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Abstract— We want to extend the approximation of the error
probability via a scaling approach from the BEC to general
binary-input memoryless output-symmetric (BMS) channels. In
particular, we consider such scaling laws for regular LDPC
ensembles and message-passing (MP) decoders with a finite
number of messages.

We first show how to re-derive the scaling law for transmission
over the BEC using an “EXIT-like” curve instead of the density
evolution curve of the peeling decoder. The advantage of thenew
derivation is that the new expression of the scaling parameter
α only contains quantities that can be meaningfully interpreted
also for general message-passing algorithms. In particular, this
expression only depends on the curvature of the EXIT-like curve
as well as the variance of the messages, both taken at the critical
channel parameter.

We discuss how to compute these quantities for general MP
algorithms and we evaluate the expressions for the specific cases
of the Gallager algorithm A as well as the Decoder with Erasures
and compare the resulting predictions on the error probability
with simulation results.

I. I NTRODUCTION

Sparse graph codes under iterative decoding are of interest
because of their ability to closely approach the channel capac-
ity. The asymptoticbehavior of such codes is relatively well
understood. For practical applications, however, one would
like to find the best code of afixed length. Unfortunately, codes
optimized for the asymptotic case are in general not optimal
for the finite-length case. Indeed, the speed of convergenceto
the asymptotic limit can significantly vary from one ensemble
to another.

We are thus interested in finding a good finite-length ap-
proximation which can be used as an efficient finite-length
optimization tool in order to find the code best suited for
any given application. To that end our approach needs to
be as flexible as possible, applicable to the large variety of
ensembles, channels, and message-passing decoders that are
of interest for real applications.

Scaling lawsseem to be a good tool in order to solve this
problem. They have been widely used in statistical physics (a
good source on this topic is the book by Fisher [4]). The basic
idea of scaling laws applied to coding theory (as introducedby
Montanari [6]) is that all finite-length error probability curves
are up to higher order error terms scaled versions of a single

mother curvef(z). The exact scaling law for transmission
over the BEC was characterized by Amraoui et. al. in [1].
Further, in [2] one can find explicit analytic expressions of
the scaling parameters. We are interested in extending the
known results for the BEC to general channels. We are faced
with several hurdles. Both the proof of the scaling law as
well as the derivation of the scaling parameters in the case of
the BEC are strongly linked to the so calledpeelingdecoder,
originally introduced by Luby et. al. [5]. But unfortunately no
generalization of the peeling decoder to general channels is
known. As a first step we therefore show an alternative way of
computing the scaling parameters for the BEC: this alternative
derivation uses EXIT-like functions (see Section II), a concept
that readily extends to the general case. The new formula
can be meaningfully interpretation not only for he BEC but
for any BMS channel and any message-passing decoder. This
leads to a conjecture for the scaling parameter for the general
case. We then show how to perform the computation of the
scaling parameter for the general case and conclude with some
applications.

II. EXIT-L IKE CURVES

Consider a generic message-passing (MP) decoder with
a finite message alphabet. Without loss of generality we
assume that the messages take values in{−m, · · · , m}, where
m ∈ N. We assume that the MP decoder fulfills the standard
symmetry conditions both at the variable nodes as well as the
check nodes. We do allow the MP decoding rules to be time
dependent for a finite number of steps before they settle on
a fixed rule. Finally, we assume that transmission takes place
over a family of BMS channels and that the initial quantization
of the received values at the decoder is done in a symmetric
fashion as well so that we can make the all-one codeword
assumption.

