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Abstract

The research work reported in the present dissertation is aimed at the analysis of complex physical phe-
nomena involving instabilities and nonlinearities occurring in fluids through state-of-the-art numerical mod-
eling. Solutions of intricate fluid physics problems are devised in two particularly arduous situations: fluid
domains with moving boundaries and the high-Reynolds-number regime dominated by nonlinear convective
effects. Shear-driven flows of incompressible Newtonian fluids enclosed in cavities of varying geometries are
thoroughly investigated in the two following frameworks: transition with a free surface and confined turbulence.

The physical system we consider is made of an incompressible Newtonian fluid filling a bounded, or partially
bounded cavity. A series of shear-driven flows are easily generated by setting in motion some part of the container
boundary. These driven-cavity flows are not only technologically important, they are of great scientific interest
because they display almost all physical fluid phenomena that can possibly occur in incompressible flows, and this
in the simplest geometrical settings. Thus corner eddies, secondary flows, longitudinal vortices, complex three-
dimensional patterns, chaotic particle motions, nonuniqueness, transition, and turbulence all occur naturally
and can be studied in the same geometry. This facilitates the comparison of results from experiments, analysis,
and computation over the whole range of Reynolds numbers. The flows under consideration are part of a larger
class of confined flows driven by linear or angular momentum gradients.

This dissertation reports a detailed study of a novel numerical method developed for the simulation of an
unsteady free-surface flow in three-space-dimensions. This method relies on a moving-grid technique to solve
the Navier–Stokes equations expressed in the arbitrary Lagrangian–Eulerian (ALE) kinematics and discretized
by the spectral element method. A comprehensive analysis of the continuous and discretized formulations of
the general problem in the ALE frame, with nonlinear, non-homogeneous and unsteady boundary conditions is
presented.

In this dissertation, we first consider in the internal turbulent flow of a fluid enclosed in a bounded cubical
cavity driven by the constant translation of its lid. The solution of this flow relied on large-eddy simulations,
which served to improve our physical understanding of this complex flow dynamics. Subsequently, a novel subgrid
model based on approximate deconvolution methods coupled with a dynamic mixed scale model was devised.
The large-eddy simulation of the lid-driven cubical cavity flow based on this novel subgrid model has shown
improvements over traditional subgrid-viscosity type of models. Finally a new interpretation of approximate
deconvolution models when used with implicit filtering as a way to approximate the projective grid filter was
given. This led to the introduction of the grid filter models.

Through the use of a newly-developed method of numerical simulation, in this dissertation we solve unsteady
flows with a flat and moving free-surface in the transitional regime. These flows are the incompressible flow of a
viscous fluid enclosed in a cylindrical container with an open top surface and driven by the steady rotation of the
bottom wall. New flow states are investigated based on the fully three-dimensional solution of the Navier–Stokes
equations for these free-surface cylindrical swirling flows, without resorting to any symmetry properties unlike all
other results available in the literature. To our knowledge, this study delivers the most general available results
for this free-surface problem due to its original mathematical treatment. This second part of the dissertation is
a basic research task directed at increasing our understanding of the influence of the presence of a free surface
on the intricate transitional flow dynamics of shear-driven flows.

Keywords: free-surface flows; confined turbulence; transitional flows; large-eddy simulations; approximate de-
convolution models; driven-cavity flows; vortex breakdown bubbles; Legendre spectral element method; arbitrary
Lagrangian–Eulerian kinematics; moving-grid technique.





Résumé

Le but du travail de recherche présenté dans cette thèse est l’analyse de phénomènes physiques complexes,
conséquences de la présence et du développement d’instabilités et de non-linéarités au sein d’un fluide. On utilise
des modélisations numériques basées sur des méthodes d’ordre élevé. Deux types de problèmes complexes issus
de la physique des fluides sont considérés : écoulements de fluides avec des frontières libres et les problèmes à
haut nombre de Reynolds, dominés par les effets non-linéaires convectifs. Des écoulements de cisaillement de
fluides newtoniens incompressibles au sein de cavités de géométries variables sont minutieusement étudiés dans
les deux cadres suivants : la transition vers la turbulence en présence d’une surface libre et la turbulence en
milieu confiné.

Le système physique étudié est constitué d’un fluide newtonien incompressible emplissant une cavité fermée
ou bien partiellement ouverte. Toute une famille d’écoulements de cisaillement peut être facilement engendrée
par la mise en mouvement d’une partie des parois de la cavité. Ces écoulements entrâınés par du cisaillement
ne sont pas seulement importants d’un point de vue technologique mais présentent aussi un intérêt scien-
tifique considérable car ils incluent presque tous les phénomènes physiques intervenant dans des écoulements
incompressibles. Ainsi on y observe naturellement des écoulements de coin, des recirculations secondaires, des
vortex longitudinaux, des phénomènes purement tri-dimensionnels, des mouvements particulaires chaotiques,
des problèmes de non-unicité, de la transition et de la turbulence, qui peuvent être étudiés dans une seule et
unique géométrie. Cela facilite grandement la comparaison entre les expériences, la théorie et les simulations
numériques sur un large intervalle de nombre de Reynolds. Les écoulements ainsi considérés font partie d’une
classe plus générale d’écoulements confinés entrâınés par des gradients de quantité de mouvement ou de moment
cinétique.

Dans cette thèse, on s’intéresse tout d’abord à l’écoulement interne et turbulent d’un fluide enfermé dans une
cavité cubique et entrâıné par le mouvement de translation uniforme d’une des faces. On utilise des simulations
des grandes échelles afin dans un premier temps, d’accrôıtre notre compréhension de la dynamique de cet
écoulement. Ensuite, un nouveau modèle de sous-maille utilisant une technique de déconvolution approchée
couplée à un modèle dynamique d’échelles mixtes est développé. La simulation des grandes échelles utilisant ce
nouveau modèle a permis d’améliorer les résultats par rapport à ceux obtenus avec des modèles traditionnels de
viscosité de sous-maille. Enfin, on donne une nouvelle interprétation des méthodes de déconvolution approchée
lorsqu’elles sont utilisées conjointement avec des techniques de filtrage implicite, afin d’approcher l’effet projectif
du filtre du maillage. Cette approche permet d’introduire une nouvelle classe de modèles, dite modèles de filtre
de maillage.

Par le biais d’une méthode de simulation numérique nouvellement développée, on a simulé des écoulements
instationnaires en présence d’une surface libre et en régime transitionnel. Ces écoulements incompressibles sont
ceux d’un fluide visqueux au sein d’une cavité cylindrique ouverte sur le dessus, et entrâıné par la rotation con-
stante du disque de fond. De nouveaux états d’écoulement sont étudiés par le biais de solutions tri-dimensionelles
des équations de Navier–Stokes, sans avoir besoin de recourir à des propriétés de symétrie comme le font tous
les travaux de recherche disponibles dans la littérature scientifique. Cette étude fournit les résultats les plus
généraux à ce jour sur ces problèmes à surface libre, et ce grâce à l’originalité du traitement mathématique. Cette
seconde partie de la thèse constitue un travail de recherche fondamentale ayant pour but de mieux comprendre
l’influence d’une surface libre sur la dynamique des écoulements transitionels entrâınés par cisaillement.

La présente thèse contient également une présentation détaillée de la nouvelle méthode numérique développée
afin de simuler les écoulements instationnaires à surface libre en trois dimensions. Cette méthode repose sur
une technique de maillage mobile pour résoudre les équations de Navier–Stokes exprimées dans la cinématique
arbitraire eulérienne lagrangienne (“ALE” en anglais dans le texte) et discrétisée par la méthode des éléments
spectraux. Nous donnons une analyse complète des formulations discrètes et continues du problème général en
formulation ALE et soumis à des conditions aux limites non-linéaires, non-homogènes et instationnaires.

Mots-clefs : écoulements à surface libre ; turbulence en milieu confiné ; écoulements transitionnels ; simulation
des grandes échelles ; modèles de déconvolution approchée ; écoulements dans des cavités entrâınées ; “vortex
breakdown bubbles” ; méthode des éléments spectraux de Legendre ; cinématique lagrangienne–eulérienne
arbitraire ; technique de maillage mobile.
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Chapter 1

Introduction

The research work reported in the present dissertation is aimed at the analysis of complex physical phenom-
ena involving instabilities and nonlinearities occurring in fluids through state-of-the-art high-order numerical
modeling. Solution of intricate fluid physics problems are devised in two particularly arduous situations: fluid
domains with moving boundaries and the high-Reynolds-number regime dominated by nonlinear convective
effects. Shear-driven flows of incompressible Newtonian fluids enclosed in cavities are thoroughly investigated
in these two frameworks: transition with a free surface and confined turbulence.

1.1 Motivations and objectives

1.1.1 Fluid physics in driven cavities

The physical system is made of an incompressible Newtonian fluid, initially quiescent and filling a bounded, or
partially bounded cavity. From this initial state, a series of shear-driven flows can easily be generated by setting
in motion some part of the container boundary. These driven-cavity flows are not only technologically important,
they are of great scientific interest because they display almost all physical fluid phenomena that can possibly
occur in incompressible flows, and this in the simplest geometrical settings. Thus corner eddies, secondary flows,
longitudinal vortices, complex three-dimensional patterns, chaotic particle motions, nonuniqueness, transition,
and turbulence all occur naturally and can be studied in the same geometry. This facilitates the comparison
of results from experiment, analysis, and computation over a large range of Reynolds numbers. As stated by
Shankar & Deshpande [225]: “... cavity flows are almost canonical and will continue to be extensively studied
and used”.

The flows under consideration in this dissertation are part of a larger class of confined flows driven by linear
or angular momentum gradients. The two central problems discussed in this dissertation, namely transition in
presence of a free surface and confined turbulence, are investigated in two different cavity geometries. First,
the internal flow of a fluid enclosed in a bounded cubical cavity driven by the constant translation of its lid is
considered in the locally-turbulent regime. Subsequently, the incompressible flow of a Newtonian fluid enclosed
in a cylindrical container with an open top surface and driven by the steady rotation of its bottom end-wall is
analyzed in the transitional regime.

In both of these cavity flows, the primary motion is due to externally imposed motion of part of the container
boundary which constantly provides shear stress to the flow through viscous diffusion. The no-slip condition on
the walls of the enclosing cavity imposes kinematic constraints on the flow resulting in the bending of vortex
lines and in large recirculation zones in a large portion of the cavity, see Fig 1.1. In addition, this bending
produces secondary motions and recirculations. The particular details of the topology of these recirculation
zones depend on the geometry of the container and the strength of the driving force, yet they all result from
the bending of vortex lines. In a significant part of these flows, the secondary motions can be comparable to
the primary motion in terms of intensity, leading to significant nonlinear interactions. When increasing further
the Reynolds number, these secondary motions start developing interactions among themselves and through
the influence of the primary recirculation, leading to complex flow dynamics.

1.1.2 Moving-boundary problems and free-surface flows

Fluid flows possessing a free surface are very common in real life. The concept of free surface is often abusively
used in the literature to refer to any gas-liquid interface. A free surface is an idealization of a gas-liquid interface
in which the dynamics of the gas phase is neglected by setting the gas density and viscosity to zero. Free-surface
flows are encountered and have applications in many disciplines of engineering and applied sciences as varied
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Fig. 1.1: Experiments conducted in a three-dimensional lid-driven cavity flow to study the behavior of longitudinal
Taylor–Görtler-like (TGL) vortices. Left: typical symmetry plane visualization (with a rheoscopic liquid) at
Re = 3 300; all three transverse secondary eddies are visible in this and all other flows for 1 000 ≤ Re ≤ 10 000.
Right: photographs of the lateral plane; in each case, (a): Re = 2 000, (b): Re = 3 300, and (c): Re = 6 000, this
location is near to that where the flow over the downstream secondary eddy reattaches to the bottom; the TGL
vortex pairs are clearly visible. From Rhee et al. [207]. c© 1984 Springer–Verlag.

as environment, geophysics, and fundamental physics. The difficulties inherent to these problems are very
challenging for mathematical, physical and computational analyses.

From a physical viewpoint, moving-boundary flows are intrinsically nonlinear. In addition to the convective
nonlinearities associated with the Navier–Stokes equations in a transitional or turbulent regime, one deals with
a complicated geometry changing in time and that is part of the unknown solution itself. To date all the
investigations accounting for the essential mechanisms associated with the presence of the thin viscous layer
beneath the free surface have been limited to flat or linearized free surface. Using a rigid-lid or a free-slip
approximation to model the free surface—corresponding to the zero-Froude-number limit—not only notably
simplifies the numerical treatment of the problem, but it also considerably affects the flow dynamics. The
present work appears as one of the very first attempts in studying the influence of the kinematic and dynamic
boundary conditions at a free surface on the dynamics of shear-driven flows in a transitional regime.

The three-dimensional character of fully-confined shear-driven cavity flows for both rectangular and cylin-
drical geometries, has only been recently firmly established and in some cases demonstrated in the transitional
regime. The additional freedom given to the fluid motion in presence of a moving-boundary clearly increases
further this three-dimensional character. Consequently, there is a crucial need to gain insight into the influence
of the presence of a free surface on the flow dynamics and on the instabilities developing in the transitional
regime, see Fig. 1.2 showing extreme cases.

1.1.3 Large-eddy simulation of turbulent flows

Past investigations of turbulent flows have emphasized the importance of large coherent vortical structures in
the fluid dynamics. Given these physical evidences and the high-Reynolds-number regime considered here, the
intricate flow dynamics in the turbulent regime can solely be deciphered by resorting to advanced numerical
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Fig. 1.2: Top row (left): Sketch of the flow in the axially symmetric basis state on top of which the rotating
polygons form. The plate (a) is rotating with angular velocity, driven by a motor (b), the fluid above the plate
is pressed radially outward, and a secondary flow develops as sketched. Top row (center): Triangle formed
spontaneously on the surface of ethylene glycol in a cylindrical container over a rotating plate (small setup).
Note the “Görtler vortices” spiraling on the surface. Top row (right): A rotating square on water. Note the
vertical vortices just outside of the corners. Central row (left): Setup consisting of a stationary Plexiglas cylinder
of radius 19.4 cm with a circular plate that is rotated by a motor. Water or ethylene glycol is filled to the level
H above the plate. At sufficiently large rotation frequencies f , the axially symmetric surface becomes unstable
and assumes the shape of a regular, rigidly rotating polygon, in this case a triangle. Central row (right): Phase
diagram for “polygons” on the surface of a fluid on a rotating plate. Bottom row: Typical examples of polygons
in water, as seen from above: (a) “triangle”, (b) “square”, and (c) “pentagon”. From Jansson et al. [133]. c©
2006 The American Physical Society.

modeling tools. Throughout this research work, numerical simulations use spectral element methods for the
spatial discretization. Those methods have mainly been applied to the direct numerical simulation (DNS) of
fluid flow problems at low and moderate Reynolds numbers Re. With the advent of more powerful computers,
especially through cluster technology, higher Reynolds number values seem to fall within the realm of feasibility.
However, despite their high accuracy, spectral element methods are still far from reaching industrial applications
or fundamental research problems that involve developed turbulence at Re values of the order of 106−107. The
reason for that dismal performance is that a resolved DNS including all scales from the largest structures to
Kolmogorov scales, needs a number of degrees of freedom that grows like Re9/4. Therefore with increasing Re,
one has to increase the resolution and/or the order of the method. This places the computational load far out
of the reach of present day computers. Large-eddy simulation (LES) represents an alternative to DNS insofar
that it involves less degrees of freedom because the behavior of small scales are modeled.

Subgrid modeling is the cornerstone of LES and requires a very thorough validation process. Indeed for
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a given numerical method, the success of a LES is essentially dependent on the quality of the underlying
subgrid model and on its universality. Over the past 30 years, a considerable research effort has been devoted to
developing and improving subgrid models for LES. Despite these intensive past works, there is still vast room
for improvement in terms of elaborating more effective subgrid models. Furthermore, issues related to LES are
too often associated with the specificities of a given numerical method. More specifically, the central concept of
scale separation on which LES is built on, relies on filtering procedures which can be either explicit or implicit.
In any case, the application of such filter is not performed at the continuous level but at the discretized one. An
additional level of complexity appears when subgrid models are required to model the effects on the dynamics
of the large eddies, of those implicit filters associated with the space (and even time) discretization.

As mentioned earlier, one decisive property that needs to be possessed by any subgrid model in order for
a LES to fulfill its promises, is its universal character. Consequently, the validation of any subgrid models
should therefore encompass complex turbulent flows, which challenge the model. Standard subgrid modeling
validations rely on classical channel or boundary layer flows which are well-known as “forgiving” from the
energetic standpoint, and which possess at least one direction of homogeneity. The lid-driven cavity flow is of
particular interest in view of the richness of the fluid physics, thereby allowing to assess the effectiveness of
different subgrid models. This flow possesses no direction of homogeneity, and laminar pockets coexist with
transitional and turbulent zones. The confined nature of the flow avoids the evacuation of energy through an
outflow section. In this context, the lid-driven cubical cavity flow in the locally-turbulent regime, represents a
challenging problem in the subgrid modeling framework. As the flow is confined and recirculating, any under- or
over-dissipative character of the subgrid model can be clearly identified. Moreover, the very low dissipation and
dispersion induced by the spectral element method allows a pertinent analysis of the energetic action induced
by any subgrid model, which is not feasible in the framework of low-order numerical methods. The coupling
of the lid-driven cubical cavity flow problem with the spectral element method builds therefore a well suited
framework to analyze the accuracy of any newly defined subgrid model.

Given the relative success of available subgrid models, it seems legitimate to consider more challenging
subgrid models allowing to further increase the Reynolds number without increasing the simulation load. Ap-
proximate deconvolution models (ADM) have generated a very important research activity over the past six
years. It has been proved to be successful in a number of flow conditions but this deconvolution procedure
requires to be supplemented with another model to increase its dissipative character. Moreover, the formulation
of large-eddy simulation in the ADM framework is relatively new and can therefore be challenged. To date no
LES using both ADM and the spectral element method is reported in the literature, which makes the present
study as one additional pioneering development of ADM.

1.1.4 High-order and spectral element method developments

From a numerical viewpoint, the accumulation of difficulties with the governing equations and boundary con-
ditions when dealing with moving-boundary problems, calls for elaborate algorithms and numerical methods.
Traditional discretization methods suffer from numerical defects like dissipation and dispersion errors affecting
the prediction capabilities of the simulation. High-order methods have gained increasing attention in recent
years with theoretical developments reaching a high level of sophistication. When used for solving complex real-
life problems, they prove to deliver accurate solutions allowing to decipher the physical mechanisms involved.
However their dissemination has been limited due to stringent implementation constraints.

There is clearly a need for high-order methods to bridge the gap between their well-defined mathematical
framework and real-life problems they aim at simulating. This can be achieved by initiating further investigation
in new areas: for instance complex and time-dependent geometries, treatment of singularities and nonlinearities
and domain decomposition. In the context of moving-boundary problems, past implementations of high-order
methods tackling moving-boundary problems were often limited to very simplified cases: steady problems,
viscous-free, flat or almost-flat free surface, surface-tension free, etc. In the present dissertation, the complete
mathematical framework for handling general unsteady and viscous free-surface flow problems using the spectral
element method is devised.

The presence of a free surface, or more generally a moving boundary, significantly complicates all simulation
methods aiming at solving the Navier–Stokes equations. The treatment in the bulk of the fluid generally poses
no problem. However, the imposition of the boundary conditions on the time-evolving part of the boundary
together with the correct positioning of this moving boundary are some of the most arduous problems faced when
solving moving-boundary problems. From this point of view, the various methods for the interface simulation
can be divided into two classes, depending on the nature, fixed or moving, of the grid used to discretize in space
the problem. In this dissertation, the approach to this problem is to resort to a front-tracking and moving-grid



1.2. Contributions of the present work 7

technique to solve the Navier–Stokes equations expressed in the arbitrary Lagrangian-Eulerian kinematics and
discretized by the spectral element method; this choice being justified by the need to ensure the most accurate
resolution of the surface viscous sublayer. Using this approach to simulate a transitional flow beneath a wavy
free surface allows us to contradict the hypothesis of a two-dimensional vorticity field at the free surface, inferred
in the flat-free-surface case.

Based on these mathematical developments, the solution of free-surface shear-driven swirling flows have been
obtained. All the past simulations of free-surface swirling flows rely on the central assumptions that the free
surface is flat and clean, which means that the Froude number is very small and that surface tension effects are
negligible. With these assumptions, the flow is identical to the flow in the lower half part of a cylinder with two
solid covers in co-rotation, i.e. rotating at the same angular velocity. Compared to the closed cylinder case, only
some limited aspects of the open swirling flow have been investigated so far. The study of this intricate problem
is relatively new and consequently the body of knowledge appears fairly limited. In addition, most of the past
studies involving numerical simulations of this free-surface swirling flow, used axisymmetric streamfunction-
vorticity formulations. In the present dissertation, new flow states are investigated based on a fully three-
dimensional solution of the Navier–Stokes equations without the need to resort to symmetry properties by
doubling the computational domain and enforcing co-rotation of both end-walls. To our knowledge, the present
study provides the most general available results for this free-surface problem. Both, steady and unsteady flows
are considered for different sets of governing parameters.

Additional developments in the framework of the LES using spectral element methods are necessary. As
mentioned in the previous section, the central concept of scale separation used when performing LES requires
to implement a filtering technique that preserves C0-continuity of the filtered variables across spectral elements
and that is applicable at the element level. Concurrently, the effects of the implicit filter induced by the
discretization of the Navier–Stokes equations on a spectral element grid needs to be considered.

1.1.5 Parallel and high-performance computations

From a practical and technical viewpoint, all the aforecited algorithms run on large-parallel machines with the
message passing interface paradigm for inter-processor communication. With a view to ensuring an adapted
load balancing on the computing nodes, an investigation of the performances of the parallelized solver used is
instrumental. Another crucial aspect is our capability to predict the optimal number of processors required by
any simulation given the requested resolution ensuring to capture the flow physics. Furthermore, the determina-
tion of the scalability law with respect to the discretization based on the spectral element method is becoming
necessary when considering the increasing parallelization trend in today’s supercomputers.

1.2 Contributions of the present work

The contributions of the present research work are in direct relation with the motivations and objectives reported
in the previous section. Given the multi-disciplinary nature of the various studies described in this dissertation,
contributions are grouped by fields of application.

1.2.1 Turbulence modeling and large-eddy simulation

The long-term integration of two large-eddy simulations of the lid-driven cubical cavity flow at a Reynolds
number of 12 000 have been carried out for two dynamic subgrid-scale models, namely a dynamic Smagorinsky
model and a dynamic mixed model. These simulations were based on an accurate spectral-element spatial
discretization. All filtering levels introduced in both subgrid modelings rely on explicit modal filters in the
spectral space, retaining C0-continuity of the numerical solution of the filtered Navier–Stokes equations. Full
LES results for both dynamic models have shown very good agreement with the reference results available in the
literature. The subgrid-viscosity field was shown to be strongly correlated to the turbulent energy dissipation
rate in the turbulent areas of the flow.

LES of the lid-driven cubical cavity flow with approximate deconvolution models based on the van Cittert
method have been performed. A coupling with a dynamic mixed scale model was introduced, which yields a
novel subgrid model. The filtering operation is performed in a spectral modal space, generated by a hierarchical
basis using the Legendre polynomials, through the application of a specifically designed transfer function. This
transfer function is constructed in order to ensure invertibility of the filter. Accounting for the reduced sampling
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and integration time, the LES performed with ADM-DMS show good agreement with the reference results. The
importance of the subgrid kinetic energy as compared to the kinetic energy of the resolved field highlights the
essential need for an appropriate subgrid modeling. Furthermore, regions of backscatter are identified by the
subgrid model.

A new interpretation of approximate deconvolution models when used with implicit filtering as a way to
approximate the projective grid filter is given. Consequently, a new category of subgrid models, the grid filter
models (GFM) is defined. GFM can be either used with the standard filtered Navier–Stokes equations or with
the formulation commonly used with ADM. The GFM approach gives a theoretical justification to the use of
ADM without explicit filtering of the solution and explains how the use of ADM works in this context. This
viewpoint allows to consider a new way of designing the convolution filter which has to approximate the grid
filter and therefore a new way of improving such subgrid models. It has also been proved that the deconvoluted
formulation, usually used with ADM, leads to an under-dissipative character of the subgrid model and explains
the need of additional dissipative terms. Conversely, when using the filtered formulation, no additional term
is needed which is of great relevance considering the confined nature of the flow and the high-order numerical
method used. The GFM approach also allows to consider a more realistic methodology for a priori validations
and its validity extends beyond the limited scope of incompressible Newtonian fluid flows considered in this
dissertation.

1.2.2 Physics of shear-driven flows in cavities

At a Reynolds number of 12 000, the lid-driven cubical cavity flow is placed in a locally-turbulent regime and
such turbulent flow is proved to be highly inhomogeneous. The maximum production of turbulence is found to
be located in the downstream-corner-eddy region just above the bottom wall. Small-scales turbulent structures
were located indirectly by studying the regions of intense turbulent energy dissipation rate. Helical properties
of the flow are investigated. The relative helicity spectra is shown to be decreasing at small scales, which is in
agreement with the theoretical results from Borue & Orszag [31] for the three-dimensional isotropic homogeneous
turbulence.

The incompressible flow of a viscous fluid enclosed in a cylindrical container with an open top surface and
driven by the constant rotation of the bottom wall is considered. First, the case of a stress-free top surface is, in
first approximation, maintained fixed and flat is studied. Subsequently, the most general case with an unsteady
flow with a moving free-surface in the transitional regime is simulated for the first time. New flow states are
investigated based on the fully three-dimensional solution of the Navier–Stokes equations for the free-surface
cylindrical swirling flow, without resorting to any symmetry property unlike all other results available in the
literature. To our knowledge, this study delivers the most general available results for both this flat and moving
free-surface problem due to its original mathematical treatment.

1.2.3 Applied numerical mathematics

A novel numerical model based on high-order methods for solving three-dimensional moving-boundary problems
is devised. This model relies on a moving-grid technique to solve the Navier–Stokes equations expressed in the
arbitrary Lagrangian–Eulerian (ALE) kinematics and discretized by the spectral element method. A detailed
analysis of the continuous and discretized formulations of the general problem in the ALE frame, with non-
homogeneous and unsteady boundary conditions is presented for the first time. The moving-grid algorithm
which is one of the key ingredient of our numerical model, is based on the computation of an ALE mesh velocity
with the same accuracy and numerical technique as the fluid velocity. The coupling between the Navier–Stokes
computation and the one for the mesh velocity is effective through the problem boundary conditions and the
modified nonlinear convective term.

A novel isochoric moving-grid technique and mesh-transfer technique for spectral element grids have been
developed. Both of these techniques are the cornerstones of our computations of transitional and turbulent
free-surface flows using spectral element methods. Part of the work is to ensure that these two techniques have
no effect on the exponential rate of convergence.

A thorough computational performance analysis of the parallelized high-order spectral and mortar element
toolbox is presented. This toolbox is used for all simulations reported in this dissertation.
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1.3 Organization of the dissertation

1.3.1 Description

The present dissertation is organized into six different parts—including the present introduction which is the
first part.

• Part II contains all the details and developments associated with the numerical method. Chapter 2 reports
a brief overview of the numerical context and justifies the crucial need to resort to a high-order numerical
method for the present work. Necessary details associated with the spectral element method for standard
fixed-grid simulations are recalled. Chapter 3 is devoted to the development of a novel numerical method
to treat unsteady moving-boundary flow problems using the Legendre spectral element method.

• Part III comprises the three following chapters, which all deal with different aspects of large-eddy simulation
of the turbulent flow in a lid-driven cubical cavity. Chapter 4 focuses on the flow physics while using
relatively standard subgrid models. Chapter 5 presents a novel subgrid model based on the coupling of
approximated deconvolution procedures and a dynamics mixed scale model. Validation of this novel model
is based upon the same flow as the one considered in Chapter 4. Finally, Chapter 6 deals with the concept
of subgrid modeling accounting for the effects of the implicit grid filter induced by the space discretization
in large-eddy simulation.

• Part IV presents the study of the free-surface swirling flow in a cylindrical container with a rotating bottom
end-wall. It is comprised of Chapter 7 and Chapter 8, which deal respectively with the flat-free-surface
case and the case of a freely-evolving free surface. This part is focused on the flow physics and on the
dynamics of the vortex breakdown bubbles.

• Part V reviews the conclusions of the different aspects of the work reported in the dissertation. Outlook
and perspectives are finally proposed.

• Part VI groups three significant appendices, which are extensions of some chapters. Appendix A reports
a mesh-update and re-meshing techniques for the moving-boundary solver introduced in Chapter 3 and
practically used in Chapter 8. Appendix B is a brief study of the closed swirling flow in a cylindrical
container with a rotating bottom end-wall. This study is not only useful in terms of validation but also to
assess the influence of the presence of the free-surface on the swirling flow studied in Part IV. Appendix C
details the practical computational performance analysis of the parallel spectral element solver used.

1.3.2 Preliminary notes

The content of the present dissertation is the result of a research effort lead by the author and in collaboration
with several co-authors. Some of the chapters and appendices are revised transcriptions from published or
submitted journal articles. The original text from the journal articles have been revised and amended in order
to ensure a high level of coherence in the present dissertation. Nevertheless, unavoidable minor redundancies
between the sections of some chapters still exist. The author would like to draw the attention of the readers on
the fact that some sections may appear identical from one chapter to another, but often changes in parameters
and/or definitions were made in the course of the study, thereby affecting the simulations and the methods
used.

For further reference, Chapter 3 was originally published by Bodard, Bouffanais & Deville in App. Num.
Math. [28] and by Bouffanais & Deville in Proc. Int. Conf. on Mathematical and Numerical aspects of Waves [33].
The contribution by N. Bodard corresponded to the applications related to fluid-structure interaction problems
of Sec. 3.5.1 and Sec. 3.5.2, see [27] for full details. Chapter 4 was published by Bouffanais, Leriche & Deville
in Phys. Fluids [37] and also by Bouffanais, Deville, Fischer, Leriche & Weill in J. Sci. Comput. [35]. Chapter 5
was published by Habisreutinger, Bouffanais, Leriche & Deville in J. Comput. Phys. [112]. Chapter 6 is in the
process of being submitted for publication by Habisreutinger, Bouffanais & Deville. Chapters 7 and 8 are merged
into a single article, which is currently under preparation. Appendix A has been published by Bouffanais &
Deville in J. Sci. Comput. [34]. Appendix C has been submitted for publication by Bouffanais, Keller, Gruber
& Deville to Parallel Computing [36].
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Numerical modeling





Chapter 2

Numerical methods for simulating shear-driven
flows

This chapter aims at giving a brief overview of the main numerical methods available to discretize in time and
space the continuous governing equations for an isothermal flow of incompressible Newtonian fluids. Addition-
ally, a comprehensive review of the Legendre spectral element method and of its key implementation aspects is
presented, as it constitutes the backbone of all the simulations presented in this dissertation. The focus in this
chapter is on fixed-grid numerical methods allowing to consider fully confined flows as well as open shear-driven
flows—with a stress-free condition on fixed part of the domain boundary, for instance flat free surface. A more
complex situation corresponding to the numerical modeling of moving-boundary problems is considered in detail
in Chapter 3 in the spectral element framework.

2.1 Introduction

We know from experience that many flows are set into motion by shear forces, and therefore viscous effects play
a crucial role in the dynamics of fluids driven by the shear. In general the viscosity depends on the shear rate.
In this dissertation, however, we will restrict ourselves to the case of viscous Newtonian incompressible fluids
in isothermal situations.

Based on the problem at hand, it is always physically rewarding to non-dimensionalize the governing Navier–
Stokes equations which take the following general form

∂u

∂t
+ u ·∇u = −∇p+

1

Re
∆u + f, ∀(x, t) ∈ Ω× I, (2.1)

∇ · u = 0, ∀(x, t) ∈ Ω× I, (2.2)

where u is the velocity field, p the reduced pressure (normalized by the constant fluid density), f the body force
per unit mass and Re the Reynolds number expressed as

Re =
UL

ν
, (2.3)

in terms of the characteristic length L, the characteristic velocity U and the constant kinematic viscosity ν.
The system evolution is studied in the time interval I = [t0, T ]. The position of a point in the current fluid
domain Ω is the Eulerian coordinate x. From the physical viewpoint, Eqs. (2.1)–(2.2) are derived from the
conservation of momentum and the conservation of mass respectively. For incompressible viscous fluids, the
conservation of mass also called continuity equation, enforces a divergence-free velocity field as expressed by
Eq. (2.2). Considering particular flows, the governing Navier–Stokes equations (2.1)–(2.2) are supplemented
with appropriate boundary conditions for the fluid velocity u and/or for the local stress at the boundary. For
time-dependent problems, a given divergence-free velocity field is required as initial condition in the internal
fluid domain.

All numerical simulations of shear-driven flows presented in this dissertation rely on the dimensionless for-
mulation of the Navier–Stokes equations in primitive variables (u, p) given by Eqs. (2.1)–(2.2). Other classical
formulations use vorticity-velocity or streamfunction-vorticity formulations. In these formulations, the pressure
does not appear as it is eliminated as a dependent variable and therefore automatically solves the velocity-
pressure decoupling issue inherently present with the standard formulation using the primitive variables. How-
ever, the main problem with the vorticity-velocity or streamfunction-vorticity formulations lies in the boundary
conditions, especially in complex geometries. For instance, neither vorticity nor its derivatives at a boundary
are known in advance. A more comprehensive discussion related to these formulations and its advantages and
drawbacks may be found in [25, 58, 75].
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From a mathematical viewpoint, in a flow having a region of recirculation, i.e. flow in a sense opposite
to the principal direction of flow, information may travel upstream as well as downstream. Such character is
always present for both groups of lid-driven flows considered in this dissertation: the turbulent lid-driven cavity
flow and the open transitional swirling flow in a cylinder. As a result, one cannot apply conditions only at the
upstream end of the flow. The problem then acquires an elliptic character. It should be noted that unsteady
incompressible shear-driven flows actually have a combination of both elliptic and parabolic character. The
latter comes from the fact that information travels in both directions in space while the latter results from the
fact that information can only flow forward in time. Such problems are called incompletely parabolic [51,75,110].

2.2 Space discretization methods

The objective of this section is to provide the reader with a rapid overview of the main groups of discretization
methods at hand to simulate the two shear-driven flows of interest in this dissertation: the closed turbulent
lid-driven cubical cavity flow and the transitional open swirling flow in a cylindrical cavity. This overview aims
at highlighting the advantages and drawbacks associated with each group of methods, in order to justify a priori
the choice of a spectral element method in relation with the physical problems to be investigated.

2.2.1 Finite difference methods

The finite difference method (FDM) was among the first numerical methods applied to the numerical solution
of differential equations. It was first utilized by Euler, probably in 1768. It is also the easiest method to use
for simple geometries. The FDM is directly applied to the differential form of the governing equations (2.1)–
(2.2). The principle is to employ a Taylor series expansion for the discretization of the derivatives of the flow
variables. Local expansions with truncated Taylor series are used to transform the original set of PDEs into
a set of algebraic equations. Discretization by FDM leads to systems with banded matrices that are usually
solved by iterative techniques.

In principle, the FDM can be applied to any grid type. However, in the vast majority of applications reported
in the literature, it has been applied to structured grids. The grid lines serve as local coordinate lines. Important
advantages of the FDM are its simplicity and its effectiveness. Another advantage is the possibility to easily
obtain high-order approximations, and hence to achieve high-order accuracy of the spatial discretization but
unfortunately at the expense of the computational cost. On the other hand, because the method requires a
structured grid, the range of application is clearly restricted. Another disadvantage of the FDM is that the
conservation is not enforced unless special care is taken.

Finite difference methods have been used extensively to simulate two- and three-dimensional rectangu-
lar/square cavity flow. The list of references which follows, is far from being exhaustive. Ghia et al. [91] per-
formed a comprehensive study of the two-dimensional lid-driven cavity flow. Gustafson and Halasi investigated
the vortex dynamics in the square cavity [108] and then the effect of increasing aspect ratio on the flow [109].
The three-dimensionality of the flow in the square cavity has been thoroughly analyzed by Iwatsu et al. [132],
who detailed some typical 3D structures in the flow. Verstappen et al. [258, 259] performed 2D and 3D direct
numerical simulations followed by a proper orthogonal decomposition. Finally, Jordan & Ragab [135,136] used
the cavity flow to test subgrid models in large-eddy simulation.

Like for the case of the square/rectangular lid-driven cavity flow, the FDM has been one of the most used
numerical method to simulate the axisymmetric swirling flow in a cylindrical cavity with one or two rotating
end-walls. FDM was systematically coupled with a streamfunction-vorticity formulation of the problem. The
reference results for the steady and unsteady flows in an enclosed cavity driven by one single rotating end-wall
is due to Lopez and Lopez et al. [43, 158–160, 166]. Sørensen’s group studied similar flow configurations both
experimentally and numerically but with the aim to decipher the transition mechanisms through bifurcations
and the vortex breakdown bubbles generation [19, 41, 42, 234]. They contributed importantly to the theory of
the vortex breakdown formation and established several bifurcation diagrams [190,191]. More recently, the case
of a steady axisymmetric flow in an open cylindrical cavity with a partially rotating bottom wall has been
investigated by Piva & Meiburg [198], but considering a fixed and flat free surface.
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2.2.2 Finite volume method

The finite volume method (FVM) directly utilizes the conservation laws—the integral formulation of the
mass/momentum equations. As pointed out by Hirsch [120] finite-volume schemes were introduced by Godunov
in 1959 [95] and they were first used in meteorological applications by Crowley in 1968 [55] and for reactive
flows by McDonald in 1971 [179]. The FVM discretizes the governing equations by first dividing the physical
space into a number of arbitrary polyhedral control volumes. The surface integral appearing in the integral
formulation of the conservation equations is then approximated by the sum of the fluxes crossing the individual
faces of the control volume. The accuracy of the spatial discretization depends on the particular scheme with
which the fluxes are evaluated: cell-centered scheme, cell-vertex scheme, etc. The main advantages of the FVM
are that the spatial discretization is carried out directly in the physical space and that it can be implemented
on unstructured grids. This latter property renders the FVM particularly suitable for the treatment of flows in
complex geometries. Because of its attractive properties, the FVM is very popular amongst CFD practioners
and in wide use.

It is undeniable that the FVM has been less employed than for instance the FDM for the simulation of both
the cylindrical and square/rectangle lid-driven cavity flow. Indeed, the extremely simple geometries involved
does not justify to resort to finite volume methods. Nevertheless, Albensoeder and Kuhlmann used the FVM
to perform a 3D linear stability analysis of rectangular cavity flows driven by anti-parallel motion of two facing
walls [5]. Albensoeder & Kuhlmann have also studied 3D instabilities of two counter-rotating vortices in a
rectangular lid-driven cavity [6] and 3D centrifugal-flow instabilities [9]. Chiang et al. worked on the 3D flow in
a rectangular cavity with a span-to-width aspect ratio of 3:1 [47–50]. A fully implicit FVM have been developed
and applied to the two-dimensional lid-driven cubical cavity flow by Sahin & Owens [215,216]. To validate their
dynamic mixed model, Zang et al. [271,272] performed a large-eddy simulation of the lid-driven cavity flow and
compared their results to the experimental results of Prasad & Koseff [201].

The three-dimensional structure of vortex breakdown bubbles in swirling flows was investigated by Sotiropou-
los & Ventikos [236] using FVM. Finally, in the axisymmetric case with a rotating top and bottom end-wall,
a predictor-corrector method based on a cell-centered finite-volume/multi-block strategy was sued by Shen et
al. [228] in Sørensen’s group.

2.2.3 Finite element methods

The finite element method (FEM) is more general the FVM. It was originally employed for structural analysis
only. It was first introduced by Turner et al. in 1956 [251]. About ten years later, researchers started to use
the FEM also for the numerical simulation of field equations in continuous media. However, only in the early
eighties, did the FEM gain popularity in the solution of the Navier–Stokes equations.

The FEM is similar to the FVM in many ways. The domain is broken into a set of discrete volumes
or finite elements that are generally unstructured; in 3D tetrahedra or hexahedra are most often used. The
distinguishing feature of FEM is that equations are multiplied by a test function before they are integrated over
the entire domain. The approximation is then substituted into a weighted integral of the conservation laws and
the equations to be solved are derived by requiring the derivative of the integral with respect to each nodal
value to be zero; this corresponds to selecting the best solution within the set of allowed functions (the one with
minimum residual). The result is a set of nonlinear algebraic equations. An important advantage of the FEM
is the ability to deal with arbitrary geometries. The grids are easily refined; each element is simply subdivided.
The principal drawback of the FEM, which is shared by any method relying on unstructured grids, is that the
matrices of the linearized equations are not as well structured as those for methods based on regular grids,
making it more difficult to find efficient solution methods.

Surprisingly, very few three-dimensional studies of lid-driven cavity flows using the finite element method
are reported in the literature. From the late nineties, Ding et al. [60,61] performed a 3D linear stability analysis
for the cubical cavity and in two dimensions, Barragy & Carey [15] used a p-type graded finite element method.

2.2.4 Spectral and spectral element methods

Spectral methods which are based on high-order approximations (usually Chebyshev) polynomials is usually
restricted to the study of problems with simple geometries. Their use for complex geometries is not an easy task
unless decomposition techniques are introduced, often leading to an arduous implementation of the complete
numerical method.
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In relation with the simple geometry of the closed square/rectangle and cylindrical cavities, spectral meth-
ods have been recently used to achieve highly accurate direct numerical simulations. The Chebyshev collocation
method was implemented by Leriche [153,154] and, Leriche & Gavrilakis [155] for the highest Reynolds number
cases ever achieved, up to Re = 22 000. Albensoeder and Kuhlmann abandoned the FVM in favor of a Cheby-
shev collocation method which differs from the implementation due to Leriche only by the velocity-pressure
decoupling technique. In addition, Albensoeder and Kuhlmann limit their study of the lid-driven cubical cav-
ity to Reynolds number below 10 000 [7, 8, 32]. Various subgrid models have been implemented and validated
against the DNS results of Leriche & Gavrilakis [155], using a Legendre spectral element method by Bouffanais
et al. [35, 37] and Habisreutinger et al. [112].

For the axisymmetric swirling flow, Lopez abandoned its streamfunction-vorticity formulation discretized
using FDM, in favor of efficient spectral-projection methods developed with Shen [161] and later with Marques
& Shen [161, 165] for the Navier–Stokes equations expressed in primitive variables. These space discretiza-
tions allowed Marques and Lopez to investigate the precessing vortex breakdown mode [176] and also specific
double Hopf bifurcations in the transition process [177]. Blackburn & Lopez also developed a mixed Fourier-
axisymmetric spectral element method [21–23], which was later used in the open-cylinder case [164] to highlight
the symmetry breaking due to the presence of the (flat) free surface which was first reported experimentally by
Hirsa et al. [119]

2.2.5 Meshless methods

The use of the FEM in computational fluid dynamics (CFD) is rapidly becoming commonplace. As mentioned in
Sec. 2.2.3, the ability of the FEM to handle truly arbitrary geometries makes it often the most suitable choice for
complex engineering applications. However, the FEM suffers from drawbacks such as locking, tedious meshing
or re-meshing, large deformations of the mesh, etc. Due to these reasons, in recent years, meshless approaches
in solving the boundary value problems have received a considerable attention as new ways to alleviate some
of these drawbacks. Indeed, meshless methods (MLM) allows to negate the need for the human-labor intensive
process of constructing geometric meshes, as well as re-meshing in an evolving solution, in a domain. Such
meshless methods are especially useful in problems having discontinuities or moving boundaries, like those
considered in Chapter 3 and in Part IV of the present dissertation.

The initial idea of meshless methods dates back to the smooth particle hydrodynamics (SPH) method
developed by Gingold & Monagahn in 1977 [94], for modeling astrophysical phenomena. The research into
MLM has become very active after the publication of the Diffuse Element Method (DEM) by Nayroles et al. in
1992 [187]. Several so-called meshless methods have also been reported in the literature since then: element free
Galerkin, reproducing kernel particle method, the partition of unity FEM, hp-cloud method, natural element
method, meshless Galerkin methods using radial basis functions, etc. A detailed literature review with full details
regarding the corresponding references can be found in the monograph by Atluri [12]. The major differences
in all these methods come only from the techniques used for interpolating the trial function. However, even
though no mesh is required in these methods for the interpolation of the trial and test functions for the solution
variables, the use of “shadow elements” (also called “background meshes”) is inevitable for the integration of
the weak forms. Therefore, these methods are not truly meshless.

Recently, two truly meshless methods, the meshless local boundary integral equation (LBIE), and the mesh-
less local Petrov-Galerkin (MLPG) method have been developed, see [12] for full details. Both these methods
are truly meshless, as no domain/or boundary meshes are required. These methods appear very promising but
are still to date far from being capable of treating the complex physics of the recirculating shear-driven flows
described in the present dissertation.

2.3 Legendre spectral element method

In this section, the spectral element method (SEM) based on the Galerkin formulation of the Navier–Stokes
equations (2.1)–(2.2) is presented. It was first proposed by Patera in 1984 [194]. The SEM is a high-order method
which has a very low numerical dissipation and dispersion. As high-order finite element techniques, they can
deal with arbitrary geometric complexity, and are capable of local mesh adaption [115] by either increasing
the number of elements (h-refinement) or increasing the polynomial order within elements (p-refinement). For
smooth solution spaces, the methods provide asymptotically exponential rates of spatial convergence with p-
refinement, although in the present work it is the low numerical diffusion and dispersion exhibited by the
discretization that is potentially more significant.
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After having reviewed the main groups of space discretization methods in Sec. 2.2, we are now in a position
to rationalize the choice of the Legendre spectral element method to elucidate the physics associated with the
flows studied in the following chapters. As mentioned earlier, our first requirement is to ensure low numerical
dissipation and dispersion which excludes low-order methods such as the FVM and low-order FEM and MLM.
The complexity introduced by the presence of a free surface and the treatment of the stress-free boundary
condition on it, is the second most important choice criterion. In the high-order subgroup of methods, spectral
methods are automatically ruled out because of their severe limitations in terms of capabilities to handle complex
geometries. Hence, one is left with spectral element methods or high-order FEM which are both capable of
treating the stress-free boundary condition on the free surface as a natural boundary condition embodied into
the weak formulation of the problem, see Sec. 2.3.1 and Sec. 3.2.3. It is worth adding that high-order MLM
could become in the coming years the method of choice for this type of problems. However, to date high-order
MLM are far from being capable of solving such complex 3D moving-boundary problems.

2.3.1 Weak formulation of the problem

The continuous Navier–Stokes problem (2.1)–(2.2) in its strong formulation and supplemented with appropriate
Dirichlet and Neumann-like boundary conditions, is first expressed in a general weak form, which is also used
in the finite element context. We denote by Ω the fluid domain subset of Rd with d the space dimension. In a
standard approach, first are introduced the spaces of test and trial functions used to express the initial problem
in its weak form. We may note that the spaces of test and trial functions for the pressure are identical as no
essential Dirichlet condition is being imposed on this field. This space is the space of functions that are square
Lebesgue-integrable on the domain Ω and is denoted by L2(Ω). In general the velocity does not necessarily
vanish on the domain boundary; this general case is considered in detail in the next chapter. For the sake of
simplicity, we will consider in this chapter only, problems having homogeneous Dirichlet boundary conditions on
the whole boundary ∂Ω of the fluid domain Ω. From a physical viewpoint, such homogeneous essential Dirichlet
boundary conditions represent the enforcement of the no-slip condition on the solid walls confining the fluid.

The solution for the velocity u, of the problem (2.1)–(2.2) is sought directly in the Sobolev space of test/trial
functions H1

0 (Ω)d, defined as the space of differentiable vector functions having their first-order partial deriva-
tives in L2(Ω) and vanishing on the domain boundary ∂Ω. With the notations and spaces introduced and writing
the viscous term ∆u/Re in Eq. (2.1) as 2ν∇ ·D(u), the weak transient formulation reads:
Find (u(t), p(t)) ∈ H1

0 (Ω)d × L2(Ω) such that for almost every t ≥ t0

d

dt

∫

Ω

u · v dΩ +

∫

Ω

v ·∇ · (uu) dΩ =

∫

Ω

(p∇ · v − 2νD(u) :∇v) dΩ

+

∫

Ω

f · v dΩ, ∀v ∈ H1
0 (Ω)d, (2.4)

and

−
∫

Ω

q∇ · u dΩ = 0, ∀q ∈L2(Ω), (2.5)

where D(u) = 1
2 (∇u +∇uT ) is the rate-of-deformation tensor. The expression “for almost every t ≥ t0” rules

out the occurrence of wild temporal behavior, for example, a step function in the velocity field, which is always
detrimental in that it produces a numerical transient state with no physical meaning, see [204] for full details. It
is worth noting that all constraints on the field u, whether homogeneous or inhomogeneous, are by construction
included into the definition of the set of admissible functions, whence the qualifier “essential” used earlier.

In order to ease the discretization of the continuous weak equations (2.4)–(2.5), we introduce the following
notations and bilinear forms, such as a scalar product defined by

(u,v) :=

∫

Ω

u · v dΩ, ∀v ∈ H1
0 (Ω)d, (2.6)

a so-called ‘energy bilinear form’

A(u,v) := 2ν

∫

Ω

D(u) : ∇v dΩ, ∀v ∈ H1
0 (Ω)d, (2.7)
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a bilinear form related to the weak incompressibility constraint

B(v, p) := −
∫

Ω

p∇ · v dΩ, ∀v ∈ H1
0 (Ω)d, (2.8)

a nonlinear form corresponding to the nonlinear convective term

C(u,v) :=

∫

Ωt

v ·∇(uu) dΩ, ∀v ∈ H1
0 (Ω)d, (2.9)

and finally a linear form related to the source term f

F(v) :=

∫

Ω

f · v dΩ, ∀v ∈ H1
0 (Ω)d. (2.10)

With these notations, the continuous weak form of our Navier–Stokes problem can be recast as
Find (u(t), p(t)) ∈ H1

0 (Ω)d × L2(Ω) such that for almost every t ≥ t0
d

dt
(u,v) +A(u,v) + B(v, p) + C(u,v) = F(v), ∀v ∈ H1

0 (Ω)d, (2.11)

B(u, q) = 0, ∀q ∈ L2(Ω). (2.12)

2.3.2 Galerkin approximation

Instead of solving the previous continuous problem, an approximate projected solution is sought in finite-
dimensional subspaces. The first step in the SEM discretization consists in subdividing the fluid domain Ω =
Ω ∪ ∂Ω into E non-overlapping elements {Ωe}Ee=1. Each element Ωe involves a mesh constructed as a tensor
product of one-dimensional grids. Although each space direction may be discretized independently of the others,
without loss of generality we will consider only meshes obtained with the same number of nodes in each direction,
denoted by N + 1, corresponding to the dimension of the space of Nth-order polynomials. To describe the
discretization process accurately, we adopt the same procedure as Deville et al. [58] and define the following
spaces

X := H1
0 (Ω)d, Z := L2(Ω). (2.13)

We apply the Galerkin approximation to our Navier–Stokes problem in the weak form (2.11)–(2.12), and there-
fore select finite dimensional polynomial subspaces XN and ZN to represent X and Z respectively. In practice,
some restrictions occur as far as the selection of polynomial degrees is concerned. In particular, the inf-sup con-
dition imposes restrictions on the pressure subspace ZN once the velocity subspace XN is prescribed, to prevent
locking and spurious oscillations phenomena. A staggered-grid approach with element based on PN − PN−2

spaces for the velocity and pressure field respectively was first proposed by Maday et al. [174] to eliminate
completely the spurious pressure modes. In this context, the finite dimensional functional spaces are defined as

XN := X ∩ PdN,E, ZN := Z ∩ PN−2,E, (2.14)

with
PM,E = {φ|φ ∈ L2(Ω);φ|Ωe is a polynomial of degree ≤M, ∀e = 1, · · · , E}, (2.15)

where the superscript d in (2.14) reflects the fact that test/trial velocity functions are d-dimensional. With these
notations the Galerkin approximation of (2.11)–(2.12) reads
Find (uN (t), pN (t)) ∈ XN × ZN such that for almost every t ≥ t0

d

dt
(uN ,vN ) +A(uN ,vN ) + B(vN , pN) + C(uN ,vN ) = FN (vN ), ∀vN ∈ XN , (2.16)

B(uN , qN ) = 0, ∀qN ∈ ZN , (2.17)

with

(uN ,vN ) =

E∑

e=1

∫

Ωe
uN · vN dΩ, ∀vN ∈ XN , (2.18)

FN (vN ) =
E∑

e=1

∫

Ωe
fN · vN dΩ, ∀vN ∈ XN , (2.19)

(2.20)
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fN being the projection of the fields f onto the finite dimensional space PdN,E.

The integrals within each of the spectral elements {Ωe}Ee=1 are calculated in a discrete manner using Gaussian
quadrature rules. More specifically, all the terms in (2.16)–(2.17) are integrated using a Gauss-Lobatto-Legendre
(GLL) quadrature rule [44,116] except for the two terms involving the bilinear form B where functions discretized
in PN−2,E appear. For these two terms, namely the pressure term and the divergence-free condition, a Gauss-
Legendre (GL) quadrature rule is chosen [44, 116]. Therefore, the PN − PN−2 Navier–Stokes problem is finally
stated as
Find (uN (t), pN (t)) ∈ XN × ZN such that for almost every t ≥ t0

d

dt
(uN ,vN )N,GLL +AN,GLL(uN ,vN ) + BN,GL(vN , pN)+

CN,GLL(uN ,vN ) = FN,GLL(vN ), ∀vN ∈ XN , (2.21)

BN,GL(uN , qN ) = 0, ∀qN ∈ ZN . (2.22)

To simplify the notations in the sequel, we will drop the subscript GLL and unless being explicitly specified,
whenever an integration rule is required, the GLL one is implicitly being used.

2.3.3 Semi-discrete Navier–Stokes formulation

In order to formulate the semi-discrete version of our problem governed by the Navier–Stokes equations,
the variables are approximated with expressions involving Lagrangian interpolating polynomials based on the
quadrature collocation points [44, 116, 210]. The SEM uses two tensor-product bases on the reference element
Ω̂ := [−1, 1]d and for the sake of simplicity we will choose the same discretization order N in each space
direction:

• the Gauss-Lobatto-Legendre Lagrangian interpolation basis of degree N

{πi,j,k(ξ)}Ni,j,k=0 := {πi(ξi)}Ni=0 ⊗ {πj(ξj)}Nj=0 ⊗ {πk(ξk)}Nk=0, ∀ξ ∈ Ω̂, (2.23)

to expand the velocity field discretized on the Nth-order GLL grid;

• the Gauss-Legendre Lagrangian interpolation basis of degree N − 2

{$i,j,k(ζ)}N−1
i,j,k=1 := {$i(ζi)}N−1

i=1 ⊗ {$j(ζj)}N−1
j=1 ⊗ {$k(ζk)}N−1

k=1 , ∀ζ ∈ Ω̂, (2.24)

to expand the pressure field discretized on the GL grid of order N − 2.

The expressions of the one-dimensional GLL and GL Lagrangian interpolant polynomials π(ξ) and $(ζ) ap-
pearing in (2.23)–(2.24) can be found in [58] and also partially in Sec. A.7 and Sec. A.8. The polynomials
{πi,j,k(ξ)}Ni,j,k=0 and {$i,j,k(ζ)}N−1

i,j,k=1 serve as bases for the functions in the spaces XN and ZN

uN (x(ξ), t) =
N∑

i,j,k=0

uijk(t) πi,j,k(ξ), ∀(ξ, t) ∈ Ω̂× I, (2.25)

pN (x(ζ), t) =

N−1∑

i,j,k=1

pijk(t) $i,j,k(ζ), ∀(ζ, t) ∈ Ω̂× I, (2.26)

where x = xe is the location of the point considered in the spectral element Ωe, {uijk(t)}Ni,j,k=0 is the set of

nodal values of the velocity field on the GLL grid of Ωe, and {pijk(t)}N−1
i,j,k=1 is the set of nodal values of the

pressure field on the GL grid of Ωe.

We can now expand the trial velocity uN and the trial pressure pN onto the GLL–GL bases like in (2.25)
and (2.26) respectively. The semi-discrete equations derived from (2.16)–(2.17) are

M
du

dt
= −Au−Cu + DT p+ Mf, (2.27)

−Du = 0. (2.28)

The operators appearing in (2.27)–(2.28) are: M the diagonal mass matrix, A the stiffness matrix, C the discrete
convective operator, DT the discrete gradient operator and D the discrete divergence. These matrices are all
composed of three blocks associated with the discretization in each space direction. For instance, the diagonal
mass matrix M is composed of d blocks, namely the mass matrices M which are identical when considering the
same polynomial degree N in the d space directions.
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2.3.4 Mortar element formulation

In order to adapt locally the numerical approximation of the flow variables in the vicinity of singularities or
in special regions of the flow where the physics requires special description, it may be necessary to refine the
mesh in a non-conforming way and/or modify the polynomial degree of contiguous spectral elements using the
mortar element method. This latter method has been extensively described in various papers, e.g. [10,18,170].
The numerical analysis of mortar methods has been reported in detail for Stokes problems [16] and theoretical
error estimates are known from which error indicators can be derive [17].

The reader is referred to the Chapter 7 of the monograph by Deville et al. [58] for a detailed description of
the method and a presentation of the mortar operators.

2.3.5 Time discretization

Once the set of continuous equations (2.11)–(2.12) is discretized in space, the resulting semi-discrete set of
nonlinear ordinary equations (2.27)–(2.28) still requires to be discretized in time. The time dependence in the
previous ordinary equations obeys a first-order differential operator, which makes the time integrations schemes
different from the one used for the space dependence, namely the SEM. Nevertheless, as high-order spatial
discretization techniques are used for different reasons—low numerical dispersion and dissipation, accuracy of
the results, low number of grid points, etc.—high temporal accuracy is concurrently required. As noted by
Deville et al. [58], more and more industrial applications consider 3D transient calculations by direct numerical
simulation (Part IV of the present dissertation) and large-eddy simulation (Part III of the present dissertation)
methodologies. In order to derive and extract meaningful statistics from these large databases, accurate time
integration is clearly needed.

From a mathematical viewpoint, the semi-discrete problem (2.11)–(2.12) can be seen as an unsteady Stokes
problem—which embodies the coupling between velocity and pressure through the divergence-free condition—
coupled to a nonlinearity corresponding to the advective term. Three-dimensional numerical simulations with a
fully-coupled treatment of these subproblems are still out of reach even on the most powerful supercomputers.

Various schemes can be used to discretize in time Eqs. (2.11)–(2.12). All the simulations presented in this
dissertation use in particular backward differentiation formula of order k (BDFk) for implicit (linear) terms
and the extrapolation scheme of order k (EXk) for explicit (nonlinear) term as introduced by Karniadakis et
al. [140]. Unless otherwise stated, the advective term is treated in its convective form u ·∇u. In matrix notation,
the implicit-explicit discretized problem for our choice BDF2/EX2 reads

(
3M

2∆t
+ A

)
un+1 −DT pn+1 =

M

∆t

(
2un − 1

2
un−1

)
+ Mfn+1 −Cun+1, (2.29)

Cun+1 = 2Cun −Cun−1, (2.30)

−Dun+1 = 0, (2.31)

where ∆t is the time-step. For this scheme, there is no time-splitting error. Furthermore, following the study
of Couzy [52] on the order of BDF3/EX3, one can easily show that the BDF2/EX2 scheme provides global
second-order accuracy. This decoupling BDF2/EX2 has also been used in the past by Deville & Fiétier [78] for
the simulation of visco-elastic flows and by Bodard [27] for fluid-structure interaction problems. The efficiency of
this decoupled method depends critically on the availability of an efficient and robust solver for the underlying
Stokes problem at each time-step. The approach in this dissertation consists in solving the discretized problem
(2.29)–(2.31) with an efficient solver as designed by Couzy [52]. The mass-momentum set of equations is solved
via a generalized block LU decomposition with pressure correction [196,197], which can be summarized by the
following steps:

1. Computation of the tentative velocity vector u∗ by solving

Hu∗ = DT pn +
M

∆t

(
2un − 1

2
un−1

)
+ Mfn+1 − (2Cun −Cun−1), (2.32)

using the old time-level pressure pn and where H = 3M/(2∆t) + A is the Helmholtz operator.

2. Computation of the pressure at the new time-level by solving the following problem for the pressure
correction δpn+1 = pn+1 − pn

−DQDT δpn+1 =
2

∆t
Du∗. (2.33)
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3. Computation of the final velocity at the time-level n+ 1 after a pressure correction

un+1 = u∗ +
∆t

2
QDT δpn+1. (2.34)

The choice of the matrix Q appearing in Eqs. (2.33)–(2.34) is instrumental. By setting Q = H−1, one obtains
the Uzawa algorithm [58, 171]. For the unsteady Stokes operator, the Uzawa is known to converge slowly at
large computational expense. Therefore, much effort has been devoted to decoupling completely the pressure
from the velocity-field calculation. This can be achieved by approximating the inverse of the Helmholtz operator
by the following choice of the operator Q

Q =
∆t

2
M−1. (2.35)

This approximation proves to first solve the issue related to the high computational expense associated with the
Uzawa algorithm. Indeed, in the SEM framework the mass matrices being diagonal, their inverse can easily be
computed. From an accuracy viewpoint, such block LU decomposition with the matrix Q given by Eq. (2.35)
leads to a pressure correction method, which is a second-order scheme, as proven by Van Kan [253].

An alternative to the extrapolation method (EXk) for computing the nonlinear term is the operator in-
tegration factor splitting (OIFS) method proposed by Maday et al. [173]. The advantage of the BDFk/EXk
approach over the OIFS one with a BDFk scheme for linear terms, is that the local errors vanish for a converged,
stationary solution. In addition, as mentioned earlier the BDFk/EXk method does not induce any time-splitting
error.

2.3.6 System solving techniques

The ill-conditioning arising from high-order discretizations is a major concern in their application. As noted by
Deville et al. [58], the condition number of the operator M−1A scales as O(N4) for a one-dimensional problem.
As a consequence, calculations based on the SEM become increasingly ill-conditioned with the order of the
method and the mesh refinement. This issue justifies the choice of preconditioned iterative solutions to finally
solve the fully discretized problem. Indeed, the use of appropriate preconditioners can reduce significantly the
condition number and hence converge more rapidly to the solution.

The preconditioned conjugate gradient method is used to solve the first two steps of the pressure-correction
method corresponding to Eq. (2.32) and Eq. (2.33). Two different preconditioners are used: a diagonal pre-
conditioner for the solution of Eq. (2.32) and a preconditioner developed by Couzy & Deville [53] for the
pressure-correction step (2.33).

The computational performances of the above-detailed numerical method is directly related to the conver-
gence of the preconditioned conjugate gradient and to the parallel implementation of the method. A complete
assessment of the performances of the parallel implementation of the SEM used in this dissertation, is given in
Appendix C considering different computer architectures and compilers.

2.3.7 Stabilization technique

As mentioned by Fischer & Mullen [80], despite the numerous advantages of the SEM, stability problems
have been encountered in the past, which required very fine space and time resolutions for applications at
moderate Reynolds number (103). Stabilization can easily be obtained with the Legendre-SEM by using a
nodal filtering technique introduced by Fischer & Mullen [80]. The filter is applied at the end of each step of the
Navier–Stokes time integration of the problem governed by Eqs. (2.27)–(2.28) and aims at removing nascent
instabilities induced by the treatment of the nonlinear convective term. This specific technique is mainly used
in the applications presented in Chapter 4 and is detailed in Sec. 4.2.4. As noted by Blackburn & Schmidt [24],
this filter is applied at the element level and conveniently preserves the C0-continuity at the interface between
elements.

