
ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE

Introduction to Hyperbolic Equations and
Fluid-Structure Interaction

Semester Project
of

Benjamin Stamm

Directed by:
Prof. Alfio Quarteroni

Simone Deparis

Institute of Analysis and Scientific Computing, EPFL, Lausanne

March 10, 2003

1
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/12598542?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CONTENTS 2

Contents

1 Introduction 3

2 The wave equation 4
2.1 The mathematical problem . 4
2.2 Dirichlet boundary conditions . 4
2.3 Neumann boundary conditions . 4

3 Numerical approximation by the Newmark method 5
3.1 Dirichlet boundary conditions . 5

3.1.1 The weak problem . 5
3.1.2 Space-discretization with the Galerkin method 6
3.1.3 The Newmark method . 7

3.2 Neumann boundary conditions . 10
3.2.1 The weak problem . 10
3.2.2 Space-discretization with the Galerkin method 11
3.2.3 The Newmark method . 11

3.3 The Matlab Code . 12
3.3.1 Approximation of

���������	��
�������
. 13

3.4 Theoretical study of the Newmark method 13

4 Leap-Frog method 15
4.1 Dirichlet boundary conditions . 15
4.2 Neumann boundary conditions . 16

5 Fluid-Structure Interaction 17
5.1 The fluid . 17
5.2 The vessel . 19
5.3 Interaction . 20
5.4 The algorithm . 20
5.5 Results . 21

5.5.1 First version . 22
5.5.2 Second version . 25

6 Conclusions 27

7 Matlab Codes 28
7.1 The Newmark Code . 28

7.1.1 int f.m . 32
7.1.2 dcentred.m . 32

7.2 The Leap-Frog Code . 33
7.3 The Fluid-Structure Interaction Code 36

1 INTRODUCTION 3

1 Introduction

In this semester project, we dealt with hyperbolic partial differential equations and
Fluid-Structure Interaction.

Chapter 2 is a short introduction in the wave equation. It’s the equation which
describes the propagation of waves. In the last chapter, we use this equation to describe
a one dimensional vessel in a simple fluid-structure interaction problem.

In Chapter 3 the Newmark method is studied in detail. The two cases of different
boundary conditions, Dirichlet and Neuman, has to be treated differently, since the
weak problem is not the same. In both cases, the weak problem of the wave equation
is derived. Then we use the Galerkin method to discretise the space. This leads us to
a second order ordinary differential equation, whose solution is approximated with the
Newmark method. A Matlab code is developed from the theoretical description. The
description of the code is more an illustration in some particular passages. You will
find the code at the end of this report. In the fluid-structure interaction, we use the
Newmark method to simulate the vessel.

In the following chapter, the Leap-Frog method is studied. It’s also a numerical
method to approximate the solution of the wave equation. You can also find the Matlab
code at the end of this report. This method can be used in the fluid-structure problem,
but we did not.

In chapter 5, a simple model of blood flow, based on the fluid-structure interaction
is developed. An algorithm is presented, which couples the fluid and the vessel-part.
Then, you can find the results of two different versions of the algorithm and a short
analysis.

A short discussion of the project is given in the chapter 6.
In chapter 7, you find the Matlab codes of the Newmark- and Leap-Frog-method.

You can not find the codes for the simulation of the fluid-structure interaction problem,
because all the codes needed to run the program are too big to present it in this report.

2 THE WAVE EQUATION 4

2 The wave equation

2.1 The mathematical problem

This is a short introduction to the wave equation. It describes many wave phenomenons,
like the string-, electro-magnetic- or acoustic-waves. The following mathematical
problem (P) has to be studied: find ��������� satisfying

	�
 �	 �
�����
	�
 �	��
������ ��� �

(1)

with initial conditions

� � � ��� � � ��� � � � (2)	
	 � � � � ��� � � ��� � � � (3)

and boundary conditions. Note that � is the space-time domain and that the space has
dimension one. So we have � � � � � � � � �"! � ��# ��$ # � , � � � � � � � being the space-domain
and

� ��# ��$ # � the time-domain. We also have
� �%�&�'� , whereas � and � are two

constants. We suppose that (
��)
(#
�

and (
�*)
(,+

�
exist.

2.2 Dirichlet boundary conditions

We say that the problem has Dirichlet boundary conditions when we know that

� � � � ����� � $ � � ����� � � � � ����� � $ � � ����� (4)

where
$ � � ��$ � � �.- � # �/$ #10 �2� . Note that it is necessary that ��� � � � � � $ � � ��� � � and��� � � � � � $ � � ��� � � to get a well posed problem.

2.3 Neumann boundary conditions

With Neumann boundary conditions, the spatial derivative on the boundary is given:
	 �	3� � � � ����� � $ � � �����

	 �	�� � � � ����� � $ � � � ��� (5)

where
$ � � �/$ � � �4- � # ��$ #50 �6� .

3 NUMERICAL APPROXIMATION BY THE NEWMARK METHOD 5

3 Numerical approximation by the Newmark method

3.1 Dirichlet boundary conditions

3.1.1 The weak problem

In this section, we would like to find a problem equivalent to (P), which is simpler
(to treat and) to solve. We would like only first order derivatives in space instead of a
second order one.
For this, we multiply the equation (1) by a test function ��� - � ��� � � 0 � � � ����� � � �� �� � � � � � � � and integrate the obtained equation in space from

� � to
� � . We obtain the

following equation:

� +
	+�� (
�

(#
� � � � ����� � � � � �� � ��� � � +
	+�� (

�

(,+
� � � � ����� � � � � �� � � �%� � +�	+�� �

� � ����� � � � � �� �� � + 	+ �
��� � ����� � � � � �� � (6)

Integrating by parts gives� +
	
+ �
	�

	��
 � � � ����� � � � � �� � �

	
	�� � � � ����� � � � � ��� +
	+ � �

� +
	
+ �
	
	�� � � � ����� �

	
	�� � � � �� � (7)

Since
� � and

� � do not depend on
�
, we can change the second derivative in time and

the integral. We have � � � � � � � ��� � � � � , because ����� � . This leads to an equivalent
problem to (P): � ��� � find � � ��� ��� � � � � � � � � � � � satisfying
� �� # � � + 	+�� �

� � ����� � � � � �� � ����� � + 	+�� ((+ �
� � ����� ((,+ �

� � �� � � ��� � + 	+�� �
� � ����� � � � � �� �� � +
	+ �

��� � ����� � � � � �� � (8)

for all ����� � � � � �� � � � � � � � . To simplify the notation we use the scalar product in�
 � � � � � � �
��� ������� � � � + 	

+ �
��� � � � � � � �� � (9)

We also can define the following bilinear forms:

� � � � � � � � � � �%! � � � � � � � � � �6� � � �
 � � � � � � �%! �
 � � � � � � � �6� (10)

� � � � � � � ���
� + 	
+ �
	
	�� � � � �

	
	�� � � � �� � (11)

� � � � � � � ��� � � � � ����� (12)

Lemma 1 The bilinear form � � � � � � is continuous.

proof 1 We apply the Cauchy-Schwarz inequality:

� � � � � � � � � � �
	 �	3� �
	 �	�� �����!�#"$� � � % 	 � � � � % 	�&('

because � � �)� � � � � � � � � � . *
Finally, we obtain with this notations the weak problem (WP) of (P):
find �����

 �
 � � � � ��� � ��� � � � � � � � � � � � � � � � � � ��� � (13)

3 NUMERICAL APPROXIMATION BY THE NEWMARK METHOD 6

� � � �*� � � � � � � �	
	 � � � � �*� � � � � � � �
� � � � ����� � $ � � ������ � � � ����� � $ � � �����

for all � ���4� .
3.1.2 Space-discretization with the Galerkin method

In this section, we search a semi-discrete approximation of the weak problem (WP)
using the Galerkin method. This leads us to a second order Cauchy-problem in time.