Let the channel be parameterized byh, the entropy of the
channel. For everyh ∈ [0, 1], initialize the density evolution
process with (a suitably quantized version of) the density
aBMS(h). Let x denote the fixed-point density of the messages
at the output of the variable nodes. Note thatx encodes a
probability mass function. To derive from this family of fixed
point pairs an EXIT-like curve we can e.g. plot(h, 1 − xm).
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In words, we measure the fraction of messages which are not
“m”-messages at the fixed point as a function of the channel
parameter. Since below the threshold1− xm is for most MP
decoders equal to zero, whereas above the threshold it will
have a non-zero value this will give us a curve which is
somewhat reminiscent of a standard EXIT curve (of the overall
code). This also explains why we call it an “EXIT-like” curve.
Our language below will reflect this particular choice but many
other choices are possible and sometimes more convenient. Let
x denote our choice. Consider the EXIT-like curve depicted
in Figure 1. It is given by

x(h) =

{

(h, 0), h ∈ [0, h⋆)
(h(x), x), h ∈ (h⋆, 1]↔ x ∈ (x⋆, 1]

(1)

where(h⋆, x⋆) is the fixed-point pair at the threshold. In order
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Fig. 1. EXIT-like curve for the (3,6)-code over the BEC:h⋆ ≈ 0.42944.

for an EXIT-like curve to be suitable for our derivation it must
have the following property: at the threshold, the curve must
have an infinite slope and the second derivative must be strictly
non-zero. Although this is not easy to glean from the picture,
this is true for the specific curve shown. We will say that an
EXIT-like curve is regular if it has the above property.

III. N EW DERIVATION OF SCALING LAW

Consider transmission over the BEC. Imagine the following
experiment. We start with a randomly chosen graph from the
ensemble and all bits erased. Choose a random bit and reveal
it to the decoder. Next run the iterative decoding process until
it is stuck and the decoder hits a fixed point. This gives rise
to one fixed point pair(H, X), whereH equals the number
of not yet revealed variables and whereX is equal to the
number of still erased messages. We continue now in this
fashion, each time choosing at random a new bit which we
then reveal and running the decoder until it is stuck. This
gives us a sequence of fixed point pairs(Ht, Xt). If we
normalize these random variables (Ht to n, the length of
the ensemble, andXt to nΛ′(1), the number of edges) and
connect the normalized points then we get a “curve.” If we
increase the length of the ensemble and plot such random
curves, then we observe a concentration and it is therefore
meaningful to define the average such curve as our EXIT-like
curve. Its exact description is easy to write down in terms of
density evolution quantities. Of course, for any finite length
the individual instances exhibit some variation around this
expected curve.

Let X̂h = Xh/(nΛ′(1)) denote the random variable which
we get if we look atXt at the time whenHt = hn. In a similar
way, letĤx = Hx/n denote the random variable which we get
if we look atHt at thefirst time whenXt = xnΛ′(1). Imagine
that we are sitting just above the threshold ath = h

⋆ + ∆h.
This corresponds to the parameterx = x⋆ +

√
∆hc, due to

the assumption that the EXIT-like curve is regular. Note that
E[Ĥx] = h

⋆ + ∆h. Let σ2
h

= E[(Ĥx −E[Ĥx])2] and note that
σh is a continuous function of the channel parameter so that we
can considerσh⋆ = limh→h⋆ σh. Consider again the decoding
process as described above, which gives rise to the sequence
of random variable(Ht, Xt). Assume that we measure theX-
component of this process for a particular instance. We claim
that if X̂t < x⋆ then with high probability the decoder for
this instance will finish without revealing any further bits. On
the other hand, ifX̂t > x⋆ then with high probability further
revelations of bits will be necessary. This is due to the shape
of the EXIT-like curve: around the pointx⋆ the curve has
an infinite slope, indicating that the decoder is at the brink
of successful decoding with the given information. Hence, if
Ĥx⋆ < h then the given instance would not have decoded
successfully with high probability if we had transmitted over
a channel with parameterh, and conversely it would have been
successful with high probability if̂Hx⋆ > h. Our probability
of error estimate is therefore

PB(h) = P{Ĥx⋆ < h} = Q

(

∆h

σh⋆

)

.

In the last step we have assumed that the distribution ofĤx⋆

is Gaussian with meanh⋆ and standard deviationσh⋆ . This
was shown to hold in the original derivation in [1].

