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Introduction

In this project we address the numerical approximation of hyperbolic equations and systems using
the discontinuous Galerkin (DG) method in combination with higher order polynomial degrees. In
short, this is called Spectral Discontinuous Galerkin (SDG) method. Our interest is to review the
theoretical properties of the SDG-method, particularly for what concerns stability, convergence,
dissipation and dispersion. Special emphases will be shed on the role of the two parameters,
(the grid-size) and (the local polynomial degree). In this respect, we will carefully analyse
the available theoretical results from the literature, then we extend some of them and implement
several test cases with the purpose of assessing quantitatively the predicted theoretical properties.

In particular in chapter 1, the spectral discontinuous Galerkin method is studied for a time-
dependent scalar transport equation. First, the SDG-approach is used for the space discretization.
The presentation of the method is followed by a convergence analysis of the space discretization.
The dispersive and dissipation behavior in space of the SDG-method is studied following the
paper of Ainsworth [2]. Numerical tests conrm the theoretical results. Finally, the fully discrete
space-time spectral discontinuous Galerkin method is presented. A convergence analysis for this
method is then developed.

In chapter 2, the SDG-method is applied to a steady, linear hyperbolic system. First, two
types of boundary conditions are presented. The stability of the problem is then studied for both
types of boundary conditions. We present the SDG-method and develop the main result, a global
convergence theorem, which is numerically conrmed by three test cases. Finally, the SDG-
method for time-dependent linear hyperbolic systems is discussed briey. A numerical example
follows.

In chapter 3, we dene the dual problem of a linear hyperbolic problem, develop its SDG-
formulation and present a convergence result. An a posteriori estimation follows where we esti-
mate the error of the outgoing characteristics on the boundary. Inspired by the article of Houston
and Süli [11], we propose a theorem showing the convergence behavior of the estimated error.
The theoretical investigations are concluded with a theorem describing the convergence behavior
of the difference between the estimated error if a SDG-method is used for approximating the dual
solution and the error using the exact solution. Finally three test cases illustrates the practical
convergence behavior in the context of these two theorems.
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Chapter 1

A Time-Dependent Scalar Transport
Equation

1.1 Introduction

In this chapter, the spectral discontinuous Galerkin (SDG) method is studied in the context of a
time-dependent scalar transport equation. First, the model problem is presented. Then we use the
SDG method to semi discretize the problem in space. The space discretization leads to a system
of ordinary differential equations (ODE) with respect to the time variable. The discretization of
this system of ODE is not studied in this context and could be a subject of a future work. In the
following section the convergence of the method is analysed combining the results of Houston,
Schwab and Süli [10] and Burman and Ericsson [5]. The main result is Theorem 1.8 and its
corollary, Corollary 1.9, proving convergence of the space discretization. Then the dispersive and
dissipation behavior in space of the SDG-method is studied following the paper of Ainsworth [2].
The aim here is to understand the techniques of the proofs. The main result is Theorem 1.10.
Finally, numerical tests of the dissipation and dispersion error conrm the theoretical results.
Finally, the fully discrete space-time spectral discontinuous Galerkin method is presented. A
convergence analysis for this method is then developed.

1.2 Model Problem

Let denote an open and bounded Lipschitz polyhedral domain in , for and its
boundary. The following problem is considered:

nd such that:

in
on
on

(1.2.1)

where denotes the derivative in the -direction, and is a given vector
function. The coefcient is a function such that there exists with
. We assume that , , and

where is dened by

where is the outward normal unit vector at the point . Analogously is dened by
.
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8 CHAPTER 1. A TIME-DEPENDENT SCALAR TRANSPORT EQUATION

1.3 Notations and Technical Results

Suppose that is a bounded Lipschitz polyhedral domain in , and a partition of
into elements so that where every element is a parallelepiped. We assume that
is shape-regular and that for each element , there exists an afne transformation
such that where is the unit hypercube .
Let be the diameter of the element dened by . Then is dened
by .
Consider an element . Its boundary may be split into

where denotes the outward unit normal. Consequently we have that .
Additionally, let us dene . We now dene some limits associated with the
boundary :

if
if

and the jump term

Let be the set of all tensor-product polynomials on of maximum degree in each
direction. Using the afne transformation for each element, this space can be extended for an
arbitrary element :

Then we dene the polynomial space

The symbol is a parameter describing the quality of the discretization and represents the couple
, the mesh size and the polynomial order . Then we dene the nite element space

Additionally, we dene the local space

Since our nite element space will consist of discontinuous elements, it will not lie in
but rather in the piecewise Sobolev space dened by

for all integers . is a Hilbert space with respect to the following scalar product:
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with the associated norm

and semi-norm

Observe that all these denitions hold also for which can be dened analo-
gously. But in either case . For the case the index is left out for the
scalar product and the norm .
Let us denote by the orthogonal projector in onto the nite element space . For a
given , is dened by

Analogously, we dene the orthogonal projector in onto the local space by

where denotes the usual -scalar product on .
Next, we present two lemmas that will be used through the whole report. They are proven by
Houston, Schwab and Süli, [10]. The rst lemma is a consequence of Lemma 3.4 in [10] using
the Stirling formula and the afne transformation .

Lemma 1.1 (Lemma 3.4, [10], p.2140) For any , let for some integer
. Further, let be the -projection onto with ; then, for any integer ,

, we have

where depends only on the spatial dimension and the element .

The next Lemma is an error estimate of the -projection onto on the boundary of the
element for functions smooth enough.

Lemma 1.2 (Lemma 3.9, [10], p.2144) Let and suppose that for some
integer . Then, for any integer , and , we have that

where . The constant is only depending on and the
element whereas depends only on and .

1.4 Semi-Discretization in Space

The model problem is rst discretised in space by a SDG method which leads to a rst order
Ordinary Differential Equation (ODE) system with respect to the time variable. The ODE may be
then solved by a Runge-Kutta method, see [17].
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1.4.1 Spectral Discontinuous Galerkin Method in Space

We consider rst the problem restricted to one element . On the following problem is
considered:

nd such that

in
on
on

(1.4.1)

Let be the local functional space

for all elements and let be the global functional space

Observe that functions in have traces in . Multiplying equation (1.4.1) by a suf-
cient regular test function and integrating over the element leads to the variational
formulation of (1.4.1):

, nd such that:

Using integration by parts and imposing the boundary condition in a weak sense gives:

, nd such that:

div

Note that is known on by the rst boundary condition of (1.4.1) but not on
where denotes the unknown solution on the element . Now, a Galerkin approximation is
used. This means that the space is replaced by the nite dimensional space :

, nd such that:

div
(1.4.2)

where is an approximation of on for each . Counterintegrating
by parts leads to

, nd such that:

(1.4.3)
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where is given on the inow boundary and is dened by

Local Approach
As basis of the nite element space the Legendre basis is chosen, where is a multi-
index in . The basis is dened by where is the tensor product of
Legendre polynomials of polynomial order for each coordinate . is dened by

where denotes the -th order Legendre polynomial on .
Writing leads to a system of ODE with respect to the time variable:

(1.4.4)

where

Remark that and are single scalar indices such that there exists a bijection between and resp.
and .

This is the spectral discontinuous Galerkin formulation of the problem on the element . To
solve the problem on one element, one needs only to know the initial condition, the inow bound-
ary data and . Given the inow boundary data of the whole domain , one can nd an order of
elements such that the problems can be solved element by element and for a given element , the
solution is already known on the inow boundary.

Global Approach
The problem can also be formulated in a global way. Problem (1.2.1) is considered. The sum over
(1.4.3) is taken, such that:

, nd such that:

for
(1.4.5)

where is dened by

for all . As above, a Legendre basis is chosen for the nite element space
such that

if
if

Then, problem (1.4.5) is equivalent to solve the following ODE

(1.4.6)
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where

As above, and are mono dimensional indices such that there exists a bijection between and
resp. and .

1.4.2 Convergence Analysis of Space Discretisation

We analyse the discretization in space. The main result is Theorem 1.8 where we prove conver-
gence of the space discretization combining the results of [5] and [10]. Suppose in this section
that is constant on each element.

Note that . We will now rst consider the coercivity properties of .
Then

since . Since is constant on each element, observe that

by integrating by parts and consequently

Now, the following equality is used

so that

Then

(1.4.7)
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This motivates us to dene the following norm for :

The triple norm is a norm for . In addition, we dene a semi-norm on by:

In the following, note that and denotes generic constants taking different values. We will
not pay attention to the explicit form of these constants but note that they are independent of
and . Let for the whole analysis and be xed, the exact solution of (1.2.1) and
the solution of (1.4.5) for any given . Now some intermediary results are presented,
which will be used for the proof of Theorem 1.8.

Lemma 1.3 (Coercivity) For all :

Proof. By (1.4.7) and the denition of :

Lemma (1.3)

Lemma 1.4 (Galerkin Orthogonality) If the exact solution of problem (1.2.1) satisfies
, , then for all

where the solution of (1.4.5).

Proof. First, since is solution of (1.4.5), it satises for all :

(1.4.8)
Secondly, with the exact solution, we have for all :

In addition, since the traces in are well dened and hence

Injecting the exact solution into formulation (1.4.5) then gives

(1.4.9)
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Taking the difference between (1.4.8) and (1.4.9) leads to

Lemma (1.4)

Next, we introduce some notations to render the proofs more readable. is dened by
and by where is the exact solution of (1.2.1) and

the SDG-approximation dened by (1.4.5). Observe that and .

Lemma 1.5 Let and be defined as above. If is constant on each element and ,
; then

Proof. Let be xed. The bilinear form is dened by

Observe that and therefore

and consequently

Integrating by parts

But by hypothesis since is constant elementwise and consequently
. Then by reassembling the terms we may write

I II
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Now applying the Cauchy-Schwarz inequality leads to

I

by the denition of the triple norm and the semi-norm . Additionally

II

and the result follows immediately.

Lemma (1.5)

The next lemma estimates the projection error of the triple norm .

Lemma 1.6 (Global Projection) Suppose that for some integer . Then, for
any integer and :

where is a positive constant depending on , and .

Proof. Let and let us denote for simplicity. By denition of the triple
norm

Considering each term of this sum:

The rst term is bounded by

applying Lemma (1.1).
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Using the inequality leads to

applying Lemma (1.2).

The last term is bounded by

applying Lemma (1.2).