2.4 Summary

In this chapter, a brief overview of the main computational methods to solve shear-driven incompressible flows
is given. A Legendre spectral element method with a specific time discretization scheme has been selected since
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time-dependent accurate solutions are expected for both turbulent and transitional shear-driven cavity flows
considered in Part III and IV of the present dissertation. In addition, low numerical dissipation and dispersion
are required if one expects to observe accurately time-dependent phenomena.

The semi-discretized problem based on the SEM is decoupled into an unsteady Stokes problem treated
implicitly and the nonlinear advective term into its convective form, treated explicitly. The time-integration
schemes used to treat the previous two subproblems is BDF2/EX2 respectively. No time-splitting error is
induced by this choice which leads to a global second-order for the method. The details of the velocity-pressure
decoupling using a generalized block LU decomposition with pressure correction has been discussed. Finally,
the iterative solution of the discretized problem using the preconditioned conjugate gradient method has been
briefly introduced.



Chapter 3

Spectral element method for moving-boundary
problems

This chapter describes a novel numerical model aiming at solving moving-boundary problems such as free-
surface flows or fluid-structure interaction. This model uses a moving-grid technique to solve the Navier–Stokes
equations expressed in the arbitrary Lagrangian-Eulerian kinematics. The discretization in space is based on
the spectral element method. The coupling of the fluid equations and the moving-grid equations is essentially
done through the conditions on the moving boundaries. Two- and three-dimensional simulations are presented:
translation and rotation of a cylinder in a fluid, and large-amplitude sloshing in a rectangular tank. The accuracy
and robustness of the present numerical model is studied and discussed.

All the developments of the present chapter constitute the numerical framework for the different direct
numerical simulations of free-surface swirling flows presented in Part IV of the present dissertation. These
developments have also been used by Bodard in his dissertation [27] on fluid-structure interaction problems.

3.1 Introduction

With the advent of powerful computational resources like clusters of PCs or parallel computers the numericists
are able to address more challenging problems involving multi-physics and multi-scale approaches. These prob-
lems cover a large spectrum of scientific and engineering applications. However, in this chapter, for the sake of
conciseness, we will restrict our attention to two specific problems, namely: free-surface flows and fluid-structure
interaction.

Free-surface flows occur in many industrial applications: coating flows, vertical drawing of viscous fluids, jets,
die flows, etc, and in environmental flows: ocean waves, off-shore engineering, coastal habitat and management,
to name a few. Two review articles have been published in recent years and report the state-of-the-art of the
field [219, 248]. It can be observed that free-surface flows have been tackled by direct numerical simulation at
low and moderate Reynolds numbers. This reality is essentially due to the nonlinear characters of the flow. On
top of the nonlinearity associated to the Navier–Stokes equations themselves, here we deal with a complicated
geometry which is changing in time and which is part of the solution itself. This accumulation of difficulties
calls for elaborate algorithms and numerical techniques.

Fluid-structure interaction has been recognized for a long time as a real challenge. Indeed, this interaction
is present in engineering problems like turbo-machinery, aerospace applications: buffeting, acoustics, and also in
biomedical flows like blood flow in the coronary arteries. Fluid-structure interaction is also encountered in the
field of vortex-induced vibrations having many important marine applications (e.g. related to oil exploration,
cable dynamics, etc.). It is only at the present time that this type of interaction for three-dimensional cases
appears to be feasible as the necessary computing power becomes available. On one hand, the computational
fluid dynamics (CFD) codes integrate the full steady state or transient Navier–Stokes equations which govern
the dynamics of a viscous Newtonian fluid. They mostly use finite volume or finite element approximations.
On the other hand, the computational solid mechanics (CSM) codes integrate the dynamics of various solid
models, incorporating for example, classical infinitesimal linear elasticity, nonlinear finite elasticity with large
deformations, plasticity, visco-elasticity, etc. These problems are also highly nonlinear with respect to the
complicated geometries at hand. The combination of the nonlinearities of the mathematical models for the
constitutive relations and for the geometrical behavior has called for a robust approach able to deal with all the
complexities and intricacies. The finite element method (FEM) with the iso-parametric elements has emerged
as the leading technology and methodology in CSM—see Sec. 2.2.3 for more details.

In the present chapter, the methodological framework is the same for the fluid and the solid parts and rests
upon the spectral element method [58,172,194,210]. With this choice the space discretization is similar for both
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problems. As in free-surface flows and fluid-structure interaction the geometry is deforming and moving, it is
needed to use the arbitrary Lagrangian–Eulerian (ALE) formulation [64,65,82,121]. This formulation allows to
treat the full geometrical problem with respect to a reference configuration that is arbitrarily chosen. A mapping
is introduced to ease the description of the current configuration with respect to a reference configuration. This
process leads to an ALE velocity which will be related to a grid velocity.

In Section 3.2, the mathematical models will be presented with the associated weak formulations in the ALE
context. Section 3.3 will be devoted to space and time discretizations. Section 3.4 will describe the numerical
algorithms for the moving-grid technique. Section 3.5 will present numerical results and the final section will
draw some conclusions.

3.2 Mathematical model

A moving boundary-fitted grid technique has been chosen to simulate the unsteady part of the boundary in our
computations. In the particular cases dealt with in this work, the unsteady part of the boundary can be either
the free surface in case of free-surface flows, or for fluid-structure interaction problems, the interface between the
fluid and the structure. This choice of a surface-tracking technique is primarily based on accuracy requirements.
With this group of techniques, the grid is configured to conform to the shape of the interface, and thus adapts
continuously—at each time-step—to it and therefore provides an accurate description of the moving boundary
to express the related kinematic and/or dynamic boundary conditions.

The moving-boundary incompressible Newtonian fluid flows considered, are governed by the Navier–Stokes
equations comprising the momentum equation and the divergence-free condition. In the ALE formulation,
a mixed kinematic description is employed: a Lagrangian description of the moving boundary, an Eulerian
description of the fixed domain boundaries and a mixed description of the internal fluid domain.

3.2.1 The ALE kinematic framework

This section will introduce the notations used in this chapter to define the variables and frames of reference
related to the ALE formulation. The notations adopted hereafter are borrowed from [82,189]. We denote by Ωt

the fluid domain subset of Rd with d = 2, 3 the space dimension, the subscript t referring to the time t as the
fluid domain is changing when its boundaries are moving. Let us denote by Ω0 a reference configuration—for
instance the domain configuration at initial time t = t0. The system evolution is studied in the time interval
I = [t0, T ]. The position of a point in the current fluid domain Ωt is denoted by x—Eulerian coordinate—and in
the reference frame Ω0 by Y—ALE coordinate. Let At be a family of mappings, which at each t ∈ I associates
a point Y ∈ Ω0 to a point x ∈ Ωt:

At : Ω0 ⊂ Rd → Ωt ⊂ Rd, x(Y, t) = At(Y). (3.1)

At is assumed to be continuous and invertible on Ω0 and differentiable almost everywhere in I . The inverse of
the mapping At is also continuous on Ω0.

The Jacobian matrix of the ALE mapping At is given by

JAt =
∂x

∂Y
, (3.2)

and its determinant JAt = det JAt is the Jacobian of the mapping characterizing the metrics of Ωt generated
from the one of Ω0. The ALE mesh velocity w is defined as

w(x, t) =
∂At
∂t

∣∣∣∣
Y

. (3.3)

The Euler expansion formula gives the relationship between the Jacobian of the mapping At and the divergence
of the ALE velocity w:

∂JAt
∂t

∣∣∣∣
Y

= JAt∇x ·w, ∀(Y, t) ∈ Ω0 × I, (3.4)

supplemented by the initial condition JAt = 1 for t = t0. In real computations, w will be associated to the mesh
velocity. The hyperbolic partial differential equation (3.4) highlights the important role played by the divergence
of the mesh velocity in the time evolution of the mapping At. This particular point is emphasized in Section 3.4,



3.2. Mathematical model 25

where one of the mesh-update techniques used in our simulations, enforces a divergence-free condition for w
resulting in a constant in time Jacobian JAt [34]. Furthermore Eq. (3.4) constitutes the evolution law for JAt
as in our formulation the ALE mesh velocity is calculated based on the essential boundary conditions of our
problem in Ωt, thereby defining the location of the grid nodes and the value of At.

Considering a time-dependent scalar field f defined on Ωt × I , the notation ∂f/∂t|Y refers to the time
derivative in the ALE frame, or in short the ALE time derivative expressed in Eulerian coordinates as opposed
to the regular time derivative in Eulerian coordinates and denoted by ∂f/∂t|x. It is worth noting that a standard
application of the chain rule to the time derivative gives

∂f

∂t

∣∣∣∣
Y

=
∂f

∂t

∣∣∣∣
x

+ w ·∇xf. (3.5)

The symbol ∇x indicates the gradient operation applied to the scalar field f with respect to the Eulerian
coordinate x. If w = 0, the mesh is fixed, and we recover the Eulerian description where ∂/∂t|Y is the classical
time derivative ∂/∂t|x. If w = u where u is the fluid velocity field, we obtain the Lagrangian description and
∂/∂t|Y is the particle derivative. Eq. (3.5) allows to generalize the Reynolds transport theorem for a time-
dependent volume integral of a scalar field

d

dt

(∫

Ωt

f dΩ

)
=

∫

Ωt

(
∂f

∂t

∣∣∣∣
Y

+ f∇x ·w
)

dΩ. (3.6)

3.2.2 The strong ALE formulation for the Navier–Stokes equations

The governing equations of our moving-boundary problem in the ALE kinematic description, for an incom-
pressible Newtonian fluid flow occupying a fluid domain Ωt whose boundary ∂Ωt is evolving with time, are the
Navier–Stokes equations which in strong form and in the Eulerian kinematic description read

∂u

∂t

∣∣∣∣
x

+ u ·∇xu = −∇xp+ 2ν∇x ·Dx(u) + f , ∀(x, t) ∈ Ωt × I, (3.7)

∇x · u = 0, ∀(x, t) ∈ Ωt × I, (3.8)

where u is the velocity field, p the pressure field (normalized by the constant fluid density ρ and relative to
zero ambient), ν the kinematic viscosity of the fluid, Dx(u) = 1

2 (∇xu +∇xuT ) the rate-of-deformation tensor
and f the body force per unit mass, with the superscript T indicating the transpose. Eq. (3.7) expresses the
conservation of momentum and the divergence-free condition (3.8) is the continuity equation in its simplified
form for an incompressible flow. Equations (3.7)–(3.8) are valid in the internal fluid domain Ωt, and have to be
supplied with boundary conditions on the boundary ∂Ωt and the problem being unsteady, an initial condition
is also required. The initial velocity field is chosen as

u(x, t = t0) = u0(x), ∀x ∈ Ωt, with Ωt = Ωt0 = Ω0, (3.9)

such that ∇x ·u0 = 0. Let the boundary ∂Ωt be split into two non-overlapping parts ∂Ωt = ∂ΩDt ∪ ∂Ωσt . In the
sequel we will consider the two following types of boundary conditions

u = g(t), on ∂ΩDt and ∀t ∈ I, (3.10)

σ · n̂ = −pI · n̂ + 2νDx(u) · n̂ = h(t), on ∂Ωσt and ∀t ∈ I, (3.11)

where σ is the stress tensor, I the identity tensor and n̂ the local unit outward normal vector to ∂Ωt. Eq. (3.10)
is an essential boundary condition on ∂ΩDt of Dirichlet type. In the cases of free-surface flows and fluid-structure
interaction problems, which are of particular interest for us, ∂ΩDt corresponds to fixed or prescribed moving solid
walls where a no-slip condition has to be satisfied. Eq. (3.11) is a natural boundary condition on ∂Ωσt . For free-
surface flows and fluid-structure interactions, ∂Ωσt represents prescribed inflow and/or outflow depending on the
situations considered, but primarily the free surface itself or the interface between the fluid and the structure,
where a mechanical equilibrium has to be enforced. Therefore (3.11) is a dynamic boundary condition (DBC)
expressing the continuity of the normal stress at the moving boundary. If free-surface flows are considered and
if the surface tension is neglected, h = −p0n̂ where p0 is the pressure of the surrounding fluid, taken as zero in
the sequel.

Using Eq. (3.5), we can recast the strong form of the conservation of the momentum of the Navier–Stokes
equations in the ALE frame

∂u

∂t

∣∣∣∣
Y

+ (u−w) ·∇xu = −∇xp+ 2ν∇x ·Dx(u) + f , ∀(x, t) ∈ Ωt × I, (3.12)
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the divergence-free condition (3.8), the initial and boundary conditions (3.9)–(3.11) remaining unchanged in the
ALE kinematic description. Indeed, boundary conditions are related to the problem and not to the kinematic
description employed, be it Eulerian, Lagrangian or arbitrary Lagrangian-Eulerian. Nevertheless the ALE mesh
velocity w is to a certain extent part of the unknown fields of the problem even though some freedom in moving
the mesh makes the ALE technique so attractive. The details related to the treatment and the computation of
the mesh velocity are presented in Section 3.4.

3.2.3 The weak ALE formulation for the moving-boundary problem governed by
the Navier–Stokes equations

Based on the strong formulation of the moving-boundary problem described in Section 3.2.2, one can derive the
more appropriate weak transient ALE formulation. In a standard approach, first are introduced the spaces of
test and trial functions used to express the initial problem in its weak form based on the reference configuration
Ω0. We may note that the spaces of test and trial functions for the pressure are identical as no essential Dirichlet
condition is being imposed on this field. This space is the space of functions that are square Lebesgue-integrable
on the domain Ωt and is denoted by L2(Ωt). In general the velocity does not necessarily vanish on the domain
boundary; in our particular case the existence of a non-homogeneous essential Dirichlet boundary condition on
∂ΩDt leads us to consider different spaces for the test and trial functions for the velocity field. The solution for
the velocity u, of the problem (3.7)–(3.11) will be searched for directly in the Sobolev space of trial functions
H1
D(Ωt)

d defined as follows

H1
D(Ωt)

d = {u ∈ L2(Ωt)
d, ∇xui ∈ L2(Ωt)

d with i = 1, . . . , d, u|
∂ΩDt

= g}, (3.13)

and corresponding to the current configuration Ωt. The reference configuration Ω0 will be used to build the
velocity test functions v̂, which will be taken in the space H1

0,D(Ω0)d with

H1
0,D(Ω0) = {v̂ ∈ L2(Ω0), ∇xv̂ ∈ L2(Ω0)d, v̂|

∂ΩD0
= 0}, (3.14)

to satisfy a homogenous Dirichlet condition on ∂ΩD0 . Subsequently, the dynamics of the test functions on the
configuration Ωt is obtained by means of the existing inverse of the mapping At. Therefore the velocity test
functions on the configuration at time t are the set of functions (v̂ ◦ A−1

t ) with v̂ belonging to H1
0,D(Ω0)d.

In the sequel, the notation (v̂ ◦ A−1
t ) is kept in order to emphasize two key points. First, the treatment of

the weak form of the time derivative ∂u/∂t|Y in Eq. (3.12) is based on the essential property that v̂ is not
time dependent and consequently ∂v̂/∂t|Y = 0. Second, such formulation highlights the path to follow when
practically implementing the weak ALE formulation. Indeed, the time dependency is fully incorporated in the
inverse mapping A−1

t and the functions v̂ remains the same as the ones used in fixed-grid problems. Moreover,
in a more general framework where At is still invertible but less regular, this formulation still holds and one
only needs to care for the regularity of the functions v̂ and not of the functions (v̂ ◦ A−1

t ). With the notations
and spaces introduced, the weak transient ALE formulation reads:
Find (u(t), p(t)) ∈ H1

D(Ωt)
d × L2(Ωt) such that for almost every t ≥ t0

d

dt

∫

Ωt

(v̂ ◦ A−1
t ) · u dΩ +

∫

Ωt

(v̂ ◦ A−1
t ) ·∇x · [uu− uw] dΩ =

∫

Ωt

(p∇x · (v̂ ◦ A−1
t )− 2νDx(u) :∇x(v̂ ◦ A−1

t )) dΩ (3.15)

+

∫

Ωt

f · (v̂ ◦ A−1
t ) dΩ +

∫

∂Ωσt

h · (v̂ ◦ A−1
t ) d∂Ω, ∀v̂ ∈ H1

0,D(Ω0)d,

and

−
∫

Ωt

q∇x · u dΩ = 0, ∀q ∈L2(Ωt). (3.16)

The above set of equations has to be intended in the sense of distribution in the interval t > t0, therefore
justifying the qualifier “for almost every t ≥ t0”, see [204] for greater details. As expected the DBC (3.11)
appears ‘naturally’ in the weak formulation above, corresponding to the last term on the right-hand side of
(3.15) and being the only ‘surface term’ as the spatial integration is limited to ∂Ωσt . In addition, the DBC (3.11)
defines the reference pressure level and therefore no additional condition on the mean value of the pressure is
required. Finally, it is well known (see [204] for instance) that a non-homogeneous Dirichlet boundary condition
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engenders a compatibility condition that the field u has to satisfy. The origin of this condition is that, in order
to be compatible with (3.8) the boundary condition (3.10) imposes

∫

∂Ωt

u · n̂ d∂Ω =

∫

∂ΩDt

g(t) · n̂ d∂Ω +

∫

∂Ωσt

u(t) · n̂ d∂Ω = 0, ∀t ∈ I. (3.17)

Eq. (3.17) is a consequence of (3.16) with q = 1.

In order to ease the discretization of the continuous weak equations (3.15)–(3.16), we introduce the following
notations and bilinear forms, such as a scalar product defined by

(u, v̂) :=

∫

Ωt

(v̂ ◦ A−1
t ) · u dΩ, ∀v̂ ∈ H1

0,D(Ω0)d, (3.18)

a so-called ‘energy bilinear form’

A(u, v̂) := 2ν

∫

Ωt

Dx(u) :∇x(v̂ ◦ A−1
t ) dΩ, ∀v̂ ∈ H1

0,D(Ω0)d, (3.19)

a bilinear form related to the weak incompressibility constraint

B(v̂, p) := −
∫

Ωt

p∇x · (v̂ ◦ A−1
t ) dΩ, ∀v̂ ∈ H1

0,D(Ω0)d, (3.20)

a nonlinear form corresponding to the nonlinear convective term

C(v̂; u,w) :=

∫

Ωt

(v̂ ◦ A−1
t ) ·∇x · [uu− uw] dΩ, ∀v̂ ∈ H1

0,D(Ω0)d, (3.21)

and finally two linear forms, the first one being related to the source term f

F(v̂) :=

∫

Ωt

f · (v̂ ◦ A−1
t ) dΩ, ∀v̂ ∈ H1

0,D(Ω0)d, (3.22)

and the second one to the non-homogeneous natural boundary condition (3.11) on ∂Ωσt

Hσ(v̂) :=

∫

∂Ωσt

h · (v̂ ◦ A−1
t ) d∂Ω, ∀v̂ ∈ H1

0,D(Ω0)d. (3.23)

With these notations, the continuous weak ALE form of our moving-boundary Navier–Stokes problem can be
recast as
Find (u(t), p(t)) ∈ H1

D(Ωt)
d × L2(Ωt) such that for almost every t ≥ t0

d

dt
(u, v̂) +A(u, v̂) + B(v̂, p) + C(v̂; u,w) = F(v̂) +Hσ(v̂), ∀v̂ ∈ H1

0,D(Ω0)d, (3.24)

B(u, q) = 0, ∀q ∈ L2(Ωt). (3.25)

3.3 Numerical technique and discretization

Moving-boundary problems, either free-surface or fluid-structure interaction, represent a real challenge not only
for the mathematician but also for the numericists. As presented in Section 3.2, the weak formulation of the
problem (3.24)–(3.25) is an evidence of its complexity. In this section, particular emphasis will be put on the
numerical space discretization of this arduous continuous problem. The general case with non-homogeneous
natural and essential Dirichlet boundary conditions is dealt with, justifying the choice of a very detailed presen-
tation. The particular case of steady problems with non-homogeneous Neumann conditions and homogeneous
Dirichlet boundary conditions was first formulated by Ho & Patera in [123] in their study of free-surface flows
dominated by inhomogeneous surface-tension effects. Furthermore, Rønquist extended the previous work of Ho
and Patera to the more general case of steady free-surface flow problems with non-homogeneous Neumann
and Dirichlet boundary conditions [211]. The specificities related to the treatment of transient problems is
highlighted in the present chapter, which to our knowledge is not available in the current literature.
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3.3.1 Spectral element discretization

The first step in the spectral element method (SEM) discretization consists in subdividing the fluid domain
Ωt = Ωt ∪ ∂Ωt into E non-overlapping elements {Ωe

t}Ee=1. In the sequel we will assume that this elemental
subdivision is maintained for all values of t in the interval I , therefore meaning that no re-meshing procedure
is applied and leading to

Ωet = At(Ωe0), for e = 1, · · · , E, ∀t ∈ I. (3.26)

A re-meshing procedure for problem using SEM is presented in [34] and can be used if needed. Each element Ωe
t

involves a mesh constructed as a tensor product of one-dimensional grids. Although each space direction may
be discretized independently of the others, without loss of generality we will consider only meshes obtained with
the same number of nodes in each direction, denoted by N + 1, corresponding to the dimension of the space
of Nth-order polynomials. To describe the discretization process accurately, we adopt the same procedure as
in [58] and define the following spaces

X := H1
0,D(Ω0)d, Y := H1

D(Ωt)
d, Z := L2(Ωt). (3.27)

3.3.2 Galerkin approximation

We apply the Galerkin approximation to our Navier–Stokes problem in the ALE formulation in its weak form
(3.24)–(3.25), and therefore select finite dimensional polynomial subspaces XN , YN and ZN to represent X , Y
and Z respectively. A staggered-grid approach with element based on PN − PN−2 spaces for the velocity and
pressure field respectively, allows to eliminate completely the spurious pressure modes [172,174]. In this context,
the finite dimensional functional spaces are defined as

XN := X ∩ PdN,E, YN := Y ∩ PdN,E, ZN := Z ∩ PN−2,E, (3.28)

with
PM,E = {φ|φ ∈ L2(Ωt);φ|Ωet is a polynomial of degree ≤M, ∀e = 1, · · · , E}, (3.29)

where the superscript d in (3.28) reflects the fact that test and trial velocity functions are d-dimensional. With
these notations the Galerkin approximation of (3.24)–(3.25) reads
Find (uN (t), pN (t)) ∈ YN × ZN such that for almost every t ≥ t0

d

dt
(uN , v̂N ) +A(uN , v̂N ) + B(v̂N , pN )+

C(v̂N ; uN ,wN ) = FN(v̂N ) +HσN (v̂N ), ∀v̂N ∈ XN , (3.30)

B(uN , qN ) = 0, ∀qN ∈ ZN , (3.31)

with

(uN , v̂N ) =

E∑

e=1

∫

Ωet

uN · (v̂N ◦ A−1
t ) dΩ, ∀v̂N ∈ XN (3.32)

FN (v̂N ) =

E∑

e=1

∫

Ωet

fN · (v̂N ◦ A−1
t ) dΩ, ∀v̂N ∈ XN (3.33)

HσN (v̂N ) =
E∑

e=1

∫

∂Ωe,σt

hN · (v̂N ◦ A−1
t ) d∂Ω, ∀v̂N ∈ XN (3.34)

fN and wN being the projection of the fields f and w onto the finite dimensional space PdN,E.

The integrals within each of the spectral elements {Ωe
t}Ee=1 and on the boundaries {∂Ωe,σ

t }Ee=1 are performed
in a discrete manner using Gaussian quadrature rules. More specifically, all the terms in (3.30)–(3.31) are
integrated using a Gauss-Lobatto-Legendre (GLL) quadrature rule except for the two terms involving the
bilinear form B where functions discretized in PN−2,E appear. For these two terms, namely the pressure term
and the divergence-free condition, a Gauss-Legendre (GL) quadrature rule is chosen. Therefore, the PN −PN−2

Navier–Stokes problem in the ALE form is finally stated as
Find (uN (t), pN (t)) ∈ YN × ZN such that for almost every t ≥ t0

d

dt
(uN , v̂N )N,GLL+ AN,GLL(uN , v̂N ) + BN,GL(v̂N , pN )+

CN,GLL(v̂N ; uN ,wN ) = FN,GLL(v̂N ) +HσN,GLL(v̂N ), ∀v̂N ∈ XN , (3.35)

BN,GL(uN , qN ) = 0, ∀qN ∈ ZN . (3.36)



3.3. Numerical technique and discretization 29

To simplify the notations in the sequel, we will drop the subscript GLL and unless being explicitly specified,
whenever an integration rule is required, the GLL one is implicitly being used.

3.3.3 Semi-discrete Navier–Stokes moving-boundary problem in the ALE form

In order to formulate the semi-discrete version of our moving-boundary problem governed by the Navier–Stokes
equations in the ALE form, we introduce the two tensor-product bases on the reference element Ω̂ := [−1, 1]d and
defined with Eqs. (2.23)–(2.24) in Sec. 2.3.3. The expressions of the one-dimensional GLL and GL Lagrangian
interpolant polynomials π(ξ) and $(ζ) appearing in (2.23)–(2.24) can be found in [58] and also partially in
Sec. A.7. The polynomials {πi,j,k(ξ)}Ni,j,k=0 and {$i,j,k(ζ)}N−1

i,j,k=1 will serve as bases for the functions in the
spaces XN , YN and ZN

uN (x(ξ), t) =

N∑

i,j,k=0

uijk(t) πi,j,k(ξ), ∀(ξ, t) ∈ Ω̂× I, (3.37)

pN (x(ζ), t) =

N−1∑

i,j,k=1

pijk(t) $i,j,k(ζ), ∀(ζ, t) ∈ Ω̂× I, (3.38)

where x = xe is the location of the point considered in the spectral element Ωe
t , {uijk(t)}Ni,j,k=0 the set of nodal

values of the velocity field on the GLL grid of Ωe
t and {pijk(t)}N−1

i,j,k=1 the set of nodal values of the pressure
field on the GL grid of Ωet . It is important to note that the time-dependency of the discretized velocity uN and
pressure pN is not solely accounted by the time-dependent nodal values of these two fields. Indeed, due to the
motion of the grid, the mapping between the position in the reference element Ω̂ and the spectral element Ωe

t

at time t is also time-dependent via the ALE mapping At. If we note Me
t (resp. Me

0) the mapping from the
reference element Ω̂ onto Ωet (resp. Ωe0), we can write

xe =Me
t (ξ), ∀(ξ, t) ∈ Ω̂× I, (3.39)

Ye =Me
0(ξ), ∀(ξ, t) ∈ Ω̂× I, (3.40)

xe = At(Ye), ∀(Ye, t) ∈ Ωe0 × I, (3.41)

leading to following relationship between the different mappings

Me
t = At ◦Me

0, ∀t ∈ I. (3.42)

Eq. (3.42) shows that the second origin of the time-dependency of (3.37) and (3.38), after the one due to the
set of GLL and GL nodal values, is the moving-grid technique via the time-dependency of the ALE mapping
At.

Before embarking on the final process of semi-descritizing the equations for the moving-boundary problem,
a last issue needs to be addressed: the treatment of the non-homogeneous Dirichlet boundary condition (3.10)
on ∂ΩDt . First of all and as mentioned earlier, the non-homogeneity of (3.10) leads to different spaces for the
trial and test functions for the velocity field, XN and YN respectively. Therefore the basis (3.37) developed
for XN is not suitable for the solution uN (t) of the problem (3.30)–(3.31) sought in YN . As presented earlier,
the non-homogeneous Dirichlet boundary condition imposes to satisfy the compatibility condition (3.17) whose
discrete version reads

E∑

e=1

∫

∂Ωet

uN (t) · n̂ d∂Ω = 0, ∀t ∈ I. (3.43)

Let ub,N be a (piecewise) polynomial defined on the discrete boundary ∂Ωe
t (e = 1, . . . , E) and such that its

nodal boundary values are equal to the boundary data g(t). In practice, the GLL Lagrangian interpolation
bases defined on the element boundaries are used to expand ub,N ; however, in the rest of the inner domain
these functions are zero. By construction, ub,N satisfies (3.43). Setting uN = u0,N + ub,N , the problem reduces
to finding u0,N in the space Y0,N := H1

0,D(Ωt)
d∩PdN,E. Therefore the problem (3.30)–(3.31) can be reformulated

as follows
Find (u0,N (t), pN (t)) ∈ Y0,N × ZN such that for almost every t ≥ t0

d

dt
(u0,N , v̂N )N + AN (u0,N , v̂N ) + BN,GL(v̂N , pN )+

CN(v̂N ; u0,N ,wN) = FN (v̂N ) +HσN (v̂N ) +D1,N (v̂N , t), ∀v̂N ∈ XN , (3.44)

BN,GL(u0,N , qN) = D2,N,GL(qN , t), ∀qN ∈ ZN , (3.45)
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with

D1,N (v̂N , t) = − d

dt
(ub,N (t), v̂N )N

−AN (ub,N (t), v̂N )− CN (v̂N ; ub,N(t),wN ), ∀v̂N ∈ XN , (3.46)

and

D2,N,GL(qN , t) = −BN,GL(ub,N (t), qN ), ∀qN ∈ ZN . (3.47)

The two time-dependent terms D1,N et D2,N,GL appearing in (3.44) and (3.45) are due to the non-homogeneity
of the Dirichlet boundary condition. These values are related to the values of the discrete field ub,N (t), which
as mentioned earlier, are obtained from the values of the field g(t) from (3.10).

We can now expand the trial velocity u0,N and the trial pressure pN onto the GLL–GL bases like in (3.37)
and (3.38) respectively. In the sequel we will drop the subscript 0 in u0,N , no confusion being possible as the
non-homogeneous Dirichlet boundary conditions is already accounted for in (3.44)–(3.45). The semi-discrete
equations derived from (3.44)–(3.45) are

d

dt
(M(t)u(t)) = −A(t)u(t)−C(u(t),w(t), t)u(t) + DT (t)p(t) + F1(t), (3.48)

−D(t)u(t) = F 2(t). (3.49)

The matrices appearing in (3.48)–(3.49) are all time-dependent: M is the mass matrix, A the stiffness matrix,
C the discrete convective operator involving the velocity field u and the ALE mesh velocity w, DT the discrete
gradient operator and D the discrete divergence. F1 and F 2 are two vectors accounting for the presence of the
body force f and the time-dependent essential Dirichlet and natural non-homogeneous boundary conditions.

3.3.4 Time discretization

The set of semi-discrete equations (3.48)–(3.49) is discretized in time using finite-difference schemes in a decou-
pled approach. The computation of the linear Helmholtz problem—corresponding to the energy bilinear form
A and the stiffness matrix A—is integrated based on an implicit backward differentiation formula of order 2,
the nonlinear convective term—corresponding to the nonlinear form C and the matrix C—is integrated based
on a relatively simple extrapolation method of order 2, introduced by Karniadakis et al. [140], see Sec. 2.3.5.

The moving-grid treatment requires the semi-discrete equations (3.48)–(3.49) to be supplemented with an
equation computing the mesh nodes update

dx

dt
= w, (3.50)

with x being a vector containing the d-dimensional mesh nodes position at time t. The integration of Eq. (3.50)
necessitates the knowledge of the values of the mesh velocity provided by the moving-grid technique employed.
Two particular techniques are presented in detail in Section 3.4. The time-integration of Eq. (3.50) is based on
an explicit and conditionally stable Adams–Bashforth of order 3.

Lastly the treatment of the pressure relies on a generalized block LU decomposition with pressure correction
[196,197], see Sec. 2.3.5.

The temporal order of the overall splitting scheme has proved to be equal to two for fixed-grid problems.
The grid motion induces a limited reduction of the global temporal order, which is found to fall between 1.5
and 2 for the simulations presented in Section 3.5. The reasons for this reduction in the global order of the
method is still not clearly understood.

3.3.5 Specificities pertaining to free-surface flows and fluid-structure interaction

Up to this point, the treatment of our moving-boundary problem was kept to a level general enough to encompass
both the free-surface flow and fluid-structure interaction problems. At this stage, it appears natural to provide
the specificities pertaining to each of these two sub-problems.

These specificities lie primarily in the natural and essential Dirichlet boundary conditions imposed to the
system. For free-surface flows with no surface-tension effects—either of normal or tangential type—and with
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no inflow nor outflow—closed system, both the natural and essential Dirichlet boundary conditions become
homogeneous—g = 0 on ∂ΩDt and h = 0 on ∂Ωσt , leading to a drastic simplification of the problem. More
precisely, the vector F1 reduces to M(t)f and F 2 vanishes in the semi-discrete formulation (3.48)–(3.49) of the
problem. For fluid-structure interaction problems, the natural boundary condition on the interface between the
flow and the structure is provided by the dynamics of the structure, that can be evaluated by the SEM and
the Newmark method [29]. In the sequel, we will focus our attention on the flow problem for both of these two
cases of interest. Therefore, the implicit-explicit discretized problem to solve reads

(
3Mn+1

2∆t
+ An+1

)
un+1 − (Dn+1)T pn+1 =

1

∆t

(
2Mnun − 1

2
Mn−1un−1

)
+ Mn+1fn+1 −Cn+1un+1, (3.51)

Cn+1un+1 = 2Cn(un,wn)un −Cn−1(un−1,wn−1)un−1, (3.52)

−Dn+1un+1 = 0, (3.53)

xn+1 = xn + ∆t

(
23

12
wn − 16

12
wn−1 +

5

12
wn−2

)
, (3.54)

where ∆t is the time-step.

3.4 Moving-grid techniques

When considering moving-boundary problems tackled in an interface-tracking and ALE frame, the moving
boundary ∂Ωσt is treated in a Lagrangian way whereas the boundary ∂ΩDt which is fixed or subject to a prescribed
motion g(t), is studied in an Eulerian frame. Accordingly, such method allows large-amplitude motions of the
moving boundary, by generating a shape-conformed grid. Hence, an accurate and simple application of the
boundary conditions on ∂Ωt is easily accessible.

As a consequence of the ALE kinematics, the boundary conditions imposed on the mesh velocity w read

w · n̂ = u · n̂, on ∂Ωσt and ∀t ∈ I, (3.55)

w = g(t), on ∂ΩDt and ∀t ∈ I. (3.56)

Eq. (3.55) is a kinematic boundary condition (KBC) on the moving boundary meaning that ∂Ωσt is a material
surface with no transfer of fluid across it in the Lagrangian perspective. Eq. (3.56) expresses a kinematic
boundary condition of no-slip type on the boundary of the domain which is not free to move. Given (3.55)–
(3.56), it appears that the freedom left for the choice of w lies in the values of this field in the internal fluid
domain Ωt and also on the tangential values of w on the moving boundary ∂Ωσt .

It is important to note that the velocity boundary condition specified on walls in contact with a free surface
is not well posed due to the contradiction of the moving free surface and a no-slip condition on the bounding
wall. Two alternative free-surface contact wall boundary conditions have been adopted in the current work. The
first one consists in strictly imposing the no-slip condition expressed by Eq. (3.56) and is used throughout the
study of the free-surface swirling flow presented in Chap. 8. Such alternative does not pose any problem when
a limited motion of the free surface occurs near the contact line. The second alternative consists in relaxing
Eq. (3.56) by considering a free-slip wall boundary condition instead, which maintains the nonpermeability
condition. Such free-slip condition relates to a shear-free condition on the walls and therefore does not lead to
any production of vorticity at these walls. This second alternative is used when large-amplitude deformations
of the free surface at the contact line occur, which is the case in the study of the sloshing of a viscous fluid in
a tank performed in Sec. 3.5.3.

The computation of the mesh velocity w in the internal fluid domain Ωt is the corner-stone of the moving-
grid technique developed in the framework of the ALE formulation. The values of the mesh velocity being
prescribed on the boundary ∂Ωt as expressed by equations (3.55)–(3.56), the evaluation of w in Ωt can be
obtained as the solution of an elliptic equation:

Exw = 0, ∀(x, t) ∈ Ωt × I, (3.57)

where Ex represents any elliptic operator based on the Eulerian coordinates x. Such an elliptic equation consti-
tutes a classical choice for calculating the mesh velocity [122]. Two types of elliptic equations are considered in
this work. The first elliptic operator used is a Laplacian operator ∆x, and will be used extensively in the fluid-
structure interaction simulations presented in Section 3.5. More details about the use of this specific operator for
the computation of the mesh velocity can be found in [29]. The second strategy relies on the assumption that the
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motion of the mesh nodes is equivalent to a steady Stokes flow, corresponding physically to an incompressible
and elastic motion of the mesh. Therefore the problem for the mesh velocity becomes a boundary-value steady
Stokes problem with the mesh velocity w satisfying a divergence-free condition

∇x ·w = 0 ∀(x, t) ∈ Ωt × I. (3.58)

The justifications of this additional constraint imposed to the mesh velocity problem is presented in detail in [34]
and in the Appendix A. The free-surface flow simulations of a sloshing in a three-dimensional tank due to the
gravity presented in Section 3.5.3, were carried out using this second strategy for w.

3.5 Numerical simulations and results

In this section we will present numerical results for three problems: the steady Stokes equations in curved
sub-domains, the motion of a cylinder in a square cavity and the sloshing in a three-dimensional tank.

3.5.1 Accuracy in curved domains

We want to check the error evolution in the square domain Ω = [−1, 1]2 decomposed in curved sub-domains
(elements). To this aim, let us consider the steady Stokes equations

−∇xp+ ∆xu + f = 0, ∀(x, t) ∈ Ωt × I, (3.59)

∇x · u = 0, ∀(x, t) ∈ Ωt × I. (3.60)

The exact solution is given by

ux = − cos (πx/2) sin (πy/2) , (3.61)

uy = sin (πx/2) cos (πy/2) , (3.62)

p = −π sin (πx/2) sin (πy/2) , (3.63)

when the body force term is chosen as

fx = −π2 cos (πx/2) sin (πy/2) , fy = 0. (3.64)

Instead of using a regular square grid composed of elements with edges parallel to the lines of the Cartesian
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Fig. 3.1: Square domain Ω with internally deformed sub-domains with E = 4× 4 spectral elements and N = 20
(left) and the velocity magnitude (right).

axes, we performed the computation on the deformed mesh [97, 221] displayed in Figure 3.1 (left). Contours of
the norm of the velocity field for the computed solution of problem (3.59)–(3.60), are presented on Figure 3.1
(right). Figure 3.2 shows the evolution of the relative error in H1-norm for the velocity and in L2-norm for
the pressure field, with respect to an increasing polynomial degree N , for two cases—E = 2 × 2 elements and
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Fig. 3.2: Relative error in H1-norm for the velocity and in L2-norm for the pressure field.

E = 4×4 elements. The convergence is slower than the one obtained with a mesh divided in several regular square
sub-domains. First, we still achieve the exponential decrease of the relative error when the polynomial degree
increases (which is typical of spectral or p-convergence [58]). Second, the convergence is faster when increasing
the number of spectral elements E, as previously observed in [222] (which is equivalent to h-convergence in
finite-element terminology [58]).
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Fig. 3.3: Curvy geometry for E = 20 and N = 30 (left) and the velocity magnitude (right).

The same computation has been carried out with a geometry Ω′ obtained by the transformation of coordi-
nates of the unit square Ω = [−1, 1]2 with sine functions (Fig. 3.3)

x′ = x+ α sin (πx) sin (πy) , (3.65)

y′ = y + α sin (πx) sin (πy) , (3.66)

with (x, y) ∈ Ω, (x′, y′) ∈ Ω′ and α = 1/10. Here, the deformation of the geometry not only involves the interior
of the sub-domains but also the domain boundaries.

The remarks made for the first computation, corresponding to the square domain, are still relevant for this
geometry. The same behavior of the convergence is obtained as one can observe on Figure 3.4. The deformation
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Fig. 3.4: Relative error in H1-norm for the velocity and in L2-norm for the pressure field.

of the boundaries induces obviously a slower convergence in comparison with the square domain. Nevertheless,
the important result is that the spectral convergence is maintained (Fig. 3.4) even with a deformation of the
domain involving its boundaries, which is a mandatory feature when solving moving-boundary problems.

3.5.2 Motion of a cylinder inside a square cavity

We solve the Navier–Stokes equations (3.7)–(3.8) in a two-dimensional square cavity. A schematic view of this
cavity is given in Figure 3.5 with fixed exterior walls. A circular cylinder is immersed into the fluid and is
moving with a prescribed velocity. Two types of prescribed motions are studied. In the first case, we consider a
cylinder in horizontal translation from the center of the cavity with a constant velocity. Denoting the boundary
of the cylinder as Γcyl, we prescribe

ux|Γcyl
= wx|Γcyl

= 1, (3.67)

uy|Γcyl
= wy|Γcyl

= 0. (3.68)

Denoting the exterior walls as Γext, we have

u|Γext = w|Γext = 0. (3.69)

We solve a time-dependent problem in order to study the evolution of the fluid motion caused by the translation
of the cylinder in the square domain Ω = [−1, 1]2. The Reynolds number based on a unit reference length and a
unit reference velocity is Re = 1/ν = 100. The diameter of the cylinder is D = 0.28. The time-step ∆t is fixed to
0.005. The discretization uses a total number of elements equal to E = 64 and the polynomial degree is N = 12
in each of the two directions. We obtain an unsteady evolution of the fluid motion and we observe a deformation
of the fluid mesh as pictured in Figure 3.6, where appears the flow configuration for t = 0.25, 0.5 and 0.7. If
we keep on moving the cylinder closer to the right wall, the mesh deformation becomes too large. We have also
focused our attention on the evaluation of an artificial “acceleration” defined as ‖un+1 − un‖L2/∆t, where un
denotes the velocity field at the time level n. Figure 3.7 displays the previous expression and the L2-norm of
the velocity. The “acceleration” does not vanish, which means the solution does not become steady-state. This
can be expected since the cylinder is always in motion inside the cavity. Moreover the “acceleration” increases
when the cylinder gets closer to the right wall.

In the second case, the cylinder at the center of the cavity is subject to a constant counter-clockwise angular
rotation ω = 1 such that

ux|Γcyl
= wx|Γcyl

= −y, (3.70)

uy|Γcyl
= wy|Γcyl

= x. (3.71)
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Fig. 3.5: Geometry of the fluid domain with the immersed cylinder.
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Fig. 3.6: The velocity component ux and the corresponding streamlines (black solid lines) around a moving
cylinder, Re = 100, for t = 0.25 (left), t = 0.5 (center) and t = 0.7 (right).
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Fig. 3.8: The velocity component ux and the corresponding streamlines (black solid lines) around a moving
cylinder, Re = 100, for t = 0.50 (left), t = 1.25 (center) and t = 2.0 (right).
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In Figure 3.8, we have maintained E = 64 and changed the polynomial degree to N = 10. We exhibit the flow
configuration for t = 0.5, 1.25 and 2.0. Like in the previous example, we conclude the solution does not reach a
steady state due to the motion of the cylinder (Fig. 3.9). We have successfully tested these kinds of motion for
large distortions of the fluid mesh.

3.5.3 Sloshing in a three-dimensional tank

To show the adaptability of our numerical model based on a moving-grid technique in the ALE frame, the
analysis of large-amplitude sloshing in a three-dimensional rectangular tank has been carried out. The tank has
a square-base section of dimensions L × L and a schematic view of the geometry of the problem is presented
in Figure 3.10. The free-surface position is measured from the bottom of the tank: z = L + h(x, y, t), where
h(x, y, t) is the free-surface elevation measured from its equilibrium position z = L. The initial shape of the free
surface is varying only with x and is given by the nonlinear theory for finite-amplitude standing waves

h(x, t) = a(t) cos(kx) cos(ωt)

−ka
2(t) cos(2kx)

2 tanh(kL)

{
cos2(ωt) +

3 cos(2ωt)− tanh2(kL)

4 sinh2(kL)

}
, (3.72)

where the wave number is k = 2π/λ, the wave length λ = 2L, the initial wave amplitude a(t = 0) = L/5,
and ω =

√
gk tanh(kL) corresponding to the dispersion relation. For the sake of simplicity, we have taken

g = 2πλ tanh(kL) which leads to a period T of the non-viscous and irrotational waves equal to one. Finally, the
Reynolds number is based on the reference velocity

√
gL and is expressed as Re = L

√
gL/ν.
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Fig. 3.10: Geometry of the simulation set-up and rectangular tank.

A no-slip condition is imposed to the velocity field at the bottom of the tank z = 0 and free-slip conditions
on the side walls x = 0, x = L and y = 0, y = L, likewise for the mesh velocity field w which corresponds
to Eq. (3.56) in the context of this problem. The Dirichlet boundary condition on the free surface for the
mesh velocity is given by w = u, which includes Eq. (3.55) and also an additional condition on the tangential
values of w. The initial velocity field is the irrotational solution at the maximum displacement of a standing
wave—corresponding to zero for all velocity components. When starting the simulation, the top surface is set
free and allowed to evolve in response to the dynamic and kinematic boundary conditions (3.11) and (3.55)
respectively. The nonlinearity of this problem is introduced by both boundary conditions, through the shape of
the free surface in (3.55) and through the normal to the free surface in (3.11). The motion of the free surface
physically corresponds to a transfer of energy between the potential energy—maximum at the initial time—and
the kinetic energy, leading to a decaying oscillatory phenomenon.

Computations are performed with E = 33 = 27 spectral elements and a polynomial degree N = 9 in all three
directions, leading to a mesh comprising 283 nodes. The time-step is taken equal to 0.001 and the simulation
duration is 25 time units—based on the unit period T—or 25 000 iterations for 7 values of the Reynolds number
Re = 50, 100, 250, 500, 750, 1 000 and 1 500.

Using an energetic argument, Lamb [149] derived the approximate damping of a free wave due to viscosity
as a function of time

a(t) = a(0)e−2νk2t. (3.73)
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Note that this is valid for linear waves in deep water, so we can only expect this to provide a rough guide to
our expected damping because the simulation waves are nonlinear with λ = 2L, which places the waves in the
intermediate water regime. Figure 3.11 displays the computed relative wave amplitude a(t)/a(0) with respect
to the simulation time t/T . The excellent linear fits obtained for the seven values of the Reynolds number
are in perfect agreement with the exponential viscous damping. Equation (3.73) also shows that the relative
wave amplitude is proportional to the kinematic viscosity, if plotted in y-log scale. This second point is verified
in Figure 3.12, where a(t)/a(0) is plotted against the inverse of the Reynolds number which is by definition
proportional to the kinematic viscosity ν.
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Fig. 3.11: Relative amplitude a(t)/a(0) against the simulation time t/T .
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Fig. 3.12: Relative amplitude a(t)/a(0) against the inverse of the Reynolds number.

Those results are evidences of the robustness and accuracy of our moving-grid technique in handling large-
deformations for moving-boundary problems such as the one considered here.
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3.6 Conclusions

A numerical model for solving two- and three-dimensional moving-boundary problems such as free-surface flows
or fluid-structure interaction is proposed. This model relies on a moving-grid technique to solve the Navier–
Stokes equations expressed in the arbitrary Lagrangian-Eulerian kinematics and discretized by the spectral
element method.

A detailed analysis of the continuous and discretized formulations of the general problem in the ALE frame,
with non-homogeneous and unsteady boundary conditions is presented. Particular emphasis was put on the weak
formulation and its semi-discrete counterpart. The moving-grid algorithm which is one of the key ingredient
of our numerical model, is based on the computation of the ALE mesh velocity with the same accuracy and
numerical technique as the fluid velocity. The coupling between the Navier–Stokes computation and the one for
the mesh velocity is effective through the problem boundary conditions. It is noteworthy that the coupling in
the interior Navier–Stokes computation is effective through the modified convective term which is induced by
what is happening at the boundaries.

Three numerical test results are presented in the two particular cases of interest, namely fluid-structure
interactions and free-surface flows. First the influence of the deformation of the grid on the accuracy of the
numerical model is evaluated. In a second problem, two motions (translation and rotation) of a cylinder immersed
in a fluid is computed. Lastly, large-amplitude sloshing in a three-dimensional tank is simulated. The results
obtained are showing very good with the theoretical results when available, therefore leading to a validation of
our numerical model.





Part III

Confined shear-driven turbulent flows





Chapter 4

Turbulent lid-driven cubical cavity flow

Large-eddy simulations of the turbulent flow in a lid-driven cubical cavity have been carried out at a Reynolds
number of 12 000 using the Legendre spectral element method introduced in Chapter 2. Two distinct subgrid-
scales models, namely a dynamic Smagorinsky model and a dynamic mixed model, have been both implemented
and used to perform long-lasting simulations required by the relevant time scales of the flow. All filtering levels
make use of explicit filters applied in the physical space (on an element-by-element approach) and spectral
(modal) spaces. The two subgrid-scales models are validated and compared to available experimental and
numerical reference results, showing very good agreement. Specific features of lid-driven cavity flows in the
turbulent regime, such as inhomogeneity of turbulence, turbulence production near the downstream corner
eddy, small-scales localization and helical properties are investigated and discussed in the large-eddy simulation
framework. Time histories of quantities such as the total energy, total turbulent kinetic energy or helicity
exhibit different evolutions but only after a relatively long transient period. However, the average values remain
extremely close.

4.1 Introduction

The study of a lid-driven flow of a Newtonian fluid in a rectangular three-dimensional cavity is of particular
interest in view not only of the simplicity of the flow geometry but also the richness of the fluid flow physics
manifested by multiple counter-rotating recirculating regions at the corners of the cavity depending on the
Reynolds number, Taylor–Görtler-like (TGL) vortices, flow bifurcations and transition to turbulence. This
flow structure is now well documented thanks to a relatively rich literature reporting both computational and
experimental studies [6–9, 26, 47–50, 132, 144, 145, 148, 153–155, 201, 202]. Additionally, a comprehensive review
of the fluid mechanics of driven cavities is provided by Shankar & Deshpande [225].

In the present chapter, our focus resides in relatively high-Reynolds-number and three-dimensional lid-driven
cubical cavity flows. At Reynolds number higher than a critical value comprised between 2 000 and 3 000, an
instability appears in the vicinity of the downstream corner eddy [7,132,153]. As the Reynolds number further
increases, turbulence develops near the cavity walls, and at Reynolds number higher than 10 000, the flow near
the downstream corner eddy becomes fully turbulent. The highest Reynolds number attained was 12 000 by
direct numerical simulation (DNS) performed by Leriche & Gavrilakis [155] and 10 000 experimentally by Koseff
& Street [144,145] and Prasad & Koseff [201,202]. In the literature, papers using the lid-driven cavity problem
as a benchmark test case to evaluate the performance of numerical algorithms are proliferating, but are often
limited to two space dimensions or to Reynolds numbers below 10 000. More recently, one may however notice
the important developments of novel and more physical numerical methods applied to the lid-driven cavity flow
such as molecular dynamics by Chen & Lin [46] and also the lattice–Boltzmann model applied by He et al. [114].

The results reported in this chapter correspond to the numerical simulation of the flow in a lid-driven cubical
cavity at the Reynolds number of 12 000 placing us in the locally-turbulent regime. The spatial discretization
relies on spectral element methods (SEM) which have been mainly applied to the DNS of fluid flow problems at
low and moderate Reynolds numbers. With the advent of more powerful computers, especially through cluster
technology, higher Re values seem to fall within the realm of feasibility. However, despite their high accuracy,
spectral element methods are still far from reaching industrial applications that involve developed turbulence
at Re values of the order of 106− 107. The reason for that dismal performance is that a resolved DNS including
all scales from the largest structures to Kolmogorov scales, needs a number of degrees of freedom that grows
like Re9/4. Therefore with increasing Re, one has to increase the number of elements E, and the degree N of the
polynomial spaces. This places the computational load far out of the reach of present day computers. Large-eddy
simulation (LES) represents an alternative to DNS insofar that it involves less degrees of freedom because the
behavior of the small scales are modeled. The numerical simulations presented in this chapter encompass two
different LES based on two distinct subgrid-scales modeling both using an eddy-viscosity assumption, and one
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using in addition a mixed model relying on the scale-similarity hypothesis, similarly to Zang et al. [271,272] for
Re = 10 000. Compared to the previous works of Zang et al. [271, 272], the two LES reported in this chapter
offer simulation length ten times larger therefore increasing the accuracy of the ensemble averaging and more
importantly allowing to capture intermittent turbulent production. These events lead to the determination of
large eddies suggested to be mainly responsible for the turbulence production near the downstream corner eddy.

Unlike low-order methods such as finite volumes or finite differences, spectral and spectral element methods
allow a complete decoupling between the mathematical formulation, the subgrid modeling, the numerical tech-
nique and the filtering technique, which are introduced successively in Sec. 4.2. Specifically, we are first seeking
to validate the two subgrid-scale models introduced in Sec. 4.2 which rely on explicit filtering techniques specific
to spectral element spatial discretization. Sec. 4.3 presents a short, but comprehensive validation procedure.
In Sec. 4.4 emphasis is put on characterizing the turbulent flow in its locally-turbulent regime. Fundamental
features are qualitatively and quantitatively investigated such as the inhomogeneity of the turbulence, the tur-
bulence production in the downstream-corner-eddy region, the small-scales turbulent structures in the cavity
flow and finally the peculiar helical properties.

4.2 The model and numerical technique

4.2.1 Mathematical modeling
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Fig. 4.1: Sketch of the geometry of the lid-driven cubical cavity.

The fluid enclosed in the cavity is assumed to be incompressible, Newtonian with uniform density and
temperature. The flow is governed by the Navier–Stokes equations (2.1)–(2.2) inside the fluid domain denoted
by V = [−h,+h]3, with no-slip boundary conditions on every cavity walls, except on the top, see Fig. 4.1. The
flow is driven by imposing a prescribed velocity distribution with nonzero mean on the “top” wall—named lid
in the sequel—with the velocity field maintained everywhere parallel to a given direction. The details regarding
the imposition of this Dirichlet boundary condition for the velocity field at the lid is discussed in Sec. 4.2.3.3.
As the flow presents turbulent zones coexisting with laminar regions, the numerical simulation incorporates the
mathematical models involved by the large-eddy simulation method in order to resolve the complex dynamics of
the flow. As a consequence, the governing equations of the large-eddy simulations are the filtered Navier–Stokes
equations. Large-scale quantities, designated in the sequel by an “overbar”, are obtained by a filtering procedure
on the computational domain V̂ = [−1,+1]3 using h for the non-dimensionalization of lengths. Such a filtering
procedure relies on the definition of a convolution kernel G, which is characteristic of the filter used. For any
vector function u, its spatially filtered or resolved part reads

u(x, t) = G ? u =

∫

V
u(x′, t)G(x − x′) d3x′. (4.1)

The application of a low-pass inhomogeneous and anisotropic spatial filter to the Navier–Stokes equations in
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the Eulerian velocity–pressure formulation and in convective form for the nonlinear term yields

∂u

∂t
+ u ·∇u = −∇p+ ν∆u−∇ · τ , (4.2)

∇ · u = 0, (4.3)

in which u is the filtered velocity field, t denotes the time, p = P/ρ is the filtered static pressure and ν the
assuredly constant, uniform kinematic viscosity. The symbols ∇ and ∆ represent the nabla and Laplacian
operators, respectively. The subgrid-scale (SGS) stress tensor τ is given by

τ = uu− u u, (4.4)

and accounts for the effects of the unresolved- or small-scales on the dynamics of the resolved- or large-scales
[213].

4.2.2 Subgrid-scale models

4.2.2.1 Under-resolved direct numerical simulation

In the same framework as it prevails among the practioners, one can resort to the DNS computations without any
LES model, but with the nodal filtering technique described in Sec. 4.2.4.1 to let the numerical method dissipate
locally the high-wave-number modes introduced by the insufficient space discretization. Such an approach
corresponds to an under-resolved DNS (UDNS).

4.2.2.2 Smagorinsky model

The Smagorinsky model (SM) first introduced by Smagorinsky in 1963 [232] for meteorological applications,
uses the concept of turbulent viscosity and assumes that the small scales are in equilibrium, balancing energy
production and dissipation. This yields the following expression for the subgrid viscosity

νsgs = (CS∆)2|S|, (4.5)

where |S| = (2SijSij)
1/2 is the magnitude of the filtered rate-of-strain tensor with

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (4.6)

CS is the Smagorinsky constant and ∆ the filter width. The Smagorinsky model has several drawbacks. The
most severe one is the constant value of CS during the computation which produces too much dissipation.
Furthermore the SM does not provide the modeler with backscattering where kinetic energy is transferred from
small scales to larger scales in an inverse-cascading process.

4.2.2.3 Dynamic Smagorinsky model

The dynamic Smagorinsky model (DSM) proposed by Germano et al. [88] overcomes the difficulty of constant
CS, by allowing it to become dependent of space and time. Now we have a dynamic parameter Cd = Cd(x, t).

Let us introduce a test-filter length scale ∆̃ that is larger than the grid length scale ∆ (e.g. ∆̃ = 2∆). Using
the information provided by those two filters and assuming that in the inertial range of the turbulence energy
spectrum, the statistical self-similarity applies, we can better determine the features of the SGS stress. With
the test filter, the former LES Eq. (4.2) yields a relation involving the subtest-scale stress tensor

T = ũu− ũ ũ. (4.7)

We introduce the Germano multiplicative identity to obtain the relation between T and the filtered subgrid
tensor τ̃ such that

L = T− τ̃ = ũ u− ũ ũ, (4.8)
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where the Leonard tensor L is directly computed from the resolved fields. We apply the subgrid-viscosity model
to τ and T, based on the same parameter Cd and we obtain using the self-similarity hypothesis for Cd

τd = −2Cd∆
2|S|S = Cdβ, (4.9)

Td = −2Cd∆̃
2

|S̃|S̃ = Cdα, (4.10)

where the superscript “d” denotes the deviatoric part of the tensor. Inserting (4.9) and (4.10) in the deviatoric
part Ld of L produces

Ld = Cdα− C̃dβ. (4.11)

Assuming that Cd does not vary too much over an interval of dimension at least equal to the test-filter length, one

sets C̃dβ ≈ Cdβ̃ and can deduce from a least-square minimization of the error related to (4.11) (see [156,213])
that

Cd =
(α− β̃) : Ld

(α− β̃) : (α− β̃)
, (4.12)

where the notation “:” is used for inner tensor product (double contraction).

4.2.2.4 Dynamic mixed model

The dynamic mixed model [272] introduced to tackle cavity flows is a blend of the mixed model of Bardina
et al. [14] and the former dynamic Smagorinsky model. We notice that Bardina’s scale similarity model is not
an subgrid-viscosity based model. Instead it belongs to the class of structural models [213] and relies on the
scale-similarity principle. It produces almost no dissipation and for that reason needs to be used jointly with
dissipative models such as the Smagorinsky model—Bardina’s mixed model—or with the dynamic Smagorinsky
model. The approach of Zang et al. [272] was extended by Liu et al. [157] who proposed a new similarity subgrid-
scale model for incompressible flows, in which the subgrid stress tensor is assumed to be proportional to the
resolved stress tensor. Vreman et al. [263] later modified the DMM formulation to remove a mathematical
inconsistency by expressing the scale-similarity part of the subtest-scale stress T—see [35]—using only ũ.
Salvetti & Banerjee [217] and Horiuti [126] extended the DMM to two distinct dynamic two-parameter models.
Morinishi & Vasilyev [185] recommended a modification to the dynamic two-parameter mixed model of Salvetti
& Banerjee [217] for large-eddy simulation of wall bounded turbulent flow. The works of Vreman et al. [264] and
Winckelmans et al. [267] also closely relate to the DMM approach. As mentioned by Morinishi & Vasilyev [185]
and Ghosal [92], the reliability of the results of large-eddy simulation is strongly affected by both the effectiveness
of the subgrid scale model and the accuracy of the numerical method, particularly in the approximation of the
non-linear convective term. As mentioned in Sec. 4.1, the SEM is decoupled from the subgrid modeling and
offers a high accuracy characteristics of spectral methods. Therefore, the present work focuses on the one-
parameter type of dynamic mixed model DMM as introduced by Zang et al. [272] for the lid-driven cavity flow.
The modification suggested by Vreman et al. [263] was not implemented; a priori tests with their modified
DMM using samples from the DNS results by Leriche & Gavrilakis [155] showed no noticeable improvement
over the DMM of Zang et al. in the subgrid stress correlations. Therefore increasing the computational expense
by adding an additional filtering level operation as required by the modification of Vreman et al. [263], seemed
unjustified.

By decomposing the velocity field as
u = u + u′, (4.13)

where u′ represents the subgrid-scale velocity field and by inserting in Eq. (4.4), we can redefine the SGS stress
as proposed by Germano [87]

τ = L+ C +R, (4.14)

where

L = u u− u u,

C = uu′ + u′ u− (u u′ + u′ u), (4.15)

R = u′ u′ − u′ u′,

are designated as the modified Leonard stress, the SGS cross term, and the modified SGS Reynolds stress,
respectively. The modified Leonard term can be calculated by resolved quantities and corresponds essentially to
the mixed model. The two other terms are unresolved residual stresses and are treated through the Smagorinsky
model. The dynamic procedure is applied to the parameter Cd to obtain a dynamic coefficient. Let us introduce
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a test filter denoted again by a “tilde”. Applying the test filter to the Eq. (4.2), we generate the subtest-scale
stress

T = ũu− ũ ũ = Lt + Ct + Rt, (4.16)

with

Lt = ũ u− ũ ũ,

Ct = ˜u u′ + u′ u− (ũ ũ′ + ũ′ ũ),

Rt = ũ′u′ − ũ′ ũ′. (4.17)

The deviatoric turbulent stress tensors related to the sub-grid and subtest filters are modeled by a mixed model
as

τd = Cdβ + Ld, (4.18)

Td = Cdα+ Lt,d. (4.19)

Substituting Eqs. (4.18) and (4.19) in Germano’s identity (4.8) and introducing the tensor G

G = ũ u− ũ ũ = Lt − L̃, (4.20)

one can write the difference of the deviatoric parts of G and L—see Eq. (4.8)—as

Gd − Ld = Cdα− C̃dβ. (4.21)

Eq. (4.21) being similar to Eq. (4.11)—Ld being replaced by Gd − Ld, with the same assumptions, one can
evaluate Cd following the same dynamic procedure as in Sec. 4.2.2.3 leading to the following expression

Cd =
(α− β̃) : (Gd − Ld)

(α− β̃) : (α− β̃)
. (4.22)

4.2.3 Numerical technique

4.2.3.1 Space discretization

The numerical method treats Eqs. (4.2)–(4.4) within the weak Galerkin formulation framework. The spatial
discretization uses Lagrange–Legendre polynomial interpolants. The reader is referred to Chapter 2 and the
monograph by Deville et al. [58] for full details. The velocity and pressure are expressed in the PN − PN−2

functional spaces where PN is the set of polynomials of degree lower than N in each space direction. This spectral
element method avoids the presence of spurious pressure modes as it was proved by Maday & Patera [172,174].
The quadrature rules are based on a Gauss–Lobatto–Legendre (GLL) grid for the velocity nodes and a Gauss–
Legendre grid (GL) for the pressure nodes.

Borrowing the notation from Deville et al. [58], the semi-discrete filtered Navier–Stokes equations resulting
from space discretization are

M
du

dt
+ Cu + νAu−DT p+ Dτ τ = 0, (4.23)

−Du = 0. (4.24)

The diagonal mass matrix M is composed of three blocks, namely the mass matrices M . The global vector u
contains all the nodal velocity components while p is made of all nodal pressures. The matrices A, DT , D,
Dτ are the discrete Laplacian, gradient, divergence and tensor divergence operators, respectively. The matrix
operator C represents the action of the non-linear term written in convective form u·∇, on the velocity field and
depends on u itself. The semi-discrete equations constitute a set of non-linear ordinary differential equations
(4.23) subject to the incompressibility condition (4.24).
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4.2.3.2 Time integration

The state-of-the-art time integrators in spectral methods handle the viscous linear term and the pressure
implicitly by a backward differentiation formula of order 2 (BDF2) to avoid stability restrictions such that

ν∆t ≤ C/N4, (4.25)

while all non-linearities are computed explicitly, by a second order extrapolation method (EX2), under the CFL
restriction umax∆t ≤ C/N2. Nonetheless, as the LES viscosity is not constant, we modify the standard time
scheme in such a way that this space varying viscosity be handled explicitly as this was done e.g. [24, 35, 139].
Let us define the effective viscosity as

νeff = ν + νsgs = νcst + (νeff − νcst), (4.26)

where νcst is the sum of the physical kinematic viscosity ν and the average of νsgs over the computational
domain. The filtered semi-discrete Navier–Stokes equations become

M
du

dt
+ νcstAu−DT p = −Cu + 2Dτ (νeff − νcst)S, (4.27)

−Du = 0, (4.28)

and the previous time splitting still applies. The viscous explicit term on the right-hand side does not harm
stability as the magnitude of the term 2Dτ (νeff − νcst)S is less than that of Cu.

