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The charge-flipping method tends to fail if applied to an incomplete diffraction

data set. The reason is artifacts induced in the density maps by Fourier

transforming the data. It is shown that the missing data can be sufficiently well

approximated on the basis of the Patterson map of the unknown structure

optimized by the maximum entropy method (MEM). Structures that could not

be solved by the original charge-flipping algorithm can be solved by the

proposed method. The method has been tested on experimental data of one

inorganic and two organic structures and on several types of missing data. In

many cases, up to 50% of missing reflections, or even more, can be tolerated and

the structure can still be reconstructed by charge flipping.

1. Introduction

Despite the widespread usage and success of direct methods in

solving crystal structures, problems still exist that are difficult

or impossible to tackle by the well established methods. Some

of these problems can be solved by alternative structure

solution methods. Charge flipping is such an alternative

method that can be used to solve crystal structures for up to

several hundreds of atoms in the unit cell from diffraction data

with atomic resolution (Oszlányi & Sütö, 2004, 2005). Charge

flipping has been shown to be applicable to standard crystal

structures (Wu et al., 2004; Oszlányi et al., 2006), but it has also

proved very useful in the solution of incommensurately

modulated structures (Palatinus, 2004; Zuñiga et al., 2006;

Palatinus et al., 2006), quasicrystals (Katrych et al., 2007) and

structures solved from powder diffraction data (Wu et al.,

2006; Baerlocher et al., 2007). From the practical point of view,

the method has only one serious disadvantage, namely the

requirement of a complete or almost complete data set. A

small proportion of missing reflections can prevent the struc-

ture solution completely.

The maximum entropy method (MEM) is a well known and

widely used image-enhancement method (Buck & Macaulay,

1991; von der Linden et al., 1999). It has been used in crys-

tallography both in the initial processes of structure solution

for phasing structure factors (Bricogne, 1993, 1997; Gilmore,

1996; Gilmore et al., 1999) and in the final stages of refinement

for extracting detailed information about the electron density

in the unit cell (Steurer et al., 1993; Iversen & Larsen, 1995;

Haibach & Steurer, 1996; Papoular et al., 1996, 2002; Roversi

et al., 1998; Dinnebier et al., 1999; Wang et al., 2001). It has

been noticed that the nonlinear properties of the MEM could

be used also for extrapolation of the amplitudes and phases of

unobserved structure factors (Sakata & Sato, 1990), but, to our

knowledge, this idea was not exploited in detail, probably

because the research was focused on the investigation of the

electron density in real space and the MEM was applied to

accurate electron density studies, where the data completeness

is usually not an issue.

This article focuses on a combination of the MEM with

charge flipping for structure solution from incomplete X-ray

diffraction data. It will be shown that the MEM can be used to

extrapolate the intensities of the missing reflections by opti-

mizing the Patterson function. Combining the extrapolated

reflection intensities with the experimental data greatly

enhances the ability of charge flipping to solve a crystal

structure from an incomplete data set.

2. Method

2.1. Charge flipping

Charge flipping is an iterative method for ab initio recon-

struction of electron densities from diffraction data (Oszlányi

& Sütö, 2004, 2005). It uses as an input only the cell para-

meters of the structure, the reflection indices and intensities.

Neither chemical information nor the symmetry is explicitly

used in the structure solution process. The electron density is

sampled on a discrete rectangular grid of pixels with values

�i; i ¼ 1; . . . ;Npix. The algorithm proceeds in iteration cycles.

Before the iteration, a starting set of structure factors is

created by combining the experimental structure-factor

amplitudes jFðHÞj with random phases. One iteration cycle

involves four steps.

