion times of
species i, respectively, and the scaled complementary error
function is erfcx�x�=exp�x2��erfc�x�. A multidimensional
least-squares Gaussian-Newtonion algorithm was used to fit
the experimental data to these model equations.

For these first experiments, only relative concentrations of
the species were of interest. Therefore, a unique diffusion
time was used, neglecting channel differences due to an im-
perfect overlap of the excitation and detection volumes. The
triplet term accounts for the triplet contribution in the initial
correlation amplitude G�0�.

Fig. 1 Dual-color TIR-FCCS setup. HeNe 633: 18-mW HeNe gas laser
�LHRP-1701, Laser 2000, Weßling, Germany�. Pr 488: 22-mW solid-
state laser �Protera™ 488-15, Novalux, Sunnyvale, CA�. BE & BS:
2.5�beam expanders and beam steerers. CF: laser-line cleanup filters
�Chroma Z488/10x �blue�; Chroma Z633/10x �red�; Chroma Technol-
ogy Corp., Brattleboro, VT�. BC: dichroic beam combiner �Chroma
Z488bcm�. FL: focusing lens �achromat f=130 mm�. L4: � /4 plate
oriented for maximum fluorescence �OWIS, Staufen, Germany�. DM:
dual-band dichroic mirror �Omega DM488/633, Omega Optical Inc.,
Brattleboro, VT�. Sample: droplet on a 150-�m-thick glass cover slide
mounted on a xyz-translation stage �ULTRAlign 561D with �Drive
Controller ESA-C, Newport Corp., Darmstadt, Germany�. BS: dichroic
beam splitter �Omega DML625�. BF: emission band-pass filters
�Chroma HQ540/80m and Omega 520DF40 �green�; Chroma
HQ690/80m and Omega 685DF70 �red��. APD: detectors �Color
online�.

Fig. 2 Negative control �9-nM RhG/50-nM Cy5�. Circles: green auto-
correlation. Bold points: red autocorrelation. Dots: green-red cross-
correlation. Inset: fit residuals Gfit /G���−1 �Color online�.

Fig. 3 Positive control �dsDNA�. Circles: green autocorrelation. Bold
points: red autocorrelation. Dots: green-red cross-correlation. Inset: fit
residuals �Color online�.
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The measured background signals were Bg=7.54 kHz and
Br=19.6 kHz, respectively. Typically, autofluorescence from
the immersion oil as well as from the glass slide were the
main contributions to Bg and Br, respectively. The crosstalk
CPM of RhG in the red channel was found to be Qrg
=0.032�Qgg and assumed constant during the following
evaluations. Cy5 did not show any crosstalk in the green
channel, hence Qgr=0. Therefore, the CPM were replaced by
the crosstalk factor Qrg /Qgg=0.032 for simplification.

Figure 2 shows the correlation results for a mixture of the
free fluorophores �negative control�. The count rates of this
control sample were Ig=40.2 kHz and Ir=66.0 kHz. The
CPMs were Qgg= �Ig−Bg� /Ng=13.1 kHz and Qrr= 
Ir−Br
−0.032� �Ig−Bg�� /Nr=18.9 kHz, respectively. Figure 3
shows the results for the Cy5 and Alexa488 labeled dsDNA
correlation �positive control�. We measured Ig=39.3 kHz and
Ir=44.2 kHz, from which Qgc=13.3 kHz and Qrc
=27.0 kHz were extracted. The increased count rate for
bound Cy5 is attributed to a reduction of conformational
changes leading to higher fluorescence emission.14,15 For �
	10 �s, the fit residuals were lower than 10−2. For smaller
lag times, shot noise and afterpulsing reduced the signal-to-
noise ratio.

Figure 4 summarizes the TIR-FCCS measurements on a
titration series of double-labeled dsDNA in a mixture of free
9-nM RhG/50-nM Cy5, such that the total fluorophore con-
centration was approximately constant. The measured fraction
of dsDNA scaled linearly with the mixed fraction from �1%
�negative control� to �28% �positive control�. The measure-
ments showed a relative scatter of �±15%. The measured
fraction was at best one-third of the mixed fraction. This can
be explained by an excess of molecules with a single green
label, possibly further enhanced by photobleaching of the red
label during the two-color excitation.15 The overlap of the
sampling volumes was estimated to �60%, which is close to
the theoretical maximum. To reduce the influence of pho-
tobleaching, we used excitation intensities of �10 �W/�m2.
The measured CPM were about two times higher than with a
confocal epi-illumination and a 1.20 NA water immersion ob-
jective at identical excitation intensities.13,16

The diffusion times of the dsDNA were �z=51 �s axially
and �xy =2.3 ms laterally, respectively. Given a penetration
depth of 80 nm and a waist radius of 370 nm, the diffusion
constant was calculated to D�1.5�10−7 cm2/s, which is
about 22% of the estimation DDNA�6.8�10−7 cm2/s for a
rodlike molecule with a diameter of 24 Å and a length of

140 Å. We attribute this to an increased hydrodynamic drag
near the interface and weak unspecific binding, respectively.