Let � � be a
� + ��� dimensional subspace of V and �3��� � � � ��� �4� . Then the

following problem is an approximation of the weak problem (WP).
Find a function � � ��� � that satisfies:
 �
 ��� � � � � (14)

� � � � ��� � � �3��� � � � �	
	 � � � � � ����� � � � � � � � �
� � � � � ����� � $ � � ������ � � � � � ����� � $ � � �����

for all � ���4��� � , where ����� � and � � � � are projections from � in � � of ��� resp. � � .
The choice of � � is completely arbitrary. So we can choose it the way, that for later

treatment, it will be as easy as possible. For example, we subdivide the interval - � � � � � 0
into partitions of equal distances h:� � � � � & �
 & � � � & �
	�� & �
	��� � � � � � � � � � � ��� ��� � ���

� � � ��� � ��� � � - � � � � � 0 � � � � ��� ��� � ����� 	 � �"! � � � � � � � � � � + #� ��� � � ��� � ��� � ��� � � � � � ��� � � � � � � �$#
Note, that the finite dimension allows us to build a finite base for the corresponding
space. In the case of �3��� � we have: �
 � # 	���&%
 where

� � �(' � � � � +
 � � � � �
)**+ **,
�

if
� � - � � � � ��- � 0+

-
+��� � �.� � ' � if

� � - � ��- � � � � 0+�� - +� � �
if
� � - � � � � � � � 0�

if
� � - � � � � � �
	��� � 0

while we add for � � the two functions

 � and

 	 � � � defined as:

 � � � � �0/ +�� - +� �1� if
� ��- � � � �
 0�

if
� ��- �
 � � 	 � � � 0

 	���� � � � � �2/ � if
� �- � � � �
	� 0+

-
+��� � � + �3� if

� �- �
	� � �
	��� � 0

3 NUMERICAL APPROXIMATION BY THE NEWMARK METHOD 7

So that we can write � � as a linear combination of the basic elements:

� � � � ����� � 	 � � ��
� % ���� � � ��� �
 � � � � (15)

� ��� � � � � � 	���� ��
� % � � � � � � � �
 � � � �

� � � � � � � � 	���� ��
� % � � � � � � � �
 � � � �

where �
��� � ��� � $ � � ����� and �

� 	 � � � ����� � $ � � � ��� are given functions and � ��� � resp. ��� � �
are approximations of � � resp. ��� . Using that � � � � � � and � � � � � � are bilinear forms and
that equation (14) is valid for each element of the base �
 � # 	���&%
 , we obtain:	���� ��
� % �
 �
 �� � ����� � �
 � ��
 � ��� � �

	���� ��
� % � �� � � ��� � � �
 � ��
 � � � 	��� ��

� % � �� � ����� � � �
 � ��
 � � � ���������	��
 � �

(16)� � �2' � � � � + . This equation can be written in a vector form. For this we define the
vectors �� , �� � , ���� and �� with components

� � ����� � � � ��� ��� ��
 � ��� � � � � ��� � �
�
� � �����

�3��� � � � ��� � � � � � � � � � � � � � � � �
and matrices � , � and � as

� � � � � �
 � ��
 � ����� � � � � � � �
 � ��
 � � � � � � � � �
 � �
 � �

Note that � � � � � � � 	�� - �
	 	��� � , �� � � 	� � � and �� � � 	�� - �
. So that (16) is

equal to the Cauchy problem

� �

 �
 �� � ��� � � � � � � � �� � ��� � ���� ��� (17)

�� ��� � � � ����
 � �� ��� � � � ����

3.1.3 The Newmark method

In this section the Newmark method is explained and used afterwards in our specific
problem.
For the theoretical discussion of the Newmark, let us consider the ordinary differential
equation of second order in time)+ ,��� ����� � � � � � � �����	��� � ����� � �- ��# �/$ # 0� �1� � � ���

� �1� � � � � (18)

Note that the development of the Newmark method is also valid for a system of ordinary
differential equations. To simplify, we use the scalar ODE. The next paragraph gives

3 NUMERICAL APPROXIMATION BY THE NEWMARK METHOD 8

you a motivation why the Newmark method is chosen in this way. The interval - �4# ��$ # 0
is subdivided in

� # subintervals of same length
� � ����� - � �	 � . This defines the partition��# � � � & �
 & ��� � & � 	 � � � � $ # where the

���
are defined as

��� � ��# �	� � � ��
 ��� � .
We use the Taylor development of second order of � � ��� . Finally we note

� #� instead of� ��� � � � ��� � �	� � ��� � ��� .
� ����� � � � � � � ����� � � ������� � � � �' �� ������� � �
 ��� ��

����� � � �
 ��� ��
� ����� � �
 ��� � � ��� �

(19)

Note that � �
� ��� � � � �

is once added and once subtracted. We replace � �
� � � � � � �

by the
zero order Taylor approximation of �

� � � � � � � ��
� � � � � � � �
 ��� � � ��� �

. Using that � is
a solution of the differential equation (18), we can replace the second order derivative
of � by

� # � � � � ����� � � �������	� � ��������� � ��
����� �

. This leads us to

� � � � � � � � � ��� � � ��� � � � � � � ��� �
 - � � #� � 	 � � �' ��� � � #��0 (20)

In addition, we develop
� �����

� ����� � � � � � ������� � �� ������� � � ��� ��
������� � � ��� ��

� ����� � � �	� � � �
 �
(21)

Approximating � ��
��� � � � �

with the help of the zero order Taylor development, we find

� � � � � � � � � ��� � � ��� � - � ��
� � � � � � � � � ��� � �� � � � � 0 (22)

Now, we use also that u is the solution of the differential equation and replace the
second order derivative of � by

� #� .
� � � � � � � � � ��� � � ��� � - � � #� � 	 � � � ��� � � #��0 (23)

This brings us to the following scheme:� � being an approximation of � ��� � � and � � one for
� ��� � �

/ � � � � � � � �	� � � � ��� �
 - � � #� � 	 � � �
 ��� � � #� 0� � � � ��� � �	� � - � � #� � 	 � � �"��� � � #��0 (24)

Now we are ready to apply the method to the system (17). In theory, we have �� ��� � � � ��� ��� ������� �� - � - �� � ��� � � � �� 0 , but practically it coasts a lot of time to calculate
� - �

. So we
multiply both parts by �)+ , � ��

� � � � � ��
�
��� � � �� � ��� �
 - � �� #� � 	 � � �
 ��� � �� #��0��� �
 � � � � � - � ��

� � � � � �
 ��� � ��
�
0

� �� � � � � � �� � ��� � - � �� # � � 	 � � � ��� � �� # � 0 ��� �	� � � � � - � ��
� � � � � � ��� � �� � 0

(25)
where �� # � � �� ����� � . Taking all ��

� � � resp. �� � � � on the left side gives you

)+ , - � ��� �
 � � � � � � 0 ��
� � � � � ��

�
�	� � � �� � �	� �
 - � �� #� � 	 � � �
 ��� � �� #� 0��� �
 � � � � �	� �
 ��� � ��

�
� �� � � � � � �� � ��� � - � �� #� � 	 � � � ��� � �� #� 0 ��� �	� � � � � - � ��

� � � � � � ��� � �� � 0
(26)

3 NUMERICAL APPROXIMATION BY THE NEWMARK METHOD 9

Now, we would like to develop an algorithm for solving the system (26). We regroup
this system that we can recognize how to define new variables.)**+ **,
- � ��� �
 � � � � � � 0 ��

� � � � - � �	� �
 � � � � � � 0 ��
�
� � # �
 � � � � � ��

�
��� � � �� �

� � �
 - � �� #� � 	 � � �
 ��� � �� #��0
� �� � � � � � �� � ��� � - � �� # � � 	 � � � ��� � �� # � 0 ��� � � � � � � � ��

� � �
��� �	� � ��� � � � � � � ��

�
(27)

We define some new variables

��� � � - � �	� �
 � � � � � � 0 (28)

