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Abstract— We want to extend the approximation of the error mother curvef(z). The exact scaling law for transmission
probability via a scaling approach from the BEC to general over the BEC was characterized by Amraoui et. al. in [1].
binary-input memoryless output-symmetric (BMS) channels In - gy ther, in [2] one can find explicit analytic expressions of
particular, we consider such scaling laws for regular LDPC " . . .
ensembles and message-passing (MP) decoders with a finitdhe scaling parameters. We are interested in extending the
number of messages. known results for the BEC to general channels. We are faced

We first show how to re-derive the scaling law for transmissia  with several hurdles. Both the proof of the scaling law as
over the BEC using an “EXIT-like” curve instead of the density well as the derivation of the scaling parameters in the cése o
evolution curve of the peeling decoder. The advantage of theew he BEC are strongly linked to the so callpdelingdecoder,

derivation is that the new expression of the scaling paramer . .
« only contains quantities that can be meaningfully interpreed originally introduced by Luby et. al. [5]. But unfortunayeho

also for general message-passing algorithms. In particutathis ~9€neralization of the peeling decoder to general chanisels i
expression only depends on the curvature of the EXIT-like cove known. As a first step we therefore show an alternative way of
as well as the variance of the messages, both taken at the ecé#ll  computing the scaling parameters for the BEC: this alt@éraeat
channel parameter. derivation uses EXIT-like functions (see Section Il), a cept

We discuss how to compute these quantities for general MP .
algorithms and we evaluate the expressions for the specifiases that readily extends to the general case. The new formula

of the Gallager algorithm A as well as the Decoder with Erasues Can be meaningfully interpretation not only for he BEC but
and compare the resulting predictions on the error probabiity for any BMS channel and any message-passing decoder. This

with simulation results. leads to a conjecture for the scaling parameter for the géner
case. We then show how to perform the computation of the
scaling parameter for the general case and conclude witle som
Sparse graph codes under iterative decoding are of interapplications.
because of their ability to closely approach the channehcap
ity. The asymptoticbehavior of such codes is relatively well Il. EXIT-L IKE CURVES
understood. For practical applications, however, one @oul Consider a generic message-passing (MP) decoder with
like to find the best code offixed lengthUnfortunately, codes a finite message alphabet. Without loss of generality we
optimized for the asymptotic case are in general not optimassume that the messages take valugs-im, - - - ,m}, where
for the finite-length case. Indeed, the speed of convergencen € N. We assume that the MP decoder fulfills the standard
the asymptotic limit can significantly vary from one enseenblsymmetry conditions both at the variable nodes as well as the
to another. check nodes. We do allow the MP decoding rules to be time
We are thus interested in finding a good finite-length ajplependent for a finite number of steps before they settle on
proximation which can be used as an efficient finite-leng#nfixed rule. Finally, we assume that transmission takeseplac
optimization tool in order to find the code best suited foover a family of BMS channels and that the initial quantiaati
any given application. To that end our approach needs dbthe received values at the decoder is done in a symmetric
be as flexible as possible, applicable to the large variety fafshion as well so that we can make the all-one codeword
ensembles, channels, and message-passing decodersethaassumption.
of interest for real applications. Let the channel be parameterized bythe entropy of the
Scaling lawsseem to be a good tool in order to solve thishannel. For everyn € [0, 1], initialize the density evolution
problem. They have been widely used in statistical physics frocess with (a suitably quantized version of) the density
good source on this topic is the book by Fisher [4]). The basig,sy). Let z denote the fixed-point density of the messages
idea of scaling laws applied to coding theory (as introdumed at the output of the variable nodes. Note thaencodes a
Montanari [6]) is that all finite-length error probabilityucves  probability mass function. To derive from this family of fike
are up to higher order error terms scaled versions of a singleint pairs an EXIT-like curve we can e.g. plgt, 1 — z,,).