The implicit part is solved by a generalized block LU decomposition with a pressure correction algorithm
[58,196].

4.2.3.3 The lid-filtered velocity distribution

As already mentioned by Leriche & Gavrilakis [155], imposing a given velocity distribution on the lid of a cavity
is neither an easy task experimentally nor numerically. Indeed imposing a constant lid velocity profile leads to
a singularity (discontinuous behavior in the velocity boundary conditions) at the edges and at the corners of
the lid, see Fig. 4.1. Without adequate treatment, this discontinuous behavior will undermine the convergence
and the accuracy of any numerical method in the vicinity of the lid. For the two-dimensional case, a well known
solution (but with no physical relevance) is to subtract the most singular terms of the analytical expression of
the local stream-function expansion near the lid corners. The extension of such procedure to three-dimensional
cases is still missing even though several recent attempts are reported, see [7, 96]. In order to explicitly filter
the discontinuous behavior, the constant lid velocity profile is regularized by the use of a high-order polynomial
expansion which vanishes along its first derivatives at the lid edges and corners

u(x, y = h, z, t) = U0

[
1− (x/h)

18
]2 [

1− (z/h)
18
]2
, (4.29)

v(x, y = h, z, t) = w(x, y = h, z, t) = 0.

This profile flattens very quickly near the lid edges and corners while away from them, it grows rapidly to a
constant value over a short distance. The exact form and the polynomial order of the profile is discussed [153,155].
The highest polynomial order of this distribution in both x- and z-direction is 36. Such high-order polynomial
expansions lead to steep velocity gradients in the vicinity of the edges of the lid. The grid refinement, in terms
of spectral element distribution near the lid will be presented in greater details in Sec. 4.3. One of the constraint
in the grid design is to ensure the proper resolution of the lid velocity distribution by the spectral element
decomposition.

4.2.4 Filtering techniques

As spectral elements offer high spatial accuracy, we construct explicitly the filters using two spectral techniques.
The first one is a nodal filter acting in physical space on the nodal velocity components (and pressure) to render
the computations stable in the long range integration. The second method is designed as a modal filter and
is carried out in spectral space in an element by element fashion. That filter corresponds specifically to the
convolution kernel of the low-pass LES filtering.
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4.2.4.1 Nodal filter

The nodal filter due to Fischer & Mullen [80] is adequately suited to parallel spectral element computation.
Introducing hN,j , j = 0, . . . , N the set of Lagrange–Legendre interpolant polynomials of degree N based on the
GLL grid nodes ξN,k, k = 0, . . . , N , the rectangular matrix operator IMN of size (M + 1)× (N + 1) is such that

(IMN )ij = hN,j(ξM,i). (4.30)

Therefore, the matrix operator of order M
ΠM = INM IMN , (4.31)

interpolates on the GLL grid of degree M a function defined on the GLL grid of degree N and transfers the
data back to the original grid. This process eliminates the highest modes of the polynomial representation. The
one-dimensional (1D) filter is given by the relation

v = [αΠM + (1− α)INN ]v. (4.32)

The LES version of the filter sets α = 1 and is given by

v = INM IMN v, (4.33)

where M is equal to N−2 or N −3. The three-dimensional (3D) extension results easily from the matrix tensor
product properties of the filter. It is worth noting that by construction such nodal filter constitutes a projective
filter, i.e. v = v.

4.2.4.2 Modal filter

Here, the variable u is approximated by a modal basis first proposed in the p-version of the finite elements and
used by Boyd [38] as a filter technique. It is built up on the reference parent element as

φ0 =
1− ξ

2
, φ1 =

1 + ξ

2
, (4.34)

φk = Lk(ξ)− Lk−2(ξ), 2 ≤ k ≤ N.

Conversely to the Lagrange–Legendre nodal basis used in our spectral element calculations, this modal basis
(4.34) forms a hierarchical set of polynomials allowing to define in an explicit and straightforward manner
a low-pass filtering procedure. The one-to-one correspondence between the nodal Lagrangian basis and the
p-representation yields

v(ξi) =

N∑

k=0

v̆kφk(ξi), (4.35)

which in matrix notation reads
v = Φv̆. (4.36)

The low-pass filtering operation is performed in spectral space through a diagonal matrix K with components
such that

K0 = K1 = 1 and Kk =
1

(1 + (k/kc)2)
2 ≤ k ≤ N, (4.37)

where the cut-off value kc corresponds to Kk = 1/2. The entire filtering process for a one-dimensional problem
is given by

v = G ? v = ΦKΦ−1v. (4.38)

The three-dimensional extension is again trivial by the matrix tensor product properties.

As noted by Blackburn & Schmidt [24], the effect of such modal filter onto a given field expanded in the modal
basis (4.34) presents the interesting feature of maintaining the inter-element C0-continuity. More rigorously, such
C0-continuity is enforced if and only if both φ0 and φ1 are not at all affected by the low-pass filtering, in other
words if and only if K0 = K1 = 1. Nevertheless, it has been observed that such C0-breakage does not constitute
a major issue for our simulations as it only affects the subgrid viscosity field and other terms present into the
modeling of the effect of the SGS tensor (4.4), and which are not used directly for constructing a solution
retaining the C0-continuity feature.

Such modal filter is invertible and consequently is not projective, i.e. v 6= v.
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4.2.4.3 The filter length

The decomposition of the computational domain into spectral elements of given sizes, within which a GLL
distribution of grid points based on the polynomial degree is chosen, requires a specific definition of the filter
length ∆. In order to account for both the size of each spectral element and its value of the polynomial order,
and following [138], the filter length for a 1D spectral element method is chosen as

∆ =
s

p
, (4.39)

where s is the element size and p the highest polynomial degree in the spectral decomposition Eq. (4.35) that
is the closest to the cut-off frequency kc. In the particular context of the modal filter previously introduced, p
is such that

p = k, such that inf
k

(Kk) < Kkc = 1/2, k = 0, . . . , N. (4.40)

We notice that the filter length decreases when the element is refined. The straightforward extension of Eq. (4.39)
to our 3D problem using rectilinear elements leads to

∆(x, y, z) = (∆1(x)∆2(y)∆3(z))1/3 =

(
s1

p1

s2

p2

s3

p3

)1/3

. (4.41)

4.3 Physical and computational parameters

The different large-eddy simulations presented in this chapter refer to the same geometry—see Fig. 4.1—and
physical parameters as the direct numerical simulation (DNS) performed by Leriche & Gavrilakis [155]. The
details relative to these parameters are gathered in Table 4.1. The Reynolds number based on the maximum
velocity on the lid was chosen to be Re = U02h/ν = 12 000.

The kinetic energy is provided to the flow by the shear stress at the top lid through viscous diffusion. The
amplitude of the Reynolds stress below the lid is negligible indicating that the flow under the lid is mainly
laminar but transient. The momentum transfer from the lid induces a region of strong pressure in the upper
corner of the downstream wall as the flow, mainly horizontal prior the corner, has to change direction and moves
vertically downwards. This sharp turn dissipates energy in that region. Along the downstream wall the plunging
flow behaves like a wall jet with a variable thickness. Near the symmetry plane the jet thickness is reduced
while it increases away from this plane. This jet, laminar and unsteady at the very beginning, separates from
the cavity wall at mid-height and grows as two elliptical jets on both sides of the symmetry plane. They hit
the bottom wall where they produce turbulence. This turbulence is convected away by the main central vortex
towards the upstream wall where the flow slows down and relaminarizes during the fluid rise.

Domain size (x, y, z) (2h, 2h, 2h)
Wall positions x, y, z = ±h
Reynolds number Re = U02h/ν 12 000
No. of spectral elements (Ex, Ey, Ez) (8, 8, 8)
Polynomial orders (Nx, Ny, Nz) (8, 8, 8)
Time-step 0.002h/U0

No. of time iterations 387 000
Dynamic range 774h/U0

Nodal filtering – DSM & DMM M = N − 2 = 6
Modal filtering – DSM & DMM (1st level) kc = N − 2 = 6
Modal filtering – DSM & DMM (2nd level) k′c = N − 3 = 5

Table 4.1: Numerical and physical parameters of the simulations.

In order to resolve the boundary layers along the lid and the downstream wall, the spectral elements are
unevenly distributed as can be seen in Fig. 4.2. The spatial discretization has Ex = Ey = Ez = 8 elements
in the three space directions with Nx = Ny = Nz = 8 polynomial degree, equivalent to 653 grid points in
total. The spectral element calculation has two times less points per space direction than the DNS of Leriche
& Gavrilakis [155] who employed a 1293 Chebyshev discretization. Both nodal and modal filters were used
in our LES computations based on DSM and DMM; the former with M = N − 2 to stabilize the velocity
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Fig. 4.2: Left: Spectral element grid in any plane normal to z; Right: Spectral element grid in any plane normal
to x or y.

field at each time-step and the latter with kc = N − 2 (resp. k′c = N − 3) to filter the highest modes in the
modal Legendre space at the first level (resp. second level) of explicit filtering. These filtering levels refer to the
overbar and the test filtering respectively. It is noteworthy recalling here that the modal filter introduced in
Sec. 4.2.4 and associated with the transfer function given by Eq. (4.37), is not projective. The computations are
particularly sensitive to the values of M and kc; smaller values will affect spectral convergence whereas higher
values will have very little effect on the smallest scales of the problem. The reference results are the DNS data
of Leriche [153, 155] and the experimental ones from Koseff & Street [144], corresponding to 1 000 and 145.5
time units respectively. In the cavity flow, the average is obtained by time averaging.

The LES-DSM and LES-DMM were both started from the same initial condition, namely the velocity
field obtained from the DNS by Leriche and Gavrilakis and re-interpolated from the Chebyshev grid onto the
spectral-element GLL grid.

Non-dimensionalization is performed using h as length scale, h/U0 as time scale and U0 as velocity scale.
All the results and data presented in the sequel will be based on this non-dimensionalization.

4.3.1 Statistical ensemble averaging

For any variable, the Reynolds statistical splitting introduces the average value denoted into brackets “〈·〉”
whereas the associated fluctuating part is denoted using the following superscript ·�. It is noteworthy reminding
here the filter splitting introduced in Eq. (4.13) using the overbar and prime notations to denote respectively the
resolved and subgrid scales. To simplify notations, and unless otherwise stated, the overbar will be omitted in
the sequel as most of the fields considered are resolved fields derived from solutions of the filtered Navier–Stokes
equations (4.2)–(4.4). More precisely considering any variable x can be decomposed as follows

x = x + x′ = 〈x〉+ 〈x′〉+ x� + x′
�
, (4.42)

where 〈x〉 (resp. 〈x′〉) is the average resolved (resp. subgrid) part of x and x� (resp. x′�) is the fluctuating
resolved (resp. subgrid) part of x. The subgrid scales being unknown, the term 〈x′〉 + x′� cannot be directly
computed from the simulation. All the results presented in this chapter refer to resolved quantities be them
average 〈x〉 or fluctuating x�. For the sake of simplicity, these quantities are directly and respectively compared
to 〈x〉 and x�, obtained from reference results, see Sec. 4.3.3.

We assume that a statistically-steady state is attained and time averaging will be taken as ensemble av-
eraging. The whole dynamic range—cf. Table 4.1— corresponding to 1 290 equally spaced samples has been
considered when averaging. As the starting point of all LES is the same DNS sample taken from a statistically-
steady state, it is reasonable to also assume that these simulations will reach a statistically-steady state very
quickly. These assumptions can be verified in several number of ways. First, we present in Fig. 4.3 the time
histories of the volume integral of the total kinetic energy of the resolved field

Q(u) =
1

2

∫

V
u · u dV , (4.43)

and the volume integral of the kinetic energy of the fluctuating resolved field Q(u�) for the DNS and both the
LES-DSM and LES-DMM. On this figure, one can observe that after approximately 80h/U0 time units, the
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two LES models DSM and DMM start being effective and providing different macroscopic results. Both Q(u)
and Q(u�) have different time evolutions but within the same range of fluctuations and with very close average
values, see Table 4.2.
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Fig. 4.3: Time histories of Q(u) (graphs (a): top) and of Q(u�) (graphs (b): bottom) for the DNS (green lines),
the LES-DSM (red lines) and the LES-DMM (blue lines).

A second way to assess the accuracy of the ensemble averaging is done by testing the property of statistical
symmetry (resp. antisymmetry) with respect to the mid-plane z/h = 0, of some first- and second-order statistics
of the resolved velocity and pressure fields. For each grid point, the relative difference between the nodal value
at this point and the corresponding nodal value at the symmetric grid point is calculated. In the antisymmetric
case, the opposite nodal value is considered at the symmetric grid point. The z-component of the average
resolved velocity field 〈w〉 is the only field presented being statistically antisymmetric with respect to the mid-
plane z/h = 0. The results of the maximum errors on the grid are gathered in Table 4.3 and are showing to be
of the order of the error introduced by the space and time discretizations.

4.3.2 Under-resolved DNS and Smagorinsky model

Before providing the reader with a comprehensive review of results obtained for the two models LES-DSM
and LES-DMM, partial results for the UDNS and the LES-SM are presented in this section. These results
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Average integral terms Magnitude in U 2
0 units

〈Q(u)〉DNS 0.055527
〈Q(u)〉DSM 0.056296
〈Q(u)〉DMM 0.056194
〈Q(u�)〉DNS 0.004529
〈Q(u�)〉DSM 0.004960
〈Q(u�)〉DMM 0.004864

Table 4.2: Average values of Q(u) and Q(u�) for the DNS, LES-DSM and LES-DMM.

Variable Rel. diff. DSM Rel. diff. DMM Anti-/Symmetry

〈u〉 4.807e-04 6.696e-05 S
〈v〉 4.591e-04 3.014e-04 S
〈w〉 6.966e-05 4.129e-04 A
〈p〉 1.120e-04 7.333e-05 S

〈u�2〉1/2 8.758e-05 8.899e-05 S

〈v�2〉1/2 1.696e-03 7.764e-04 S

〈w�2〉1/2 4.501e-04 8.447e-05 S
〈u�v�〉 1.107e-04 2.236e-04 S

Table 4.3: Quantitative assessment of the statistical symmetry and anti-symmetry properties of some resolved
average fields in the cavity; “Rel. diff.” stands for maximum relative difference.

correspond to the same parameters as those in Table 4.1, except that the number of iterations is 33 000 cor-
responding to a simulation length of 66h/U0—approximately one tenth of the total simulation time of the
LES-DSM and LES-DMM. Despite the shorter dynamic range, a relative good level of statistical symmetry is
achieved—aproximately one order less than those reported in Tab. 4.3. Moreover, for the LES-SM the value
of the Smagorinsky constant CS defined in Eq. (4.5) was taken equal to its theoretical value 0.18, see [213]
for greater details, and no wall-damping procedure was implemented for these preliminary simulations. The
reference result is the DNS by Leriche & Gavrilakis [155] and is represented by the solid line in the profiles in
Figs. 4.4–4.5, whereas dashed (resp. dotted) lines refer to the UDNS (resp. LES-SM). The results in Figs. 4.4–
4.5 are one-dimensional profiles of the average velocity field and its rms-fluctuations in the mid-plane z/h = 0.
General conclusions can be drawn from all these figures. First, UDNS is totally inoperative in the particular
context of this simulation. Even first-order statistics such as 〈u〉 and 〈v〉 are far from being well predicted,
not to mention rms-fluctuations. Second, the Smagorinsky model LES-SM results show a real improvement in
predicting the fields compared to the UDNS but as already known, the simplicity of this model does not allow
to correctly predict the stiff physics of this simulation. These results justify the need for a more complex LES
modeling such as LES-DSM and LES-DMM presented in the sequel.
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Fig. 4.4: In the mid-plane z/h = 0: 〈u〉 on the horizontal centerline y/h = 0 (top), 〈v〉 on the vertical centerline
x/h = 0 (bottom): DNS (solid line), UDNS (dashed line) and LES-SM (dotted line).
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4.3.3 Comparisons with available results

In this section, results of the LES-DSM and the LES-DMM are compared with the available reference experi-
mental and numerical results.

4.3.3.1 One-dimensional profiles

Of the previous work available in the literature on the lid-driven cubical cavity flow, the numerical DNS data
from Leriche & Gavrilakis [155], Leriche [154] and the experimental data of Prasad & Koseff [201] constitute
the two main references. This work being an extension of the one by Leriche, it borrows from [155] the values of
the main physical parameters—see Table 4.1. The work from Prasad & Koseff [201] includes data from a flow
at Reynolds number similar to that of the present LES. The measurements that these authors reported were
taken in the mid-plane z/h = 0, which is a statistical symmetry plane of the flow domain. As it will be shown in
the sequel, the flow near the downstream secondary eddy—see Fig. 4.1—is not homogeneous in the z-direction.
In the “turbulent” part of the cavity, the mid-plane is found to cut through surfaces of local minima in the
intensity field with rapid changes occurring on both sides of it.

The set of experimental data corresponding to a Reynolds number Re = 10 000 is used for the comparisons of
the one-dimensional average velocity profiles along the vertical and horizontal symmetry axes. It is important
to note that no experimental error-bars were given for any data. The only information related to the local
experimental measurement error is provided by the two crosses corresponding to two different measurements in
the middle (x/h = 0 or y/h = 0) of each centerline—the velocity probing system going back and forth from this
point [200]. In addition the experimental data of Prasad & Koseff [200,201] are obtained over a non-dimensional
averaging time of 145.5 whereas the DNS (resp. LES) results were obtained over an averaging time of 1 000 (resp.
774). In absence of local error-bars in the measurements, this may explain the scattering (and possible non-
convergence) of some experimental data, together with practical difficulties of accurately measuring fluctuating
fields in region of low or almost constant velocity. A detailed analysis of the disparity between the numerical
results and some experimental data can be found in [153,155].

For the sets of experimental and DNS data, the total velocity field is considered whereas in the case of LES,
only its resolved part is presented. The legend for Figs. 4.6–4.8 is as follows: crosses refer to the experimental
data of Prasad and Koseff, the solid lines to the DNS by Leriche and Gavrilakis, the dashed lines to the LES-
DSM and the dotted lines to the LES-DMM. All the data related to average and rms-fluctuations of the velocity
field are expressed in terms of the velocity scale U0 and 〈u�v�〉 in terms of U2

0 .

A discussion on the comparisons between the DNS reference results and the experimental ones is available
in [155]. In the sequel, we will focus on comparing the LES-DSM and LES-DMM results with the DNS and
experimental ones. A rapid overview of Figs. 4.6–4.8 indicates that both LES models provide results very close
to the DNS references, even for the rms-fluctuations in Fig. 4.7 and above all for the component 〈u�v�〉 of the
Reynolds stress in Fig. 4.8. The differences between the profiles of the two LES models and the DNS generally
coincide with the existence of local extrema; maxima tend to be slightly over-estimated in the LES whereas
minima are somewhat under-estimated. These two effects can be partly justified by the reduced sampling in
the LES-DSM and LES-DMM compared to the sampling of the DNS. This phenomenon have already been
encountered and studied by Leriche [153]. From these results it is not possible to rank between themselves the
performances of the LES-DSM and the LES-DMM.
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Fig. 4.6: In the mid-plane z/h = 0: 〈u〉 (top row) and 〈v〉 (bottom row), on the horizontal centerline y/h = 0 (left column) and on the vertical centerline x/h = 0
(right column); Experiment (crosses), DNS (solid line), LES-DSM (dashed line), LES-DMM (dotted line).
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Fig. 4.8: In the mid-plane z/h = 0: 〈u�v�〉 on the horizontal centerline y/h = 0 (top), 〈u�v�〉 on the vertical
centerline x/h = 0 (bottom); Experiment (crosses), DNS (solid line), LES-DSM (dashed line), LES-DMM
(dotted line).

4.3.3.2 Two-dimensional profiles

The comparisons with the DNS results started in Sec. 4.3.3.1 are now extended to the whole mid-plane z/h = 0
by plotting identical series of contour levels of average velocity components in Fig. 4.9 and of rms-fluctuations of
the velocity in Fig. 4.10, for the DNS (left column), the LES-DSM (central column) and the LES-DMM (right
column).

As previously noted with the one-dimensional profiles, the results provided by the LES-DSM and LES-DMM
are both very close to the reference DNS results. Secondary corner eddies located above the bottom wall and
below the lid next to the upstream wall are correctly captured in the mean flow. Other finer structures visible
in Fig. 4.10 (bottom), for 〈v�2〉1/2 near the upstream wall are also correctly captured by both LES modelings.
The rms-fluctuations of the x-component u of the velocity field is accurately resolved just below the lid which is
a high-gradient region for the mean flow. Moreover, in the region near the downstream wall where the wall jet—
separated into two elliptical jets—are impinging on the bottom wall, the high gradients of velocity fluctuations
are well reproduced. As it will be presented in the following sections, the maximum of turbulence production
belongs to this region of the flow domain which will be indeed of particular interest in the remaining.

The flow below the lid and near the corner with the downstream wall presents wiggles in the LES contours
for 〈v〉, see Fig. 4.9 (bottom). Although less intense, these wiggles are also noticeable on the contours for
〈v�2〉1/2 at the same location, see Fig. 4.10 (bottom). More limited effects are noticeable for the equivalent
x-component fields. These very limited defects in both simulations find their origin in a slight under-resolution
of the spectral-element grid in this small region of the cavity where high gradients are present.
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Fig. 4.9: Contours of average velocity in the mid-plane z/h = 0; DNS (left), LES-DSM (center) and LES-DMM (right)—100 contours levels taken between −0.4 and
1 for 〈u〉 (top) and between −0.7 and 0.2 for 〈v〉 (bottom). Dashed contours lines correspond to negative levels.
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Fig. 4.10: Contours of rms-fluctuations of the velocity in the mid-plane z/h = 0; DNS (left), LES-DSM (center) and LES-DMM (right); 20 contours equally spaced
between 0 and 0.1 for 〈u�2〉1/2 (top) and between 0 and 0.15 for 〈v�2〉1/2 (bottom).
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4.3.4 Physical parameters of the LES modeling

The LES modeling for both the LES-DSM and LES-DMM involves the calculation of two scalar fields, namely
the dynamic parameter Cd and the subgrid viscosity νsgs which are inter-related. As some values of Cd produced
by the two dynamic procedures (4.12) and (4.22) may locally reach relatively “high values” destabilizing the
time-integration procedure for the filtered Navier–Stokes computations. Hence it is common to use ad hoc
averaging or limiting of the dynamic parameter Cd to ensure stability. Various procedures are reported in
the literature: averaging in homogeneous directions [88, 146], temporal smoothing [40], integral constraint [93],
Lagrangian averaging [180] and clipping [24, 272]. In the present work the latter procedure of clipping is used
due to the explicit treatment of the subgrid terms. First the maximum admitted value of the dynamic parameter
was Cdmax = (0.18)2, 0.18 corresponding to the theoretical value of the Smagorinsky constant—see [213]. The
negative values of Cd are also clipped and set to zero for the LES-DSM and LES-DMM. The amount of grid
points clipped is indeed very limited and correspond to 0.2% and 0.08% of the total number of grid points for
LES-DSM and LES-DMM respectively. It was found that the clipping of Cd to the interval comprised between
−(0.18)2 and +(0.18)2—therefore allowing for local negative values of the subgrid viscosity—was not affecting
at all the stability of the spectral-element filtered Navier–Stokes computation. The difference between the results
with or without the negative values of Cd was found to be negligible in the particular context of the lid-driven
cubical cavity flow which is related to the limited amount of backscattering for this flow at a Reynolds number
of 12 000.

Fig. 4.11 displays contour lines of the average subgrid viscosity for the LES-DSM in the mid-plane z/h = 0
and in the plane z/h = 0.241 where the maximum of average turbulent energy dissipation rate was localized—cf.
Sec. 4.4.3 for greater details. First, the C0-continuity breakage in the inter-element continuity is obvious—see
Fig. 4.2 to compare with the spectral element grid in the mid-plane—and is directly related to the discontinuous
nature of the filter length field ∆ defined in Sec. 4.2.4.2, Eq. (4.41). The effect of such discontinuity of the subgrid
viscosity has been analyzed and discussed by Blackburn & Schmidt [24] using the same numerical framework
as ours, namely the SEM. They found that the inter-element discontinuity of the subgrid term does not have a
noticeable effect on their physical results which is confirmed by the present work. Finally, it appears clearly that
the reasons for resorting to a dynamic procedure are fully justified by Fig. 4.11. Indeed, the dynamic procedure
automatically turns on the dynamic parameter Cd which in turn activates subgrid-scale viscous effects in the
regions of the flow where turbulent dissipation at the small-scales level occurs—see Sec. 4.4.3.

Similar results are obtained for the subgrid viscosity and the dynamic parameter in the case of the dynamic
mixed model LES-DMM. The same clipping procedure, with the same clipping values as described earlier for
LES-DSM was implemented.
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Fig. 4.11: Contours of the average subgrid viscosity 〈νsgs〉 for the LES-DSM in the mid-plane z/h = 0 (left) and
in the plane z/h = 0.241 (right); same series of contour levels is used in the two planes.

4.4 Characterization of turbulence in the flow

This section is devoted to a thorough analysis of some specific features of the flow in the region of the cavity
where turbulence occurs. The aims are to ensure that the LES-DSM and LES-DMM are both capable of
reproducing the fine physics observed in these regions and also to gain insights in the turbulent mechanisms
involved.
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4.4.1 Inhomogeneity of turbulence

It is easily predictable that such a confined flow will produce an inhomogeneous turbulence but it is worth de-
termining in greater details the turbulent inhomogeneous zones in the cavity. In order to access this information
we use the average turbulent energy dissipation rate 〈ε〉 defined by

〈ε〉 =
1

2
ν

〈(
∂u�i
∂xj

+
∂u�j
∂xi

)(
∂u�i
∂xj

+
∂u�j
∂xi

)〉
= 2ν〈S�ijS�ij〉. (4.44)

Here and in the sequel, we use index notation and the summation convention, where repeated indices imply
summation. The velocity fluctuations being divergence-free, one can rewrite

〈ε〉 = ν

〈
∂u�i
∂xj

∂u�i
∂xj

〉
+ ν

∂2〈u�i u�j 〉
∂xi∂xj

, (4.45)

which in turn can be recast in terms of ω� the fluctuating vorticity, ω being the total resolved vorticity field

〈ε〉 = ν〈ω�i ω�i 〉+ 2ν
∂2〈u�i u�j 〉
∂xi∂xj

. (4.46)

We define the average difference 〈δ〉 by the difference between the average turbulent energy dissipation rate,
divided by ν, and the average fluctuating enstrophy

〈δ〉 =
〈 ε
ν

〉
− 〈ω�i ω�i 〉 = 2

∂2〈u�i u�j 〉
∂xi∂xj

. (4.47)

Fig. 4.12: Region of the cavity where the turbulent flow is inhomogeneous according to the criterion
|〈δ〉|/|〈δ〉max| > 1/100; LES-DMM.

For homogeneous flow, the spatial derivatives of the Reynolds stress components 〈u�i u�j 〉 are zero, and
subsequently 〈δ〉 = 0. The average difference 〈δ〉 was calculated for both databases LES-DSM and LES-DMM.
Figure 4.12 displays a 3D view of the volume of the cavity where the flow is inhomogeneous according to the
following heuristic criterion: |〈δ〉|/|〈δ〉max| > 1/100, where |〈δ〉DSM

max | = 159.8U2
0/h

2 and |〈δ〉DMM
max | = 155.6U2

0/h
2.

In other words, it shows the region of the flow where the inhomogeneity of the turbulence—measured by 〈δ〉—is
above 1% of its maximum absolute value.
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Fig. 4.13: Contours of 〈δ〉 in the plane y/h = −0.968 just above the bottom wall (left) and in the mid-plane
z/h = 0 (right); 100 equally spaced contours corresponding to levels between the threshold 0.01|〈δ〉max|; dashed
contours correspond to negative levels with a colormap ranging from blue to red; LES-DMM.

As expected, one can observe in Fig. 4.13 that in the region near the downstream wall where the two
primary elliptical jets are impinging on the bottom wall, the flow is highly inhomogeneous. More specifically,
the inhomogeneity is more important in the zone in between the two elliptical jets where the flow is ejected and
recirculating. Likewise similar patterns with lower magnitudes are detected in the regions where the secondary
jets and the tertiary jets are impinging. The secondary jets are impinging on the bottom of the upstream wall
producing an inhomogeneous turbulence visible in Fig. 4.13 for values of x/h close to −1. For the tertiary jets,
impinging on the upstream part of the lid, the inhomogeneity is only visible in the 3D view in Fig. 4.12.

4.4.2 The turbulence production near the downstream wall

As mentioned by Leriche & Gavrilakis [155], the largest turbulence production rates in the cavity are to be
found in the primary elliptical jets parallel to the downstream wall, near the impact points just above the
bottom wall. The budget equations of the resolved second-order moments 〈u�i u�j 〉 governing the turbulence
energetics—see [178] and [199] for greater details—comprise a term named here Pij , defined by

Pij = −〈u�iu�k〉
∂〈uj〉
∂xk

− 〈u�ju�k〉
∂〈ui〉
∂xk

, (4.48)

and corresponding to the interaction of the resolved mean flow and the resolved Reynolds stress tensor. Pij can
be interpreted as responsible for the production of Reynolds stresses or in other words for the production of
turbulence.

4.4.2.1 Maximum of turbulence production near the downstream wall

In the specific case of the separated downstream-wall jet, the term P22 is the largest out of the set of turbulence
production terms {Pij}. After probing in the cavity, the maxima of the resolved field P22 is to be found in the
plane y/h = −0.9388 just at a very short distance above the bottom wall. The maximum values obtained are
PDSM

22max
= 0.070U3

0/h and PDMM
22max

= 0.064U3
0/h. The contours of the turbulence production term P22 in this

plane y/h = −0.9388 are shown in Fig. 4.14 for both LES models. First, it can be noted that these contours
are qualitatively very close to the ones obtained by Leriche & Gavrilakis [155]. For x/h > 0.5, the distribution
of contours of the production of turbulence allow to clearly visualize the trace of the separated elliptical jets.
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Fig. 4.14: Contours of the resolved production of turbulence term P22 in the plane y/h = −0.9388; LES-DSM
(left) and LES-DMM (right); 20 contour levels equally spaced between −0.025U 3

0/h and 0.070U3
0/h; dashed

lines refer to negative contour levels; bullet points • refer to the same grid node of coordinates (x/h = 0.7874,
y/h = −0.9388, z/h = 0.3371).

4.4.2.2 Time histories and power spectra at the maximum of turbulence production

In Fig. 4.14, one can notice that for each LES model, one grid point—identical for both DSM and DMM—
has been highlighted with a bullet point •. This point denoted by Θ0 whose coordinates are x/h = 0.7874,
y/h = −0.9388, z/h = 0.3371, is the closest grid point to the two maxima of P22 for LES-DSM and LES-DMM.
The point Θ0 provides the optimal search position for probing time histories of various turbulent fields in the
sequel.

First, the values of the x-component of the fluctuating resolved velocity field u�, of the fluctuating resolved
pressure p� and the resolved turbulent kinetic energy q = u�i u

�
i /2, have been extracted of the LES-DSM database

for each and every sample. These time histories are shown in Fig. 4.15—note that only the last 1 024 samples
out of the total of 1 290 that constitutes the database are presented.

non-dimensional time t

(a)

(b)

(c)
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Fig. 4.15: Time histories of p� (graph (a) shifted of +0.25), the resolved turbulent kinetic energy q (graph (b))
and u� (graph (c) shifted of −0.25), at the point of coordinates (0.7874,−0.9388, 0.3371); LES-DSM database.
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Fig. 4.16: Power spectra for the fluctuating resolved pressure p� (a), the resolved turbulent kinetic energy q
(b), and the fluctuating resolved velocity field u� (c), obtained from the time histories in Fig. 4.15; LES-DSM
database.
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Based on these results the corresponding power spectra have been computed by fast Fourier transform—a
posteriori justifying the choice of 1 024 samples in the previous time histories—and are presented in Fig. 4.16.
The scattering of points in the high-wavenumber zone is expected for spectra of non-spatially average fields.
For such inhomogeneous flow with highly localized turbulent effects, averaging in space the fields not only
pleasantly reduce the scattering of points but concurrently strongly modifies the high-wavenumber scaling
which is the main source of information brought by the spectra. Nevertheless, the spectra offer a qualitative
information regarding the Eulerian time scales of the spatial structures of turbulence convected past the point
Θ0. The resolved mean flow depicted in Fig. 4.17—highlighting the presence of the core central primary vortex
and secondary corner vortices—serves merely to advect turbulence at the bullet-spotted point Θ0. A careful
scrutinizing of the resolved mean flow in the vicinity of Θ0 shows that this point is exactly positioned at the
“interface” between the core central vortex and the bottom corner vortex. The power spectra in Fig. 4.16 feature
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Fig. 4.17: Two-dimensional projected average resolved velocity vectors in the mid-plane z/h = 0 (left) and in
the plane y/h = −0.9388 (right); bullet point refers to Θ0; LES-DSM; bullet points • refer to the same grid
node of coordinates (x/h = 0.7874, y/h = −0.9388, z/h = 0.3371).

the distribution of frequencies—or equivalently of time scales. These frequencies ω̃ refer to the convection past
Θ0 of turbulent structures of size of order ` at a velocity of order 〈u〉(Θ0), leading to the relation

ω̃ =
〈u〉(Θ0)

`
. (4.49)

The average resolved velocity field at Θ0 being given, the spectra hence instruct us on the distribution of
spatial scales of resolved turbulent structures convected by the mean flow at this point where the production of
turbulence is maximum. Unfortunately, the relatively low sampling of the LES-DSM database and the not-long-
enough simulation range interval does not permit to reach the highest frequencies of the order of 〈u〉(Θ0)/∆
where ∆ is the filter length—see Eq. (4.41)—defining the LES scale separation.

4.4.2.3 Determination of coherent structures responsible for the peaks of turbulence production

In an attempt to provide a comprehensive and thorough assessment of the performances of both LES models, the
determination of the coherent structures responsible for the intense turbulence production at the point Θ0 has
been considered as an ultimate challenge for both SGS modeling. The first step towards this goal necessitates to
study the instantaneous distribution of the resolved term −v�2∂〈v〉/∂y which was found to be the predominant
term in P22, see [155]. Figure 4.18 displays the time histories of this term for the DNS, LES-DSM and LES-
DMM. Both LES present a limited number of high-value peaks which are assumed to be engendered by specific
coherent vortices or large eddies. The intensity of the peaks produced by the LES-DMM is lower than those
generated by the LES-DSM. This is supposed to be due to an over-evaluation of the subgrid viscosity by the
dynamic procedure of the DMM. In addition, this is consistent with the observation made in Sec. 4.4.2.1 where
PDMM

22max
< PDSM

22max
was found and with the values of resolved 〈Q(u)〉 and 〈Q(u�)〉 in Table 4.2.
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Fig. 4.18: Time histories of the resolved term −v�2∂〈v〉/∂y in U3
0 /h units for the DNS (green), LES-DSM (red)

and the LES-DMM (blue); the dotted lines represent the threshold value 0.15U 3
0/h.

In order to finally characterize possible large eddies which would be responsible for these peaks, database
samples producing a resolved term −v�2∂〈v〉/∂y above the threshold value 0.15U 3

0/h were put aside to form
a subset of the complete databases. The size of the subset of samples for LES-DSM (resp. LES-DMM) is
approximately 6% (resp. 5%) of the size of the complete database. Based on these two subsets a conditional
averaging of the streamwise resolved vorticity field ωx is performed. Figure 4.19 displays the contours of this
quantity in the vicinity of Θ0—the domain represented corresponds to only 4% of the surface of a normal
section of the cavity—for both models. Two counter-rotating vortices are clearly exhibited by both models,
together with the intense influenced shear layers laying on the bottom wall at y/h = −1. This vortex pair
is identified as the coherent eddy responsible for the turbulence peaks and production in this region. The
characteristic length scale of this large eddy is of the order of 0.1h. Having identified this vortex pair we can
further analyze the time histories at Θ0 of the resolved pressure and the resolved turbulent kinetic energy
depicted on Fig. 4.15, graph (a) and (b) respectively. One can notice that the intense peaks of the resolved term
−v�2∂〈v〉/∂y on Fig. 4.18 correspond to intense peaks of resolved turbulent kinetic energy on Fig. 4.15 (b) and
to low-pressure peaks on Fig. 4.15 (a). The vortex pairs generated by this turbulent flow are responsible for
the low pressures and the high turbulent kinetic energy thereby justifying the observed correlations between
these three time histories. Moreover the intensity of the vortex pair calculated by the LES-DSM is again higher
than the one from the LES-DMM: 〈ωDSM

x 〉camax
= 18.6U0/h and 〈ωDMM

x 〉camax
= 14.0U0/h, where the subscript

“ca” stands for conditionally averaged. The intensity, the more regular structure and the localization of the
vortex pair are three features suggesting that the dynamic Smagorinsky model provides a better SGS modeling
than the dynamic mixed model. Nevertheless, the DMM performances in terms of SGS modeling are more than
satisfactory. When considering the complete averaging of the x-component of the resolved vorticity field in the
region where the vortex pair has been localized by conditional averaging, see Fig. 4.19, 〈ωx〉 was found almost
constant and of magnitude approximately 0.9U0/h.

4.4.3 Small-scales turbulent structures

A characteristic of high-Reynolds-number turbulence is that the vorticity possesses intense small-scale, random
variations in both space and time. The spatial scale for vorticity fluctuations is the smallest in the continuum
of turbulent scales, i.e. the Kolmogorov scale. Analogously to the vorticity fluctuations, for large-Reynolds-
number turbulence velocity gradients ∂u�i /∂xj are also dominated by the small scales of turbulence and the
overall energy dissipation rate of kinetic energy is dominated by the average turbulent energy dissipation rate
〈ε〉 defined in Eq. (4.44). In the LES framework, the interest for small scales is twofold. First, small scales fall
into the range of subgrid scales and therefore are not simulated but wholly modeled to properly reproduce their
interactions with larger resolved scales of the flow. Second, the small scales have the crucial role to terminate the
turbulent energy cascade by dissipating the energy originating from large eddies. An incorrect SGS modeling
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Fig. 4.19: Contours of the conditionally averaged resolved vorticity field 〈ωx〉ca in the plane x/h = 0.7874 for
the LES-DSM (left) and the LES-DMM (right); dashed lines refer to negative contour levels.

will produce either an over-dissipation or conversely an under-dissipation of kinetic energy. The time histories
of the total kinetic energy of the cavity flow Q(u) and of the total turbulent fluctuating energy Q(u�) presented
in Fig. 4.3 are in this framework a precious proof of the correct global prediction of the energy dissipation by
the modeled small scales in volume.

4.4.3.1 Localization of small-scales structures

Fig. 4.20: Visualization of the region of the cavity where the average turbulent energy dissipation rate 〈ε〉 is
above 1% of its maximum value 3 570 νU 2

0/h
2; LES-DMM.

In this context, it appears relevant to first locate small-scales turbulent structures in the cavity and afterwards
to check the correlation between the small-scales positioning and the activation of the SGS modeling represented
in Fig. 4.11. Small scales can be indirectly localized by investigating the zones of intense average turbulent energy
dissipation rate. Indeed 〈ε〉 involves products of fluctuating velocity gradients, see Eq. (4.44). First qualitatively,
the region of the cavity flow corresponding to values of 〈ε〉 above 1% of its maximum value is shown in Fig. 4.20
for the LES-DMM. As foreseen, the wall-jet-impinging regions are subject to intense turbulent energy dissipation
at the small-scales level. The two-dimensional cuts in Fig. 4.21 offer a more detailed information regarding the
intensity of 〈ε〉 in four different planes of specific interest. It is worth keeping in mind that the more intense
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〈ε〉 the more small scales are involved in the dissipation process. Figure 4.21 displays with decreasing intensity,
the dissipation due to the impingements of the separated wall jets on the bottom wall (bottom-left), on the
upstream wall (bottom-right) and on the lid-plane (top-left). It appears that the LES-DSM is not able to
properly reproduce the same intensity for the two symmetric jets impinging on the upstream wall (bottom-
right). The same asymmetry in the intensity of 〈ε〉 is observed for the LES-DMM which could presumably be
due to the observed asymmetry—with respect to the mid-plane—of the subgrid viscosities generated by the
dynamic procedures of both SGS modeling.
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Fig. 4.21: Two-dimensional contour lines of 〈ε〉 in the following planes: lid-plane y/h = 1 (top-left), plane
z/h = 0.241 (top-right), bottom-plane y/h = −1 (bottom-left), upstream-plane x/h = −1 (bottom-right); LES-
DSM; black rectangle � refers to the grid node of coordinates (x/h = 0.7685, y/h = −1, z/h = 0.2410).

In Fig. 4.21 (bottom-left), one can notice that one grid point has been highlighted with a black rectangle
�. This point denoted by Ξ0 whose coordinates are x/h = 0.7685, y/h = −1, z/h = 0.2410, is the closest grid
point to the maximum of 〈ε〉 for LES-DSM. The point Ξ0 provides the optimal search position for probing
small-scales related fields. The plane-cut z/h = 0.241—passing by Ξ0—of 〈ε〉 in Fig. 4.21 (top-right) exhibits a
qualitative correlation with the same plane-cut for the average subgrid viscosity 〈νsgs〉 in Fig. 4.11 (right).

4.4.3.2 Correlation between small-scales localization and subgrid viscosity

Such correlation between the small-scales localization and the activation of the LES dynamic Smagorinsky
modeling is important in practice to ensure the effectiveness of the SGS modeling. Therefore a more quantitative
approach is required, which relies on the calculation of a correlation field based on the instantaneous values of
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ε and νsgs. The following correlation coefficient C, defined by

C = C(ε, νsgs) =
〈ε νsgs〉 − 〈ε〉〈νsgs〉
(〈ε�2〉〈ν�sgs

2〉)1/2
, (4.50)

was calculated for the complete set of samples LES-DSM.
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Fig. 4.22: Contours of the correlation coefficient C in the plane z/h = 0.241 containing the point Ξ0; LES-DSM.

Contours of C in the plane z/h = 0.241, passing by Ξ0 are presented in Fig. 4.22. The high-correlation zones
reproduce in essence the turbulent-dominated regions of the cavity and even suggest the mean-flow convective
effect of the central core vortex and other secondary corner vortices on the turbulent pockets. Nevertheless,
higher correlations would have been expected in the vicinity of Ξ0. Such low correlations are evidences of the
limitations of the LES in this region of the cavity flow. Conversely, the high correlations near the upstream
wall are in good agreement with the small-scales localization. More precisely the poor correlation in the vicinity
of Ξ0 is imputed to the fact that in this region, the term S�ijS

�
ij in the turbulent energy dissipation rate—see

Eq. (4.44)—varies very rapidly in space likewise the subgrid viscosity. At this point, the information provided
by the analysis of the subgrid-scale activity in the next section is a good complement to the previous correlation
study.

4.4.3.3 Subgrid-scale activity

The filtered kinetic energy can be decomposed into the kinetic energy of the resolved velocity field and the
residual kinetic energy which is equal to τii/2. The conservation equation for the kinetic energy of the resolved
velocity field—see pp. 585–586 in [199] for greater details—comprises transport terms as well as source/sink
terms which are of prime interest. First is the sink term εν = 2νSijSij = 2SijSij/Re corresponding to the
viscous dissipation associated with the resolved velocity field. The second sink term εsgs = −τd

ijSij corresponds
to the SGS contribution and represents the rate of transfer of energy from the resolved scales of the flow to
the subgrid scales. This term εsgs is often inappropriately referred to as the SGS dissipation in the literature.
Indeed εsgs does not correspond to any physical dissipation but finds its origin in inertial processes. In addition,
it is important to note that locally εsgs can take negative values.

The SGS activity, denoted by Asgs in the sequel, allows to study the local energy fluxes due to the SGS
effects. Following Geurts & Fröhlich [90] and Meyers et al. [181], Asgs is defined as

Asgs =
εsgs

εsgs + εν
=

−τd
ijSij

−τd
ijSij + 2νSijSij

. (4.51)

The SGS activity Asgs measures the importance of the subgrid scales in the overall dissipation process of
the kinetic energy of the resolved velocity field. As mentioned by Meyers et al. [181], the SGS activity varies
between zero and one where a value of zero corresponds to DNS and Asgs = 1 is associated with LES at
infinite Reynolds number. Moreover the value of Asgs is directly related to the filter width ∆ and measures the
“distance” between a DNS resolving all flow features at sufficiently high spatial resolution and an actual LES
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corresponding to a specific filter width and mesh spacing. In the particular case of the LES-DSM, the SGS sink

term is εsgs = 2νsgsSijSij = 2Cd∆
2|S|SijSij , leading to

ADSM
sgs =

νsgs

νsgs + ν
=

Cd∆
2|S|/ν

1 + Cd∆
2|S|/ν

. (4.52)

Fig. 4.23 displays the average value 〈Asgs〉 of the SGS activity in the plane z/h = 0.241 containing Ξ0 and
where the turbulent energy dissipation rate is maximum. First, it appears that the SGS activity is slightly
higher for the LES-DMM than for the LES-DSM. Moreover, it appears very clearly that the SGS modeling is
activated in the region of the cavity where the different wall jets are present, with maxima in the impingement
zones. The LES-DMM is more effective in activating the subgrid scales in these particular zones. In the zone
where the tertiary wall jet is impinging on the lid, SGS dissipation for the LES-DSM is less than 25% of the
total dissipation, whereas it is above 45% for the LES-DMM.
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Fig. 4.23: Contours of the average SGS activity 〈Asgs〉 in the plane z/h = 0.241 containing the point Ξ0:
LES-DSM (left) and LES-DMM(right); same series of contour levels is used for both models.

4.4.4 Helical properties of the cavity flow

The helicity H of the fluid flow confined in the cavity V at instant t is defined by

H(t) =

∫

V
u · ω dV , (4.53)

and is a measure of linkages and knots between the vorticity lines of the flow. The quantity h(x, t) = u ·ω is the
helicity density and is a pseudo-scalar quantity just like H. The helicity is an important flow quantity because
just like the total energy of the flow Q(u), it is an invariant of three-dimensional homogeneous turbulence [184].
The study of the resolved helicity H and the average resolved helicity density 〈h〉 in the particular context of
the lid-driven cavity flow in a locally-turbulent regime allows to gain insights into very important features of
the turbulence dynamics as noted by Moffat & Tsinober [184]. For instance TGL vortices and secondary corner
eddies are structures encountered in the lid-driven cavity flow which are well known as typical helical structures.

Mappings of the average resolved helicity density in Fig. 4.24 allows to locate resolved helical coherent
structures (HCS). These HCS are particularly intense in the secondary-corner-eddy region and are consistent
with the experimentally observed typical HCS, namely streamwise counter-rotating vortices [249]. This pairing
of coherent helical structures correspond to a pairing of coherent vortical structures having opposite vorticity and
consequently opposite helicity. Such observation justifies the relatively small—but non-zero—resolved average
helicity reached by both LES models: 〈HDSM〉 = 0.00764U2

0h
2 and 〈HDMM〉 = −0.00572U2

0h
2. Smaller HCS

have been identified earlier in Sec. 4.4.2.3, where streamwise counter-rotating vortices—cf. Fig. 4.19—near the
bottom wall, have been identified by the conditional averaging as the principal coherent structures responsible
for the high-intensity peaks in the production of turbulence in this region of the flow. Finally, it is noteworthy
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Fig. 4.24: Contours of the average resolved helicity density 〈h〉 in the bottom plane y/h = −1 (left) and in the
plane x/h = 0.7874 (right) containing Θ0; LES-DSM.
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Fig. 4.25: Time histories of resolved H(t) for the LES-DSM (red lines) and the LES-DMM (blue lines).
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to emphasize the strong link between average resolved helicity density contours and average resolved turbulent
kinetic energy dissipation rate ones in Fig. 4.21.

As mentioned previously the average resolved helicity of the flow is non-zero. The time histories of the
resolved helicity for the whole simulations are shown in Fig. 4.25 for both LES-DSM and LES-DMM. In
Sec. 4.3.1 was mentioned that both SGS models start being effective and producing different global results
after a transient period of about 80h/U0 time units, and likewise the helicity as can be seen in Fig. 4.25.
Moreover, the amplitude of the resolved helicity fluctuations is not decaying during the simulation and the
LES-DMM qualitatively produces more high-amplitude negative helical values therefore justifying its negative
average value.

k̂

1e-01

1e+00

1e+01

16 32 64 128 256 512

Fig. 4.26: One-dimensional relative helicity spectrum α(k̂); LES-DMM.

Helicity, like energy, is cascaded from large scales down to the Kolmogorov dissipation scale, where it is
destroyed. Unfortunately, the relatively low Reynolds number of both LES does not permit the determination
of quantitative scalings of energy and helicity spectra which could be compared to the Kolmogorov scalings in
k̂−5/3 in helical three-dimensional homogeneous isotropic turbulence, as mentioned by Borue & Orszag [31].
In the same paper, Borue and Orszag conclude that helicity is inherently a large-scale quantity which behaves
similarly to a passive scalar. Consequently the one-dimensional relative helicity spectrum defined by

α(k̂) =
Ĥ(k̂)

2k̂ Q̂(k̂)
, (4.54)

where Ĥ (resp. Q̂) is the one-dimensional resolved helicity (resp. energy) spectrum, decreases at small scales.
Even if in our context, the turbulence is not homogeneous nor isotropic, the previous assertion is undeniably
verified by both LES as can be seen only for the LES-DMM in Fig. 4.26, for high values of k̂ corresponding to
small scales. Similar relative helicity spectrum is obtained for the LES-DSM. This suggests that the decreasing
trend at small scales of the relative helicity spectrum is more general and not only limited to the homogeneous
and isotropic turbulence theoretical framework, just like the Kolmogorov scale in the inertial range.

4.5 Conclusions

The long-integration results of two LES of the lid-driven cubical cavity flow at a Reynolds number of 12 000 have
been presented for two dynamic subgrid-scale models, namely a dynamic Smagorinsky model and a dynamic
mixed model. These simulations were based on an accurate spectral-element spatial discretization, having two
times less points per space direction than the direct numerical simulation reference result from Leriche &
Gavrilakis [155]. All filtering levels introduced in both SGS modelings rely on explicit modal filters in the
spectral space, retaining C0-continuity of the numerical solution of the filtered Navier–Stokes equations. An
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additional nodal filter was used to stabilize both LES. Time-averaging was shown to be equivalent to ensemble-
averaging, with respect to the global precision level of the numerical integration.

Partial simulation results using the UDNS and the Smagorinsky model as subgrid-scale models, have served
to prove the necessity of a dynamic SGS procedure. Full LES results for both dynamic models have shown very
good agreement with the DNS reference results. The agreement with the experimental reference results from
Prasad & Koseff [201] is qualitatively good.

At a Reynolds number of 12 000, the lid-driven cavity flow is placed in a locally turbulent regime and
such turbulent flow is proved to be highly inhomogeneous in the secondary-corner regions of the cavity where
turbulence production and dissipation are important. The maximum production of turbulence was found to be
located in the downstream-corner-eddy region just above the bottom wall. An analysis of the spectra of turbulent
quantities at this point allowed us to determine the distribution of the scales of the turbulent structures convected
past this maximum. Moreover, both LES were able to capture the coherent counter-rotating pair of vortices
which are mainly responsible for the peaks of turbulence production still at this point. LES-DSM have shown
globally more intense and better results than the LES-DMM in this matter.

Small-scales turbulent structures were located indirectly by studying the regions of intense turbulent energy
dissipation rate ε. The subgrid-viscosity field was shown to be strongly correlated to ε in the turbulent areas
of the flow, but the clipping procedure—necessary for stabilizing the numerics—imposed to the dynamic pa-
rameters strongly diminishes this correlation in the intense turbulent zones. Subgrid-scales activity has been
analyzed and the higher SGS activity is associated with the LES-DMM.

Helical properties of the flow were investigated. Typical helical coherent structures were identified in the
secondary-corner regions. These structures appear to be correlated to the turbulent energy dissipation rate ε.
The relative helicity spectra is shown to be decreasing at small scales, which is in agreement with the theoretical
results from Borue & Orszag [31] for the three-dimensional isotropic homogeneous turbulence.



Chapter 5

A coupled approximate deconvolution and
dynamic mixed scale model for LES

Large-eddy simulations of incompressible Newtonian fluid flows with approximate deconvolution models based
on the van Cittert method are reported in this chapter. The Legendre spectral element method is used for the
spatial discretization to solve the filtered Navier–Stokes equations. A novel variant of approximate deconvolution
models blended with a mixed scale model using a dynamic evaluation of the subgrid-viscosity constant is
proposed. This model is validated by comparing the large-eddy simulation with the direct numerical simulation
of the flow in a lid-driven cubical cavity, performed at a Reynolds number of 12 000. Subgrid modeling in the
case of a flow with coexisting laminar, transitional and turbulent zones such as the lid-driven cubical cavity flow
represents a challenging problem [79]. Moreover, the coupling with the spectral element method having very
low numerical dissipation and dispersion builds a well suited framework to analyze the efficiency of a subgrid
model. First- and second-order statistics obtained using this new model are showing very good agreement
with the direct numerical simulation. Filtering operations rely on an invertible filter applied in a modal basis
and preserving the C0-continuity across elements. No clipping on dynamic parameters was needed to preserve
numerical stability.

5.1 Introduction

As previously mentioned in Chapter 4, large-eddy simulation (LES) represents a way of reducing the number
of degrees of freedom of the simulation with respect to the requirements of the direct numerical simulation
(DNS). This is done by calculating only low-frequency modes in space and modeling high-frequency ones, the
scale separation being performed by filtering in space the Navier–Stokes equations. Large-scale structures are
obtained by the computed flow dynamics while the behavior of subgrid scales and their interaction with large
eddies are modeled by the additional term in the LES governing equations resulting from filtering the Navier–
Stokes equations. The expression of the additional term as a function of the resolved field is referred to as
subgrid modeling.

Approximate deconvolution models (ADM) constitute a particular family of subgrid models. They rely
on the attempt to recover, at least partially, the original unfiltered fields, up to the grid level, by inverting
the filtering operator applied to the Navier–Stokes equations. The focus here is on the approximate iterative
method introduced by Stolz & Adams [243] which is based on the van Cittert procedure. This method was
subsequently applied to incompressible wall-bounded flows [246], to compressible flows and to shock-boundary
layer interaction [245] using a new variant ADM-RT, blending ADM with a relaxation term (RT) increasing the
dissipative character of the model. Transitional flows were also investigated by Schlatter et al. [220]. Over the
past five years, ADM spread over various fields of application. Gullbrand & Chow studied the effect of explicit
filtering in the case of channel flow [107]. ADM were also more recently applied to the LES of a rectangular jet and
to computational aero-acoustics by Rembold & Kleiser [206]. Particle-laden turbulent flows were investigated in
the ADM framework by Shotorban & Mashayek [229]. From the numerical viewpoint, Schlatter et al. [220] used
a parallel implementation of a mixed Fourier-Chebyshev spectral method. These models were also implemented
in a finite volume framework in the semi-industrial code NSMB, Navier–Stokes Multi–Block, by von Kaenel et
al. who applied it to shock-boundary layer interaction and channel flow in [261,262]. To our knowledge, the only
implementation based on the spectral element method (SEM) is due to Iliescu & Fischer [128] who used ADM
based on the rational LES model (RLES) instead of the van Cittert one. More recently, Pruett et al. proposed
a temporal ADM for LES [203] and a stability analysis of the LES-ADM equations was performed by Dunca &
Epshteyn [68].

LES of Newtonian incompressible fluid flows with ADM based on the van Cittert method using Legendre-
SEM as spatial discretization to solve the filtered Navier–Stokes equations are considered for the first time in this
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chapter. Following the idea of Winckelmans & Jeanmart [266] who coupled the ADM based on the van Cittert
method and the Smagorinsky model [232], and Gullbrand & Chow [107] who proposed a dynamic version of the
previous model, a new variant which blends ADM and the mixed scale model introduced by Sagaut [212] with
a dynamic evaluation of the subgrid-viscosity constant based on a Germano–Lilly type of procedure [88,156] is
proposed.

A specific filtering operation adapted to SEM and preserving continuity across elements is applied in a modal
basis which was proposed in the p-version of finite elements and first used by Boyd [38] as a filtering technique.
Depending on the transfer function, this filter is not projective and is therefore invertible, this property being
essential for the deconvolution procedure.

A DNS of the flow in a lid-driven cubical cavity performed at Reynolds number of 12 000 with a Chebyshev
collocation method due to Leriche & Gavrilakis [155] is taken as the reference solution to validate the new
model. Subgrid modeling in the case of a flow with coexisting laminar, transitional and turbulent zones such
as the lid-driven cubical cavity flow represents a challenging problem. As the flow is confined and recirculating,
any under- or over-dissipative character of the subgrid model can be clearly identified. Moreover, the very low
dissipation and dispersion induced by SEM allows a pertinent analysis of the energetic action induced by any
subgrid model, which is not feasible in the framework of low-order numerical methods. The coupling of the
lid-driven cubical cavity flow problem with the SEM builds therefore a well suited framework to analyze the
accuracy of the newly defined subgrid model. Bouffanais et al. [35, 37] have performed LES of the flow in a
lid-driven cubical cavity at a Reynolds number of 12 000 using the same physical parameters as the DNS from
Leriche & Gavrilakis [155]. The numerical framework of [35,37] is the same as the one used in the present chapter.
Standard subgrid models were used in [35, 37]: dynamic Smagorinsky [88, 156] or dynamic mixed models [272].

This chapter is organized as follows. In Section 5.2, the filtered Navier–Stokes equations are given, followed
by a brief description of the space-time discretization using the spectral element method. The subgrid modeling
is dealt in detail in Section 5.3 and the numerical filters are described in Section 5.4. LES of the flow in the
lid-driven cubical cavity, based on the subgrid models introduced in Section 5.3, is presented and thoroughly
analyzed in Section 5.5. Finally, in Section 5.6 we present the conclusions.

5.2 Governing equations and numerical method

5.2.1 Governing equations

In the case of isothermal flows of Newtonian incompressible fluids, the LES governing equations for the filtered
quantities denoted by an overbar, obtained by applying a convolution filter G? to the Navier–Stokes equations,
read

∂ui
∂t

+
∂

∂xj
(uiuj) = − ∂p

∂xi
+ ν

∂

∂xj

(
∂ui
∂xj

+
∂uj
∂xi

)
− ∂τij
∂xj

, (5.1)

∂uj
∂xj

= 0, (5.2)

the filtered velocity field u = G ? u satisfying the divergence-free condition (5.2) through the filtered reduced
pressure field p. The components of the subgrid tensor τ are given by

τij = uiuj − uiuj , (5.3)

and ν is the kinematic viscosity. The closure of the filtered momentum equation (5.1) requires τ to be expressed
in terms of the filtered field which reflects the subgrid scales modeling and the interaction among all space scales
of the solution.

5.2.2 Space discretization

The numerical method and the space discretization is the same as the ones used in Chapter 4 and introduced
in Chapter 2. For the sake of clarity, the central lines and ideas are briefly recalled here. The numerical method
treats Eqs. (5.1)–(5.2) within the weak Galerkin formulation framework. The SEM consists in dividing the
computational domain into a given number of spectral elements. In each spectral element, the velocity and
pressure fields are approximated using Lagrange–Legendre polynomial interpolants. The reader is referred to
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the monograph by Deville et al. [58] for full details. The velocity and pressure are expressed in the PN − PN−2

functional spaces where PN is the set of polynomials of degree lower than N in each space direction. This spectral
element method avoids the presence of spurious pressure modes as it was proved by Maday & Patera [172,174].
The quadrature rules are based on a Gauss–Lobatto–Legendre (GLL) grid for the velocity nodes and a Gauss–
Legendre grid (GL) for the pressure nodes.

Borrowing the notation from Deville et al. [58], the semi-discrete filtered Navier–Stokes equations resulting
from space discretization are

M
du

dt
+ Cu + νAu−DT p+ Dτ τ = 0, (5.4)

−Du = 0. (5.5)

The diagonal mass matrix M is composed of three blocks, namely the mass matrices M . The global vector u
contains all the nodal velocity components while p is made of all nodal pressures. The matrices A, DT , D,
Dτ are the discrete Laplacian, gradient, divergence and tensor divergence operators, respectively. The matrix
operator C represents the action of the nonlinear term written in convective form u ·∇, on the velocity field
and depends on u itself. The semi-discrete equations constitute a set of nonlinear ordinary differential equations
(5.4) subject to the weak incompressibility condition (5.5).

5.2.3 Time integration

Standard time integrators in the SEM framework handle the viscous linear term and the pressure implicitly by
a backward differentiation formula of order 2 (BDF2) to avoid stability restrictions such that ν∆t ≤ C/N 4,
while all nonlinearities, including the discretized subgrid term −Dτ , are computed explicitly, e.g. by a second
order extrapolation method (EX2), under the CFL restriction

umax∆t ≤ C/N2. (5.6)

The implicit part is solved by a generalized block LU decomposition with a pressure correction algorithm
[54,58, 196]. The overall order-in-time of the afore-presented numerical method is two.

5.3 Subgrid modeling

5.3.1 General considerations

The problem of subgrid modeling consists in taking into account the interaction between resolved and subgrid
scales which is represented by the subgrid term ∇ · τ in the filtered momentum equation (5.1).

Following the terminology introduced by Sagaut [213], two modeling strategies are defined. A first group of
models, called structural, aims at making the best approximation of the tensor τ by reconstructing it formally
from the resolved field u. The closure consists in finding a relation such that

τm = Cτ (u), (5.7)

where the upper index ‘m’ distinguishes the modeled from the exact subgrid tensor. This group of models does
not require any foreknowledge about the nature of the interactions between resolved and subgrid scales. The
second group, called functional, consists in modeling the action of subgrid scales on the resolved field u using
physical concepts and not at approximating the subgrid tensor τ itself, even if a subgrid tensor is explicitly
constructed as for subgrid-viscosity models. Most of these models assume that the action of subgrid scales on
resolved ones is essentially energetic, so that the balance of energy transfers between both scales categories is
sufficient to describe the interaction.