This study demonstrates for the first time single-molecule
FCCS measurements based on an epi-illumination TIR con-
cept. This TIR-FCCS concept offers distinct advantages to
confocal FCCS for coincidence assays at solid/liquid surfaces,
in particular by virtue of the much higher fluorescence collec-
tion efficiencies and the confinement of the excitation field to
the surface of interest.
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Abstract: For the observation of single molecule dynamics with fluores-
cence fluctuation spectroscopy (FFS) very low fluorophore concentrations
are necessary. For in vitro measurements, this requirementis easy to fulfill.
In biology however, micromolar concentrations are often encountered and
may pose a real challenge to conventional FFS methods based on confocal
instrumentation. We show a higher confinement of the sampling volume
in the near-field of sub-wavelength sized apertures in a thingold film. The
gold apertures have been measured and characterized with fluorescence
correlation spectroscopy (FCS), indicating light confinement beyond the
far-field diffraction limit. We measured a reduction of the effective sampling
volume by an order of magnitude compared to confocal instrumentation.

© 2006 Optical Society of America

OCIS codes:(050.1220) Apertures; (160.3900) Metals; (170.6280) Spectroscopy, fluorescence
and luminescence; (240.6490) Spectroscopy, surface; (300.2530) Fluorescence, laser induced.

References and links
1. R. Rigler et al., “Fluorescence Correlation Spectroscopy with high Count Rate and low Background - Analysis

of Translational Diffusion,” Eur. Biophys. J. Biophys. Lett.22,169–175 (1993).
2. S. Weiss, “Fluorescence Spectroscopy of Single Biomolecules,” Science283,1676–1683 (1999).
3. P. Kask, K. Palo, D. Ullmann, K. Gall, “Fluorescence-intensity distribution analysis and its application in

biomolecular detection technology,” PNAS96,13756–13761 (1999).
4. Y. Chen, J.D. Müller, P.T.C. So, E. Gratton, “The Photon Counting Histogram in Fluorescence Fluctuation Spec-

troscopy,” Biophys. J.77,553–567 (1999).
5. L.N. Hillesheim, J.D. Müller, “The Photon Counting Histogram in Fluorescence Fluctuation Spectroscopy with

Non-Ideal Photodetectors,” Biophys. J.85,1948–1958 (2003).
6. T.A. Laurence, A.N. Kapanidis, X. Kong, D.S. Chemla, S. Weiss, “Photon Arrival-Time Interval Distribution

(PAID): A Novel Tool for Analyzing Molecular Interactions,” J. Phys. Chem. B108,3051–3067 (2004).

#9159 - $15.00 USD
(C) 2006 OSA

Received 20 October 2005; revised 3 January 2006; accepted 8January 2006
23 January 2006/ Vol. 14, No. 2/ OPTICS EXPRESS 956



7. K. Starchev, J. Ricka, J. Buffle, “Noise on Fluorescence Correlation Spectroscopy,” J. Coll. Interf. Science233,
50–55 (2001).

8. D.E. Koppel, “Statistical accuracy in fluorescence correlation spectroscopy,” Phys. Rev. A10,1938–1945 (1974).
9. M.J. Levene, J. Korlach, S.W. Turner, M. Foquet, H.G. Craighead, W.W. Webb, “Zero-Mode Waveguides for

Single-Molecule Analysis at High Concentrations,” Science 299,682–686 (2003).
10. M. Foquet, J. Korlach, W.R. Zipfel, W.W. Webb, H.G. Craighead, “Focal Volume Confinement by

Submicrometer-Sized Fluidic Channels,” Anal. Chem.76,1618–1626 (2004).
11. T. Ruckstuhl, S. Seeger, “Attoliter detection volumes by confocal total-internal-reflection fluorescence mi-

croscopy,” Opt. Lett.29,569–571 (2004).
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1. Introduction

In the last decade, fluorescence fluctuation spectroscopy (FFS) emerged as a powerful screening
tool in pharmaceutical industry and in biomedical research. For FFS, a high numerical aperture
objective focuses a laser beam into a sample containing labeled molecules at low concentration.
The fluorescence is collected by the same objective and filtered by a dielectric band-pass filter
to suppress reflected excitation and Raman scattered light.The fluorescence is focused onto
a pinhole rejecting stray and out of focus light and keeping the Raman scattered light to a
minimum. A single photon detector is used to count the photons, and the recorded photon trace
is then evaluated according to the chosen FFS method [1–6].