(1) A trial electron density �ðnÞ is obtained by inverse

Fourier transform of the structure factors FðnÞðHÞ:
‡ Permanent address: Institute of Physics, Academy of Sciences of the Czech
Republic, Na Slovance 2, 182 21 Prague, Czech Republic.
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�ðnÞ ¼ FT�1 FðnÞðHÞ� �
:

(2) A modified density gðnÞ is obtained from �ðnÞ by reversing

the sign (flipping) of all density pixels with density below a

certain positive threshold �:

g
ðnÞ
i ¼

�
�ðnÞ

i if �ðnÞ
i >�

��ðnÞ
i if �ðnÞ

i � �:

(3) The structure factors of this modified density are

obtained by Fourier transform of gðnÞ:

GðnÞðHÞ ¼ FT½gðnÞ�:

(4) The structure factors Fðnþ1ÞðHÞ are obtained from

FðnÞðHÞ and Gðnþ1ÞðHÞ ¼ jGðnþ1ÞðHÞj exp ½2�i’GðHÞ� according

to the following scheme:

Fðnþ1ÞðHÞ ¼ jFðHÞj exp ½2�i’GðHÞ�
for F(H) observed and strong,

Fðnþ1ÞðHÞ ¼ jGðnÞðHÞj exp 2�i½’GðHÞ þ 0:25Þ�� �
for F(H) observed and weak,

Fðnþ1ÞðHÞ ¼ 0

for F(H) unobserved, and

Fðnþ1ÞðHÞ ¼ GðnÞðHÞ
for H = 0.

The new set of structure factors enters the next cycle of

iteration. The iteration cycles are repeated until the calcula-

tion converges. � is the main parameter of the iteration. It must

be determined by trial and error, but this search can be

automated. The second variable parameter of the algorithm is

the proportion of the reflections considered weak in the fourth

step of the iteration cycle. Experience shows that about 20–

40% of all reflections can be considered weak. The usage

of the phase shifting of the weak reflections significantly

improves the performance of the algorithm in cases of more

complex structures (Oszlányi & Sütö, 2005).

The algorithm seeks a Fourier map that is stable against

repeated flipping of all density regions below �. Obviously, a

large number of missing reflections will make the algorithm

less efficient, because the missing reflections are assigned a

zero amplitude, which induces large termination ripples in the

Fourier map. The underlying assumption of the algorithm that

the density is close to zero in large regions of the unit cell and

positive in small parts of the unit cell is no longer fulfilled and

the algorithm fails. The way to improve the performance of the

algorithm is thus to avoid the occurrence of large termination

ripples.

2.2. The maximum entropy method

The MEM originates from information theory and is based

on the assumption that the information content of a positive

additive distribution is monotonically related to the entropy of

the distribution (Shannon, 1948; Sivia, 1996). Originally the

theory was formulated only for probability distributions, but

later it was generalized towards any positive additive distri-

bution, including electron densities. The Shannon (informa-

tion) entropy is defined by

S ¼ �
Z

pðxÞ log
pðxÞ
�ðxÞ dx;

where pðxÞ is the probability distribution of a variable x and

�ðxÞ is the prior probability distribution. The distribution �ðxÞ
can include any information known about the distribution pðxÞ
prior to including the experimental data. For many applica-

tions �ðxÞ is taken to be constant, and such prior distribution is

usually called a uniform or flat prior. The theory underlying

the method shows that the most probable among several

distributions complying with the experimental information is

the one with the maximum value of entropy, while satisfying

one or more constraints. In the study of the electron densities

two constraints are usually used. The first fixes the total

number of electrons in the unit cell to the number defined by

the chemical composition, and the second defines the agree-

ment of the reconstructed distribution with the experimental

data. In the studies of the electron density, this constraint

usually takes the form of a �2 constraint:

�2 ¼ 1

NF

X
H

jFobsðHÞ � FMEMðHÞj
�½FobsðHÞ�

� �2

: ð1Þ

The summation runs over all diffraction vectors H with

intensities known from the experiment, and the subscripts obs

and MEM refer to the experimental and calculated structure

factors, respectively. The expectation value of �2 is 1. An

overview of applications of the MEM in crystallography was

given by Gilmore (1996).

The precise meaning and reliability of the distributions

reconstructed by the MEM has been subject to long discus-

sions and remains somewhat controversial. However, an

obvious property of the reconstructed distributions apart from

their positivity is their smoothness with respect to �ðxÞ,
because the entropy decreases with increasing deviation of the

distribution pðxÞ from the prior distribution �ðxÞ.
In this work, the purpose of the application of the MEM is

to enhance the input data for a structure solution method.