The focus hereafter is on ADM which attempts to recover, at least partially, the original unfiltered fields, up
to the grid level, by inverting the filtering operator applied to the Navier–Stokes equations. Following the idea
of Winckelmans & Jeanmart [266] who coupled the ADM based on the van Cittert method and the Smagorinsky
model [232], and Gullbrand & Chow [107] who proposed a dynamic version of the previous model, a new variant
blending ADM and the dynamic mixed scale model introduced by Sagaut [212] is proposed.
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5.3.2 Approximate deconvolution model

The deconvolution approach aims at reconstructing the unfiltered fields from the filtered ones. The subgrid
modes are not modeled but reconstructed using an ad hoc mathematical procedure which falls in the structural
modeling category. Writing formally the Navier–Stokes momentum equation (5.1) as

∂u

∂t
+ f(u) = 0, (5.8)

the evolution equation of the filtered quantities becomes

∂u

∂t
+ f(u) = [f ,G?](u), (5.9)

where the convolution filter G? = (L◦P)? embodies the LES filter L? and the projective grid filter P? [107,266],
the latter being therefore implicitly accounted for in the sequel. It is important to note that the LES filter and
the grid filter do not commute since the effect of the SEM discretization is not a spectral cutoff filter, unlike
the case of spectral methods as reported by Gullbrand & Chow [107]. The subgrid commutator reads then

[f ,G?](u) = f(G ? u)− G ? f(u) = f(u)− f(u), (5.10)

which is strictly equivalent to Eq. (5.1) given

[f ,G?](u) = −∇ · τ . (5.11)

The exact subgrid contribution appears as a function of the non-filtered field, which is not computed when
performing a LES. This field being unknown, the idea is to approximate it using the following deconvolution
procedure

u ' u∗ = QN ? u = (QN ◦ G) ? u = (QN ◦ L ◦ P) ? u = (QN ◦ L) ? û, (5.12)

where û = P ? u is the grid-filtered velocity. The operator QN ? is an N th-order approximation of the inverse
of the filter L?, since the grid filter is projective and therefore not invertible, such that

(QN ◦ L) = I +O(∆
N

), (5.13)

with I? the identity filtering operator and ∆ the filter cutoff length associated to G?. Stolz & Adams proposed
in [243] an iterative deconvolution procedure based on the van Cittert method. If the filter L? has an inverse,
it can be computed using the truncated van Cittert expansion series

L−1 ' QN =

N∑

i=0

(I − L)i, (5.14)

which is known to be convergent if
‖I − L‖ � 1. (5.15)

The deconvolution error induced by the approximation (5.14) can be represented by a filter HN ? defined by

HN = I −QN ◦ L. (5.16)

The subgrid term is then approximated as

[f ,G?](u) ' [f ,G?](QN ? u) = [f ,G?](u∗), (5.17)

and the model resulting from this approach is obtained by introducing Eq. (5.17) into the filtered Navier–Stokes
momentum equation (5.9)

∂u

∂t
+ f(u) = [f ,G?](u∗). (5.18)

Using once more approximation (5.12) in Eq. (5.18) implies f(u) = f(u∗) and leads to the formulation commonly
used with ADM

∂u

∂t
+ G ? f(u∗) = 0. (5.19)

It is noteworthy that this latter formulation introduces the deconvolution error and the error related to the
non-inversion of P? into the nonlinear advection term, thereby breaking the Galilean invariance [238]. Further-
more, the expression of the subgrid tensor of Bardina’s scale similarity model [13] is not recovered from the
deconvoluted formulation (5.19) when QN = I, which is again due to the difference between the filtered and
the deconvoluted velocities. Based on the previous comments, the filtered formulation (5.18) appears to be the
most general and therefore, all LES presented in the sequel rely on it. No numerical instabilities were observed
using the formulation (5.18) associated with our explicit treatment of the nonlinear terms, see Sec. 5.2.3.
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5.3.3 Coupling with a dynamic mixed scale model

Coupling ADM with a subgrid-viscosity model can be formally achieved by adding a source term s(u) to the
right-hand side of Eq. (5.18)

∂u

∂t
+ f(u) = [f ,G?](u∗) + s(u), (5.20)

where s(u) is expressed in terms of the filtered rate-of-strain tensor S by

s(u) =∇ · (νsgs(∇u +∇uT )) =∇ · (2νsgsS), (5.21)

the superscript ‘T’ denoting the transpose operation and νsgs the subgrid viscosity. For such functional models,
only the deviatoric part of the subgrid stress is modeled. On the other hand, the ADM part [f ,G?](u∗) in-
cludes both isotropic and deviatoric parts. Using such subgrid-viscosity model, the only unknown is the subgrid
viscosity itself which implies a closure of the form

νsgs = Cν(u). (5.22)

5.3.3.1 Mixed scale model

In the sequel, we focus on a subgrid-viscosity model proposed by Sagaut [212] having a triple dependency on
the large and small structures of the resolved field, and the filter cutoff length. With respect to the Smagorinsky
model used by Winckelmans & Jeanmart [266], the model proposed by Sagaut offers the advantage of auto-
matically vanishing if subgrid scales are absent of the solution. This model, which makes up the one-parameter
mixed scale family, is derived by taking a weighted geometric average of the models based on large scales and
those based on the energy at cutoff. The closure is given by

νsgs = Cγ |F(u)|γ(qc)
1−γ

2 ∆
1+γ

, (5.23)

where Cγ and γ are the subgrid-viscosity and mixed-scale constants, qc is the resolved kinetic energy at cutoff
and

F(u) = S(u) = S or F(u) =∇× u = ω. (5.24)

The resolved kinetic energy at cutoff can be evaluated using the formula

qc =
1

2
uc,iuc,i, (5.25)

where the cutoff velocity field uc represents the high-frequency part of the resolved field, defined using a second
filter, referred to as test filter, designated by the tilde symbol and associated with the cutoff length ∆̃ > ∆

uc = u− ũ. (5.26)

We note that for γ ∈ [0, 1], the subgrid viscosity is always defined. The constant Cγ can be evaluated by theories
of turbulence in the case of statistically homogeneous and isotropic turbulent flow

Cγ = C1−γ
q C2γ

s , (5.27)

where the Smagorinsky constant Cs ' 0.18 and Cq ' 0.20.

5.3.3.2 Dynamic evaluation of the subgrid-viscosity constant

Theoretical values of the subgrid-viscosity constant cannot be used in our case because they are derived if the
model is used without the ADM structural contribution, that is to model the whole subgrid tensor. In order
to overcome this issue, we introduce a dynamic procedure of Germano–Lilly type to evaluate this parameter
as a function of space and time. Such procedure completes the definition of the subgrid model based on the
coupling of ADM with the dynamic mixed scale (DMS) model, called ADM-DMS in the sequel. This requires
the introduction of the twice-filtered Navier–Stokes equations. Applying the test filter T ?, represented by a
tilde, to the filtered Navier–Stokes momentum equation (5.9) gives

∂ũ

∂t
+ f(ũ) = [f , T ?](u) + T ? [f ,G?](u), (5.28)
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which can be recast in the form

∂ũ

∂t
+ f(ũ) = −∇ · (L + τ̃ ) = −∇ ·T, (5.29)

where T = L + τ̃ is an expression of the Leibniz identity referred to as multiplicative Germano identity in the
LES framework [88]. The components of τ are given in Eq. (5.3) and those of L by

Lij = ũiuj − ũiũj , (5.30)

leading to the following expression for the subgrid tensor T corresponding to the twice-filtered Navier–Stokes
equations

Tij = ũiuj − ũiũj . (5.31)

The tensors corresponding to filtered and twice-filtered equations are modeled by blending ADM with the mixed
scale model previously introduced. Assuming each subgrid tensor can be modeled using the same dynamic
parameter Cd replacing the constant Cγ , which relies on the scale similarity hypothesis between test filter and

primary filter cutoff lengths ∆̃ and ∆, we obtain

τm
ij = u∗i u

∗
j − u∗i u∗j + Cdβij , βij = −2∆

1+γ |F(u)|γ(qc)
1−γ

2 Sij , (5.32)

Tm
ij = ũ∗i u

∗
j − ũ∗i ũ∗j + Cdαij , αij = −2∆̃

1+γ

|F(ũ)|γ(q̃c)
1−γ

2 S̃ij , (5.33)

where α and β are the subgrid-viscosity terms deprived of their constant. The parameter Cd is evaluated in
order to minimize the residual

Eij = Lij − Lm
ij , (5.34)

where Lm = Tm − τ̃m. Using Eqs. (5.32)–(5.33), Eq. (5.34) reads

Eij = Lij − [(ũ∗i u
∗
j − ũ∗i ũ∗j + Cdαij)− (ũ∗i u

∗
j − ũ∗i u∗j + C̃dβij)]. (5.35)

Assuming Cd is constant over an interval at least equal to the test-filter cutoff length such that C̃dβij = Cdβ̃ij ,
we have

Eij = Lij − (Hij + Cdmij), (5.36)

where

mij = αij − β̃ij and Hij = ũ∗i u
∗
j − ũ∗i ũ∗j , (5.37)

which consists in a system of six independent equations leading to six possible different values of the constant.
In a similar framework and in order to obtain a single value, Lilly [156] proposed an evaluation based on a
least-squares minimization of the form

∂EijEij
∂Cd

= 0, (5.38)

leading to the solution of the following single scalar equation

Cd =
(Lij −Hij) mij

mij mij
. (5.39)

Smaller values than theoretical ones are expected for Cd using the previous dynamic procedure because of the
small difference between the tensors L and H, only induced by the deconvolution error. Indeed, the tensor H
can be explicitly written as

Hij = ˜(QN ? ui) (QN ? uj)− ˜(QN ? ui)
˜(QN ? uj), (5.40)

and if the deconvolution order N →∞, corresponding to QN → G−1 if the series (5.14) is convergent, one has

lim
N→∞

Hij = Lij , (5.41)

which implies that the subgrid-viscosity term vanishes if exact deconvolution is performed up to the grid level.
This behavior of the eddy-viscosity part of our model, when the deconvolution order tends to infinity is strictly
equivalent to the one observed by Sagaut et al. [214] and Stolz et al. [246] using high-pass filtered subgrid-
viscosity models. Furthermore the relaxation term introduced by Stolz et al. [244, 245] to stabilize their ADM-
based LES has the same behavior in the infinite deconvolution order limit. The choice of the deconvolution
order N can be interpreted as a way of tuning the relative part taken by the subgrid-viscosity term which
compensates the deconvolution error to minimize the difference between L and Lm, in a least-squares sense. In
the limit of N going to infinity, the modeled subgrid stress tensor defined in Eq. (5.32) reduces solely to its
ADM contribution

τm
ij = ûiûj − ûi ûj , (5.42)

where û = P ? u is the grid-filtered velocity.
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5.3.4 Particular cases of ADM-DMS

In this section we highlight two particular cases of ADM-DMS. The first one is the model proposed by Zang
et al. [272], based on Bardina and Smagorinsky models with a dynamic evaluation of the subgrid-viscosity
constant. The ADM-DMS expression of the subgrid tensor given by (5.32) can be explicitly written as

τmij = (QN ? ui)(QN ? uj)− (QN ? ui) (QN ? uj) + Cdβij . (5.43)

Then choosing γ = 1, N = 0 and F(u) = S leads to

τmij = uiuj − ui uj + Cdβij , βij = −2∆
2|S|Sij , (5.44)

which is the expression of the one-parameter dynamic mixed model. ForN = 0, the tensor H explicitly expressed
by Eq. (5.40) reads

Hij = ũiuj − ũiũj . (5.45)

The second particular case of ADM-DMS is DMS, a dynamic version of the mixed scale model proposed by
Sagaut [212]. This model is formally obtained by imposing QN = 0 in the developments of Sect. 5.3.3.2, which
leads to H = 0 and to the following expression of the subgrid tensor

τm
ij = Cdβij , βij = −2∆

1+γ |F(u)|γ(qc)
1−γ

2 Sij , (5.46)

with the dynamic parameter of DMS given by

Cd =
Lij mij

mij mij
. (5.47)

Without the ADM contribution, higher values of the dynamic parameter are expected since the difference
between L and H occurring in Eq. (5.39) disappears in Eq. (5.47). This phenomenon is in direct relation with
the fact that the subgrid viscosity term is used to model the whole subgrid tensor in this particular case.

5.4 Filtering

Filtering techniques suited to SEM and LES must preserve C0-continuity of the filtered variables across spectral
elements and be applicable at the element level. In the sequel, we present a filter satisfying these constraints
which is based on spectral techniques ensuring the element-level filtering property. The filtering operation is
performed by applying a given transfer function in a modal basis. Depending on this transfer function, this filter
may not be projective, therefore ensuring its invertibility which is a key feature needed by the deconvolution
procedure. Hence, we will focus on the choice of the transfer function to fulfill this constraint.

5.4.1 Description of the filter

The modal basis introduced in the p-version of finite elements and first used by Boyd [38] as filtering technique
is presented in its one-dimensional version, the extension to three dimensions being straightforward by tensor
product. It is built up on the reference parent element Ω̂ = [−1, 1] of the SEM as

φ0 =
1− ξ

2
, φ1 =

1 + ξ

2
,

φj = Lj(ξ) − Lj−2(ξ), 2 ≤ j ≤ N,
(5.48)

where Lj is the Legendre polynomial of degree j. Unlike the Lagrange–Legendre nodal basis used in our spectral
element calculations, this modal basis forms a hierarchical set of polynomials allowing to define in an explicit
and straightforward manner a low-pass filtering procedure. Any variable v can be expressed in this basis by the
relation

v(ξ) =
N∑

j=0

v̆jφj(ξ), ξ ∈ Ω̂, (5.49)

which in matrix notation reads
v = Φv̆, (5.50)
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where
Φij = φj(ξi). (5.51)

The filtering operation is performed in the spectral modal space through a diagonal matrix K whose components
are chosen in order to fulfill the required properties of the filter. The filtering process for a one-dimensional
problem is expressed by

v = ΦKΦ−1v = Gv. (5.52)

5.4.2 Transfer function

C0-continuity, conservation of constants, invertibility and low-pass filtering are obtained by properly choosing
the transfer function represented by the diagonal transfer matrix K. Imposing all these requirements to the
filter could seem like an intractable issue but appears feasible when visualizing the modal basis functions
presented in [24] and reported in Fig. 5.1. As the filter acts in another basis than the one used for our spectral
element calculations, C0-continuity is preserved if the boundaries of the elements are not affected by the filtering
procedure. One can notice that the only shape functions having non-zero values at the element boundaries are
φ0 and φ1, while φj , j ≥ 2 are bubble functions. The functions φ0 and φ1 are responsible for imposing the
non-zero values on element edges. Therefore, the transfer function coefficients must satisfy

Kij = δij , i, j ≤ 1, (5.53)

with δij the Kronecker operator. If Kij verifies (5.53), the constants are conserved after filtering because they
are expressed as a linear combination of φ0 and φ1. The modal filter is not projective if all diagonal coefficients
Kii are non-zeros. The last required property is to perform low-pass filtering in frequency. As this modal
basis forms a hierarchical set of polynomials, low-pass filtering is done by damping the high-degree polynomial
contributions. The transfer matrix is expressed by

Kij = δijK(i), (5.54)

with the continuous transfer function

K(k) =
1

1 +
(
ηmax(0,k−1)

N

)2 , η ≥ 0, (5.55)

where η is referred to as filtering rate (Fig. 5.2). The transfer function is such that the filter verifies all the
required properties previously described. The cutoff frequency k is arbitrarily defined by K(k) = 1/2. Such
filtering technique has already been used by Blackburn & Schmidt for the LES of channel flow using SEM [24].
In the present work, the transfer function given by Eq. (5.55) and depicted on Fig. 5.2 ensures the invertibility
of the filter contrary to [24]. Moreover, the shape of the transfer function in Fig. 5.2 is similar to the one
classically used by Stolz et al. [244, 245]. However, in the SEM framework the transfer function is defined
element by element in the spectral modal space which prevents from a direct comparison with the discrete filter
implemented by Stolz et al. [244, 245].

5.4.3 Filter cutoff length

The subgrid-viscosity term of ADM-DMS makes explicitly use of the filter cutoff length which needs to be
defined. For a one-dimensional problem, e.g. in the x-direction, using the SEM, a common choice of filter
width [35, 37] is

∆x =
∆̂x

px,c
, (5.56)

where ∆̂x is the element size and px,c the highest polynomial degree in the spectral decomposition (5.49) that
is the closest to the cutoff frequency k

px,c = max(i), such that i ≤ k, i = 0, . . . , N. (5.57)

We notice that the filter length decreases when the element is refined and the polynomial degree augmented.
The straightforward three-dimensional extension for problems with rectilinear spectral elements is

∆(x, y, z) = (∆x(x)∆y(y)∆z(z))1/3 =

(
∆̂x

px,c

∆̂y

py,c

∆̂z

pz,c

)1/3

. (5.58)
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5.4.4 Filtering operators related to ADM

The filtering operators QN ? and HN ? are defined with respect to G?, see Eq. (5.14) and (5.16) respectively and
explicitly depend on the deconvolution order N . By representing in Figure 5.2 the transfer function associated
with HN ?, one can observe that the deconvolution error is important at the end of the modal spectrum, so that
HN ? constitutes a high-pass filter. When increasing the deconvolution order N , the transfer function associated
with the filter HN ? diminishes, showing the increasing accuracy of the approximate deconvolution procedure.
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Fig. 5.1: Bases associated with the filtering operation, shown for polynomial order N = 5 on the reference parent
element Ω̂ = [−1, 1]. The Legendre polynomials (left column), the modal polynomials (right column).

5.5 LES of the lid-driven cubical cavity flow

5.5.1 General considerations

The different LES presented hereafter refer to the flow in a lid-driven cubical cavity performed at Reynolds
number of 12 000. The flow domain Ω consists in a cubical cavity such that Ω = (−h, h)3, the axis origin being
assigned at the center of the cavity (Fig. 4.1). The flow is driven by imposing a non-zero velocity parallel to the
x-axis on the “top” wall. On the other walls, no-slip conditions are imposed. The moving wall will be referred
to as the lid while the faces normal to the z-axis will be referred to as side walls. The upstream and downstream
walls are normal to the x-axis and characterized by their relative position with respect to the lid motion. The
remaining face parallel to the lid is called bottom wall. As far as the velocity imposed on the lid is concerned,
the unit velocity induces severe discontinuities along the top edges. In order to avoid these defects, the imposed
velocity on the lid is given by the polynomial expression

ux(x, h, z) = U0(1− (x/h)n)2(1− (z/h)n)2, uy = uz = 0, (5.59)
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Fig. 5.2: Transfer functions associated with G? for different values of the filtering rate η = 1.25, 2.50, 5.00, 10.0
(left) and, H? for different values of the deconvolution order N = 0, 1, 3, 5 with η = 1.25 (right). Polynomial
order N = 8.

where U0 is a constant. The Reynolds number is defined using the maximum velocity U0

Re =
2hU0

ν
. (5.60)

Although the geometry is very simple, the flow presents complex physical phenomena [37,155], no direction
of homogeneity and a large variety of flow conditions. For such Reynolds numbers, the flow over most of the
domain is laminar and turbulence develops near the cavity walls. Its main feature is a large scale recirculation
which spans the cavity in the z-direction. Aside this large flow structure, the relatively high momentum fluid
near the lid is deviated by the downstream wall into a down flowing nonparallel wall jet which separates ahead
of the bottom wall. A region of high pressure and dissipation located at the top of downstream wall results from
this deviation. The energy resulting from the impingement of the separated layer against the bottom wall is lost
to turbulence and partly recovered by an emerging wall jet near the upstream wall where the flow slows down
and relaminarizes during the fluid rise. The flow is also characterized by multiple counter-rotating recirculating
regions at the corners and edges of the cavity.

Time-step Lid vel. Int. time Nb. elements Polynomial degree
h/U0 n h/U0 (Ex, Ey, Ez) (Nx, Ny, Nz)

DNS 0.0025 18 1 000 (1, 1, 1) (128, 128, 128)
LES 0.0020 18 80 (8, 8, 8) (8, 8, 8)

Table 5.1: Numerical and physical parameters of the DNS [155] and LES.

The physical and numerical parameters of the DNS and the LES are gathered in Table 5.1. The DNS con-
stitutes the reference solution and was obtained with a Chebyshev collocation method on a grid composed of
129 collocation points in each spatial direction [155]. For LES, the spectral elements are unevenly distributed
(Fig. 4.2) in order to resolve the boundary layers along the lid and the downstream wall. The spatial discretiza-
tion has Ex = Ey = Ez = 8 elements in the three space directions with px = py = pz = 8 polynomial degree,
equivalent to 653 grid points in total. The mesh used for LES has therefore twice less points per space direction
than the DNS grid of Leriche and Gavrilakis but it is important to note that to achieve a DNS using the SEM
would require more than 1293 grid points due to the lower order of the SEM as compared to the Chebyshev
collocation method [58]. The space discretization is strictly equivalent to the one used for the LES reported by
Zang et al. [272] for a lower Reynolds number of 10 000. One should notice that the time-step for LES is slightly
smaller than for the DNS which is due to different CFL constraints for the two different numerical schemes
used, namely SEM and Chebyshev collocation.

The mixed scales constant is set to γ = 0.5 in order to have the triple dependency on the large and small
structures of the resolved field as a function of the filter cutoff length. Furthermore, the ratio between both
filtering rates ηT and ηG in Eq. (5.55), corresponding to the test and primary filters T ? and G? respectively,

is taken equal to two leading to a ratio of the filter cutoff lengths ∆̃/∆ = 7/4. The parameters chosen for all
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LES analyzed hereafter are summarized in Table 5.2. The choice of the deconvolution order is based on the
observations of Stolz et al. [244, 245] and, Gullbrand & Chow [107] who found that the value N = 5 for the
deconvolution order is a good compromise between the precision in the approximate deconvolution and the
computational cost induced by higher N in the van Cittert expansion series. This choice is further justified by
the analysis of the approximate deconvolution error developed in Sec. 5.5.2.

A LES based on ADM-DMS with the same parameters as the ones in Table 5.2, except for F = ω has
been carried out and has provided results extremely close to those from ADM-DMS with F = S. Consequently,
ADM-DMS results for the case F = S are the only ones reported in this chapter. A LES based on DMS, see
Sec. 5.3.4, with the same parameters as ADM-DMS for its dynamic mixed scale part, is also presented and
compared to ADM-DMS in order to identify the improvement induced by coupling ADM with DMS.

LES model N ηG ηT γ F
ADM-DMS 5 1.25 2.50 0.50 S

DMS - 1.25 2.50 0.50 S

Table 5.2: Models parameters for both ADM-DMS and DMS.

The different LES are all started from the same initial condition, namely an instantaneous velocity field
obtained from the DNS in the statistically-steady range and re-interpolated onto the spectral element grid. The
projective filter due to this re-interpolation induces the unrecoverable loss of the subgrid scales.

In order to verify that our mesh is coarse enough and does not resolve all scales of the flow, a DNS of
the lid-driven cubical cavity flow was performed with SEM and with exactly the same physical and numerical
parameters as the ones reported in Table 5.1. One can observe on Fig. 5.3 that this under-resolved DNS (UDNS)
is totally inoperative in the particular context of this simulation. Even first-order statistics are far from being
well predicted, not to mention second-order ones. These results allow us to confirm the sufficient under-resolution
of the flow using the 653 SEM mesh.

We assume that a statistically-steady state is reached and time averaging will be taken as ensemble averaging.
For any variable v, we recall the Reynolds statistical decomposition

v = 〈v〉 + v� (5.61)

introduces the time-averaged value denoted into brackets 〈v〉 and its fluctuating part v�. It is noteworthy
reminding here the difference between the filter splitting v = v + v′ and the Reynolds decomposition, see
Eq. (4.42) and Sec. 4.3.1 in Chapter 4. As the initial condition of all LES is the same DNS instantaneous
velocity field taken from the statistically-steady-state range, it is reasonable to also assume that LES will reach
a statistically-steady state very quickly, if subgrid modeling is efficient [37]. These assumptions are easily verified
by evaluating the total kinetic energy of the resolved field

Q(u) =
1

2

∫

Ω

uiui dΩ, (5.62)

which is expected to evolve within a relatively small fluctuation range. For figure 5.4, the results reported for
ADM-DMS correspond to a longer dynamic range of 200h/U0 time units. However, all the statistical results
presented hereafter for both ADM-DMS and DMS are limited to the first 80h/U0 time units. The time histories
of Q(u) presented in Fig. 5.4 for ADM-DMS and DMS show an evolution within the same fluctuation range
as the DNS and around the average value of the total kinetic energy predicted by the DNS. As reported in
Chapter 4 and also by Bouffanais et al. [37] using a dynamic Smagorinsky model, which is a particular case of
the present DMS over 800h/U0 time units, further confirms the evolution of Q(u) for DMS in the long run.

Additionally the time histories of the kinetic energy of the fluctuating resolved field Q(u�) presented on
Fig. 5.5 is also evolving in the same fluctuation range as the DNS. The results on Fig. 5.4 and Fig. 5.5 for
both Q(u) and Q(u�) allow to conclude that the turbulent flow reaches a statistically-steady state extremely
quickly. No transient can be clearly identified in this case. The same conclusion is made in Sec. 4.3.1 and also
by Bouffanais et al. [37] for LES using more classical subgrid models.

Since the scale separation used for LES leads to the removal of subgrid scales mainly responsible for the
energy dissipation, the subgrid model has to take into account this phenomenon. The flow in the cavity is
confined and recirculating so that the same fluid is conserved inside the cavity. Moreover, kinetic energy is
constantly provided to it by viscous diffusion. Hence, integral energy quantities over the flow domain such as
Q(u) and Q(u�) are a direct indication of any under- or over-dissipative character of the subgrid model, keeping
in mind the very low numerical dissipation and dispersion of the SEM. The results obtained for Q(u) using
ADM-DMS and DMS clearly show that the energy balance is achieved when using these models in this context.
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Fig. 5.3: In the mid-plane z/h = 0, UDNS (left column) and DNS (right column). Top row: contours of the
x-component of the average resolved velocity field from −0.2 to 1 by increments of 0.01. Bottom row: contours
of the y-component of the average resolved velocity field from −0.7 to 0.1 by increments of 0.01. Color scale
from blue to red. Dashed contours correspond to negative levels. Levels in U0 units.

DMS

ADM-DMS

DNS

t in h/U0 units

200150100500

0.060

0.059

0.058

0.057

0.056

0.055

0.054

0.053

0.052

0.051

0.050

Fig. 5.4: Total resolved kinetic energy Q(u) in U 2
0h

3 units with respect to the time t in h/U0 units and, for the
DNS, ADM-DMS and DMS (limited to 80 time units).

5.5.2 Validation of the approximate deconvolution procedure

The first step towards a complete validation of the ADM-DMS model, resides in investigating the accuracy of
the deconvolution procedure based on the van Cittert method, with respect to the deconvolution order N . For
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this purpose, we define the relative error in L2-norm between a non-filtered DNS velocity field, extracted from
the DNS database of Leriche & Gavrilakis [155], and its deconvoluted counterpart QN ? u

eu =
‖u−QN ? u‖L2(Ω)

‖u‖L2(Ω)

. (5.63)

Figure 5.6 displays the parametric analysis of the relative error with respect to the deconvolution order,
with the filtering rate ηG as parameter. One can notice that the van Cittert expansion series is convergent and
the error increases with the filtering rate ηG . In practical tests the deconvolution order must be set lower to
30 in order to avoid having binomial coefficients of very high values which would inevitably induce precision
errors. This numerical issue justifies the “apparent divergence” of the approximate deconvolution procedure
for all filtering rates observed in Fig. 5.6 for large values of N . The filtering rate is increased from 1 to 9 by
unit increments showing that the deconvolution error is larger with higher values of the filtering rate, which
corresponds to the expected result. One can also notice that the error growth in the “apparent divergence”
occurs earlier with lower filtering rates. It is very interesting to note that the error analysis is being performed
using a velocity field corresponding to a turbulent flow including laminar regions. The resulting deconvolution
error is clearly higher than the one obtained with a smooth analytically-defined field.

5.5.3 A posteriori validations

In this section, results of the LES are compared with the available reference results by analyzing first- and
second-order statistics. The measurements reported by Leriche & Gavrilakis [155] were taken in the mid-plane
z/h = 0, which is the statistical symmetry plane of the flow domain. For the sets of DNS data, the total velocity
field is considered whereas in the case of LES, only its resolved part is presented. In consequence, the statistical
moments computed from the resolved field cannot be equal to those computed from the DNS. One solution
to overcome this issue would have been to apply the same filtering as is used for the scale separation to the
reference solution [183]. We refer the reader to the monograph by Sagaut [213] for more details. The statistics
for all LES and UDNS are based on a sampling approximately 10 times smaller than the one of the original
DNS, but about twice longer than the one of the LES of Zang et al. [272]; more precisely 400 samples are
collected over 80h/U0 time units. The original reference DNS statistics were performed using 4 000 samples
extracted over an integration range of 1 000h/U0. Therefore, the LES statistics are not expected to be identical
to the reference ones, especially the second-order ones.

The comparisons with the DNS results are performed by plotting identical series of contour levels of the
average velocity. Figures 5.8 displays the average values of the velocity field for DMS, ADM-DMS, and the DNS
in the mid-plane of the cavity. This figure is complemented by the corresponding one-dimensional plots presented
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Fig. 5.6: Parametric analysis of the deconvolution error eu with respect to the deconvolution order N . The
filtering rate η is increased from 1 to 9 with unit increments.

in Fig. 5.7 on the horizontal/vertical centerlines in the mid-plane z/h = 0. A rapid overview of these figures
indicates that ADM-DMS provides results very close to the DNS references, which has to be compared with the
UDNS results of Figure 5.3. In addition, it appears that ADM-DMS results are more satisfactory than those
from DMS. Secondary corner eddies located above the bottom wall and below the lid next to the upstream wall
are correctly resolved in the mean flow. The flow below the lid and near the corner with the downstream wall
presents wiggles in the LES contours for 〈uy〉. More limited effects are noticeable for the equivalent x-component
field. We assume that these very limited defects find their origin in a local too important under-resolution due to
the very high shear rate near the downstream corner right below the lid [37]. The previous comparisons of ADM-
DMS with the DNS and DMS for first-order moments require to be complemented by plotting identical series
of contours of three components of the resolved Reynolds stress tensor. Figure 5.9 showcases the improvement
achieved in terms of subgrid modeling by coupling ADM with DMS. Moreover, Fig. 5.10–5.12 provide the
associated one-dimensional plots of these quantities in the vertical and horizontal centerlines of the mid-plane
of the cavity. Indeed, the variations of 〈u�x2〉1/2, 〈u�y2〉1/2 and 〈u�xu�y〉 for ADM-DMS reproduce quite accurately
the intense-fluctuations zones in the mid-plane z/h = 0, and more specifically in the vicinity of the downstream
corner eddy. DMS appears clearly not as effective as ADM-DMS. The lower intensity of the Reynolds stress
components for ADM-DMS as compared to the DNS are induced by the lower sampling of all LES. A longer
dynamic range would produce more intense results as reported in [37].
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Fig. 5.7: In the mid-plane z/h = 0, DMS (dashed lines), ADM-DMS (dotted lines) and DNS (solid lines). Left:
〈ux〉 on the horizontal centerline x/h = 0. Right: 〈uy〉 on the vertical centerline y/h = 0.
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Fig. 5.10: In the mid-plane z/h = 0, DMS (dashed lines), ADM-DMS (dotted lines) and DNS (solid lines).
〈u�x2〉1/2 on the vertical centerline y/h = 0 (Top) and on the horizontal centerline x/h = 0 (Bottom).

5.5.4 Reynolds stresses production

As mentioned by Leriche & Gavrilakis [155], the largest Reynolds stresses production rates in the cavity are
to be found in the primary elliptical jets parallel to the downstream wall, near the impact points just above
the bottom wall. The budget equations of the resolved second-order moments 〈u�i u�j 〉 governing the resolved

Reynolds stresses, see [178,199], comprise a term named here P ij , defined by

P ij = −〈u�i u�k〉
∂〈uj〉
∂xk

− 〈u�ju�k〉
∂〈ui〉
∂xk

(5.64)

and corresponding to the interaction of the mean flow and the Reynolds stress tensor. This quantity can be
interpreted as responsible for the production of resolved Reynolds stresses and couples first- and second-order
statistical moments.

In the specific case of the separated downstream-wall jet, the term P 22 is the largest out of the set of P ij
terms. After probing in the cavity, the maxima of the field P 22 was found in the plane y/h = −0.9384 just at a
very short distance above the bottom wall. The contours of the resolved Reynolds stress production term P 22

in this plane are shown in Figure 5.13. First, it can be noted that these contours are qualitatively very close to
the ones obtained by Leriche & Gavrilakis [155] and presents secondary structures of negative Reynolds stress
production. The distribution of contours allows to clearly visualize the trace of the separated elliptical jets just
before their impingement on the bottom wall. This separation is clearer for ADM-DMS than for DMS which
shows once again the superiority of the coupled model.
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Fig. 5.11: In the mid-plane z/h = 0, DMS (dashed lines), ADM-DMS (dotted lines) and DNS (solid lines).
〈u�y2〉1/2 on the vertical centerline y/h = 0 (Top) and on the horizontal centerline x/h = 0 (Bottom).

5.5.5 Dynamic parameter for ADM-DMS

In practical LES presented in the sequel, local negative values of the dynamic parameter Cd are encountered.
It was not found necessary to clip them as commonly done—e.g. in [24,272]—to conveniently get rid of locally
destabilizing negative values.

It is worth analyzing the variations of the dynamic parameter Cd for ADM-DMS in the plane y/h = −0.9384
where the maximum of the resolved Reynolds stress production is found. As discussed in Sec. 5.3.3.2, we expect
that, by employing ADM as the base model for the scale-similarity part of the subgrid stress tensor, the
magnitude of the dynamic parameter Cd will be reduced compared with that from the dynamic mixed model
and even more reduced compared with that from the dynamic Smagorinsky model [272]. This is confirmed by
our LES where three orders of magnitude separate the dynamic parameters for DMS and ADM-DMS. The
distribution of contours of the average dynamic parameter Cd in Figure 5.14 appears clearly correlated with
the contours of the resolved Reynolds stress production P 22 in the same plane and presented in Figure 5.13.
Indeed, the trace of the separated elliptical jets is discernibly apparent in Figure 5.14.

In addition, the maximum of P 22 localized at the point Θ0 of coordinates x/h = 0.7874, y/h = −0.9384,
z/h = −0.3371 (see Fig. 5.13) corresponds to a region of maximal values for the dynamic parameter. The time
history of the local value of Cd at the point Θ0 is reported in Figure 5.15 and present a limited number of
high-value peaks. Leriche & Gavrilakis [155] and Bouffanais et al. [35] identified in this region of the cavity a
pair of counter-rotating vortices responsible for the intermittent and intense production of Reynolds stresses.
The presence of this coherent vortical structure seems to be detected by the intense values of the dynamic
parameter.
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Fig. 5.12: In the mid-plane z/h = 0, DMS (dashed lines), ADM-DMS (dotted lines) and DNS (solid lines).
〈u�xu�y〉 on the vertical centerline y/h = 0 (Top) and on the horizontal centerline x/h = 0 (Bottom).
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Fig. 5.13: Contours of P 22 from −0.04 to 0.11 by increments of 0.01. DMS (left), ADM-DMS (center), DNS
(right). Plane y/h = −0.9384. Color scale from blue to red. Dashed contours correspond to negative levels.
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5.5.6 Subgrid activity

As a next step, we are mostly interested in identifying the regions where turbulence occurs inside the cavity.
For this purpose, we assume that if subgrid scales exist, the flow is locally turbulent and energy is exchanged
between subgrid and resolved scales. In other words, the activity of the term modeling subgrid scales is a direct
indication of the turbulence occurring in the cavity flow. A measure of subgrid activity is given by the subgrid
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Fig. 5.14: Contours of the average dynamic parameter Cd from −0.001 to 0.001 for ADM-DMS. Plane y/h =
−0.9384. Color scale from blue to red. Dashed contours correspond to negative levels.
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Fig. 5.15: Time history of the local value of the dynamic parameter Cd for ADM-DMS at the point Θ0 whose
coordinates are x/h = 0.7874, y/h = −0.9384, z/h = −0.3371.

energy transfer εm
sgs defined by

εm
sgs = −τm

ij Sij . (5.65)

This latter quantity is only relative in value because the dissipation induced by the fluid viscosity, denoted by
εν ,

εν = 2νSijSij , εν ≥ 0, (5.66)

is also responsible for an energetic action. It appears therefore legitimate to define and analyze the relative
subgrid energy transfer

Asgs =

∣∣εm
sgs

∣∣
εν +

∣∣εm
sgs

∣∣ , (5.67)

which is referred to as subgrid activity in the sequel. If it is close to zero, the energetic phenomena are mainly
induced by the viscous effects showing that the fluid is mainly laminar. Conversely, values close to the unit
indicate a strong energetic action of the subgrid model reflecting that turbulence is mainly responsible of energy
transfers.

As one can see in Fig. 5.16, turbulence essentially occurs in the vicinity of the cavity walls but, as expected,
very close to the walls the energetic action is essentially due to viscous effects. High values of subgrid activity
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are also identified at the bottom of the cavity and near upstream and downstream walls. One can also notice
that subgrid activity is clearly reduced at the edges of the elements. This is a direct consequence of the nature
of the filter which is not active at the element-boundaries. This issue cannot be avoided in this framework
since C0-continuity of the variables across elements is essential for numerical stability and physical consistency
reasons.

Fig. 5.16: Map of the average relative subgrid energy transfer 〈Asgs〉 from 0 (blue) to 1 (red) for ADM-DMS.
Upstream wall x/h = 0 (left), bottom wall y/h = 0 (center) and mid-plane z/h = 0 (right).

5.5.7 Subgrid kinetic energy

In order to complement the previous study of the subgrid activity and give further details about the importance
of the subgrid terms in the ADM-DMS simulation, energetic quantities related to the subgrid scales are analyzed.
For this purpose, we consider the filtered subgrid kinetic energy q′ which is expressed—see [199, 213]—as the
difference between the total filtered kinetic energy and the kinetic energy of the resolved field q = uiui/2,

q′ =
1

2
(uiui − uiui) =

1

2
τii '

1

2
τm
ii , (5.68)

where τm is the modeled subgrid tensor defined in Eq. (5.32). In order to provide the reader with deeper insight
into the relative importance of the subgrid terms, we introduce the relative subgrid kinetic energy κ as the ratio
between the subgrid kinetic energy and the kinetic energy of the resolved field

κ =
q′

q
. (5.69)

As one can notice on Fig. 5.17, the average values of κ reported in the plane z/h = 0.9384, have negative values
mainly located at the top-left corner of the cavity. This shows that the subgrid model predicts backscattering,
that is the energy transfer from subgrid to resolved scales. This region of inverse energy transfer corresponds
to the region of intense subgrid activity as reported in Fig. 5.16 in the mid-plane z/h = 0.

The importance of the subgrid terms already observed for the local energy fluxes and analyzed through the
subgrid activity, is further confirmed by the presence of regions of intense 〈κ〉. More precisely, four regions with
high values of 〈κ〉 and corresponding to the zones where the wall-jets detach from their respective walls [155]
are easily identified in Fig. 5.16.

In order to highlight the zones where backscattering occurs, the iso-surface 〈q′〉 = 0 is plotted in Fig. 5.18
thereby defining the boundary between the backscattering and the forward-energy transfer regions. This figure
shows that this phenomenon mainly occurs below the lid and in the down flowing jet next to the downstream
wall. It also demonstrates the need for a complex subgrid model with such anisotropic flows containing various
flow conditions and no direction of homogeneity.

5.6 Conclusions

LES of Newtonian incompressible fluid flows with ADM based on the van Cittert method using Legendre-SEM
have been performed. A coupling with a dynamic mixed scale model was introduced. The coupling of the
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Fig. 5.17: Map of the ratio between the resolved and the subgrid kinetic energy in the plane z/h = 0.9384.

Fig. 5.18: Iso-surface of vanishing subgrid kinetic energy in the cavity.

lid-driven cubical cavity flow problem at Reynolds number of 12 000 with the SEM having very low numerical
dissipation and dispersion appears to be a well suited framework to analyze the accuracy of the proposed subgrid
model.

The filtering operation is performed in a spectral modal space, generated by a hierarchical basis using the
Legendre polynomials, through the application of a specifically designed transfer function. This transfer function
is constructed in order to ensure continuity across elements, conservation of the constants, invertibility of the
filter and to perform low-pass filtering. From the computation viewpoint, the filtering technique presented in
this chapter, is the essential link between the SEM and ADM-based subgrid models.

The validation of the deconvolution procedure performed using a DNS velocity sample, shows that the van
Cittert method is convergent. Accounting for the reduced sampling and integration time, the LES performed
with ADM-DMS show good agreement with the reference results. More precisely, first- and second-order statis-
tics are in good agreement when compared to their DNS counterparts. Results for the Reynolds stresses pro-
duction, coupling first- and second-order statistical moments, are also well predicted using this new model even
with such reduced sampling. The analysis of the results obtained with DMS allows us to clearly identify the
improvement induced by coupling ADM with DMS. Subgrid activity has been analyzed showing a qualitative
correlation with the localization of small-scale structures in the cavity depicted in [37]. The importance of the
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subgrid kinetic energy as compared to the kinetic energy of the resolved field highlights the essential need for
an appropriate subgrid modeling. Furthermore, regions of backscatter are identified by ADM-DMS.

All the presented results emphasize the efficiency of ADM-DMS when dealing with laminar, transitional and
turbulent flow conditions such as those occurring in the lid-driven cubical cavity flow at Re = 12 000.





Chapter 6

Grid filter models for LES of shear-driven
confined flows

The work on subgrid modeling based on approximate deconvolution models initiated in Chapter 5 is continued
but focused now on implicit filtering [45,62]. The details related to the filtering technique as well as the numerical
method are simply briefly recalled. The reader is referred to the previous chapters for missing details.

In this chapter, a new interpretation of approximate deconvolution models (ADM) when used with implicit
filtering as a way to approximate the projective grid filter is given. Consequently, a new category of subgrid
models, the grid filter models (GFM) is defined. ADM appear as a particular case of GFM since only approximate
deconvolution is achieved. GFM can be either used with the standard filtered Navier–Stokes equations or with
the formulation commonly used with ADM. The latter formulation requires an additional assumption leading
to an incomplete modeling of the subgrid scales.

6.1 Introduction

The main subject of this chapter is a new approach to the problem of subgrid modeling. This approach is aimed
at a partial recovery of the full velocity field from its filtered counterpart based on inverse filtering operations.
Such a procedure is equally well called deconvolution or defiltering. Several types of deconvolution procedures
have been considered in the past, e.g. discrete-kernel and polynomial regularizations by Shah & Ferziger [224],
Geurts [89], and Kuerten et al. [147]. Approximate deconvolution models based on the van Cittert method, were
introduced by Stolz & Adams [243] as a particular family of subgrid models for large-eddy simulation. They have
also been detailed and used in the previous chapter, coupled to a dynamic mixed scale model. As a reminder,
these models rely on the attempt to recover, at least partially, the original unfiltered fields by inverting the
filtering operator applied to the Navier–Stokes equations, and by resorting to an iterative procedure. As already
mentioned in Chapter 5, over the past five years ADM spread over various fields of application, such as LES of
incompressible wall-bounded flows [244], compressible flows applied to shock-boundary layer interaction [245]
and transitional flows [220]. A temporal ADM for LES was also recently proposed in [203]. Implicit subgrid-
scale modeling by adaptive deconvolution has also been investigated by Adams et al. [4] and complemented by
a study on an adaptive local deconvolution method for implicit LES due to Hickel et al. [118]. This important
research activity initiated by the original ADM formulation reveals the substantial need for improvement in
terms of subgrid modeling for the LES of complex turbulent flows [62].

Defiltering models are purely algorithmic as they only rely on the definition of the filter without the need to
resort to any physical modeling. As noted by Domaradzki & Adams [62], “since the need for the physical models
is removed this approach seems to be more promising than the classical models. However, this promise is not
fulfilled if the effects of numerical discretization are accounted for”. Moreover, for a given filter, its inverse may
be analytically determined which theoretically allows to express the full velocity field as a function of the filtered
field. Therefore, solving the filtered Navier–Stokes should in principle deliver as much information as the solution
to the standard non-filtered Navier–Stokes equations. This apparent paradox is resolved by acknowledging the
unavoidable effects of the filter associated with the numerical discretization. This point has long been noted by
LES practioners, e.g. by the earlier work of Zhou et al. [274], and more recently by Langford & Moser [150],
Domaradzki & Loh [63], and Winckelmans et al. [267]. Nevertheless, the discretization effects are very often
considered for the simple case of node-based methods—see Chapter 2— but very few studies for function-based
methods—e.g. spectral and spectral element methods—are reported in the literature. Consequently, many of the
arguments commonly expressed about grid filtering, are not valid nor applicable when, like in the present study,
a function-based method is used. Recently, Hesthaven & Kirby [117] started investigating this instrumental
point in the particular case of Legendre spectral methods. Consequently, when no explicit filter is applied but
only the implicit grid filter is considered, deconvolution models can actively contribute to subgrid modeling but
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in a very different way than the one associated with LES relying on explicit filtering techniques. The objective
of this chapter is to gain insight into the use of deconvolution procedures for implicitly-filtered LES.

This chapter is organized as follows. Section 6.2 introduces the notations and more importantly the two
distinct formulations of the problem. The grid filter models are defined and characterized in Sec. 6.3, which is
followed by a posteriori validations detailed in Sec. 6.4. This chapter ends with conclusions in Sec. 6.5.

6.2 Different formulations of the problem

In the case of isothermal flows of Newtonian incompressible fluids, the LES governing equations for the filtered
quantities denoted by an overbar, obtained by applying a convolution filter G? to the Navier–Stokes equations,
read

∂ui
∂t

+
∂

∂xj
(uiuj) = − ∂p

∂xi
+ ν

∂

∂xj

(
∂ui
∂xj

+
∂uj
∂xi

)
− ∂τij
∂xj

, (6.1)

where the filtered velocity field u satisfies the divergence-free condition. The components of the subgrid tensor
τ are defined by τij = uiuj −uiuj and ν is the kinematic viscosity. Again, the closure of the filtered momentum
equation (6.1) requires τ to be expressed in terms of the filtered field.

6.2.1 General considerations

Following the notation adopted in Chapter 5, the filtered Navier–Stokes momentum equation is written formally
as

∂u

∂t
+ f(u) = [f ,G?](u), (6.2)

where [f ,G?](u) is the subgrid commutator, which only retains the nonlinear and noncommutating terms. This
equation is strictly equivalent to Eq. (6.1) with

[f ,G?](u) = −∇ · τ . (6.3)

In the inverse filtering framework, the idea is to approximate this unknown field by inverting the filtering
operator G? applied to the Navier–Stokes equations

u ' u∗ = QN ? u = (QN ◦ G) ? u, (6.4)

where QN is an N th-order approximation of the inverse of the filter G? such as QN ◦G = I+O(∆
N

), ∆ being
the filter cutoff length and I? the identity filtering operator. The subgrid term is then approximated as

[f ,G?](u) ' [f ,G?](QN ? u) = [f ,G?](u∗). (6.5)

The model resulting from this approach can take two distinct forms, which are referred to as “filtered” and
“deconvoluted” formulations. Both formulations are detailed in the following sections.

6.2.2 Filtered formulation

The so-called “filtered formulation” is the most commonly used LES formulation with the large majority of
classical subgrid models, e.g. Smagorinsky model, dynamic Smagorinsky models, dynamic mixed models, etc. It
is obtained by introducing the approximate expression (6.5) of the subgrid commutator directly into the filtered
momentum equation (6.2)

∂u

∂t
+ f(u) = [f ,G?](u∗). (6.6)

Stolz and Adams [243] refer to it as a generalized scale similarity formulation. Indeed, using the simplest
choice for the approximate inverse filtering operator, that is QN = I—which corresponds to the zero-th order
in the van Cittert expansion—one recovers the subgrid tensor of Bardina’s scale similarity model [13]. Thus,
Bardina’s scale similarity subgrid model appears as a particular case of ADM. Other similarity models have
been introduced , such as the ones investigated by Liu et al. [157] and O’Neil & Meneveau [192], in which the
velocity field appearing in the subgrid tensor is simply substituted by a velocity filtered by a wider filter.

The term “filtered formulation” introduced earlier is justified by the fact that the problem formulated by
Eq. (6.6) is a set of equations for the filtered velocity field having for source term the subgrid term expressed
in terms of the deconvoluted velocity field.
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6.2.3 Deconvoluted formulation

The deconvoluted formulation is the one commonly used for LES with ADM by Stolz & Adams [243], Stolz et
al. [244,245] and the subsequent studies based on these pioneering works, e.g. Schlatter et al. [220], Shotorban
& Mashayek [229], Pruett et al. [203], etc. Writing explicitly the subgrid commutator of Eq. (6.6) yields

∂u

∂t
+ f(u) = f(u∗)− G ? f(u∗). (6.7)

Using once more approximation (6.4) in Eq. (6.7) implies f(u) = f(u∗) and leads to

∂u

∂t
+ G ? f(u∗) = 0. (6.8)

It is noteworthy that this formulation introduces the deconvolution error into the nonlinear advection term,
thereby breaking the Galilean invariance [238]. Furthermore, the expression of the subgrid tensor of Bardina’s
scale similarity model is not recovered from the deconvoluted formulation when QN = I, which is again
due to the difference between the filtered and the deconvoluted velocities. Despite these inconsistencies, the
deconvoluted formulation has been extensively due its attractive expression, which does not exhibit explicitly the
subgrid terms. Nevertheless, based on the previous comments, the filtered formulation introduced in Sec. 6.2.2
appears to be the most general.

6.2.4 Implicit projective grid filter

The previous theoretical developments only hold if the filter G? is explicitly imposed to the solution, that is
when performing LES with explicit filtering [62, 213], which was the case in the previous chapter. It is worth
recalling here that in Sec. 5.3.2, the convolution filter G? was expressed as

G? = (L ◦ P)?, (6.9)

thereby embodying the explicit LES filter L? and the implicit projective grid filter P? [107, 266]. Using the
previous decomposition of the filter G?, the filtered Navier–Stokes are rewritten as

∂(û)L

∂t
+ f((û)L) = [f , (L ◦ P)](u), (6.10)

where the superscript (·)L denotes the application of the explicit filter L?, and û = P ? u is the grid-filtered
velocity field.

In the case where no explicit LES filter L? is applied and solely the implicit filter is effective, the previous
interpretation of ADM no longer holds. Indeed, it would be a non-sense to invert a filter that has never been
applied to the solution. Moreover, the previous developments do not account for the implicit grid filter induced
by the space discretization of characteristic length ∆̂ [45,62]. In order to use ADM only with implicit filtering,
another interpretation must be found which is the main goal of this chapter and will lead to the definition of
a new class of subgrid models. If only implicit grid filtering is considered, the filtered Navier–Stokes equations
read

∂û

∂t
+ f(û) = [f ,P?](u), (6.11)

where û is the grid filtered velocity, or in other word the part of the velocity field that can be resolved by the
grid used to perform the LES. In this framework, subgrid modeling based on deconvolution models requires the
subgrid commutator of the previous equation to be expressed solely in terms of the known projected velocity
û, which reads

[f ,P?](u) = [f ,P?](P−1 ? û), (6.12)

where

u = P−1 ? û, (6.13)

is the formal inverse grid filtering operation to be devised. It is important adding here that due to its implicit
nature, the grid filter P? entirely depends on the nature of the numerical method used to discretize in space
the Navier–Stokes equations.
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6.3 Grid filter models

6.3.1 Definition

The problem with Eq. (6.12) is that P−1? does not exist, this filter being a projector. The idea formulated by
Habisreutinger [111], is then to approximate P? with an invertible filter reproducing as closely as possible its
effect

P? ' G?, (6.14)

in order to have
[f ,P?](u) ' [f ,G?](G−1 ? û). (6.15)

For such subgrid models, modeling only requires to build G? in order to achieve the best approximation of P?,
as stated in Eq. (6.14). The problem is exactly solved if P? = G?, which is not achievable since P? applies on
an infinite spectrum while G? only applies to computable wave numbers [62]. Moreover, G? must be invertible
and P? is projective. The approximation (6.14) being the only required modeling, the subgrid models arising
from this new approach are referred to as grid filter models (GFM). Depending on G?, its inverse can be either
determined analytically or by approximate methods such as ADM. In the latter case, one has G−1? ' QN ?
leading to

[f ,P?](u) ' [f ,G?](QN ? û), (6.16)

which is the expression (6.5) of the subgrid commutator for ADM. Consequently, ADM appear as a way to
approximate the projective grid filter and as a particular case of GFM since only approximate deconvolution is
achieved.

At this stage, it is important noting three central points related to the afore-introduced grid filter modeling
approach. First, the GFM is by essence an approximate subgrid model as it relies on the approximation (6.14),
which cannot become a true equality. This approximate character of GFM should not be mixed up with the
approximate character of ADM, which is essentially dependent on our capacity to achieve an exact deconvolution.
For instance, if an explicitly invertible filter is used, ADM reduces to simply an exact deconvolution model
whereas GFM conserves its approximate character. Secondly, from a conceptual viewpoint, GFM belong to
the structural group of subgrid models aiming at reconstructing the velocity field from its filtered counterpart.
Finally, any method achieving even partially, the inverse filtering procedure can be used in the GFM framework.
This includes, as mentioned earlier ADM but also all other discrete-kernel and polynomial regularizations,
e.g. [89, 147,224].

6.3.2 Interpretation

The new interpretation of ADM resulting from the definition of GFM builds a theoretical basis that allows
the use of such subgrid models without any explicit filtering of the solution. Moreover, this viewpoint allows
to consider a new way of designing the filter G? which has to approximate the grid filter P? as accurately as
possible. GFM can use standard ADM techniques originally meant to solve the soft deconvolution problem [62],
to solve the hard deconvolution one since only implicit filtering is considered. This is made possible by the
newly introduced GFM approach.

Furthermore, GFM allow to consider a more realistic methodology for a priori validations taking into
account the implicit grid filtering, see Habisreutinger [111]. A priori validations rely on the use of a reference
solution provided by experimental results or a direct numerical simulation (DNS). The reference velocity field
u is filtered leading to the definition of fully determined resolved and subgrid fields u and u′, respectively. The
modeled subgrid commutator is computed using the filtered field and compared to the exact one computed with
the non-filtered field. If an invertible filter is used, G? for instance, the modeled subgrid tensor is computed
using the deconvoluted field which is equal to the non-filtered one if exact deconvolution is achieved. Using this
method, referred to as classical in Table 6.1, one does not measure the efficiency of the model but solely the
accuracy of the deconvolution procedure. This is therefore a validation of the deconvolution method and not
of the subgrid models which justifies why the classical a priori methodology produces highly correlated results
with ADM.

In order to account for these effects and measure a more realistic efficiency of the subgrid models, one has
to take into account the non-invertible filter induced by the grid in practical LES. In the framework of GFM
based on Eq. (6.15), a novel method for a priori validations taking into account the implicit grid filtering is
straightforward and referred to as GFM-a priori in Table 6.1. In addition to the construction of the filter G?
for the modeled commutator, one has to make use of a projective filter to compute the exact commutator.
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Methodology Exact commutator Modeled commutator

Classical [f ,G?] (u) [f ,G?] (G−1 ? u)
GFM-a priori [f ,P?] (u) [f ,G?] (G−1 ? û)

Table 6.1: A priori validation methodologies.

6.4 Numerical results

6.4.1 A priori validations

Following the methodology introduced in the previous section, an a priori validation test has been carried
out using the reference DNS results from Leriche & Gavrilakis [155] for the lid-driven cubical cavity flow. The
Reynolds number Re = 2hU0/ν, where 2h is the size of the cavity and U0 the imposed lid velocity, is equal
to 12 000. The mesh used for this LES a priori test has eight times less points than the DNS grid of Leriche
and Gavrilakis who employed a 1293 Chebyshev discretization. The reader is referred to Chapters 4 & 5 for
full details on the grid used and on the space discretization based on the Legendre spectral element method.
A set of velocity samples u taken from the statistically-steady state range of the DNS by Leriche & Gavrilakis
is reinterpolated onto the LES a priori grid—see Fig. 4.2—therefore enforcing the effect of the projective grid
filter P?, and yielding the grid-filtered velocity samples û.

The filter G? used to approximate the grid filter in Eq. (6.14) relies on the application of a given low-pass
transfer function in a hierarchical modal basis, as reported in Sec. 5.4. Since the filter G? defined in detail in
Sec. 5.4 is analytically invertible, its inverse is computed analytically for exact deconvolution. One can easily
verify that the continuous transfer function S associated with G−1? is simply obtained by taking the inverse of
Eq. (5.55), leading to

S(k) =
1

K(k)
= 1 +

(
η

max(0, k − 1)

N

)2

, η ≥ 0. (6.17)

Using the notations introduced in Sec. 5.4.1, the exact deconvolution process for any scalar quantity reads

v• = ΦSΦ−1v̂ = G−1v̂, (6.18)

where the superscript • denotes the exact deconvolution in opposition to the approximate deconvolution formerly
denoted by ∗.

Based on the filter G? and its analytical inverse G−1? defined respectively by Eq. (5.55) and Eq. (6.17), we
are now equipped to perform the a priori test. The first step consists in calculating the exact subgrid terms
associated with the projective grid filter, which according to Eq. (6.3), read

[f ,P?](u) = −∇ · τ exact, (6.19)

where the exact subgrid stress tensor is
τ exact = û u− û û. (6.20)

In order to access the exact subgrid tensor, one first needs to first calculate the term uu onto the DNS grid
prior to projecting it onto the LES a priori grid leading to û u. Afterwards, the divergence of the exact subgrid
stress tensor is calculated. The second step consists in calculating the modeled subgrid terms, which according
to Table 6.1, read

[f ,G?](G−1 ? û) = [f ,G?](u•) = −∇ · τmodeled. (6.21)

The above equation is strictly equivalent to writing

τmodeled = u•u• − u• u•. (6.22)

Finally, the last step aims at measuring the correlation between two meaningful quantities both derived from
the exact and modeled subgrid tensor, namely the rates of transfer of energy from the resolved scales of the
flow to the subgrid scales

ε̂sgs = −τd
ij Ŝij , (6.23)

where the superscript “d” still refers to the deviatoric part of the subgrid tensor, and Ŝij is the grid-filtered
rate-of-strain tensor. This quantity has been introduced in Chapter 4 for the study of the subgrid activity
detailed in Sec. 4.4.3.3. The following correlation coefficient C, defined by

C = C(α, β) =
〈α, β〉 − 〈α〉〈β〉
(〈α�2〉〈β�2〉)1/2

, (6.24)
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with α = ε̂exact
sgs and β = ε̂modeled

sgs , and α� = α−〈α〉. The reader is referred to Chapter 4, Sec. 4.3.1 for details and
notations used in the present averaging procedure—denoted into brackets 〈·〉. This coefficient was calculated
for a complete set of 105 velocity samples available from the DNS by Leriche & Gavrilakis [155]. Results are
presented on Fig. 6.1, and show a relatively high correlation between the exact and the modeled inter-scales rate
of transfer of energy. More importantly, the regions of high intensity of the correlation coefficient observed in the
mid-plane of the cavity, are very close to the high regions of subgrid activity calculated for the dynamic mixed
model (DMM) in Chapter 4, Sec. 4.4.3.3 and represented in Fig. 4.23, even though these results are reported
in a plane parallel to the mid-plane. These promising a priori results call for a more complete validation based
on a posteriori tests.

Fig. 6.1: Contours of the correlation coefficient C(ε̂exact
sgs , ε̂modeled

sgs ), in the mid-plane z/h of the cavity.

6.4.2 A posteriori validations

The next step is to perform a posteriori validations using GFM with exact and approximate deconvolution in
both formulations and without resorting to any additional dissipative or relaxation term. To our knowledge, all
simulations in the ADM framework and based on the deconvoluted formulation, required the use of an additional
sink term into the filtered momentum equation. Originally, Stolz et al. [244, 245] introduced a relaxation term
having the following expression

−χ(I −QN ? G) ? u = −χ(u− u∗), (6.25)

where χ has the dimension of a time and can either be constant in space and time [244], or can be dynamically
evaluated [220, 245]. This regularization term has no physical meaning and is only intended to increase the
dissipative character of ADM expressed in the deconvoluted formulation. Subsequently, Winckelmans & Jean-
mart [266] suggested to replace the relaxation term (6.25) by a constant subgrid-viscosity term of Smagorinsky
type. Gullbrand & Chow [107] followed the path open by Winckelmans & Jeanmart [266], by evaluating dy-
namically the subgrid viscosity in the dissipative Smagorinsky term.

An under-resolved DNS (UDNS), i.e. without using any subgrid model, is also presented to emphasize
the action of the considered models and to make sure that the space discretization is not refined enough to
represent all scales of the solution, see Sec. 4.2.2.1. Besides this under-resolved DNS, four different LES have been
carried out corresponding to four distinct grid filter models. Two of them use an exact analytical deconvolution
procedure, while the two others rely on approximate deconvolution based on the van Cittert method. The two
different formulations, namely filtered and deconvoluted, have been considered. For the sake of clarity, we will
expose the formal expressions of the momentum equation for these modes. The use of the exact deconvolution
together with the filtered formulation (6.6) defined GFM-F, which is governed by

∂û

∂t
+ f(û) = [f ,G?](u•), (6.26)

where u• denotes the analytically defiltered velocity field. From the previous model, it is straightforward to define
ADM-F by simply replacing the exact deconvolution with the approximate deconvolution. The formulation used
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is still the filtered formulation (6.6) and consequently the governing equation reads

∂û

∂t
+ f(û) = [f ,G?](u∗), (6.27)

where u∗ still denotes the approximately deconvoluted velocity field. The second group of cases make use of the
deconvoluted formulation (6.8). Coupling this deconvoluted formulation with the exact deconvolution procedure
defines GFM-D, which is governed by

∂û

∂t
+ G ? f(u•) = 0. (6.28)

Finally, instead of exact deconvolution, ADM-D relies on approximate deconvolution for its modeling

∂û

∂t
+ G ? f(u∗) = 0. (6.29)

These four models and their respective names are summarized in Table 6.2.

Deconvolution Filtered form. Deconvoluted form.

Exact GFM-F GFM-D
Approximate ADM-F ADM-D

Table 6.2: Models and formulations.

LES of the lid-driven cubical cavity flow presented here are performed using the Legendre spectral element
method (SEM) and refer to the same computational parameters as in Chapters 4 & 5, and the same physical
parameters as the DNS performed by Leriche & Gavrilakis [155], taken as the reference solution. The space
discretization is strictly equivalent to the one used for the LES reported by Zang et al. [272] for a lower Reynolds
number of 10 000. To allow comparisons with LES results, DNS data are all re-interpolated onto the LES mesh
therefore accounting for the effect of the grid filter. The same filter G? as the one used for a priori tests has been
used for these a posteriori tests, and likewise for the exact analytical deconvolution and the inverse analytical
filter G−1?. When approximate deconvolution is used, it relies on the van Cittert method with the deconvolution
order being set to N = 5 as recommended by Stolz et al. [243].

It is worth noting that any improvement in the design of the filter G? as an approximation of the grid filter
will consequently lead to better modeling. Nevertheless, in the present work this aspect of filter design is not
dealt with as our focus resides on the influences of the formulation and deconvolution procedure used. Moreover,
no stabilizing nodal filter—e.g. stabilization of Fischer & Mullen [80], see Sec. 2.3.7—has been used.

6.4.3 Evolution of total resolved kinetic energy and enstrophy of the flow

As observed in Chapter 4 and Chapter 5, subgrid modeling in the case of a flow with coexisting laminar,
transitional and turbulent zones such as the lid-driven cubical cavity flow for such Reynolds number represents
a challenging problem. Kinetic energy is constantly provided to the fluid by the viscous diffusion induced by
the lid motion and the confined nature of the flow avoids the evacuation of energy through an outflow section.
Hence, integral energy quantities over the flow domain are a direct indication of any under- or over-dissipative
character of the subgrid model since the scale separation used for LES leads to the removal of subgrid scales
mainly responsible for the energy dissipation. In addition, the very low dissipation induced by SEM allows a
pertinent analysis of the energetic action of the models, which is not feasible in the framework of low-order
numerical methods. The coupling of the lid-driven cubical cavity flow problem with the SEM provides a well
suited framework to analyze and compare the accuracy of the different subgrid models introduced in the previous
section and summarized in Table 6.2.