The confocal setup provides a small sampling volume, an excellent signal to noise ratio
(SNR), and good statistical accuracy. In vitro, the sample concentration is chosen to maximize
the SNR [7, 8]. For instance, typical sampling volumes of 250al and nanomolar concentrations
of the analyte are mostly used. However, many reactions in biology or biochemistry demand
measurements at micromolar concentrations. This results in a high number of labeled molecules
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in the confocal volume, with in consequence a small fluctuation amplitude or a high photon
number beyond the linear range of single photon detectors.

In order to perform these experiments, the size of the sampling volume needs a further re-
duction. Webb et al. addressed the problem by limiting the sampling volume in their setup
to far less than 1 al by using nano-wells in an aluminium mask [9]. A potential drawback is
the background from direct-reflected excitation light. Micro-channels in fused silica have been
used as well and sampling volumes of less than 2 al were achieved [10]. Another approach
took advantage of a parabolic mirror in a total internal reflection fluorescence correlation spec-
troscopy (TIR-FCS) setup, which resulted in a sampling volume of about 5 al [11]. Hassler et
al. reported small sampling volumes of 60 al by taking advantage of a high numerical aperture
objective (NA= 1.45) and an evanescent field excitation [12]. They showed a high SNR as well
as high count rates per molecule (CPM) and used their setup for binding-unbinding studies as
well as for investigations of enzyme reactions [13].

In this project, we fabricated sub-wavelength sized circular apertures in a thin gold film in
order to reduce the sampling volume. Back-illumination of such an aperture results in a highly
confined excitation field. With the Green’s tensor technique[14], we calculated an excitation
volume of about 7 al for an aperture with 150 nm diameter in a 150 nm thick gold film on top
of a glass cover slip. This results in a reduction of the excitation volume by more than an order
of magnitude. The detection volume is as for a conventional approach given by the confocal
setup. The fluorescence is recorded from the volume in and just above the aperture while the
metal mask shields most of the excitation light. Finally, the evaluation of the fluorescence signal
provides information about the size of the excitation volume.

Fluorescence in the presence of a structured metal film is very dependent on the local excita-
tion field, the local emission pattern, and the local fluorescence lifetime. Recently, Rigneault et
al. reported an increased excitation intensity and a decreased fluorescence lifetime enhancing
the CPM in circular aluminium nano-holes [15]. Using rectangular aluminium nano-apertures,
Wenger et al. demonstrated that the enhancement is mainly due to a strong evanescent exci-
tation field [16]. Here, we report on trans-illumination measurements collecting fluorescence
within but mainly behind a circular nano-aperture. The local fluorescence emission would de-
serve further investigation but is out of the scope of this paper. Instead, we concentrate on
the three-dimensional excitation field, which can also be mapped in detail with the help of a
photoresist [17].

2. Experiment

2.1. Aperture masks

The circular apertures were fabricated with a focused electron beam lithography process [18].
A 170 µm glass cover slide was plasma cleaned and covered with 10 nm antimony doped
tin oxide. The aperture structures were written into a spin coated high contrast negative tone
resist. The resist was developed resulting in freestandingresist structures. These structures were
coated with a titanium layer (5 nm) and with a 150 nm thick goldfilm. A final lift-off process
resulted in the apertures shown in Fig. 1. Figure 2 outlines the layout of the entire gold mask.
Within six fields, we fabricated a total of 144 arrays of 6×6 apertures. Each field was located
and oriented with the help of triangular marks. We verified the dimensions of selected apertures
by scanning electron microscopy (SEM). In addition, we checked all aperture arrays with an
optical trans-illumination microscope (Carl Zeiss AxioVert 200m with Carl Zeiss AxioCam
HRm). The inset in Fig. 2 shows the image of a homogeneous array used for measurements.
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Fig. 1. Left: SEM image of a 420 nm aperture after evaporationof the 150 nm thick gold
film. We noticed small gold particles around the aperture edge. Nanoscale particles and
fibers were also found at the border of the gold cap. Right: SEMimage of a single 230 nm
aperture within a 6×6 array. This aperture was exempt of nearby gold particles.

Fig. 2. Mask layout with orientation triangles and aperturearrays. Every square represents
an array with 6×6 apertures of identical diameter. In each array, the apertures are located
on a square grid with 5µm period. We selected 21 array pairs in order to cover aperture
diameters between 115 nm and 520 nm. Inset: Trans-illumination image and scheme of an
array pair with 2×6×6 apertures of 300 nm diameter in the 150 nm gold film. The central
apertures in the selected arrays were measured with FCS.
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2.2. Experimental setup and measurements