Thus, the distribution to be optimized by the MEM cannot be

the electron density itself, since it is unknown. Instead, its

autoconvolution, the Patterson function, can be used. The

Patterson function PðrÞ is related to the diffracted intensities

by the Fourier transform, and as such can be calculated

directly from the experimental data:

PðrÞ ¼ FT�1jFHj2:
The relation between the Patterson map and reflection

intensities is the same as the relation of the electron density

and the structure factors. Thus, the MEM formalism can be

applied directly to the reconstructions of the Patterson func-

tion, with the structure factors FðHÞ in the expression for
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the constraint [equation (1)] replaced by the intensities

IðHÞ ¼ jFðHÞj2.

If the Patterson function is calculated from a data set with

many missing reflections, it contains sharp ripples caused by

the missing data and can even exhibit negative regions. On the

other hand, the Patterson function optimized by the MEM will

be everywhere positive and smooth owing to the properties of

the MEM. The smoothing and positivity are achieved by

adjusting the intensities of the observed reflections within the

limits given by their standard deviations (noise filtering) and

by assigning non-zero amplitudes to Fourier coefficients that

are not present in the input data and thus not restricted

(intensity extrapolation). It is this second property of the

MEM that is exploited in this work.

The MEM calculations were performed using the program

BayMEM (van Smaalen et al., 2003). We used the Sakata–Sato

algorithm (Sakata & Sato, 1990) with flat prior and the �2

constraint [equation (1)]. To obtain an extrapolated set of

reflections, the experimental data set is analyzed and the list

of missing reflections in a sphere of desired resolution is

produced. The experimentally known reflection intensities are

used as an input to BayMEM. The program is designed for

reconstructions of the electron densities, and it takes as an

input the reflection indices together with the real and

imaginary part of the structure factor. No modification to the

program was necessary to make it reconstruct the Patterson

function. It is just necessary to supply the reflection intensity

at the place of a real part of the structure factor and to set all

imaginary parts of the structure factors to zero. Moreover, the

number of electrons in the unit cell [which corresponds to the

value of Fð0Þ, i.e. the amplitude of the forward scattering] must

be replaced by its square. If Fð0Þ is not known a priori, its

approximate value must be determined using a Wilson plot.

BayMEM has an option to output the values of Fourier

coefficients of the reconstructed distribution from a list

supplied by the user. Using this option, the extrapolated

intensities of the missing reflections are obtained. These

intensities are merged with the observed data to form a

complete reflection set that can be used as an input for the

charge-flipping algorithm. The structure solution by charge

flipping proceeds further in a completely standard manner as

described in x2.1, using the computer program Superflip

(Palatinus & Chapuis, 2006).

3. Testing procedure

We decided to test the new method on experimental data sets

rather than data sets generated from a known structure. The

main advantage of using generated data sets is that possible

influence of experimental errors on the performance of the

method is avoided, and the answer to the problem is known a

priori. However, the aim of the current method is to solve

crystal structures, i.e. to find the positions of the atoms in the

unit cell, and the quality of the X-ray diffraction data is

nowadays often so good that the influence of possible

experimental error on the structure solution process is negli-

gible and the refined structure model can be considered

unequivocal. Thus, the advantages of using theoretical data

are minor. On the other hand, using the experimental data in

testing the method has the advantage that the second testing is

avoided; this would otherwise be needed to prove that the

method works equally well on experimental data. Moreover,

the MEM formalism requires that the standard deviations of

the observed intensities are known, and using experimental

data is the most easy and realistic way to obtain them.

We selected three structures for which a good experimental

data set was available, that is, a data set with good comple-

teness and good resolution, which yielded a structure solution

with acceptable R value. The structures represent one inor-

ganic and two organic structures; among the latter two, one is

centrosymmetric and one non-centrosymmetric. Their char-

acteristics are summarized in Table 1. The structures were

selected so that they were reasonably complex, but at the same

time could be solved easily from the complete data set, and the

solution from the complete data set would yield a density with

all atomic positions easily recognizable.

All three structures are triclinic. Higher than triclinic

symmetry would mean that special care would have to be

taken when constructing the incomplete data sets in cases of

special geometries of missing regions (see below). Moreover,

structures with higher symmetry have special directions and

planes. A coincidence of such special direction with a specific

direction of the region of missing reflections could make the

tests less general.