Considering the bounds of all three terms leads to

Let . Then

Let us dene and conclude

Lemma (1.6)
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Lemma 1.7 Let for some integer . Then, for any integer
and :

Proof. As in the previous proof, we denote for simplicity and let . Then
by the denition of the semi-norm :

Applying Lemma (1.2) leads to

We dene , then

Lemma (1.7)

Theorem 1.8 Suppose that for some integer and . If is
constant on each element and if , then for any integer , and

, there exists a positive constant , only depending on , and , such that

(1.4.10)

Proof. Since , we have that .
Observe that

Then, using the coercivity (Lemma 1.3) yields

Using the Galerkin orthogonality (Lemma 1.4)

leads to
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Additionally, observe that

since and note that . By the denition of the projection :

So we get by Lemma 1.5 and the Cauchy-Schwarz inequality followed by a Young inequality
with that

and consequently

with . Applying nally Lemma 1.7 leads to the result

Theorem (1.8)

Corollary 1.9 Let us assume the same conditions than in Theorem 1.8, then

Proof. By the local projection error we have that

so that for the whole domain

and nally, owing to ,

Corollary (1.9)
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1.5 Dispersive and Dissipative behavior of the SDG-method

1.5.1 Introduction

The dispersive and dissipative behavior of the spectral discontinuous Galerkin (SDG) method in
space is analysed. All the results of this section are quoted from [2]. The aim is to understand
the techniques of the proofs, especially the proof of Theorem 1.10. This result is showing that the
SDG-approximation is also satisfying a Bloch-Wave condition, as the exact solution, but with a
discrete wave vector. This wave vector is close to the one of the exact solution and given in an
explicit form.

In [2] the general numerical ux

on

for is used whereas here only the special case of , that is

on

is treated.

1.5.2 Short introduction to Padé Approximant

The analysis relies on the Padé approximant and we rst introduce some notations. The theory
of Padé approximants is developed in [13]. The following results and denitions are quoted from
[16].
The conuent hyperbolic function is dened by

If the Pochhammer’s notation and is used, the conuent
hyperbolic function can be noted as

Let and be two non-negative integers. The padé approximant is an approximation of which
is dened by

The error of the approximation takes the form

1.5.3 Dispersion and Dissipation Error Results

The dispersion and dissipation error results are presented in this section. Let us take and
assume a rectangular grid of mesh size . Consider the problem:
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nd such that

in
for

where and are supposed to be constant vectors. This problem is equivalent to problem (1.2.1)
on with and . The unique solution , with , is
satisfying the Bloch-Wave condition:

for all and . The main result, Theorem 1.10, afrm that the unique solution of
the SDG-scheme is also satisfying the Bloch-Wave condition, but with a discrete wave vector
which is close to . Recall that represents the two renement parameters and , .

Theorem 1.10 ([2], Theorem 1, p.5) Let be the mesh size of a rectangular grid and
the polynomial order of the SDG-method. If and satisfy , then

there exists a solution of (1.4.3), satisfying:
,

(1.5.1)

where , for all .

Proof. Let by hypothesis and let be a master element of
the grid.
Let us rst construct the SDG-approximation on this master element . It will be the tensor
product of solutions for each coordinate. Consider the following eigenvalue problem:

nd and such that for given

(1.5.2)

where denotes the inner product on . This eigenvalue problem has a non-trivial
solution according to the following lemma that we state here. The proof is given later.

Lemma 1.11 ([2], Lemma 3, p.18) Let be the Jacobi polynomials of order and param-
eters and . If , then the eigenvalue problem (1.5.2) admits a non-trivial solution

of the form:

Proof. The proof of this Lemma is given at the end of the current proof.

Fix and let , be the non-trivial solution and the associated eigenvalue of
(1.5.2) corresponding to , where is the l-th component of the wave vector . Let

and dene , where is a variable transformation from
to .

Then, we make the ansatz

for
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where . Now the SDG-approximation is dened on the master ele-
ment .
For an other element , let be the position vector of the centroid of relative
to the centroid of . If such that , is dened on as follows:

for (1.5.3)

where is given by (Lemma 1.11). Therefore is dened by
.

Observe that satises (1.5.1) by construction:

Finally let us prove that satises the SDG-scheme (1.4.3). The following lemma shows that
(1.4.3) only has to be proved on the master element .

Lemma 1.12 The two following statements are equivalent:

satisfies

on the master element .

satisfies

on any element .

Remark 1.13 The vector is supposed to be constant, then div .

Proof Lemma (1.12). We obtain the result by replacing by its denition, (1.5.3), in
the second statement and performing a variable transformation. Note that the Jacobian (from the
reference element to the master element ) is equal to one, due to the uniform mesh size.
Hence

and the result follows.

Lemma (1.12)
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So let us only verify that satisfy the SDG-scheme (1.4.3) on the master element . For this,
x and take the eigenvalue problem (1.5.2) corresponding to . Observe that
by a variable transformation:

where

where denotes the inner product on the interval , the inner product on
and the partial derivative with respect to the -coordinate. With this substitution of

variables we get:

(1.5.4)

Let , and , where is the -th unit vector in and . Then

,

and this last term is evaluated at with , we obtain

Inserting this in (1.5.4) leads the eigenvalue problem equivalent to:

(1.5.5)

This result will be used later. Now, take equation (1.4.3), and let where
. Then, using that

yields
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Eliminating the factor of leads to the equivalent formulation

(1.5.6)

For simplicity, suppose that , . Then, an inow face of can be
parameterized by

and . Consider the jump evaluated at
and let be such that . Observe that

and

where in the rst case is dened by (1.5.3):

Then

and

(1.5.7)

Using (1.5.6) and (1.5.7) we have, recalling (1.5.5),

Consequently, the condition that satises (1.4.3) is equivalent to , which is true by
hypothesis. Therefore (1.4.3) is satised.

Theorem (1.10)
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Proof Lemma (1.11). The idea of this proof is that we give the explicit form of and show that
under the assumption that , satises the eigenvalue problem.

Let be the operator dened by . Then we use the following relation for
Jacobi polynomials, see of [9]:

Using the explicit form of yields

Let be of the form with and insert in the eigenvalue problem
(1.5.2). is a solution of the eigenvalue problem for the test function if and only
if

The last equation is true without any condition on since by the orthogonality of there
holds

Because , it remains to prove (1.5.2) for .
In the following, we use some properties of the Jacobi polynomials. They are not proven in the
context of this work. Observe that

Thanks to of [9],

so that

In addition, we use that . In fact thanks to
of [9] and then by of [9], , and we obtain
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. Hence

Thanks to and of [9],

so that

The eigenvalue problem (1.5.2) for is equivalent to

Observe that

and consequently

Note that this is the same as the one proposed in the Lemma.

Lemma (1.11)

1.5.4 Small Wave Number

The evolution of the dissipative and dispersive error is analysed for a small wave number under
a renement in such that . Let us denote and in this section. This
means that we only analyse one component of the wave vector. Let be dened by

(1.5.8)

In this context, we use a result of the analysis of the Padé approximant. For more details, see [9]
and [2]. The following lemma from [2], p. 13, is quoted:
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Lemma 1.14 ([2], Corollary 1, p.13) Let and suppose is small. Then

Thanks to this result, we can state and proof the following theorem.

Theorem 1.15 ([2], Theorem 2, p.6) Let and suppose , then

Proof. Let be the relative error of the Padé Approximant of dened by

Let denotes the complex conjugate and observe that

and that

as well as

Therefore

and consequently

After some algebraic operations, we get that

Introducing this in (1.5.8) leads to

Then for small the following approximation holds

and consequently

Finally from Lemma 1.14 with we conclude that
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Theorem (1.15)

We dene the dispersion and dissipation error as follows

where and denotes the real and imaginary parts. Observe that . Then, if
one can write

and consequently

This leads to the following corollary

Corollary 1.16 (Dispersion and Dissipation Error) Let be and suppose
, then

DISP

DISSI

1.5.5 Large Wave Number

We assume a large wave number and a constant mesh size . The evolution of the dispersion
and dissipation error is analysed under renement in . As in the previous section we note
and . The next theorem shows three phases of convergence depending on . It also gives
an estimate of the thresholds between the different phases of convergence.

Theorem 1.17 ([2],Theorem 3,p.7) Let . As the order is increased relative to , the
relative error passes through three distinct phases

1. if , then oscillates but does not decay as is increased.

2. if , then decays algebraically at a rate .

3. if , then decays at a super-exponential rate as ,
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Figure 1.1: -refinement of the dissipation and dispersion error for different polynomial orders
and .

1.5.6 Numerical Results

We verify quantitatively by numerical experiments the main theoretical results reviewed in the
previous section, namely Corollary 1.16 and Theorem 1.17. Let us take as domain the interval

and the exact solution :

with corresponding initial and Dirichlet boundary conditions. Using the Bloch-wave condition of
Theorem 1.10, the function can be reduced to the initial condition:

Let be xed. Solving the problem

in
at

is equivalent to solving the problem

in
at

Separating the real and imaginary part of this equation leads to the following linear hyperbolic sys-
tem. For more details about linear hyperbolic systems, see chapter 2. Let ,
we may then write the problem of the form:

nd such that

with
and
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Figure 1.2: Dissipation and dispersion error for a constant number of freedom with different
polynomial order and corresponding mesh size where .

where .
The dispersion and dissipation error is measured as follows. By the Bloch-wave condition of
Theorem 1.10

so that

Then we can measure the relative error

We recall the formulas for the dispersion and dissipation error

Since is now known, we can measure the dispersion and dissipation error.

Large Wave Number

For the case of a small wave number, is chosen to be , to and consequently to .
Figure 1.1 shows the logarithm of the real and imaginary part of against the logarithm of .
The different lines denotes different polynomial degrees of the space . A modelled error of

is in the log-log diagram expressed by a straight line with slope . The triangles in
Figure 1.1 illustrates the corresponding convergence rates according to Corollary 1.16 of
respectively .
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Figure 1.3: Real and imaginary part of the SDG-approximation of order and the
exact solution .

Figure 1.2 shows an approximation of the dissipation and dispersion error for a constant num-
ber of freedom which takes the value , and . The mesh size is chosen such that number
of freedom stays constant for the different polynomial orders . One can clearly observe that the
approximation using an increased is much more precise than using small mesh size .

Finally, Figure 1.3 shows the real and imaginary part of the solution of the spectral discontin-
uous Galerkin method for different polynomial orders as well the exact solution with

.

Large Wave Number

In the case of a large wave number, is chosen to be . Figure 1.4 shows the dissipation and
dispersion error for and depending on the polynomial order . One can observe
the threshold of , according to Theorem 1.17, at which the convergence starts. In the
rst phase the relative error of does not decay whereas in the second phase an exponential
convergence can be observed. The intermediary phase can not be observed.
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Figure 1.4: Dissipation and dispersion error for and with . The
real part represents the dissipation error and the imaginary part the dispersion error.