Figure 3 outlines our confocal trans-illumination setup with a piezoxyz-translation stage (New-
port ULTRAlign 561D withµDrive Controller ESA-C) for the sample positioning. A 12 mW
HeNe gas laser (Laser 2000 LHRP-1201, linearly polarized) and a laser-line clean-up filter
(Chroma Z633/10x) provided a spectrally pure 633 nm excitation. The beam was expanded to
fill the aperture of a Carl Zeiss 40x0.90 NA water immersion objective. The beam waist in the
focus was 350 nm. Neutral density filters (Thorlabs NDK01) were used to adjust the power in
the excitation volume. The fluorescent light was collected with a 40x1.20 NA water immer-
sion objective (Carl Zeiss) and filtered by a dichroic mirror(Chroma Q660LP), a band-pass
filter (Chroma HQ710/100m) and a pinhole (Thorlabs ASFxx/125Y step-index fibers: 37.5µm,
50 µm or 100µm core diameter). The pinhole provided a spatial filtering, hence contributing
to the background rejection as well as to the limitation of the detection volume. A single pho-
ton counting module (PerkinElmer SPCM-AQR-14-FC) detected the fluorescence photons. The
signal (number of photons over time) was correlated with a USB hardware correlator (Correla-
tor.com Flex99OEM-12C) attached to a standard PC. The liquid sample, sandwiched between
the aperture mask and a microscope slide, was positioned with the mask in the focal plane.

HeNe laser

40x0.9 objective

40x1.2 objective

Excitation filter

Step−index
multimode
glass fiber

Dichroic mirror

Emission filter

Tube lens

Aperture mask

Beam expander and neutral density filters

ND filterEyepiece

* Fluorescent liquid
Aperture mask

Cover slide

Fig. 3. Confocal trans-illumination setup. The 40x0.9 objective and the multimode fiber
were mounted onxyz-translation stages. The aperture mask was aligned with a piezoxyz-
translation stage.

3. Theory

The FCS and FFS theory was recently reviewed by Krichevsky etal. [19]. Following the general
ideas, the fluorescence intensityI(t) is correlated during a time intervalT. The symmetrically
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normalized auto-correlation function is defined as

G(τ) =

〈

I(t)I(t+τ)
〉

〈

I(t)
〉〈

I(t+τ)
〉 = (T − τ)

T−τ
∫

0

I(t)I(t+τ) dt

T−τ
∫

0

I(t) dt
T
∫

τ

I(t) dt

(1)

The auto-correlationG(τ) allows to extract essential single molecule parameters from the fluc-
tuating fluorescence intensity. Typical fluctuation sources are diffusion (Brownian motion) of
fluorescent particles through the detection volume; emission characteristics like triplet state oc-
cupation; or changes of the molecular conformation influencing the emission characteristics.
The correlation amplitude is inversely proportional to thenumber of fluctuation sources (parti-
cles) in the detection volume. The shape of the correlation curve encodes all these processes,
whereas the time dependencies modify the corresponding time windows.

3.1. Excitation field

Figure 4 shows the excited fields for three different aperture diameters calculated with the
Green’s tensor technique [14]. We simulated the transmission of a Gaussian beam through the
apertures in the gold film. The Gaussian beam had a wavelengthof 633 nm and was linearly
polarized along thex-axis corresponding to the HeNe laser. In the glass substrate with a refrac-
tive index of 1.52, it was focused and centered on the bottom of the aperture. The transmission
for an incident beam waistw0 = 350 nm was simulated. In the aperture and on top of the gold
film, we set the refractive index to 1.33 for water. The relative dielectric constant of the gold
film was−11.6+1.26i.

Fig. 4. Simulated excitation fields for aperture diameters of 150 nm (left), 250 nm (center)
and 400 nm (right) in a gold film of thicknessh = 150 nm. All dimensions are given in
nanometers. The coordinate origins are located in the center at the bottom of each aperture.
A Gaussian beam with 633 nm wavelength was focused with an opening angle equivalent
to a numerical aperture of 0.6 on the apertures. The graphs show three surfaces of equal
intensity ate−1Imax (inner surfaces),e−1.5Imax (middle surfaces) ande−2Imax (outer sur-
faces).Imax is the maximal excitation intensity atz= h. On top of the apertures, the average
intensity was reduced to 22%, 73% respectively 87% of the incident intensity at the bottom.

For the 400 nm aperture, the excitation field is similar to thefocus of the Gaussian beam.
The aperture mainly truncates the tails of the Gaussian beamand diffraction shrinks the vertical
extension to 330 nm after the hole. In the close vicinity of the aperture, the excitation field
shows a fine structure reflecting thex-polarization of the incident beam and the wave modes
in the aperture. With the 250 nm aperture, they-extension of the excitation volume is slightly
smaller, whereas thez-dimension is reduced significantly. This effect is even more important
for the 150 nm aperture, where the excitation field extends only 80 nm into the liquid. Table 1
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compares the extensions of the ellipsoid-like excitation fields and the estimated volumes. We
estimated the excitation volumeVex with W1 [22] and the effective sampling volumeVe f f for
FCS withW2

1/W2, where

Wn = I−n
max

$
In
(~r) d~r (2)

Here, we approximated the product of the excitation intensity and the detection efficiency by the
excitation intensity alone. This is valid because the excitation intensity drops much faster than
the detection efficiency, if~r →∞ . In both cases, we added the aperture volumeVap= πhd2/4,
whereh= 150 nm is the aperture depth andd the diameter.