�$)
� � � ��� � �� � (29)
�$�� � � � � � ��

�
�� �) � � � � � � � � � ��

�

Note that �$)
� � � 	 � - �

, �$ � � � � 	 � - �
and �� �) � � � 	 � - �

. We replace the new
variables in the above-mentioned system�

�$)
� � � � �$)

�
� � # �
 �� �) � �	� � �$�� � ��� �
 - � �� # � � 	 � � �
 ��� � �� # ��0

�$ � � � � � �$ � � ��� � � �� �) � � � ��� �	� � ��� � �� �) � ��� � - � �� #� � 	 � � � ��� � �� #��0
(30)

This allows us to write an algorithm with only four variables: �� � �$) � �$ � and �� �)
initial step:

- �� � ����
- �$) � - � �	� �
 � � � � � � 0 � ��
- �$�� � � � �� �
- �� �) � � � � � � � ��

step n:

- �$) � �$) � � # �
 �� �) �	� � �$�� �	� �
 - � �� # � � 	 � � �
 ��� � �� # ��0
- Solve the system � � � �	��
 � ����� � � �$) � ��� � ��) 	 � � 	 � � � � ��)�� � � 	
- �$�� � �$�� ��� �	� � ��� � �� �) ��� � - � �� � � � � � � ��� � �� � 0
- �� �) � ��� � � � � ��
- �$ � � �$ � ��� � � �� �)
- Solve the system � �	��
 � �� ��� � � �$ � � � � � �� � � � 	��� � � �� 	��� �

where ��) � resp. �� �
is the i-th column of the matrix � � resp. � and � � � ����
 �� ��) � � ��� ��) � � � resp. � �	��
 � � ��
 � ��� �� 	�� � and �� ��� � � � �
 � � � � � � 	� ��� resp.

3 NUMERICAL APPROXIMATION BY THE NEWMARK METHOD 10

�� ��� � � � �
 � � ��� � � 	 � ��� . The obtained vector �� at each step

is an approximation
of the exact solution, i.e. the element � � is an approximation of � � � ������� � � � .

The last step is supplementary. If you are interested in an approximation of the
first derivative in time of the exact solution, then it could be calculated at each step,
like you calculate � . But there are some additional problems. You like to solve the
system � � �� � � � � �$ � with � � � 	 � - � 	 	 � � � , �� � � � � � 	 � � � and �$ � � � 	 � - �

.
The difference to � is that you don’t have the information on the boundary, so that you
have

� + �3� unknowns but only
� + � � equations. The solution is in a 2 dimensional

space. Using the well known functions
$ � � and

$ � � , which describe the function � on
the bound, � can be approximated by centered differences (on the boundary), a second
order method. Having the values of v on the boundary, you apply the same scheme
like for � , i.e. taking the first and last column of M multiplied by � � and � 	 � � � on the
other side of the equality. The element � � of the obtained vector �� at the step

is an

approximation of ((# �
� � ������� � � � .

3.2 Neumann boundary conditions

The goal of this section is the same as in the preceding, the numerical approximation
with the Newmark method, but this time with Neumann boundary conditions. It will be
a short description, detailed only on the passages where the procedure deviates from the
above-mentioned one. By uncertainty, see the same passage in the preceding section.

3.2.1 The weak problem

In this case, the wave equation is also multiplied by a test function �)��� � � � � � � � � � �
and integrated in space. The first difference appears in integrating by parts. Knowing
the derivatives in space on the bound, it isn’t demanded to v being zero on the bound.
We write:

�"�
� + 	
+ �
	�
 �	3�
 � � � � �

� + 	
+ �
	 �	�� �
	 �	�� � � �

	 �	3� � � � ����� � � � � � � ���
	 �	3� � � � ����� � � � � � �

� �
� + 	
+ �
	 �	�� �
	 �	�� � � ��� $ � � � ��� � � � � � � ����� $ � � ����� � � � � � � (31)

With the same definitions of the scalar product and the forms � � � � � � and � � � � � � as above,
you arrive to the weak problem (WP):
find �����
 �
 � � � � ����� � � � � � � � ��� � � � � � � ��� � � ����� � � - $ � � ����� � � � � � � $ � � � ��� � � � � � 0 (32)

� � � �*� � � ��� � � �	
	 � � � � �*� � � ��� � � �
	
	�� � � � � ����� � $ � � �����	
	�� � � � � ����� � $ � � �����

for all � ��� .

3 NUMERICAL APPROXIMATION BY THE NEWMARK METHOD 11

3.2.2 Space-discretization with the Galerkin method

Like in the case of Dirichlet boundary conditions, we replace � by a finite dimensional
subspace.

� � � ��� � � � � � - � � � � � 0 � � � � � � � � � � �&� 	 � � ! � � � � � � � � � � + # (33)

The approximation � � � � � of � � � can be written in the
� + �(� -dimensional base�
 � # , defined in the preceding section. We write

� � � � ����� � 	 � � ��
� % � �� � � ��� �
 � � � � (34)

and let ����� � , � � � � be the projections from � in � � of ��� , � �

� ��� � � � � � 	���� ��
� % � � � � � � � �
 � � � �

� � � � � � � � 	���� ��
� % � ��� � � � � �
 � � � �

� ��� � � � � and � � � � � � � being approximations of � � � � � resp. ��� � � � and as a consequence,
the discrete formulation of the weak problem is given.	 � � ��
� % �
 �
 �� � � ��� � �
 � �
 � ��� � �

	 � � ��
� % � �� � � ��� � � �
 � �
 � � � 	 � � ��

� % � �� � ����� �,� �
 � �
 � � (35)

� ��������� �
���� � � - $ � � ������
�� � � � � � $ � � � ����
 � � � � 0
for all

� � � � � � � + � � . So that this system of equation can be written in a matrix-
vector form. For this, the same definitions of the matrices � , � , � and the vectors �� ,
�� as in the preceding section are used. We obtain

� � � �� ����� � � � � � � � �� � ��� � �� ����� � �� ����� (36)

�� ��� � � � ����
�� ��� � � � �� �

where �� � ��� � � �"��� $ � � ����� � � � � � ��� $ � � ��������� , � � � � � � � 	� � �
	 	��� � and
�� � �� � � 	� � � .
3.2.3 The Newmark method

Like in the case of Neumann boundary conditions, the Cauchy problem (36) is resolved
by the Newmark method. So that we get)**+ **,
- � ��� �
 � � � � � � 0 ��

� � � � - � �	� �
 � � � � � � 0 ��
�
� � # �
 � � � � � ��

�
��� � � �� �

� � �
 - � � �� # � � 	 � �� � � � � � � �
 ��� �	� �� # � � �� ��� 0
� �� � � � � � �� � ��� � - � � �� #� � 	 � �� � � � � � � � ��� � � �� #� � �� � � 0 ��� � � � � � � � ��

� � �
��� �	� � ��� � � � � � � ��

�
(37)

3 NUMERICAL APPROXIMATION BY THE NEWMARK METHOD 12

where �� � � �� ����� � . We define exactly the same variables as in the case of Dirichlet
boundary conditions, only that the dimensions will be different:

��� � � - � ��� �
 � � � � � � 0 (38)
�$) � � ��� � �� (39)
�$ � � � � � ��
�� �) � � � � � � � � ��

Note that � � � � 	�� � � 	 	���� � and �$) � �$�� � �� �) � � 	�� � � . Now, there is the same
algorithm presented, but the dimensions of the matrix’s and vectors differs.

initial step:

- �� � �� �
- �$) � - � �	� �
 � � � � � � 0 � ��
- �$ � � � � �� �
- �� �) � � � � � � � ��

step n:

- �$) � �$) � � # �
 �� �) �	� � �$ � �	� �
 - � � �� #� � 	 � �� � � � � � � �
 ��� � � �� #� � �� � � 0
- Solve the system ��� � �� � �$)
- �$ � � �$ � ��� �	� � ��� � �� �) ��� � - � � �� � � � � �� � � � � � � � ��� �	� �� � � �� � � 0
- �� �) � ��� � � � � ��
- �$ � � �$ � ��� � � �� �)
- Solve the system � � �� � �$ �

For additional information on the solution the first derivative in time can be approxi-
mated. You solve at each step of time the system � � �� � � � � �$ � with �$ � the last cal-
culated in the algorithm. The dimensions are � ��� 	 � � � 	 	 � � � and �$ � � �� � � 	 � � � .
Thanks to the right dimensions, there is no problem to solve it.