1.6 Space-Time Discontinuous Galerkin Method

1.6.1 The Method

A fully space-time spectral discontinuous Galerkin scheme is considered. Starting from problem
(1.2.1) we dene and . Then (1.2.1) is equivalent to

in (1.6.1)
on

where denotes the space-time gradient , and

on
on

Let us dene and observe that can also be dened by

where is the outward unit vector at .
This problem can be considered as a steady-state problem. Observe that is a

space-time cylinder. For constructing the partition of let us rst discretise the time interval
. Let and . Fixing , we consider and look for a

partitioning of in elements which we choose to be rectangles of diameter such that
and . Then there exists for each element an

afne transformation such that is the image of the master element .
This guarantees for each an approximation in the whole domain without using interpolation
in time. Figure 1.5 illustrates a possible space-time grid for a one dimensional space domain .
Next, let us introduce the nite element space . Let be the unit hypercube
in and let us dene the two spaces
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x

t

Figure 1.5: Example of a space-time grid where every element is an affine image of the master
element.

and

Then, the SDG-scheme reads:

nd such that

(1.6.2)

where

for all and where . Remark that is the outward normal unit vector
at the point .

1.6.2 Convergence Analysis

We present a convergence result for the space-time SDG-method. Some parts of the convergence
analysis of section 1.4.2 are used some others has to be developed.
Let denote the space

Analogous to section 1.4.2, we dene the triple norm for :
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and the semi norm:

Let denote the exact solution of (1.2.1) and the solution of the fully discrete time-space
SDG-scheme. The Galerkin orthogonality holds also in this case:

Lemma 1.18 (Galerkin Orthogonality) If the exact solution of problem (1.2.1) satisfies
, then

where the solution of (1.6.2).

Proof. First, since is solution of (1.6.2), it satises:

(1.6.3)

Secondly, with the exact solution:

In addition, and consequently , . So that the trace is well dened
and hence

such that

Therefore
(1.6.4)

Taking the difference between (1.6.3) and (1.6.4) leads to

Lemma (1.18)

Let us denote by the orthogonal projector in onto the nite element space . For a
given , is dened by

where denotes the -scalar product in . Analogously, we dene the orthogonal
projector in onto the local space by

Observe that Lemma 1.3, 1.5, 1.6 and 1.7 are also valid in this case, this means with the above
dened norm and semi-norm for , the spaces , and the corresponding orthogonal pro-
jectors and . Thanks to these results, the following theorem can easily be proved.
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Theorem 1.19 Suppose that for some integer . Then, for any integer
, and , we have that

where and

Proof. Let and . Then

Firstly, using coercivity (Lemma 1.3), the Galerkin orthogonality (Lemma 1.18) and Lemma 1.5
yields

and hence

Using Lemma 1.6 and 1.7 leads to

Theorem (1.19)
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1.7 Conclusion

A time-dependent scalar transport equation was considered. Compared to the standard continuous
Galerkin (CG) method, or to a stabilized CG-method, the derivation and formulation of the SDG-
method is slightly more technical. This complexity is due to the jumps across the interior faces
of the grid. But as in the case of the CG-method, the space-discretization leads to a systems of
ordinary differential equations (ODE) with respect to the time variable. This ordinary differential
equation can be solved using a Runge-Kutta method, see Zhang and Shu [17], resulting in the
Runge-Kutta discontinuous Galerkin method (RKDG).

A convergence result was then developed combining the results of Houston, Schwab and
Süli [10] and Burman and Ericsson [5]. The convergence analysis is based on two results, error
estimates of the -projection on an element and also on its boundary. These two results are
proved in [10]. The convergence for the space-discretization was considered with respect to the
renement parameters (mesh size) and (polynomial order).

The dispersion and dissipation error analysis follows the paper of Ainsworth [2]. The aim
was to understand the techniques of the proofs. In a particular case of the model problem, the
SDG-solution is constructed explicitly. The explicit formula of the SDG-solution allows a disper-
sion and dissipation error analysis either for a small or for a large wave number. We found that
numerical results conrm the theory in both cases.

Another approach to fully discretize the time-dependent scalar transport equation is to use
a space-time spectral discontinuous Galerkin method. Its formulation was derived as well as a
convergence analysis.





Chapter 2

Linear Symmetric Hyperbolic Systems

2.1 Introduction

In this chapter, the spectral discontinuous Galerkin (SDG) method is developed for symmetric
linear hyperbolic systems, also called Friedrichs’ systems. Practical problems like the acoustic
wave equation can be formulated in the form of a Friedrichs’ systems.

First a stability result is presented. Stability is guaranteed not only for boundary conditions
imposed on the incoming characteristics but also for linear combinations of the physical variables
under a certain condition. Then, the SDG-method is developed for linear symmetric hyperbolic
systems. The SDG-method leads to an algebraical linear system. A convergence analysis fol-
lows. The accuracy is studied with respect to the two renement parameters (the local mesh
size) and (the local polynomial order). Three numerical test cases are implemented with
the purpose of assessing quantitatively the predicted theoretical properties. Finally, the SDG-
formulation for a time-dependent linear hyperbolic system is presented, it leads to an ordinary
differential equation (ODE) with respect to the time variable. A numerical example illustrates the
SDG-solution where the ODE is solved by a Runge-Kutta method.

2.2 Model Problem

Suppose that is a bounded Lipschitz polyhedral domain in , . We look for a -vector
function which satises the hyperbolic system

in (2.2.1)

where denotes the partial derivative with respect to the -coordinate. Assume that the ma-
trices and are real matrices in . The matrices are supposed to be
symmetric, positive denite and in .
Let and denote the outward normal. Then let us dene as:

For the sake of simplicity we note . plays the role of a ux across in the direction
. is also symmetric. This implies that there exists and such that , where

is the diagonal matrix having the eigenvalues of on its diagonal. The rows of are the right

37
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eigenvectors of . Let us decompose in and , its positive and non-positive eigenvalues,
such that . Then let us dene

where diag . Observe that this splitting varies with the different points
.

2.3 Boundary Conditions

We introduce the boundary conditions for the model problem (2.2.1). Let us introduce the char-
acteristic variables . According to the decomposition of in and , we split
the characteristic variables in the incoming and outgoing parts . We assume for
simplicity that the incoming and outgoing parts of are well separated. Remark that this splitting
depends on the point . Suppose that is a vector of and of components. In
addition, let and be the respectively the matrix blocs such that

and

A natural way to impose the boundary conditions would be

on

where . This means that the incoming characteristic variables are determined on
the boundary . But often, the boundary conditions are only given for some physical variables.
Suppose that the physical variables are a linear combination of the variables , say

on (2.3.1)

where and . Then we can write

on

with .

2.4 Friedrichs’ Theorem

Let us consider problem (2.2.1). We give necessary and sufcient assumptions for
to be an isomorphism and we recall a fundamental wellposedness result.
We dene the Hilbert space

where . Owing to the Riesz-Fréchet Theorem, we identify and its dual
as well as with . The norm of is dened by
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where denotes the usual -norm. is called the graph norm. In addition,
observe that .
Let us consider problem (2.2.1). Assume that there exists a matrix function
and a positive constant such that

(F1) is symmetric for
(F2) a.e. on
(F3) a.e. on
(F4) Ker Ker a.e. on

Then, we assume the following boundary conditions:

We refer to [7] for the following theorem:

Theorem 2.1 (Courant-Friedrichs, [7], Theorem 5.7, p.228) Assume (F1)-(F4) and define

Then, is an isomorphism.

Remark 2.2 If we choose the particular case , the boundary condition becomes

and therefore

such that the boundary conditions are imposed on the incoming characteristics.
Observe that we assume that the matrices are symmetric and thus the first condition (F1) is
satisfied. Condition (F2) has still to be assumed whereas condition (F3) is satisfied with this
particular choice of . For the last condition (F4), observe that and

and hence (F4) is equivalent to

Ker Ker

which is satisfied by the definition of and .

2.5 Stability

In this section, a stability result for the Friedrichs’ system is presented. First, let us split in
the parts of the eigenvectors corresponding to the positive and non-positive eigenvalues such that

, where are the columns of corresponding to the positive eigenvalues of and
the columns corresponding to the negative ones. Then, associated with the matrix of the

boundary term (2.3.1) let us dene and and
nally .

Lemma 2.3 Assume that the matrices are constant and symmetric, positive definite.

If the boundary conditions are imposed on the incoming characteristics, that is ,
then there exist two constants and such that
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If general boundary conditions are imposed, that is and if the matrix
is positive definite, then there exists two constants and such that

Proof. First, multiply equation (2.2.1) by and integrate over the domain leads to

Using the following integration by parts

and writing the system in terms of the characteristic variables yields

where and . Splitting into leads to

Additionally, we have that

and analogously

This leads to
(2.5.1)

First case:
Imposing the boundary conditions on the incoming characteristics, , yields

Since and are both positive denite there exists two constants and such that

where denotes . Applying a Young equality with yields

The result follows by multiplying the last inequality by 2 and observing that .

Second case:
Consider the boundary condition and develop
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and hence

where and . Introducing this into (2.5.1) leads to

and

since is a symmetric matrix. Then using that and are positive denite,
there exists some constants and such that

Applying two times a Young inequality yields

Observe that and therefore the result.

Lemma (2.3)

2.6 Notations and Technical Results

We present some notations, denitions and technical results which will be used through chapter
2.

Suppose that is a bounded Lipschitz polyhedral domain in , and a partition of
into elements such that . Assume that each element is a parallelepiped and that
is shape-regular. Suppose also that for each element , there exists an afne transformation

such that where is the unit hypercube .
In the context of the SDG-method, we extend the denition of to the set .
The vector denotes the vector of the diameters of the elements.
Let be a xed element, then the diameter of the element is dened by

. The scalar quantity is dened by .
Let be the set of all tensor-product polynomials on of maximum degree in each
coordinate and let be the vector of all polynomial orders varying from element to
element. Using the afne transformation for each element, this space can be extended for an
arbitrary element :

Then we dene the polynomial space

The parameter describs the quality of discretization and represents the couple . Then we
dene the nite element space
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Additionally, let us dene the local space

Since our nite element space will consist of discontinuous elements, it will not lie in
but rather in the piecewise Sobolev space dened by

where denotes the vector of the regularities for each element . is a
Hilbert space with respect to the following scalar product:

with associated norm

and semi-norm

Observe that all these denitions holds also for which can be dened anal-
ogously. But in either case . In the case the index is left out for
the scalar product and the norm .
Additionally, for sake of simplicity, let us denote the Sobolev semi-norm

and , the usual resp. -norm.
Let us denote the orthogonal projector in onto the nite element space . For a
given , is dened by

Analogously, we dene the orthogonal projector in onto the local space by

where denotes the usual -scalar product on .
For let us dene the following spaces

Then we consider and denote its norm as . For , the norm is dened
by

whereas for , is dened by:

Next, we present two lemmas which are directly derived from Lemma 1.1 and Lemma 1.2. They
are just a generalization to estimate the projection error on and in the context of the above
dened multidimensional projector in onto .
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Lemma 2.4 For any , let for some integer . Further, let be the
-projection onto with ; then, for any integer , ,

we have

where depends only on the spatial dimension and the element .