Since all LES were started from the same instantaneous DNS velocity field corresponding to a statistically
steady state, the total resolved kinetic energy,

Q̂ =
1

2

∫

Ω

ûiûi dΩ, (6.30)

is expected to evolve within a small fluctuation range. However, the time history of this quantity reported in
Fig. 6.2 for ADM-D shows a monotonous growth which clearly reflects an under-dissipative character in the
deconvoluted formulation. Since this formulation is the one commonly used by all the authors using ADM, this
is probably at the origin of the introduction of additional dissipative terms, such as the relaxation term used by
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Stolz et al. [244,245], Winckelmans & Jeanmart [266], and Gullbrand & Chow [107], to increase the dissipation.
This behavior, also observed for GFM-D, occurs with any of the convective, conservative and skew-symmetric
formulations of the nonlinear advective term. The results for GFM-D being limited to the first four time units
due to a divergence of the simulation, are not reported here. Indeed, increasing the accuracy of the deconvolution
and to the limit performing exact deconvolution leads to numerical instabilities if the deconvoluted formulation
is used. This observation is in direct relation with the low deconvolution orders N used in most LES based
on ADM. Moreover, the relaxation term introduced in [244, 245] vanishes if exact deconvolution is achieved,
leading to even more unstable simulations with the deconvoluted formulation.

UDNS
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DNS

80706050403020100

0.063

0.062

0.061

0.060

0.059

0.058

0.057

0.056

0.055

Fig. 6.2: Total resolved kinetic energy Q̂ in U2
0h

3 units with respect to the time t in h/U0 units.

When considering the filtered formulation, GFM-F and ADM-F, the energy balance is achieved without
resorting to any additional relaxation or dissipative term. The time evolution of Q̂ is comprised in the same
range of fluctuations as the reference DNS. Considering the confined nature of the flow and the low dissipative
character of the SEM, the previous observation is of great relevance.

A characteristic of turbulence is that the vorticity possesses intense small-scale, random variations in both
space and time. Therefore, another important integral quantity is the total resolved enstrophy of the flow defined
by

Ê =
1

2

∫

Ω

ω̂iω̂i dΩ, (6.31)

where ω̂ = ∇ × û is the resolved vorticity field. Indeed, Ê provides an insightful information regarding the
smallest resolved scales of the flow. Figure 6.3 shows that the enstrophy obtained from the deconvoluted formu-
lation is clearly too low when compared to the enstrophy of the grid-filtered DNS. The low level of enstrophy
reflects the under-representation of small scales which directly induces the under-dissipative character and the
over-estimation of Q̂. Conversely, the filtered formulation gives rise to higher levels of resolved enstrophy, which
in turn explains the better subgrid modeling leading to a correct energy balance.

6.4.4 Assessment based on the Reynolds stress tensor

In an attempt to provide a comprehensive assessment of the performances of all subgrid scales models, the
determination of the Reynolds stress tensor components has been considered as a challenge in the framework of
the lid-driven cubical cavity flow. The Reynolds statistical decomposition u = 〈u〉+ u�, introduces the average
value denoted into brackets and its fluctuating part u�. The statistics for all LES are based on a sampling
approximately 10 times smaller than the one of the DNS, but about twice longer than the one of the LES of
Zang et al. [272]; more precisely 400 samples are collected over 80h/U0 time units.

Figure 6.4 displays the low-amplitude cross term 〈û�xû�y〉 in the symmetry plane of the cavity. The contours
for UDNS show that implicit modeling is totally inoperative in the SEM framework and highlight the need
for explicit subgrid modeling. Approximate deconvolution (ADM-F) provides contours extremely close to those
obtained with exact deconvolution (GFM-F) and are therefore not reported here (also noticeable with integral
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Fig. 6.4: Contours of 〈û�xû�y〉 from −0.0007 to 0.0065 in U 2
0 units, by increments of 0.0002 in the midplane

z/h = 0. DNS (top-left), ADM-D (top-right), GFM-F (bottom-left), UDNS (bottom-right). Dashed contours
correspond to negative levels. The cavity lid y/h = 1, moves at U0 in the x-direction.

quantities on Figs. 6.2 and 6.3). The nature of the deconvolution procedure (exact or approximate) has a very
limited influence on modeling. The contours for GFM-F and ADM-D are relatively close to the DNS ones.
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At this stage, it appears that the statistics in the deconvoluted formulation for ADM-D do not reflect the
incomplete subgrid modeling observed with Q̂ and Ê. The study of these two integral quantities for this confined
flow using a very low-dissipative numerical scheme allows us to highlight the under-dissipation associated with
the deconvoluted formulation. This important observation would have not been possible using validations based
on statistics of unbounded flows (e.g. channel flow) or with dissipative numerical methods.

6.5 Conclusions

The GFM approach gives a theoretical justification to the use of ADM without explicit filtering of the solution
and explains how the use of ADM works in this context. This viewpoint allows to consider a new way of
designing the convolution filter which has to approximate the grid filter and therefore a new way of improving
such subgrid models. It has also been proved that the deconvoluted formulation, usually used with ADM,
leads to an under-dissipative character of the subgrid model and explains the need of additional dissipative
terms. Conversely, when using the filtered formulation, no additional term is needed which is of great relevance
considering the confined nature of the flow and the high-order numerical method used.

The GFM approach also allows to consider a more realistic methodology for a priori validations and its
validity extends beyond the limited scope of incompressible Newtonian fluid flows considered in this chapter.
LES of compressible and visco-elastic fluid flows can also be considered using GFM. From a numerical viewpoint,
GFM can be implemented with all numerical methods allowing filtering operations only needed to compute the
subgrid commutator.
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Chapter 7

Transitional open swirling flow

This chapter is devoted to the study of the incompressible flow of a viscous fluid partly enclosed in a cylindrical
container with an open top surface and driven by the constant rotation of the bottom wall. Such type of flows
constitutes another group of recirculating lid-driven cavity flows with geometrical axisymmetry of the container
and of the prescribed boundary conditions of Dirichlet type—no-slip on the cavity walls. The previous Part III of
the present dissertation was dealing with the fully-confined internal cubical lid-driven cavity flow at a relatively
high Reynolds number, where no-slip conditions are enforced on all cavity walls. In the present part, which
includes this chapter and the next one, the top surface of the cylindrical cavity is left open and a stress-free
boundary condition is imposed on it, while a no-slip condition is imposed on the side-wall and on the rotating
bottom wall. More specifically, in the present chapter the stress-free top surface is, in first approximation,
maintained fixed and flat. The most general case involving a moving free surface is dealt with in Chapter 8.
The Reynolds regime corresponds to transitional flows with some incursions in the fully laminar regime. Both
steady and unsteady non-oscillatory swirling flows are considered.

In the present chapter, new flow states are investigated based on a fully three-dimensional solution of
the Navier–Stokes equations for the free-surface cylindrical swirling flow, without resorting to any symmetry
property unlike all other results available in the literature. To our knowledge, the present study delivers the
most general available results for this flat-free-surface problem due to its original mathematical treatment.

7.1 Introduction

Besides the differences in terms of geometry, boundary conditions and of Reynolds number regime, the lid-driven
cubical cavity flow and the cylindrical swirling flow investigated in this chapter and the next one, present similar
features typical of shear-driven recirculating flows such as intense wall-jets and shear layers in the vicinity of the
driven wall, and secondary recirculating flows, which are very dependent on the flow parameters. Nevertheless,
the geometry—cubical on one hand and cylindrical on the other hand—dramatically influences the nature
and structure of these secondary flows: corner eddies for the cubical cavity and recirculation bubbles in the
cylindrical case.

7.1.1 General considerations

Following the pioneering work of Bogatyrev & Gorin [30] and Koseff & Street [144, 145], it was shown that
contrary to intuition, the lid-driven cubical cavity flow is essentially three dimensional, even when considering
large aspect ratio. It is only recently that the three dimensionality of the lid-driven cylindrical cavity flow was
confirmed numerically by Blackburn & Lopez [21,22] after it was suggested but not fully proved experimentally
by Sørensen [233], Spohn et al. [240], Sotiropoulos & Ventikos [235], and Pereira & Sousa [195]. In 2001,
Sotiropoulos & Ventikos [236] gave full experimental evidence of the three-dimensional character of the flow
with the onset of non-axisymmetric modes. The three-dimensional nature of these driven cavity flows is therefore
a general characteristic of internal recirculating shear-driven flows.

In the sequel, we will only consider the cylindrical lid-driven cavity flow also referred to as “swirling” flow
without any additional precision. The first experiments by Vogel [260] and later Ronnenberg [209] showed that
Ekman suction and pumping, induced by the Ekman layers on the rotating and stationary disks, lead to the
formation of a concentrated vortex core along the axis in the closed cavity case. The two dimensionless groups
characterizing this flow are the height-to-radius aspect ratio Λ = H/R and the Reynolds number Re = R2Ω/ν,
where H and R are respectively the height and radius of the cylinder, Ω the constant angular velocity of the
bottom end-wall, and ν the kinematic viscosity of the Newtonian fluid. For specific values of the aspect ratio
Λ, and above a critical Reynolds number, the vortex core breaks down in the form of one or more recirculation
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bubbles which are on-axis in the closed cavity case and on- or off-axis in the open cavity one. Owing to the
enormous extent of work in the area of vortex breakdown (VB), (see reviews by Hall [113], Leibovich [152],
Shtern & Hussain [231], Kerswell [142], and Arnt [11]), we will only briefly recall the central features of VB.
As defined by Leibovich in its review on the structure of vortex breakdown [152], the term “vortex breakdown”
refers to a disturbance characterized by the formation of an internal stagnation point on the vortex axis, followed
by reversed flow in a region of limited axial extent. Two forms of vortex breakdown predominate, one called
“near-axisymmetric” (sometimes “axisymmetric” or “bubble-like”) and clearly visible in Fig. 7.1, and the other
called “spiral” also visible on the far-right of Fig. 7.1. The practical importance of vortex breakdown lies mainly

Fig. 7.1: Laboratory vortex breakdown obtained under highly controlled conditions: a bubble-like or B-mode
breakdown is nicely illustrated and is followed by an S-mode breakdown. c© Prof. T. Sarpkaya, Naval Postgraduate
School, Monterey, California.

in the field of aeronautics, where they can be observed over wings—mainly delta wings—with highly swept
leading edges when the angle of incidence exceeds a critical value, see Fig. 7.2 & Fig. 7.3. Vortex breakdown
can be a limiting factor on the operating attitude of slender-winged flying vehicles. Moreover, the occurrence
of VB in the wake of a large aircraft is relevant to the safety of flight in dense air-traffic, which is becoming
more and more frequent with the constant increase in air-traffic over the years. VB is also important in other
fields. It has been observed in the swirling flows through nozzles and diffusers [72], and in the field of reactive
flows, in combustion chambers. Besides the tremendous importance of VB in engineering applications, it is also
a prototypical phenomenon allowing to elucidate the fundamental aspects of the bubble mode.

Fig. 7.2: Left: Vortex breakdown at the end of an airfoil; visualization with liquid dye tracers. Right: Vortex
breakdown on a delta wing with high angle of attack. c© ONERA.

7.1.2 The lid-driven cylindrical cavity flow

The first comprehensive experimental study of the closed cylindrical container case was undertaken by Escudier
[69], and Escudier & Keller [71], who extended the earlier results of Vogel [260] and Ronnenberg [209] to obtain
the first map of VB transitions with respect to the aspect ratio Λ and the Reynolds number. Escudier [69]
revealed flow states with one, two or even three successive breakdowns, as well as a transition from steadiness
to unsteadiness. Sørensen [233] extended to a broader range of Reynolds number in the same experiment as
Escudier [69] for the closed container, and inferred that above a critical Reynolds number in the unsteady flow
regime, the meridional flow becomes highly asymmetric. The first experimental study of the open cylindrical
container case with a free surface on the top, was undertaken by Spohn et al. [239], who highlighted the
significant change in the structure, the occurrence and the location of the breakdown bubbles. In the steady
closed cylinder case, Hourigan et al. [127] investigated the asymmetric spiraling effects along the cylinder axis
prior to the first vortex breakdown. They argued that the observed asymmetry was purely an experimental
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Fig. 7.3: A NASA F-18 at 20 degrees angle of attack. The strake vortex has been made visible with
smoke showing the vortex breakdown which occurs toward the trailing edge of the wing. Courtesy of NASA:
http://www.dfrc.nasa.gov/gallery/photo/.

artifact and not an evidence of the three-dimensional nature of the flow. Spohn et al. [240] were the first to
investigate experimentally the origin of possible asymmetric features of the instabilities at their onset. The
steady breakdown bubbles reported by Spohn et al. [240] showcase asymmetric features comparable to earlier
measurements, and also to unsteady bubbles observed in circular diffusers by Faler & Leibovich [72]. As a matter
of fact, the work of Spohn et al. [240] is really a pioneering work in the acceptance of the axisymmetry breaking,
amongst fluid experimentalists. It is noteworthy at this point, that the complex physics associated with these
intricate phenomena occurring in closed/open rotating cylindrical container is still not clearly understood.

Like for the lid-driven cubical cavity flow, and in relation with the simple geometry of the flow, the rotating
cylindrical cavity flow has been extensively studied using direct numerical simulations. A non-exhaustive list of
references using different numerical methods has been given in Sec. 2.2 of Chapter 2. It is important to note that
since the early seventies, the method of choice has consisted in solving the streamfunction-vorticity formulation
of the axisymmetric incompressible Navier–Stokes equations. Without being exhaustive, the following list of
references gives an overview of the numerical simulation of the closed lid-driven cylindrical flow over three
decades: Pao [193], Lugt & Haussling [168,169], Dijkstra & van Heijst [59], Lugt & Abboud [167], Neitzel [188],
Daube & Sørensen [56], Lopez [158], Brown & Lopez [43], Lopez & Perry [166], Sørensen & Christensen [234],
Watson & Neitzel [265], Gelfgat et al. [84, 85], Tsitverblit & Kit [250], and Brøns et al. [41]. All these works
were able to reproduce with a reasonable accuracy, the basic features observed experimentally and reported
earlier including the size, shape and number of recirculation bubbles. The onset of vortex breakdown was to
some extent captured by several of these numerical simulations. Part of this work has been reproduced and is
reported in the Appendix B, and constitutes a preliminary work for the study of open swirling flows. Lopez [158],
and Brown & Lopez [43] suggested a physical mechanism for the intricate phenomena observed. They prove the
existence of a standing centrifugal wave, whose amplitude increases with the Reynolds number and which can
create a stagnation point on the cylinder axis, initiating the breakdown process. It is worth recalling that the
streamfunction-vorticity formulation is adequate and appropriate only for the study of flow dynamics preserving
the property of axisymmetry. At the inception of any instability breaking the axisymmetry of the flow, a three-
dimensional solution of the Navier–Stokes equations is required, thereby increasing considerably the complexity
of the task. The last remark justifies the observed changes in terms of numerical modeling of Lopez’ group
and Sørensen’s group reported in Sec. 2.2, to allow them to investigate axisymmetry breaking in the closed
cylinder case [19, 21–23, 228]. Therefore, three-dimensional flow structures have started being simulated more
recently, see Gelfgat et al. [86], Sotiropoulos & Ventikos [236], Sotiropoulos et al. [237], Marques & Lopez [176],
Blackburn & Lopez [21, 22], Serre & Bontoux [223], Blackburn [20], and Lopez [162].

Apart from the canonical case with a single driving lid in rotation at a constant angular velocity, different
variations of the problem have been extensively studied in the past years: e.g. cylinder with co- and counter-
rotating end-covers by Brøns et al. [41], steady axisymmetric flow in an open cylindrical container with a
partially rotating bottom wall by Piva & Meiburg [198], vortex scenario and bubble generation in a cylindrical
cavity with rotating top and bottom by Okulov et al. [191], swirling flow of a viscoelastic fluid by Escudier
& Cullen [70], Day et al. [57], Xue et al. [268], and Stokes et al. [241, 242]. Mullin et al. [186] also included a
rod at the axis to control the breakdown, and Pereira & Sousa [195] significantly changed the configuration by
replacing the flat rotating bottom cover by a cone. As noted by Brøns et al. [42], all these studies show a large
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set of flow structures which are quite sensitive to variations of external parameters.

7.1.3 Open swirling flow

The focus in the present chapter is on the canonical problem of a cylinder with a rotating bottom end-wall
but replacing the stationary solid top end-wall by a free surface. The flow associated with this problem was
first studied experimentally by Spohn et al. [239, 240]. They observed the influence of the top free surface—
assuredly clean of surfactants—on the onset, structure, nature and number of recirculating bubbles. Their
central observations are that breakdown bubbles still appear, but are off-axis and may be attached to the free
surface, depending on the aspect ratio Λ and the Reynolds number. Of course, such structures could not be
observed in the closed case because of the no-slip condition imposed on the top wall. All the past simulations of
free-surface swirling flows rely on the central assumptions that the free surface is flat and clean, which means
that the Froude number is very small and that surface tension effects are negligible. With these assumptions,
the flow is identical to the flow in the lower half part of a cylinder with two solid covers in co-rotation, i.e.
rotating at the same angular velocity. Brøns et al. reported a wide range of topologies of vortex breakdown
bubbles in a bottom-driven cylinder with a free surface, see Fig. 7.4. Valentine & Jahnke [252], observed in their

(a) (b) (c) (d )

(e) ( f ) (g) (h)

(i) ( j) (v) (w)

Typical representatives of the observed flow topologies (contours of the stream function)
Fig. 7.4: Typical representatives of the observed flow topologies (contours of the stream function) found in the
steady domain. The drawings are scaled to the same normalized aspect ratio. Only the right half of a meridional
plane is shown. The vertical line to the left is the axis. (a) Re = 1000, Λ = 2.0, no bubble. (b) Re = 2800, Λ = 4.0,
axis bubble. (c) Re = 1000, Λ = 1.0, corner bubble. (d) Re = 1700, Λ = 1.0, surface bubble. (e) Re = 1950, Λ =
3.0, two axis bubbles. (f) Re = 3000, Λ = 4.0, one axis bubble and one corner bubble. (g) Re = 1700, Λ = 2.7,
axis bubble with inner structure. (h) Re = 3100, Λ = 4.0, corner bubble with inner structure. (i) Re = 2500,
Λ = 1.9, corner bubble with inner corner bubble. (j) Re = 2800, Λ = 2.0, surface bubble and in-flow saddle loop.
(v) Re = 1500, Λ = 0.3, transition towards multi-cell topology. (w) Re = 2100, Λ = 0.3, Multi-cell topology with
separatrices joining stagnation points at the surface and bottom. From Brøns et al. [42]. c© 2001 Cambridge
University Press.

simulations the existence of one or two toroidal-like types of recirculation bubble having their stagnation lines
attached to the free surface, depending on the value of the Reynolds number. Their study was complemented
by the work of Lopez [159] for oscillating unsteady flows. Information relevant to the present problem with a
free surface all indicate consistent flow behavior at small aspect ratio i.e., 0.5 ≤ Λ ≤ 1.0 in that stagnation
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occurs off-axis and associated secondary flow creates a toroidal recirculation bubble. Steady free-surface flows
have been computed by Iwatsu [130,131] providing flow state classifications with new flow patterns not revealed
in the previous studies.

Recent experiments by Jansson et al. [133] and Suzuki et al. [247] at high angular velocity or equivalently
high Reynolds number reported spectacular instabilities of the fluid surface. In those systems, the axisymmetry
is spontaneously broken and polygonal shapes appear at the free surface: triangles, squares, pentagons and even
hexagons [133,255–257].

7.1.4 Motivations and objectives

The present study is motivated by several factors. Firstly, compared to the closed cylinder case, only some limited
aspects of the open swirling flow have been investigated so far. The study of this intricate problem is relatively
new and consequently the body of knowledge in some (Λ,Re)-parameter regions appears fairly limited. Secondly,
most of the past studies involving numerical simulations of this free-surface swirling flow, used axisymmetric
streamfunction-vorticity formulations: Brøns et al. [42], Iwatsu [130, 131], and Piva & Meiburg [198]. To our
knowledge, the only fully three-dimensional numerical simulations is due to Lopez et al. [164], who investigated
mainly symmetry breaking issues. Finally, the work in this chapter aims at delivering results supporting the
developments in the next chapter, where the free surface is no longer considered as fixed and flat.

In the present chapter, new flow states are investigated based on a fully three-dimensional solution of the
Navier–Stokes equations without the need to resort to symmetry properties by doubling the computational
domain and enforcing co-rotation of both end-walls. To our knowledge, the present study provides the most
general available results for this flat-free-surface problem. Both, steady and unsteady flows are considered for
different sets of governing parameters (Λ,Re). A Legendre spectral element method is used to provide an
accurate solution of the governing equations, while the stress-free boundary condition is naturally enforced into
the weak formulation of the problem.

The mathematical model and the problem formulation are detailed in Sec. 7.2, while the original computa-
tional approach of this study is presented in Sec. 7.3. Subsequently, Sec. 7.4 contains all the numerical results
corresponding to various physical situations and flow states. Finally, this chapter ends with Sec. 7.5 providing
summary and conclusions on the present work.

7.2 Mathematical model and problem formulation

7.2.1 Mathematical description of the problem

The fluid enclosed in the cylindrical cavity is assumed to be incompressible, Newtonian with uniform density
and temperature. The flow is governed by the Navier–Stokes equations

∂ui
∂t

+ uj
∂ui
∂xj

=
∂σ∗ij
∂xj

+ gi, (7.1)

∂uj
∂xj

= 0, (7.2)

where σ∗ij = −pδij +2νDij is the reduced Cauchy stress tensor of the fluid, p the static or reduced pressure, Dij

the rate-of-deformation tensor, ν the assuredly constant and uniform kinematic viscosity, and gi the components
of the acceleration of gravity (g1 = g2 = 0 and g3 = −g). Inside the fluid domain denoted by V , no-slip boundary
conditions are imposed on all cavity walls: the tubular side-wall, the bottom end-wall in steady rotation, see
Fig. 7.5. The mathematical expression of the no-slip condition on the tubular side-wall simply reads

u(r = R, θ, z, t) = v(r = R, θ, z, t) = w(r = R, θ, z, t) = 0, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ H. (7.3)

The flow is driven by imposing a prescribed angular velocity distribution of the bottom end-wall, which transfers
its kinetic energy to the fluid above. The details regarding the imposition of this Dirichlet boundary condition
for the velocity field at the lid are discussed in the next section 7.2.2. The top surface is left open and is
modeled as a flat, fixed and clean free surface. The details regarding the imposition of this stress-free condition
on the free surface are discussed in Sec. 7.2.3. As mentioned in the Introduction, Sec. 7.1.1, two parameters that
determine completely the flow state are the height-to-radius aspect ratio Λ = H/R and the Reynolds number
Re = R2Ω0/ν, based on the maximal prescribed angular velocity Ω0 of the bottom end-wall.
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Fig. 7.5: Left: sketch of the three-dimensional geometry of the cylindrical cavity. Right: meridional cut of the
cylindrical cavity.

In the sequel, the length, time, velocity, vorticity, helicity, streamfunction, (reduced) pressure and kinetic
energy, and enstrophy are non-dimensionalized with respect to the reference scales R, Ω−1

0 , RΩ0, Ω0, RΩ2
0,

R3Ω0, R2Ω2
0, Ω2

0 respectively.

7.2.2 Angular velocity distribution

As already mentioned in Sec. 4.2.3.3 for the study of the lid-driven cubical cavity flow, imposing a given angular
velocity distribution on the bottom end-wall of a cavity is not an easy task numerically. Indeed, imposing a con-
stant angular velocity profile leads to a singularity (discontinuous behavior in the velocity boundary conditions)
at the circular edge between the bottom end-wall and the tubular side-wall, see Fig. 7.5. Without adequate
treatment, this discontinuous behavior will undermine the convergence and the accuracy of any numerical
method in the vicinity of the lid. The same remedy as in the lid-driven cubical cavity problem of Part III is used
here for the same reasons and with analogous justifications. A regularized angular velocity profile is employed
by prescribing the following high-order polynomial expansion which vanishes along its first derivatives on the
circular edge

Ω(r, θ, z = 0, t) = Ω0

[
1−

( r
R

)16
]2

ez , (7.4)

which leads to the following expressions in Cartesian coordinates of the components of the prescribed velocity
field on the bottom end-wall

u(x, y, z = 0, t) = ux(x, y, z = 0, t) = −yΩ0

[
1−

(√
x2 + y2/R

)16
]2

, (7.5)

v(x, y, z = 0, t) = uy(x, y, z = 0, t) = +xΩ0

[
1−

(√
x2 + y2/R

)16
]2

, (7.6)

w(x, y, z = 0, t) = uz(x, y, z = 0, t) = 0. (7.7)

This profile flattens very quickly near the circular edge (r/R = 1, θ, z/H = 0) while away from it, it grows
rapidly to a constant value Ω0 of the angular velocity over a short distance. The highest polynomial order of
this distribution is 32. Such high-order polynomial expansions lead to steep velocity gradients in the vicinity
of the circular edge of the bottom end-wall. The grid refinement, in terms of spectral element distribution near
the disk will be presented in greater details in Sec. 7.3. One of the constraint in the grid design is to ensure the
proper resolution of the lid velocity distribution by the spectral element decomposition.
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7.2.3 Free-surface modeling

The analysis of a two-phase flow is based on the coupled hydrodynamics interactions between adjacent layers
over a broad range of space and time scales. This analysis can be significantly simplified if the dynamics of
the interface is almost entirely dependent—from the hydrodynamics and physico-chemistry viewpoints—on one
phase, e.g. a liquid phase, and almost independent of the dynamics of the second phase, e.g. a gas phase.
Based on this hypothesis, the surface is said to be free. Consequently, the two fluid phases can only exert
constant normal stresses. Sarpkaya in his review entitled “Vorticity, free surface and surfactants” [218] gives
a clear characterization and definition of a free surface: “Although, the exterior of a free surface is free from
externally imposed shear, the interior is not necessarily free from the shear generated internally. In fact, surface
deformations and contaminants give rise to surface-gradients and tangential stresses in the internal side of the
bounding interface. From a mathematical viewpoint, a free surface means that the density and the viscosity
of the upper fluid are zero and that the existence of a continuum above the interface is inconsequential. From
a practical point of view, the free surface means that the dynamics of the continuum above the interface has
negligible influence on the lower phase, i.e. a free surface is a simplifying approximation for an almost free
surface.”

In the study presented in this chapter, the modeling of the interface between the fluids in the cylindrical
cavity as a free surface is supplemented by an additional simplifying approximation: the free surface is supposed
to remain flat and fixed all along the dynamic range of investigation. In general, the dynamics of the free surface
depends on the non-dimensional Froude number defined here as

Fr =
R2Ω2

0

gH
, (7.8)

which measures the relative importance of the inertial effects compared to the stabilizing gravitational effects.
Therefore, assuming a flat free surface corresponds mathematically to a Froude number identically zero. As a
consequence and in consistency with the latter assumption, the axial component of the velocity w = uz needs
to vanish at the free surface z/H = 1

w(x, y, z = H, t) = 0, x2 + y2 ≤ R2, (7.9)

thereby expressing the kinematic boundary condition at the free surface. This latter condition on the axial
velocity w is to be supplemented with the stress-free condition at the free surface

σ∗ij n̂j = −pδij n̂j + 2νDij n̂j = 0, (7.10)

where n̂ is the local outward unit vector normal at the free surface, which in the present particular situation is the
unit normal vector ez in the z-direction. Consequently, the stress-free condition (7.10) reduces to σ∗i3 = σ∗iz = 0,
i = 1, 2, 3 at z = H , and is explicitly stated as

σ∗13 = 2νD13 = 0, (7.11)

σ∗23 = 2νD23 = 0, (7.12)

σ∗33 = −p+ 2νD33 = 0, (7.13)

which under the zero-deformation condition (7.9), simplifies to
(
∂u

∂z
+
∂w

∂x

)
=
∂u

∂z
= 0, (7.14)

(
∂v

∂z
+
∂w

∂y

)
=
∂v

∂z
= 0, (7.15)

−p+ 2ν
∂w

∂z
= 0. (7.16)

The vorticity at the free surface often plays an important role in free-surface flows, and differs substantially
from that for the free-slip or no-slip wall. Let the vorticity be denoted by ω with components

ωx =
∂w

∂y
− ∂v

∂z
, (7.17)

ωy =
∂u

∂z
− ∂w

∂x
, (7.18)

ωz =
∂v

∂x
− ∂u

∂y
, (7.19)
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in Cartesian coordinates. The surface vorticity defined as ωs := (ωx, ωy)|z=H , is thereby identically zero in the
particular case of the flat free surface. The axial component ωz of the vorticity field is non-zero and is a measure
of the internal shear at the free surface generated by the flow.

7.3 Computational approach

This section is aimed at providing the reader with a brief description of the numerical treatment of the equations
governing the problem studied throughout this chapter.

7.3.1 Space discretization

The Navier–Stokes equations (7.1)–(7.2), supplemented with the boundary conditions (7.3), (7.5)–(7.7), (7.9),
(7.14)–(7.16), constitute the set of governing equations for this free-surface swirling flow to be discretized
and ultimately solved. The numerical method treats Eqs. (7.1)–(7.2) within the weak Galerkin formulation
framework. The spatial discretization uses Lagrange–Legendre polynomial interpolants. The reader is referred
to Chapter 2, Chapter 3 and the monograph by Deville et al. [58] for full details. The treatment of the governing
equations is very similar to the one described in the past chapters and we only briefly recall here the fundamentals
of the method. The velocity and pressure are expressed in the PN − PN−2 functional spaces where PN is the
set of polynomials of degree lower than N in each space direction. This spectral element method avoids the
presence of spurious pressure modes as it was proved by Maday & Patera [172, 174]. The quadrature rules are
based on a Gauss–Lobatto–Legendre (GLL) grid for the velocity nodes and a Gauss–Legendre grid (GL) for
the pressure nodes. The spectral element grid used for all simulations reported in this chapter is presented
on Fig. 7.6 and Fig. 7.7, in the particular case Λ = 1. This mesh comprises 440 spectral elements distributed
into 10 cylindrical layers of different heights, but all made of the same distribution of 44 spectral elements,
see Fig. 7.6 (right). In order to resolve the boundary layer along the tubular side-wall, the Ekman shear layer
above the rotating bottom end-wall and the surface shear layer below the free surface, the spectral elements
are unevenly distributed as can be seen in Figs. 7.6 & 7.7. The choice of polynomial order in the three space
directions, defining the inner GLL and GL grid into each spectral element is deferred to Sec. 7.3.3.
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Fig. 7.6: Left: half-meridional grid. Right: spectral-element grid in any plane normal to the z-direction. Case
Λ = 1.

The essential Dirichlet boundary conditions—homogeneous for u on the tubular side-wall as expressed by
Eq. (7.3), homogeneous for w = uz on the free surface as expressed by Eq. (7.9), and non-homogeneous for u on
the rotating bottom end-wall as expressed by Eqs. (7.5)–(7.7)—are embodied into the choice of test and trial
functions chosen for the velocity field.

The stress-free condition (7.10) at the free surface, further expressed by Eqs. (7.14)–(7.16), appears as a
homogeneous natural boundary condition in the weak Galerkin framework. This central point is discussed in
detail and in a more general framework, in Chapter 3, Sec. 3.2.3, where a non-homogenous natural boundary
condition is accounted for in the weak formulation of the problem. Based on this previous analysis, the treatment
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Fig. 7.7: Three-dimensional grid comprising 10 cylindrical layers of nonuniform heights made of 44 spectral
elements each. Case Λ = 1.

of the present stress-free condition at the free surface appears straightforward and is automatically incorporated
into the weak formulation of the problem.

Borrowing the notation from Deville et al. [58], the semi-discrete Navier–Stokes equations resulting from
space discretization are

M
du

dt
+ Cu + νAu−DT p = 0, (7.20)

−Du = 0. (7.21)

The diagonal mass matrix M is composed of three blocks, namely the mass matrices M . The global vector u
contains all the nodal velocity components while p is made of all nodal pressures. The matrices A, DT , D are
the discrete Laplacian, gradient and divergence operators, respectively. The matrix operator C represents the
action of the non-linear term written in convective form u ·∇, on the velocity field and depends on u itself.
The semi-discrete equations constitute a set of non-linear ordinary differential equations (7.20) subject to the
incompressibility condition (7.21).

7.3.2 Time integration

The time discretization of the semi-discrete set of governing equations (7.20)–(7.21) is the same as the one
previously used in Chapter 3–Chapter 6, and detailed in Sec. 3.3.4, Sec. 4.2.3.2, and Sec. 5.2.3. We only briefly
recall here the fundamentals of the method. The set of semi-discrete equations (7.20)–(7.21) obtained in the
previous section is discretized in time using finite-difference schemes in a decoupled approach. The computation
of the linear Helmholtz problem—corresponding to the stiffness matrix A—is integrated based on an implicit
backward differentiation formula of order 2, the nonlinear convective term—corresponding to the operator C—is
integrated based on a relatively simple extrapolation method of order 2, introduced by Karniadakis et al. [140],
see Sec. 2.3.5 for full details.

7.3.3 Convergence tests

In order to demonstrate the spatial and temporal convergence of the simulation method, time series data have
been analyzed, while varying separately the time-step ∆t and the polynomial order N of the GLL basis in
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each space direction, at the upper bound in Reynolds number Re = 6000, and with Λ = H/R = 1. As no
experimental, nor numerical reference results are available for the present problem, three integral and one local
quantities have been computed and compared. These three integral quantities are the total kinetic energy Q,
enstrophy E and helicity H of the flow, which definitions are recalled

Q =
1

2

∫

V
u · u dV , (7.22)

E =
1

2

∫

V
ω · ω dV , (7.23)

H =

∫

V
u · ω dV . (7.24)

The local quantity monitored is the axial velocity component w = uz at the point Π0 of coordinates (r/R =
0, z/H = 0.75), located along the cylinder axis. The location choice of this monitoring point is motivated by
the study of Piva & Meiburg [198] for a very similar configuration but at smaller Reynolds numbers. They show
that in the vicinity of this point, the axial velocity component reaches a local maximum. Given the relatively
high Reynolds number of our benchmark simulation, a quite long transient—approximately 500 time units in
Ω−1

0 units—is observed. Performing convergence tests involving a simulation time of the order of this transient
time would simply be prohibitive. Consequently, it was chosen to assess the convergence after only 50 time units
of simulations, which corresponds to the appearance of the first vortex-breakdown recirculation bubble in the
fluid domain.

First, the spatial convergence is assessed by varying the polynomial order in the range 6 ≤ N ≤ 10, while
keeping the time-step values constant ∆t = 0.0025. Results are reported in Table 7.1, and suggest that the
spatial convergence is achieved using a polynomial order N = 8 in all three space directions. This value is used
for all the direct numerical simulations presented in the sequel, except for one single case corresponding to the
steady laminar case (Λ = 1,Re = 900), for which N = 7 is chosen.

N Q E H w(Π0)

6 2.02745e-02 2.11900e+01 1.29876e-01 3.28923e-03

7 2.08244e-02 2.18923e+01 1.33612e-01 3.40034e-03

8 2.19036e-02 2.37953e+01 1.66448e-01 3.81373e-03

9 2.19034e-02 2.37957e+01 1.66450e-01 3.81376e-03

10 2.19035e-02 2.37955e+01 1.66447e-01 3.81375e-03

Table 7.1: Spatial convergence analysis for the case (Re = 6000,Λ = 1) with ∆t = 0.0025 Ω−1
0 . Q in R3(RΩ0)2

units, E in R3Ω2
0 units, H in R4Ω2

0 units, and w in RΩ0 units. Instant t = 50Ω−1
0 .

Finally, the temporal convergence is assessed by varying the time-step, while keeping the polynomial order
constant at the value N = 8, in agreement with the earlier spatial convergence analysis. Results are reported
in Table 7.1 below, and suggest that the temporal convergence is achieved using a time-step ∆t = 0.0025. At
a reduced Reynolds number compared to the one employed for this convergence analysis Re = 6000, greater
values of the time-step have been chosen in relation with the more laminar nature of the flow without affecting
the convergence of the simulations.

∆t Q E H w(Π0)

0.005 2.08574e-02 2.14302e+01 1.36342e-01 3.49221e-03

0.0035 2.11896e-02 2.25311e+01 1.48303e-01 3.61923e-03

0.0025 2.19036e-02 2.37953e+01 1.66448e-01 3.81373e-03

0.001 2.19034e-02 2.37960e+01 1.66446e-01 3.81379e-03

Table 7.2: Temporal convergence analysis for the case (Re = 6000,Λ = 1) with N = 8. ∆t in Ω−1
0 units, Q in

R3(RΩ0)2 units, E in R3Ω2
0 units, H in R4Ω2

0 units, and w in RΩ0 units. Instant t = 50Ω−1
0 .
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7.4 Numerical simulations and results

7.4.1 General physical characteristics of the flow

The central characteristics of the flow in a closed cylindrical container with a bottom rotating end-wall is a large
recirculation of the fluid. The features of the intense shear layer induced by the rotation of the bottom wall can
be obtained from the analogy with the analysis by von Kármán for the flow generated by a spinning plate in
an unbounded fluid domain, see the review by Zandbergen & Dijkstra [270] for full details. The rotation of the
bottom wall has a suction effect on the fluid in the near-axis region and a pumping effect, while accelerating
the fluid radially outwards in an Ekman shear layer of thickness O(Re−1/2). In the framework of our problem,
this Ekman layer is bounded by the tubular cylinder side-wall, which forces the recirculation of the fluid in the
upward direction along the side-wall, and towards the top wall. As the fluid approaches the curved corner, the
radial velocity contribution to the kinetic energy is progressively transformed into an axial velocity contribution
to the kinetic energy. It has been observed that the fluid turns and subsequently spirals upward along the
tubular side-wall.
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Fig. 7.8: Comparisons of flow states with a free surface for some selected parameter combinations (Λ = H/R,Re)
with the results obtained by Spohn et al. [239]. Regimes where experiments have been carried out are indicated
by symbol: �, one bubble. From Spohn et al. [240]. c© 1998 Cambridge University Press.

As mentioned in Sec. 7.1.3, replacing the fixed top solid wall with a free surface changes significantly the
physics of the flow and the recirculation mechanisms. In absence of tangential stresses at the free surface, the
boundary layer is replaced by a surface layer in the sense of Shen et al. [226, 227]. In addition, the inward
spiraling fluid elements conserve their angular momentum at the free surface. When the related centrifugal
force is large enough to balance the radial pressure gradient, the flow separates from the free surface and
leads to the generation of a vortex breakdown bubble. The most striking difference between the flow patterns
observed in the present open cylinder case and compared to the close cylinder one—see Appendix B for a brief
introduction—are the possible appearances of recirculation bubbles, which are generally attached to the free
surface. Such flow patterns are simply impossible in presence of the no-slip condition imposed on the top wall
in the closed cylinder case. More precisely, Iwatsu [131] determined 24 different flow states in the steady regime
according to the meridional streamline patterns observed. Some of these flow states are depicted in Fig. 7.4.
Spohn et al. [240] summarized those flow states in a simplified bifurcation diagram in the (Λ,Re) space, which is
shown in Fig. 7.8. Based on his extensive and comprehensive study, Iwatsu [131] came out with a more detailed
and complex bifurcation diagram.
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In subsequent studies, the stability of those steady axisymmetric flows were investigated. Young et al. [269],
Miraghaie et al. [182], Lopez et al. [164], and Lopez & Marques [163] observed unstable azimuthal modes which
are triggered at different values of the Reynolds number depending on the nature “shallow” (Λ < 1) or “deep”
(Λ > 1) of the system. Valentine & Jahnke [252], Lopez [159], and Brøns et al. [42] associated the axisymmetry
breakage to instability modes. These modes appear following a Hopf bifurcation which generally occurs at
relatively high Reynolds number.

7.4.2 Cases studied

As mentioned in the previous sections, the physics of these free-surface swirling flows depends critically on
the Reynolds number. Nevertheless, the height-to-radius aspect ratio Λ also has considerable impact on the
observed nature of the flow. Very often, situations corresponding to extreme values of Λ have been studied,
as they generally lead to simplified flow mechanisms. For instance, shallow systems (Λ < 1) are often referred
to as “rotor-stator” configurations, in which the fluid is almost in a state of solid-body rotation. On the other
hand, deep systems associated with large values of Λ, generate recirculation bubbles away from the free surface
and generally on the cylinder axis. Consequently, systems corresponding to values of Λ close to the unity are
intermediate in the sense that the physics of the flow observed is a complex combination of the general features
reported for the shallow and deep systems.

Case Re Λ = H/R Time-step ∆t Time evolution Vortex breakdown

(a) 900 1.0 0.005 steady one attached bubble
(b) 1 500 1.0 0.005 steady one attached toroidal bubble
(c) 6 000 1.0 0.0025 unsteady complex dynamics
(d) 2 000 1/3 0.004 steady two long attached bubbles
(e) 2 000 3.0 0.004 steady one short detached bubble

Table 7.3: Parameters and characteristics of the cases considered. The time-step ∆t is expressed in Ω−1
0 units.

(e) : (Λ = 3,Re = 2 000)

(d) : (Λ = 1/3,Re = 2 000)

(c) : (Λ = 1,Re = 6 000)

(b) : (Λ = 1,Re = 1 500)

(a) : (Λ = 1,Re = 900)
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Fig. 7.9: Time history of the volume integral of the kinetic energy Q of the flow, in R5Ω2
0 units for cases (a)–(e).

The details related to the five cases considered in this chapter are summarized in Table 7.3. In the study
reported in this chapter and the next one, the primary focus is on the flow defined by Re = 6 000 and Λ = 1.
The value of the Reynolds number is intentionally set to a high value compared to previous studies—the highest
to our knowledge, in order to ensure producing fields of a relative intensity at the free surface. The choice of the
value of Λ follows the earlier comment on systems being intermediate between shallow and deep. This central
case (Λ = 1,Re = 6 000) is supplemented with four secondary cases described in Table 7.3. The study of those
secondary flows is of prime importance for the understanding of the complex dynamics of the primary case
(Λ = 1,Re = 6 000).

In terms of initial conditions, the steady rotation is impulsively started from a quiescent fluid state for all
cases presented in the sequel. At this point, it is worth noting the timescales of the evolution of these flows.
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Figure 7.9 displays the time history of the volume integral of the kinetic energy of the flow Q. For all cases
except case (c), the flow reaches a steady state after a given time scale, which is, as expected, shorter for shallow
systems. Case (c) leads to an unsteady flow which does not display any oscillatory evolution. The value of the
Reynolds number for this case is large enough to produce a non-trivial evolution of the recirculation zones as
will be seen in the sequel.

The time histories of the volume integral of the kinetic energy Q for the five cases (a)− (e) can be compared
to the ones, reported in Sec. B.2.2 of Appendix B, for the closed swirling flow problem with Λ = 2.5, see Fig B.4.
It should be noted that for a fixed value of Λ, the total kinetic energy Q of the flow decreases with the Reynolds
number for the closed cylinder case, while it increases in the open cylinder case. This decreasing trend for Q in
the closed cylinder case can easily be resolved by transposing the analysis given by Leriche & Gavrilakis [155] in
their study of the closed lid-driven cubical cavity flow. Leriche & Gavrilakis argue that the most significant part
of the kinetic energy of the flow is contained in the viscous layer developing on the driving wall. Consequently,
the total energy varies like the energy contained in this viscous layer which can approximately be expressed as
U2

0VRe−1/2, where U0 is the characteristic velocity of the driving wall and V the volume of the cavity. Such
argument and estimate can easily be transposed for the closed swirling flows studied in Appendix B, and explains
the decreasing trend for Q with respect to Re. Furthermore this argument is confirmed by the measurements of
the kinetic energy Q(L1) of the cylindrical layer of fluid L1 located right above the spinning disk and of height
0.015H , reported in Table 7.4. This thin layer of fluid which only represents 1.5% of the total volume of fluid,
contributes for approximately 10% to the total kinetic energy of the flow. Concurrently, its contribution to the
total kinetic energy of the flow decreases with the Reynolds number.

Re Q(L1) E(L1) Ez(L1)

900 7.42243e-03 3.04128e+00 3.99817e-01

1 500 7.05011e-03 4.46885e+00 4.03147e-01

6 000 5.71943e-03 1.18305e+01 4.25622e-01

Re Q(L10) E(L10) Ez(L10)

900 3.88037e-04 6.14708e-03 5.99848e-03

1 500 5.47285e-04 9.04519e-03 8.25633e-03

6 000 1.21966e-03 6.43344e-02 2.00737e-02

Table 7.4: Measurements of the kinetic energy Q, enstrophy E, and enstrophy associated solely with the axial
vorticity component Ez for the cylindrical layer L1 comprised between z = 0 and z = 0.015H, and for the
cylindrical layer L10 comprised between z = 0.98H and z = H. Q in R3(RΩ0)2 units, E and Ez in R3Ω2

0 units.
Instant t = 600Ω−1

0 .

On the contrary, a reverse trend is observed for the variations of Q with respect to Re in the open swirling
flow. It therefore requires another physical justification. Nevertheless, the previous energetic argument associated
with the viscous layer still holds for the viscous layer above the spinning disk and near the tubular side-wall
in the open cylinder swirling flow. Below the surface at z = H , the viscous layer in the closed cylinder case
is replaced by an intense shear layer. As mentioned in Sec. 7.2.3, in the present flat-free-surface problem, the
axial vorticity ωz is the only component of the vorticity field which is not vanishing at the free surface and it
provides a measure of the internal shear at the free surface. The part Ez of the enstrophy associated with the
axial vorticity component is measured in the cylindrical layer of fluid L10, of height 0.02H and located below
the free surface. Results are reported in Table 7.4 and clearly show a significant increase of Ez with respect to
Re in the layer L10, while it is almost constant in L1. These results allow us to infer that the shear layer below
the free surface becomes more and more intense and energetic—see Q(L10)— when increasing the Reynolds
number. But this observed energetic trend of the free-surface shear layer is not the only factor responsible for
counterbalancing the decreasing trend of the viscous layers. The internal structure of the free-surface layer is
itself physically different as reported by Shen et al. [226,227]. The so-called surface layer corresponds to a thin
region adjacent to the free surface characterized by fast variations of the tangential vorticity components. This
surface layer is caused by the dynamic zero-stress boundary conditions (7.10) at the free surface and lies inside a
thicker blockage (or “source”) layer, which is due to the kinematic boundary condition (7.9) at the free surface.
The importance of the outer blockage layer is manifested mainly in the redistribution of the kinetic energy, i.e.
in the increase of the kinetic energy of the tangential velocity components at the expense of the kinetic energy
of the axial velocity component. This point is to be further discussed in Sec. 7.4.3.2, where a comprehensive
comparison of the flow below the surface z = H for the case (c) with a free surface and the equivalent closed
case in Appendix B is given.
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7.4.3 Physical description of flow states

7.4.3.1 Steady flows

As a first step, we present the two steady flows for Λ = 1 and Re = 900, 1 500 corresponding to cases (a) and
(b) respectively. Figure 7.10 displays the streamlines of these flows into any meridional plane. Both of these
flows present a large axisymmetric vortex breakdown bubble attached to the free surface in agreement with the
experimental results from Spohn et al. [240] summarized by the bifurcation diagram reported in Fig. 7.8. These
recirculation zones are characteristic of these swirling flows due to the conjugate effects of the centrifugal force
and the overturning flow induced by the presence of the tubular side-wall. The central difference between the
low-Reynolds-number cases (a) and (b) is the shape of the recirculation, which becomes toroidal after leaving
the axis when the Reynolds number is increased from 900 up to 1 500, see the three-dimensional representations
given in Fig. 7.12. These results can be further validated by comparing them to the experimental steady dye
lines obtained by Piva for Re = 1 120 and shown in Fig. 7.11. Finally, case (a) = (Λ = 1,Re = 900) has been
computed by Piva & Meiburg [198] and four series of the contour lines of their results are presented in Fig. 7.13.
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Fig. 7.10: Contours of streamlines in a meridional plane, case Λ = 1. Left: case Re = 900; Right: case Re =
1 500. The 30 contours are non-uniformly spaced for visualization purposes, 20 equally-spaced negative contours
and 10 equally-spaced positive contours for Re = 900 and Re = 1 500.

Fig. 7.11: Snapshot of the meridional flow field obtained by dye injection in the case Λ = 1 and Re = 1 120. c©
M. Piva, Ph.D. thesis, Universidad de Buenos Aires, 2000.

As a second step, the contours of the radial, azimuthal and axial velocity components in any meridional
plane are given in Fig. 7.14. These data are supplemented with the contours of the axial component of the
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Fig. 7.12: Visualization of the shape of the recirculation bubble attached to the free surface for case Λ = 1. Top
row: Re = 900; Bottom row: Re = 1 500. Left column: normal view; Right column: upside-down view.

angular momentum Γ = ruθ still in Fig. 7.14, extreme right column. The interest for Γ lies in the fact that
it plays the role of a streamfunction for the part of the velocity field comprised in any meridional plane, see
Bragg & Hawthorne [39] and Keller [141] for full details. Therefore, the contours of Γ deliver the intersection
of vortex surfaces with the corresponding meridional plane where they are drawn, and as such provide us
with the local direction of the meridional vorticity field. One can notice from the velocity components and
axial angular momentum component that the meridional structure of these flows is far from being trivial. It
consists of an intense boundary layer above the spinning bottom end-wall that is turned into the interior by
the presence of the tubular side-wall, forming a shear layer having a jet-like velocity profile in the azimuthal
direction. The contour lines of the axial component of the angular momentum shown in Fig. 7.14 (extreme right
column) simply represent the vortex lines, which all emanate from the rotating disk; the structure of the shear
layer is apparent. It is worth noting here that the vortex lines distribution at their origin varies like r2. As a
consequence of the regularized profile of angular velocity of the rotating disk—see Sec. 7.2.2, this distribution in
r2 is slightly affected in the vicinity of r = R. This regularization of this profile has the advantage of preventing
the appearance of vortex lines terminating at the circular corner (r = R, z = 0), which are deprived of any
physical meaning. The overturning nature of these flows is also apparent in the vicinity of the tubular side-wall,
which is the vortex surface corresponding to Γ = 0, together with the cylinder axis. As non-zero azimuthal
velocities are possible at the free surface, vortex lines emanating from the rotating end-wall have the option
of terminating orthogonally to the free surface. This observation is one of the major difference with the closed
cylinder swirling flow where all vortex lines have to terminate in the corner, see Fig. B.3 and Fig. B.9 in
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Appendix B. Furthermore, the termination of vortex lines at the free surface is responsible for the possibility
of having vortex breakdown bubbles being attached to the free surface as observed in Fig. 7.10 and Fig. 7.11.
A careful analysis of Fig. 7.14 (extreme right column) reveals that one vortex line marks the limit between
an inner region comprising only vortex lines terminating at the free surface, and an outer region, where they
terminate near the circular corner, like in the closed cylinder case. In summary, it appears that the main effect
of this overturning flow is to bring high-angular-momentum fluid towards the cylinder axis.

The results for case (a) = (Λ = 1,Re = 900) presented in Fig. 7.10 (left) and Fig. 7.14 (top row) show a
qualitative good agreement with the numerical results of Piva & Meiburg [198] reproduced in Fig. 7.13.

The differences related to the features of the recirculation bubbles for cases (a) and (b) have been discussed
earlier. One can notice in Fig. 7.14 (two left columns), as expected, that the thicknesses of the intense radial
velocity layer as well as the axial wall jet are reduced when the Reynolds number is increased from 900 to 1 500.
The contours of the axial velocity component reveal that the downward-directed flow induced by the suction
effect of the Ekman layer, is more intense at higher Reynolds number. In addition, the region of the flow where
w = uz has a negative extremum tends to move closer to the free surface when increasing Re. Regarding the
vortex lines shown in the extreme right column, their bending towards the cylinder axis is more pronounced at
the higher Reynolds number of 1 500. In relation with the previous analysis, this latter observation highlights
the fact that more high-angular-momentum fluid is brought towards the axis when increasing Re.

Fig. 7.13: Contours of (a) streamlines; (b) radial velocity; (c) axial velocity; (d) angular momentum in a merid-
ional plane. Case Λ = 1 and Re = 900. For visualization purposes, the contour levels are nonuniformly spaced.
From Piva & Meiburg [198]. c© 2005 American Institute of Physics.
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Fig. 7.14: Contours in a meridional plane for the case Λ = 1. Top row: case Re = 900; Bottom row: case Re = 1 500. From left column to right column: radial velocity
component ur; axial velocity component w = uz; azimuthal velocity component uθ; axial angular momentum component Γ = ruθ. The 35 contours are uniformly
spaced, between −0.1 and 0.145 for ur; and between −0.08 and 0.115 for uz; The 50 contours are uniformly spaced, between 0 and 1 for uθ and Γ.
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As mentioned in Sec. 7.4.2, our primary interest lies in case (c) = (Λ = 1,Re = 6 000), thereby justifying the
study of cases (a) and (b), having the same aspect ratio Λ but corresponding to laminar cases. Nevertheless, the
study of cases (d) and (e), which both correspond to “extreme” cases in terms of height-to-radius aspect ratio,
illustrate some essential features of the open swirling flow. In case (c) some of these features may prevail only
in specific regions of the flow as it corresponds to an intermediate case between a shallow system characterized
by case (d) and a deep system characterized by case (e). These features are as follows:

– solid-body rotation of the inner core region, predominantly for small Λ;

– radial jet of angular momentum at the free surface;

– lateral jet-like shear layer along the tubular side-wall;

r/R

z/
H

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

r/R

z/
H

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 7.15: Contours of streamlines in a meridional plane. Left: case (d) : (Λ = 1/3,Re = 2 000); Right: case
(e) : (Λ = 3,Re = 2 000). The 30 contours are non-uniformly spaced for visualization purposes, 20 equally-
spaced negative contours and 10 equally-spaced positive contours for (d) and (e).

Fig. 7.16: Visualization of the shape of the recirculation bubble(s) attached to the free surface. Left: case Λ = 1/3
and Re = 2 000; Right: case Λ = 3 and Re = 2 000.
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The very different flow patterns developed by both cases (d) and (e) are highlighted by the very distinctive
streamlines shown in Fig. 7.15 and with the 3D visualizations in Fig. 7.16. The shallow case (d) yields two
vortex breakdown bubbles, which are off the cylinder axis while remaining attached to the free surface. The
recirculation is more intense in the largest bubble, which is elongated enough to produce a recirculation of the
fluid from the free surface all the way down to the rotating disk, and so forth. Consequently, this elongated
bubble completely separate the outer region of the flow (r/R ≥ 0.5) from the inner core, where the second
less intense, vortex breakdown occurs. Comparatively, the recirculation in case (e) is fairly limited. A vortex
breakdown still occurs in this case, leading to the formation of a small on-axis bubble, which is detached from
the free surface. One can notice from the bending of the streamlines near the axis at the height z/H = 0.8, that
another vortex breakdowns is in preparation—compare this effect to the similar effect on the streamlines prior
the vortex breakdown in the closed swirling flow at Re = 1 900, shown in Fig. B.2.

The shallow system (d) = (Λ = 1/3,Re = 2 000) possesses some very distinctive features as can be seen
in Fig. 7.17 (top row). The vortex lines for r/R < 0.4 being aligned with the rotation axis, one can easily
conclude that the flow is essentially in solid-body rotation in this inner core region of the cavity. The meridional
flow in this inner part of the cavity has a very weak intensity as attested by the values close to zero of the
contours of the axial and radial velocity components—solid contour lines are positive and negative contour
lines being dashed. In contrast, for r > 0.4 the primary recirculation of the flow is intense and predominates.
The vortex lines bending is limited to this region and again is at the origin of the vortex breakdown appearing
near r/R = 0.4. The boundary layer on the rotating disk is limited to the region r/R > 0.5 and the internal
jet-like shear layer close the tubular side-wall has a structure quite different from the cases with Λ = 1. Indeed
in this shear layer, the axial velocity is relatively intense all along the tubular side-wall, unlike cases (a), (b)
and (e), where the axial velocity uz decreases rapidly with z/H . This observation is easily explained by the
shorter height in the case studied, but has several considerable consequences on the flow itself. A more intense
wall-jet implies a more intense angular momentum jet at the free surface, which facilitates the vortex breakdown
phenomena. The intense angular momentum free-surface jet produces an elongated recirculation bubble located
as seen earlier, around r/R = 0.4. In this elongated bubble, the axial velocity field is globally positive, thereby
producing an effect similar to the jet-like shear layer near the tubular side-wall. In turn it generates a secondary
angular momentum free-surface wall jet responsible for the second vortex breakdown.

Increasing the height-to-radius aspect ratio to Λ = 3, modifies considerably the flow dynamics as can be
seen in Fig.7.17 (bottom row). It seems clear from the previous analysis for the shallow case (d), that the
influence of the free surface on the flow is more important when Λ is small. The proximity between the driving
disk, which generates the primary flow and the free surface with its specific boundary conditions, leads to the
complex flow dynamics earlier explained. Conversely, for large values of Λ the important distance between the
spinning disk and the free surface is so important that it significantly reduces the effect of the presence of the
free surface. The flow pattern presents in fine a structure very similar to the flow pattern observed in the closed
cylinder swirling flow presented in Appendix B, except very close to the free surface. As mentioned earlier the
recirculation bubble itself is fairly small and located on the cylinder axis likewise in the closed cylinder case.
Finally, it is worth adding that the region of solid-body rotation is almost completely eliminated. Even the
closest-to-the-axis vortex lines present some bending.

As a brief conclusion of the previous study of the steady and laminar free surface swirling flows, it appears
that the choice Λ = 1 for the height-to-radius aspect ratio of the cavity in presence of a free surface, ensures us
to deal with a complex flow dynamics. Different mechanisms are in competition in different regions of the cavity,
and in the end make the cases with Λ = 1 physically more challenging and more interesting. This conclusion—
valid in presence of a free surface—stops being valid for the closed cylinder swirling flow, and thereby explains
the focus in the literature on cases with Λ ≥ 2.
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Fig. 7.17: Contours in a meridional plane for the case (d) : (Λ = 1/3,Re = 2 000) (top row) and case (e) : (Λ = 3,Re = 2 000) (bottom row). From left column
to right column: radial velocity component ur; axial velocity component w = uz; azimuthal velocity component uθ; axial angular momentum component Γ = ruθ. All
contours are uniformly spaced; 35 contours between −0.17 and 0.15 for ur case (d); 90 contours between −0.03 and 0.15 for ur case (e); 35 contours between −0.1
and 0.12 for uz case (d); 35 contours between −0.05 and 0.12 for uz case (e); 50 contours between 0 and 1 for uθ and Γ, cases (d) and (e).
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7.4.3.2 Unsteady flow

For sufficiently small Reynolds number and irrespective of Λ, the basic flow state is stable. As noted by Lopez
et al. [164], when Re is increased, the basic flow state loses stability via a variety of Hopf bifurcations. It is
worth noting that when Re tends to infinity, the stream surfaces and vortex surfaces—giving the streamlines
and vortex lines by intersection with a meridional plane—must coincide. At this point, the presence of a flat
free surface poses problem because of the constraint of having orthogonal streamlines and vortex lines on it.
This apparent paradox is unraveled by simply letting the free surface move, which is done in next chapter.
Nevertheless, we know from the experiments carried out by Spohn et al. [239, 240], that even at a Re = 6 000
the tangential flow is extremely intense compared to the normal one, leading to small free-surface deformations.
It is very likely that these small amplitude deformations are not sufficient to solve our apparent paradox. At
low Reynolds number, like those of cases (a), (b), (d), and (e), the viscosity acts on the velocity field to allow
the latter condition of orthogonality to be fulfilled. But when the Reynolds number is increased, the action of
viscosity and the limited deformation of the free surface are not sufficient to bring back the orthogonality of
the two sets of lines. Therefore, the flow must either lose its axisymmetry or become unsteady in order to allow
to drop the orthogonality condition. The experiments by Spohn et al. [240] suggest that the open swirling flow
first go through the unsteady path.
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Fig. 7.18: Contours of streamlines in two orthogonal meridional planes, case Λ = 1 and Re = 6 000. Top row:
instantaneous flow; Bottom row: mean flow. Left column: meridional plane y/R = 0; Right column: meridional
plane x/R = 0. The 30 contours are non-uniformly spaced for visualization purposes, 20 equally-spaced negative
contours and 10 equally-spaced positive contours.
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As discussed in detail in Sec. 7.1.3, the loss of axisymmetry of this flow has been a controversial subject
among fluid dynamicists for a long time. When high angular velocities are considered, experiments like those of
Jansson et al. [133] and Suzuki et al. [247] show concurrently large surface deformations and an undeniable loss
of axisymmetry. Therefore, the feeling is that the loss of axisymmetry is related to free surface deformations.
Thus, the problem is to know if the loss of axisymmetry can occur with a flat free surface.

In this section, the study is focused on the unsteady swirling flow corresponding to case (c) = (Λ = 1,Re =
6 000). To our knowledge, such transitional regime at this relatively high Re has never been investigated nor
reported in the literature. At this Reynolds number the loss of axisymmetry in this flat-free-surface case is
evident from the observation of the three-dimensional shape of the recirculation bubbles shown in Fig. 7.19. As
the flow is unsteady, these recirculation bubbles are instantaneous and correspond to a flow sample taken in
the statistically-steady regime for t > 600 in Ω−1

0 units, see Fig. 7.9.

Fig. 7.19: Visualization of the shape of the recirculation bubble attached to the free surface. Case Λ = 1 and
Re = 6 000. Top row: instantaneous flow; Bottom row: mean flow; Left column: normal view; Right column:
upside-down view.

The streamlines of this flow sample are represented in two orthogonal meridian planes corresponding to
y/R = 0 and x/R = 0, in Fig. 7.18 (top row). Once again, the loss of axisymmetry appears clearly from the
complex and nonaxisymmetric structure of the recirculation bubbles. Compared to the laminar and steady
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cases (a) and (b), the recirculation bubbles have their own dynamics and evolution. In a common approach
to such unsteady problems, this complex dynamics is analyzed by the means of an averaging process, which
is supplemented with an analysis of instantaneous flow samples equally-spaced in time. The reader is referred
to Chapter 4, Sec. 4.3.1 for details and notations used in the present averaging procedure. The mean flow is
obtained by averaging 500 flow samples corresponding to successive flow states extracted every 0.25 times units
(or equivalently every 100 iterations). Subsequently, the root-mean-square (rms) fluctuations of flow fields are
calculated using the same extracted flow samples and the mean flow field obtained earlier.

The streamlines associated with the mean flow are shown in Fig. 7.18 (bottom row), as well as the recircula-
tion bubbles in Fig. 7.19 (bottom row). The most surprising characteristics is that the mean flow itself appears
to be slightly nonaxisymmetric. This point is still under investigation and we feel that this nonaxisymmetric
feature of the mean flow is simply a side-effect of a limited sampling. We are currently investigating the effect
of an increased sampling—averaging procedure using two times more samples—on the mean flow field. Besides
this striking feature, the streamlines of the mean flow reveal the existence of a toroidal recirculation bubble,
located off the cylinder axis and more surprisingly detached from the free surface. The toroidal shape and
off-axis location of the mean recirculation bubble is in agreement with the increased-Re trend observed with
cases (a) and (b) in Sec. 7.4.3.1. Regarding the detachment from the free surface of the mean bubble, it is more
relevant here to notice that the instantaneous bubbles are still attached to the free surface. More precisely, one
may notice two points:

– in the meridional plane y/R = 0, a small recirculation zone appears attached to the rotating disk for
r/R ' 0.2;

– in the meridional plane x/R = 0, the recirculation bubble is stretched from the free surface z/H = 1 down
to z/H = 0.15, in a radial position r/R ' 0.4.