I. INTRODUCTION
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In words, we measure the fraction of messages which are notet X, = X, /(nA’(1)) denote the random variable which
“m”-messages at the fixed point as a function of the channe¢ get if we look atX; at the time wherf/; = hn. In a similar
parameter. Since below the threshalé- z,, is for most MP  way, letH, = H, /n denote the random variable which we get
decoders equal to zero, whereas above the threshold it vifive look at H; at thefirst time whenX; = anA’(1). Imagine
have a non-zero value this will give us a curve which ithat we are sitting just above the thresholdhat h* + Ah.
somewhat reminiscent of a standard EXIT curve (of the oVerdlhis corresponds to the parameter= z* + v/Ahe, due to
code). This also explains why we call it an “EXIT-like” curve the assumption that the EXIT-like curve is regular. Notet tha
Our language below will reflect this particular choice butya E[H,] = h* + Ah. Let 02 = E[(H, — E[H,])?] and note that
other choices are possible and sometimes more convenignt. &, is a continuous function of the channel parameter so that we
2 denote our choice. Consider the EXIT-like curve depictethn considepy- = limy,_.+ oy. Consider again the decoding

in Figure 1. It is given by process as described above, which gives rise to the sequence
(b, 0) h € [0,h*) of random variaple{Ht, Xt). Assume that we measure the .
xz(h) = { (h7(x), 2), he (h’* o we @1 (1) component of this process for a particular instance. Wentlai
T ’ ' that if X; < x* then with high probability the decoder for

where(h*, z*) is the fixed-point pair at the threshold. In ordethis instance will finish without revealing any further biBn
the other hand, ifX; > z* then with high probability further

T revelations of bits will be necessary. This is due to the shap
of the EXIT-like curve: around the point* the curve has
o an infinite slope, indicating that the decoder is at the brink
o of successful decoding with the given information. Hente, i
02 H,. < h then the given instance would not have decoded
o successfully with high probability if we had transmittedeov
o a channel with parametar and conversely it would have been
Y o o o o o o e s successful with high probability if7,. > h. Our probability

h of error estimate is therefore
Fig. 1. EXIT-like curve for the (3,6)-code over the BER* ~~ 0.42944. . Ah

Pgp(h) =P{H,- <h} =Q ( ) .

Op*

for an EXIT-like curve to be suitable for our derivation it stu N
have the following property: at the threshold, the curve mul the last step we have assumed that the distributioff pf
have an infinite slope and the second derivative must belgtrids Gaussian with mean* and standard deviation,-. This
non-zero. Although this is not easy to glean from the pigtur@as shown to hold in the original derivation in [1].

this is true for the specific curve shown. We will say that an In general it is not an easy task to computg directly.

EXIT-like curve is regu|ar if it has the above property. But we can relate it to the variance of the meSZsages which
is amenable to an analysis. Defilve= W%E([g“]”. Then
I11. NEW DERIVATION OF SCALING LAw some calculations show that
Consider transmission over the BEC. Imagine the following 1 9%h(x) 2 e
experiment. We start with a randomly chosen graph from the %n* = nA/(1) (W|*> mhjﬁ}*(x — a7V
ensemble and all bits erased. Choose a random bit and reveal ) 2 N
it to the decoder. Next run the iterative decoding proces# un - _ 1 (8h_(“3)|*> lim (M) )
it is stuck and the decoder hits a fixed point. This gives rise nA'(1) \ Oz? o=zt \ 1= yAz(z)

to one fixed point pai H, X), where H equals the number The last step warrants some remarks. When z*, i.e., when
of not yet revealed variables and wheke is equal to the the channel parameter approaches the critical parambéar, t
number of still erased messages. We continue now in thige variance) diverges. Indeed we will show in Section 1V
fashion, each time choosing at random a new bit which wkat) has the form

then reveal and running the decoder until it is stuck. This 13 1

gives us a sequence of flxgd point paitH;, X;). If we (1 _,y)\z(w))z + (1 _7)\2(%)) ’

normalize these random variable#/,( to », the length of o
the ensemble, and, to nA’(1), the number of edges) andWherey := (1—1)(r—1) only depends on the degree distribu-
connect the normalized points then we get a “curve.” If whon and where\;(z) is a function so thalim, .- YAz (z) =
increase the length of the ensemble and plot such randdm(AS we will see later), is the second largest eigenvalue
curves, then we observe a concentration and it is theref@e@ matrix related to the density evolution process.)
meaningful to define the average such curve as our EXIT-like NOW we are able to conjecture the following scaling law.
curve. Its exact description is easy to write down in terms of COnjecture 1:Consider a BMS{) and an EXIT-like curve
density evolution quantities. Of course, for any finite teng Which isregular. Then