Proof. Applying Lemma 1.1 yields

Lemma (2.4)

Lemma 2.5 Let and suppose that for some integer . Then, for any
integer , and , we have that

The constant is only depending on and the element .

Proof. Applying Lemma 1.2 yields

Lemma (2.5)

2.7 Spectral Discontinuous Galerkin Method

In this section, the spectral discontinuous Galerkin method is discussed for problem (2.2.1). Ad-
ditionally to the conditions on and assumed in section 2.2, let us suppose that the condition
(F2) of section 2.4 holds. This means that there exists such that

Let us recall that in section 2.2 we assumed that is positive denite and the matrices are
symmetric.
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2.7.1 Remark on the Boundary Conditions

Here, we show that imposing the boundary condition on the incoming characteristics is a partic-
ular case of the boundary condition of type

Let be of the form , then . As , we have . As
consequence

due to of the orthogonality of . Finally, we conclude that . Observe also that in
this case.

2.7.2 The Method

Consider the following problem on an element :

nd , such that

in
on
on

(2.7.1)

where and . This is problem (2.2.1) restricted to one element
. The boundary condition on means that on an interior face,

the boundary conditions are imposed on the incoming characteristics since .
Let us dene the local space by

and the recall the denition of the global space

where . Let be a test function. Then, multiplying equation (2.7.1) by
the test function and integrating over leads to

nd such that

on
on

Integration by parts

is used so that
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Then the problem becomes:

nd such that

on
on

Splitting in leads to

and splitting in yields

Let us write the boundary terms of the previous equation in terms of the characteristic variables
. For this let . The hybrid formulation is:

nd such that

on
on

where . Then, the boundary conditions are imposed in a weak sense. As in
section 2.5 we can write

and

Hence

Additionally

and the problem becomes:

nd such that

where , and . Let us dene

and
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and observe that

and

The problem becomes:

nd such that

Let us rewrite the equation in terms of the physical variables and :

nd such that

Next, a Galerkin approximation is used. This means that the functional space is replaced
by the nite dimensional space . In addition, counterintegrating by parts leads to the
problem:

nd such that

Let be an interior face of and be a neighboring element. On , we dene

where is for the local approach on given, but for the global problem denotes the
solution on the neighboring element .

Local Approach:
The bilinear form as well as the linear form are dened
by

for all , . The problem can be formulated as:



2.8. CONVERGENCE ANALYSIS 47

nd such that

(2.7.2)

Global Approach:
Now, the problem on the whole domain is considered. Taking the sum over all elements
leads to the global problem:

nd such that

(2.7.3)

where , and

(2.7.4)

for all , .
Remark 2.6 In the case of boundary conditions imposed on the incoming characteristics, that is

, the above definitions still hold with and . Thus .

2.8 Convergence Analysis

The convergence rate depending on the local mesh size and the local polynomial order of
the spectral discontinuous Galerkin method for linear hyperbolic systems is studied.

We assume boundary conditions imposed on the incoming characteristics which implies that
in the context of the previous section. Let us denote the constant of Lemma 2.4 and

the constant of Lemma 2.5. Note that the main result of this section is
Theorem 2.14 which is based on Lemma 3.4 and 3.9 of [10] as all intermediate Lemmas. Lemma
3.4 and 3.9 of [10] are generalized for the case of hyperbolic systems (and not scalar hyperbolic
equations) and are presented in this section as Lemma 2.4 and Lemma 2.5. Lemma 2.8-2.13 and
Theorem 2.14 are entirely worked out in this project.

Let us rst dene a norm for . For this, the term is rst developed for a .
Since all matrices are symmetric

and hence
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In addition, observe that is symmetric and consequently

Then

Let

Let and be two adjoint elements such that is a face. resp. denotes
the matrix corresponding to resp. implies

so that and . Considering the positive and negative denite
parts of this equality. Then

and consequently and .
Then,

(2.8.1)

and

Therefore the norm for is dened by

for
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Lemma 2.7 (Coercivity) For all :

Proof. Let us recall condition (F2) of section 2.4:

a.e. on

Then one can conclude that

and hence

Lemma (2.7)

Now, the Galerkin Orthogonality holds also for linear hyperbolic systems.

Lemma 2.8 (Galerkin Orthogonality) Let be the exact solution of problem (2.2.1) and
the solution of (2.7.3). If , then

Proof. is satisfying (2.7.3), this means

(2.8.2)

Additionally, being the exact solution of (2.2.1) implies that

being in yields , . Then the trace on every element is well
dened. Hence

and the boundary condition implies

where and are the characteristic variables of and . Then we conclude that

(2.8.3)

and taking the difference between (2.8.2) and (2.8.3) leads to the result.

Lemma (2.8)
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In addition, a semi-norm for is dened, which we will only use for intermediate results.

for

In the following, is dened by and where denotes the exact
solution of (2.2.1) and its SDG-approximation dened by (2.7.3). Note that .
The next lemma is a continuity result on that will be used in the proof of Theorem 2.14.

Lemma 2.9 If for all , then

Proof. By denition of the bilinear form :

Integrating the second term of the right hand side by parts yields

where .
Let us dene the following three terms and treat them separately.

Then, we bound each term:

Let us develop a lemma for bounding the term :

Lemma 2.10 Let be a matrix such that , then

where
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Proof Lemma (2.10).

Let

Then

Lemma (2.10)

Since and by hypothesis, we conclude that

where

For the second term the estimated bound is also formulated in the form of a lemma.

Lemma 2.11 If for all , then

Proof Lemma (2.11). Let and observe that

(2.8.4)

since is constant and . Let , and be such that

where and are two matrix indices. By continuity of , there exists such that
. Then
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For all such that : For all

such that we get

(2.8.5)

Then using (2.8.4) and (2.8.5) yields

Taking the following inverse inequality for algebraic polynomials, see the book of Quar-
teroni and Valli [15],

and choosing

leads to

Dening
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leads to

Lemma (2.11)

Applying this lemma for yields

Finally let us develop the last term :

Observe that

Hence

Firstly, being semi-positive denite, one can apply the Cauchy-Schwarz inequality

and observe that

and
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so that

Secondly, using that is semi-positive denite

Thereby

Considering the bounds of all three terms , and leads to the result.

Lemma (2.9)

The next Lemma is also an intermediate result which estimates the projection error in the semi-
norm .

Lemma 2.12 Suppose that , and for some integers . Then,
for any integer with for all :

where is a positive constant and .

Proof. Observe that since and let be
. Thus

Now, applying Lemma 2.5 leads to

Lemma (2.12)
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Lemma 2.13 Suppose that , and for some integers . Then,
for any integer with for all :

where .

Proof. Let and by the denition of

Observe that

By Lemma 2.4

Using the following inequality for a semi-positive denite matrix A

and applying this with respect to the semi-denite matrix yields

Then by Lemma 2.5

Also by Lemma 2.5
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Respecting all three bounds leads to the result.

Lemma (2.13)

Theorem 2.14 (Global Convergence) Suppose that , ,
and for some integers , and that for all . Then, for

any integer with for all :

(2.8.6)

where is the exact solution of (2.7.3), the solution of (2.7.3),

and , and .

Remark 2.15 Assume that a uniform mesh of mesh size combined with a constant polynomial
order is used. Observe the presence of the term . Due to this term, the result can also be
presented as

where the constant denotes a generic constant and is not equal to the one in (2.8.6). The error
estimate is a power of suboptimal in with respect to the -projection error.

Remark 2.16 If a uniform mesh of mesh size combined with a constant polynomial order is
used and if , then the result can be presented as:

where denotes the uniform vector .

Remark 2.17 If a uniform mesh combined with a constant polynomial order is used and if the
matrices , then the bound of Lemma 2.11 is zero. Since the matrices are
all constant on each element, . By the orthogonality of the -projector

As consequence, the term of in the constant vanishes. The result can be formulated as:

Thus, the error estimate is optimal with respect to the -projector on the boundary and subopti-
mal of a power of in both and with respect to the -projector on each .
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Proof. By the triangle inequality, we have that

Firstly by Lemma 2.13

Let us denote , and . Then

Secondly by coercivity (Lemma 2.7), the Galerkin orthogonality (Lemma 2.8) and Lemma 2.9

Therefore

Using Lemma 2.12 and Lemma 2.4 yields

Finally, taking the sum of and leads to the result.

Theorem (2.14)
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Figure 2.1: - resp. -refinement in the case of example 1.

2.9 Numerical Results

The convergence accuracy of the spectral discontinuous Galerkin (SDG) method for linear hyper-
bolic systems is analysed. The aim is to conrm numerically the theoretical result of Theorem
2.14.

As domain , the interval is chosen. The dimension of the domain does not
inuence the accuracy. Let and for a uniform mesh size . The set of all

for varying from to builds a partition of . The intervals are the elements. Then
the space is dened by

All problems are of the following form.

in

In the rst problem, a regular solution is considered. The coefcient matrices and are then
constant. The second example proves the convergence rates of an irregular solution with constant
coefcients. Whereas in the third example the matrix is not constant anymore. is then
piecewise constant. Consequently it depends on the mesh if or not. These
two cases are implemented.

2.9.1 The code

A Matlab code is developed to solve the linear hyperbolic system with the SDG-method. For
computing the matrix and the right hand side of the linear system, symbolic calculation
is used by employing Maple commands in Matlab. To solve the linear system the
GMRes algorithm is used with restarting after 20 inner iterations.

2.9.2 Example 1

In this section, the convergence behavior of the SDG-method is analysed for a regular solution
and for constant coefcients of the hyperbolic system. As coefcients and right-hand side, the
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following functions are chosen

, and

Then the solution reads

It is obvious that and therefore , for all . Due to
this regularity of the solution , the integer of Theorem 2.14 gets
and the convergence accuracy becomes

-refinement: This means that we get an algebraic convergence rate of for a xed
and -renement. So that we expect a straight line of slope in the in the log-log diagram,
which we can observe in the numerical results, see Figure 2.1.

-refinement: For -renement, due to the regularity of the solution, an exponential conver-
gence rate is obtained, which can be quantitatively observed, see Figure 2.1.

2.9.3 Example 2

In this example, the convergence rate for an irregular solution with constant coefcients is anal-
ysed. The coefcients are dened by

,

and the right-hand side is dened by

so that the solution is

if
otherwise

and
if
otherwise

The parameter is chosen among . One can show that , for all .
The biggest integer such that is . Then the integer of Theorem 2.14 is
given by and the convergence result becomes

Figure 2.2 shows the accuracy for different values of the parameter , where takes the values
of , and .
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Figure 2.2: - resp. -refinement in the case of example 2 with = , and .
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Figure 2.3: Convergence rates for example 3 with elementwise constant coefficients.