In general it is not an easy task to computeσh⋆ directly.
But we can relate it to the variance of the messages which
is amenable to an analysis. DefineV = E[(Xh−E[Xh])

2]
nΛ′(1) . Then

some calculations show that

σ2
h⋆ =

1

nΛ′(1)

(

∂2
h(x)

∂x2
|⋆
)2

lim
x→x⋆

(x− x⋆)2V

=
1

nΛ′(1)

(

∂2
h(x)

∂x2
|⋆
)2

lim
x→x⋆

(

(x − x⋆)

1− γλ2(x)

)2

ξ.

The last step warrants some remarks. Whenx→ x⋆, i.e., when
the channel parameter approaches the critical parameter, then
the varianceV diverges. Indeed we will show in Section IV
thatV has the form

ξ

(1− γλ2(x))
2 + O

(

1

1− γλ2(x)

)

,

whereγ := (l−1)(r−1) only depends on the degree distribu-
tion and whereλ2(x) is a function so thatlimx→x⋆ γλ2(x) =
1. (As we will see later,λ2 is the second largest eigenvalue
of a matrix related to the density evolution process.)

Now we are able to conjecture the following scaling law.
Conjecture 1:Consider a BMS(h) and an EXIT-like curve

which is regular. Then

PB ≃ Q

(√
n(h− h

⋆)

α

)

, (2)



whereα = ∂2
h(x)

∂x2 |⋆ limx→x⋆
(x−x⋆)

1−γλ2(x)

√

ξ
Λ′(1) .

Therefore, in order to computeα, we need to compute
∂2h(x)

∂x2 |⋆, limx→x⋆
(x−x⋆)

1−γλ2(x) , as well asξ. The most difficult
quantity is the last one. We will therefore focus our attention
on its derivation.

IV. COMPUTATION OFα

As we have seen in the previous section, in order to compute
the scaling parameter we have to compute the message-
variance on the graph. For the sequel it is notationally slightly
easier to takex = xm (instead ofx = 1−xm). As we pointed
out before, the final result is the same. More precisely, let

Vℓ
n =

E[(Xℓ
h
− E[Xℓ

h
)])2]

nΛ′(1)
,

wheren indicates the length of the code andℓ the number of
iterations we perform. We want to determine the constantξ
where

ξ = lim
x→x∗

lim
ℓ→∞

lim
n→∞

Vℓ
n(1− γλ2(x))2.

Let us start by discussing how to computeVℓ
n. First note that

we can expressXℓ
h

as Xℓ
h

=
∑nΛ′(1)

i=1 1{µℓ
i=m}, whereµℓ

i is
the variable-to-check message sent at iterationℓ along edgei.
We have

Vℓ
n =

E[(Xℓ
h
− E[Xℓ

h
])2]

nΛ′(1)
=
∑

i

(

P{µℓ
1 = m, µℓ

i = m} − x2
)

.

Order all edges according to their distance from edge1. Here
we say that two variable nodes have distancel if there is a
path connecting them which contains exactlyl−1 intermediate
variable nodes. The correlation is an exponentially decreasing
function in the distance. On the other hand, the number of pairs
of edge (emanating from a variable node) that have distance
l and that face in the opposite direction increases likeγl,
where γ = (l − 1)(r − 1). If the exponential decrease in
the correlation is faster thanγ−l then the total contribution
to the correlation is dominated by pairs that are close. Indeed
this is what happens above the threshold. As we approach the
threshold from above, however, the correlation extends further
and further and exactly at the threshold the two exponents are
equal.

