
LENI Systems

Goals

Design methodology

THERMO-ECONOMIC MODELLING MULTI-OBJECTIVE OPTIMISATION
Flowsheet generation

SUPERSTRUCTURE DEFINITION

Equipment sizing and costing

Example: SNG production from wood

Energy-flow model: calculation of the operation of the process units
application of thermodynamic conservation principles
modelling the physical and chemical conversions

heat and power requirements
hot and cold streams

Energy-integration model: determination of the material and 
energy flows

formulation of the heat cascade
targeting the minimum energy requirements
integration of useful energy conversion equipment
maximisation of combined fuel, heat and power production

material and energy flows
overall thermodynamic process performance

Meeting the thermodynamic design target for the flowsheet
dimensionning of process equipment to meet the flowsheet results with design heuristics and pilot plant data
assessment of equipment cost considering the specific operating conditions

Determination of framework and feasible production pathways
Investigation of product specifications, raw materials and energy resources
Identification of suitable technology for the conversion to be assembled it in 
a process superstructure

Identification of the best feasible solutions preserving multiple 
aspects of the design problem

definition of energetic, economic and/or environmental 
performance indicators to be used as objectives
choice of decision variables among technology choice and 
operating conditions
generation of a set of optimal designs using and evolution-
ary, multi-objective optimisation algorithm

Generation of optimal flowsheets

Reforming technology

flue gas drying of wood
indirectly heated fluidised bed gasification
conventional cold gas cleaning
internally cooled fluidised bed methanation
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Decision variables

Results analysis

THERMOCHEMICAL PRINCIPLE

OPTIMISATION PROBLEM DEFINITION

temperature
wood outlet humidity
steam to biomass ratio
temperature
steam preheat temperature
pressure
reactor inlet temperature
reactor outlet temperature
additional hydrogen
steam production pressure
superheat temperature
additional bleeding level

drying

gasification

methane synthesis

Rankine cycle
(optional)
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[0: 3]
[40; 100]
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[50; 250]

Principal parameters

plant capacity
wood humidity
wood costs
electricity costs (export)
electricity costs (import)
Wobbe Index
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RESULTS SUMMARY
energy efficiency
exergy efficiency
production costs
avoided CO

2
 due to NG substitution
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2
 with sequestration at plant
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Design of optimal processes for the thermochemical conversion of biomass to (liquid or 
gaseous) fuels, heat and power with respect to its energy efficiency, cost and environ-
mental impact. Identification of most promising technologies and optimal operating 
conditions.
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Methodology for the conceptual design of optimal process flowsheets

Optimal process design
for thermochemical biofuel 

production plants

Analysis of the numerically 
generated configurations with 
regard to multiple criteria
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Decision variables

Investment cost [Mio. €]
Operating cost [€/MWh]
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Tdrying          = 190°C

wood          = 21.7%wt
Tgasifier          = 800°C
pmethanation    = 20.0 bar
no Rankine cycle
Energy eff. = 70%
Exergy eff. = 58%
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Tdrying          = 230°C

wood          = 13.4%wt
Tgasifier          = 800°C
pmethanation    = 22.3 bar
psteam prod.      = 92.4 bar
Energy eff. = 82%
Exergy eff. = 66%

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

-3500 -3000 -2500 -2000 -1500 -1000 -500 0  500  1000

T(
K)

Q(kW)

Process

Tdrying          = 232°C

wood          = 28.6%wt
Tgasifier          = 800°C
pmethanation    = 21.4 bar
no Rankine cycle
Energy eff. = 81%
Exergy eff. = 66%

Pareto trade-off between operating and investment costs with some detailed solutions.
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Example of a process superstructure  without energy recovery equipment and 
utility technologies

WOOD TO METHANE -
THE LOG IN YOUR ENGINE!
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