Knowing where the qualitative behavior of the solution changes, the mesh is adapted to this. A
uniform mesh is used where the mesh size is for integers . Then
is never contained interior an element. But note that even if is never contained in
an element, the solution is still only an element of , since it satises only

for the particular element .

-refinement: The convergence rate for -renement should be and we
should observe straight lines with slope . This means that while increasing the polynomial order

, rst the convergence rate increases, then it stays xed due to the low regularity of the solution.
But one can observe that the numerical results shows convergence rates as .
This means that we observe straight lines with slope .

-refinement: Fixing and varying in the convergence result implies that rst the error
should increase exponentially and for the convergence becomes algebraic with rate

. This can be observed in Figure 2.2.

2.9.4 Example 3

In this example, we consider the following problem on :

nd such that

where
if
otherwise

Remark 2.18 If the coefficient were constant, then the above defined equation would be
equivalent to the following wave equation:
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Figure 2.4: The exact solution and its approximations for and for example
3.

find such that

(2.9.1)

Let us assume that and are of the following form

and

Then, the problem is equivalent to

nd such that

Next, we split the complex functions into the real and imaginary part

and

so that nally the problem becomes

nd such that

(2.9.2)

with Dirichlet boundary conditions imposed on the incoming characteristics and where

and

Note that the solution of (2.9.1) with the corresponding boundary conditions is

if
otherwise
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Figure 2.5: Convergence rates for example 3 where the discontinuity lies in the interior of an
element.

so that the solution of (2.9.2) becomes

and

As is not constant, it depends on the mesh whether lies in or not. For
the numerical tests, two different types of meshes are used. The rst is as the one already used in
example 2 where a uniform mesh is used such that the discontinuity at is never contained
interior an element. The second mesh-type is one where the discontinuity lies in the interior of an
element.

The first mesh type

A uniform mesh is used where the mesh size is for integers . The coefcient
are then elementwise constant, thereby , and . Note
that we still satisfy the conditions of Theorem 2.14. Thus the convergence estimation is the same
as in example 1, that is

Figure 2.3 shows the convergence result for -renement and -renement of this example. Fig-
ure 2.4 shows the approximations of , , and for and .

-refinement: One can observe the estimated convergence rates for small and for .
For , the fact that the estimated accuracy is not obtained for big can be explained that the
period of the solution in is . Mainly for small there is not enough liberty to catch
the frequency effects.

-refinement: An exponential convergence can be observed what corresponds to the theoret-
ical result of Theorem 2.14.
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The second mesh type

The second mesh type is one where the discontinuity at lies in the interior of an element.
A uniform mesh is used where the mesh size is for . The coefcient is
no longer elementwise constant. Thereby we do not anymore satisfy the conditions of Theorem
2.14, since . Figure 2.5 shows the convergence result for -renement and

-renement of this example.

-refinement: One can observe that the method does not converge for . For increased
polynomial orders and sufcient small mesh size , one observes the same accuracy for and

. Comparing to the case of the rst mesh type, the convergence rate is low.

-refinement: The numerical test shows that for the method does not converge for the
polynomial orders we have tried, this means up to .

2.9.5 Concluding Remark

Theorem 2.14 estimates the convergence rate of depending on the mesh size and
the polynomial order . Theoretically, the convergence rate of

is not developed in the context of this work. But numerical results show the
following behavior

for -renement and sufcient smooth matrices . Compared to the triple norm, a factor of is
gained. The lost of this factor for the triple norm is due to the -estimation on the boundary
of each element.

2.10 Extension to Time-Dependent Linear Hyperbolic Systems

The convergence analysis of the time-dependent scalar transport equation (section 1.4.2) could be
extended to the case of hyperbolic systems using the same notations and denitions as in section
2.8.
Let us consider the following time-dependent linear hyperbolic system:

nd such that

in (2.10.1)

with boundary conditions according to section 2.3. Then its semi-discrete SDG-scheme reads:

, nd such that

where and are dened by 2.7.4. Choosing a basis for the nite element space , this
formulation leads to as ordinary differential equation (ODE) with respect to the time variable and
can be solved by a Runge-Kutta method.
Using a same approach as in section 1.4.2 combined with the approximation results of section 2.8
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Figure 2.6: Solution of (2.10.1) computed with and at different time levels.

leads to an a priori error estimation analogous to Theorem 1.8 resp. Corollary 1.9 and so conver-
gence of the space discretization would be guaranteed. Let us consider the following example:

nd such that

where

Homogeneous Dirichlet boundary conditions are imposed on the incoming characteristics. The
initial conditions are drawn in Figure 2.6.
Figure 2.6-2.8 shows the computed solutions of the above dened problem using the Matlab
function ”ode45” (this is a Runge-Kutta method) for solving the ordinary differential equation.
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Figure 2.7: Solutions (above) and (below) of (2.10.1) at for and different
values of .

Figure 2.6 shows the computed solution for and at different time levels. Figure 2.7
shows the dependence on of the accuracy of the computed solutions at the time level
while in Figure 2.8 we plot the computed solutions using a constant number of degrees of freedom

for different values of and at . One can observe that for big mesh
sizes and increased polynomial orders , the method is more precise that for small mesh size

and low polynomial order .
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2.11 Conclusion

As model problem, a linear hyperbolic system was considered and the spectral discontinuous
Galerkin (SDG) method was developed for this kind of equations. Due to the jumps across every
face of the grid, the derivation and formulation of the SDG-method becomes more technical than
that of the continuous nite element method. The formulation leads to an algebraic linear system.
This linear system can be solved with standard methods like GMRes and others. We show that
under some stability conditions, generalized boundary conditions can be imposed. This means
that not only boundary conditions on the incoming characteristics can be imposed but also on
certain linear combinations of the physical variables.

A convergence result was developed. The error estimate is suboptimal by a power of in the
two renement parameters (mesh size) and (polynomial order) for sufcient smooth entries
compared to the -projection on each element. Three numerical test cases conrm quantitatively
the predicted convergence rates.

Then the SDG-method for the space discretization of a time-dependent linear hyperbolic sys-
tem is formulated briey. This leads to an ordinary differential equation with respect to the time
time variable which can be solved by a Runge-Kutta method. A numerical example illustrates
the computed solutions. We show qualitatively that -renement is much more precise than

-renement. A possible application could be the non-stationary equations of gas dynamics for
example. The extension to nonlinear hyperbolic systems would yield new important applications
such as the Burgers’ equation, the shallow water equations or the 1D model for the Navier-Stokes
equation for blood ow.



Chapter 3

A Posteriori Estimations for Linear
Hyperbolic Problems

3.1 Introduction

In practise, it is often interesting to minimize the quantity where is the exact
solution of a linear hyperbolic system, its SDG-approximation and a linear functional.
In the context of this work, we chose as the integral of the outgoing characteristics on the
boundary. Note that for the quantity a convergence result is already derived in section
2.8. The main goal of this section is to develop a convergence result for and show
using a duality argument that for weaker control of the error than that of we can expect
higher order convergence.

We present in section 3.2 the dual problem and develop the spectral discontinuous Galerkin
(SDG) method for this problem. The relation between the primal and the dual SDG-formulation
is shown in Lemma 3.1. The convergence rate depending on the local mesh size and the local
polynomial order is the same as for the primal problem and presented in Theorem 3.5.

In section 3.3 we propose an a posteriori error estimation for . For each element,
we can quantify its contribution to the error such that the global error is given by the sum of
all local errors. Inspired by the article of Houston and Süli [11] we develop Theorem 3.9 that
describes the convergence of depending on the local mesh size and the local
polynomial order . In [11], the result is developed for a scalar transport equation whereas
here we extend it to hyperbolic systems. In general the exact dual solution is not known. That
is why its solution has to be approximated by a SDG-method. For this, we keep the same mesh
and increase the polynomial order up to . Using this SDG-approximation of the dual solution
we estimate the error by which should be close to . Theorem 3.13
shows how the difference of this two functionals depend on , and .

Finally we implement three test cases with the purpose of assessing quantitatively the pre-
dicted theoretical properties.

We use the same notations and technical results as in chapter 2. We refer to section 2.6 for the
required denitions, notations and technical results.

3.2 The Dual Problem

Here, we dene the dual problem that will be used in the next section for the a posteriori estima-
tion. Let us recall the equations of a linear hyperbolic system with boundary conditions imposed

69
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on the incoming characteristics:

nd such that

in
on

(3.2.1)

The dual equation is then dened by

nd such that

in
on

(3.2.2)

where and are the negative resp. positive parts of the characteristic variables associated to
resp. , see section 2.3 for more details.

The dual solution can be approximated by a SDG-method. Let us dene the local problem on one
element :

nd such that

in
on
on

We can follow the same approach as in 2.7.2 to nd the spectral discontinuous Galerkin scheme.
Let , with , and . Then
the SDG-scheme reads:

nd such that

where is composed by zero’s and one’s depending on whether the associated characteristic
variable is negative or positive.
Observe that where and . As consequence and

and we may write the problem.

nd such that
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We now dene

So that the problem takes the condensed form:

nd such that

(3.2.3)

The following Lemma shows the relation between the bilinear form of the primal problem
and .

Lemma 3.1 The bilinear form of the SDG-scheme for the dual problem satisfies

where is the bilinear form associated to the primal problem.

Proof. Integrating by parts yields

Using an analogous argument as for (2.8.1) one can write

Then

Lemma (3.1)

Using the previous Lemma, the discrete dual problem becomes:

nd such that

The Galerkin orthogonality holds also for the dual problem.
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Lemma 3.2 (Galerkin orthogonality for the dual problem) Let be the exact solution of prob-
lem (3.2.2) and the solution of (3.2.3). If , then

Remark 3.3 Applying Lemma 3.1, the Galerkin orthogonality can be formulated as

Proof. satises (3.2.3), this means

(3.2.4)

Additionally, the fact that is the exact solution of (3.2.2) implies that

Since , for all . Then the trace on every element is well
dened. Since is positive semi-denite

and therefore

The boundary condition implies

where and are the characteristic variables of and . The vector is composed of ones.
Then we conclude that

(3.2.5)

and taking the difference between (3.2.4) and (3.2.5) leads to the result.

Lemma (3.2)

The next lemma is an intermediary result which will serve in the proof for the convergence result
for the dual SDG-problem.

Lemma 3.4 If for all , then
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Proof. By denition of the bilinear form , see (2.7.4):

Firstly, using Lemma 2.10, we conclude that

and secondly applying Lemma 2.11 leads to

For the third term the Cauchy-Schwarz inequality is used

Finally the fourth term is developed:

Respecting the bounds of all four terms leads to the result.