More precisely, consider the chain of lengthl depicted in
Figure 2 consisting of an alternating sequence of variable and
check nodes. We label, from left to right, the variable nodes
from 0 to l and the check nodes from̂1 to l̂. For the messages
in the chain, we use the notationµt

i→î
, where the subscript

corresponds to the edge and the direction of the message and
the superscript corresponds to its time instance. Further,we
denote byνt

i (νt
i ) the message stemming from thel−2 (r−2)

remaining incoming messages at the variable (check) node
i (̂i) at time t. Let us say that edge1 corresponds to what
in the figure is denoted aŝ0 ← 0. We are interested in the
correlation of the message on this edge (which is denoted
by µ0̂←0 with the message which is sent on edgel → ˆl + 1

(which is denoted byµl→ ˆl+1). These are pairs of edges which
face in the “opposite” direction. In the same way we also have
pairs of edges which face in the “same” direction. A detailed
calculation shows that the dominant contribution stems from
pairs facing in the opposite direction. We will therefore only
explain the computation for this case.

As mentioned above. The dominant term contributing to the
variance is due to edge pairs which are facing in the opposite
direction. This means that as a function of the parameterx,
x > x∗, V behaves like

(l− 1)

(

∞
∑

l=0

γl(P{µl
0̂←0

= m, µl
l→ ˆl+1

= m} − x2)

)

.

Consider a chain of even lengthl. Such a chain has a variable

µ
0̂→0

µ
0→1̂

µ
1̂→1

µ
i−1→î

µ
î→i

µ
l→ ˆl+1

µ
0̂←0

µ
0←1̂

µ
1̂←1

µ
i−1←î

µ
î←i

µ
l← ˆl+1

ν0
ν
1̂

ν1 ν1−1 ν
î

νi νl

0 1̂ 1 i− 1 î i l. . . . . .

Fig. 2. Chain of alternating variable and check nodes.

node at positionl/2 which is exactly in the middle of the chain.
Note thatP{µl

0̂←0
= m, µl

l→ ˆl+1
= m} can be written as

∑

r,s

P{µl
0̂←0

= m, µ
l/2
ˆl/2→l/2

= s | µl/2
ˆl/2←l/2

= r}

P{µl
l→ ˆl+1

= m, µ
l/2
ˆl/2←l/2

= r | µl/2
ˆl/2→l/2

= s} (3)

where we have used the fact thatµ
l/2
ˆl/2→l/2

and µ
l/2
ˆl/1←l/2

are
independent. As we will see now, each of the two terms which
appear in the sum can be computed recursively. We can write
P{µl

0̂←0
= m, µi

î→i
= s | µl−i

î←i
= r} as

∑

j,k,u,v

P{µi
î→i

= s | µi−1

i−1→î
= j, νi−1

î
= u}

P{µl−i+1

i−1←î
= k | µl−i

î←i
= r, νl−i

î
= v}P{νi−1

î
= u, νl−i

î
= v}

P{µl
0̂←0

= m, µi−1

i−1→î
= j | µl−i+1

i−1←î
= k}, (4)

and in a similar manner we can expressP{µl
0̂←0

=

m, µi
i→ ˆi+1

= j | µl−i

i← ˆi+1
= k}. Let us define define two

vectors of length(2m + 1)2,

cl,i
j,k = P{µl

0̂←0
= m, µi

î→i
= j | µl−i

î←i
= k},

ĉl,i
j,k = P{µl

0̂←0
= m, µi

i→ ˆi+1
= j | µl−i

i← ˆi+1
= k}.

Note that by symmetry we also have

cl,i
j,k = P{µl

l→ ˆl+1
= m, µi

l−i← ˆl−i+1
| µl−i

l−i→ ˆl−i+1
},

ĉl,i
j,k = P{µl

l→ ˆl+1
= m, µi

ˆl−i←l−i
| µl−i

ˆl−i→l−i
}.