Table 1. Calculated extensions of the excitation fields along thex, y andzaxes, respectively
excitation volumesVex=W1+Vap and effective sampling volumesVe f f =W2

1/W2+Vap

for different aperture diametersd. The extensions are understood ase−2 ”half-axes” for
comparison with thee−2 xy-waistw0 = 350 nm of the incident beam.

d 150 nm 250 nm 400 nm ∞ ∗ ∞ � ∞ °

wx 140 nm 240 nm 230 nm 350 nm 250 nm 180 nm
wy 100 nm 140 nm 200 nm 350 nm 250 nm 180 nm
wz 80 nm 160 nm 330 nm 2.0µm 1.0µm 700 nm
Vex 6.7 al 17 al 38 al 130 al 130 al 55 al
Ve f f 27 al 64 al 130 al 480 al 590 al 250 al
∗ At the glass surface without aperture. In free liquid,Vex= 260 al andVe f f =960 al.
� State-of-the-art in free liquid for 633 nm wavelength [20].
° State-of-the-art in free liquid for 488 nm wavelength [20].

We would like to emphasize that diffraction and interference generate these highly confined
excitation fields. In~k-space, diffraction creates a transverse componentkxy parallel to thexy-
plane. Because the length of the wave vector~k is constant,kz has to adopt according to

k2
z = k2−k2

xy (3)

Sub-wavelength sized apertures enforcekxy > k resulting in an imaginarykz. This gives the
transmitted field a dominant evanescent field character along thez-axis. The vertical exten-
sion wz decreases with the aperture diameter. Moreover, the lateral extensions decrease due
to destructive interference of many surface waves with differentk. A simulation at identical
conditions but at a wavelength of 488 nm showed that the excitation fieldgrowsalong thez-
axis. Using sub-wavelength sized apertures, we took advantage of diffraction to obtain highly
confined excitation fields below the far-field diffraction limit.

3.2. Auto-correlation model equation

As an approximation, we used the standard model equation forfree diffusion of a single fluo-
rescent species through a sampling volume with a 3D Gaussianshape [21, 22]. We modeled the
normalized auto-correlationG(τ) by

G(τ) =G∞+

(

1− IB

〈I〉

)2
γ

N


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+
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







(4)

G∞ ≈ 1 is the correlation amplitude in the long lag time limitτ→∞, N is the average number
of molecules in the sampling volume,τd is the lateral diffusion time,K is the ratio of axial over
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lateral extension of the sampling volume,Pt is the probability of molecules in the triplet state
andτt is the correlation time of this triplet state population.IB is the background count rate and
〈I〉 is the mean count rate (fluorescence intensity and background). In our case, we assumed
γ to be 1/2 because the mask cuts half of the sampling volume [12]. Figure 5 shows typical
correlation amplitudes for different aperture diameters. For apertures larger than 250 nm,Eq.
(4) yielded good results. For smaller apertures, the auto-correlations had a significant tail for lag
timesτ between 0.1 ms and 1 ms. We attribute the tail to constrained diffusion in the aperture,

0.1us 1.0us 10us 0.1ms 1.0ms 10ms 0.1s
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Fig. 5. Afterpulsing corrected auto-correlationsG(τ) versus lag timeτ for aperture diam-
eters of 125 nm, 230 nm, 340 nm and 490 nm at a Cy5 concentrationof 12 nM. The
correlation amplitude for the 490 nm aperture was multiplied by 3. For the 125 nm and
the 230 nm aperture, the correlation amplitudes show a different slope for delays between
0.1 ms and 1 ms. We interpret this as constrained diffusion of molecules entering into the
150 nm deep aperture.

i.e. molecules entering into the 150 nm deep aperture were laterally captured for some time
interval. Therefore, they needed more time to diffuse out of the sampling volume. The boundary
conditions for Eq. (4) are not taking into account this trapping inside the aperture. This leads
to a mismatch if the fit is based on Eq. (4). Figure 6 shows fits and residuals for measurements
at a Cy5 concentration of 30 nM. In free liquid and for the 490 nm aperture, Eq. (4) fits well
with low residuals. For the 125 nm aperture, Eq. (4) leads to significant residuals and even a
bias at large lag times. Nevertheless, the extracted diffusion timeτd is a good approximation
because it accounts only for the diffusion in thexy-plane. Also, the number of moleculesN
depends mainly on the correlation amplitudeG(0) and the triplet probability. Therefore, it does
not change significantly for different diffusion models.