These two observations remind the streamline patterns described in the case (d) = (Λ = 1/3,Re = 2 000),
with a long bubble stretching from the free surface down to the driving disk. The previous analysis is further
confirmed by the contours of the three velocity components and of the axial angular momentum for both an
instantaneous flow sample and the mean flow, presented in Fig. 7.22, in the meridional plane x/R = 0. A careful
analysis of the vortex lines for the instantaneous flow sample shows a bending in the whole meridian plane.
This bending is very significant in the region 0.3 ≤ r/R ≤ 0.8 and 0.4 ≤ z/H ≤ 1, which corresponds to the
limit between the primary recirculation of the flow and the secondary recirculation bubble. On the contrary,
the vortex lines structure of the mean flow is as expected much more regular. The inner core region of the
flow r/R ≤ 0.4 displays a state of solid-body rotation. For both the instantaneous and mean flow, the jet-like
shear layer along the tubular side-wall is turned into the interior of the flow by the free surface. Compared to
the previous cases (a), (b), (d), (e), and also the closed swirling flow (Λ = 1,Re = 6 000) of Appendix B, the
structure of this shear layer at Re = 6 000 reveals the presence of an intense radial jet of angular momentum at
the free surface.

The fluctuations of the flow with respect to its mean state have been calculated with the same flow samples
as before. It should be noted that the fluctuation level corresponds to less than 5% of the maximal intensity
of the respective mean flow fields. Despite the relatively low level of fluctuation encountered, these fluctuations
are very localized in space as can be seen in Fig. 7.23. Similarly to the mean flow fields, the rms fluctuations of
the velocity field and of Γ appear to be slightly nonaxisymmetric. All the three velocity components present a
noticeable level of fluctuation near the free surface for radii close to 0.4. In this region, the free-surface radial
jet of angular momentum reaches the inner flow, which is solid-body rotation. These fluctuations are therefore
located in the vicinity of the stagnation point where the vortex breakdown is initiated. The rms-fluctuations of
the vortex lines, i.e. Γ, are the highest in the corner region between the free surface and the tubular side-wall.
It is in this corner, where the shear layer is turned into the interior by the presence of the free surface.

The analysis of 24 equally-spaced in time flow samples—shown in Fig 7.20 and Fig. 7.21—delivers some
fruitful information on the dynamics of the recirculation bubbles. The samples are extracted every 0.5 time
units, which correspond to half a rotation of the bottom end-wall, and covers a dynamic range of length 12
time units comprised between t1 = 665.5 and t24 = 677.5. The dynamics of the vortex breakdown bubbles are
a succession of separation and coalescence. Even if the flow dynamics is not oscillatory, some sort of “cycle”
is observed. A typical “cycle” starts from a bubble attached to the free surface near r/R ' 0.4. The bubble
becomes more and more intense, is stretched down to approximately z/H = 0.2. Afterwards, the bubble keeps
growing and tends to occupy the inner core region of the flow, until it becomes an on-axis attached bubble.
Subsequently, this large bubble separates into one attached and off-axis bubble and another internal bubble,
which tends to disappear. From the remaining off-axis bubble attached to the free surface, starts another cycle.
Such cycle is clearly visible in Fig 7.20 and Fig. 7.21.
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Fig. 7.20: Contours of streamlines and vortex lines in the meridional plane x/R = 0, case Λ = 1 and Re = 6 000. Each pair of contours of streamlines and vortex
lines refers to the same instant: from left to right, and from top to bottom the successive instants are given by tk = 665 + k 0.5, k = 1, . . . , 12.
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Fig. 7.21: Contours of streamlines and vortex lines in the meridional plane x/R = 0, case Λ = 1 and Re = 6 000. Each pair of contours of streamlines and vortex
lines refers to the same instant: from left to right, and from top to bottom the successive instants are given by tk = 665 + k 0.5, k = 13, . . . , 24.
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Fig. 7.22: Contours in a meridional plane for the case Λ = 1 and Re = 6 000. Top row: instantaneous flow; Bottom row: mean flow. From left column to right column:
radial velocity component ur; axial velocity component uz; azimuthal velocity component uθ; axial angular momentum Γ = ruθ. The 50 contours are uniformly spaced,
between −0.13 and 0.16 for ur; between −0.09 and 0.14 for uz; and between 0 and 1 for uθ. The 100 contours are uniformly spaced between 0 and 1 for Γ.
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Fig. 7.23: Contours in a meridional plane for the case Λ = 1 and Re = 6 000. Top row: in the meridian plane y/R = 0; Bottom row: in the meridian plane x/R = 0.
From left column to right column: rms fluctuations of radial velocity component ur; rms fluctuations of the axial velocity component uz; rms fluctuations of the
azimuthal velocity component uθ; and rms fluctuations of the axial angular momentum Γ = ruθ. The 20 contours are uniformly spaced, between 0 and 0.002 for
rms-ur; between 0 and 0.0024 for rms-uz; between 0 and 0.004 for rms-uθ; and between 0 and 0.001 for rms-Γ.
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7.4.4 One-dimensional momentum budgets

This section is devoted to the careful analysis of the momentum balance for the radial, azimuthal and axial
components. This study is performed along different radial and axial lines within the cavity. It is of interest
to determine the predominant physical terms, which are responsible for the complex flow dynamics depicted in
the previous sections. As noticed in these previous sections, the structure of the flow in the inner core region is
far different from the one close to the tubular side-wall. Similarly, the flow above the rotating driving disk has
properties, which are not comparable to the ones below the flat free surface. For the sake of conciseness, this
momentum balance analysis is limited to cases (a)− (c) for which Λ = 1.

7.4.4.1 General considerations

The numerical integration of the Navier–Stokes equations using the spectral element method as described in
Sec. 7.3, is performed in Cartesian coordinates (x, y, z) for the velocity components (u, v, w). Nevertheless, the
axisymmetric nature of the container and of the boundary conditions imposed to the flow suggests the use of
cylindrical coordinates. Indeed, the different physical terms involved in the momentum equation represented
here by the Navier–Stokes equations—nonlinear advective term, viscous strain, pressure gradient, etc.—are
better apprehended when expressed in cylindrical coordinates. Accordingly, all vectors and physical terms are
recast as functions of (r, θ, z), and for instance the velocity components are (ur, uθ, uz).

The complete expression of the momentum equations in cylindrical coordinates reads

∂ur
∂t

+ ur
∂ur
∂r

+
uθ
r

∂ur
∂θ
− u2

θ

r
+ uz

∂ur
∂z

= −∂p
∂r

+
1

Re

[
∂

∂r

(
1

r

∂(rur)

∂r

)
+

1

r2

∂2ur
∂θ2

− 2

r2

∂uθ
∂θ

+
∂2ur
∂z2

]
,

(7.25)

∂uθ
∂t

+ ur
∂uθ
∂r

+
uθ
r

∂uθ
∂θ

+
uruθ
r

+ uz
∂uθ
∂z

= −1

r

∂p

∂θ
+

1

Re

[
∂

∂r

(
1

r

∂(ruθ)

∂r

)
+

1

r2

∂2uθ
∂θ2

+
2

r2

∂ur
∂θ

+
∂2uθ
∂z2

]
,

(7.26)

∂uz
∂t

+ ur
∂uz
∂r

+
uθ
r

∂uz
∂θ

+ uz
∂uz
∂z

= −∂p
∂z

+
1

Re

[
1

r

∂

∂r

(
r
∂uz
∂r

)
+

1

r2

∂2uz
∂θ2

+
∂2uz
∂z2

]
, (7.27)

where successively appears, the velocity time derivative, the nonlinear advective term, the pressure gradient and
the viscous strain. The central objective of this study is to compare the relative importance of some of these
terms along different lines. Equation (7.25) (resp. (7.26)) represents the momentum balance in the radial (resp.
azimuthal) direction, and is analyzed along four radial lines at four different heights z/H = 0.03, 0.64, 0.95, 1,
ranging from right above the rotating disk up to the free surface. Equation (7.27) represents the momentum
balance in the axial direction, and is analyzed along three different axial vertical lines at three radial positions
r/R = 0.08, 0.48, 0.98, ranging from near the cylinder axis to near the tubular side-wall.

For the sake of simplicity, some of the terms appearing in (7.25)–(7.27) are identified and denoted specifically
in Table 7.5. In the sequel, the various graphs reporting the variations of these terms will use this nomenclature.

Name Expression Name Expression Name Expression

NLr1 −ur
∂ur
∂r

NLt1 −ur
∂uθ
∂r

NLa1 −ur
∂uz
∂r

NLr2 +
u2
θ

r
NLt2 −uruθ

r
NLa2 −uz

∂uz
∂z

NLr3 −uz
∂ur
∂z

NLt3 −uz
∂uθ
∂z

PGa −∂p
∂z

PGr −∂p
∂r

VSt1
1

Re

[
∂

∂r

(
1

r

∂(ruθ)

∂r

)]
VSa1

1

Re

[
1

r

∂

∂r

(
r
∂uz
∂r

)]

VSr
1

Re

[
∂

∂r

(
1

r

∂(rur)

∂r

)
+
∂2ur
∂z2

]
VSt2

1

Re

(
∂2uθ
∂z2

)
VSa2

1

Re

(
∂2uz
∂z2

)

Table 7.5: Name definitions of different terms appearing in the momentum budget equations (7.25)–(7.27).
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7.4.4.2 Steady flows

As discussed in Sec. 7.4.3.1, the steady swirling flows are also fully axisymmetric. The first-order time derivative
of the velocity fields is identically zero in Eqs. (7.25)–(7.27). The axisymmetric property makes the velocity
field independent of the azimuthal angle θ, and consequently all partial derivatives with respect to this variable
vanish. Therefore, the balance in the momentum equation solely involves the terms described in Table 7.5.

As a first step, the momentum balance in the radial direction is presented in Fig. 7.24 for case (a) (left
column) and case (b) (right column). At the free surface z/H = 1 (top row), the viscous terms are insignificant,
and the flow is driven by the radial pressure deceleration, which is mainly counterbalanced by the centrifugal
acceleration NLr2 = u2

θ/r and to a certain extent by NLr1. This analysis at the free surface still holds below
the free surface at z/H = 0.94 and at z/H = 0.64. At this latter height, both the radial pressure deceleration
and the centrifugal acceleration NLr2 have a lower magnitude than at the free surface but their magnitude
is less localized than at the free surface. As expected, above the disk, at z/H = 0.03, all the terms have a
higher magnitude and the momentum balance is more complex as only one single term NLr3 does not really
contribute to the balance. The centrifugal acceleration NLr2 keeps its predominant position, but its maximum
is now shifted towards the outer radial region, which corresponds to the region of highest angular momentum
0.8 ≤ r/R ≤ 1. The other acceleration term NLr1 becomes relatively important. Both of these acceleration
terms are counterbalanced by the radial pressure gradient and now also by the viscous strain. The importance
of the viscous strain at this height z/H = 0.03 can easily be understood, as we are located in the viscous layer
generated by the motion of the disk. One may add that in the inner core region of the flow, say r/R < 0.15, the
linear trend observed for both the centrifugal acceleration and the pressure deceleration are well-know features
of a flow in solid-body rotation, as observed with the vertical vortex lines in Fig. 7.14 (extreme right column).

The evolution of those momentum balances along radial lines at different heights does not really change
when increasing Re from 900 up to 1 500. But some noticeable trends are observable. For instance, even if the
viscous strain does not play a central role at the free surface, it is worth noting that its effect is increased with
Re, while conversely it is decreased when getting closer to the rotating bottom end-wall.

As a second step, we aim at analyzing the momentum balance in the azimuthal direction along radial lines
at the same different heights as before. The results are presented in Fig. 7.25 for case (a) (left column) and
case (b) (right column). It is important to note at this point that the two terms NLt1 and VSt1 involve partial
derivatives with respect to the radial variable r. Given the fact that our solution is continuous and first-order
differentiable within a spectral element and only continuous at the element edges, one expects some slight
unphysical deformations of the plots associated with these two terms. Along the radial lines of interest, the
spectral element edges are located at r/R = 0.2, 0.4, 0.6, 0.8, 0.97. As a consequence, some rapid variations
of the terms VSt1 and NLt1 are going to be simply disregarded in the coming discussions.

A rapid glance at all the plots in Fig. 7.25 allows to conclude that the importance of the azimuthal momentum
transfers resides in the near bottom end-wall region. The magnitude of all terms is over ten times smaller at
z/H = 0.64, 0.95, 1, compared to z/H = 0.03. Given the solid-body rotation in the inner core region of the
flow r/R < 0.15, most of the terms are vanishing small—excluding the unphysical values of VSt1.

At z/H = 0.03, one can notice the vigorous action of the viscous strain term VSt2 which literally drives
the fluid in the viscous Ekman layer. This driving viscous term is being compensated by the convective terms
NLt1 and NLt3, and by the Coriolis term NLt2. As one gets closer to corner between the rotating disk and the
tubular side-wall, say r/R ≥ 0.8, the interplay between the various terms is being reversed. The term VSt2,
which is driving the fluid in the inner region of the cavity is now a dissipative term in the jet-like shear layer.
Conversely, the convective term NLt1 becomes large and is driving the fluid in the shear layer. Very close to
the tubular side-wall, this term starts being counterbalanced by the second viscous term VSt1.

The viscous driving effect of the term VSt2 becomes insignificant at z/H = 0.64, but when z/H is increased,
VSt2 starts growing again to reach a local maximum value at the free surface, but with a magnitude slightly
smaller than the two other nonlinear convective terms NLt1 and NLt2. Close to the free surface and at the free
surface, the flow is primarily driven by the Coriolis term NLt2 together with the viscous term VSt2. Their global
action is counterbalanced the nonlinear convective term NLt1. This momentum balance at the free surface in
the outer region r/R ≥ 0.4 reflects the central effect of the free-surface jet of angular momentum. Again the
viscous effects are more intense at the free surface when Re is increased from 900 to 1 500, despite the presence
of the kinematic viscosity term 1/Re in their definitions.
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Fig. 7.24: Momentum balance in radial direction plotted along horizontal radial lines at four different vertical
positions. First row: z/H = 1; second row: z/H = 0.95; third row: z/H = 0.64; fourth row: z/H = 0.03. Left
column: case Re = 900; Right column: case Re = 1 500. Case Λ = 1. The terminology refers to Tab. 7.5.
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Fig. 7.25: Momentum balance in azimuthal direction plotted along horizontal radial lines at four different vertical
positions. First row: z/H = 1; second row: z/H = 0.95; third row: z/H = 0.64; fourth row: z/H = 0.03. Left
column: case Re = 900; Right column: case Re = 1 500. Case Λ = 1. The terminology refers to Tab. 7.5.
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Fig. 7.26: Momentum balance in axial direction plotted along vertical lines at three different radial positions.
First row: r/R = 0.98; second row: r/R = 0.48; third row: r/R = 0.08. Left column: case Re = 900; Right
column: case Re = 1 500. Case Λ = 1. The terminology refers to Tab. 7.5.

As a last step for these two steady flows (a) and (b), we investigate the momentum transfer in the axial di-
rection, but now along three different vertical lines corresponding to three different radii r/R = 0.08, 0.48, 0.98.
The graphs for the five different terms involved are reported in Fig. 7.26. We start from the top row, which is
associated with the results for r/R = 0.98 in the jet-like shear layer and which present the highest magnitudes
of all radii considered. The lack of axial momentum transfers is clearly visible in the region z/H ≥ 0.4 and
even inexistent at the free surface. Conversely, in the corner between the rotating bottom end-wall and the
tubular side-wall the flow is driven by the axial pressure gradient, and to some extent by the two nonlinear
terms NLa1 and NLa2 independently. The viscous term VSa1 is primarily responsible for counterbalancing the
driving pressure effects. The second viscous term VSa2 has a less important effect in terms of magnitude but
is driving very close to the disk (viscous Ekman layer), when z/H is increased it becomes dissipative as we are
out of the Ekman layer but within the wall-jet shear layer.

Near the medium radial position r/R = 0.48, the axial momentum transfers near the free surface show the
relative importance of the two nonlinear terms NLa1 and NLa2, which are driving the fluid against the axial
pressure gradient, which is negative as a consequence of the kinematic boundary condition imposing a vanishing
axial velocity component at the free surface.
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Near the cylinder axis, for r/R = 0.08, the axial momentum transfers are limited and relatively simples.
Nonlinear convective effects seem almost insignificant and the axial component of the flow is obtained from the
balance between the axial pressure gradient and the two viscous terms: VSa2 in the bottom of the cavity and
VSa1 in the top of the cavity.

7.4.4.3 Unsteady flow

The momentum balance analysis developed in the previous section for the two steady flows (a) and (b) cannot be
directly transposed to the unsteady case (c). The two reasons for that are first the unsteady character requiring
to account for the first-order time derivative ∂u/∂t. The second reason is the loss of axisymmetry of case (c)
imposing to account for all the terms involving a partial derivative with respect to θ in Eqs. (7.25)–(7.27). One
can overcome the issue associated with ∂u/∂t by performing the analysis on the mean flow, which is obtained
from the statistically steady regime. On the other hand, the momentum equations for the mean flow involve the
Reynolds stress terms, expressing the influence of the fluctuating velocity field onto the dynamics of the mean
field. Despite all these considerations and issues, we have deliberately omitted the terms involving derivatives
with respect to the time and to the azimuthal coordinate, and we have calculated the values of the terms in
Table 7.5 on the same lines as in Sec. 7.4.4.2. By doing so, the objective is not to reproduce a similar analysis
as with the steady cases, but more to investigate the evolution of the different terms for the instantaneous flow
and the mean flow as compared to the laminar cases (a) and (b).

We compare the radial terms for the instantaneous and mean flows presented in Fig. 7.27, to their laminar
and steady counterparts in Fig. 7.24. In terms of magnitude, the leading terms have a slightly higher magnitude
at Re = 6 000. The general observations given in Sec. 7.4.4.2 remain valid here for z/H = 0.64, 0.95, 1.
However, the influence of the intense recirculation bubble modifies locally and significantly the terms in the
region 0.2 ≤ r/R ≤ 0.4, for the instantaneous flow. Indeed, in this interval around the radial position r/R = 0.3
and close to the free surface, the centrifugal acceleration NLr2 presents a local minimum, while the decelerating
radial pressure gradient presents a local maximum. These localized effects are directly related to the presence
of the recirculation bubble as can be seen in Fig. 7.18. A similar observation can be done for the mean flow but
the effect is much less visible.

Close to the rotating disk, at z/H = 0.03, the variations of the five axial terms are notably different from
their laminar counterparts, but extremely similar for the instantaneous and mean flows. More precisely, the
viscous term VSr has mainly a dissipative action in the laminar regime, while it is slightly driving the flow at
Re = 6 000, except very close to the tubular side-wall where it gets back its dissipative action in the jet-like
shear layer. Moreover, the two leading terms, namely the centrifugal acceleration NLr2 and the radial pressure
gradient, both presents a local maximum in the region 0.2 ≤ r/R ≤ 0.3, for the case (c), while it keeps growing
in the laminar regime. This particular observation is again related to the presence of the recirculation bubbles
in this region, which locally strongly modifies the momentum transfers. Finally, the third radial convective term
NLr3, which is very small in the laminar regime, acquires a magnitude as important as the two other convective
terms for r/R ≥ 0.9.

Let us consider now the radial variations of the five azimuthal terms as shown in Fig. 7.28. A rapid overlook
of all variations for the instantaneous flow sample (left column) allows to conclude to a general agreement
with the results obtained in the laminar cases (a) and (b). The variations of the different terms are similar
for the instantaneous and mean flows in the outer radial region, which implies again a relative steadiness of
those terms for r/R ≥ 0.7. On the other hand, the mean flow yields vanishingly small terms in the inner core
region r/R ≤ 0.4, where the instantaneous flow have the three nonlinear convective terms NLt1–NLt3 with
a relatively high magnitude. The unsteady activity of those three nonlinear terms and the intense fluctuating
activity generated by them is further discussed in Sec. 7.4.5.

As a last step, we compare the axial terms for the instantaneous and mean flows presented in Fig. 7.29 to
their laminar and steady counterparts in Fig. 7.26. We start from the outer radial line r/R = 0.98, where the
results for the instantaneous flow and the mean flow are extremely close, revealing an almost steady behavior
of the jet-like wall shear layer surrounding the tubular side-wall. The comparison of these results with those
of cases (a) and (b) leads to several comments. First, the variations of all the terms are limited to a smaller
zone above the disk at Re = 6 000. The magnitude of the axial pressure gradient is increased with Re. More
surprisingly the axial pressure gradient is no longer counterbalanced by the convective term NLa1, but is now
counterbalanced by NLa2. By extension, one can infer that the jet-like shear layer is dominated by axial effects
at high Reynolds number.
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Fig. 7.27: Momentum balance in radial direction plotted along horizontal radial lines at four different vertical
positions. First row: z/H = 1; second row: z/H = 0.95; third row: z/H = 0.64; fourth row: z/H = 0.03. Left
column: instantaneous flow; Right column: mean flow. Case Λ = 1 and Re = 6 000. The terminology refers to
Tab. 7.5.
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Fig. 7.28: Momentum balance in azimuthal direction plotted along horizontal radial lines at four different vertical
positions. First row: z/H = 1; second row: z/H = 0.95; third row: z/H = 0.64; fourth row: z/H = 0.03. Left
column: instantaneous flow; Right column: mean flow. Case Λ = 1 and Re = 6 000. The terminology refers to
Tab. 7.5.
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For the two other radii r/R = 0.08, 0.48, the instantaneous flow terms are far different from their mean
counterparts. As consequence, the flow in the inner core region appears much more unsteady than the flow in
the outer region of the cavity. In addition, given the high level of fluctuation in the inner core region of the
flow—see Fig. 7.23—it appears irrelevant to further analyze the results for the mean flow. On the other hand,
variations of the different axial terms for the instantaneous flow reveals that the axial momentum transfers are
more important at high Re and are predominant in the top half of the cavity, including below the free surface.
The viscous terms are still insignificant and the two axial convective terms NLa1 and NLa2, and the axial
pressure gradient dominate the transfers with other unsteady and nonaxisymmetric terms not shown here.

VSa2
VSa1
PGa

NLa2
NLa1

z/H
1.00.80.60.40.20.0

0.250

0.150

0.050

-0.050

-0.150

-0.250

VSa2
VSa1
PGa

NLa2
NLa1

z/H
1.00.80.60.40.20.0

0.250

0.150

0.050

-0.050

-0.150

-0.250

VSa2
VSa1
PGa

NLa2
NLa1

z/H
1.00.80.60.40.20.0

0.050

0.030

0.010

-0.010

-0.030

-0.050

VSa2
VSa1
PGa

NLa2
NLa1

z/H
1.00.80.60.40.20.0

0.050

0.030

0.010

-0.010

-0.030

-0.050

VSa2
VSa1
PGa

NLa2
NLa1

z/H
1.00.80.60.40.20.0

0.010

0.005

0.000

-0.005

-0.010

VSa2
VSa1
PGa

NLa2
NLa1

z/H
1.00.80.60.40.20.0

0.010

0.005

0.000

-0.005

-0.010

Fig. 7.29: Momentum balance in axial direction plotted along vertical lines at three different radial positions.
First row: r/R = 0.98; second row: r/R = 0.48; third row: r/R = 0.08. Left column: instantaneous flow; Right
column: mean flow. Case Λ = 1 and Re = 6 000. The terminology refers to Tab. 7.5.
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7.4.5 Nonaxisymmetric modes in the unsteady transitional flow

All the previous results dealing with the transitional case (c) reveals a complex flow dynamics due to instabilities
developing from a steady stable flow similar to the steady laminar cases (a) and (b). The objective of this section
is to discuss the physical origin of this instability based on the results presented earlier and also to characterize,
at least qualitatively, its effect on the flow field.

As mentioned on several occasions in Sec. 7.4.3 and Sec. 7.4.4, the inner core region of the flow r/R ≤ 0.2
is globally governed by a quasi-solid-body rotation and in the outer radial region, a wall-jet along the tubular
side-wall drives the flow. As already discussed, this latter axial wall-jet is turned into a radial surface jet by
the presence of the free surface. It seems therefore legitimate to consider the interfacial zone—denoted Υ in the
sequel—between the inner core region and the radially-inward coming jet as prone to developing instabilities.
Given the stress-free condition imposed on the free surface, the effect of the instabilities should persist all the
way to the free surface itself. Consequently, we consider the variations at the free surface z/H = 1 of the radial
and azimuthal velocity components—the axial component vanishes at the free surface because of the kinematic
boundary condition on it—and of the axial angular momentum Γ = ruθ. These variations for the instantaneous
flow are shown in Fig. 7.31 (top row), while the corresponding rms fluctuations are presented in the row below.

The most significative feature highlighted in these graphs is the presence of an annular region with 0.3 ≤
r/R ≤ 0.4, where the fluctuations of ur, uθ and Γ are intense. Such intense fluctuating activity brings the
interfacial zone Υ to light. Focusing now on the rms fluctuations of the axial angular momentum, one may
notice the presence of a second outer annular region comprised in the interval 0.6 ≤ r/R ≤ 0.9, which is
nonaxisymmetric and relatively intense. This outer region of intense rms fluctuations for Γ correspond to the
zone where the jet-like shear layer is turned into the interior by the free surface. This outer wall jet injects
high-angular-momentum fluid towards the cylinder axis. This radial jet impinges on the cylindrical core of the
fluid that is in solid-body rotation. When increasing the Reynolds number, the radius of the cylindrical core
in solid-body rotation is reduced, while the intensity of the radial jet is increased. Above a given value of the
Reynolds number, the action of the impingement of the radial jet on the inner core region starts developing
unstable modes.

The origin of these unstable modes is to be found in the analysis of the momentum transfers performed in
the previous section. Returning on the radial variations of the five azimuthal terms below the free surface at
z/H = 0.95, Fig. 7.30 reproduces these variations for Re = 900, 1 500, 6 000 (instantaneous flow), 6 000 (mean
flow) from top to bottom. All these results have been shown separately before and are now shown together
to facilitate the discussion. The flow in the outer region r/R > 0.5 has a strong steady character given the
fact that the variations for the mean flow are fairly close to those of the instantaneous flow. The Coriolis term
NLt2 = −uruθ/r keeps the same radially-outward decreasing trend. On the other hand, the two other nonlinear
terms NLt1 and NLt3 develops opposed and equally-intense peaks around r/R = 0.9. These opposite peaks
have an increasing intensity with the Reynolds number. In the interfacial zone Υ, all the terms involved present
brutal variations and changes of behavior, which give another characterization of this interfacial zone Υ. In the
inner core region r/R ≤ 0.4, the flow possesses a strong unsteady character brought to light by the vanishingly
small values of the various terms for the mean flow. Consequently, the unstable azimuthal modes are to be
found into this inner cylindrical region. Indeed, one may notice that the convective term NLt1 = −ur∂uθ/∂r
and the Coriolis term NLt2 = −uruθ/r are negative and have a low magnitude in the laminar cases (a) and
(b), but acquires large positive values at Re = 6 000. Moreover, all the three other terms NLt3, VSt1 and VSt2
have very low magnitudes, and thus cannot counterbalance the azimuthal momentum injected by NLt1 and the
Coriolis term NLt2. Only an unsteady and nonaxisymmetric flow can support such azimuthal momentum effects.
The effect of these two destabilizing terms on the flow apparently leads to the formation of azimuthal rotating
waves superimposed to the stable base flow. The variations at the free surface z/H = 1, of the radial and
azimuthal velocity components, and of the axial angular momentum shown in Fig. 7.31 (top row), suggest the
conjugate effect of several rotating waves. These rotating waves correspond to even azimuthal Fourier modes,
mainly n = 2 and n = 4. A comprehensive azimuthal Fourier analysis is currently in progress in order to
determine quantitatively two points: (1) the relative amplitude of the different present modes with respect to
the fundamental mode; (2) the eventual parity (even) of the Fourier modes.

As a final step to the study of the nonaxisymmetric modes present in these unsteady transitional swirling
flows, we offer to the reader three visualizations of given iso-surfaces for case (c) = (Λ = 1,Re = 6 000). These
iso-surfaces are placed in Fig. 7.32 and represent on the left: one iso-surface of the radial velocity component
(value 0.01), on the center: one iso-surface of the axial angular momentum (value 0.11) and on the right: one
iso-surface of the axial velocity component (value −0.24). The effect of unstable modes are clearly visible on
each of these three iso-surfaces.
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Fig. 7.30: Momentum terms in azimuthal direction plotted along the horizontal radial line at z/H = 0.95. From
top to bottom: case (a); case (b); case (c) instantaneous; case (c) mean flow. The terminology refers to Tab. 7.5.
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7.5 Conclusions

The incompressible flow of a viscous fluid enclosed in a cylindrical container with an open top flat surface
and driven by the constant rotation of the bottom wall has been thoroughly investigated in this chapter. The
top surface of the cylindrical cavity is left open with a stress-free boundary condition imposed on it. No-slip
condition imposed on the side-wall and also on the rotating bottom end-wall by means of a regularized angular
velocity profile. More specifically, the stress-free top surface is, in first approximation, maintained fixed and flat.

In the present chapter, new flow states have been investigated based on a fully three-dimensional solution
of the Navier–Stokes equations for the free-surface cylindrical swirling flow, without resorting to any symmetry
property unlike all other results available in the literature. To our knowledge, the present study delivers the
most general available results for this flat-free-surface problem due to its original mathematical treatment.

Five different cases corresponding to different pairs of governing parameters (Λ,Re) have been considered.
The Reynolds regime corresponds to transitional flows with some incursions in the fully laminar regime. Both
steady and unsteady non-oscillatory swirling flows are considered with a particular emphasis on the case (Λ =
1,Re = 6 000). Of great concern to this study is the question of space resolution. This is particularly important
for the bifurcated case at Re = 6 000. Convergence tests in space and time have been carried out on this upmost
problematic case, and optimal values of the polynomial order and time-step have been deduced.

The evolution of the total kinetic energy of this open flow has been carefully studied for increasing Reynolds
numbers and has been compared to the results for the closed swirling flow. The presence of the free surface
on the top of the cylinder is found to strongly modify the observed trend: the total kinetic energy is increased
with Re in the open cylinder case, while the converse is observed in the closed cylinder case. A physical
analysis of the energetic action of the surface layer below the free surface allows to justify the above results.
A comprehensive physical description of all flow states has been given with particular emphasis on the vortex
breakdown bubbles and on the structure of the vortex lines. The unsteady case at Re = 6 000 has retained more
attention, given its unsteady transitional character. The mean flow and the corresponding rms fluctuations have
been calculated and the results analyzed accordingly. Based on 24 flow samples equally-distributed in time, the
general dynamics of the recirculation bubbles has been determined and described. The momentum transfers
in the radial, azimuthal and axial directions have been studied along various one-dimensional lines. For the
transitional case at Re = 6 000, the flow in an inner cylindrical core is in solid-body rotation, while the outer
radial layer is dominated by the jet-like shear layer along the tubular side-wall. This axial wall-jet is turned into
a radial jet of angular momentum, which prevails all the way up to the free surface. The impingement of this
radial jet onto the inner cylindrical core in solid-body rotation leads to the development of unstable azimuthal
modes. The nonlinear terms, which includes a Coriolis effect, responsible for the development of these unstable
modes have been found using the azimuthal momentum imbalance below the free surface. These unstable modes
seem to take the form of even-order azimuthal rotating waves. A comprehensive azimuthal Fourier analysis is
currently in progress in order to complement the available results.

The extension to the most general case involving a moving free surface is dealt with in the next Chapter.





Chapter 8

Free-surface swirling flow

The present chapter is aimed at the study of a specific shear-driven flow with a moving free-surface. Like in
the previous chapter, we consider the incompressible flow of a viscous fluid partly enclosed in a cylindrical
container driven by the steady rotation of the bottom wall. In this chapter, instead of considering the simplest
case with a top flat and fixed surface, we consider the most general case with a moving free surface that evolves
according to the flow dynamics, while participating to it. Consequently, the study in this chapter is a direct
extension to the one in the previous chapter. The top surface of the cylindrical cavity is again left open and
a stress-free boundary condition is imposed on it, while a no-slip condition is imposed on the side-wall and on
the rotating bottom wall. The kinematic boundary condition which was reduced to a free-slip condition at the
fixed surface in the previous chapter, is now imposed in its most general form by resorting to the arbitrary
Lagrangian–Eulerian kinematics.

The flow states studied in this chapter correspond to the same governing parameters as the cases considered
in Chapter 7. The Reynolds regime leads to transitional flows with some incursions in the fully laminar regime.
Both steady and unsteady non-oscillatory swirling flows are studied.

8.1 Introduction

8.1.1 General considerations

As mentioned in Sec. 7.2.3, flat gas–liquid interfaces are often modeled as flat, fixed and stress-free surfaces.
This idealization is commonly used by fluid dynamicists performing numerical simulations. Indeed, by resorting
to this assumption the physical problem is significantly simplified and thus standard solution techniques can
be used to deliver the flow fields. However, this idealization is never realized physically, even in well-controlled
experimental set-ups and this mainly because of the presence of small amounts of surfactants. In addition, even
for small angular velocities of the bottom end-wall, i.e. for small Reynolds numbers, limited deformations of the
top surface are always present. These deformations are very often difficult to access by any of the measurement
techniques available in laboratory experiments.

As discussed in detail in Chapter 7, the vortex breakdown of a swirling cylindrical flow refers to the flow state
with recirculation zones appearing over a given range of the governing parameters Λ = H/R and Re. Compared
with swirling flows in a closed cylinder, the vortex breakdown phenomena occur in different conditions for
an open cylinder flow: lower critical Reynolds number; smaller lower-limit aspect ratio Λ at which vortex
breakdown occurs; large size of breakdown bubbles; possible attachment to the top free surface; etc. Moreover,
for the relatively “shallow” system corresponding to Λ = 1, the loss of axisymmetry of these free-surface swirling
flows is due to unstable azimuthal modes developing at the interface between the “inner” fluid in quasi-solid-
body rotation and the “outer” fluid, where a surface jet of angular momentum exists and is directed towards
the cylinder axis. The reader is referred to Chapter 7 for full details.

8.1.2 Motivations and objectives

The present study is mainly motivated by the need to gain insight into the influence of an unsteady and
non-flat free surface onto the cylindrical swirling flow. It is important to note that even if the deformation
amplitude of the free surface is limited compared to the cylinder height, the relative deformation amplitude
may have rapid variations along radial lines. Those rapid variations could potentially have an impact on the
various physical terms appearing in the governing Navier–Stokes equations. Ultimately, the reported effects
of the relative deformations of the free surface on the physical terms—nonlinear convective terms, pressure
gradient, viscous stress—may be extrapolated to cases where the amplitude of the surface deformations is more
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important. Lower-Reynolds-number cases display a steady flow behavior which persists in presence of a free
surface, which acquires a steady shape. In addition, for the unsteady case corresponding to (Λ = 1,Re = 6 000),
the free surface displays an unsteady evolution.

As already discussed in the previous chapter, all attempts to simulate this free-surface flow were limited
to the fixed and flat free-surface case. Such lack of study in the scientific literature of this open swirling flow
with a moving free surface can be understood when reading the following statement from Sarpkaya in his
review entitled “Vorticity, free surface and surfactants” [218]: “... the modeling of free-surface phenomena still
poses difficulties, not only because of an insufficient understanding of the physics of the vorticity/free-surface
interaction, but also because of the necessity to devise and use mathematical formulations, numerical schemes,
and physical-property experiments of far greater complexity than had hitherto been used...”. Indeed, when
considering a real moving free surface, the complexity of the physical problem is dramatically increased. On
top of the nonlinearity associated to the Navier–Stokes equations themselves, here we deal with a complicated
geometry, which is changing in time and which is part of the solution itself. In addition, the nature of the
boundary conditions on the free surface makes their imposition much more difficult compared to standard no-
slip or free-slip boundary conditions. This particular point explains why all past studies of this flow problem prior
to the one reported in this dissertation, used symmetry properties combined with a double-sized computational
domain to enforce the stress-free condition at the flat free surface.

This accumulation of difficulties calls for elaborate algorithms and numerical techniques. All the develop-
ments of the present chapter use the numerical framework detailed in Chapter 3 and supplemented with the
techniques reported in Appendix A.

8.2 Mathematical model and problem formulation

8.2.1 Mathematical description of the problem

The fluid enclosed in the cylindrical cavity is assumed to be incompressible, Newtonian with uniform density
and temperature. In the arbitrary Lagrangian–Eulerian kinematics, the flow is governed by the modified Navier–
Stokes equations

∂ui
∂t

+ (uj − wj)
∂ui
∂xj

=
∂σ∗ij
∂xj

+ gi, (8.1)

∂uj
∂xj

= 0, (8.2)

where σ∗ij = −pδij +2νDij is the reduced Cauchy stress tensor of the fluid, p the static or reduced pressure, Dij

the rate-of-deformation tensor, ν the assuredly constant and uniform kinematic viscosity, gi the components
of the acceleration of gravity (g1 = g2 = 0 and g3 = −g), and wi the components of the ALE mesh velocity.
The reader is referred to Chapter 3 for a comprehensive introduction of the ALE kinematics and for the
definition of the ALE mesh velocity w. For the sake of clarity, we briefly present here the central details of
the mathematical description of this problem in the ALE framework. Inside the fluid domain denoted by V ,
no-slip boundary conditions are imposed on all cavity walls: the tubular side-wall, the bottom end-wall in
steady rotation. A sketch of the fluid domain along with additional information, is depicted in Fig. 8.1. The
mathematical expressions of the no-slip condition on the tubular side-wall now account for the varying fluid
height and read

u(r = R, θ, z, t) = v(r = R, θ, z, t) = w(r = R, θ, z, t) = 0, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ H + η(r, θ, t), (8.3)

where η(r, θ, t) is the algebraic free-surface elevation at the point of polar coordinates (r, θ), and measured from
its equilibrium position z = H . The flow is driven by imposing a regularized angular velocity profile to the
bottom end-wall, which transfers its kinetic energy to the fluid above. The details regarding the imposition of
this Dirichlet boundary condition for the velocity field at the spinning disk are exactly identical to the ones
discussed in Sec. 7.2.2. The top surface is left open and is modeled as a moving and yet clean free surface.
The details regarding the imposition of the dynamic and kinematic boundary conditions at the free surface are
discussed in the next section.
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Fig. 8.1: Left: sketch of the three-dimensional geometry of the cylindrical cavity. Right: meridional cut of the
cylindrical cavity.

8.2.2 Free-surface modeling

The mathematical problem corresponding to Eqs. (8.1)–(8.2) requires the definition of three independent non-
dimensional parameters to determine completely the flow state. These three parameters are the height-to-radius
aspect ratio Λ = H/R, the Reynolds number Re = R2Ω0/ν, and the Froude number Fr = R2Ω2

0/(gH) =
RΩ2

0/(gΛ), based on the maximal prescribed angular velocity Ω0 of the bottom end-wall and the acceleration
of gravity g. It is sometimes convenient to introduce an additional non-dimensional number: the Wehausen
number denoted as Wh, and defined as the ratio between Re and Fr1/2

Wh =
Re√
Fr

= R3/2

√
gΛ

ν
. (8.4)

This non-dimensional number is obviously dependent on the three other non-dimensional numbers, and may be
regarded as a measure of the relative magnitudes of the diffusive and macroscopic time scales, see Eq. (3.73) for
one possible physical introduction to the notion of diffusive time scale. The interest for the Wehausen number
lies in the fact that for a given fluid—i.e. for a given kinematic viscosity ν—under the effect of gravitational
forces, Wh solely depends on the problem length scale—here the cylinder radius R, the dependence on the aspect
ratio Λ being marginal. The Wehausen number has been introduced in the past for the study of large-scale free
surface flows, see Marcus & Berger [175], to justify the use of an irrotational flow hypothesis away from the
free surface. These arguments correspond to typical free-surface flows encountered in ocean engineering. In the
present case, the length scales correspond to typical laboratory experimental set-ups and are therefore clearly
smaller. In the International System of Units, using g = 9.81 m.s−2 and the kinematic viscosity of tap water at
ambient temperature ν = 10−6 m2.s−1, one can evaluate the order of the Wehausen number for a prototypical
cylinder of radius R = H = 0.1 m: Wh = O(105). Such a high order for Wh is a further validation of the flat and
fixed free-surface approximation used in the previous chapter. However, this estimate looses some of its interest
when considering the dynamics of some local effects at the free surface that we are trying to highlight in the
present study. Indeed, as mentioned earlier, Wh does not depend on any characteristic velocity scale but solely
on the characteristic length scale of the problem. The study presented in the previous chapter has revealed some
small-scale structures near the free surface. These small-scale structures lead to significantly smaller values of
the Wehausen number, and this independently of their characteristic velocity or vorticity scales.

In the previous chapter, the hypothesis of flat free surface was shown to be equivalent to a zero-Froude-
number condition, which in turn led to the simplified kinematic boundary condition uz = 0 at the free surface
z = H . The kinematic boundary condition (KBC) expresses the fact that the free surface is a material surface
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with no transfer of fluid across it in the Lagrangian perspective. In the ALE framework, the KBC at the free
surface in its most general form reads

u · n̂ = w · n̂, (8.5)

where n̂ represents the local unit outward normal vector to the free surface. The scalar equation (8.5) only
constrains the normal component of the mesh velocity w. Some freedom remains for the choice of the values of
the tangential part of w. To simplify the implementation, a pure Lagrangian description of the free surface is
chosen by imposing the tangential part of w to be identical to corresponding one for the fluid velocity. Thus,
the KBC takes the very simple form of the following vector equation

u = w, (8.6)

at the free surface.

The pressure and velocity boundary conditions on the free surface are both formulated from the dynamic
constraint of continuity of normal momentum flux across the free surface, whilst assuming negligible momentum
on the air side and neglecting surface tension effects—hypothesis of clean surface without any surfactant. This
dynamic boundary condition (DBC) reads

σ∗ij n̂j = −pδij n̂j + 2νDij n̂j = 0, (8.7)

for zero atmospheric pressure. Unlike in the flat and fixed free-surface case dealt with in the previous chapter,
the DBC (8.7) does not simplify further but leads to a vanishing surface term Hσ = 0, into the weak ALE
formulation of the problem, see Sec. 3.2.3. As emphasized in Chapter 3, this homogeneous DBC is automatically
incorporated into the complete weak formulation of the problem expressed in its strong form by Eqs. (8.1)–
(8.2). This automatic imposition of the DBC through the weak formulation of the problem is one of the most
attractive feature of the newly-developed numerical method. Along the same line, the specific choice of the ALE
kinematics allows to automatically account for the KBC through Eq. (8.5), or equivalently Eq. (8.6).

8.2.3 Mesh velocity problem and boundary conditions

When considering this free-surface swirling flow problem tackled in an interface-tracking and ALE frame, the
free surface is treated in a Lagrangian way, whereas the fixed tubular side-wall and the prescribed-in-motion
bottom end-wall, is studied in the Eulerian frame. It is worth noting that the vector expression (8.6) of the
KBC is mathematically compatible with the no-slip condition on the tubular side-wall expressed by Eq. (8.3),
if and only if one imposes the same no-slip condition to the ALE mesh velocity at the contact line defined by
(r = R, θ, z = H + η). This compatibility condition at the contact line is easily enforced by imposing a no-slip
condition on the whole tubular side-wall, which mathematically reads

wr(r = R, θ, z, t) = wθ(r = R, θ, z, t) = wz(r = R, θ, z, t) = 0, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ H + η(r, θ, t). (8.8)

This homogeneous Dirichlet boundary condition for the mesh velocity on the tubular side-wall is supplemented
by another homogeneous Dirichlet condition on the bottom end-wall of the cylindrical cavity and expressed by
the following vector equation

w(r, θ, z = 0) = 0. (8.9)

As a consequence of the choice of kinematics on the fluid domain boundary—Lagrangian and Eulerian but not
yet arbitrary, the values of the mesh velocity are prescribed by the boundary conditions given by Eq. (8.6),
Eq. (8.8) and Eq. (8.9). The freedom left for the choice of w lies solely in the values of this field in the internal
fluid domain.

The details associated with the underlying moving-grid technique are dealt with in Sec. 3.4 and Appendix A.
For the sake of clarity, we briefly recall here the central details of this method. The determination of the mesh
velocity w in the internal fluid domain is the corner-stone of the moving-grid technique developed in the
framework of the ALE formulation. The values of the mesh velocity being prescribed on the boundary, the
evaluation of w are obtained as the solution of the following steady Stokes problem

∇x · σ̃ = 0, (8.10)

∇x ·w = 0, (8.11)

where σ̃ is the Cauchy stress tensor of the mesh defined by

σ̃ = −p̃I + ν̃(∇xw +∇xwT ), (8.12)
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with p̃ and ν̃ being respectively the fictitious mesh pressure and the fictitious kinematic viscosity of the mesh,
characterizing the elasticity of the mesh in its motion. The reader is referred to Sec. A.4 in Appendix A for the
justifications of this choice of elastic and incompressible motion of the mesh. Finally, the update of the position
x of the mesh points is performed by integrating the following equation

dx

dt
= w. (8.13)

8.3 Computational approach

This section is aimed at providing the reader with a brief description of the numerical treatment of the equations
governing the problem studied throughout this chapter in the specific context of the ALE moving-grid technique
jointly used with the Legendre spectral element method.

8.3.1 Space discretization

A classical Galerkin approximation is applied to the set of governing equations expressed in the weak transient
ALE form in order to determine the pressure and the fluid velocity. The Galerkin approximation is then
discretized by using the spectral element method with the classical staggered PN −PN−2 approach to avoid the
development of spurious pressure modes [174]. Discontinuous and continuous approximations are respectively
taken for the pressure and fluid velocity. The mesh velocity is discretized using the same polynomial space as the
fluid velocity, namely PN , based on a Gauss–Lobatto–Legendre (GLL) grid of order N . For the discontinuous
approximation of the pressure, a Gauss–Legendre (GL) grid of order N − 2 is used. Consequently the ALE
Navier–Stokes semi-discrete equations reads:

d

dt
(Mu) + C(u,w)u + Au + DT p = F, (8.14)

−Du = 0, (8.15)

M denoting the tensorized mass matrix, A the tensorized stiffness matrix, DT the tensorized discrete gradient
operator, D the tensorized discrete divergence operator, C(u,w) the tensorized discrete convective operator
depending both on the fluid and mesh velocities and F the discrete body force which accounts for the macroscopic
effects of the acceleration of gravity g. The update of the position x of the mesh points is performed by integrating
the discrete counterpart of Eq. (8.13)

dx

dt
= w. (8.16)

8.3.2 Time integration

The set of semi-discrete equations (8.14)–(8.16) is discretized in time using a decoupled approach detailed
in Sec. 3.3.4 and Sec. 3.3.5 in Chapter 3. The discrete body force vector F appearing in Eq. (8.14) may be
expressed in a more intuitive way as Mg, where M denotes the tensorized mass matrix. The fully-discretized
set of governing equations reads

(
3Mn+1

2∆t
+ An+1

)
un+1 − (Dn+1)T pn+1 =

1

∆t

(
2Mnun − 1

2
Mn−1un−1

)
+ Mn+1gn+1 −Cn+1un+1, (8.17)

Cn+1un+1 = 2Cn(un,wn)un −Cn−1(un−1,wn−1)un−1, (8.18)

−Dn+1un+1 = 0, (8.19)

xn+1 = xn + ∆t

(
23

12
wn − 16

12
wn−1 +

5

12
wn−2

)
, (8.20)

where ∆t is the time-step. The reader is referred to Sec. 3.3.4 and Sec. 3.3.5 for full details.

8.3.3 Computational parameters

The simulations carried out in this chapter are limited to the three cases (a) − (c) corresponding to three
different values of the Reynolds number, but to the same aspect ratio Λ = 1. Given the non-dimensionalization
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used, these three cases correspond to the same Froude number. Building on the convergence analysis developed
in Sec. 7.3.3, the same spatial resolution as the one used in Chapter 7 has been used throughout this chapter.
The spectral element grid prior to any motion in the ALE framework is identical to the one used in the previous
chapter and depicted in Figs. 7.6 & 7.7. In terms of initial conditions, the steady rotation is started from the
steady state (resp. statistically-steady state) reached in the fixed and flat free-surface simulations (a)−(b) (resp.
(c)) reported in Chapter 7, see Fig. 7.9 and Sec. 7.4.2.

The physical and computational parameters corresponding to the three moving cases are reported in Ta-
ble 8.1.

Case Re Λ = H/R Fr Wh Time-step ∆t Time evolution N

(a) 900 1.0 0.1 2 846 0.0025 steady 7
(b) 1 500 1.0 0.1 4 743 0.0025 steady 8
(c) 6 000 1.0 0.1 18 974 0.001 unsteady 8

Table 8.1: Parameters and characteristics of the cases considered. The time-step ∆t is expressed in Ω−1
0 units

and N refers to the same polynomial order used in all space directions.

8.4 Numerical simulations and results

Numerical results revealed in the present dissertation are intended to contribute to the exposition of the open
swirling cylinder problem in unsteady and non-axisymmetric configurations. Indeed, much attention has been
paid to the steady and/or axisymmetric flow states.

As mentioned in Sec. 7.4.1, the experimental studies of deep systems—corresponding to Λ > 1— performed
independently and successively by Young et al. [269], Hirsa et al. [119], and Miraghaie et al. [182], revealed that
the instability mode is concentrated in the vicinity of the wall-jet along the tubular side-wall. This wall-jet is
generated by the rotation of the bottom end-wall and is turned upwards by the presence of the tubular side-wall.
As mentioned by Piva and Meiburg [198]: “this instability mode does not lead to a surface deflection, so that
it can be captured in numerical simulations assuming a flat, stress-free surface”. Conversely, the instability
modes for shallow systems—corresponding to Λ ≤ 1—are-concentrated in the interfacial region denoted by Υ
in Sec, 7.4.5 and where the surface radial jet of angular momentum impinges onto the inner cylindrical core
in a state of quasi solid-body rotation. As it is shown in the sequel, these unstable modes yield free-surface
deflection, which becomes non-axisymmetric at sufficiently large Reynolds number. For those shallow cases, the
flat and stress-free modeling of the free surface is less effective compared to deep systems.

8.4.1 Free surface profiles

After having extensively studied the flat free-surface swirling flow in Chapter 7, our primary focus resides in
the determination of the free-surface elevation η. Figure 8.2 displays the relative surface elevation η/H in any
meridional plane for both steady cases (a) − (b). Three-dimensional views of these two cases are available in
Fig. 8.5. One clearly distinguishes two regions corresponding to surface elevations of opposite signs. In the
inner-core region of the flow, say r/R ≤ 0.4, the algebraic surface elevation is the largest in absolute value and a
large trough forms. This internal trough is surrounded by a outer region of strictly positive surface elevation all
the way to the circular contact line along the tubular side-wall. The radial position of this ring crest is located
around r/R = 0.9 and its amplitude is much smaller than the one of the trough measured on the cylinder axis.

Such observations can easily be justified based on the physical analysis of the flow presented in Chapter 7. The
outer ring of positive η is generated by the impingement of the tubular wall-jet, which is therefore a consequence
of the pumping effect of the Ekman layer above the rotating disk. The inner trough is itself another consequence
of this Ekman layer, but through its sucking effect which complete the large meridional circulation generated
by the motion of the disk. It also corresponds to the region of the flow in a state of quasi-solid-body rotation.

As far as the comparison between the cases at Re = 900 and Re = 1 500 is concerned, one may globally note
a more pronounced free-surface deformation at higher Re: the deepness of the trough is more important in case
(b), and the crest of the outer ring is higher in case (b). On top of those global remarks, three important specific
items are to be pointed out. First, one could expect the deepest free surface point to be located on axis. This is
the case at Re = 1 500 but not at Re = 900, where the presence of the on-axis vortex breakdown bubble limits
the sucking effect of the Ekman layer. At Re = 1 500, the recirculation bubble becomes off-axis and toroidal,
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which therefore allows for a more important sucking effect along the cylinder axis. The second point is related to
the radial location of the maximum of the ring crest: the radius of this maximum appears to be shifted towards
the cylinder radius when increasing Re. Bearing in mind that the crest is generated by the tubular wall-jet,
one may recall that the thickness of this wall-jet is reduced with increasing Re, which therefore explains the
observed maximum shift of the crest. The third item refers to the transition region between the positive and
negative regions of η. This transition region is in relationship with the interfacial zone Υ: for Re = 900 almost
no elevation of the free surface is observed, while at Re = 1 500 an additional small crest is observed followed
radially by a second small trough before reaching the largest crest ring.
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Fig. 8.2: Relative free-surface elevation η/H measured from the position z = H at rest, in any meridional plane.
Solid line: Re=900; Dotted line: Re=1 500.

Based on axisymmetric steady state results, Piva & Meiburg [198] have extrapolated the leading order free
surface deflection—denoted by h in their journal article—using the balance of normal stresses at the free surface.
In their study, Piva & Meiburg focused on the steady axisymmetric open swirling flow with a partially rotating
bottom end-wall. It is important to note that their results shown in Fig. 8.3 are only extrapolated results from
numerical data obtained using a flat stress-free modeling for the free surface. In Fig. 8.3, only the case D = 1
corresponding to a complete rotation of the bottom wall is of interest to us as it corresponds exactly to our case
(a). It appears that their results for D = 1 do not capture any of the three important items discussed above.

Fig. 8.3: Surface deflection for Λ = 1, Re = 900, and various ratios D = Rc/Rd, where Rc is the cylinder radius
and Rd the radius of the rotating disk. From Piva & Meiburg [198]. c© 2005 American Institute of Physics.

When increasing the Reynolds number up to Re = 6 000, the numerical simulation yields a non-axisymmetric
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free-surface shape as can be seen in two orthogonal meridional planes in Fig. 8.4 and in 3D in Fig. 8.5. The
comments related to the comparison of cases (a) and (b) remain valid for this higher-Reynolds-number case. One
may however note in Fig. 8.4 the more complex radial variations of η in the larger transition region between the
inner trough an the outer crest ring. In Chapter 7, the unstable modes were found to be active in this region,
which comprised the interfacial zone Υ. The 3D view in the bottom row of Fig. 8.5 reveals a free-surface shape
of “bathtub sink-vortex” type.
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Fig. 8.4: Relative free-surface elevation η/H measured from the position z = H at rest, for case (c) = (Λ =
1,Re = 6 000). Solid line: meridional plane y/R = 0; Dotted line: meridional plane x/R = 0.

8.4.2 Vortex breakdown bubbles and meridional flow fields

We consider now the two steady flows for Λ = 1 and Re = 900, 1 500 corresponding to cases (a) and (b)
respectively. Figure 8.6 displays the streamlines of these flows into any meridional plane. For both of these
flows, the streamlines are extremely close to those obtained in the flat stress-free model—see Fig. 7.10—except
near the contact line (r = R, θ, z = H + η). A small recirculation bubble appears near this contact line. It
is attached to the free surface and stretched from about half-height of the cavity up to the free surface. This
vortex breakdown bubble is related to the crest ring described in the previous section. It is important to note
that experimentally this small recirculation bubble may be difficult to obtain because of the presence of small
amounts of surfactants affecting the cleanliness of the surface. This notably modifies the contact angle and the
free-surface shape near the contact line. The same observation and conclusions apply to case (c). The streamlines
for this case are represented in two orthogonal meridian planes corresponding to y/R = 0 and x/R = 0, in
Fig. 8.7. Once again, the loss of axisymmetry appears clearly from the complex and asymmetric structure of
the recirculation bubbles.

As a second step, the contours of the radial, azimuthal and axial velocity components in any meridional
plane are given in Fig. 8.8. These data are supplemented with the contours of the axial component of the
angular momentum Γ = ruθ still in Fig. 8.8, extreme right column. Given the small Reynolds numbers in
both cases, it is clear that the structures of these fields are extremely close to those obtained using the flat
stress-free model in Chapter 7 and shown in Fig. 7.14. The only notable difference lies in the contours the axial
velocity component uz. Indeed, the zero-Froude-number condition imposed in Chapter 7 in lieu of the kinematic
boundary condition, led to a vanishing axial velocity at the free surface. In this study, this condition is relaxed
and the real kinematic boundary condition is imposed allowing to have non-zero axial velocity at the free
surface. Consequently, we observe now non-zero contours terminating at the free surface, which was impossible
previously. The distribution of contours of uz are to be put together with the surface elevations depicted in
Fig. 8.2. Given the limited surface deflection of the free surface, its local unit normal vector n̂ is everywhere
close to the unit vector in the z-direction. As the normal component of the fluid velocity is responsible for
free-surface deformations, in this case it is uz that is mainly responsible for the observed surface elevation. One
may notice that we recover from the distribution of contours of uz at the free surface, the two regions of positive
and negative η defined in the previous section.
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Fig. 8.5: Three-dimensional views of the free-surface shape η/H measured from the position z = H at rest. Top
row: Re = 900; Central row: Re = 1 500; Bottom row: Re = 6 000. Left column: high-angle view; Right column:
low-angle view. The spectral element grid appears in solid white line to improve the 3D visualization.
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The previous analysis is further confirmed by the contours of the three velocity components and of the axial
angular momentum for an instantaneous flow sample, presented in Fig. 8.9, in the meridional plane x/R = 0.
No statistical analysis of the flow at Re = 6 000 is yet available because of technical issues that still need to be
overcome. Without going into detail, it is important to notice that each flow sample corresponds to a different
flow dynamics and consequently to a different mesh velocity, and ultimately to a different mesh. Performing
statistical analyses on hundreds of flow samples corresponding to hundreds of computational meshes is a complex
and time-consuming task that we are still trying to simplify and optimize.
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Fig. 8.6: Contours of streamlines in a meridional plane, case Λ = 1 with a free surface. Left: case Re = 900;
Right: case Re = 1 500. The 30 contours are non-uniformly spaced for visualization purposes, 20 equally-spaced
negative contours and 10 equally-spaced positive contours for Re = 900 and Re = 1 500.
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Fig. 8.7: Contours of streamlines in two orthogonal meridional planes, case Λ = 1 and Re = 6 000 with a
free surface. Instantaneous flow sample. Left column: meridional plane y/R = 0; Right column: meridional
plane x/R = 0. The 30 contours are non-uniformly spaced for visualization purposes, 20 equally-spaced negative
contours and 10 equally-spaced positive contours.
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Fig. 8.8: Contours in a meridional plane for the case Λ = 1 with a free surface. Top row: case Re = 900; Bottom row: case Re = 1 500. From left column to right
column: radial velocity component ur; axial velocity component w = uz; azimuthal velocity component uθ; axial angular momentum component Γ = ruθ. The 35
contours are uniformly spaced, between −0.06 and 0.145 for ur; and between −0.09 and 0.12 for uz; The 50 contours are uniformly spaced, between 0 and 1 for uθ
and Γ.
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Fig. 8.9: Contours in two orthogonal meridional planes for the case Λ = 1 and Re = 6 000 with a free surface. Instantaneous flow sample. Top row: meridional plane
y/R = 0; Bottom row: meridional plane x/R = 0. From left column to right column: radial velocity component ur; axial velocity component uz; azimuthal velocity
component uθ; axial angular momentum Γ = ruθ. The 50 contours are uniformly spaced, between −0.13 and 0.16 for ur; between −0.09 and 0.14 for uz; and between
0 and 1 for uθ. The 100 contours are uniformly spaced between 0 and 1 for Γ.
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A careful analysis of the vortex lines for the instantaneous flow sample shows a bending in the whole meridian
plane. This bending is very significant in the region 0.4 ≤ r/R ≤ 0.8 and 0.4 ≤ z/H ≤ 1, which corresponds
to the limit between the primary recirculation of the flow and the secondary recirculation bubble. The jet-like
shear layer along the tubular side-wall is turned into the interior of the flow by the free surface. Focusing on the
axial velocity component uz, the comparison of the respective contours of uz in Fig. 7.22 and Fig. 8.9 highlights
the higher intensity of this shear layer in the moving-free-surface case. In the flat case, the axial velocity has
monotone decreasing variations in the increasing z-direction, while we observe a local maximum of uz near the
position (r/R = 0.9, z/H = 0.9). The structure of the jet-like shear layer appears therefore modified by the
presence of the free surface.

The distribution of contours of uz at the free surface z = H+η again reflects well the calculated free surface
elevation shown in Fig. 8.4. For instance, the local positive extrema of η at r/R ' 0.5, and the local negative
extrema at r/R ' 0.4 and r/R ' 0.6 are well predicted by the variations of uz at the free surface.

8.4.3 Free-surface flow fields

All the previous results in this chapter and the previous one, dealing with the transitional case (c) reveals a
complex flow dynamics due to instabilities developing from a steady stable flow similar to the steady laminar
case (b). The study of the rms fluctuations of the flow fields at the free surface presented in Sec. 7.4.5 revealed
the existence on an annular region with 0.3 ≤ r/R ≤ 0.4, where the fluctuations of ur, uθ and Γ are intense.
This region was related to the interfacial zone Υ and in the sequel both of these zones will be indifferently
denoted by Υ. The future statistical analysis of the flow samples corresponding to case (c) will allow the study
of the rms fluctuations of uz at the free surface. We expect to have intense rms fluctuations of uz in Υ, given
the very clear and unsteady deformation of the free surface in Fig. 8.4 for r/R ' 0.4.

Figure 8.10 presents the flooded contours of the three cylindrical velocity components and of Γ on the
deformed free surface for two different three-dimensional view angles. Besides the esthetically pleasing character
of these pictures, it is noteworthy focusing our comments on the last row associated to the axial angular
momentum Γ. Four radial jets (two groups of two jets) are visible at the free surface. The two groups of two
jets are of different intensity and the most intense one leads to more important surface deflections in the region
Υ. This observation can be justified as follows: when the radial free-surface jet of angular momentum impinges
on the inner fluid in quasi-solid-body-rotation, the larger part of momentum is redirected downward, while a
non-negligible part of it is redirected upward thereby deforming the free surface.

8.4.4 Study of some nonlinear convective terms

Before concluding this study of the moving-free-surface swirling flow, we present the variations of some radial
and azimuthal nonlinear terms at the free surface. The magnitude of the terms NLrk and NLtk, k = 1, 2, 3—see
Table 8.2 for mathematical expressions—has been calculated along a radial line (r, θ = 0, z = H + η) that
follows the shape of the free surface. These results are compared to those corresponding to the flat-and-fixed
free-surface case obtained in Chapter 7, Sec. 7.4.4, for cases (a) − (c). Theses radial variations of the terms in
Table 8.2 are reported in Fig. 8.11 for cases (a)− (b) and in Fig. 8.12 for cases (b)− (c). The goal of the study
in this section is to highlight the differences in those terms when considering the moving-free-surface model as
opposed to the flat-and-fixed one, denoted as “FS” and “SF” respectively in Figs. 8.11 & 8.12.

Name Expression Name Expression

NLr1 −ur
∂ur
∂r

NLt1 −ur
∂uθ
∂r

NLr2 +
u2
θ

r
NLt2 −uruθ

r

NLr3 −uz
∂ur
∂z

NLt3 −uz
∂uθ
∂z

Table 8.2: Name definitions of different terms appearing in the momentum budget equations (7.25)–(7.27).

Starting first with the term NLr1 = −ur∂ur/∂r, one should observe no substantial change in the variations
trend, but for all three Reynolds numbers the “FS” terms have a reduced magnitude compared to their “SF”
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Fig. 8.10: Contours on the free surface z = H+η for the case Λ = 1 and Re = 6 000. First row: ur; Second row:
uz; Third row: uθ; Fourth row: Γ = ruθ. Left column: high-angle view; Right column: low-angle view. Contour
levels are the same as those in Fig. 8.8 & Fig. 8.9. The spectral element grid appears in solid dark-grey line to
improve the 3D visualization.
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counterparts. The flat-and-fixed free surface assumption used in Chapter 7 leads to a systematic over-estimation
of the radial nonlinear term NLr1.

Exactly the same analysis and comments can be made for the radial variations of the centrifugal acceleration
NLr2 = u2

θ/r. In addition, it has been pointed out in Sec. 7.4.4 for case (c), the appearance of a local minimum
for the centrifugal acceleration in the interfacial zone Υ. This local minimum is still observable for the “FS”
term NLr2, and it is even more pronounced and affects a broader radial interval 0.05 ≤ r/R ≤ 0.45.