3.3 The Matlab Code

The Matlab Code for the Newmark method calculates the approximation of the wave
equation with the Newmark method. All the computations are based on the previous
theory. You have as inputs :

� � , � � , � + , � � , � � , � # , � , � , � , � , � � , � � , � ,
$ � � � �� ,

$ � � and$ � � . $ � � � �� (boundary condition code) is a two dimensional boolean line-vector, where
0 means Dirichlet and 1 Neumann boundary conditions. The first element corresponds
to
� � and the second to

� � . For example - � � 0 means Neumann boundary conditions
in
� � and

� � . The outputs are an error message or a plot for � and � � (
)
(# (the first

derivative in space). The plot is the surface defined by � � � ����� resp. � � � ����� .

3 NUMERICAL APPROXIMATION BY THE NEWMARK METHOD 13

3.3.1 Approximation of
� ��� ��� ��
� �����

The Simpson formula is used to approximate
� � ����� � � ��� ��� ��
�������� � � +�	+ �

��� ����
�� �
.

Let - � �/$ 0 � � be an interval and � � � - �

 . You like to approximate

� �� � � � �� �
. The

Simpson formula is the following:� � � ��� � � � - � � � � ��� � � � � $' � � � � $ � 0 (40)

The Simpson formula is exact in degree 5, because the points � , $ and
� � �
 are the zeros

of the corresponding orthogonal polynomial of degree 3 in - � ��$ 0 .
In our case, we approximate

� � � ���
in the two intervals - � ��- � � � � 0 and - � � � � � � � 0 , in

each interval by the Simpson formula. In the rest of the interval - � � � � � 0 the function

is identic to zero, and also
��� ��� �
 . Let

� ��� 	� be the points
� ��� �
 and �
 � �
 . Note

that

 � � ��- � � � � �
 � � � � � � and

� � �����
	 �
� - � ��� � �.- 	� ����� �' � ' � ��� � � ����� ��� ��� � �.- 	� ����� �' 0	 � � - ��� � �.- 	� � � ��� � � � � ��� � ��- 	� � 0 (41)

For
� � and

� 	���� � , we have

� � � ����	 � � - ��� � � �' � ��� �
 � 0
� 	���� � � ����	 � � - ��� � 	 � � � �' � ��� � 	�� � 0

(42)

This is used in the Matlab-file
�
 � � � � � The inputs are

�
,
� + , � ,

� � , � and it returns �������� .

3.4 Theoretical study of the Newmark method

The order of the Newmark method depending on the parameters will be determined
in this section. We consider the differential equation (18) and let

�
be the following

application:� � � � �� � � �� � � � � �� � � � � � �	� � � � ��� �
 � � � #� � 	 � � �
 ��� � � #� �� � ��� �	� � � #� � 	 � � � ��� � � #� � (43)

Let � be the exact solution of (18) and

�� � ��� � � � �������� � ��� (44)

where ��� � ()(# .Then we define � � � � ��� � �� ��� � � � � � � � �� ��� � ���
. The application

�
will be of order p, if � � � � ��� � � � � ��� � � � . We already have

� � �� ��� � ��� � � � ��� � � ��� � ��� ��� � � ��� �
 � � � #� � 	 � � �
 ��� � � #� ���� � � � � �	� �	� � � #� � 	 � � �"��� � � #� � (45)

3 NUMERICAL APPROXIMATION BY THE NEWMARK METHOD 14

and we use the Taylor expansion of �� ����� � � � .
� � � � � � � � � ��� � � ��� � � � ��� � � � � �
' � � � � � � � ��� � �
 � � � � � � � ��� � �
 � � � � � � �

� �
� �
�
� � � � ��� � � �	� � � ��� �

(46)

We have also the first order development of ��� � ��� � � � � :
� � � ����� � � � � � � � ����� � ��� � � � � � ������� ��� � � �
 �
� � � � ������� � � � � ����� � � � ��� � � � � � ������� ��� � � �
 �

(47)

Now we replace

� � �
 � � � � ��� � � � � �
 � � � � ��� � � � ��� � � � � � � � ������� ��� � � � � �
(48)

in the equation (46). This leads us to

� ��� � � � � � � � � � � ��� � � � ��� � � ��� �
 � � � � � ��� � � � � � � �' ��� � � � � ��� � ���
� � ��� � �

� ��� � � � � � ��� � � ��� � � ��� �
(49)

In the same way we can also find

� � ��� � � � � � � � ��� � � �	� �	� � � � � ��� � � � � � � �"��� � � � � ��� � ���
� � �
 � �' ��� � �	� � � � � �

(50)

and as consequence we have

�� ��� � � � � � � � �� ��� � � � ��� � � � � � � �
� ��� � ��� � � ����� � �	� � � � � �

� �
 � �
 ��� � ��� � � ��� � � �	� � � � � � (51)

We see that in the case of � � �
 , the Newmark method is a second order one, and if
not, the method is only a first order one.

4 LEAP-FROG METHOD 15

4 Leap-Frog method

The mathematical problem in this section is exactly the same as in the precedent, we
would like to approximate the solution of the wave equation. This time, we don’t
use the Galerkin method, but the finite differences. We don’t differ the two cases of
boundary conditions, a later treatment for this two instances will follow. The method is
first explained for both cases, but we neglect all difficulties connected to the boundary
conditions. Like in previous chapter, let be

� � � � # � ��
 � � � � � �
and � � � � � � �.� ��� � ��� ,

where � � � ��� - � �	 � and � � +�	 - + �	 � (
� � � � ��� � + � � ,

 � � � ��� � # �2�). For
all functions

� � �6�2� we note
� �� instead of

� � � � ��� � � , where we have the same
discretization of space and time as in the previous chapter. The finite differences are
given

	�
 �	 �
 	 � � � �� � ' � �� � � �
- ��
� �
 (52)

	�
 �	��
 	 � �� � � � ' � �� � � �� - ��
 (53)

We replace the two second derivatives in (1) with the above mentioned approximations.
This leads to the following scheme

� � � �� � ' � �� � � �$- ��
� �
 �����

� �� � � � ' � �� � � �� - ��
 � ��� �
�
� � � �� (54)

Advancing in time, we separate the terms � in time
� � � � from the other ones in time���

and
���$- � . Let be

� � � #� .

� � � �� � � �
�
- �� � � ' � ' � �
 �� � �
 � � �

�
� ��� �
 � � �

�
� � � � � �� - � � �	� �
 � �

�
� (55)

Besides the complications on the boundary, the initial step put some additional prob-
lems. For calculating �
� we need � �� � � � � � � � # ��� ���

, so it have to be approximated.
Using the initial condition (3), we apply the centered differences

��� � � � � 	 �
� � � ��' � � (56)

where � �� � � � � � � ��# ��� ���
. Note that ��� is the initial condition for the derivative in

time of � . So we have � �� � �
� � ' � � ��� � � � � and as consequence

�
� � � �
� � ' � � � � � � � � � � � ' � ' � �
 ��� � �
 � � ��� � � � � (57)

� � �
 � � ��� � � � � � � � �3� � � ����� 	 ��� ��� �
 � � ��
�

�
� � � � � � � � � � � � � � ��� �
 � � � �
' � � �3� � � � � (58)

� �
�
' � � ��� � � � � � � � �3� � � � - � ��� � � �
' � � ��

4.1 Dirichlet boundary conditions

In the case of Dirichlet boundary conditions, there aren’t any complication, because we
don’t have to calculate �

� � and �
�	���� � . So we replace simply �

� � by
$ � � ��� � � and �

�	���� �
by
$ � � ��� � � in the equation (55) for all � �3' ��� � � + .