The nature of missing regions in the data set can vary

greatly. We selected five prototypic cases for our tests. In each

case the method of excluding reflections from the complete

data set has one or more free parameters, as follows.

(i) Upper resolution limit. Several data sets were generated

with progressively lower resolution. A resolution lower than

optimal can occur if the crystal diffracts poorly at high angles

or if the maximal diffraction angle is limited by instrumenta-

tion, for example by the opening of a furnace or a diamond

anvil cell.

(ii) Lower resolution limit. The variable parameter in this

method is the lower limit on the accessible diffraction angle.
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Table 1
Characteristics of the structures used for the tests.

Name Code Composition Z Symmetry VUC (Å3)
Resolution
(sin �=�Þ

Hexachlorotetra-	3-chlorotetra-	3-tellurooctohexarhenium(III) br1121 Re6Te4Cl10 2 P�11 1035.5 0.61
3,5-Dihydroxybenzoic acid–4,40-bipyridine (2/3) sk1293 C44H36N6O8 2 P�11 1809.4 0.60
Nicotinamide adenine dinucleotide tetrahydrate gs1072 C21H35N7O18P2 1 P1 773.7 0.83

References: br1121: Mironov et al. (1996); sk1293: Wheatley et al. (1999); gs1072: Guillot et al. (2000).
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All reflections with diffraction angle below the limit were

excluded from the data set.

(iii) Randomly omitted reflections. The variable parameter

is the ratio of the omitted reflections to all reflections. Each

reflection from the complete data set was rejected with

probability equal to that ratio. In practice a data set with

missing reflections irregularly distributed in the reciprocal

space can occur if some reflections have to be omitted as a

result of overlaps with other reflections from the measured

crystal, with impurities or with powder rings from the gasket in

the diamond anvil cell.

(iv) Missing cone. A double cone of reflections around a

given axis with a given opening angle is omitted. The region of

omitted reflection extends along the axis in both directions

from the origin. The variable parameter is the vector of the

cone axis and the opening half-angle of the cone.

(v) Present cone. Similarly to the previous case, a double

cone is defined by its axis and opening angle, but in this case

the reflections in the double cone are preserved and the rest

are omitted. In practice a situation with missing or present

cones can occur if the crystal is rotated only around one

rotation axis during the data collection, or in measurements

under non-ambient conditions, where part of the reciprocal

space is not accessible because of bulky equipment.

The testing data sets were generated from the complete

data sets of each structure by excluding reflections according

to one of the above schemes. A large range of each variable

parameter was exploited to obtain reliable statistics. Two

inputs for the charge-flipping calculation were then created

from each generated data set. The first input contained only

the reflections present in the data set. This input represented

the classical application of charge flipping to an incomplete

data set and was used as a reference. Secondly, the intensities

of reflections excluded from the data set were extrapolated by

the method described in x2.2 and merged with the original

data set. The completed data set was then submitted to the

charge-flipping calculation. The electron densities of the

centrosymmetric structures (br1121 and sk1293) were aver-

aged according to the expected symmetry of the density.

Because the charge-flipping algorithm is initiated by assigning

random phases, different runs of the algorithm can lead to

different results. To obtain good statistics of the reliability of

the reconstruction, 25 charge-flipping runs were performed on

each input data set. The value of Fð0Þ for the MEM calculation

was calculated from the known structure model. This is the

only difference of the present testing from the real-world

application. It was used to limit the number of variables that

could influence the results and should not have a severe

impact on the practical applications.

The tests were performed on hundreds of different data

sets, and therefore an automated and unified method had to be

developed for comparison of the results. There are essentially

two possible approaches to the evaluation of the quality of the

structure solution: in reciprocal space and in direct space.

Since in principle the structure solution is a search for the

phases of the structure factors, a natural way to express the

quality of the reconstruction is to use some measure of the

phase difference between the phases obtained by charge

flipping and the phases calculated from the refined structure

model.