3.3. Evaluation of the auto-correlation

For analyzing the experimental auto-correlation curves, we corrected the correlation ampli-
tude for afterpulsing to avoid a systematic bias on short diffusion times. Figure 7 shows how
afterpulsing affected the auto-correlation amplitude up to a lag timeτ ≈ 10 µs. According to
Bismuto et al. [23], we estimated the afterpulsing contribution by averaging auto-correlations
Guc for an uncorrelated source (daylight). For minimizing the discrepancies between the curves,
we introduced an exponent for the mean count rate〈Iuc〉.

Gap(τ) =
〈

(

Guc(τ) −1
)〈

Iuc(t)
〉1.02

〉

(5)
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Fig. 6. Auto-correlations and fitsG(τ) versus lag timeτ for aperture diameters of 125 nm
(blue circles), 490 nm (red points) and for free liquid (black dotted) at a Cy5 concentration
of 30 nM. Inset: Fit residualsr(τ) =G f it/G(τ) −1.

Subtracting the estimated afterpulsing contributionGap/ 〈I〉1.02 prior to parameter extraction
allowed to analyze diffusion times shorter than 20µs accurately. The model parameters were
extracted by fitting the curves with Eq. (4) on the measured auto-correlations. For fitting, we
used a non-linear least-squares algorithm (multidimensional Gauss-Newton algorithm). The
background count rateIB and the mean count rate〈I〉 were measured directly.
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Fig. 7. Auto-correlationsG(τ) versus lag timeτ measured on a 125 nm aperture at a Cy5
concentration of 12 nM. The blue dotted line is the measured auto-correlation. The solid
line shows the afterpulsing corrected amplitude. The circles trace a second measurement
on the same aperture. Inset: intensity trace.

3.4. Prediction of FCS results

In case of free diffusion, the diffusion timeτd is given byw2
0/4D wherew0 is the lateral beam

waist andD the diffusion constant [22]. In our case, the extension of the sampling volume is
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limited by the excitation field, which in turn is restricted by the diameterd of the aperture.
Figure 5 suggests proportionality of the diffusion time and the aperture diameter. Based on our
calculations, we expect to findτd ∝ d2 for small apertures. For large apertures, the sampling
volume is given by the beam waistw0 and the diffusion time levels off to some valueτ∞, which
might be different fromτd due to surface effects. Overall, we assume to get a behavior as

τd ≈ τ∞
d2

d2
τ +d2

(6)

wheredτ marks the transition between the small and the large aperture regime. Equation (6) is
understood as a first approximation of the effective relationship betweenτd andd.

The number of moleculesN is determined by the effective sampling volumeVe f f and the
fluorophore concentrationC.

N =CNAVe f f (7)

Here, NA = 6.022× 1023 mol−1 is the Avogadro number. For small apertures, the sampling
volume increases with the aperture diameter as shown in table 1. For large apertures, the sam-
pling volume gets constant because the excitation field is nolonger constrained by the aperture.
Therefore, we expect a relationship similar to Eq. (6) betweenN andd.

4. Results and discussion

For the mask layout shown in Fig. 2, we selected 21 array pairsto cover 21 aperture diameters
from 115 nm to 520 nm. Figures 8–11 summarize the results for a150 nm gold mask on a
150µm glass substrate. A 12 nM respectively 30 nM solution of Cy5 (Molecular Probes) was
excited at 633 nm. We kept the laser power constant at 0.3 mW incident onto the apertures.

4.1. Diffusion time

For a concentration of 12 nM, we measured with a 38µm, a 50µm and a 100µm pinhole diam-
eter. Figure 8 shows the diffusion time versus the aperture diameter. For the 115 nm apertures,
the diffusion time was around 15µs. It increased with the aperture diameter and reached 140µs
for the 500 nm apertures. On the 400 nm apertures, we measuredτd ≈ 100µs against 20µs on
the 150 nm apertures. This ratio of 1/5 is in good agreement with the calculated ratio of 1/4 for
these aperture diameters.

The pinhole diameter had no significant influence on the measured diffusion time. With the
40× objective and the 38µm pinhole, we got a projected pinhole diameter of roughly 1µm in
the mask plane, which was still much larger than the largest aperture. Our measurements show
that the excitation volume was effectively smaller than the detection volume, which underlines
the insensitivity to pinhole diameter variations. Also, wesee that an increase of the fluorophore
concentration to 30 nM did not significantly change the measured diffusion time. Only for
aperture diameters above 300 nm, a slight increase was measured. We attribute this to detector
saturation leading to a virtually increased sampling volume. Figure 10 shows that the detector
was driven at more than 1.0 MHz for apertures larger than 300 nm. At these count rates, the
detector death time of 50 ns started to become significant – particularly during photon bursts –
and biased the FCS results [24].