the individual instances exhibit some variation around thi P~

expected curve. B~ Q) (

«



OB | i ge OS2 O (which is denoted by, , ;). These are pairs of edges which

e face in the “opposite” direction. In the same way we also have
Therefore, in order to compute, we need to compute pairs of edges which face in the “same” direction. A detailed
620};(5”) ler limg v 7 (e *A )r , as well as¢. The most difficult calculation shows that the dominant contribution stemsnfro
quantity is the last one. We will therefore focus our attenti pairs facing in the opposite direction. We will thereforelyon
on its derivation. explain the computation for this case.
As mentioned above. The dominant term contributing to the
IV. COMPUTATION OF & variance is due to edge pairs which are facing in the opposite
As we have seen in the previous section, in order to computection. This means that as a function of the parameter
the scaling parameter we have to compute the message> =", V behaves like
variance on the graph. For the sequel it is notationallyhslyg
easier to take: = z,, (instead ofzr = 1—z,,,). As we pointed 1-1) <27 P{uo_o m*‘LzA =m}— x2)> :
out before, the final result is the same. More precisely, let

wherea =

IE[(X‘Z _ E[X‘*)])Q] Consider a chain of even lengthSuch a chain has a variable
v =l
nA’(1)
Yo Yi Vi Y1i-1 Y3 Vi vy
wheren indicates the length of the code afidhe number of =~ #o—o | #o—i | *ic1 | Picied) Mo | it
iterations we perform. We want to determine the constant — ¢ — &t — % 7 ot 0
Ho—o  Ho—i Hioa Bi1oi My Hroifa

where
Fig. 2. Chain of alternating variable and check nodes.
€= lim lim lim V(1 —ya(z))?.

r—x* {— 00 N—00

node at positiord/2 which is exactly in the middle of the chain.
Let us start by discussing how to computg. First note that Note that]P>{u0 0 =, “Lzh = m} can be written as

we can expresst/ as X{ = S0 (), Wherep; is z " "
the variable-to-check message sent at |tera£|along edge. ZP{M@HO =Tl sy s | Fjociye = r}
We have TS
l 1\2 ]P) l P l/A2 = l/hz — 3
V:; :E[(thxll?l[))(h]) ] —_ Z (P{M{ — m7,uf — m} _ .132) ) {/J/l*)lJrl m7lul/2<—l/2 r | 'ul/2—>l/2 8} ( )
i where we have used the fact thaﬁﬁ;l /2 and “Z‘iz /2 are

Order all edges according to their distance from edigelere independent. As we will see now, each of the two terms which
we say that two variable nodes have distandethere is a appear in the sum can be computed recursively. We can write

path connecting them which contains exaétlyl intermediate P{“o 0= ’“Hl s Ml;: =r} as

variable nodes. The correlation is an exponentially desinga o ,

function in the distance. On the other hand, the number aspai »  P{u! , =s|p"1 . =j v " =u}

of edge (emanating from a variable node) that have distange:,uv

! and that face in the opposite direction increases like ]P’{MI 11+1 =k|p™t =1, 1/ -t _ v}}p{yl Loyt = v}
wherey = (1 — 1)(r — 1). If the exponential decrease in__ ,~ S i ’

the correlation is faster tham~! then the total contribution Plug_g =mt "y ;=] |”z o =k )

to the correlation is dominated by pairs that are close.édde;ng in a similar manner we can expred ;L _
00

this is what happens above the threshold. As we approach me i — | u — k). Let us define define two
threshold from above, however, the correlation extendhéur cté?sfgf lenath(2 ZHl
and further and exactly at the threshold the two exponeets aF gth(2m + 1)%,
equal. . . . . . —J k = ]P{u0<—0 m Mz—»l - ‘7 | MZH’L k}’
More precisely, consider the chain of lendtldepicted in i _ Py -y — k)
Figure 2 consisting of an alternating sequence of variabte a Gk = “0~0 m ”le J ”ZHH '

check nodes. We label, from left to rlght the variable nodegote that by symmetry we also have

from 0 to [ and the check nodes frointo /. For the messages , ; i

in the chain, we use the notatiqri ., where the subscript " = ]P){/j'lﬂlil =m “z it | /‘z HF{H}’
corresponds to the edge and the direction of the message and A“k = ]P’{/il =m, | ul= s

the superscript corresponds to its time instance. Further, 5 ! it Hl ‘

denote by/! () the message stemming from the 2 (r—2) Further, define the matrices

remaining incoming messages at the variable (check) nod@l(; oo = Z Pl =s| /h Hz — Vg,—l —u)
i (i) at time ¢. Let us say that edgé corresponds to what

in the figure is denoted a8 — 0. We are interested in the
correlation of the message on this edge (which is denoted ,
by py._o with the message which is sent on edge- 1+1 P{vi~! = u, i7" = v}