By definition, the nonlinear term NLr3 = −uz∂ur/∂z vanishes at the free surface when considering the flat-
and-fixed free surface hypothesis. For cases (a)−(b), the magnitude of NLr3 is extremely small compared to NLr1
and NLr2, Consequently, we can conclude to a very limited influence of this term in the flow dynamics, even
for case (c) at Re = 6 000. The low magnitude of the axial velocity at the free surface seems responsible for this
fact. Again, exactly the same analysis and comments can be made for the azimuthal term NLt3 = −uz∂uθ/∂z.
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Fig. 8.11: Variations at the free surface of nonlinear terms along a radial line that follows the shape of the free
surface. Cases (a) − (b). Left column: terms NLrk, k = 1, 2, 3; Right column: terms NLtk, k = 1, 2, 3. “SF”
stands for stress-free and refers to the flat stress-free model and “FS” stands for free surface. The terminology
refers to Tab. 8.2.
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On the contrary to what have been observed for the radial terms NLr1 and NLr2, the azimuthal terms NLt1
and NLt2 have their first local minimum in the interval 0.2 ≤ r/R ≤ 0.4, under-estimated in the flat-and-fixed
free surface framework. For case (c) at Re = 6 000, the “SF” term NLt1 shows a local maximum instead of a
high-magnitude local minimum found for the “FS” NLt1 term. In addition, the Coriolis term NLt2 is globally
under-estimated in the flat-and-fixed case.

All the results presented in this section confirm some deficiencies of the flat-and-fixed free surface model
when dealing with some nonlinear terms appearing in the governing equations. These deficiencies are obviously
more important at the free surface than closer to the rotating disk.
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Fig. 8.12: Variations at the free surface of nonlinear terms along a radial line that follows the shape of the free
surface. Cases (b) − (c). Left column: terms NLrk, k = 1, 2, 3; Right column: terms NLtk, k = 1, 2, 3. “SF”
stands for stress-free and refers to the flat stress-free model and “FS” stands for free surface. The terminology
refers to Tab. 8.2.
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8.5 Conclusions

The incompressible flow of a viscous fluid enclosed in a cylindrical container with a moving free surface and
driven by the constant rotation of the bottom wall has been thoroughly investigated in this chapter. The top
surface of the cylindrical cavity is left open with a clean free surface subject to a kinematic and dynamic
boundary conditions. No-slip conditions are imposed on the side-wall and on the rotating bottom end-wall by
means of a regularized angular velocity profile.

In the present chapter, new flow states have been investigated based on a fully three-dimensional solution of
the Navier–Stokes equations for the free-surface cylindrical swirling flow, using a moving-grid technique in the
arbitrary Lagrangian–Eulerian framework. The dynamic boundary condition is automatically incorporated into
the complete weak formulation of the problem. This automatic imposition of this dynamic boundary condition
through the weak formulation of the problem is one of the most attractive feature of the newly-developed
numerical method. Along the same line, the specific choice of the ALE kinematics allows to automatically
account for the kinematic boundary condition. To our knowledge, the present study delivers the first results for
this free-surface swirling flow problem.

Three different cases corresponding to three different values of the Reynolds number have been considered,
while fixing Λ = 1. The shape of the free surface leads globally to a deep trough around the axis generated by
the sucking effect of the Ekman layer above the rotating disk. A small crest ring appears due to the impingement
of the tubular wall-jet onto the free surface. The location of the vortex breakdown bubble influences locally
the shape of the free surface. At Re = 6 000, the shape of the free surface loses its axisymmetry and reveals
secondary smaller crests and troughs in the interfacial region Υ. For all Re, a smaller recirculation bubble
forms near the contact line and the axial velocity component is the most affected by the motion of the free
surface. The distribution of axial velocity at the free surface is in good agreement with the free-surface shapes
calculated. In the highest-Reynolds-number case considered, the analysis of the flow at the free surface reveals
the presence of two groups of two radial jets of axial angular momentum, which are impinging onto the inner
core in quasi-solid-body rotation.

The study presented in this chapter needs to be supplemented with a proper statistical analysis to analyze
the influence of the moving free surface on the mean flow and on the rms fluctuations. More specifically, the
rms fluctuations of the axial velocity component uz at the free surface should reveal an intense activity in the
interfacial zone Υ, where the unstable modes are active.





Part V

Summary and conclusions





Chapter 9

Summary and conclusions

9.1 Outcomes and summary

The contributions of the present research work are in direct relation with the motivations and objectives
reported in the Introduction, in Chapter 1. The description of the outcomes and summary of this work follows
the structure of the dissertation: (1) the developments of the numerical method, (2) the turbulent internal lid-
driven cavity flow, and (3) the free-surface transitional swirling flow in a cylindrical cavity. The details below
are gathered from the multiple conclusions presented at the end of each chapter and appendix. They are aimed
at providing the reader with a global review of the various outcomes in the various fields of study covered in
this dissertation.

A numerical model for solving two- and three-dimensional moving-boundary problems such as free-surface
flows or fluid-structure interaction is proposed. This model relies on a moving-grid technique to solve the Navier–
Stokes equations expressed in the arbitrary Lagrangian-Eulerian kinematics and discretized by the spectral
element method. A detailed analysis of the continuous and discretized formulations of the general problem in
the ALE frame, with non-homogeneous and unsteady boundary conditions is presented. Particular emphasis
was put on the weak formulation and its semi-discrete counterpart. The moving-grid algorithm which is one of
the key ingredient of our numerical model, is based on the computation of the ALE mesh velocity with the same
accuracy and numerical technique as the fluid velocity. The coupling between the Navier–Stokes computation
and the one for the mesh velocity is effective through the problem boundary conditions. It is noteworthy that
the coupling in the interior Navier–Stokes computation is effective through the modified convective term which
is induced by what is happening at the boundaries. Three numerical test results are presented in the two
particular cases of interest, namely fluid-structure interactions and free-surface flows. First the influence of the
deformation of the grid on the accuracy of the numerical model is evaluated. In a second problem, two motions
(translation and rotation) of a cylinder immersed in a fluid is computed. Lastly, large-amplitude sloshing in a
three-dimensional tank is simulated. The results obtained are showing very good with the theoretical results
when available, therefore leading to a validation of our numerical model. A novel isochoric moving-grid technique
and mesh-transfer technique for spectral element grids have been presented and have allowed to automatically
enforce the geometric conservation laws. Both of these techniques are the corner-stones of our computations of
transitional and turbulent free-surface flows using spectral element method. Part of the work was to ensure that
these two techniques have no effect on the exponential rate of convergence, the main reason of our choice of
the Legendre spectral element method. We have obtained positive results all along the extensive series of tests
carried out to verify the behavior of this rate of convergence.

The long-term integration results of two LES of the lid-driven cubical cavity flow at a Reynolds number of
12 000 is presented for two dynamic subgrid-scale models, namely a dynamic Smagorinsky model and a dynamic
mixed model. These simulations are based on an accurate spectral-element spatial discretization, having two
times less points per space direction than the direct numerical simulation reference result from Leriche &
Gavrilakis [155]. All filtering levels introduced in both SGS modelings rely on explicit modal filters in the
spectral space, retaining C0-continuity of the numerical solution of the filtered Navier–Stokes equations. An
additional nodal filter was used to stabilize both LES. Time-averaging is shown to be equivalent to ensemble-
averaging, with respect to the global precision level of the numerical integration. Partial simulation results using
the UDNS and the Smagorinsky model as subgrid-scale models, have served to prove the necessity of a dynamic
SGS procedure. Full LES results for both dynamic models show very good agreement with the DNS reference
results. The agreement with the experimental reference results from Prasad & Koseff [201] is qualitatively
good. At a Reynolds number of 12 000, the lid-driven cavity flow is placed in a locally turbulent regime and
such turbulent flow is proved to be highly inhomogeneous in the secondary-corner regions of the cavity where
turbulence production and dissipation are important. The maximum production of turbulence is found to be
located in the downstream-corner-eddy region just above the bottom wall. An analysis of the spectra of turbulent
quantities at this point allowed us to determine the distribution of the scales of the turbulent structures convected
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past this maximum. Moreover, both LES are able to capture the coherent counter-rotating pair of vortices which
are mainly responsible for the peaks of turbulence production still at this point. LES-DSM shows globally more
intense and better results than the LES-DMM in this matter. Small-scales turbulent structures are located
indirectly by studying the regions of intense turbulent energy dissipation rate ε. The subgrid-viscosity field is
shown to be strongly correlated to ε in the turbulent areas of the flow, but the clipping procedure—necessary
for stabilizing the numerics—imposed to the dynamic parameters strongly diminishes this correlation in the
intense turbulent zones. Subgrid-scales activity is analyzed and the higher SGS activity is associated with the
LES-DMM. Helical properties of the flow were investigated. Typical helical coherent structures are identified
in the secondary-corner regions. These structures appear to be correlated to the turbulent energy dissipation
rate ε. The relative helicity spectra is shown to be decreasing at small scales, which is in agreement with the
theoretical results from Borue & Orszag [31] for the three-dimensional isotropic inhomogeneous turbulence.

LES of Newtonian incompressible fluid flows with ADM based on the van Cittert method using Legendre-
SEM have been performed. A coupling with a dynamic mixed scale model is introduced. The coupling of the
lid-driven cubical cavity flow problem at Reynolds number of 12 000 with the SEM having very low numerical
dissipation and dispersion appears to be a well suited framework to analyze the accuracy of the proposed subgrid
model. The filtering operation is performed in a spectral modal space, generated by a hierarchical basis using
the Legendre polynomials, through the application of a specifically designed transfer function. This transfer
function is constructed in order to ensure continuity across elements, conservation of the constants, invertibility
of the filter and to perform low-pass filtering. From the computation viewpoint, the filtering technique pre-
sented in Chapter 5, is the essential link between the SEM and ADM-based subgrid models. The validation
of the deconvolution procedure performed using a DNS velocity sample, shows that the van Cittert method is
convergent. Accounting for the reduced sampling and integration time, the LES performed with ADM-DMS
show good agreement with the reference results. More precisely, first- and second-order statistics are in good
agreement when compared to their DNS counterparts. Results for the Reynolds stresses production, coupling
first- and second-order statistical moments, are also well predicted using this new model even with such reduced
sampling. The analysis of the results obtained with DMS allows us to clearly identify the improvement induced
by coupling ADM with DMS. Subgrid activity has been analyzed showing a qualitative correlation with the
localization of small-scale structures in the cavity depicted in Chapter 4. The importance of the subgrid kinetic
energy as compared to the kinetic energy of the resolved field highlights the essential need for an appropriate
subgrid modeling. Furthermore, regions of backscatter are identified by ADM-DMS. All the presented results
emphasize the efficiency of ADM-DMS when dealing with laminar, transitional and turbulent flow conditions
such as those occurring in the lid-driven cubical cavity flow at Re = 12 000.

A new interpretation of approximate deconvolution models (ADM) when used with implicit filtering as a
way to approximate the projective grid filter is given. Consequently, a new category of subgrid models, the grid
filter models (GFM) is defined. ADM appear as a particular case of GFM since only approximate deconvolution
is achieved. GFM can be either used with the standard filtered Navier–Stokes equations or with the formulation
commonly used with ADM. The latter formulation requires an additional assumption leading to an incomplete
modeling of the subgrid scales. The GFM approach gives a theoretical justification to the use of ADM without
explicit filtering of the solution and explains how the use of ADM works in this context. This viewpoint allows
to consider a new way of designing the convolution filter which has to approximate the grid filter and therefore
a new way of improving such subgrid models. It has also been proved that the deconvoluted formulation,
usually used with ADM, leads to an under-dissipative character of the subgrid model and explains the need
of additional dissipative terms. Conversely, when using the filtered formulation, no additional term is needed
which is of great relevance considering the confined nature of the flow and the high-order numerical method
used. The GFM approach also allows to consider a more realistic methodology for a priori validations and its
validity extends beyond the limited scope of incompressible Newtonian fluid flows considered in this chapter.
LES of compressible and visco-elastic fluid flows can also be considered using GFM. From a numerical viewpoint,
GFM can be implemented with all numerical methods allowing filtering operations only needed to compute the
subgrid commutator.

The incompressible flow of a viscous fluid enclosed in a cylindrical container with an open top flat surface
and driven by the constant rotation of the bottom wall has been thoroughly investigated. The top surface of the
cylindrical cavity is left open with a stress-free boundary condition imposed on it. No-slip condition imposed
on the side-wall and also on the rotating bottom end-wall by means of a regularized angular velocity profile.
More specifically, the stress-free top surface is, in first approximation, maintained fixed and flat. New flow
states have been investigated based on a fully three-dimensional solution of the Navier–Stokes equations for
the free-surface cylindrical swirling flow, without resorting to any symmetry property unlike all other results
available in the literature. To our knowledge, the present study delivers the most general available results for
this flat-free-surface problem due to its original mathematical treatment. Five different cases corresponding
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to different pairs of governing parameters (Λ,Re) have been considered. The Reynolds regime corresponds to
transitional flows with some incursions in the fully laminar regime. Both steady and unsteady non-oscillatory
swirling flows are considered with a particular emphasis on the case (Λ = 1,Re = 6 000). Of great concern to this
study is the question of space resolution. This is particularly important for the bifurcated case at Re = 6 000.
Convergence tests in space and time have been carried out on this upmost problematic case, and optimal values
of the polynomial order and time-step is deduced. The evolution of the total kinetic energy of this open flow
has been carefully studied for increasing Reynolds numbers and has been compared to the results for the closed
swirling flow. The presence of the free surface on the top of the cylinder is found to strongly modify the observed
trend: the total kinetic energy is increased with Re in the open cylinder case, while the converse is observed in
the closed cylinder case. A physical analysis of the energetic action of the surface layer below the free surface
allows to justify the above results. A comprehensive physical description of all flow states has been given with
particular emphasis on the vortex breakdown bubbles and on the structure of the vortex lines. The unsteady
case at Re = 6 000 has retained more attention, given its unsteady transitional character. The mean flow and
the corresponding rms fluctuations have been calculated and the results analyzed accordingly. Based on 24 flow
samples equally-distributed in time, the general dynamics of the recirculation bubbles has been determined
and described. The momentum transfers in the radial, azimuthal and axial directions have been studied along
various one-dimensional lines. For the transitional case at Re = 6 000, the flow in an inner cylindrical core is
in solid-body rotation, while the outer radial layer is dominated by the jet-like shear layer along the tubular
side-wall. This axial wall-jet is turned into a radial jet of angular momentum, which prevails all the way up to
the free surface. The impingement of this radial jet onto the inner cylindrical core in solid-body rotation leads to
the development of unstable azimuthal modes. The nonlinear terms, which includes a Coriolis effect, responsible
for the development of these unstable modes have been found using the azimuthal momentum imbalance below
the free surface. These unstable modes seem to take the form of even-order azimuthal rotating waves.

The incompressible flow of a viscous fluid enclosed in a cylindrical container with a moving free surface
and driven by the constant rotation of the bottom wall has been thoroughly investigated in this chapter. The
top surface of the cylindrical cavity is left open with a clean free surface subject to a kinematic and dynamic
boundary conditions. No-slip conditions are imposed on the side-wall and on the rotating bottom end-wall by
means of a regularized angular velocity profile. In the present chapter, new flow states have been investigated
based on a fully three-dimensional solution of the Navier–Stokes equations for the free-surface cylindrical swirling
flow, using a moving-grid technique in the arbitrary Lagrangian–Eulerian framework. The dynamic boundary
condition is automatically incorporated into the complete weak formulation of the problem. This automatic
imposition of this dynamic boundary condition through the weak formulation of the problem is one of the most
attractive feature of the newly-developed numerical method. Along the same line, the specific choice of the ALE
kinematics allows to automatically account for the kinematic boundary condition. To our knowledge, the present
study delivers the first results for this free-surface swirling flow problem. Three different cases corresponding
to three different values of the Reynolds number have been considered, while fixing Λ = 1. The shape of the
free surface leads globally to a deep trough around the axis generated by the sucking effect of the Ekman layer
above the rotating disk. A small crest ring appears due to the impingement of the tubular wall-jet onto the
free surface. The location of the vortex breakdown bubble influences locally the shape of the free surface. At
Re = 6 000, the shape of the free surface loses its axisymmetry and reveals secondary smaller crests and troughs
in the interfacial region Υ. For all Re, a smaller recirculation bubble forms near the contact line and the axial
velocity component is the most affected by the motion of the free surface. The distribution of axial velocity at
the free surface is in good agreement with the free-surface shapes calculated. In the highest-Reynolds-number
case considered, the analysis of the flow at the free surface reveals the presence of two groups of two radial jets
of axial angular momentum, which are impinging onto the inner core in quasi-solid-body rotation.

9.2 Outlook and perspectives

The most logical straightforward extension to this thesis work would be to consider free-surface flows in a
turbulent regime. This could easily be obtained by increasing the Reynolds number in the free-surface swirling
flows studied in Part IV. One ultimate goal could be to better understand the mechanisms justifying the existence
of long-lasting vortical structures observed at a free surface. For that reason it would be interesting to focus
on the high-Froude-number regime as it corresponds to significant deformations of the free surface dominated
by nonlinearities. From a practical viewpoint, large-eddy simulations using the subgrid models developed in
Part III could be carried out. These LES should be coupled to the numerical method developed in Chapter 3 to
handle moving-boundary problems in the spectral element framework. It is important to note that such coupling
is far from being straightforward. Indeed, the novel numerical method detailed in Chapter 3 relies on the ALE
kinematics and on a moving-grid technique, which modify the structure of the nonlinear term in the Navier–
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Stokes equations, see Eq. (3.12). In addition, large-eddy simulations rely on scale-separation procedure, which
is ultimately performed by considering the application of a low-pass filter to the Navier–Stokes equations. This
highlights a crucial issue faced with such coupling: how does the presence of the mesh velocity in the nonlinear
convective term influence the dynamics of the subgrid scales and subgrid modeling in general?

The present research work on turbulent flows and free-surface flows addresses the particular case of New-
tonian fluids. The numerous aforementioned developments and achievements in large-eddy simulation of tur-
bulent flows and free-surface flows make a very good framework to start investigating some phenomena in
non-Newtonian fluids. Viscoelastic flows are of great importance for complex biological and engineering ap-
plications. When compared to Newtonian fluids, they exhibit typical exotic flow phenomena induced by their
peculiar chemical composition. The study of this new source of hydrodynamics instabilities is highly challeng-
ing and interesting. In the near future, two specific viscoelastic problems could be studied. The first one is
the recently discovered elastic turbulence phenomenon. The second one deals with elastic-capillary instabili-
ties at the free surface of a viscoelastic fluid. For both problems, advanced analytical modeling supplemented
with numerical simulations using high-order methods could be used to gain invaluable insight into these two
phenomena.

The phenomenon of elastic turbulence in viscoelastic fluid flows has been discovered very recently by Gro-
isman and Steinberg [99–101]. Irregular flows excited by the elastic stresses in polymer solutions can lead to
efficient mixing at very low Reynolds number. The presence of polymers affects the laminar flow stability. Con-
sequently, the flow stretches further the polymer molecules, and in a retroactive process becomes increasingly
turbulent until some saturated dynamic state is reached. Transition to elastic turbulence has been observed
at extremely small Reynolds number (order 10−3). Although the Reynolds number can be arbitrary small,
the resulting flow displays all the main features of developed turbulence, as the enhancement of mixing and
the power law spectrum of velocity fluctuations. The objective of such study would be to understand how the
polymers destabilize the laminar flow by increasing the flux of energy from large eddies to small scales in the
energy cascade using in the first place an Oldroyd-B constitutive model. First, a linear stability analysis could
be carried out to establish the influence of both the Reynolds and the Deborah numbers on the onset of this
elastic instability. As a second step, one could perform series of numerical simulations of an Oldroyd-B flow in
the multiple smoothly connected half-rings channels originally designed by Groisman and Steinberg for their
experiments [99–101]. This will allow to analyze the influence of the Deborah number on the energy spec-
trum and hopefully could contribute significantly to the understanding of elastic turbulence given its important
applications in mixing at low Reynolds number in microfluidics devices.

The penetration of a long gas bubble through a tube filled with a Newtonian fluid has been extensively
studied in the past. To date very little numerical work has been done to increase our understanding of non-
Newtonian fluids behavior in such flows. It would be deeply interesting to study such nonlinear systems in
order to understand their pattern selection process near the elastic instability onset. Building on this thesis
work, we propose performing steady numerical simulations using the ALE-moving-grid spectral-element solver
developed. It will allow for an accurate way of imposing the free-surface boundary conditions, which include the
surface-tension effects. These capillary effects at the interface are in competition with the elastic effects in the
bulk of the viscoelastic fluid. The objective of this prospective work would be twofold. On one hand, it would
focus on the near-interface region of the flow to quantitatively describe the properties of what can be called
an elastic surface sublayer. A thorough analysis of this fine interfacial physics would be possible with different
simulations corresponding to varying capillary and Weissenberg numbers. On the other hand, it would aim at
confirming the very limited influence of the capillary effects on this viscoelastic flow far from the interface. Such
study is motivated by important engineering applications, including enhanced oil recovery.
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Appendix A

Mesh update techniques for free-surface flow
solvers

This appendix presents a novel mesh-update technique for unsteady free-surface Newtonian flows using spectral
element method and relying on the arbitrary Lagrangian–Eulerian kinematic description for moving the grid.
Selected results showing compatibility of this mesh-update technique with spectral element method are given.

A.1 Introduction

Incompressible free-surface flows are encountered in a wide range of engineering and environmental flows. In
the nineties the more specific case of transitional and turbulent free-surface flows started to be investigated
with numerical computation based on high-order methods [122,125]. In our work, we aim at computing direct
numerical simulations of unsteady, incompressible and Newtonian turbulent free-surface flows by using the
spectral element method (SEM) [172, 194]. The choice of interface-tracking technique was made to ensure an
accurate description of the free surface.

This appendix highlights the computational techniques developed for simulating incompressible free-surface
flows using the SEM. These techniques include the arbitrary Lagrangian–Eulerian (ALE) formulation [64, 121,
205], mesh update and re-meshing methods [106,134].

This appendix is organized as follows. The governing equations in the ALE framework for general free-surface
flows developed in Section 3.2 are recalled and summarized in Section A.2. Then the discretization methods
and numerical technique are presented in Section A.3. Sections A.4 and A.5 are dedicated to the moving-grid
technique and the mesh-transfer operation, respectively. Section A.6 delivers conclusions and details of the
remeshing algorithms are given in Annexes 1 and 2 in Sections A.7–A.8

A.2 Governing Equations

A moving boundary-fitted grid technique has been chosen to simulate the free surface in our computations.
This choice of a surface-tracking technique is primarily based on accuracy requirements. With this group of
techniques, the grid is configured to conform to the shape of the interface, and thus adapts continually (at
each time-step) to it and therefore provides an accurate description of the free surface to express the related
kinematic and dynamic boundary conditions.

The free-surface incompressible Newtonian flows that we have considered are governed by the Navier–Stokes
equations comprising the momentum equation and the divergence-free condition. In the arbitrary Lagrangian–
Eulerian (ALE) formulation, a mixed kinematic description is employed: Lagrangian description of the free
surface ∂Ωσt , Eulerian description of the fixed domain boundaries ∂ΩDt and mixed description of the internal
fluid domain Ω(t), subset of Rd with d = 2, 3 the space dimension, t referring to the time as the fluid domain
is changing when its boundaries are moving. Let us denote by Ω0 a reference configuration (for instance the
domain configuration at initial time t = t0). The system evolution is studied in the time interval I = [t0, T ]. The
position of a point in the current fluid domain Ω(t) is denoted by x (Eulerian coordinate) and in the reference
frame Ω0 by Y (ALE coordinate). Let At be a family of mappings, which at each t ∈ I associates a point
Y ∈ Ω0 to a point x ∈ Ωt:

At : Ω0 ⊂ Rd → Ωt ⊂ Rd, x(Y, t) = At(Y). (A.1)

At is assumed to be continuous and invertible on Ω0 and differentiable almost everywhere in I . The inverse of
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the mapping At is also continuous on Ω0. With these notations the set of equation reads:

∂u

∂t

∣∣∣∣
Y

+ (u−w) ·∇xu = −∇xp+ 2ν∇x ·Dx(u) + f in Ω(t), (A.2)

∇x · u = 0 in Ω(t), (A.3)

with u(x, t) the velocity field, p(x, t) the pressure field (normalized by the constant density ρ), Dx(u) =
1
2 (∇xu +∇xuT ) the rate-of-deformation tensor, ν the kinematic viscosity of the fluid and f the body force.
The ALE mesh velocity w(x, t) appearing in (A.2) is defined as

w(x, t) =
∂x

∂t

∣∣∣∣
Y

=
∂At
∂t

∣∣∣∣
Y

. (A.4)

Surface tension effects are assumed to be negligible. The associated boundary conditions are:

− the kinematic boundary condition on ∂Ωσt :

u · n̂ = w · n̂, (A.5)

n̂ being the local outward unit normal to the free surface;

− the dynamic boundary condition on ∂Ωσt :

−pn̂ + 2νDx(u) · n̂ = 0, (A.6)

assuming an inviscid air and zero ambient pressure;

− homogeneous Dirichlet boundary condition on ∂ΩDt :

u = w = 0. (A.7)

In addition to the set of governing equations (A.2)–(A.7), the closure of this free-surface problem based on
a moving-grid formulation requires one more equation governing the evolution of the mesh velocity w in the
internal fluid domain Ω(t). The boundary values of w being prescribed by the equations (A.5) and (A.7) on
the boundary ∂Ωσt ∪ ∂ΩDt of the fluid domain. This last governing equation for w will be presented in detail in
Section A.4.

As our focus is on transient problems, proper initial conditions at time t = t0 for the fluid velocity u and for
the mesh velocity w have to be provided. The initial fluid velocity must satisfy the divergence-free condition
and the values of the initial mesh velocity have to be given together with the initial shape of the free surface.

Based on the strong formulation of this free-surface problem given above, one can derive the more appropriate
weak transient ALE formulation:
Find (u(t), p(t)) ∈ H1

0,D(Ω(t))d × L2(Ω(t)) such that for almost every t ≥ t0

d

dt

∫

Ω(t)

u · (v̂ ◦ A−1
t ) dΩ +

∫

Ω(t)

(v̂ ◦ A−1
t ) ·∇x · [uu− uw] dΩ =

∫

Ω(t)

(p∇x · (v̂ ◦ A−1
t )− 2νDx(u) : ∇x(v̂ ◦ A−1

t )) dΩ (A.8)

+

∫

Ω(t)

f · (v̂ ◦ A−1
t ) dΩ ∀v̂ ∈H1

0,D(Ω0)d,

and

−
∫

Ω(t)

q∇x · u dΩ = 0 ∀q ∈L2(Ω(t)). (A.9)

with the functional space H1
0,D(Ω(t)) defined by

H1
0,D(Ω(t)) = {v ∈ L2(Ω(t)), ∇xv ∈ L2(Ω(t))d, v|

∂ΩDt
= 0}.

It is worth noting that the weak formulation (A.8)–(A.9) is only valid in our particular case where homogeneous
natural and essential boundary conditions, respectively (A.6) and (A.7) are applied to the system.
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A.3 Numerical technique and discretization

A classical Galerkin approximation is applied to the set of governing equations in its weak transient ALE
form (A.8)–(A.9) on the flow domain Ω(t), in order to determine the pressure and the fluid velocity, keeping
in mind that the mesh velocity is obtained by the moving-grid technique developed in the next section. The
Galerkin approximation is then discretized by using the spectral element method with the classical staggered
PN −PN−2 approach to avoid the development of spurious pressure modes [174]. Discontinuous and continuous
approximations are respectively taken for the pressure and fluid velocity. The mesh velocity is discretized using
the same polynomial space as the fluid velocity, namely PN , based on a Gauss–Lobatto–Legendre (GLL) grid
of order N . For the discontinuous approximation of the pressure, a Gauss–Legendre (GL) grid of order N − 2
is used. Consequently the ALE Navier–Stokes semi-discrete equations can be derived from (A.8)–(A.9):

d

dt
(Mu) + C(u,w)u = −Au + DT p+ F, (A.10)

−Du = 0, (A.11)

M denoting the mass matrix, A the stiffness matrix, DT the discrete gradient operator, D the discrete divergence
operator, C(u,w) the discrete convective operator depending both on the fluid and mesh velocities and F the
discrete body force. The update of the position x of the mesh points is performed by integrating the following
discrete equation:

dx

dt
= w. (A.12)

The set of semi-discrete equations (A.10)–(A.12) is discretized in time using a decoupled approach: the linear
Stokes computation (linear viscous diffusive term) is integrated based on an implicit backward differentiation
formula of order 2, the nonlinear convective term is integrated based on a simple method used by Karniadakis
et al. [140], consisting in an explicit extrapolation of order 2. Finally the update of the position of mesh points
is based on an explicit and conditionally stable Adams–Bashforth of order 3 (AB3).

Lastly the treatment of the pressure relies on a generalized block LU decomposition, using a standard
fractional-step method with pressure correction [196,197].

A.4 Moving-grid technique

As already mentioned in the previous sections, our free-surface flow computations are of interface-tracking type
and rely on a moving-grid technique, allowing large amplitude motions of the free surface, generating a grid
conforming to the shape of the free surface for an accurate and easy application of the boundary conditions
on ∂Ωσt . Moreover a description as accurate as possible of the free-surface boundary layer is essential to our
work. These points justify by themselves the choice of a moving-grid technique that increases the difficulty of
the marginally intractable problem of turbulent viscous flow computations.

The computation of the mesh velocity w in the internal fluid domain Ω(t) is the corner-stone of the moving-
grid technique developed in the framework of the ALE formulation. The values of the mesh velocity being
prescribed on the boundary ∂Ω(t) = ∂Ωσt ∪ ∂ΩDt as expressed by equations (A.5) and (A.7), the evaluation of
w in Ω(t) can be obtained as the solution of an elliptic equation:

Exw = 0 in Ω(t). (A.13)

This elliptic equation constitutes a classical choice for calculating the mesh velocity [122]. In the present case
it is desirable to impose an additional constraint to the mesh velocity problem, in order to ensure the incom-
pressibility of the mesh by imposing a divergence-free condition to w:

∇x ·w = 0 in Ω(t). (A.14)

Our choice for the elliptic operator Ex is based on the assumption that the motion of the mesh nodes is
equivalent to a steady Stokes flow, corresponding physically to an incompressible and elastic motion of the
mesh. The boundary-value steady Stokes problem for the mesh velocity can be formulated as follows:

w · n̂ = u · n̂ on ∂Ωσt , (A.15)

w · τ̂ = 0 on ∂Ωσt , (A.16)

w = 0 on ∂ΩDt , (A.17)
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where τ̂ is the local unit vector directly orthogonal to n̂, and

∇x · σ̃ = 0 in Ω(t), (A.18)

∇x ·w = 0 in Ω(t), (A.19)

denoting by σ̃ the Cauchy stress tensor of the mesh defined by:

σ̃ = −p̃I + ν̃(∇xw +∇xwT ), (A.20)

with p̃ and ν̃ being respectively the fictitious mesh pressure and the fictitious kinematic viscosity of the mesh,
characterizing the elasticity of the mesh in its motion.

The choice of this boundary-value problem for the mesh velocity has several justifications. Constraining the
elliptic equation by a divergence-free condition for w allows to ensure the conservation of the volume of the
spectral elements, condition that is helpful in practice to have rapidly convergent computations [58]. In general
the global volume of the computational domain may not be conserved, e.g. with an inflow-outflow imbalance,
which requires (A.17) to be relaxed. In addition, the mesh velocity w appears in the convective part of equations
(A.2), (A.8) and (A.10), together with the divergence-free fluid velocity u. Moreover it is worth remembering
that the divergence-free condition imposed to w leads to a conservation of the metrics (the Jacobian being
constant in time) when moving the mesh. Finally the unavoidable issue of fulfilling the geometric conservation
law (GCL) in the ALE framework [73, 74, 83] is automatically solved when considering a divergence-free mesh
velocity as a consequence of the work of Formaggia and Nobile in [83].

From a numerical point of view, the problem corresponding to the set of equations (A.15)–(A.19) is dis-
cretized using the SEM, with a staggered grid PN − PN−2 for the couple mesh (w, p̃). An Uzawa decoupling
technique is employed for the treatment of the fictitious pressure.

Based on the technique described earlier, we have developed the following moving-grid algorithm:

1. Input data: mesh Mn at t = tn, with nodal coordinates xn, fluid velocity un on ∂Ωt
σ
n ,

2. Step 1: steady Stokes computation of wn+1 by Eqs. (A.15)–(A.19);

3. Step 2: update of the nodal coordinates Eq. (A.12); spectral element vertices are moved according to the
AB3 scheme:

xn+1 = xn +
∆t

12
(23wn − 16wn−1 + 5wn−2); (A.21)

4. Creation of the new mesh Mn+1 with the new Gauss–Legendre and Gauss–Lobatto–Legendre grids for
each new spectral element;

5. Output data: mesh Mn+1 at time-step t = tn+1, with nodes coordinates xn+1, mesh velocity wn+1 in
Ωn+1 ∪ ∂Ωn+1.

Two performance tests have been carried out on a study case where one edge of a squared mesh is deformed by a
sine profile. Both of these tests aimed at verifying the spectral element volume conservation that is theoretically
imposed by the divergence-free condition on w. The first test is dedicated to the verification of the global volume
conservation, by computing the relative change of the volume of the computational domain when moving the
grid from the initial square to the deformed one. For several number of spectral elements and for a polynomial
interpolation order ranging from 1 up to 12, the relative change of the volume of the computational domain
is found to be smaller than the machine precision. The second test is also devoted to the volume conservation
but now from a local perspective and by numerically computing the L2(Ω)- and L2(ω)-norm of the divergence
of the mesh velocity w for a polynomial interpolation order N ranging from 5 up to 12, where ω is interior
of the computational domain made of the spectral of elements of Ω not sharing an edge with ∂Ω. Results are
presented on Fig. A.1 and it is found that these norms are exponentially decreasing with N as expected when
using a spectral element method [58]. Moreover we can note that the L2(ω)-norm of ∇ ·w has a faster rate of
convergence than the L2(Ω)-norm. This is justified by the fact that the divergence-free constraint cannot easily
be enforced at the grid points located in the vicinity of the boundaries of the computational domain Ω.

A.5 Mesh-transfer operation

In the previous section was presented the moving-grid technique used in our work to move the grid points at
each time-step, generating a new mesh. Depending on the amplitude of the mesh deformation at each time-
step, this technique can be applied during an important number of iterations. Nevertheless the mesh obtained
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Fig. A.1: L2-norms of the divergence of the mesh velocity w versus polynomial interpolation order N (Log
scale).

by moving the grid nodes can be too convoluted therefore affecting the accuracy and the convergence of the
simulation. Consequently a re-meshing operation is to be called by a specific control parameter (e.g. a discrete
Jacobian positiveness criterion [129]) to provide a new mesh topology. Before starting the ALE Navier–Stokes
computation at the next time-step on this newly created mesh, it is mandatory to transfer some information
from the previous mesh to the new one. The main requirement imposed to this so-called mesh-transfer operation
is to conserve the spectral accuracy of the SEM. The information to be transferred comprises six fields: the
fluid velocities un, un−1 and the mesh velocities wn, wn−1, wn−2 (time-integration schemes are of order 2 for u
and 3 for w) and also the pressure at the current time-step (use of a pressure correction technique). As written
in Section A.3, the velocities are expanded over a GLL grid and the pressure over a GL one. Therefore our
mesh-transfer technique must be capable of transferring fields defined over GL and GLL grids.

Our mesh-transfer algorithm for GL grids being based on the one for GLL grids, we will start presenting
in detail the latter. Let us consider two meshes M1 and M2 corresponding to different mesh topologies of the
same computational domain and the mesh-transfer operation fromM1 toM2. In the sequel it is assumed that
the following decompositions in terms of spectral elements hold:

Ωi ∪ ∂Ωi =

Ei⋃

e=1

Ωei for i = 1, 2. (A.22)

As the computational domain remains unchanged, for each spectral element Ωe
2 of M2 we have:

Ωe2 ⊂ (Ω1 ∪ ∂Ω1) ∀e = 1, . . . , E2. (A.23)

Due to Eq. (A.23) our mesh-transfer technique only requires an interpolation procedure. Let us note the physical
location of the set of GLL grid points of a spectral element Ωe2

2 (e2 = 1, . · · · , E2) by {xe2ij,2} with (i =
1, · · · , Nx,2 + 1; j = 1, · · · , Ny,2 + 1), Nx,2 (resp. Ny,2) being the order of the polynomial interpolation in the
x-direction (resp. y-direction) for the mesh M2 (with the same notations, Nx,2 and Ny,2 can be different from
Nx,1 and Ny,1 respectively). The proposed algorithm can be summarized in three steps:

1. Find the spectral element Ωe1
1 of M1 containing xe2ij,2;

2. Determine the position re11 of xe2ij,2 within the parent element Ω̂e11 of Ωe11 ;

3. Compute the value of the field at the point xe2ij,2 given re11 , the GLL Lagrangian interpolation basis and
the values of the field at the GLL grid points of Ωe1

1 .

The first step causes no difficulty in its implementation as it fully relies on a coarse element positioner coupled to
the mapping inversion techniques described hereafter. The second step uses a transfinite interpolation procedure
in each spectral element, in order to invert the iso-parametric mapping Φ:

re11 = (re11 , s
e1
1 ) = Φ−1(xe22 ) with re11 ∈ Ω̂e11 = [−1, 1]2. (A.24)

In practice, the inversion is carried out differently depending on the topology of the spectral element. With
quadrangular spectral elements, our algorithm performs a direct analytical inversion of the affine mapping Φ
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which is computationally inexpensive and detailed at the end of this appendix in Annex 1. With deformed
spectral elements [58], the inversion of Φ relies on the so-called ‘inverse iso-parametric mapping technique’ from
Lee and Bathe [151] which is based on a Newton–Raphson type iterative procedure.

Finally in the last step, efficient routines compute the following spectral interpolation:

u(Φ−1(xe2ij,2)) = u(re11 , s
e1
1 ) =

N1,x∑

k=0

N1,y∑

l=0

ukl πk(re11 )πl(s
e1
1 ), (A.25)

with {πj(ξ)}Np,1j=0 and p = x, y, the one-dimensional GLL Lagrangian interpolation basis of degree Np,1. As said
earlier the mesh-transfer technique for GL grids relies on the one for the GLL grids, and is detailed at the end
of this appendix in Annex 2. In our simulations, the only GL-interpolated field that has to be mesh-transferred
is the pressure field. Therefore, by interpolating the pressure on the GLL grid, then by applying the GLL mesh-
transfer operation introduced earlier and finally by interpolating back on the GL grid, we manage to perform the
requested operation. It is important to minimize the occurrence of a re-meshing as our mesh-transfer technique
is computationally expensive even for quadrangular elements (affine iso-parametric mapping). A more detailed
assessment of the performance of this technique is provided at the end of this section.

This mesh-transfer operation has been extensively tested in order to ensure its compatibility with the SEM,
regarding its exponential rate of convergence. Tests involving the following two key parameters have been
carried out: the polynomial interpolation order N and the amplitude of the change in topology of the grid when
re-meshing.

The set-up is presented in Fig. A.2 and is made of a mesh comprising four spectral elements. The change
in topology of the mesh is prescribed by moving only the vertex ω (see Fig. A.2) common to all four spectral
elements and afterwards the mesh-transfer operation is performed.
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Fig. A.2: Sketch of the computational domain Ω, the two meshes M1 and M2 and their spectral element
decompositions before and after a prescribed re-meshing operation obtained by moving the central vertex ω.

To evaluate the dependence of our technique with the interpolation order N , the central vertex is moved to
produce a topological change in the mesh by a factor of approximately 10 %. An analytical field f is calculated
on the initial mesh and mesh-transferred onto the distorted mesh, leading to the interpolated field f̃ . The
interpolation error is defined by ε = ‖f − f̃‖L2(Ω) and computed values are presented in Table A.1, showing a
conservation of the exponential rate of convergence.
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N ε = ‖f − f̃‖L2(Ω) N ε = ‖f − f̃‖L2(Ω)

3 7.232e-03 12 4.400e-12

4 1.487e-03 13 9.850e-14

5 1.367e-04 14 1.252e-14

6 2.307e-05 15 3.602e-15

7 1.457e-06 16 3.354e-15

8 2.067e-07 17 1.843e-15

9 8.382e-09 18 1.585e-15

10 1.172e-09 19 1.105e-15

11 3.383e-11 20 1.151e-15

Table A.1: Evolution of the error ε with the spectral interpolation order N .

To characterize the effect of the distortion of the mesh on our mesh-transfer operation, all possible positions
of the moving vertex within the computational domain Ω were considered. In particular, we present here the
case where ω is moved along the diagonal AC of the computational domain Ω as shown in Fig. A.2. Its motion
is characterized by the set of coordinates (α, β) of ω in the parent domain Ω̂ = [−1, 1]2. The interpolation error
ε was again computed for three values of N and results appearing in Table A.2, show that our technique is
totally independent on the amplitude of topological change of the mesh due to the re-meshing operation.

α = β ε = ‖f2 − f̃2‖L2(Ω)

N = 8 N = 10 N = 12

-0.9 2.100e-07 1.005e-09 3.849e-12

-0.8 2.267e-07 1.111e-09 4.448e-12

-0.7 2.000e-07 1.006e-09 3.906e-12

-0.6 1.928e-07 1.106e-09 4.073e-12

-0.5 2.289e-07 1.033e-09 3.786e-12

-0.4 1.847e-07 1.053e-09 4.199e-12

-0.3 2.326e-07 1.160e-09 4.166e-12

-0.2 2.231e-07 1.204e-09 4.332e-12

-0.1 2.067e-07 1.172e-09 4.400e-12

0.0 4.563e-16 1.199e-15 7.886e-16

0.1 2.067e-07 1.172e-09 4.400e-12

0.2 2.231e-07 1.204e-09 4.332e-12

0.3 2.326e-07 1.160e-09 4.166e-12

0.4 1.847e-07 1.053e-09 4.199e-12

0.5 2.289e-07 1.033e-09 3.786e-12

0.6 1.928e-07 1.106e-09 4.073e-12

0.7 2.000e-07 1.006e-09 3.906e-12

0.8 2.267e-07 1.111e-09 4.448e-12

0.9 2.100e-07 1.005e-09 3.849e-12

Table A.2: Evolution of the error ε when ω moves along the diagonal AC, for three different values of N .

Lastly, the computational expense of the mesh-transfer has been evaluated for a polynomial degree N = 10
in both directions (192 grid points for this 2D grid), and as previously for a topological change in the mesh by
a factor of approximately 10 %, corresponding to a ‘small’ 2D case. The results confirm the afore-mentioned
cost: a complete mesh-transfer corresponds to approximately 100 Navier–Stokes solves depending on the value
of the time-step.

A.6 Conclusion and future studies

A novel isochoric moving-grid technique and mesh-transfer technique for spectral element grids have been
presented. Both of these techniques are the corner-stones of our computations of transitional and turbulent
free-surface flows using spectral element method. Part of the work was to ensure that these two techniques
have no effect on the exponential rate of convergence, the main reason of our choice of the Legendre spectral
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element method. We have obtained positive results all along the extensive series of tests carried out to verify
the behavior of this rate of convergence. The development of an automatized re-meshing scheme coupled to a
re-meshing control parameter is still under investigation.

Our next goal would be to simulate three-dimensional transitional and turbulent free-surface flows using the
techniques presented in this appendix with the difficult task of gaining a better insight into the physics involved
in the thin boundary layer near the free surface.

A.7 Annex 1

In this annex, the details of the iso-parametric mapping inversion in the particular case of quadrangular elements
with straight edges, mentioned in Section A.5, is given. We consider a given quadrangular spectral element Ωe

and the parent element Ω̂ = [−1, 1]2 for a two-dimensional problem. The geometry of this general problem
is presented in Fig. A.3. A transfinite interpolation [97, 98] of the parent element Ω̂ leads to the following
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Fig. A.3: Description of the geometry for the inversion of the iso-parametric mapping.

parameterizations:

r = r(x, s) =

[
x−

(
1+s

2

)
(xC + xD)

]
+
[
x−

(
1−s

2

)
(xB + xA)

]
(

1+s
2

)
(xC − xD) +

(
1−s

2

)
(xB − xA)

, (A.26)

s = s(y, r) =

[
y −

(
1+r

2

)
(yC + yB)

]
+
[
y −

(
1−r

2

)
(yD + yA)

]
(

1+r
2

)
(yC − yB) +

(
1−r

2

)
(yD − xA)

. (A.27)

The above equations can be reformulated as follows:

r = r(x, s) =
α1(x) + β1s

α2 + β2s
, (A.28)

s = s(y, r) =
λ1(y) + µ1r

λ2 + µ2r
, (A.29)
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introducing the following eight coefficients:

α1(x) = 4x− (xA + xB + xC + xD),

β1 = xA + xB − xC − xD ,
α2 = xB + xC − xD − xA,
β2 = xA + xC − xB − xD , (A.30)

λ1(y) = 4y − (yA + yB + yC + yD),

µ1 = yA + yD − yB − yC ,
λ2 = yC + yD − yA − yB ,
µ2 = yA + yC − yB − yD.

As we aim at finding the expression of r = r(x, y) and s = s(x, y), we inject Eq. (A.29) into Eq. (A.28), therefore
yielding an implicit quadratic form r = r(x, s(y, r)):

(α2µ2 + β2µ1) r2 + (α2λ2 + β2λ1(y)− α1(x)µ2 − β1µ1) r − (α1(x)λ2 + β1λ1(y)) = 0. (A.31)

The property of invertibility of the iso-parametric mapping ensures a unique real solution to the quadratic
Eq. (A.31). It is possible to show that the constraint |r| ≤ 1 leads to the only possible explicit expression of r
if α2µ2 + β2µ1 6= 0:

r(x, y) =
−(α2λ2 + β2λ1(y)− α1(x)µ2 − β1µ1) +

√
∆(x, y)

2(α2µ2 + β2µ1)
, (A.32)

where ∆(x, y) is the strictly positive discriminant of Eq. (A.31)

∆(x, y) = (α2λ2 + β2λ1(y)− α1(x)µ2 − β1µ1)2 + 4(α2µ2 + β2µ1)(α1(x)λ2 + β1λ1(y)). (A.33)

The particular case α2µ2 + β2µ1 = 0 yields the following trivial explicit expression:

r(x, y) =
α1(x)λ2 + β1λ1(y)

α2λ2 + β2λ1(y)− α1(x)µ2 − β1µ1
. (A.34)

One can note that the denominator in Eq. (A.34) is never vanishing because of the property of invertibility
of the mapping Φ. In both cases, the explicit expression of r(x, y) is injected into Eq. (A.29) to deliver the
associated explicit expression of s(x, y).

In Speculoos [66, 67], the mapping-inversion has been implemented in the class Quad:

RealVector* Quad :: GetPositionInParentElement(Point *P)

Given the Point P (x, y) contained by the face Quad, the above routine returns a two-component real vector,
whose components are r and s respectively. This routine is extremely efficient; it has a very low computational
cost due to the small number of elementary operations involved in it.

A.7.1 Parent-element point positioning algorithm

The algorithm implemented in the previous section assumes that any GLL grid point xe2ij,2 of the meshM2 can
been assigned to a single spectral element Ωe1

1 of the mesh M1 containing it. This assignment procedure has
been implemented using the previous inversion-mapping algorithm. It is again based on the property of local
invertibility of the iso-parametric mapping Φ. If a GLL grid point xe2ij,2 is not contained by a spectral element
of M1, then three cases are encountered when applying the mapping-inversion algorithm:

1. |r| > 1;

2. ∆(x, y) < 0;

3. α2µ2 + β2µ1 = 0 and also α2λ2 + β2λ1(y)− α1(x)µ2 − β1µ1 = 0.

In Speculoos, this parent-element point-positioning algorithm has been implemented in the class Quad:

Boolean Quad :: ContainsPoint(Point *P)

Given the Point P (x, y) and the face Quad, the above routine returns true if P is contained by the Quad

(meaning that none of the three cases above are encountered) and false if it is not the case (meaning that
at least one of the three cases above is encountered). The same remark on the efficiency of this routine as for
the case of the mapping-inversion routine is still valid. Nevertheless, it is worth noting that in the worst case
scenario, with a hashing scheme the number of calls of this routine reduces to O(1) for a given GLL grid point
of M2.
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A.7.2 Implementation of the field-spectral interpolation algorithm

At this stage, we are able to position all the GLL grid points xe2ij,2 of M2 into its associated parent element

Ω̂e11 of the spectral element Ωe1
1 containing it. Working at this parent element level, we recall here again the

interpolation for any field u given by the SEM [58]:

u(Φ−1(xe2ij,2)) = u(re11 , s
e1
1 ) =

N1,x∑

k=0

N1,y∑

l=0

ukl πk(re11 )πl(s
e1
1 ), (A.35)

with {πj(ξ)}Np,1j=0 and p = x, y, the one-dimensional GLL Lagrangian interpolation basis of degree Np,1. The
generic expression of the polynomial elements of this basis is given by [58]

πj(ξ) =
1

N(N + 1)LN(ξj)

(ξ2 − 1)

(ξ − ξj)
L′N(ξ), 0 ≤ j ≤ N, ξ ∈ Ω̂e11 , (A.36)

with N being a simplified expression standing for Np,1, noting {ξj}Nj=0 the set of (N + 1) GLL grid points such

that ξ0 = −1 < ξ1 < · · · < ξN−1 < ξN = +1 and {ξj}N−1
j=1 being the N − 1 roots of L′N (ξ), the first-order

derivative of the Legendre polynomial of order N , LN(ξ). L′N is an irreducible and separable polynomial in the

parent element Ω̂ = [−1, 1]. Therefore one may re-write L′N(ξ) as a product of N − 1 monomials in ξ:

L′N(ξ) = ΓN

N−1∏

i=1

(ξ − ξi), ξ ∈ Ω̂e11 , (A.37)

ΓN being the real coefficient associated with the highest-order monomial (which is equal to N − 1, the degree
of L′N) of L′N(ξ). Noting also that (ξ2 − 1) = (ξ − ξ0)(ξ − ξN ), leads us the a new formulation of Eq. (A.36):

πj(ξ) =
ΓN

N(N + 1)LN(ξj)

N∏

i=0,i6=j
(ξ − ξi), ξ ∈ Ω̂e11 , (A.38)

From a computational viewpoint the expression of LN (ξ) given by Eq. (A.38) is much more preferable to the
one given by Eq. (A.36) because of the monomial (ξ − ξj) at the denominator, giving rise to unacceptable
numerical errors.

Efficient routines from MIT, calculating the values of any Legendre polynomial and its first derivative are
already implemented in Speculoos. Similarly, a routine calculating the one-dimensional GLL quadrature nodes is
also available in Speculoos. As a consequence the coefficient ΓN is the last parameter required to be computed.
Analytically ΓN can be calculated indirectly by setting ξ to a well-chosen value ξ̃. The value ξ̃ = 1 gives a
straightforward solution to our problem because L′N(ξ̃ = 1) can be analytically expressed for all values of N :

L′N (1) =
1

2
N(N + 1), ∀N ∈ N, (A.39)

which leads to the following expression for ΓN

ΓN =
N(N + 1)

2
∏N−1
i=1 (1− ξi)

, ∀N ∈ N, (A.40)

and finally allowing to find the most computationally appropriate expression of the GLL Lagrangian interpola-
tion polynomials:

πj(ξ) =
1

2LN(ξj)

N∏

i=0, i6=j
(ξ − ξi)

N−1∏

i=1

(1− ξi)
, ξ ∈ Ω̂e11 , (A.41)

Eq. (A.41) only involves the known GLL quadrature nodes {ξi}Ni=0 and a value of the Legendre polynomial that
can efficiently be calculated by an already implemented routine as mentioned above.

Using Eq. (A.41) the SEM interpolation of any field u can be formulated as follows

u(Φ−1(xe2ij,2)) =
1

4

N1,x∑

k=0

N1,y∑

l=0

u(ξk, ξl)

LN1,x(ξk)LN1,y (ξl)

N1,x∏

i=0, i6=k
(re11 − ξi)

N1,x−1∏

i=1

(1− ξi)

N1,y∏

i=0, i 6=l
(se11 − ξi)

N1,y−1∏

i=1

(1− ξi)
. (A.42)
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Eq. (A.42) is not directly implemented in Speculoos, but instead several intermediate routines are used to
achieve the same computation as the one described by this equation. For the user the algorithm presented
above can be reached by using two similar routines implemented in the classes FlatField and MortaredField

respectively:

void FlatField :: ApplyGLLMeshInterpolation(FlatField *f1)

void MortaredField :: ApplyGLLMeshInterpolation(MortaredField *f1)

These two routines have been developed using MPI to ensure a correct parallel behavior of the final Speculoos
code. Performance testings have been carried out for some benchmark problems and are presented in the next
section.

A.7.3 Performance of the Field-spectral interpolation algorithm

A quadrangular computational domain Ω is chosen to carry out this performance test. The vertices are located
at the following positions: (0, 0), (1, 0), (1.5, 1.5) and (0, 1), see Fig. A.2, and the resulting domain is uniformly
divided into Ex ×Ey spectral elements, with Ex (resp. Ey) the number of spectral elements in the x-direction
(resp. y-direction). The mesh generated by this mean is structured and we have also chosen to have conforming
spectral elements within the mesh, meaning that all elements have the same degree of interpolation Nx and Ny,
in the x- and y-direction respectively. For the sake of simplicity we will assume in the sequel that Ex = Ey = E
and Nx = Ny = N .

It is necessary to create a ‘test signal’ that is known analytically in order to be able to evaluate the interpola-
tion error at any point of the computational domain (and not only at the GLL grid points of the mesh). Moreover
this test signal should preferably be smooth enough in order to have a good spectral element representation over
the GLL grid of our computational domain Ω (if the spectral element representation of the test signal is not good
enough, it is meaningless to try any kind of interpolation). The analytical field f(x) = f(x, y) = sin(πx) sin(πy)
is smooth enough to qualify as a good test signal for our test.

Lastly, the following procedure has been put in place to measure the interpolation error:

1. a uniform grid made of 102 × 102 equally-spaced points xij is stacked over the GLL grid of Ω;

2. for each of the 104 points xij , the test signal f(x) is interpolated using the implemented algorithm and

the following error is measured: ε(xij) = |f̃ij − f(xij)| where f̃ij is the interpolated value at the point xij
and f(xij) is the calculated value;

3. the field interpolation error ε is taken as the maximum of the point-wise interpolation error which is
quantified using: ε = max

i,j
(ε(xij)).

The results of the above test are presented on Fig. A.4, where the field interpolation error ε is plotted against
the degree of interpolation N for different values of E ranging from 1 to 10. These results clearly show a
spectral behavior for our point-wise interpolation procedure, as for any value of E the interpolation is decreasing
exponentially withN (Fig. A.4 uses a y-logscale) until the machine precision is reached. In addition, by increasing
the number of spectral elements E2 of the mesh, one reaches the machine precision “faster”: with a single
spectral element, machine precision is reached for approximately N = 18 whereas with 100 spectral elements,
it is reached for only N = 9.

A.8 Annex 2

In this annex, the details of the GL mesh-transfer algorithm is given. We aim at implementing an algorithm
capable of transferring a field defined over a GL grid from one mesh to another. In practice this GL mesh-transfer
algorithm will be used to transfer the pressure field from M1 to M2.

To prevent the development of spurious pressure oscillations our ALE Navier–Stokes computation classically
uses a staggered-grid PN − PN−2 approach [52,58], in which the pressure field is the only field not defined over
a GLL grid. Instead a Gauss–Legendre (GL) grid of order N − 2 is used. It is important to bear in mind that
the mesh made of the union of the GL grids for each spectral element does not produce a full coverage of the
computational domain.
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Fig. A.4: Maximum interpolation error ε vs. degree of interpolation N for different number of elements.

A.8.1 GL polynomial bases and interpolation algorithm

Working at the parent element level, we recall here the interpolation for any field u given by the SEM [58] using
a GL polynomial basis of order N − 2:

u(Φ−1(xe2ij,2)) = u(re11 , s
e1
1 ) =

N1,x−1∑

k=1

N1,y−1∑

l=1

ukl$
p
k(re11 )$p

l (se11 ), (A.43)

with {$p
j (ζ)}Np,1−1

j=1 and p = x, y, the one-dimensional GL Lagrangian interpolation basis of degree Np,1 − 2.
The generic expression of the polynomial elements of this Gauss–Legendre basis are given by [58]

$p
j (ζ) =

LN−1(ζ)

(ζ − ζj) L′N−1(ζj)
1 ≤ j ≤ N − 1, ζ ∈ Ω̂e11 , (A.44)

noting {ζj}N−1
j=1 the set of (N − 1) GL grid points such that −1 < ζ1 < ζ2 < · · · < ζN−1 < +1 and {ζj}N−1

j=1

being the N−1 roots of LN−1(ζ), the Legendre polynomial of order N−1. LN−1 is an irreducible and separable
polynomial in the parent element Ω̂ = [−1, 1]. Therefore one may re-write LN−1(ζ) as a product of N − 1
monomials in ζ:

LN−1(ζ) = ΘN−1

N−1∏

i=1

(ζ − ζi), ζ ∈ Ω̂e11 , (A.45)

ΘN−1 being the real coefficient associated with the highest-order monomial of LN−1(ζ). The analytical expres-
sion of ΘN−1 can easily be found using the well-known property of Legendre polynomials: LN−1(ζ = 1) = 1 for
all values of N , leading to

ΘN−1 =
1

∏N−1
i=1 (1− ζi)

. (A.46)

This separation of the polynomial LN−1 and the expression of ΘN−1 lead us the a new formulation of Eq. (A.44):

$p
j (ζ) =

1

L′N(ζj)

N−1∏

i=1,i6=j
(ζ − ζi)

N−1∏

i=1

(1− ζi)
, ζ ∈ Ω̂e11 . (A.47)

Similarly to the case of the GLL field-spectral interpolation algorithm presented earlier, Eq. (A.47) allows
an efficient computation of the interpolated pressure field over the new GL grid points xe2ij,2. Nevertheless, a
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problem arises when trying to follow-up a deeper analogy with the GLL mesh-transfer algorithm. The origin of
this problem lies in the fact that in general, some new GL grid points xe2ij,2 (belonging to the GL mesh associated
to the new GLL mesh M2) appear to be located in the space of the computational domain that is not covered
by the old GL mesh.

Two paths can be followed in order to solve this problem:

• to use a spectral extrapolation algorithm to find the values of the pressure field corresponding to points
that do not lie in the GL grid associated with M1;

• to interpolate the pressure field over the GLL mesh associated withM1, then use the previously presented
GLL mesh-transfer technique to interpolate the pressure from M1 onto M2, and finally to interpolate
back the pressure over the GL mesh associated with M2.

This second option can easily be implemented in our code as it uses previously implemented techniques that
have shown great efficiency. Performance test of this second option corresponding now to our GL mesh-transfer
technique were carried out and are presented in the next section.

A.8.2 GL mesh-transfer algorithm performance tests

To evaluate the performance of the GL mesh-transfer technique introduced in the previous section, we stick to
the same configuration as for the GLL mesh-transfer (same computational domain and same notations). The
error is still measured using the L2(Ω)-norm of the difference between the test field and the computed field.
The test field is the same as before but now its spectral decomposition is made over the GL mesh associated
with M2.

The outcome of the computation of this GL mesh-transfer is presented in Table A.3 for ω2 = (0.1, 0.1).
Comparing these results with those presented in Table A.1 for the case of the GLL mesh-transfer technique, we
can conclude to an excellent agreement with the theory for the following reasons:

• the spectral behavior observed for the GLL mesh-transfer technique is still observable in this case;

• the spectral element decomposition of the pressure being of two-order lower compared to all other fields
defined on the GLL grid, it was expected to have a higher error ε for a given value of the interpolation
order N . The machine precision is still reachable but for a higher value of N .

N ε = ‖f2 − f̃2‖L2(Ω) N ε = ‖f2 − f̃2‖L2(Ω)

3 3.714691e-02 13 1.5373920e-11

4 1.721680e-02 14 1.9687020e-12

5 3.582591e-03 15 4.2342865e-14

6 7.234110e-04 16 7.2800141e-15

7 6.037107e-05 17 2.0363273e-15

8 1.122697e-05 18 2.1848130e-15

9 6.128462e-07 19 1.4084790e-15

10 9.428244e-08 20 1.4801411e-15

11 5.047457e-09

12 5.134571e-10

Table A.3: Evolution of the error ε with the spectral interpolation order N , for ω2 = (0.1, 0.1) for a GL mesh
transfer.





Appendix B

Closed cylindrical swirling flow

This appendix is in direct relation with the studies of the flow in an open cylindrical container driven by
a rotating bottom end-wall treated in Chapter 7 and Chapter 8 of Part IV of the present dissertation. The
work reported hereafter corresponds to a preliminary study to the developments and simulations presented in
Chapters 7 & 8. The internal and incompressible shear-driven flow of a Newtonian fluid enclosed in a cylindrical
container and driven by the steady rotation of its bottom end-wall is briefly discussed. The main objective here
is to provide the reader with insight into the basic axisymmetric flow states encountered in the steady and
unsteady closed swirling flow.

B.1 Introduction

The reader is referred to Sec. 7.1.2 for a detailed introduction and literature review regarding the “standard”
case that constitutes the study of vortex breakdown in a closed cylindrical cavity. It is worth recalling here that
Escudier [69] revealed flow states with one, two or even three successive breakdowns, as well as a transition
from steadiness to unsteadiness. Sørensen [233] extended to a broader range of Reynolds number in the same
experiment as Escudier [69] for the closed container, and inferred that above a critical Reynolds number in
the unsteady flow regime, the meridional flow becomes highly asymmetric. These results are summarized and
depicted in Fig. B.1
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Fig. B.1: Stability boundaries for single, double and triple breakdowns, and boundary between steady and un-
steady oscillatory flow, in the (Λ = H/R,Re)-plane with the results obtained by Escudier [69]. Regimes where
experiments have been carried out are indicated by symbols: �, no bubble; �, one bubble; N, two bubbles. From
Spohn et al. [240]. c© 1998 Cambridge University Press.

Direct numerical simulations of the swirling flow in an enclosed cylinder have been carried out. Numerical
results are presented in the next section, and will be useful to compare with results obtained in the open cylinder
case.
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B.2 Numerical results

The comprehensive experimental and numerical studies of this flow have shown that it undergoes a series of
transitions when varying both governing parameters Λ and Re. The short study described in the sequel focuses
on the development of the flow characteristics with the Reynolds number Re for a given value of the height-to-
radius aspect ratio Λ = 2.5, and up to the point where the flow no longer reaches a steady state. The particular
choice of the value for Λ has mainly two justifications. First, as one can see in Fig. B.1, varying the Reynolds
number while keeping Λ = 2.5, allows to generate a wide spectrum of flow states: e.g. no recirculation bubble,
two vortex breakdowns, steady and unsteady flows. The second justification of the choice Λ = 2.5, lies in the
existence of a large body of experimental and numerical results available in the literature and corresponding
to this specific value, which is therefore very useful to validate some aspects of the numerical simulation. In
particular, in the region of parameter space considered, i.e. 1 600 ≤ Re ≤ 3 000 and Λ = 2, 5, the flow is observed
to remain axisymmetric, laminar, and mainly steady.

The numerical method is the one detailed in Sec. 7.3, except for the treatment of the top surface, which is
replaced here by a fixed solid wall imposing a homogeneous Dirichlet boundary condition for the velocity field

u(x, y, z = H, t) = v(x, y, z = H, t) = w(x, y, z = H, t) = 0. (B.1)

As the highest Reynolds number considered for this study is Re = 3 000, a coarser grid than the one used for
the past simulations in Chapters 7 & 8, has been employed. This grid is made up with 6 cylindrical layers
comprising each 28 spectral elements, which are arranged in a similar manner to the one presented in Figs. 7.6
& 7.7. The details related to the four test cases considered in this appendix are summarized in Table B.1. The
choice of the four values of the Reynolds number were made in accordance with the results from Escudier [69],
which are depicted in Fig. B.1.