Further, define the matrices

Ĉl,i
(r,s),(j,k) =

∑

u,v

P{µi
î→i

= s | µi−1

i−1→î
= j, νi−1

î
= u}

P{µl−i+1

i−1←î
= k | µl−i

î←i
= r, νl−i

î
= v}

P{νi−1

î
= u, νl−i

î
= v}



Cl,i
(j,k),(r,s) =

∑

u,v

P{µi
i→ ˆi+1

= j | µi
î→i

= s, νi
i = u}

P{µl−i

î←i
= r | µl−i

i←î
= k, νl−i

i = v}
P{νi

i = u, νl−i
i = v}

This gives cl,i = Ĉl,iĉl,i−1 = Ĉl,iCl,i−1cl,i−1. The initial
condition is cl,0

j,k = y
j

if k = m and 0, otherwise. We can
now rewrite (3) as

P{µl
0̂←0

= m, µl
l→ ˆl+1

= m} =
∑

r,s

cl,l/2
s,r ĉl,l/2

r,s

=





2/l
∏

i=1

Ĉl,iCl,i−1(cl,0)T





T

FCl,l/2





2/l
∏

i=1

Ĉl,iCl,i−1(cl,0)T





where F is a (2m + 1)2 × (2m + 1)2 permutation matrix
which switches the order of the two indices. More precisely,
F(i,j),(k,l) = 1 if i = l andj = k and0 otherwise.

The above formula still looks quite complicated. Fortu-
nately, it can be substantially simplified as follows. Let us
look at the quantities that appear in the entries of the matrix
Ĉl,i. P{µi

î→i
= s | µi−1

i−1→î
= j, νi−1

î
= u} is either1 or 0

if the messagess, j andu satisfy the check node rule or not.
The same is true forP{µl−i+1

i−1←î
= k | µl−i

î←i
= r, νl−i

î
= v}.

There remainsP{νi−1

î
= u, νl−i

î
= v}. If l = 2i, P{νi−1

î
=

u, νl−i

î
= v} = P{νi−1

î
= u} if u = v and 0 otherwise. What

happen ifl 6= 2i? Contrary to the BEC, for a general discrete
MP algorithm, the messages are not stable at the fixed point.
More precisely, the expected number of messages that take
on a particular value converges but the individual messages
continue to flip. This isnot a consequence of loops in the
system but this phenomena also appears on the infinite tree.
Consider a infinite support tree. We want to determine the joint
probability that a message on a given edge is equal toi at a
first time instance and equal toj at a second time instance.
Happily it turns out that this joint probability does not depend
on the two time instances (as long as they are distinct). So
let us definep(i, j) andq(i, j) to be this joint probability for
variable-to-check and check-to-variable messages respectively
at the critical point. Assume we knewp(i, j). Then it is simple
to computeq(i, j) using the standard message-passing rules.
The equivalent statement is true if we knewq(i, j) and wanted
to computep(i, j). It follows thatp andq can be determined as
the solution to a fixed point recursion. Assume therefore that
we have determinedp(i, j) and q(i, j). By knowing p(i, j),
we can computeg(u, v) = P{νt1

î
= u, νt2

î
= v}. Similarly

we can computef(u, v) = P{νt1
i = u, νt2

i = v} if we know
q(i, j). Note thatf andg depend neither on the time instances
t1 and t2 nor on the positioni. So we can simplify to

Cl,i =

{

D if l = 2i
C otherwise

Ĉl,i =

{

D̂ if l = 2i− 1

Ĉ otherwise

DefineM = ĈC. Then we have

P{µl
0̂←0

= m, µl
l→ ˆl+1

= m} = cl,0(MT )l/2FDMl/2(cl,0)T .

So far we have only considered the case of evenl. But a
similar derivation for oddl shows that

P{µl
0̂←0

= m, µl
l→ ˆl+1

= m}
= cl,0(MT )(l−1)/2CT FD̂CM(l−1)/2(cl,0)T .

It is convenient to treat both cases together. Define the matrix
K = FD + γCT FD̂C. We note thatK is always a symmetric
matrix. Then the correlation for length2l and2l + 1 together
are given by

(l− 1)γ2l
(

cl,0(MT )lKMl(cl,0)T − x2(1 + γ)
)

, (5)

where the factor1 + γ appears since we are looking at two
lengths simultaneously and the second one has an extra factor
γ.