Throughout this work we use a weighted mean square phase

difference defined as

w�2ð’Þ ¼ 100 � 1

�2
rnd

P
Hobs

jFðHÞj2�ð’Þ2

P
Hobs

jFðHÞj2 :

�ð’Þ is the difference between the structure-factor phase

calculated from the structure model and the phase obtained

from charge flipping, mapped to the interval h��; �i by

subtracting or adding integer multiples of 2�. The normal-

ization constant �2
rnd is selected so that the expected value of

w�2ð’Þ for a completely random density is 100. w�2ð’Þ gives a

good overall measure of the quality of the reconstruction,

especially for different reconstructions within the same type of

omitted reflections. It is especially useful for the reconstruc-

tions from difficult data sets, where it is hard to evaluate the

density automatically in real space because of the abundant

noise. On the other hand, w�2ð’Þ alone cannot be used as the

ultimate measure of the quality of the reconstruction. This is

because two electron densities that give the same w�2ð’Þ can

still be very different in terms of the number and clarity of the

atomic maxima they contain, depending on which reflections

contribute most to w�2ð’Þ. Finally it should be noted that the

origin of the density reconstructed by charge flipping is in

general shifted with respect to the structure model. This origin

shift induces a phase shift in the structure factors that, if not

taken into account, would lead to completely wrong values of

w�2ð’Þ. To avoid this problem, the origin of each recon-

structed electron density was shifted to align it to the structure

model, and only then w�2ð’Þ was evaluated. The alignment

was performed using the density-matching option of the

program Superflip and is based on the evaluation of the

correlation between the actual density and the reference

density.

The other obvious possibility to evaluate the quality of the

reconstructed electron density is to count the number of atoms

that can be identified in the density. The positions of the atoms

in the structure are the values of interest and thus this

criterion better reflects the practical usefulness of the recon-

struction than w�2ð’Þ. The following procedure was adopted

to count the number of atoms in the electron density. First the

electron density is analyzed and the list of maxima is created;

this contains the first Nstr maxima (Nstr being the number of

independent atoms in the structure model) plus all maxima

with peak electron density higher than 80% of the density of

the Nstrth maximum. The maxima that are closer than 0.55 Å

to a higher maximum in the list are then eliminated. This

reduced list of maxima is compared with the list of atomic

positions from the structure model and each maximum closer

than 0.55 Å to an atom from the structure model is considered

to represent that atom. If more than one maximum lies in the

vicinity of an atom, only the nearest maximum is taken into

account. The list of maxima located in this way is the first
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tentative list of identified atoms. It is then filtered to decrease

the influence of the assignment of noise to the atoms,1 and the

number of assigned maxima after the filtering is considered to

represent the number of located atoms. This method has

several parameters and steps that are to some extent arbitrary.

The method itself and the parameters were tuned so that the

results of the analysis roughly reflect the

visual impression about the quality of

the analyzed densities and the ability of

a human eye to read out the information

from the density. For the present

purposes, the exact number of located

atoms is not as relevant, as the

comparison between the results and the

presented method suits the purpose of

comparison very well.

The main advantage of the evaluation

in direct space is that it is directly

related to the information content of

the electron density. Moreover, unlike

w�2ð’Þ, which is calculated only from

the experimental reflections, the elec-

tron density from the calculation

including the extrapolated reflections

contains also information from these

reflections. On the other hand, the

distinction between the converged and

unconverged calculation is not so

obvious in the number of located atoms,

since the method can indicate a certain

number of ‘located’ atoms even in a

completely random density.

4. Results and discussion

The method was tested on many data

sets and many different values of the

variable parameter for each type of

omitted reflections and each structure.