Overall, Eq. (6) is well reproduced with a transition diameter dτ of 450 nm and a diffusion
time limit τ∞ of 240µs. Including the lateral penetration of the excitation light into the aperture
walls, the excitation field had a diameter of about 500 nm atdτ. In agreement with Eq. (6),dτ
marked the aperture diameter yielding 1/2 of the beam cross-sectionπw2

0. In free liquid, we
measured a diffusion timeτd ≈ 160µs. When the confocal volume was placed at the cover slide
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Fig. 8. Diffusion timeτd versus aperture diameterd. The data points show the average and
the error bars the standard deviation of 10 measurements peraperture diameter. For clarity,
the standard deviation is shown for one case only (12 nM Cy5, 50 µm pinhole). The black
dotted line was calculated with Eq. (6) forτ∞ = 240µs anddτ = 450 nm. In free liquid, the
diffusion time was 160µs to 170µs. Inset: concentration of Cy5 and pinhole diameter of
all cases.

surface,τd reached 250µs to 300µs, which is consistent withτ∞. For the smallest apertures,
τd was less than 1/10 of the value measured in free liquid. We conclude that the introduction
of the 115 nm apertures reduced the lateral extension of the excitation volume to less than 1/3.
Hence, the measured diffusion times indicate a reduction of the sampling volume to less than
1/10 of the conventional confocal volume.

4.2. Number of molecules

For a Cy5 concentration of 30 nM, we show the number of molecules obtained by fitting the
afterpulsing corrected auto-correlations in Fig. 9. For anaperture diameter of 115 nm, we meas-
ured about 3 molecules in average in the sampling volume. Increasing the aperture diameter to
350 nm increased the number of molecules to about 12. Then, the number of molecules leveled
off between 14 and 18 for larger apertures, which was roughly 1/4 the value in free liquid. The
measured ratios of the number of molecules for the 150 nm, 250nm and 400 nm apertures are
close to the calculated ratios of the sampling volumesVe f f in table 1.

In contrast to the diffusion time, the number of molecules is affected by the background
contribution of each individual aperture. Therefore, we measured first the background on each
aperture with pure water. With the Cy5 solution, we measuredthese apertures again. However, it
was virtually impossible to mutually realign the confocal volume and the apertures identically.
Therefore, the excitation intensities differed by as much as 20% resulting in a 40% variance in
the background corrected number of molecules. This made it difficult to measure the sampling
volume for an individual aperture.

4.3. Signal to noise ratio

Figure 10 shows the background, the mean intensity and the SNR measured during the experi-
ment described in subsection 4.2. The mean intensity increased withd2 from about 90 kHz on
the 115 nm apertures to 1.8 MHz on the largest apertures. On the other hand, the background
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Fig. 9. Number of moleculesN versus aperture diameterd for a Cy5 concentration of 30 nM
and a 50µm pinhole. The data points show the average and the error barsthe standard
deviation of 10 measurements per aperture diameter. The dotted line is for guiding the
eyes. In free liquid, we measured about 72 molecules in the confocal volume.

depended very much upon the state of individual apertures. Its standard deviation was particu-
larly low for apertures smaller than 200 nm. Thereby, despite the small signal, we were able to
predict and correct background accurately for these apertures.
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Fig. 10. Background count ratesIB, mean intensity〈I 〉 andS NR= 〈I 〉/IB−1 versus aper-
ture diameterd for a Cy5 concentration of 30 nM and a 50µm pinhole. The data points
show the average and the error bars the standard deviation of10 measurements per aperture
diameter. In free liquid, we measured an intensity of 4.7 MHzand a background of 6 kHz.

For aperture diameters up to 200 nm, we measured SNRs between2.5 and 6. The best re-
sults were obtained with aperture diameters of 300 nm, 340 nmand 430 nm with correspond-
ing SNRs of 16, 19, respectively 25. Typically, conventional instruments provide a SNR> 50
(2 kHz background, 100 kHz to 500 kHz mean intensity). By increasing the Cy5 concentration,
we could reach a SNR> 10 for aperture diameters up to 200 nm. In our experiment, theSNR
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was limited by the large background, which was mainly due to photo-luminescence of the gold
[25] and the glass slide; surface enhanced Raman scattering[26] of water molecules, partic-
ularly at the aperture edge; and fluorescence of photo-resist residues if any. By mastering the
lithography process, we could remove any photo-resist residue. For reducing the background
further, we compared the photo-luminescence of different materials. For instance, we meas-
ured the photo-luminescence of silver and found it an order of magnitude lower than for gold.
Nevertheless, we kept using gold for greater compatibilitywith biological applications (surface
chemistry).