Lemma (3.4)

Then as in the case of the primal problem, a convergence result can be developed.

Theorem 3.5 (Global Convergence for the Dual Problem) Suppose that ,
for some integers , and . Then, for any integer

with for all :

(3.2.6)

where is the exact solution of (3.2.2), the solution of (3.2.3),

and , and .
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Remark 3.6 If a uniform mesh of mesh size combined with a constant polynomial order is
used and if the matrices for each element , then

where is the constant vector . For more details, see Remark 2.17.

Proof. Let us denote and . Then

By Lemma 2.13 we get a bound for :

Let us denote , and . Then

For the second term , coercivity (Lemma 2.7) and the Galerkin orthogonality (Lemma 3.2)
for the dual problem is used:

since . Then applying Lemma 3.4 leads to

and consequently

Applying Lemma 2.4 yields

Then

Finally using Lemma 2.12 leads to

Respecting the bounds for and leads to the nal result.

Theorem (3.5)
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3.3 An A Posteriori Estimation

In this section, we derive an a posteriori error estimation using the dual problem. The aim is to
describe the error . This global error is rst decomposed in a sum of lo-
cal errors where each term corresponds to an element and describes its contribution to
the global error. Then a convergence result is proved which describes the convergence behavior
of depending on the local mesh size and the local polynomial order

. Finally we give a result which describes the convergence behavior between the error esti-
mated using the exact dual solution and the estimation using the SDG-approximation of the dual
solution.

Let be the exact solution of the dual problem (3.2.2). Then satises

using the same argumentation as for the Galerkin orthogonality (Lemma 3.2). Let
where is the exact solution of the primal problem (3.2.1) and its SDG-approximation.
Then by the Galerkin orthogonality for the primal problem and since

where
in

on

Dene the local a posteriori error estimation for each by

and the global a posteriori error estimation . Consequently

(3.3.1)

In general, the exact solution of the dual problem is not known. One possibility is to approxi-
mate the dual solution also by a spectral discontinuous Galerkin Method in the space where

represents the couple with and . Note that the primal solution is
sought in . Let be the approximated dual solution. Then
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In the following we use two inequalities which are quoted without proof. First, the following
trace inequality is used:

for . Additionally we use the algebraic inverse inequality, see [15]. Let be a
polynomial on , then there exists a positive constant , dependent only on and the shape-
regularity of , such that

These two inequalities leads to the following Lemma.

Lemma 3.7 Let be an arbitrary element and . Then

Proof. Using the trace inequality yields

Applying the Inverse inequality

leads to

Lemma (3.7)

Let us denote

Lemma 3.8 Let be the exact solution of (3.2.1), its SDG-approximation and an arbi-
trary function such that . If , for all ,
then

Proof. Observe that by hypothesis lies in the nite element space and by the denition of
the projector :
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Then applying the Cauchy-Schwarz inequality yields

By denition of the triple norm ,

Lemma (3.8)

In the next theorem, the convergence rate of the quantity depending on the
local mesh size and on the local polynomial order is described.

Theorem 3.9 Let be the exact solution of (3.2.1), its DG-approximation and the exact
dual solution of (3.2.2) such that for some integers . If ,

for all , and for some integers .
Then, for any integer , with

for all :

Remark 3.10 If an uniform mesh of mesh size and an uniform polynomial order is used and
if , , and ; then the result becomes

Remark 3.11 For -refinement, this result means that it suffices that either the primal or the
dual solution is regular in order to obtain an exponential convergence rate. If the primal solution
is irregular and the dual solution regular, in contrast to the quantity one can still
expect an exponential convergence rate for the quantity .
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Remark 3.12 If one wishes to develop an fully adaptive algorithm for minimizing
, the regularities of both solutions, the primal and dual, has to be estimated. Then

an -refinement is chosen if at least one of the solutions is regular, otherwise -refinement is
favored.

Proof. Observe that

and using Lemma 3.8 yields

Applying Lemma 2.5 leads to

Finally, Theorem 2.14 under the hypothesis of this theorem becomes

and we get the nal result

Theorem (3.9)

Theorem 3.13 Assume an uniform mesh of mesh size and an uniform polynomial order . Let
be the exact solution of (3.2.1), its SDG-approximation of uniform polynomial order ,
the exact dual solution of (3.2.2) such that and , for some integer

vector with and . Let be its SDG-approximation of uniform polynomial
order . If , for all , and

for some integer and . Then, for any integer ,
with :

where , and .

Remark 3.14 If the mesh size and the polynomial order of the SDG-method for the primal
problem are fixed, then the theorem estimates the behavior of the error between the real error

and the estimated error using a SDG-method of mesh size and polynomial order
for the dual problem. Note also that the behavior of the convergence rate of the quantity

is independent of the regularity of the primal solution.
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Proof. First, observe that for :

Applying Lemma 3.8 yields

Let us introduce an intermediary result for estimating

on an element .

Lemma 3.15 Assume a uniform mesh of mesh size and a uniform polynomial order . Let
be the exact dual solution of problem (3.2.2) and its DG- approximation of polynomial

order . If , for a fixed and an integer , then for any integer
with :

Proof. Using the triangle inequality leads to

and let us denote

Applying a second time the triangle inequality for the rst term yields

where represents the couple . Observe that by Lemma 2.5 the term is bounded
by

For , let us apply Lemma 3.7, use an other time the triangle inequality and apply Lemma 2.4:
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such that considering the bounds for and we get:

Finally for the term , Lemma 3.7 is used:

Observe that

where is the i-th Legendre coefcient of the j-th component of and some coefcients.
Combining these two arguments leads to:

Respecting the bounds of and yields

Observe that . Using the following inequality

yields

Lemma (3.15)

Applying the previous Lemma 3.15 and the denition of the triple norm leads to
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Under the assumptions of this Theorem, Theorem 2.14 becomes

and the convergence result for the dual problem, Theorem 3.5 becomes

Finally we get

and consequently the nal result.

Theorem (3.13)

3.4 Numerical Results

We want to conrm numerically the theoretical results of Theorem (3.9) and (3.13). We present
three test cases and illustrate the convergence rates in the context of Theorem 3.9 and 3.13.
As domain , the interval is chosen. Let be and for a
uniform mesh size . The set of all for from to build a partition of . The intervals

are the elements. Then the spaces and are dened by

and

All problems are of the following form:

nd such that
in
on

Then the dual equation is dened by:

nd such that

in
on

where and are the incoming resp. outgoing parts of the characteristic variables associated
to resp. .
First, a problem where the primal and dual solutions are regular is considered. The second ex-
ample proves the convergence rates for an irregular primal solution and a regular dual solution.
Whereas the primal and dual solutions of the third problem are both irregular.
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3.4.1 The code

A Matlab code is developed to solve the linear hyperbolic system using the spectral discontinuous
Galerkin method for the primal and dual problems. For computing the matrix and the right
hand side of the linear system, symbolic calculation is used by employing Maple commands
in Matlab. To solve the linear system the GMRes algorithm is used with restarting
after 20 inner iterations.

3.4.2 Example 1

First we will study a case where both the primal and dual solutions are regular. Consider the
following scalar hyperbolic problem on :

nd such that

on

with corresponding solution . Then, the associated dual problem reads:

nd such that

on

The solution is . Observe that both solutions are contained in .

Numerical verification of Theorem 3.9
As already mentioned, the primal and dual solutions are both regular. All hypothesis of Theorem
3.9 are satised. The error estimation reads

For -renement we expect an algebraic convergence rate , whereas for -renement an
exponential accuracy is estimated. Figure 3.1 shows the and -renement for this example.
The numerical results conrm the expected convergence behavior.

Numerical verification of Theorem 3.13
Observe that all conditions of Theorem 3.13 are satised. Let us x the mesh size and the
polynomial order for the primal problem. The dual solution is sought in and let us vary .
Since the dual solution is regular Theorem 3.13 reads

where . Figure 3.2 shows the behavior of while increasing for
xed and . As expected, an exponential convergence can be observed.

3.4.3 Example 2

In this example, we consider a linear hyperbolic system where the primal solution is irregular and
the dual solution regular. The primal problem reads:
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Figure 3.1: Convergence rates of the quantity depending on the mesh size
and the polynomial order for example 1. The slope of the triangles indicates the convergence
rates and are chosen to .

nd such that

on

with Dirichlet boundary conditions on the incoming characteristics according to the exact solu-
tion. The coefcient matrices and the right-hand side are dened by

,

and

where is chosen among . Then the solution is

and satises for all . The biggest integer such that is
given by .
The dual problem reads

nd such that

on

at and

and its solution is
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Figure 3.2: Convergence rates of the quantity depending on for example 1 and
3 where . The primal solution is of polynomial order and mesh size .
This quantity describes the error between the exact error and the a posteriori estimation

if the dual solution is approximated by a SDG-method of order .

Observe that the dual solution satises .

Numerical verification of Theorem 3.9
Observe that the conditions of Theorem 3.9 are not satised since . But assume that
the result holds nevertheless. The regularities of the primal and dual solution would lead to the
following error estimation by Theorem 3.9. Let , then

The numerical results shows that the convergence rates for -renement behave as if
and consequently , see Figure 3.3. Even under this assumption the esti-
mation is still suboptimal for increased polynomial orders .
For -renement, we expect an exponential convergence rate although the primal solution is
not enough regular, according to remark 3.11. Numerical results reect this behavior for small
polynomial orders , see Figure 3.3. For increased polynomial orders an algebraic convergence
might be observed which can not be explained by Theorem 3.9. But remember that theorem 3.9
does not hold in this example.

3.4.4 Example 3

We consider a case where both the primal and dual solutions are irregular. Consider the following
scalar hyperbolic problem:

nd such that

on

Its solution reads and it satises for all if . The
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Figure 3.3: Convergence rates of the quantity depending on the mesh size
and the polynomial order for example 2. The slope of the triangles indicates the convergence
rates and are chosen to where .

biggest integer such that is given by . The dual problem becomes:

nd such that

on

and its solution is given by . As the primal solution, it also satises for
all and .

Numerical verification of Theorem 3.9
The conditions for Theorem 3.9 are not satised since for our choice of . As-
sume that the estimation holds also in this case, then due to the irregularity of the primal and dual
solution we would expect the following convergence rate. Let then

This means that for -renement we can expect a convergence rate of . In the numerical
example the convergence rate of can be observed but for , see
Figure 3.4. This means that the convergence behavior is like .
For the -renement and small polynomial orders , the estimate predicts an exponential con-
vergence rate. Whereas for increased polynomial orders the accuracy is estimated to be algebraic.
This behavior is conrmed by the numerical example, see Figure 3.4.