K3 K3

L= — k| pl =t = 0}

i—1e—1i



Cllppmey = D Py =ilp, =svi=u} So far we have only considered the case of eleBut a
w,v similar derivation for odd shows that
P{u ' =r|pl =k =0}

11

P{v! = u, v " = v}

i

P{”ého =m, ’u;HlJ;l = m}
_ Ql,O(MT)(l*l)/QcTFf)Cl\/I(lfl)/Q(Ql,O)T.

This gives¢hi = Clighi=t = Chichi-1¢hi=1 The initial
condition isdj’_‘; =y if £k = m and0, otherwise. We can

now rewrite (3) as |

It is convenient to treat both cases together. Define theixnatr
K = FD + ~vCTFDC. We note thai is always a symmetric
matrix. Then the correlation for lengt?l and 2/ + 1 together
U ! — — L2 pll/2 are given b
]P{/J'()(_o =m, /j‘l*,ngl - m} - Z Qs,r/ Qr,s/ 9 y
. Q=17 (PO RMY()T —2*(1+7)),  (5)
2/1 2/1 . )
_ Hél,icl,i—l(cl,O)T FQOLL/2 Hél,icl,z’—l(cl,O)T where the factonl + + appears since we are looking at two
- - lengths simultaneously and the second one has an extra facto
.
where F is a (2m + 1)? x (2m + 1)? permutation matrix — Let \; > --- > M\y,,41 be the eigenvalues ofl and
which switches the order of the two indices. More preciselyy, ..., e,+1 the (generalized) eigenvectors. Sindé de-
Faj),kpy =1ifi=1andj =k and0 otherwise. scribes the evolution of a (conditional) probability we bav
The above formula still looks quite complicated. FortuA; = 1. We will see shortly that the contribution which stems
nately, it can be substantially simplified as follows. Let ugom this eigenvalue will cancel with the term proportional
look at the quantities that appear in the entries of the matri.

i=1 i=1

Chi. P{u!_ =5 | “::14 =7, y{?‘l = u} is either1 or 0 The term that is of interest to us is associated to the second
if the messages, j andu satisfy the check node rule or not.eigenvalue),. Generically this second eigenvalue must be
The same is true foP{Mi:’;f_l% =k | /‘i:z =, yg_i — v}. degenerated, i.e., it must have geometric multiplicitygéar
There remain@{ug* _ U%H — o). If [ = 2, P{ng _ than one. The most common case is thathas multiplicity

2 but only one associated eigenvector. In this caseis

l—1i i—1 . .
u,v."" =v} =P{r."" = u} if u=wvand O otherwise. What ’ . ; . ;
happen ifl # 2i? Contrary to the BEC, for a general discretéhe associated _(a|genvgctor anglis th_e assoclate gTeneraTllzed
igenvector which fulfills the equatiofV! — Xol)es = e;5.

MP algorithm, the messages are not stable at the fixed poﬁl'. be specific, assume for the following that indets is

More precisely, the expected number of messages that take . o
on a particular value converges but the individual messagi‘(\asdegeggagf?nS:g;?g@u:ngf multiplicity two and thatto
continue to flip. This isnot a consequence of loops in the 2™ 't . o

P d P Let us expand out the initial condition in terms of the

system but this phenomena also appears on the infinite tree: .
Consider a infinite support tree. We want to determine thujoiagenvectors of the matrixl. Then we have

probability that a message on a given edge is equaldba 2m+1 2m+1

first time instance and equal tpat a second time instance. M'(¢"*)" =M Y ciel = Y ciXie] +leshs e].
Happily it turns out that this joint probability does not dxyl i=1 i=1

on the two time instances (as long as they are distinct). So we can write (5) as

let us definep(i, j) andq(i, j) to be this joint probability for T
variable-to-check and check-to-variable messages ragplgc 2m41

at the critical point. Assume we knewi, j). Then it is simple Q=0 | | D eNjef +lesi el | K

to computeq(i, ) using the standard message-passing rules. j=1

The equivalent statement is true if we knew, j) and wanted 2m—+1

to computep(i, j). It follows thatp andq can be determined as ( Z ciXel 4+ ZCB)\IQ—162T> 221 7)) . (6)
the solution to a fixed point recursion. Assume therefore¢ tha i—1

we have determineg(i, j) andq(i,j). By knowing p(i, 5), |, principle this gives2m + 1)2 terms but most of them are