4.4. Count rate per molecule

Figure 11 shows the CPM obtained from the experiment described in subsection 4.2. Starting
at about 23 kHz for the 115 nm apertures, the CPM increased quickly to about 61 kHz for
the 250 nm apertures. Then, there was only a slight increase to about 82 kHz for the 400 nm
apertures. This behavior qualitatively follows the calculated excitation intensities. The intensity
on top of the 250 nm aperture is about 3.3 times the intensity of the 150 nm aperture, but only
about 12% lower than for the 400 nm aperture.
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Fig. 11. Background corrected count rate per moleculeCPM versus aperture diameterd
for a Cy5 concentration of 30 nM and a 50µm pinhole. The data points show the average
and the error bars the standard deviation of 10 measurementsper aperture diameter. The
dotted line is for guiding the eyes. In free liquid, we obtained aCPM≈ 65 kHz for this
experiment.

If we compare the values for the large apertures, we notice that the count rates per molecule
exceed the values measured in free liquid. We interpret thisby the mirror effect of the gold
film, which reflects a significant part of the fluorescent lightemitted towards the aperture and
the gold film. In particular, the emission under high incidence angles falls onto the gold film
surrounding the aperture and is efficiently reflected back into the objective. For instance, we
measured a CPM of 103 kHz in case of the 500 nm apertures exceeding the CPM in free liquid
by 60%.

5. Conclusions

We demonstrated that FCS on single apertures is an interesting approach for molecular inves-
tigations at 10 nM to 100 nM concentration. Using apertures of various sizes, we calculated
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and engineered the excitation field. For small apertures, weverified that the diffusion time and
the number of molecules are proportional to the aperture diameter. We measured a reduction
of the effective sampling volume by an order of magnitude compared to the typical volume in
confocal FCS.

The background on individual apertures was hard to predict,particularly for the large aper-
tures. Therefore, we encountered some difficulties measuring the number of molecules and the
count rate per molecule accurately. Nevertheless, the average values confirmed our calcula-
tions. In particular, we could report comparable or even higher count rates per molecule than in
confocal FCS. Using homogeneous aperture arrays and an optimal combination of materials,
excitation wavelength and power, we expect to measure all FCS parameters accurately.

We would like to point out that confocal trans-illuminationFCS performs nearly as well as
confocal epi-illumination FCS. With trans-illumination,the excitation light falls directly onto
the detection pinhole. Therefore, the emission filter has toblock the full excitation power in-
stead of the small fraction of backscattered light. This results in a somewhat higher background
but can be compensated by using two microscope objectives oneither side of the sample, there-
with doubling the detection efficiency. Finally, the alignment of the excitation and detection
volumes is more precise since the small aperture serves as a common pinhole.
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École Polytechnique Fédérale de Lausanne EPFL, 1015 Lausanne, Switzerland.
Thesis title:Single Molecule Detection on Surfaces.
Director: Prof. Theo Lasser.

1999–2003 Studies in microengineering at EPFL.
Master project:Design and evaluation of subwavelength apertures.
Supervisor: Prof. Theo Lasser, LOB, EPFL.

1998–1999 Military services
1997–1998 Studies in microengineering at EPFL

Professional experience
2004: 2 years Teaching assistance for undergraduate students at EPFL.

Courses:Photonique appliquéeandPhysique générale IV.
2002: 3 months Creation of online supportExperimental opticsandeTeaching

assistance at the Section Microtechnologie SMT, EPFL.

Languages
German: mother tongue.
French, english: spoken, read and written.

Skills in informatics

Advanced library programming in assembler, C and C++. Advanced Internet programming in HTML,
CSS, Java and JavaScript. Experienced user of MATLAB and simulation tools like MIT Photonic-Bands
or Finite Element Magnetic Methods.

Interests

Mountaineering, diving, programming, cooking and reading.


	Title
	Abstract
	Kurzfassung
	I Overview
	1 Introduction
	2 Theory
	2.1 Excitation field
	2.2 Excitation rate
	2.3 Fluorescence
	2.4 Emission rate
	2.5 Emitted dipole field
	2.6 Detection efficiency
	2.7 Fluorescence signal

	3 Experiments
	3.1 Nano-apertures
	3.2 Dual-color TIR-FFS
	3.3 Membrane proteins
	3.3.1 Sample preparation
	3.3.2 Image correlation spectroscopy
	3.3.3 Image segmentation
	3.3.4 Point spread function


	4 List of articles
	5 Conference contributions
	6 Conclusions and outlook
	Acknowledgements
	References
	A Fluorescence

	II Articles
	L2 SMD at surfaces
	L3 Focus fields
	L4 2C-TIR-FCCS
	L7 FCS on apertures

	Curriculum vitae