Numerical verification of Theorem 3.13
As for Theorem 3.9, the conditions for Theorem 3.13 are not satised since . Let us
x the mesh size and the polynomial order for the primal problem while varying . Let

, then Theorem 3.13 becomes
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Figure 3.4: Convergence rates of the quantity depending on the mesh size
and the polynomial order for example 3.

where . Figure 3.2 shows the behavior of while increasing for
xed and . Note that since and . Then the estimation
becomes

such that an algebraic convergence of can be expected. But we chose to be such that
no convergence can be guaranteed by the theorem. However, the numerical example shows an
algebraic convergence behavior of rate . This numerical result can only be explained by the
fact that Theorem 3.13 is not sharp. This is not surprising since Theorem 3.13 is not expected
to be sharp. This shows the effect or the sub-optimality of the Cauchy-Schwarz inequality or the
inverse inequality.
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3.5 Conclusion

We have presented the dual problem associated to an linear hyperbolic system. The spectral
discontinuous Galerkin (SDG) method for its approximation was formulated. As for the primal
problem, a theorem (Theorem 2.14) describes the convergence rates for depending
of the local mesh size and the local polynomial order .

In practise, the quantity of interest is often some linear functional and we would there-
for like to control the associated error . is here chosen to be the integral
of the outgoing characteristics on the boundary . An a posteriori estimation was developed
which estimates the global error as a sum of local errors associated to the
elements. Inspired by the article of Houston and Süli [11], we derived a theorem (Theorem 3.9)
which describes the convergence rates of depending on the local mesh size

and local polynomial order . It shows, under the restrictive condition that the residual lies
in the nite element space, that an exponential convergence rate can be expected if the primal or
the dual solution is regular enough.

In general, the dual solution is not known and it has to be approximated. For this, the same
mesh is used with an increased polynomial order , supposing a uniform polynomial order
for the primal problem. Using this approximation of the dual solution we get a new a posteriori
estimation where . In Theorem 3.13, we show the convergence rate of

depending on , and , under the condition that the residual lies in the nite
element space.

In a further work, it would be interesting to consider the techniques of regularity estima-
tion. This means to estimate the local Sobolev regularity, i.e. determine , such that

and . Using this together with the a posteriori estimate one
has all ingredients to construct a fully adaptive algorithm to reduce . In a
rst step, one would select the elements where the associated error has to be reduced using the a
posteriori estimation. Then, for each selected element, one would increase the local polynomial
order if either the primal or the dual solution is enough regular, otherwise -renement would be
effected.





Summary

Problem Statement

In this project we address the numerical approximation of hyperbolic equations and systems using
the discontinuous Galerkin (DG) method in combination with higher order polynomial degrees. In
short, this is called the Spectral Discontinuous Galerkin (SDG) method. Our interest is to review
the theoretical properties of the SDG method, particularly for what concerns stability, conver-
gence, dissipation and dispersion. Special emphases is shed on the role of the two parameters,
(the grid-size) and (the local polynomial degree).

Motivation, Aims and Goals

Standard continuous Galerkin-based nite element methods have poor stability properties when
applied to transport-dominated ow problems, so numerical stabilization is needed. In contrast,
the spectral discontinuous Galerkin method is known to have good stability properties when ap-
plied to rst order hyperbolic problems.

The goal of this project is to study in detail the spectral discontinuous Galerkin method ap-
plied to hyperbolic systems and equations. Theoretical properties, such as stability, convergence,
dissipation and dispersion. Starting from available theoretical results from literature, they should
be investigated. The theoretical results should be validated numerically on some model cases.

Framework and State of the act

The spectral discontinuous Galerkin method applied to hyperbolic problems has been proposed
in several articles. For second-order partial differential equations with nonnegative characteristic
form, the paper of Houston, Schwab and Süli [10] presents a detailed error analysis. This class of
equations includes second-order elliptic and parabolic equations, advection-reaction equations, as
well as problems of mixed hyperbolic-elliptic-parabolic type.

In the article of Brezzi, Marini and Süli [4], the transport-reaction equation is treated with
special focus on different forms of the numerical ux. For the same equation, the reader can nd
a dispersion and dissipation error analysis in the article of Ainsworth [2], also for a parametrized
numerical ux.

For the second order wave equation the spectral discontinuous Galerkin method is presented
in the paper of Ainsworth, Monk and Muniz [1]. Dispersive and dissipative properties are studied.

In the article of Monk and Richter [12] a symmetric hyperbolic time-dependent system is
considered. A space-time spectral discontinuous Galerkin method is presented followed by a
stability and convergence analysis.

89
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Techniques and Methods

The spectral discontinuous Galerkin method is applied to a scalar time-dependent transport equa-
tion and symmetric linear hyperbolic system. In the time-dependent case, the time discretisation
could be subject to a further project. For both cases, a Matlab code is developed. For the case
of the symmetric linear hyperbolic system, the reader will nd the code in Appendix A. Exact
integration is used by employing Maple commands in Matlab. Thereby we avoid possible errors
due to numerical integration.

Innovation and Original Elements

The most original and innovative parts of this work are the convergence analysis, section 1.4.2
and 2.8, and the a posteriori estimation in section 3.3. All three sections are based on two lemmas
quoted from the literature [10]. The main idea of section 1.4.2 is inspired by [5], where the same
idea is used for a different method. Section 2.8 is fully worked out in this project. The a posteriori
estimation of the SDG-method for linear hyperbolic systems and its convergence result (Theorem
3.9) are inspired by the article of Houston and Süli [11]. Theorem 3.13 is completely worked out
in the context of this project.

The Matlab codes of all different problems as well as all numerical results are developed in
the context of this project.
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Appendix A

In the context of this work, many Matlab codes have been developed. It is not possible to specify
all codes. Here we list the Matlab code of the spectral discontinuous Galerkin method to solve a
linear hyperbolic system. For the computation of the matrix and the right hand side of the linear
system, symbolic calculation is used by employing Maple commands in Matlab. Since the poly-
nomial basis, the Legendre’s polynomials, are smooth enough. Thereby, we avoid possible errors
due to numerical integration.