4 LEAP-FROG METHOD 16

4.2 Neumann boundary conditions

In case of Neumann boundary conditions, we need to calculate �
� � and �

�	��� � . For
this, we need �

�� � � � � � � � ������� and �
�	���
 � � � � � � � ������� . Using the centered

difference approximation of the boundary conditions

$ � � ��� � � �
	
	�� � ��� � � � � ����	 � �
 � �

��' � (59)

$ � � ��� � � �
	
	�� � ��� � � � � ����	 � �	 � �
 � � �	 �' � (60)

leads us to

� �� � � �
 � ' � � $ � � � ��� � (61)� �	����
 � � �	� � ' � � $ � � � � � � (62)

The following equations results by replacing this in (55)

� � � �� � � �
�
- �� � � ' � ' � �
 ��� � �
 � � �

� � � ' � �
 � � � �
 � � � $ � � ����� ��� ��� �
 � �
��

� � � �	��� � � � �
�
- �	��� � � � ' � ' � �
 ��� � �
 � � �

�	��� � � ' � �
 � � � �
 � � � $ � � � � � ��� ��� �
 � �
�	���� �

and for the initial step we obtain

�
 � � � � � ��� � � � � � � � �� �
 � � � �
' � � � � � � � � (63)

� � �
 � � � � � �
 � � � � $ � � � � # ��� � � �
' � � ��
�
	��� � � � � � ��� � � � � � � � � �,� �
 � � � �
' � � � � � � � � (64)

� � �
 � � � � � � 	 � � � � � $ � � � ��# ��� � � �
' � � �	���� �

5 FLUID-STRUCTURE INTERACTION 17

5 Fluid-Structure Interaction

The fluid-structure interaction is studied in this section. A simple radial symmetric 1D
model (with a one dimensional wall) is used. For any details see [1], chapter 4. It isn’t
part of this work to develop the model. Briefly, for the fluid part we use the Stokes
equations and for the vessel the wave equation.

5.1 The fluid

Like mentioned above, the Stokes equations are used in a moving domain (the model
will be simplified afterwards). The initial domain

� � � �
 is supposed to be - ��� � 0 !- ����� � 0 . Let be
� �3- � ��� 0 ! - � � � 0 �6� the displacement function of the vessel.

O

y

��� �
+ �

� 	 �) #���� �

���	

x

vessel

��
������� � �������

������� � �������

fluid

������� � ��� ���

��������
x

Figure 1: The physical problem

The physical problem for the fluid are the following Stokes equations. We use
a Matlab code, which can only treat the cases of Dirichlet (homogeneous or non-
homogeneous) or homogeneous Neuman boundary conditions for �� . We put the fol-
lowing boundary conditions.

� � � �
 � � � + �� � � �
 � � � + �� � ! �#" �#$ � �&% �'$ � � � �)(�*,+
'.- �
� � �
 � �� �

� � � �
 � �� �	 ��	 �
 �0/ � �
 � � �
 � 	 �) # (65)

So the problem becomes to find �� � � � � � � and / that

	 ��	 � �21 � �� �435/ � � �
 � # (66) � � � �� � � � �
 � #
�� � � � $ ��� � � � ��3� � � � $ � �
 � �
/ � � � $ ��� � � � / � � � � $ � �
 � �

� � � �
 � � � + �

5 FLUID-STRUCTURE INTERACTION 18

� � � �
 � � � + �� � � �#"�� $ � �&% � $ �	� � �'(#* +
' - �
� � �
 � �� �

� � � �
 � �� �	 ��	 �
 � / � �

 � � �
 � 	 �) #
�� � �1� � 	 �	 � � �
 � �	

We would like to treat this problem without moving the domain. To this aim, we fix
the domain and we use a transpiration method to approximate the velocity at the upper
boundary. Caused by this reason, the domain

� # has to be reduced on a fix domain� ��� � . Let be
� ��� � � - ��� � 0 ! - ��� � � 0 and

� ��� � � � ��� ��� � � � ��� . � �4- � � � 0 ! - � � � 0 �6�
will be the displacement of the vessel from the fixed domain.

����	��

����� �	���

� ������

(L,
���

)

O

�������� � "!

(0,
���

)

(L,0)

y

xx

� �����

Figure 2: The simplified model

The solutions are only calculated on the reduced domain. This leads us to the simpli-
fied problem

	 ��	 � �21 � �� � 35/ � � �
 � ��� � (67) � � � �� � � � �
 � ��� �
�� � � � $ ��� � � � ��3� � � � $ � �
 � ��� �
/ � � � $ ��� � � � / � � � � $ � �
 � ��� �

� � � �
 � �
+ �� � � �
 � �
+ �� � ! �#"�� $ � � % �'$ �	� � �'(#* +

' - �
� � �
 � � �

� � � �
 � � �	 ��	 �
 � � �
 � �) #
�� � � � $ � �

����� � �1��� � 	 � � ������� �
 � 	 � ��� �

5 FLUID-STRUCTURE INTERACTION 19

Note that we assume that � is small and as consequence the
�

component of �� on the
boundary

� �	 � ��� � is supposed to be zero. Now � 	 has still to be estimated, supposing
that we know

� . This is considered to be a problem of the fluid-structure interaction
and is treated in the section interaction.

For the numerical computation of the fluid part, the Matlab code MLife is used.
This code is developed at the Politecnico di Milano, namely from Prof. F. Saleri of the
MOX.

5.2 The vessel

For the simulation of the vessel, the wave equation with homogeneous boundary con-
ditions is used. The equation is the following one

	
 �	 �
 �����
	
 �	3�
 � $ � � � � # (68)

where
� # � � � � ����� � � � + � � ��� � #�����	� � � depends of

�
and

�
.

Determination of the parameters:

� �
 �� 	 � �$ �
� 	 � � ���
 ���
�

(69)

where

� 	 : vessel density� � : thickness of the vessel

 � : tangential component of the longitudinal stress
: Young modulus

� : Poisson coefficient

For the numerical computation of the solution of this equation, the Newmark method
is used. The advantage is that we can obtain also

� . This will be used in the first order
approximation of � 	 (see the section interaction).

5 FLUID-STRUCTURE INTERACTION 20

5.3 Interaction

Remember that we note ���� � � � � � . First, we would like to estimate the velocity on the
upper boundary of the fluid domain, � � � ��� � ����� , noted � 	 � � �����

. We suppose to know� at each step of time
� �

. The interface condition is the following

� � � � � � � � � � � ����� � 	 �	 � � � ����� �
	 �
	 � � � �����

(70)
� � � � � � � � � � � ����� � �

Then, the first order Taylor approximation in the point
� � � � � � in the $ direction is used

� � � ��� � � � � � �	����� �(� � � � � � ����� �
	 �	 $

� � � � � ����� � � � � ����� ��� � � � � �����
 � (71)

Note that � 	 � � ����� � � � � ��� � ����� and as consequence, two approximations are pre-
sented

� # � order approximation:

� 	 � � ��� � � � � � 	 �	 � � � ��� � � � � (72)

� � # order approximation:

� 	 � � ��� � � � � � 	 �	 � � � ��� � � � � � 	 �	 $ � � ��� � ��� � � � � � � � � ��� � � � � (73)

5.4 The algorithm

The main problem of the fluid-structure interaction is that we have two different phys-
ical laws (one for the fluid part and one for the structure part), which are coupled. For
both problems we have a numerical method to do the calculus with given initial and
boundary conditions. This algorithm is a simpler version fo thisone described in [2].