Let λ1 ≥ · · · ≥ λ2m+1 be the eigenvalues ofM and
e1, . . . , e2m+1 the (generalized) eigenvectors. SinceM de-
scribes the evolution of a (conditional) probability we have
λ1 = 1. We will see shortly that the contribution which stems
from this eigenvalue will cancel with the term proportionalto
x2.

The term that is of interest to us is associated to the second
eigenvalueλ2. Generically this second eigenvalue must be
degenerated, i.e., it must have geometric multiplicity larger
than one. The most common case is thatλ2 has multiplicity
2 but only one associated eigenvector. In this casee2 is
the associated eigenvector ande3 is the associate generalized
eigenvector which fulfills the equation(M − λ2I)eT

3 = eT
2 .

To be specific, assume for the following that indeedλ2 is
a degenerated eigenvalue of multiplicity two and thatλ4 to
λ2m+1 are of multiplicity one.

Let us expand out the initial condition in terms of the
eigenvectors of the matrixM. Then we have

Ml(cl,0)T = Ml
2m+1
∑

i=1

cie
T
i =

2m+1
∑

i=1

ciλ
l
ie

T
i + lc3λ

l−1
2 eT

2 .

So we can write (5) as

(l− 1)γ2l











2m+1
∑

j=1

cjλ
l
je

T
j + lc3λ

l−1
2 eT

2





T

K

(

2m+1
∑

i=1

ciλ
l
ie

T
i + lc3λ

l−1
2 eT

2

)

− x2(1 + γ)

)

. (6)

In principle this gives(2m + 1)2 terms but most of them are
either zero or are of smaller order than the dominant term.
E.g., it must be true that

c2
1e1KeT

1 = x2(1 + γ),

since otherwise the variance would be infinite. Indeed, this
condition is true for the examples we present in the next
section. Also recall that by our assumption the EXIT-like
function was regular. Some thought shows that this implies
that V must grow inversely like(1 − γλ2(x))2. This in turn
implies that for a givenl the dominant contribution of all pairs



at this distance must behave likelγlλ2(x)l. It follows that
e1KeT

i = 0 for all i > 1 since otherwise we would have a
term with a growth rate larger than what we need. In a similar
manner we must havee2KeT

2 = 0 since such a term would
give a contribution of the forml2γlλ2(x)l, again implying a
too large growth rate. All these conditions can be checked for
a given case and they are fulfilled for the examples we present
below.

The dominant term is of the forme2KeT
3 . It gives a

contribution of the correct formlγlλ2(x)l and there are exactly
two of them. If we insert this into (6) then we get

V = lim
x→x⋆

(l − 1)c2
3

2λ2
e2KeT

3

1

(1− γλ2)2
(1 + O(x − x⋆)).

In the last step we have made use of the fact thatγλ2 tends
to 1 as we approach the threshold. Therefore the sought after
constant equalsξ = (l−1)c2

3e2KeT
3 /(2λ2). Due to numerical

issues, it is in general not easy to compute the (generalized)
eigenvectors oflimx→x⋆ M. We can avoid this by computing
ξ in the following way:

ξ =
(l− 1)cl,0K

∏2m+1
i=1,i6=3(M− λiI)(c

l,0)T

2λ2

∏2m+1
i=1,i6=2,3(λ2 − λi)

.

We can also use the following technique in order to approxi-
mateξ. First, note that for increasingl we have

(M− Iλ2)M
lcT ≈ (1 − λ2)c1e

T
1 + c3λ

l
2e

T
2 .

Since the multiplication withM kills the contribution of the
all termsµie

T
i , i ≥ 4. Therefore,

ξ ≈ (l − 1)

2λl+1
2 (1− λ2)

cl,0K(M− I)(M λ2I)M
l(cl,0)T . (7)

This approximation is convenient, since it only requires
quantities which are easily computable at the threshold. In
particular, we do not need to compute the complete set of
(generalized) eigenvectors and we do not even need to compute
any eigenvalues exceptλ2.