Here only a representative subset of the

results is presented. In particular, the

cone-shaped regions depend on the

opening angle of the cone and the

direction of the cone axis. We have

performed calculations with cone axes

along the directions [100], [010] and

[001] for each structure. The calcula-

tions showed that the results were

qualitatively similar for various direc-

tions of the cone axis, and therefore

only the calculation with cone axis along

[001] is presented here. The results are

summarized in Fig. 1. The plot shows an

average number of located atoms for the 25 calculations

performed on each data set, and the average w�2ð’Þ, both

quantities for a calculation without and with the completion of

the data set by the MEM. In addition to the average number of

located atoms the maximum number of located atoms for each

set is indicated. This is because for difficult data sets not every

calculation converges successfully, and in practice it is possible

to perform several structure solution attempts and pick the

best one. Thus the maximum number of located atoms among

several runs is also an interesting quantity.
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Figure 1
The number of located atoms and w�2ð’Þ. Each plot summarizes the results for the type of missing
reflections indicated on the left and for the structure indicated at the top. The horizontal axis of each
plot represents the variable parameter of the type of missing reflections (sin �=� in rows 1 and 2,
ratio of missing reflections in row 3, and opening half-angle of the cone in rows 4 and 5; see also x3).
The orange and blue columns represent the percentage of the atoms located in the charge-flipping
results from the incomplete and MEM-enhanced data sets, respectively. The solid part of the
columns corresponds to the average percentage of located atoms from the given data set; the
transparent part shows the maximum number of located atoms among the 25 calculations on each
data set. The orange and blue lines represent the average w�2ð’Þ for the calculation on the
incomplete and MEM-enhanced data sets, respectively.

1 The filtering is based on the observation that among the maxima belonging to
the noise there are also a large number of non-assigned maxima. Thus, at the
point where the non-assigned maxima start to prevail above the assigned ones,
no more assigned atoms are accepted.
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The first and main impression from Fig. 1 is that the MEM-

enhanced data sets lead in all cases to an improvement of the

performance of charge flipping, and this improvement is often

substantial. A more detailed comparison among the results for

each structure shows that the improvement is most remark-

able for missing low-angle reflections, randomly omitted

reflections and missing reflections outside a cone. The

improvement is smaller for missing high-angle reflections (i.e.

limited resolution of data) and for missing reflections inside a

cone. Only in the case of missing high-angle reflections in

br1121 and gs1072 can the improvement be considered insig-

nificant.

The behavior just described can be readily understood if we

recall the basic properties of the MEM and the underlying

assumptions of charge flipping. Charge flipping works best on

a density that is nearly zero in large regions of the unit cell and

non-zero only at a few places. In short, the density has to be

sparse. Two effects related to the data completeness can

influence this property. First, the large termination ripples in a

Fourier map calculated from the data with missing reflections

inside the resolution sphere break the sparseness of the

density by generating false significant maxima and minima.

Second, a data set with missing high-angle reflections causes

the corresponding Fourier map to be less peaked and more

smeared. As a result the proportion of density that is almost

zero decreases and the sparseness condition is less well

fulfilled. The severity of the impact of the termination ripples

and density smearing on the efficiency of charge flipping

depends on the sharpness and height of the atomic maxima.

Therefore, charge flipping is more efficient on inorganic than

organic structures.

The effect of the MEM exploited in this work is primarily

the smoothing of the Patterson map in order to remove the

termination ripples. It is thus clear that the improvement

should be best in cases when the termination ripples are the

largest, but where significant structural information is still

preserved. This is the case for the randomly omitted reflec-

tions and also for the missing reflections at low angles. In

contrast, the density map calculated from a complete data set

with low resolution is already quite smooth and thus further

smoothing by the MEM does not lead to any significant

improvement. The observed marginal improvement is caused

by estimating the missing high-angle reflections from the

requirement on the positivity of the Patterson map.

The cone-shaped omitted regions represent a combination

of the two effects mentioned above: they induce both the

termination ripples and smearing of the density along certain

directions. The missing reflections outside a cone lead to a

deformation of the atomic maxima into discs with short axis

along the cone axis. In an extreme case of reflections present

only along the cone axis, the density corresponds to the

projection of the structure onto that axis. The case of reflec-

tions missing inside the cone leads analogically to a smearing

of the density along the cone axes and ultimately to a density

corresponding to the projection of the structure onto the plane

perpendicular to the cone axis. The latter case is thus a two-

dimensional projection, while the former case is one-dimen-

sional. The two-dimensional projection preserves more low-

density regions than the more degenerate one-dimensional

projection. This difference is responsible for decreased

performance of the basic charge-flipping algorithm for missing

reflections outside a cone compared with missing reflections

inside a cone.

The exact limits on the applicability of charge flipping on

incomplete data depend strongly on the nature of the struc-

ture, as can be seen from comparison of the plots of different

structures. Despite this several general statements can be

deduced from the plots.