The algorithm is presented as
� # steps progressing in time. In the step

 �� � � ��� � � � # � � # we are at the time
� �

and we would like to calculate the solution
at time

� � � � . Each time step, we have a sub-iteration indexed by k. At every step k
(at time

� �
) the algorithm is separated in two periods. In the first period, the Stokes

problem is solved in one step of time
� �

to
� � � � . The obtained result in the previous

time step is used as initial condition for the Stokes problem (not as initial condition
for the whole problem), concretely ��

� � � ��� � and /
� � � ����� . The boundary conditions in� � �

+ � , � �� � and
� 	 �) # are independent of the vessel, so it can be easy calculated. The last

boundary condition, this on
� 	 � ��� � is calculated by transpiration starting from �

� � � � �
and

� � � � � � with result
�1� � � � � � � �	 �

. The solution of the Stokes problem is ��
� � � � � � �

and /
� � � � � � � . In the second period, using /

� � � � � � � , the stress
�

is calculated at time� � � � (note that
�

is also needed in time
� �

, but this is already calculated in the pre-
vious time step). Then the vessel problem is solved with initial conditions �

� � � ����� and� � � � ��� � . This gives us �
� � � � � and

� � � � � � . Then we relax this solution with the solutions
obtained in

�
-step before. The sub-iteration is calculated till a convergence tolerance is

satisfied for � or we have more than
� � � � steps in k. If this conditions aren’t satisfied,

we put
� � � � � and start at the begin of the sub-iteration. If not, we save the solutions,

5 FLUID-STRUCTURE INTERACTION 21

��
� � � � � � ��� � �� � � � � � � �

/
� � � � � ����� � / � � � � � � ��
� � � � � � ��� ���

� � � � � � �
� � � � � � � ��� � � � � � � � � �

and we put

 �
 � � ,

� � � . Then the next time step is computed and new
sub-iterations started and so on. This is done till we have

 � � # . Note that at
each sub-step

�
, we approximate

� ��� � � � �	 �
by

�1��� � � � � � �	 �
, because at step

� � � ,�1� � � � � �	 �
is not given. This is the reason why we have to do this sub-iteration. At

step
� � � ,

�1� � � � � �	 �
is approximated by

�1� � � � � � � ���	 �
and the solution of the ves-

sel problem gives us a solution �
�
� � � �
 . We do a � -relaxation with �

� � � � � , concrete�
� � � �
 ��� � �� � � � �
 � � �"� � � � � � � � � � . This gives us an approximation of

� ��� � � � �	 �
using transpiration, noted

�1� � � � � � �
	 �
. Then solving the Stokes and the vessel problem

starting from
�1��� � � � � �
	 �

as boundary condition gives us a better approximation (after
relaxation) of

�1� � � � � �	 �
, noted as

�1� � � � � � � �	 �
and so on, till we have convergence in� . At the end of this k-iterations

�1� � � � � � � � �����	 �
should be a good approximation of�1� � � � � �	 �

.
For the graphical representation of the algorithm, see fig 3, we use the following nota-
tion: ���
 / � � � � ��� � � �
 / � � � � � � � � � / � � � � � ��� � � � � / � ��� � (74)

where
�

can be
�

for Transpiration,
�

for Stokes,
�

for the calculation of the stress
�

or � for vessel. It means that we solve the problem
�

with the inputs
�
 / � � � � ��� � � ��
 / � � �

and as result we have � � � / � � � � � ��� � � � � / � � � . In fig 3,
�
� � � � � is defined as follows

�
� � � � � �����
	

� � �
�
� �.��� � � � � � � � � � �.��� � � � � � � ��
�
� ��� � � � � � � � � � (75)

Note that in the programme, � is a vector. Every element correspond to to a point on
the upper boundary (see Results).

Figure 3: The algorithm

5.5 Results

In this section some results of two different versions of this algorithm are given. For
both versions the parameters are the followings

5 FLUID-STRUCTURE INTERACTION 22

parameter value�
6cm� + 48

1 0.035� � 0.1� 	 1.1

 � 25000
� 0.5� � 0.5cm � � � % � � � �
" 100
� 0.5
� 0.25� + � � is number of vertices on the boundary

� �	
. This means firstly that the upper

boundary is divided in
� + intervals for the simulation of the vessel with the Newmark

method. This define
� + �(� points on

� �	
. Secondly for the simulation of the fluid, a

triangulation is used, where this
� + � � points on

� �	
correspond to the vertices on

� �	
of the triangulation. In both cases � �

is equal to
� � � milli-seconds.

��� �
+ is chosen as

150 and we use the zero order transpiration for � 	 .

5.5.1 First version

In this version, the vessel equation is solved with Neuman boundary conditions.

0 1 2 3 4 5 6
0.498

0.5

0.502

0.504

0.506

0.508

0.51

0.512

0.514

0.516

cm

cm

Figure 4: The vessel at time 0.002 seconds

Figures 4-7 show that this version is not a good one. Note the different scales on the
$ -axis. Following the wave front, you will notice that the vessel begin to swing before
the wave front even arrives in this points. This is a fact that could not be observed in

5 FLUID-STRUCTURE INTERACTION 23

0 1 2 3 4 5 6
0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

cm

cm

Figure 5: The vessel at time 0.004 seconds

0 1 2 3 4 5 6
0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

wave front

Figure 6: The vessel at time 0.006 seconds

5 FLUID-STRUCTURE INTERACTION 24

0 1 2 3 4 5 6
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

cm

cm

wave front

Figure 7: The vessel at time 0.01 seconds

−1 0 1 2 3 4 5 6 7
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

cm

cm

Figure 8: The velocity field at time 0.003 seconds

5 FLUID-STRUCTURE INTERACTION 25

0
1

2
3

4
5

6

0
0.1

0.2
0.3

0.4
0.5

−1.5

−1

−0.5

0

0.5

1

1.5

2

x 10
4

xy

pr
es

su
re

Figure 9: The pressure at time 0.002 seconds

reality. Why the pressure decreases that much in the point
�1� �*� �

in fig.(9)? Why this
model does not work? Here are some possible explanations and weak points of this
model

- Using Neuman boundary conditions for the vessel, we have a part of the bound-
ary

� # , the segment between the points
�1� ��� � � and

� ����� � �����
, where we have

not absolutly an inflow. Maybe you have there some effects, which disturb the
whole simulation, like for example that the fluid pour out of the domain in this
segment, and this let decrease the pressure in this region.

- Since the vessel swings that much, it is possible that the parameter � 	 is too
small. � 	 is the density of the vessel and influence also the stiffness of the
vessel.

- Do we have really at each

-iteration convergence after the
��� �
+ steps.

- The zero order transpiration could be bad. Maybe there is an effect that, if � is
already large, then the bad approximation support � increasing, this means that
the wave-amplitude increases and the pressure would also be high in this region

- It’s maybe because we don’t describe the incoming wave as a pressure wave, but
as a Dirichlet boundary condition on the velocity field.

5.5.2 Second version

Since the first version does not work, an other version is tried. To better control the flux
on the inflow,

� �� �
, we try the model with Dirichlet boundary conditions for the vessel.

Because of lack of time, only the results of step 1 to 40 could be calculated. This means

5 FLUID-STRUCTURE INTERACTION 26

a final time at the step 40 of 0.004 seconds, which corresponds to 4 milli-seconds. You
can see that at time 0.004, fig.(11), the two solutions are similar and that also in the
second version, the vessel increases in the domain between

� � � and
� � � � % like in

the first version. It can be suspected that also in this model, the vessel begin to swing.
Unfortunately, we had no time to verify it. The computation had no time to finish, yet.

0 1 2 3 4 5 6
0.495

0.5

0.505

0.51

0.515

0.52

x

y

dashed line: Neuman boundary conditions
solid line: Dirichlet boundary conditions

Figure 10: The two vessels at time 0.002 seconds

0 1 2 3 4 5 6
0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

x

y

dashed line: Neuman boundary conditions
solid line: Dirichlet boundary conditions

Figure 11: The two vessels at time 0.004 seconds

6 CONCLUSIONS 27

6 Conclusions

In this project, we analyzed two different methods to approximate the solution of the
wave equation, then we developed a simple model of the blood flow in arteries. Un-
fortunately, the results were not that good. From this point of view, I can not supply
meaningful results, but just the modelling of a physical problem and also being con-
fronted with a lot of questions in programming, was a very good experience. From
this point of view, I learnt some basics of hyperbolic partial differential equations and
solution methods as well as an introduction to fluid-structure interaction, including the
difficulties behind that. It was an interesting work, which was a mix between theo-
retical study of some methods and programming in Matlab. Thanks to this work, I
learnt how to argue and solve problems in numerical analysis as well as programming
in Matlab and write articles with LATEX. I even could visit Milano.