_ t1 __ to __ .
we can computey(u,v) = P{l?: Wy T v}. Similarly  oiiper zero or are of smaller order than the dominant term.
we can computef (u,v) = P{v;* = u,v;* = v} if we know E.g., it must be true that

q(i, 7). Note thatf andg depend neither on the time instances

t, andt, nor on the positiori. So we can simplify to AeiKel = 22(1+7),
ol _ D ifl=2 A D ifi=2—1 since otherwise the variance would be infinite. Indeed, this
~ 1 C otherwise 1 ¢ otherwise condition is true for the examples we present in the next
. section. Also recall that by our assumption the EXIT-like
DefineM = CC. Then we have function was regular. Some thought shows that this implies

that V must grow inversely like(1 — yAz(x))2. This in turn

l _ l _ L0 T /2 1/2¢,.1,0\NT
Plig o = My _p1 = m} = ¢ (M) FDMY(c™)" implies that for a giveri the dominant contribution of all pairs



at this distance must behave like'\;(x)!. It follows that ensembles. For the lengths considered, the separatiobetw
e1Kel' = 0 for all i > 1 since otherwise we would have awhich errors are due to the error floor and which are part of
term with a growth rate larger than what we need. In a simildarge scale errors is not evident. Therefore, in order tdytru
manner we must have,Kel = 0 since such a term would gage the quality of the approximation we first have to find the
give a contribution of the form?y’\,(z)!, again implying a contribution of the error floor and to compare the total curve
too large growth rate. All these conditions can be checked fo

a given case and they are fulfilled for the examples we preseptgal ppowE
below. 1011 10-1

The dominant term is of the formyKel. It gives a |, 102
contribution of the correct formy/!\5(x)! and there are exactly 10_3' 10—t
two of them. If we insert this into (6) then we get 1074' Lo

Vv li (1 — 1)C§ K T (1 + O( *)) . . I {

= l1m ———F-e€ €y V07— r—x .
AT, NS T ) 0.16 0.18 0.20 0.22 €  0.03 0.04 0.05 0.06 0.07 €

Fig. 3. Left: Block error probability of a (3,3)-code decadeith Gallager
In the last step we have made use of the fact that tends A algorithm: %@ ~ 0.2230. Comparison of the block error probability

to 1 as we approach the threshold. Therefore the sought aftefermined via simulations with the prediction given by thealing law
constant equal§ = (1 —1)cZesKel /(2);). Due to numerical with o ~ 0.7847. The lengths arex = 1024, 2048, 4096, 8192, 16384

: P : d 32768. Right: Block error probability of a (3,6)-code decoded twit
Issues, It is in general not easy to compute the (generallzﬁﬂl decoder with erasures* = 0.07076. Comparison of the block error

eigenvectors ofim,_.,~ M. We can avoid this by computing probability determined via simulations with the predictigiven by the scaling

¢ in the following way: law with o = 1.04+2. The lengths are, = 1024, 2048, 4096, 8192, 16384

and 32768.
(1 = DMK T 5 (M — M ()"
- 20 [T s (A2 = M) ' B. Decoder With Erasures

We can also use the following technique in order to approxi- VW& consider transmission over a BSC and decoding using

mate¢. First, note that for increasingwe have the Decoderwﬂh Erasures [7]. For thie:_ 6)-regy|§r ensemble
and the weight sequenee(l) = 2, w(i) = 1 if ¢ > 1, one

(M —Do)M'e” & (1 — Xo)ere] + eshhe]. can check that the EXIT-like curve has the required form to

apply our computation. The threshold s ~ 0.07076. Our
computation giveg ~ 0.01313 and « ~ 1.04 + 2. Figure 3
compares the prediction on the block error probability with
some simulation points. The match is again quite good.

Since the multiplication withM kills the contribution of the
all termsy;el’, i > 4. Therefore,

-1 0 1( 1LO\T
€~ ¢ KM =D (M XDM'(c)".  (7)
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