V. A PPLICATIONS

A. Gallager Algorithm A

Consider transmission over a BSC and decoding using
Gallager’s algorithm A [7]. As discussed in [3] the threshold
of most regular ensembles for this case is determined by a
fixed point right at the beginning of the decoding process. A
derivation of the scaling parameter for this case is contained in
[3]. For the(3, 3)-regular ensemble the threshold is determined
by a “regular” fixed point. Further, one can check that in this
case the EXIT-like function has the required shape (with a
negative second derivative at the critical point). The threshold
is ǫ⋆ ≈ 0.223. If we specialize the generic computation ofα
to this case we getξ ≈ 0.0942 and α ≈ 0.7847. Figure 3
compares our prediction with simulations. The match is quite
good but we would like to add a word of caution: for this case
the codes exhibit a significant error floor. Since the scalinglaw
only applies to large scale failures we consider expurgated

ensembles. For the lengths considered, the separation between
which errors are due to the error floor and which are part of
large scale errors is not evident. Therefore, in order to truly
gage the quality of the approximation we first have to find the
contribution of the error floor and to compare the total curve.
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Fig. 3. Left: Block error probability of a (3,3)-code decoded with Gallager
A algorithm: ǫ

Gal ≈ 0.2230. Comparison of the block error probability
determined via simulations with the prediction given by thescaling law
with α ≈ 0.7847. The lengths aren = 1024, 2048, 4096, 8192, 16384

and 32768. Right: Block error probability of a (3,6)-code decoded with
the decoder with erasures:ǫ⋆ = 0.07076. Comparison of the block error
probability determined via simulations with the prediction given by the scaling
law with α = 1.04±2. The lengths aren = 1024, 2048, 4096, 8192, 16384

and32768.

B. Decoder With Erasures

We consider transmission over a BSC and decoding using
the Decoder with Erasures [7]. For the(3, 6)-regular ensemble
and the weight sequencew(1) = 2, w(i) = 1 if i > 1, one
can check that the EXIT-like curve has the required form to
apply our computation. The threshold isǫ⋆ ≈ 0.07076. Our
computation givesξ ≈ 0.01313 and α ≈ 1.04 ± 2. Figure 3
compares the prediction on the block error probability with
some simulation points. The match is again quite good.

ACKNOWLEDGMENT

J. E. has been supported in part by the NCCR-MICS Center
of the Swiss National Science Foundation under grant number
5005-67322.

REFERENCES

[1] A. A MRAOUI , A. MONTANARI , T. RICHARDSON, AND R. URBANKE,
Finite-length scaling for iteratively decoded LDPC ensembles, in Proc.
41th Annual Allerton Conference on Communication, Controland Com-
puting, Monticello, IL, 2003.

[2] A. A MRAOUI , A. MONTANARI , AND R. URBANKE, Finite-length opti-
mization of iteratively decoded LDPC ensembles. submitted to IEEE IT,
2005.

[3] J. EZRI, A. MONTANARI , AND R. URBANKE, Finite-length scaling for
Gallager a, in 44th Allerton Conf. on Communication, Control, and
Computing, Monticello, IL, Oct. 2006.

[4] M. E. FISHER, Proceedings of the Enrico Fermi school, Varenna, Italy,
1970, course n. 51, in Critical Phenomena, International School of Physics
Enrico Fermi, Course LI, edited by M. S. Green, (Academic, New York,
1971), 1971.

[5] M. L UBY, M. M ITZENMACHER, A. SHOKROLLAHI , D. A. SPIELMAN ,
AND V. STEMANN, Practical loss-resilient codes, in Proceedings of the
29th annual ACM Symposium on Theory of Computing, 1997, pp. 150–
159.

[6] A. M ONTANARI, Finite-size scaling of good codes, in Proc. 39th An-
nual Allerton Conference on Communication, Control and Computing,
Monticello, IL, 2001.

[7] T. RICHARDSON AND R. URBANKE, The capacity of low-density par-
ity check codes under message-passing decoding, IEEE Trans. Inform.
Theory, 47 (2001), pp. 599–618.