7 MATLAB CODES 28

7 Matlab Codes

7.1 The Newmark Code

function res=newmarkbybeni(x0,x1,Nx,t0,t1,Nt,a,c,theta,zeta,...
ic1,ic2,force,bccode,bcv1,bcv2)

% u_tt - a*u_xx + c*u =f
% approximation P1 of the wave equation with the Newmark method
% Q = (t0,t1)x(x0,x1)
% Nt: number of steps in time
% Nx: number of steps in 1 dimensional space
% theta, zeta: parameters of the Newmark method
% force is a string depending of x and t
% icond1 and icond2 are strings depending of x
% bccode: vector of two elements(for each boundary point):
% 0: Dirichlet boundary conditions
% 1: Neuman boundary conditions
% bcv1 and bcv2 are strings depending of t
% this program needs the other programs: int_f.m, dcentred.m
% examples:
% newmarkbybeni(0,1,40,0,2,40,1,.5,.5,.25,’x.ˆ2’,’1+0*x’,...
% ’-x.*(1-x)’,[0 0],’sin(2*pi*t)’,’cos(2*pi*t)’)
% newmarkbybeni(0,1,40,0,2,40,1,.5,.5,.25,’5*x.*(x-1)’,...
% ’1+0*x’,’-x.*(1-x)’,[0 0],’sin(2*pi*t)’,’0*t’)

% --- test for boundary and intials conditions ---
t=t0;
bc1=eval(bcv1);
bc2=eval(bcv2);
x=x0;
ic1x0=eval(ic1);
x=x1;
ic1x1=eval(ic1);
x=x0;

if (bccode(1)==0 & bccode(2)==0) % if Dirichlet B.C.
if (bc1˜=ic1x0 | bc2˜=ic1x1)

disp(’bounary conditions don"t accord to initials conditions’);
return;

end
end

if (Nx<=2)
disp(’Nx must be bigger than 2’); return;

end

% --- initialisation of global constants ---
h=(x1-x0)/Nx;

7 MATLAB CODES 29

deltat=(t1-t0)/Nt;
x=[x0:h:x1];
time=[t0:deltat:t1];

e=ones(Nx+1,1);
em(2:Nx,1)=ones(Nx-1,1);
em(1,1)=1/2; em(Nx+1,1)=1/2;

M=h*spdiags([1/6*e 2/3*em 1/6*e],-1:1,Nx+1,Nx+1);
A=a*1/h*spdiags([-e 2*em -e],[-1:1],Nx+1,Nx+1);
C=c*M;

Mred=M(2:Nx,2:Nx);
Mrel=M(2:Nx,:);

AC=A+C;
ACrel=AC(2:Nx,:);
A_u=M+zeta*deltatˆ2*AC;

U=zeros(Nx+1,Nt+1);
V=zeros(Nx+1,Nt+1);
U(:,1)=eval(ic1)’;
u=U(:,1);
V(:,1)=eval(ic2)’;
v=V(:,1);

% ++++++++++++++++++++++++++++++++++++
% --- dirichlet boudary conditions ---
% ++++++++++++++++++++++++++++++++++++

if (bccode(1)==0 & bccode(2)==0)

% --- initialisation of U ---
t=time;
U(1,:)=eval(bcv1);
U(Nx+1,:)=eval(bcv2);

% --- approximation of v on the bound ---
t=[time t1+deltat];
b1=eval(bcv1);
b2=eval(bcv2);
t=t0;
V(1,2:Nt+1)=dcentred(b1,deltat,Nt);
V(Nx+1,2:Nt+1)=dcentred(b2,deltat,Nt);

A_ured=A_u(2:Nx,2:Nx);
A_urel=A_u(2:Nx,:);
A1=A_u(2:Nx,1);
A2=A_u(2:Nx,Nx+1);

7 MATLAB CODES 30

% --- step 0 ---
b_u=A_urel*u;
b_v=Mrel*v;
AC_u=ACrel*u;
v=v(2:Nx,1);

% --- steps 1 to Nt ---
for n=1:Nt

t=t0+n*deltat; % t_(n+1)
F11=int_f(force,Nx,h,x0,t0+(n-1)*deltat);
F22=int_f(force,Nx,h,x0,t0+n*deltat);
F1=F11(2:Nx)’;
F2=F22(2:Nx)’;

b_u=b_u-deltatˆ2/2*AC_u+deltat*b_v+deltatˆ2*(zeta*F2+(.5-zeta)*F1);
b_uu=b_u-U(1,n+1)*A1-U(Nx+1,n+1)*A2;

u(2:Nx)=A_ured\b_uu; % solve A_u*u=b_u
u(1)=U(1,n+1);
u(Nx+1)=U(Nx+1,n+1);

b_v=b_v+deltat*(theta*F2+(1-theta)*F1-(1-theta)*AC_u);
AC_u=ACrel*u;
b_v=b_v-deltat*theta*AC_u;

b_vh=b_v-V(1,n+1)*Mrel(:,1)-V(Nx+1,n+1)*Mrel(:,Nx+1);
v=Mred\b_vh;

U(2:Nx,n+1)=u(2:Nx);
V(2:Nx,n+1)=v;

end

% +++++++++++++++++++++++++++++++++++
% --- neumann boundary conditions ---
% +++++++++++++++++++++++++++++++++++

elseif(bccode(1)==1 & bccode(2)==1)

L1(1:Nx+1,1)=zeros(Nx+1,1);
L2(1:Nx+1,1)=zeros(Nx+1,1);

% --- step 0 ---
b_u=A_u*u;
b_v=M*v;
AC_u=AC*u;
L1(1,1)=-a*eval(bcv1);
L1(Nx+1,1)=a*eval(bcv2);

7 MATLAB CODES 31

% --- steps 1 to Nt ---
for n=1:Nt

t=t0+n*deltat; % t_(n+1)
F1=int_f(force,Nx,h,x0,t0+(n-1)*deltat)’;
F2=int_f(force,Nx,h,x0,t0+n*deltat)’;
L2(1,1)=-a*eval(bcv1);
L2(Nx+1,1)=a*eval(bcv2);

b_u=b_u-deltatˆ2/2*AC_u+deltat*b_v+...
deltatˆ2*(zeta*(F2+L2)+(.5-zeta)*(F1+L1));

u=A_u\b_u; % solve A_u*u=b_u

b_v=b_v+deltat*(theta*(F2+L2)+(1-theta)*(F1+L1)-(1-theta)*AC_u);
AC_u=AC*u;
b_v=b_v-deltat*theta*AC_u;

v=M\b_v;

U(:,n+1)=u;
V(:,n+1)=v;

L1=L2;

end
else

disp(’Other boundary conditions not yet implemented’);
return;

end

% --- visualization of the results ---
figure(1);
surf(U);
title(’aprroximation of u’);
xlabel(’time’);
ylabel(’[x0,x1]’);
figure(2);
surf(V);
title(’approximation of u_t’);
xlabel(’time’);
ylabel(’[x0,x1]’);

figure(3);

for i=1:Nt+1
ymin(i)=min(U(:,i));
ymax(i)=max(U(:,i));

end;

7 MATLAB CODES 32

ym=min(ymin);
yM=max(ymax);

for i=1:Nt+1
plot(x,U(:,i));
grid;axis([x0 x1 ym yM]);
tit=[’Time: ’, num2str(time(i))];
title(tit);
pause(.4);

end;

res=[U V];
return;

7.1.1 int f.m

function res=int_f(f,Nx,h,x0,T)
% approximation of (f(t),phi)_Lˆ2 with the simpson formula
% h=(x1-x0)/Nx
% t=T

t=T;
for i=2:Nx

x=x0+h*[i-2 i-1.5 i-1 i-.5 i];
F=eval(f);
res(i)=h/3*(F(2)+F(3)+F(4));

end

% i==1
x=x0+h*[0 .5 1];
F=eval(f);
res(1)=h/3*(F(1)/2+F(2));