0001 function Norm=DGHyperbolicSystems(handles)
0002 %
0003 % Solve a linear hyperboli system of the form
0004 %
0005 % A u x + Bu = f on I
0006 %
0007 % handles is a handle that should contain:
0008 % a,b: I=(a,b)
0009 % A,B: the matrices of the above equation
0010 % m: the dimension of the hyperbolic system
0011 % f: the right-hand side of the above equation
0012 % ga,gb: the boundary conditions at a resp. b
0013 % Nx: number of subintervals on I
0014 % N: degree of polynomial approximation space for each subinterval
0015 % points: Nx+1 node points which define the subintervals
0016 % pw: is true if f and uexact are given in the form of a "piecewise"
0017 % Maple statement
0018 % uexact optional: the exact solution
0019 % sigma necessary if the exact solution is known: constant such that
0020 % B+B’-A x >=sigma I > 0
0021 %
0022 % EXAMPLE: a=0; b =1; nx=3; n=4; m =2;
0023 % B = cell(2,2);
0024 % B 1,1 = ’1’;
0025 % B 1,2 = ’0’;
0026 % B 2,1 = ’0’;
0027 % B 2,2 = ’1’;
0028 % A = cell(2,2);
0029 % A 1,1 = ’0’;
0030 % A 1,2 = ’1’;
0031 % A 2,1 = ’1’;
0032 % A 2,2 = ’0’;
0033 % f = cell(2,1);
0034 % f 1,1 = ’piecewise(x<.5,2*sinh(x),x>=.5,2*sinh(x)+4.5*(x-.5)ˆ3.5+(x-.5)ˆ4.5)’;
0035 % f 2,1 = ’piecewise(x<.5,2*cosh(x),x>=.5,2*cosh(x)+4.5*(x-.5)ˆ3.5+(x-.5)ˆ4.5)’;
0036 % ga = zeros(2,1);
0037 % ga(1,1) = 1;
0038 % ga(2,1) = 1;
0039 % gb = zeros(2,1);
0040 % gb(1,1) = exp(1)+.5ˆ4.5;
0041 % gb(2,1) = exp(-1)+.5ˆ4.5;
0042 % uexact = cell(2,1);
0043 % uexact 1,1 = [’piecewise(x<.5,exp(x),x>=.5,exp(x)+(x-.5)ˆ4.5)’];
0044 % uexact 2,1 = [’piecewise(x<.5,exp(-x),x>=.5,exp(-x)+(x-.5)ˆ4.5)’];
0045 % sigma = 1;
0046 % pw=1;
0047 %
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0048 % This program needs the following M-files: dgnorm1d, modstring
0049 %
0050 % Beni Stamm, EPFL/SB/IACS/CMCS, Jan. 2005
0051
0052 %% Initialization
0053 a = handles.a;
0054 b = handles.b;
0055 A = handles.A;
0056 B = handles.B;
0057 m = handles.m;
0058 f = handles.f;
0059 ga = handles.ga;
0060 gb = handles.gb;
0061 Nx = handles.nx;
0062 N = handles.n;
0063 pw = handles.pw;
0064 uexact = handles.uexact;
0065 points = handles.points;
0066 nhelp = size(N);
0067
0068 % input dimension test
0069 if (nhelp(1)˜=m || nhelp(2)˜=Nx)
0070 disp(’false dimensions of N’)
0071 return;
0072 end
0073 if (points(1)˜=a || points(Nx+1)˜=b)
0074 disp(’false values of points at extremeties’)
0075 return;
0076 end
0077
0078 % define constants for visualization
0079 NumberOfVisualizationPoints = 100;
0080
0081 % define constants
0082 for i=1:Nx
0083 hx(i) = points(i+1)-points(i);
0084 PointsPerInterval(i) = round(NumberOfVisualizationPoints*hx(i));
0085 VisH = 1/NumberOfVisualizationPoints;
0086 end
0087 Nmax=max(max(N));
0088 Nsize = 0;
0089
0090
0091 % get MMinus at a and b
0092 LambdaPlus = zeros(m,m);
0093 LambdaMinus = zeros(m,m);
0094 MMinusAtA = zeros(Nx+1,m,m);
0095 MMinusAtB = zeros(Nx+1,m,m);
0096 SAtA = zeros(m,m);
0097 SAtB = zeros(m,m);
0098 PlusAtA = ones(m,1);
0099 PlusAtB = zeros(m,1);
0100
0101 for k=0:Nx
0102 x = points(k+1);
0103 for i=1:m
0104 for j=1:m
0105 if(pw)
0106 AatX(i,j)=str2num(maple(’eval’,A i,j ,[’x=’ num2str(x,15)]));
0107 else
0108 AatX(i,j)=eval(A i,j );
0109 end
0110 end
0111 end
0112 [VectPr,ValPr]=eigs(AatX);
0113 for i=1:m
0114 if (ValPr(i,i) >= 0)
0115 LambdaPlus(i,i) = ValPr(i,i);
0116 if k==0
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0117 PlusAtA(i) = 0;
0118 end
0119 if k==Nx
0120 PlusAtB(i) = 1;
0121 end
0122 else
0123 LambdaMinus(i,i) = ValPr(i,i);
0124 end
0125 % computations for Nsize
0126 if(k>0)
0127 Nsize = Nsize + N(i,k) + 1;
0128 end
0129 end
0130 APlus = VectPr*LambdaPlus*VectPr’;
0131 AMinus = VectPr*LambdaMinus*VectPr’;
0132 % negative part of -A as absolute value
0133 MMinusAtA(k+1,:,:) = APlus;
0134 % negative part of A as absulute value
0135 MMinusAtB(k+1,:,:) = -AMinus;
0136 if (k==0)
0137 % positive and negative part of -A as absolute value
0138 MatA = VectPr*(LambdaPlus - LambdaMinus)*VectPr’;
0139 MPlusA = -AMinus;
0140 SAtA = VectPr;
0141 end
0142 if (k==Nx)
0143 % positive and negative part of A as absolute value
0144 MatB = VectPr*(LambdaPlus - LambdaMinus)*VectPr’;
0145 MPlusB = APlus;
0146 SAtB = VectPr;
0147 end
0148 end
0149 Mhelp1 = zeros(m,m);
0150 Mhelp2 = zeros(m,m);
0151 Mhelp1(:,:) = MMinusAtA(1,:,:);
0152 Mhelp2(:,:) = MMinusAtB(Nx+1,:,:);
0153
0154 % additional stuff
0155 Ga = ga;
0156 Gb = gb;
0157 ga=-2*Mhelp1*ga;
0158 gb=-2*Mhelp2*gb;
0159
0160 % determine if exact solution is known
0161 exact = false;
0162 SizeOfU = size(uexact);
0163 if (SizeOfU ˜= [0 0])
0164 exact = true;
0165 Lnorm2 = 0;
0166 DGnorm2 = 0;
0167 DGnorm2All = 0;
0168 Lnorm2All = 0;
0169 sigma = handles.sigma;
0170 Lhandles.hx = hx;
0171 Lhandles.Nx = Nx;
0172 Lhandles.MMinusAtA = MMinusAtA;
0173 Lhandles.MMinusAtB = MMinusAtB;
0174 Lhandles.MatA = MatA;
0175 Lhandles.MatB = MatB;
0176 Lhandles.m = m;
0177 Lhandles.pw = handles.pw;
0178 Lhandles.a = a;
0179 Lhandles.uexact = uexact;
0180 Lhandles.points = points;
0181 end
0182
0183 % load maple orthogonal polynomials
0184 maple(’with’,’orthopoly’)
0185
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0186 % Phi at -1 and 1
0187 PhiAtA = zeros(Nmax+1,1);
0188 PhiAtB = zeros(Nmax+1,1);
0189 for i=0:Nmax
0190 PhiAtB(i+1)=sqrt((2*i+1)/2);
0191 PhiAtA(i+1)=sqrt((2*i+1)/2)*(-1)ˆi;
0192 end
0193
0194 % define matrices
0195 AA = zeros(Nsize,Nsize);
0196 C = zeros(Nsize,Nsize);
0197 D = zeros(Nsize,Nsize);
0198 E = zeros(Nsize,Nsize);
0199 F = zeros(Nsize,1);
0200
0201
0202
0203 % loop over intervals
0204 Ind = 0;
0205 Jnd = 0;
0206 IndStart = 1;
0207 JndOld = 1;
0208 JndMinus = 1;
0209 JndPlus = 0;%sum(N(:,1))+m;
0210 for k=1:Nx
0211 invTransX = [’2/(’ num2str(hx(k),15) ’)*(x-’ num2str(points(k),15) ’)-1’];
0212 IntReg = [’x=’ num2str(points(k),15) ’..’ num2str(points(k+1),15)];
0213
0214 JndMinusOld = JndOld;
0215 JndOld=Jnd+1;
0216
0217 % loop over first system index
0218 for i=1:m
0219 % loop over first polynomial order
0220 for j=0:N(i,k)
0221 Ind = Ind + 1;
0222 Jnd = JndOld-1;
0223 JndMinus = JndMinusOld - 1;
0224 phi j = [num2str(sqrt((2*j+1)/2),15) ’*(’ maple(’P’,j,invTransX) ’)’];
0225 % loop over second system index
0226 for kk=1:m
0227 % loop over second polynomial order
0228 for l=0:N(kk,k)
0229 Jnd = Jnd + 1;
0230 phi l = [num2str(sqrt((2*l+1)/2),15) ’*(’ maple(’P’,l,invTransX) ’)’];
0231 phi l prime = maple(’diff’,phi l,’x’);
0232
0233 % (Bu,v)
0234 % integaration
0235 str = [’(’ phi l ’)*(’ B i,kk ’)*(’ phi j ’)’];
0236 maple([’func:=(x)->’ str ]);
0237 intstr = maple(’int’,’func(x)’,IntReg);
0238 C(Ind,Jnd)=str2num(intstr);
0239
0240 % (Au x,v)
0241 str = [’(’ phi l prime ’)*(’ A i,kk ’)*(’ phi j ’)’];
0242 maple([’func:=(x)->’ str]);
0243 intstr = maple(’int’,’func(x)’,IntReg);
0244 D(Ind,Jnd)=str2num(intstr);
0245
0246 % (M-[u],v)
0247 E(Ind,Jnd)=PhiAtA(l+1)*MMinusAtA(k,kk,i)*PhiAtA(j+1)...
0248 +PhiAtB(l+1)*MMinusAtB(k+1,kk,i)*PhiAtB(j+1);
0249 end
0250 % shifted term
0251 if (k>1)
0252 for l=0:N(kk,k-1)
0253 JndMinus = JndMinus+1;
0254 E(Ind,JndMinus)=-PhiAtB(l+1)*MMinusAtA(k,kk,i)*PhiAtA(j+1);
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0255 end
0256 end
0257 if k<Nx
0258 if i==1 && j==0 && kk==1
0259 JndPlus = JndPlus + sum(N(:,k)) + m;
0260 end
0261 for l=0:N(kk,k+1)
0262 JndPlus = JndPlus + 1;
0263 E(Ind,JndPlus)=-PhiAtA(l+1)*MMinusAtB(k+1,kk,i)*PhiAtB(j+1);
0264 end
0265 end
0266 end
0267 JndPlus = Jnd;
0268
0269 % (f,v)
0270 s=maple(’P’,j,invTransX);
0271 str = [’(’ f i,1 ’)*(’ s ’)’];
0272 ff = sqrt((2*j+1)/2)*str2num(maple(’int’,str,IntReg));
0273 F(Ind) = ff;
0274 if (k==1)
0275 F(Ind)=F(Ind)-.5*ga(i,1)*PhiAtA(j+1);
0276 end
0277 if (k==Nx)
0278 F(Ind)=F(Ind)-.5*gb(i,1)*PhiAtB(j+1);
0279 end
0280 end
0281 end
0282 % create grid
0283 for i=0:PointsPerInterval(k)
0284 X(k,i+1) = points(k) + i*VisH;
0285 end
0286 end
0287 AA = C+D+E;
0288
0289 % solve linear system
0290 U = gmres(AA,F,20,10e-15,500);
0291
0292 Ind = 0;
0293 IndD = 0;
0294
0295 % get solution in form of string
0296 for k=1:Nx
0297 invTransX = [’2/(’ num2str(hx(k),15) ’)*(x-’ num2str(points(k),15) ’)-1’];
0298 x0str = maple(’eval’,points(k));
0299 x0strPlus = maple(’eval’,points(k+1));
0300 xeq = [’x=’ x0str ’..’ x0strPlus];
0301 % loop over system index
0302 for i=1:m
0303 % loop over order of basis
0304 for j=0:N(i,k)
0305 Ind = Ind + 1;
0306 if (j==0)
0307 Ufunc(k,i) = [’(’ num2str(U(Ind),15) ’*’ num2str(sqrt((2*j+1)/2),15) ...
0308 ’*(’ maple(’P’,0,invTransX) ’))’] ;
0309 else
0310 Ufunc(k,i) = [char(Ufunc(k,i)) ’+(’ num2str(U(Ind),15) ...
0311 ’*’ num2str(sqrt((2*j+1)/2),15) ’*(’ maple(’P’,j,invTransX) ’))’] ;
0312 end
0313 end
0314
0315 % evaluation on grid for visualization
0316 ffunc = ModString(char(Ufunc(k,i)));
0317 x = X(k,1:PointsPerInterval(k)+1);
0318 z=eval(ffunc);
0319 if (size(z)==[1 1])
0320 sx = size(x);
0321 v(k,i,1:PointsPerInterval(k)+1) = z*ones(sx(1),sx(2));
0322 else
0323 v(k,i,1:PointsPerInterval(k)+1) = z;
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0324 end
0325
0326 if(exact)
0327 % L2norm
0328 maple([’func:=(x)->’ num2str(sigma,15) ’ˆ.5*((’ char(uexact(i,1))...
0329 ’)-(’ char(Ufunc(k,i)) ’))ˆ2’]);
0330 nstr = maple(’int’,’func(x)’,xeq);
0331 Lnorm2(k,i) = str2num(nstr);
0332 Lnorm2All = Lnorm2All + Lnorm2(k,i);
0333 end
0334 end
0335 if (exact)
0336 % DG part of norm
0337 Lhandles.Ufunc = Ufunc;
0338 Lhandles.k = k;
0339 DGnorm2(k) = DGnorm1d(Lhandles);
0340 DGnorm2All = DGnorm2All + DGnorm2(k);
0341 if k<Nx
0342 Lnorm2(k+1,:) = zeros(1,m);
0343 DGnorm2(k+1) = 0;
0344 end
0345 end
0346 end
0347 figure(1)
0348 clf;
0349
0350 %% visualization
0351 vv = zeros(1,PointsPerInterval(k)+1);
0352 for i=1:m
0353 subplot(m,1,i)
0354 for k=1:Nx
0355 vv = zeros(1,PointsPerInterval(k)+1);
0356 vv(1,1:PointsPerInterval(k)+1)=v(k,i,1:PointsPerInterval(k)+1);
0357 plot(X(k,1:PointsPerInterval(k)+1),vv)
0358 hold on;
0359 end
0360 end
0361
0362 save Ufunctions Ufunc
0363
0364 if (exact)
0365 Norm(1) = sqrt(Lnorm2All);
0366 Norm(2) = sqrt(DGnorm2All);
0367 Norm(3) = sqrt(Lnorm2All+DGnorm2All);
0368 Norm
0369 norm=sqrt(DGnorm2+sum(Lnorm2’));
0370 end