(i) The improvement of the data with low resolution is

marginal, but it can make or break the solution in cases of data

resolution just below the limit accessible for the original

charge-flipping algorithm. The resolution limit between

sin �=�max ¼ 0:35 and 0:50 is frequently encountered in

structures that crystallize poorly or do not diffract at high

angles.

(ii) A problem of missing low-angle reflections can be

overcome quite efficiently with the new method, as long as the

percentage of the missing reflections remains below ca 30%.

(iii) Up to about 50% of randomly missing reflections can

be tolerated.

(iv) The opening half-angle of a cone of missing reflections

can be up to 55–65�, which amounts to roughly 50% coverage

of reciprocal space. For missing reflections outside a cone the

limit is also about 60� or 50% coverage.

(v) All the limits just given apply to the two organic

structures tested in the present study. For the inorganic

structures these limits can be usually relaxed by 10 or even

20% in terms of the proportion of missing reflections. On the

other hand, for more complex structures the limits are likely to

be more severe.

It is interesting to compare the reflection intensities extra-

polated by the MEM with the experimental values. The match

between the extrapolated amplitudes jFextj and the experi-

mental amplitudes jFobsj of the structure factors can be eval-

uated by the conventional RF value:

RF ¼
P jjFextj � jFobsjjP jFobsj

:

The R values strongly differ among the structures and they

depend also on the amount and type of missing reflections. For

the structures br1121 and gs1072, a typical R value is between

30 and 40%, and exceeds 60% only in the case of a large

number of missing reflections. R values around 35% illustrate

that in most cases the MEM extrapolation performs quite well.

The case of sk1293 is quite different. The lowest R value

among all data sets is 57.6% and most R values range between

60 and 70%. This effect can be attributed neither to the

difference in data resolution (sin �=�max ¼ 0:6 for sk1293 and

0:83 for pg1072) nor to the slightly higher overall Debye–

Waller parameter for sk1293 (Biso ’ 2:5 Å
2

versus 1:1 Å
2

for

gs1072). This has been shown by a few tests on simulated data

of sk1293, which yielded similarly high R values independently

of Biso or resolution. The most likely explanation is thus that

the higher R values for sk1293 are caused by the much larger
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unit-cell volume (see Table 1) and consequently larger number

of reflections. It is, however, interesting that despite the much

worse overall accuracy of the extrapolation, the improvement

of the performance of charge flipping is still remarkable and

does not differ significantly from the other two structures. This

confirms the assumption that it is the elimination of the

termination ripples rather than the accurate prediction of

amplitudes that causes the better performance of charge

flipping.

The enhancement of the incomplete data set by the MEM is,

naturally, not limited to the combination with charge flipping.

Other structure solution methods could profit from it as well.

However, the problem of incomplete data is not so severe in

direct methods, because they are not primarily Fourier

methods, and thus do not directly suffer from the truncation

effects. Moreover, direct methods more than charge flipping

rely on accurate reflection intensities, and these are not

reconstructed very well by the MEM extrapolation. The

possible contribution of the data enhancement by the MEM to

the structure solution methods other than density modification

methods remains open for discussion.

5. Conclusions

The combination of the maximum entropy method with

charge flipping overcomes the main shortcoming of the

charge-flipping algorithm, namely the failure when applied to

an incomplete data set. We have shown that if the data set is

completed with reflection intensities calculated from the

MEM-optimized Patterson map, charge flipping can success-

fully reconstruct structures from diffraction data with as little

as 50% coverage of the reciprocal space. The improvement

compared with charge flipping on the incomplete data set is

most significant if the missing reflections are randomly

distributed between the present reflections, and least signifi-

cant if the data set has limited angular resolution. This is

related to the number of the Fourier artifacts generated by the

different types of data incompleteness. The more Fourier

artifacts are present in the Patterson map of the incomplete

data, the better is the relative enhancement of such a map by

the MEM.

There is no principal difference between the structure

solution of periodic structures and modulated structures or

quasicrystals by charge flipping. Therefore it is almost certain

that the conclusions made in this work will qualitatively apply

also to aperiodic structures, where charge flipping turns out to

be particularly useful.
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