% i==Nx+1
x=x0+h*[Nx-1 Nx-.5 Nx];
F=eval(f);
res(Nx+1)=h/3*(F(2)+F(3)/2);
return;

7.1.2 dcentred.m

function y=dcentred(f,deltat,Nt)
% approximation by centred difference
% f:1...Nt+2 !!!! => t1+deltat
% y(0) given by initial condition
y=zeros(1,Nt);
for i=2:Nt+1

y(1,i-1)=(f(i+1)-f(i-1))/(2*deltat);
end;

7 MATLAB CODES 33

7.2 The Leap-Frog Code

function res=leap_frog(x0,x1,Nx,t0,t1,Nt,a,c,ic1,ic2,force,bccode,...
bc0,bc1)

% u_tt - a*u_xx + c*u =f
% Q = (t0,t1)x(x0,x1)
% Nt: number of steps in time
% Nx: number of steps in 1 dimensional space
% force is a string depending of x and t
% icond1 and icond2 are strings depending of x
% bccode: vector of two elements(for each boundary point),
% 0: Dirichlet boundary conditions
% 1: Neuman boundary conditions
% bcv1 and bcv2 are strings depending of t
% example:
% leap_frog(0,1,20,0,2,80,.8,1,’x-1’,’1+0*x’,’0*x’,[0 0],...
% ’-cos(2*pi*t)’,’2*t’)

% --- test for boundary and intials conditions ---
t=t0;
bc0_t0=eval(bc0);
bc1_t0=eval(bc1);
x=x0;
ic1x0=eval(ic1);
x=x1;
ic1x1=eval(ic1);
x=x0;

if (bccode(1)==0 & bccode(2)==0) % dirichlet
if (bc0_t0˜=ic1x0 | bc1_t0˜=ic1x1)

disp(’bounary conditions don"t accord to initials conditions’);
bc0_t0
bc1_t0
ic1x0
ic1x1
return;

end
end

if (Nx<=2)
disp(’Nx must be bigger than 1’); return;

end

% --- initialisation of global constants --- %

h=(x1-x0)/Nx;
deltat=(t1-t0)/Nt;

7 MATLAB CODES 34

x=[x0:h:x1];
time=[t0:deltat:t1];
landa=deltat/h;

if(abs(a)>1/landa)
disp(’CFL not respected!!! The leap-frog method will be unstable’);

end

u=zeros(Nx+1,1);
U=zeros(Nx+1,Nt+1);
U(:,1)=eval(ic1)’;
u=U(:,1);
v=eval(ic2)’;

f=zeros(Nx+1,1);
d=zeros(Nx+1,1);
e=zeros(Nx+1,1);

% ------------------------------------- %
% --- Dirichlet boundary conditions --- %
% ------------------------------------- %

if (bccode(1)==0 & bccode(2)==0)

% --- step 1 --- %

t=t0;
f=eval(force)’;
d=u;
d_pos(1:Nx-1,1)=d(3:Nx+1);
d_neg(1:Nx-1,1)=d(1:Nx-1);
u(2:Nx)=deltat*v(2:Nx)+(1-a*landaˆ2-c*deltatˆ2/2)*d(2:Nx)+...

a*landaˆ2/2*(d_pos(1:Nx-1)+d_neg(1:Nx-1))+deltatˆ2/2*f(2:Nx);
t=t0+deltat;
u(1)=eval(bc0);
u(Nx+1)=eval(bc1);
U(:,2)=u;

% --- step n --- %

for n=2:Nt
t=n*deltat;

f=eval(force)’;
e=d;
d=u;
d_pos(1:Nx-1)=d(3:Nx+1)’;
d_neg(1:Nx-1)=d(1:Nx-1)’;

u(2:Nx)=-e(2:Nx)+(2-2*a*landaˆ2-c*deltatˆ2)*d(2:Nx)+...

7 MATLAB CODES 35

a*landaˆ2*(d_neg+d_pos)+deltatˆ2*f(2:Nx);

t=(n+1)*deltat;
u(1)=eval(bc0);
u(Nx+1)=eval(bc1);

U(:,n+1)=u;
end

% ---------------------------------- %
% --- Neuman boundary conditions --- %
% ---------------------------------- %

elseif (bccode(1)==1 & bccode(2)==1)

% --- step 1 --- %
t=t0;
f=eval(force)’;
d=u;
d_pos(1:Nx-1,1)=d(3:Nx+1);
d_neg(1:Nx-1,1)=d(1:Nx-1);
u(1)=deltat*v(1)+(1-a*landaˆ2-c*deltatˆ2/2)*d(1)+...

a*landaˆ2*(d(2)-h*bc0_t0)+deltatˆ2/2*f(1);
u(Nx+1)=deltat*v(Nx+1)+(1-a*landaˆ2-c*deltatˆ2/2)*d(Nx+1)+...

a*landaˆ2*(d(Nx)+h*bc1_t0)+deltatˆ2/2*f(Nx+1);
u(2:Nx)=deltat*v(2:Nx)+(1-a*landaˆ2-c*deltatˆ2/2)*d(2:Nx)+...

a*landaˆ2/2*(d_neg+d_pos)+deltatˆ2/2*f(2:Nx);
U(:,2)=u;

% --- step n --- %

for n=2:Nt
t=n*deltat;

f=eval(force)’;
e=d;
d=u;
d_pos(1:Nx-1)=d(3:Nx+1)’;
d_neg(1:Nx-1)=d(1:Nx-1)’;
bc0_tn=eval(bc0);
bc1_tn=eval(bc1);
u(1)=-e(1)+2*(1-a*landaˆ2-c*deltatˆ2)*d(1)+...

2*a*landaˆ2*(d(2)-h*bc0_tn)+deltatˆ2*f(1);
u(Nx+1)=-e(Nx+1)+2*(1-a*landaˆ2-c*deltatˆ2)*d(Nx+1)+...

2*a*landaˆ2*(d(Nx)+h*bc1_tn)+deltatˆ2*f(Nx+1);
u(2:Nx)=-e(2:Nx)+2*(1-a*landaˆ2-c*deltatˆ2)*d(2:Nx)+...

a*landaˆ2*(d_neg+d_pos)+deltatˆ2*f(2:Nx);

U(:,n+1)=u;
end

REFERENCES 36

end

figure(1);

for i=1:Nt+1 %length(time)
ymin(i)=min(U(:,i));
ymax(i)=max(U(:,i));

end;

ym=min(ymin);
yM=max(ymax);

for i=1:Nt+1 %length(time)
plot(x,U(:,i));
grid;axis([x0 x1 ym yM]);
tit=[’Time: ’, num2str(time(i))];
title(tit);
pause(.4);

end;

figure(2)
surf(U);
title(’approximation of u’);
xlabel(’time’);
ylabel(’[x0,x1]’);
res=U;

7.3 The Fluid-Structure Interaction Code

All the codes which are used for running the code of the fluid-structure interaction
problem is to large to put in this report.

Aknowledgements

A big THANKS to Simone Deparis, who was always available for questions and
showed me a lot of useful things. I would also thank Prof. F. Saleri, who spent his
time to receive me in Milano and introduce me into MLife and Prof. A. Quarteroni,
who made it possible to have the opportunity to do this project.

References

[1] Alfio Quarteroni, Luca Formaggia, Mathematical Modelling and Numerical Sim-
ulation of the Cardiovascular System, 2002

[2] Simone Deparis, Miguel Ángel Fernández, Luca Formaggia and Fabio Nobile,
Acceleration of a fixed point algorithm for fluid-structure interaction using tran-
spiration conditions, submitted to CRAS, 2002

REFERENCES 37

[3] Alfio Quarteroni, Alberto Valli, Numerical Approximation of Partial Differential
Equations, Springer, 1997