Re Λ = H/R Time-step ∆t Time evolution Vortex breakdown

1 600 2.5 0.01 steady no
1 900 2.5 0.01 steady no
2 200 2.5 0.005 steady 2 separate bubbles
3 000 2.5 0.005 unsteady 2 connected bubbles

Table B.1: Parameters and characteristics of the four test cases considered. The time-step ∆t is expressed in
Ω−1

0 units.

B.2.1 Vortex breakdowns with increasing Reynolds number

In this section, the evolution of the streamline contours—defined as the intersections of the streamfunction
surfaces with any meridional plane—is investigated with an increasing Reynolds number. Figure B.2 displays
two series of contours for the cases defined in Table B.1. The first series of contours is for the cases at Re = 1 600
and Re = 1 900, which only contain negative values of ψ in absence of any recirculation bubble. On the contrary,
the second series of contours, for the cases at Re = 2 200 and Re = 3 000, possesses positive values, which
correspond to the two recirculation bubbles that have appeared after the vortex breakdown. As can be seen
from the results of Escudier [69] in Fig. B.1, the case at Re = 1 900 is very close to the breakdown. This
appears clearly in Fig. B.2 with the two local bending of the contours in the near-axis region. The structure
of the recirculation regions determined by the present simulations at Re = 2 200 (see Fig. B.2, bottom left)
is compared in detail with the numerical simulation from Lopez [158] and the experimental observation from
Escudier [69], see Fig. 4(a) in [158]. A very good agreement is found between the present results and the ones
from Lopez [158] and Escudier [69].

The distribution of axial angular momentum is of particular interest for this flow driven by the constant
torque imposed to the bottom end-wall. The axial angular momentum is denoted by Γ and can easily be
expressed in terms of the azimuthal component of the velocity field as Γ = ruθ. Figure B.3 (top row) displays
the contours of the angular momentum for the four cases considered in this study. For all values of Re, one can
clearly observe how the fluid acquires angular momentum by the shear stress generated by the rotating bottom
end-wall and how it loses it in the viscous boundary layers on the tubular side-wall and on the top wall. For low
values of the Reynolds number, Γ is nearly constant on all stream surfaces in the near-axis region. As expected,
the presence of the recirculation bubble after the vortex breakdown process, influences the distribution of axial
angular momentum. Far from the recirculation bubbles, the angular momentum distribution corresponds to
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essentially solid-body rotation of the fluid. As mentioned by Lopez in [158]: “In essence, in these flows, the
breakdown regions is like a transition region from a concentrated vortical flow to solid-body rotation”.
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Fig. B.2: Contours of the streamfunction ψ in the meridional plane corresponding to y/R = 0. Top & left:
Re = 1 600; top & right: Re = 1 900; bottom & left: Re = 2 200; bottom & right: Re = 3 000. The 30 are
uniformly spaced contours between minimal value and zero for Re = 1 600 and Re = 1 900; The 30 contours are
non-uniformly spaced for visualization purposes, 20 equally-spaced negative (dashed) contours and 10 equally-
spaced positive (solid) contours for Re = 2 200 and Re = 3 000.
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Fig. B.3: Contours of the angular momentum Γ = ruθ (top row) and of the axial velocity component w = uz (bottom row), in the meridional plane corresponding to
y/R = 0. The 50 contours are uniformly spaced between 0 and 1 for Γ; The 40 contours are uniformly spaced between ±0.20 for w. From left column to right column:
Re = 1 600, 1 900, 2 200, 3 000.
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Finally, the distribution of axial velocity is shown in Fig. B.3 (bottom row). It allows to visualize the axial
recirculation flows within any meridional plane. For all values of Re, the upward-directed wall-jet along the
tubular side-wall is clearly visible. It originates from the strong turning at the circular corner (r/R = 1, z/H = 0)
of the flow radially ejected by the centrifugal force induced by the rotation of the bottom end-wall. Before the
vortex breakdowns, the central flow along the cylinder axis forms a cylindrical jet oriented downward. This
central jet originates from the pumping effect—low pressure gradient along the axis of the rotating bottom end-
wall—in the Ekman layer. The presence of recirculation bubble after the vortex breakdowns, strongly modifies
the structure of this central cylindrical jet into a toroidal jet still oriented downward. As expected, the fluid
inside the recirculation bubbles is upward-directed, in an opposite direction to one of the central toroidal jet.

B.2.2 Transition to unsteadiness

As already observed in Fig. B.1, for a given value of the aspect ratio Λ, the first transition process associated
with the vortex breakdown, and described in the previous section, is followed by a second transition from a
steady flow to an unsteady oscillatory flow.
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Fig. B.4: Time history of the volume integral of the kinetic energy Q of the flow. Re = 1 600, 1 900, 2 200, 3 000.
Top: complete dynamic range including transient; bottom: zoom-in of the stationary region.

At this point, it is worth noting the timescales of the evolution of these flows. Figure B.4 displays the
time history of the volume integral of the kinetic energy of the flow Q. For the first three cases, i.e. Re =
1 600, 1 900, 2 200, the flow reaches a steady state after approximately 500 rotations of the bottom end-wall
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and following an impulsive start from a quiescent fluid state. The fourth case, which corresponds to Re = 3 000,
leads to an unsteady flow with an oscillatory evolution of the structure of the recirculation bubbles. The flow
structure in the central core region over one cycle is given in Fig. B.6 for 12 instants equally spaced in time and
represented by circles in Fig. B.5. As noted by Lopez in [158], the unsteady character of the flow is due to the
interaction between the two bubbles—coalescing and separating, and coalescing, etc.
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0.03565

0.03560

Fig. B.5: Time history of the volume integral of the kinetic energy Q of the flow for 610 ≤ Ω0t ≤ 670. Re = 3 000.
The circles © correspond to the instantaneous structures in Fig. B.6.

B.3 Conclusions

This appendix briefly described the basic features of the swirling flow in an enclosed cylinder. The study
focused on the observed transitions while increasing the Reynolds number for a given value of the height-to-
radius aspect ratio Λ = 2.5. The first transition is associated with the vortex breakdown process, and its effects
on the recirculation flows and jets within the cavity. The second transition investigated, is the transition from
a steady flow towards an unsteady flow, induced by the interactions between the two recirculation bubbles.
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B.4 Annex: Closed swirling flow without recirculation bubble

This annex presents results of the closed cylindrical swirling flow corresponding to the case (Λ = 1,Re = 6 000).
These results are placed in this appendix as they correspond to the swirling flow in a closed cylindrical cavity
unlike the open case dealt with in Part IV. Nevertheless, as the value of the height-to-radius aspect ratio Λ is
different from the cases above—consequently preventing a vortex breakdown to occur—the results are placed
in this annex at the end of the present appendix.

The case (Λ = 1,Re = 6 000) in the open cylinder flow of Part IV is the central case of the study in the
transitional regime. Therefore, it seems appropriate to compare the results in the open cylinder case with the
ones in the closed case with exactly the same parameters and same numerical method. The only difference being
the imposition of a homogeneous Dirichlet boundary condition on the top end-wall of the cylinder, in order
to enforce the no-slip condition imposed by the presence of the steady disk. As expected from the bifurcation
diagram shown in Fig B.1, no vortex breakdown occurs for the value Λ = 1, independently of the value of
the Reynolds number. Nevertheless, even without any recirculation bubble, a notable unsteady character is
measured for this flow. Figure B.7 displays the streamlines of this instantaneous flow into any half-meridional
plane. Even at such a relatively high Reynolds number, one can prove that the flow maintains its axisymmetry.
To this aim, the following quantity

∆X

X
=
‖X(r, θ = 0, z)−X(r, θ = π/2, z)‖L2

‖X(r, θ = 0, z)‖L2

, (B.2)

has been calculated for all three components of the velocity field, using the L2-norm in the meridional plane
(r, θ = 0, z). The results are gathered in Table B.2 and are showing to be of the order of the error introduced
by the space and time discretizations. This observation is crucial as it allows us to infer that the axisymmetry
breaking observed at Re = 6 000 in the open cylinder case with Λ = 1, is due to the presence and the dynamics
of the recirculation bubble(s).
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Fig. B.7: Contours of streamlines in a half-meridional plane for an instantaneous flow sample. Closed cylinder
case with (Λ = 1,Re = 6 000). The 40 contours are uniformly spaced, between −0.008 and 0.

As a second step, the contours of the radial and axial velocity components in any meridional plane are given
in Fig. B.8. These data are supplemented with the contours of the azimuthal velocity component uθ and of the
axial component of the angular momentum Γ = ruθ in Fig. B.9. The behavior of the velocity field and axial
angular momentum right below the top end-wall is of prime importance when comparing these data with those
of Part IV corresponding to an open cylinder.
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Variable Relative difference ∆X/X

ur 2.927e-06

uθ 3.182e-06

uz 6.855e-07

Table B.2: Quantitative assessment of the axisymmetry of the velocity field in the cylinder.
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Fig. B.8: Contours in a half-meridional plane for an instantaneous flow sample. Closed cylinder case with
(Λ = 1,Re = 6 000). Left: radial velocity component ur; Right: axial velocity component uz. The 50 contours
are nonuniformly spaced for visualization purposes, between −0.100 and 0.155 for ur, and between −0.04 and
0.14 for uz.
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Fig. B.9: Contours in a half-meridional plane for an instantaneous flow sample. Closed cylinder case with
(Λ = 1,Re = 6 000). Left: azimuthal velocity component uθ; Right: axial angular momentum Γ. The 50 contours
are uniformly spaced, between 0 and 1.





Appendix C

Computational performance analysis of a
parallelized high-order spectral

and mortar element toolbox

In this appendix, a comprehensive performance review of a MPI-based high-order spectral and mortar element
method C++ toolbox is presented. The focus is put on the performance evaluation of several aspects at the
hardware and software levels with a particular emphasis on the parallel efficiency, the C++ implementation
weaknesses and the influence of the concurrent and subsequent implementation layers in a multi-programming
environment. The performance evaluation is analyzed and compared to predictions given by a heuristic model,
the so-called Γ model. Three tailor-made CFD computation benchmark cases are introduced and used to carry
out this review on different serial and parallel architectures, stressing the particular interest for commodity
clusters. Conclusions are drawn from this extensive series of analyses and modeling leading to specific recom-
mendations concerning such toolbox development and implementation.

C.1 Introduction

This appendix provides a detailed performance evaluation of the C++ toolbox named Speculoos (for Spectral
Unstructured Elements Object-Oriented System). Speculoos is a spectral and mortar element analysis toolbox
for the numerical solution of partial differential equations and more particularly for solving incompressible
unsteady fluid flow problems. It was initiated by Prof. Michel O. Deville and Dr. Vincent Van Kemenade [254] in
1995 at the Laboratory of Fluid Mechanics of the École Polytechnique Fédérale de Lausanne (EPFL). The main
architecture choices and the parallel implementation were elaborated and implemented by Van Kemenade and
Dubois-Pèlerin [66,67]. Subsequently, Speculoos’ C++ code has been growing up with additional layers enabling
to tackle and simulate more specific and arduous CFD problems: viscoelastic flows by Fiétier and Deville [76–78],
fluid-structure interaction problems by Bodard and Deville [29], large-eddy simulations of confined turbulent
flows by Bouffanais et al. [35] and free-surface flows by Bouffanais and Deville [34].

It is well known that spectral element methods are amenable easily to parallelization as they are intrinsically
a natural way of decomposing a geometrical domain [81].

The numerous references previously given and the ongoing simulations based on Speculoos highlight the
achieved versatility and flexibility of this C++ toolbox. Nevertheless, ten years have passed between the first
version of Speculoos’ code and the present appendix, and tremendous changes have occurred at both hard-
ware and software levels: fast dual DDR memory, RISC architectures, 64-bit memory addressing, compilers
improvement, libraries optimization, libraries parallelization, increase in inter-connecting switch performance,
etc.

Back in 1995, Speculoos was commonly compiled and was running on HP, Silicon Graphics workstations
and also on the Swiss-Tx machine, a commodity-technology based computer with enhanced interconnect link
between processors [103]. Currently most of the simulations based on Speculoos are compiled and are running on
commodity clusters. The workstation world experienced a technical revolution with the advent of ‘cheap’ RISC
processors leading to the ongoing impressive development of parallel architectures such as massively parallel
clusters and commodity clusters. As a matter of fact, Speculoos benefited from this fast technical evolution as
it was originally developed as to run in a single program, multiple data mode (SPMD) on a distributed-memory
computer. The performance evaluations presented in this appendix are demonstrating the correlation between
the good performances measured with Speculoos and the adequation of this code structure with the current
hardware and software evolutions.

This appendix is organized as follows. In Section C.2 we introduce the numerical context in which Speculoos
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was initiated, the software aspects related to its implementation and the variable-size benchmark test case used
for the performance evaluation presented in the subsequent sections. In Section C.3 we present the performance
analysis carried out on single-processor architectures and involving different compilers and compilation param-
eters. Section C.4 is devoted to the parallel performance analysis achieved on a RISC-based commodity cluster.
It is followed by an advanced parallel benchmarking presented in Sec. C.5. Finally, in Section C.6 we draw some
conclusions on the results obtained.

C.2 Speculoos numerical and software context

In this section, is gathered the necessary background information regarding the numerical method—namely the
spectral and mortar element method—, the object-oriented concept and the parallel paradigm, essential roots
embodied in Speculoos. The final Section C.2.4 introduces the two simulations used throughout this appendix
as benchmark evaluation test cases.

C.2.1 Spectral and mortar element method

The spectral element method (SEM) is a high-order spatial discretization method for the approximate Galerkin
solution of partial differential equations expressed in weak forms. The SEM relies on expansions on Lagrangian
interpolants bases used in conjunction with particular Gauss–Lobatto and Gauss–Lobatto–Jacobi quadrature
rules [172, 194]. As high-order finite element techniques, the SEM can deal with arbitrary complex geometry
where h-refinement is achieved by increasing the number of spectral elements and p-refinement by increasing the
Lagrangian polynomial order within the elements. From a high-order precision viewpoint, SEM is comparable to
spectral methods as an exponential rate-of-convergence is observed when smooth solutions to regular problems
are sought.

C0-continuity across element interfaces requires the exact same interpolation in each and every spectral
elements sharing a common interface. The associated caveat to such conforming configurations is the over-
refinement meshing generated in low-gradient zones. The adopted remedy to such nuisance is a technique
developed by Bernardi et al. [18] referred to as the mortar element method. Mortars can be viewed as variational
patches of the discontinuous field along the element interfaces. They relax the C0-continuity condition while
preserving exponential rate-of-convergence, and thus allow polynomial nonconformities along element interfaces.
Geometrical nonconformities are not implemented yet.

C.2.2 Object-oriented programming

As mentioned in [67], the reasons for choosing C++ as the implementation language for such a spectral and
mortar element simulation toolbox are numerous [230]: object-oriented concepts, widespread, non-proprietary,
portability, efficiency, possibility to interface with C and Fortran subroutines. Joyner [137] noted that C++ em-
bodies several weak points: it is complex, cryptic, uselessly permissive, it has no garbage collector—in one word,
low-level. Dubois-Pèlerin and Van Kemenade [67] have attempted to overcome these drawbacks in Speculoos
by the use of a restrictive but sufficient set of different C++ instructions and of several programming guidelines
and style conventions which had pervaded the implementation.

Nevertheless, as compared to other widespread efficient programming languages such as Fortran 90, C++

constitutes a high-level programming approach, facilitating the know how transfer from one programmer to the
other. In the past decade, this crucial feature has proved its relevance and efficiency as attested by the afore-
given references [34, 35, 66, 67, 76–78]. However it seems reasonable to assess the impact of the accumulation
of several implementation layers by different programmers over the years on the current efficiency of this C++

toolbox.

C.2.3 Parallel implementation

The complexity and the size of the large three-dimensional problems tackled by numericists in their simula-
tions require top computational performance accessible from highly parallelized algorithms running on parallel
architectures. As mentioned in [67], the implementation of concurrency in Speculoos was based on the concept
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that concurrency is a painful implementation constraint going against the high-level object-oriented program-
ming concepts introduced in Section C.2.2. As a matter of consequence, Speculoos parallelization was kept very
low-level. In most higher-level operations parallelism does not even show up.

From a computational viewpoint, systems discretized with a high-order spectral element method rely mainly
on optimized tensor-product operations taking place at the spectral element level. The natural data distribution
for high-order spectral element methods is based on an elemental decomposition in which the spectral elements
are distributed to the processors available for the run. It is worth noting that for very large computations,
the number of spectral elements can become relatively important as compared to the number of processors
available for the computation. The design of Speculoos makes it possible to have several elements sitting on
a single processor. Nodal values on subdomain interface boundaries are stored redundantly on each processor
corresponding to the spectral elements having this interface in common. Moreover, this approach is consistent
with the element-based storage scheme which minimizes the inter-processor communications. Inter-processor
communication is completed by MPI instructions [102].

C.2.4 Benchmark evaluation test cases description

As a common practice in performance evaluation, it is important to build a tailor-made benchmark based on
a numerical simulation corresponding to a concrete situation for the numericist. Before proceeding to the first
step of our performance evaluation, we have short-listed some key parameters that have the most significant
impact on the performance of our toolbox: single-processor optimization on the three architectures described
above, single-processor profiling analysis, parallel implementation and scalability (including speedup, efficiency,
communication times) and parallel implementation and processor dispatching. The main characteristics of the
different computer architectures are presented in Table C.1. In the advanced parallel benchmarking presented
in Sec. C.5, other machines and computer architectures have been used and are presented in Table C.6.

Two test cases have been developed for this benchmark and an additional one for the advanced paral-
lel benchmarking, see Sec. C.5. All these three test cases belong to the field of CFD and consist in solving
the Navier–Stokes equations (2.1)–(2.2), for a Newtonian incompressible fluid. The general formulation of the
physical problems corresponding to these test cases is the one introduced in Sec. 2.1.

The first two test cases are based respectively on a two-dimensional (2D) and pseudo three-dimensional
(3D) Navier–Stokes simulations of the incompressible flow of decaying vortices in the domain Ω. An analytical
solution of these 2D and pseudo 3D Navier–Stokes problems are available and a numerical solution is sought
in a 2D or 3D framework. The discretization errors can therefore be explicitly calculated. The accuracy of the
results of this benchmark is monitored using relative errors based on the H1(Ω)-norm (resp. L2(Ω)-norm) for
the velocity field v (resp. pressure field p):

εv =
‖v − vexact‖H1(Ω)

‖vexact‖H1(Ω)
and εp =

‖p− pexact‖L2(Ω)

‖pexact‖L2(Ω)
. (C.1)

The unsteady flow of decaying vortices has the following exact solution in a 3D framework

u(x, y, t) = − cosx sin y e−2t , (C.2)

v(x, y, t) = + sinx cos y e−2t , (C.3)

w(x, y, t) = 0 , (C.4)

p(x, y, t) = −1

4
[cos(2x) + cos(2y)] e−2t . (C.5)

Computations are carried out in the domain Ω = [0, π]d, where d = 2, 3 is the space dimension, with a Reynolds
number Re equals to unity. This flow is very well documented [124,125,143,208,273] and therefore constitutes
a suitable choice to test the accuracy of numerical methods and boundary conditions. As the exact solution is
exponentially time-decaying, it is important to run the calculations on a short time interval [0, tfinal] to prevent a
too important analytical decay of the solution, leading to a convergent solution anyway. A choice of tfinal = 10−2

seems reasonable, associated with a time-step ∆t = 10−3.

All our computations were carried out using two time integrators: the implicit backward-differentiation
formula (BDF) of order 2 for the treatment of the viscous diffusive term and an extrapolation scheme (EX)
[52, 140] of same order for the nonlinear convective term. One type of pressure decomposition mode, based on
a fractional-step method using pressure correction namely BP1 [53, 196,197] is used.
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Pleiades Pleiades2 ielnx2 Itanium

Processor Pentium 4 Xeon (mono-proc) Xeon (bi-proc) Itanium 2 (bi-proc)
Nprocs 1 1 1 1
R∞ [GFlops/s] 5.6 5.6 3.4 5.3
Memory addressing 32-bit 64-bit 32-bit 64-bit
Memory type Dual DDR Dual DDR Fast Rambus Fast Rambus
Memory size 2 GB 4 GB 4 GB 4 GB

Table C.1: The computer architectures used.

Pleiades Pleiades2 ielnx2 Itanium

M∞ [GWords/s] 0.8 0.8 0.538 0.3
Vm [Flops/Word] 7 7 6.32 8.67
Compilers gcc, icc gcc gcc ecc

T5 [s] 15 749 13 827 35 6584 50 131

Table C.2: The computer architectures characteristics: gcc the GNU project C/C++ compiler, icc (resp. ecc) the Intel C++ compiler, 32-bit (resp. 64 bit) version.
T5 is the process duration for test case 5 defined in Table C.3.
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Speculoos uses a Legendre SEM [58, 172, 194] for the spatial discretization of the Navier–Stokes equations.
For the sake of simplicity the same polynomial order has been chosen in the different spatial directions (Nx =
Ny = N = 10). Moreover, to prevent any spurious oscillations in our Navier–Stokes computations, the choice of
a staggered PN −PN−2 interpolation method for the velocity and pressure respectively, has been made [58,174].
As a consequence of this choice of a staggered grid, the inner-element grid for the x- and y-component of the
velocity field is a Gauss–Lobatto–Legendre grid made up with 121 (= (N + 1)2) quadrature (nodal) points and
the grid for the pressure is a Gauss–Legendre grid made up with 81 (= [(N − 2) + 1]2) quadrature (nodal)
points, in each spectral element. Given Ex (resp. Ey) the number of spectral elements (or subdomains in the
finite element nomenclature) in the x-direction (resp. y-direction), the total number of degrees of freedom dof
is

dof = 2× (10Ex + 1)(10Ey + 1) + 81Ex ×Ey.
Table C.3 summarizes the seven cases of variable size studied throughout this appendix, ranging from around
0.1 million dofs up to around 5 millions of degrees of freedom.

Case Ex ×Ey Nb. of elements Total nb. of dof Size in memory

1 16× 16 256 72 578 15.73 MB
2 16× 32 512 144 834 31.39 MB
3 32× 32 1 024 289 026 62.64 MB
4 64× 32 2 048 577 410 125.14 MB
5 128× 32 4 096 1 154 178 250.13 MB
6 256× 32 8 192 2 307 714 500.13 MB
7 256× 64 16 384 4 610 306 999.15 MB

Table C.3: Information on the variable-size test cases studied.

Two major concerns regarding the specificities of this benchmark case need to be addressed before performing
extensive series of tests and afterwards drawing conclusions. The first concern is related to the scalability of the
problem, in terms of computer effort, with respect to the number of degrees of freedom of the problem when
increasing its dimension from a two-dimensional case to a three-dimensional one. The second concern is also
related to the same problem of scalability as before, but now with respect to the number of degrees of freedom
when varying the polynomial order in the two directions of the 2D problem. These issues are concurrently
dealt with by measuring, on a single-processor architecture, the process durations for variable-size jobs for
two- and three-dimensional cases based on the unsteady flow of decaying vortices. The 2D problem described
by (C.2)–(C.5) is straightforwardly extended to a three-dimensional one. To maintain a number of degrees of
freedom comparable to the ones for the 2D cases presented in Table C.3, the number of spectral elements in
the third dimension was kept to the unity—Ez = 1—the polynomial order in this direction, Nz, varying, with
Nx = Ny = 10, just like in the 2D cases. The results of these computations are reported in Figure C.1. The 2D
cases correspond to Nx = Ny = 10, the size is adjusted by changing the number of spectral elements Ex and
Ey. Two series of 3D cases have been computed, the first one—crosses on Figure C.1—represents 32× 32× 1
spectral elements, with Nx = Ny = 10 and Nz varying between 2 up to 6. Finally, the second series of 3D
cases—squares on Figure C.1—represents 64× 32 × 1 spectral elements, with Nx = Ny = 10 and Nz varying
between 2 up to 6.

As expected from the tensor-product formulation of the SEM within each spectral element, Figure C.1 shows
a good scalability, in terms of computer effort, of Speculoos with respect to the number of degrees of freedom
of the problem when changing both the dimension and/or the polynomial order in one or more directions. It is
worth noting that the scalability may be affected by the use of specific preconditioners [52, 53].

The third test case is the fully three-dimensional simulation of the flow enclosed a in lid-driven cubical cavity.
It corresponds to the case denoted under-resolved DNS (UDNS) in Part III of the present dissertation. The
reader is referred to Chapter 4 for full details on the numerical method and on the parameters used throughout
the advanced parallel benchmark described in Sec. C.5.

C.3 Single-processor performance analysis

Single-processor tests have been carried out and are presented in this section, relating to computer architectures,
compiler optimization and finally profiling information.
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Fig. C.1: Process duration for variable-size jobs running on a single-processor architecture (log-log scale). Diamonds,
crosses and squares represent 2D cases with Nx = Ny = 10, 3D cases with Ex = Ey = 32 and Ez = 1, and 3D cases
with Ex = 64, Ey = 32 and Ez = 1, respectively.

C.3.1 Influence of the computer architecture

In this section, we will look into the hardware part of our performance analysis. The results described hereafter
are obtained using test case 5, corresponding to 128×32 spectral elements. This choice of test case 5 is primarily
based on the fact that it is an intermediate case in terms of memory resources and also in terms of computing
time. In the sequel we will refer to this job run on a single-processor on the three different architectures described
in Table C.1 and Table C.2.

The last row of Table C.2 gives the process duration T5 (for test case 5) obtained compiling in 32-bit mode
with gcc (the GNU compiler, see C.3.2) on Pleiades and on ielnx2, and compiling in 64-bit mode with ecc

(the Intel C++ compiler) on Itanium 2. As expected from the architectures characteristics, Pleiades is the
fastest platform: 2.3 times faster than ielnx2 and 3.2 times faster than Itanium 2. These results are justified
by the higher frequency of the Pentium 4 but also by its very efficient Dual DDR bus memory.

C.3.2 Compiler optimization

For the same C++ code, two compilers are available on the Pleiades cluster: gcc (or more precisely g++ that is
calling gcc) the GNU project C/C++ compiler and icc the Intel C++ compiler. Linking for both gcc and icc

used the Intel mkl lapack 6.1, libmkl def, libguide and libF90 libraries. Both of them have been tested
with different options, mainly two families of options:

– Optimization parameters, offering different levels of optimizations from O0 (no optimization) until O3 where
the code optimization is maximum;

– Processor architecture and CPU type parameters; on the cluster Pleiades where Pentium 4 CPUs are
used, options i686 and pentium4 are notified to the compilers gcc and icc respectively.

Table C.4 contains the results of several computations run on the same Navier–Stokes test case described in
section C.2.4 with 128× 32 spectral elements (case 5—corresponding to approximately one million dofs). The
second column shows the process duration in second for a single-processor run and the third column corresponds
to the relative performance improvement for the run studied compared to the same run with the same options
but with the other compiler (gcc if icc is considered and conversely).

The results presented in the Table C.4 lead us to the following remarks and conclusions:
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Compiler optimization parameters Process R.P.I.
duration (s) g++/icc (%)

g++ (all options off) 22’291 + 6.8%

g++ -O3 -march=i686 16’189 + 1.9%

g++ -O3 -mcpu=i686 16’192 + 2.1%

g++ -O3 -march=i686 -mcpu=i686 15’749 + 4.9%

g++ -O3 -march=i686 -mcpu=i686

-finline-functions 16’210

g++ -O3 -march=i686 -mcpu=i686

-finline-functions -msse2 16’192

icc -O0 23’918 - 7.3%

icc (all options off) 16’729

icc -O3 16’553

icc -O3 -march=pentium4 16’508 - 2.0%

icc -O3 -mcpu=pentium4 16’537 - 2.1%

icc -O3 -march=pentium4 -mcpu=pentium4 16’570 - 5.2%

icc -O3 -march=pentium4 -mcpu=pentium4

-xW -ip 16’560

Table C.4: Comparisons of the performances of two compilers icc and gcc (R.P.I standing for Relative performance
improvement).

– For all cases studied with different compiler options, the compiler gcc provides better results than icc. In
the usual case, where the architecture and CPU types are defined and when the optimization is maximum
(flag -O3), using gcc shortens the process duration by approximately 5% compared to the usage of icc.
This performance improvement is non-negligible and for a run lasting 30 days, the choice of gcc will save
one and a half day of computer resources;

– as icc is a compiler dedicated to Intel Pentium processors and architectures, it automatically detects the
CPU and architecture types. This explains why the results of the computation with icc with all options
off is close to the results where CPU and architecture types are specified. In addition, as the CPU and
architecture types are automatically specified with icc, it is therefore possible to just optimize it by
flagging with -O3 when compiling. On the other hand, gcc requires the CPU or architecture type when
flagging -O3 for optimization purpose;

– we can also notice that by default icc optimizes the code (comparison of cases with flags -O0 and -O3)
that is not the case of gcc. More importantly, one can notice that the difference between an aggressive
optimization -O3 and a size and locality optimization -O1—which corresponds by default to the case where
all options are off—is only more than 1%. This suggests that Speculoos is well optimized, but indeed solely
reflects the optimization of the libraries Blas and Lapack, which are substantially used by the code.

As a conclusion of this section on performance improvement due to compilation, we can say that with Speculoos,
the GNU project compiler gcc is recommended, specifying both architecture and CPU type and with the
maximum code optimization parameter on. To our knowledge, Speculoos is far from being the only C++ code
producing more cost-effective simulations when compiled with gcc instead of its proprietary counterpart icc.
The choice of gcc as compiler for Speculoos is primarily based on performance requirements but also on
portability requirement, gcc being available on most of the current platforms—if not sources are available.

C.3.3 Linking optimization

Choosing gcc as compiler—see Section C.3.2—, we have tested out linking the 32 Speculoos object files with
three different groups of libraries. Speculoos requires Blas, Lapack and also a library ensuring the conversion
from Fortran to C/C++. The same test case as in the previous section is used:

– Using Blas 3.0, Lapack 3.0 and libg2c from the GNU project, the computing time is 18’680 s;

– Using the Intel mkl lapack 6.1, libmkl def, libguide and libF90, the computing time is 15’750 s;

– Using the Intel mkl lapack 6.1, libmkl p4, libguide and libpthread, the computing time is 26’833 s.
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As a conclusion of this section, it appears clearly that the proprietary optimized libraries from Intel with
the Fortran 90 converter, coupled with the non-proprietary compiler gcc produce the most efficient binary
executable file. These results highlight the room for improvement for the GNU project in the framework of their
optimized libraries associated to its efficient compiler.

C.3.4 Profiling

In annex is presented the most significant part of the profiling information, namely the flat profile. This infor-
mation was gathered by gprof the GNU profiler after compiling and linking on Pentium 4 of Pleiades, the 32
object files comprised by Speculoos using gcc together with the flag -pg.

For ease of presentation only the function calls representing the top 90% of the cumulative running time
appears in the flat profile in annex.

In general the flat profile allows the programmer to spot the functions monopolizing the major part of the
CPU resources. For scientific computations, these functions should correspond to fundamental operations such
as multiplication-summation of vector-Matrix/Matrix-vector. Therefore optimizing these functions lead to a
significant reduction of the computing time.

In our case, the intermediate test case 5 (128×32 elements) has been profiled and the most striking piece of
information delivered by the flat profile is that no function represents a large and significant part of the running
time. For instance the most costly function called, the first one in the profile

RealVector :: Multiply(RealVector∗)

represents a bit less than 15% of the cumulative computing time. It means that optimizing this function could
in the best case reduce its “cost” by 10 to 20%, representing finally a “saving” of only 1 to 3% of the total
running time.

Knowing the complexity of the Speculoos C++ code—see Sec C.2.2—, the optimization of the four first
functions in the flat profile, namely:

1. RealVector::Multiply(RealVector*)

2. FlatField::Multiply(Field*, int, int)

3. Element::CopyAddValuesFrom(Element*)

4. ElementaryField::MultiplyByWeights(int)

corresponding each of them to more than 5% of the total computing time, is not worth the time to be invested
by the programmer.

The second important piece of information revealed by the flat profile is gathered in the fourth column
“calls” corresponding to the number of times a function was invoked by the code. A quarter of the functions
listed in the flat profile (including the most costly (1): RealVector::Multiply(RealVector*)) are invoked a number
of times reaching extremely high values with an order of magnitude of the billion! This remark highlights one
of the weaknesses of Speculoos due to its implementation with very structured classes, templates and repeated
function calls.

As a last point, it is important to notice that the flat profile obtained is somehow different from what could
be expected from the profiling output of an optimized scientific computation. Several functions not involved in
pure calculations appear to occupy a non-negligible part of the cumulative time. From the flat profile in annex,
9 functions are of this type and cumulate about 12% of the total computing time. In addition, these functions
are usually invoked a very large number of times as discussed earlier.

As a conclusion, the profiling information presented in this appendix is a proof of some weaknesses of
Speculoos, in particular related to its excessive structured C++ implementation [137,230].

C.4 Parallel implementation

In the sequel, we will assume that the reader is familiar with the basics of parameterization on a parallel
machine. For a complete introduction to these notions we refer the reader to the following references [104,105].
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The speedup A of an application on a given parallel machine can be described as

A =
Computing time on one processor

CPU plus communication times on P processors
=

T1

TP + TC
. (C.6)

If we suppose that the computing effort strictly scales with P , then T1 = PTP and the speedup can be written
as

A =
T1

TP + TC
=

PTP
TP + TC

=
P

1 + γm/γa
=

P

1 + 1/Γ
, (C.7)

where γm and γa are introduced in [105], and Γ = γa/γm. The efficiency E of a parallel machine is defined by

E =
A

P
=

1

1 + 1/Γ
. (C.8)

The quantity P1/2 denotes the number of processors for which the efficiency E is half, and A1/2 = A(P1/2) is
the speedup for P = P1/2 processors.

C.4.1 Influence of processor dispatching on performance

In this section we will discuss the effect of specifying the way of dispatching the spectral elements—or subdo-
mains—to the processors for a job running in parallel on a cluster architecture such as Pleiades for instance
in our case.

With Speculoos, the first basic procedure to assign a processor to every spectral element is called

DispatchElements().

It is a non-optimized algorithm in which the spectral elements are assigned to a processor following a cycle,
with a cycle-length equal to the number of processors available for the run. It is clear that this non-optimized
method will increase the communications between processors.

In order to improve on this point and to optimize the communications between the processors a new proce-
dure to assign a processor to every spectral element, called

DispatchElementsByBlocks(nx, ny),

has been implemented. The computational grid is assumed to be structured, in the sense that its elements are
assumed to be generated by a nx*ny distribution on a face element. The elements are assigned by blocks, in
order to minimize inter-processor communications.

The functions DispatchElements() and DispatchElementsByBlocks(nx,ny) have been tested on our in-
termediate test case 5 (128 × 32 spectral elements) with a number of processors ranging between 1 and 16.
Figure C.2 summarizes the results in terms of parallel efficiency E. The increase in efficiency E between the
non-optimized and the optimized processor dispatching procedures is almost constant with the number of pro-
cessors Nprocs and is equal to 7–8%.

C.4.2 Scalability study and influence of the size of the problem

As expected from the theory, the scaling of our computations depends highly on the load-balancing of our cases
among the processors available for the run. Therefore the smaller the case studied (in terms of memory and
CPU resources) the longer the communications, reducing ipso facto the speedup A and the efficiency E = A/P
measuring the scalability.

As can be seen on Fig C.4 and C.5, cases 5–7 (128 × 32–256 × 64 elements) scale almost perfectly for a
number of processors up to four. Cases 1–2 (16× 16–16× 32 elements) are too small and therefore do not load
sufficiently the processors and their associated shared memory. In these cases, parallel computations are not
justified: P1/2 is close to 4 and 6 (see Table C.5), corresponding to an efficiency of only 50%. The waste of
resources is due to communications and a detailed analysis is given in the next section.

For small values of the number of processors P (P ≤ 4), the load-balancing is acceptable for all cases studied
leading to efficiencies very close to 1 (see Fig. C.7) and an almost perfect scalability.
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Fig. C.2: Performance improvement due to an optimized dispatching of the spectral elements by blocks.

Case Ex ×Ey P1/2 ⇔ E(P1/2) = 0.5 A1/2 = A(P1/2)

1 16× 16 4 & 2
2 16× 32 6 & 3
3 32× 32 9 ' 4.5
4 64× 32 12 . 7
5 128× 32 ' 20 ' 11
6 256× 32 32 ' 17
7 256× 64 > 32 > 20

Table C.5: Values of P1/2 and A1/2 for the seven test cases.
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For a larger number of processors (16 ≤ P ≤ 32) Fig. C.6 (magnification on the left side) shows a very poor
load-balancing for the small cases. The speedups comprised between A(P = 16) and A(P = 32) are smaller
than the speedup A(P = 8) and even A(P = 4) for A(P = 32). These observations translate into very poor
efficiencies (smaller than 0.15) observed on Fig. C.7.

For information, a dimensionalized graph showing the computing time TP in seconds, with the number of
processors varying between 1 and up to 32 is given on Fig. C.3.
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Fig. C.3: Process durations for variable-size jobs running on 1 up to 32 processors (log-log scale).
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Fig. C.4: Evolution of the speedup A against the number of processors Nprocs for the seven test cases 1–7.

C.4.3 Communications

One major concern when running jobs on a parallel architecture is to have the inter-processor communications
taking a too important part of the computing time. This is even more important when the network switch is
like in the case of Pleiades a Fast Ethernet switch running at only 10 MB/s. Even with a Gigabit Ethernet
switch, communications still remain a point of special attention.
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Fig. C.5: Evolution of the efficiency E with the number of processors Nprocs for the seven test cases 1–7.
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Fig. C.6: Evolution of the speedup A as a function of the size of the test case, for Nprocs= 2k, with k = 1, .., 5.
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Fig. C.8: Communication time TC (as a percentage of the process duration with a single-processor T1) as a function of
Nprocs for the 7 test cases.
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Fig. C.9: Communication time TC (as a percentage of the process duration with a single-processor T1) as a function of
the size of the test case, for Nprocs= 2k, with k = 1, .., 5.

Fig. C.8 and Fig. C.9 show that for the large cases, namely cases 6 and 7 (256× 32 and 256× 64 elements),
the communications represent only a very small fraction 2–3% of the total computing time, for all values of
Nprocs varying from 2 up to 32. For intermediate cases 4–5 (64 × 32 and 128 × 32 elements respectively),
communications take less than one tenth of the total elapsed time, that is still acceptable. Finally for small
cases 1–3, the communication times reach unacceptable values and can even take over the computing time, like
in the smallest case studied, 16× 16 with Nprocs = 32.

One case of ‘superlinearity’ is observed, corresponding to the largest test case 7 (256 × 64 elements and
dof ' 5.106) using Nprocs = P = 2 processors. This phenomenon of superlinearity corresponds to a speedup
A > P (see Fig. C.4 and Fig. C.6), an efficiency E > 1 (see Fig. C.5 and Fig. C.7) and also to a negative
communication time TC < 0 (see Fig. C.8). This so-called superlinearity can be explained by the fact that with
Speculoos, for very large cases and small number of processors, the computing effort scales with Nprocs = P :
T1 6= PTP .

Speculoos code running on a single processor is slightly slowed down by the useless MPI commands leading
to a single-processor computing time T1(MPI) greater than the real T1 that could be measured without using
any MPI commands.

For cases not too large (dof ≤ 106), Fig. C.9 shows that the communications TC/T1 decreases linearly (in
log-log scales) with the number of dof and in addition the corresponding negative slope is the same whatever
the number of processors Nprocs = P . This observation translates into the following heuristic power-law scaling

TC
T1

= K(P ) dof−α, (C.9)

where −α is the slope measured on Fig. C.9—approximately α = 0.9—and K is a function of the number of
processors P .

C.5 Advanced parallel benchmarking

As mentioned in Sec. C.2.4, the test case used throughout this section is the simulation of the lid-driven cubical
cavity flow, detailed in Chapter 4.
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C.5.1 Speculoos characteristics

Speculoos uses a small amount of main memory. Parallelization is made in order to reduce the high overall com-
puting time. The performance measurements are made at time-step number 4, the first 3 time-steps also include
initialization operations. The number of elements and the polynomial degrees in the three space directions are
denoted by Ex, Ey, and Ez , and Nx, Ny, and Nz, respectively. The total number of independent variables per
element is therefore nv × (Nx + 1) × (Ny + 1) × (Nz + 1), where nv is the number of vector components per
Gauss–Lobatto–Legendre (GLL) quadrature point. In addition, there are Ex ×Ey ×Ez elements.

C.5.2 Hardware and software used

To perform the Speculoos code benchmark, the machines presented in Table C.6 have been used.

Name Manufacturer CPU type Nodes Cores Interconnect

Gele Cray Opteron DC 16 32 SeaStar
Pleiades Logics Pentium 4 132 132 FE
Pleiades2 Dell Xeon 120 120 GbE
Pleiades2+ Dell Xeon 5150 99 396 GbE

Table C.6: Characteristics of the machines used for the benchmark. DC=Dual-Core.

As mentioned previously, the Speculoos code is written in C++, uses Blas operations and implements the
Message Passing Interface (MPI). The benchmarks have been performed using the compilers and libraries
versions shown in Table C.7.

Compiler Company Machine Version

icc Intel Pleiades 9.0
icc Intel Pleiades2 9.1e
icc Intel Pleiades2+ 9.1e
g++ Intel Pleiades 4.2.0
CC (pgCC) Cray (PGI) Gele 6.1-4 64 bits

Library Company Machine Version

MPICH GNU Pleiades 1.2.7
MPICH2 GNU Pleiades 1.0.5
MPICH GNU Pleiades2 1.2.7
MPICH2 GNU Pleiades2 1.0.5
MPICH GNU Pleiades2 1.2.7
MPICH2 GNU Pleiades2+ 1.0.5
MPICH2-nemesis GNU Pleiades2 1.0.5
MPICH2-nemesis GNU Pleiades2+ 1.0.5
MPICH2 Cray Gele MPT 1.3
MKL Intel Pleiades 7.1
MKL Intel Pleiades2 8.1e
MKL Intel Pleiades2 9.0e
MKL Intel Pleiades2+ 8.1e
MKL Intel Pleiades2+ 9.0e
ACML AMD Gele 3.0
PAPI GNU Gele 3.2.1

Table C.7: Characteristics and versions of the software used for benchmarking. MPT stands for Message Passing
Toolkit.

The PAPI (Performance API) [3] available on the Cray XT3 machine was used to measure the numbers
O of operations (in GFlops) and the MFlops/s rate of Speculoos. The VAMOS service available on the three
Pleiades clusters [1] maps the hardware related data from the Ganglia monitoring tool [2] with the application
and user related data (from cluster RMS and Scheduler). We used the most aggressive optimization flag on all
machines (-O3 flag).
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C.5.3 Fixed problem size

The first measurements are done on Pleiades2 with a fixed problem size, Ex = Ey = Ez = 8; Nx = Ny =
Nz = 8; O = 155.4 GFlops, and varying the number P of processing elements from 1 to 60. The evolution of
the runtime (for one time-step), the associated MFlops/s rate, and the efficiency E are given in Table C.8. The
speedup A as a function of the number of processors is plotted in Fig. C.10. One sees that with 8 processors a
speedup of 7 can be reached and a speedup of 20 with 26 processors.

P GFlops/s Runtime (1 step) E

1 0.638 243.59 1.00
2 1.251 124.23 0.98
3 1.901 81.75 0.99
4 2.395 64.88 0.94
5 3.038 51.15 0.95
6 3.566 43.58 0.93
7 4.101 37.89 0.92
8 5.590 34.52 0.88
16 8.346 18.62 0.82
32 14.179 10.96 0.70

Table C.8: Evolution of GFlops/s rate and runtime for fourth time-step. E: Efficiency.

C.5.4 Increase CPU performance

In this section, the number of processors on a Cray XT3 is kept fixed at the value P = 4. Then, we modify
the polynomial degree and measure the MFlops/s rate. The MFlops/s rate performance metric for each process
element is shown on Table C.9. It increases as the problem size increases. As expected, one deduces that there
is a limit on the number of processors that should be used in parallel.

Ex −Ey −Ez Nx −Ny −Nz MFlops/s Walltime

8− 8− 8 6− 6− 6 1624 18.54
8− 8− 8 7− 7− 7 2580 29.79
8− 8− 8 8− 8− 8 3100 50.07
8− 8− 8 9− 9− 9 3700 83.12
8− 8− 8 10− 10− 10 4150 146.97
8− 8− 8 11− 11− 11 4390 257.36

Table C.9: Evolution of MFlops/s rate and runtime for one time-step on 4 Cray XT3 dual-CPU nodes as a
function of the polynomial degree.

C.5.5 Varying the number of processing element P with problem size

A more common way to measure scalability, and to overcome Amdahl’s law, is to fix the problem size per
processor and to increase the number of processors with the overall problem size. In other words, one tries
to fix Γ that measures the ratio between processor needs over communication needs. We show in Table C.10
the scalability of Speculoos on the Pleiades2+ cluster. It was compiled using MPICH2 and icc C++ compiler
version 9.1e.

Table C.10 (A) shows results obtained when all the 4 cores are active for P > 1. Note that one Woodcrest
node with 2 dual-core processors (Table C.10) is slightly faster than 4 dual-CPU nodes (Table C.9) of the Cray
XT3. When increasing the number of nodes with the problem size, the MFlops/s rate per core remains the
same for all the cases. At this point, it is legitimate to determine if Speculoos is memory or processor bound.
To find out, all the test cases in Table C.10 have been resubmitted to the Woodcrest nodes, first (A) using all
the 4 cores per node, then (B) restricting to two the maximal number of MPI threads per node. Thus, instead
of 16 nodes, 32 nodes were used to run the 64-processor case (see Table C.10 (B)). One sees that the overall
CPU time has been reduced by 20%, but the number of nodes was doubled. This shows that Speculoos includes
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Fig. C.10: Speedup of Speculoos code on the Pleiades2 (Xeon CPU).

Ex −Ey −Ez Nx −Ny −Nz Nodes-Cores Elem/Core Walltime

4− 4− 4 8− 8− 8 1 - 1 64 8.68
8− 8− 8 8− 8− 8 2 - 8 64 39.26

16− 16− 16 8− 8− 8 16 - 64 64 147.97

(A)

Ex −Ey −Ez Nx −Ny −Nz Nodes-Cores Elem/Core Walltime

4− 4− 4 8− 8− 8 1 - 1 64 8.68
8− 8− 8 8− 8− 8 4 - 8 64 33.50

16− 16− 16 8− 8− 8 32 - 64 64 111.71

(B)

Table C.10: Scalability of Speculoos. Same polynomial degree, same number of elements on each compute node
on Pleiades2+ (Woodcrest) cluster. (A): with 4 MPI threads per node. (B): with npernode = 2 , two MPI
threads per node.
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parts that are processor bound and others that are memory bound. As a consequence, using all 4 cores does
not give a two fold speedup (as one expects for a processor bound program) but neither the speedup is zero
(as for a main memory bound application). Therefore, it is always more efficient to run Speculoos on all the 4
cores per node.

C.5.6 CPU usage and the Γ model

CPU usage has been monitored by the VAMOS monitoring service [1] available on the Pleiades clusters. It
provides information on the application’s behavior. The higher the CPU usage is, the better the machine fits
to the application. To perform that monitoring we took the same problem size (Ex = Ey = Ez = 8 and
Nx = Ny = Nz = 8) during the same computing duration (10 hours = 36 000 seconds). The application is run
for 10 hours and the number of iteration steps performed during this time is counted. With such a methodology,
we ensure that each sample can perform a maximum of calculations in a given amount of time. It is equivalent
to set the same number of iteration for each sample and to measure the walltime.

Figure C.11 shows the different behavior of Speculoos on the three different architectures. The Γ value—
introduced in Eq. (C.7) and, which reflects the “fitness” of a given application on a given machine [105]—is
also computed. Results are reported in Table C.11.

Using the notations introduced earlier, T , TP , TC , and TL denote the total walltime, the CPU time for P
processing elements, the time to communicate, and the latency time per iteration step, respectively. Then,

T = TP + TC + TL, (C.10)

and the parameter Γ is easily expressed as

Γ =
TP

TC + TL
. (C.11)

T [s] Γ b [MB/s] S [words] TP [s] TC [s] TL [s]

Pleiades 23.01* 1.44* 12* 180 ∗ 106 13.58 8.43 1
Pleiades2 9.55* 3.81* 101 180 ∗ 106 7.56 0.98 1
Pleiades2+ 12.89* 1.60* 101 180 ∗ 106 7.93 3.96 1

Table C.11: Measured (*) and computed quantities using the Γ model.

It is possible to measure the total time T by means of an interpretation of the CPU usage plots (see
Fig. C.11). Indeed, the middleware Ganglia determines for every time interval of 20 seconds the average CPU
usage (or efficiency E) for each processing element. This information has to be put into relation to the Speculoos
application. This is done via the middleware VAMOS. In the plots in Fig. C.11, are added up all the values of
E that lie in between x and x + 0.01, where x is the percentile represented on the abscissae of the plots. The
efficiency E is related to the Γ through

Γ =
E

1− E . (C.12)

What can also be estimated are the network bandwidths b of the GbE switch (between b = 90 and 100 MB/s
per link), the network bandwidth of the Fast Ethernet switch (between b = 10 and 12 MB/s per link) and the
latency (L = 60 µs for both networks). First, a consistency test of those quantities is performed. Assuming
that the Fast Ethernet switch has a fix bandwidth of b1 = 12 MB/s, and for the GbE switch b2 = αb1, with α
unknown. Another unknown is the number of words S that is sent per node to the other nodes, and TC = S/b.
Based on the previous assumptions, the three Γ values for the three machines and the two networks is expressed
as

Γ1 =
TP1

S/b1 + TL
, (C.13)

Γ2 =
TP2

S/b2 + TL
, (C.14)

Γ3 =
TP3

S/b2 + TL
. (C.15)

These constitute a set of three equations for three unknown variables, namely S, α, and TL. Solving for these
variables leads to TL = 1, S = 180 MWords, and α = 8.43. The value of b2 = 101 MB/s corresponds precisely
to the one measured. This means that the model is well applicable.
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Fig. C.11: CPU Usage of Speculoos on different machines. Top: Pleiades cluster (CPU usage average 51.05%
,Γ = 1.04).Middle: Pleiades2 cluster (CPU usage average = 79.24%, Γ = 3.81). Bottom: Pleiades2+ cluster
(CPU usage average 61.6%, Γ = 1.60).
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C.5.7 Modification of the number of running threads per SMP node

To demonstrate that Speculoos is dominated by inter-node communications, Figure C.12 shows the result of
two runs of the same problem size (Ex = Ey = Ez = 8 and Nx = Ny = Nz = 8) made respectively on 4 and
8 Woodcrest nodes during the same period of time (1h = 3600 seconds) and counting the number of iteration
steps. The first sample was launched forcing 2 MPI threads on each node and the second with 4 MPI threads
on each node.

Fig. C.12: CPU Usage on the 5100-series SMP node of Pleiades2+ cluster. 16 processing elements were required.
8 nodes/2 cores with 2 MPI threads per nodes in the upper case, 4 nodes/4 cores with 4 MPI threads per node
in the lower case.

We have to note that the CPU usage (system+user+nice) monitored by Ganglia is the sum of all the process
elements. For instance, for a dual-processor machine, when Ganglia measures 50% CPU usage, it means that
each processor run at 100%. In Figure C.12, when 2 MPI threads are blocked per node, we get a CPU usage of
51.13% while 157 iteration loops have been performed during one hour; when 4 MPI threads run on each node,
we get a CPU usage of 87.25% while only 117 iteration loops have been performed during one hour. Thus, the
real CPU usage for the sample with 2 MPI threads per node is above 100% (2 cores are unused).
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C.6 Conclusions

The extensive performance review presented in this appendix for the high-order spectral and mortar element
method C++ toolbox, Speculoos, has shown that good performances can be achieved even with relatively
common available software and hardware resources—small commodity clusters with non-proprietary compilers
installed on it. However, universal and commonly employed non-proprietary libraries such as Blas and Lapack

seem to require a further improvement in their optimization as compared to proprietary ones.

As a complement to the previous partial conclusions provided at each step of this performance evaluation, we
can conclude that the main implementation choices made a decade ago reveal their promises. Even though those
choices could have been questionable ten years ago, they are now in line with the current trend in computer
architecture developments with the generalization of commodity and massively parallel clusters.

Moreover the analysis reveals some weaknesses of our C++ code. As presented in Section C.2.2, those
weaknesses are inherent to C++ itself and cannot be circumvented. A proper compiler optimization and a
parallel implementation could at least balance them. The trade-off between the development and implementation
advantages of the object-oriented paradigm, and the computational efficiency of a lower-level programming
language—Fortran 90 for instance—is not easily accessible.

The parallel implementation of Speculoos based on MPI has shown to be efficient. Reasonable scalability
and efficiency can be achieved with a high loading of the cluster nodes. In addition, a smart assignment of the
spectral elements to the cluster nodes leads to an additional increase in the parallel performance of Speculoos.
These results support the original choices made in Speculoos parallel implementation by keeping it at a very
low-level. Nevertheless, it would be interesting to further investigate and evaluate the scalability for a number of
computer nodes corresponding to hundreds or even thousands. Therefore the part of this performance evaluation
devoted to the parallelism of Speculoos will soon be completed by carrying out the presented benchmark test
cases on the IBM eServer Blue Gene Solution, massively parallel computer comprising 8 192 processors and
acquired by EPFL.

C.7 Annex: Profiling information

Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self

time seconds seconds calls name
14.88 987.08 987.08 3461217386 RealVector::Multiply(RealVector*)
9.86 1641.04 653.96 307891 FlatField::Multiply(Field*, int, int)
8.99 2237.57 596.53 3603304192 Element::CopyAddValuesFrom(Element*, int, ...
6.02 2636.75 399.18 916811776 ElementaryField::MultiplyByWeights(int)
4.14 2911.52 274.77 177840128 Edge::CopyAddValuesFromFace(Face*, int, int, ...
3.91 3170.74 259.22 1778679808 Quad::CopyAddValuesFromEdge(Edge*, int, int, ...
3.72 3417.45 246.71 1820727360 Vertex::CopyAddValuesFromEdge(Edge*, int, int, ...
3.09 3622.50 205.05 123303 FlatField::Add(Field*, double)
2.63 3797.05 174.55 35926016 ElementaryField::GetWork()
2.40 3956.46 159.41 108636 FlatField::SetValues(double)
2.35 4112.24 155.78 1813419648 Edge::CopyAddValuesFromVertex(Vertex*, int, int, ...
2.34 4267.58 155.34 111474 FlatField::CopyFrom(Field*)
2.23 4415.67 148.09 51311 FlatField::SetToWeakDivergence(FlatField*, FlatField*)
1.76 4532.48 116.81 153676 FlatField::Dot(Field*)
1.76 4649.07 116.59 1833762816 ElementaryField::CopyInterpolateFrom(ElementaryField*, ...
1.68 4760.74 111.67 51311 FlatField::SetToWeakGradient(FlatField*, FlatField*)
1.66 4870.88 110.14 307981560 RealVector::MultiplyAndAdd(double, RealVector*, double)
1.43 4965.67 94.79 420339712 RealVector::MultiplyAndSwitchSigns(RealVector*)
1.33 5053.58 87.91 891158528 TensorMatrix::MatTransVec(RealVector*, RealVector*)
1.29 5138.83 85.25 891789312 TensorMatrix::MatVec(RealVector*, RealVector*)
1.28 5223.80 84.97 60070 FlatField::Multiply(Field*)
1.28 5308.40 84.60 240852 FlatField::CopyAddValuesFrom(FlatField*, int, int, ...
1.21 5388.57 80.17 2311449449 ElementaryField::SetValues(double, int)
1.09 5461.13 72.56 60030 FlatField::MultiplyAndAdd(double, Field*, double)
1.06 5531.42 70.29 3565895681 ListMatrices::Search(ParentElement*)
0.97 5595.57 64.15 2283535745 ElementaryField::HasSameInterpolationAs(ElementaryField*)
0.96 5659.26 63.69 471113728 ElementaryField::SetToGradient(ElementaryField*, int, ...
0.90 5718.74 59.48 470818816 ElementaryField::SetToGradientT(ElementaryField*, int, ...
0.90 5778.22 59.48 54453 FlatField::Multiply(double)
0.83 5832.98 54.76 471146496 ElementaryField::SetToGradientOnParents(ElementaryField*,...
0.76 5883.25 50.27 3834749408 Vector<Edge*>::GetIndexOf(Edge*)
0.71 5930.67 47.42 35926016 ElementaryField::Retrieve(ElementaryField*)
0.64 5973.25 42.58 729517856 ElementaryField::CopyFrom(ElementaryField*, int, int)
0.60 6012.88 39.63 445841408 ElementaryField::CopyInterpolateTFrom(ElementaryField*,...
0.60 6052.41 39.53 2546965353 RealVector::SetValuesZero()
0.56 6089.23 36.82 356589567 Vector<ParentElement*>::GetIndexOf(ParentElement*)
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% the percentage of the total running time of the
time program used by this function.

cumulative a running sum of the number of seconds accounted
seconds for by this function and those listed above it.

self the number of seconds accounted for by this
seconds function alone. This is the major sort for this

listing.

calls the number of times this function was invoked, if
this function is profiled, else blank.

name the name of the function. This is the minor sort
for this listing. The index shows the location of
the function in the gprof listing. If the index is
in parenthesis it shows where it would appear in
the gprof listing if it were to be printed.
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École Polytechnique Fédérale de Lausanne, 2006.

[28] Bodard, N., Bouffanais, R. & Deville, M. O. Solution of moving boundary problems by the spectral
element method. App. Num. Math., 2007. In Press.

[29] Bodard, N. & Deville, M. O. Fluid-structure interaction by the spectral element method. J. Sci. Comput.,
27, 123–136, 2006.

[30] Bogatyrev, V. Y. A. & Gorin, A. V. End effects in rectangular cavities. Fluid. Mech.-Soviet Res., 7,
101–106, 1978.

[31] Borue, V. & Orszag, S. A. Spectra in helical three-dimensional homogeneous isotropic turbulence. Phys.
Rev. E, 55 (6), 7005–7009, 1997.

[32] Botella, O. & Peyret, R. Benchmark spectral results on the lid-driven cavity flow. Computers & Fluids,
27, 421–433, 1998.

[33] Bouffanais, R. & Deville, M. O. Simulation of standing waves using moving-grid techniques with spectral
element methods. In Proc. Int. Conf. on Mathematical and Numerical aspects of Waves, pages 374–375,
Brown University, Providence (RI), 2005.

[34] Bouffanais, R. & Deville, M. O. Mesh update techniques for free-surface flow solvers using spectral element
method. J. Sci. Comput., 27, 137–149, 2006.

[35] Bouffanais, R., Deville, M. O., Fischer, P. F., Leriche, E. & Weill, D. Large-eddy simulation of the
lid-driven cubic cavity flow by the spectral element method. J. Sci. Comput., 27, 151–162, 2006.

[36] Bouffanais, R., Deville, M. O., Gruber, R. & Keller, V. Computational performance analysis of a par-
allelized high-order spectral and mortar element toolbox. Parallel Computing, 2007. Submitted for
publication.

[37] Bouffanais, R., Deville, M. O. & Leriche, E. Large-eddy simulation of the flow in a lid-driven cubical
cavity. Phys. Fluids, 19, Art. 055108, 2007.

[38] Boyd, J. P. Two comments on filtering (artificial viscosity) for Chebyshev and Legendre spectral and
spectral element methods: Preserving boundary conditions and interpretation of the filter as a diffusion.
J. Comput. Phys., 143, 283–288, 1998.

[39] Bragg, S. L. & Hawthorne, W. R. Some exact solutions of the flow through annular cascade actuator
discs. J. Aeronaut. Sci, 17, 243, 1950.

[40] Breuer, M. Large eddy simulation of the subcritical flow past a cylinder: numerical and modeling aspects.
Int. J. Numer. Methods Fluids, 28, 1281–1302, 1998.

[41] Brøns, M., Voigt, L. K. & Sørensen, J. N. Streamline topology of steady axisymmetric vortex breakdown
in a cylinder with co- and counter-rotating end-covers. J. Fluid Mech., 401, 275–292, 1999.

[42] Brøns, M., Voigt, L. K. & Sørensen, J. N. Topology of vortex breakdown bubbles in a cylinder with a
rotating bottom and a free surface. J. Fluid Mech., 428, 133–148, 2001.

[43] Brown, G. L. & Lopez, J. M. Axisymmetrical vortex breakdown. Part 2. Physical mechanisms. J. Fluid
Mech., 221, 553–576, 1990.

[44] Canuto, C., Hussaini, M. Y., Quarteroni, A. & Zang, T. A. Spectral Methods – Fundamentals in Single
Domains. Springer Verlag, 2006.

[45] Carati, D., Winckelmans, G. S. & Jeanmart, H. On the modelling of the subgrid-scale and filtered-scale
stress tensors in large-eddy simulation. J. Fluid Mech., 441, 119–138, 2001.

[46] Chen, C. K. & Lin, D. TIP4P potential for lid-driven cavity flow. Acta Mechanica, 178, 223–237, 2005.

[47] Chiang, T. P., Hwang, R. R. & Sheu, W. H. Finite volume analysis of spiral motion in a rectangular
lid-driven cavity. Int. J. Numer. Methods Fluids, 23, 325–346, 1996.

[48] Chiang, T. P., Hwang, R. R. & Sheu, W. H. On end-wall corner vortices in a lid-driven cavity. J. Fluids
Eng.-Transactions ASME, 119, 201–204, 1997.

[49] Chiang, T. P. & Sheu, W. H. Numerical prediction of eddy structure in a shear-driven cavity. Computa-
tional Mechanics, 20, 379–396, 1997.



Bibliography 227

[50] Chiang, T. P., Sheu, W. H. & Hwang, R. R. Effect of Reynolds number on the eddy structure in a
lid-driven cavity. Int. J. Numer. Methods Fluids, 26, 557–579, 1998.

[51] Chung, T. J. Computational Fluid Dynamics. Cambridge University Press, Cambridge, 2002.

[52] Couzy, W. Spectral Element Discretization of the Unsteady Navier–Stokes Equations and its Iterative
Solution on Parallel Computers. PhD thesis, no. 1380, Swiss Federal Institute of Technology, Lausanne,
1995.

[53] Couzy, W. & Deville, M. O. Spectral-element preconditioners for the Uzawa pressure operator applied to
incompressible flows. J. Sci. Comput., 9, 107–112, 1994.

[54] Couzy, W. & Deville, M. O. A fast Schur complement method for the spectral element discretization of
the incompressible Navier–Stokes equations. J. Comput. Phys., 116, 135–142, 1995.

[55] Crowley, W. P. Numerical advection experiments. Mon. Wea. Rev., 96 (1), 1–11, 1968.

[56] Daube, O. & Sørensen, J. N. Numerical-simulation of the axisymmetric periodic-flow in a cylindrical tank.
Comptes Rendus De l’Académie des Sciences Série II, 308, 463–469, 1989.

[57] Day, C., Harris, J. A., Soria, J., Boger, D. V. & Welsh, M. C. Behavior of an elastic fluid in cylindrical
swirling flow. Experimental Thermal Fluid Science, 12, 250–255, 1996.

[58] Deville, M. O., Fischer, P. F. & Mund, E. H. High-order methods for incompressible fluid flow. Cambridge
University Press, Cambridge, 2002.

[59] Dijkstra, D. & van Heijst, G. J. F. The flow between two finite rotating-disks enclosed by a cylinder. J.
Fluid Mech., 128, 123–154, 1983.

[60] Ding, Y. & Kawahara, M. Linear stability of incompressible fluid flow in a cavity using finite element
method. Int. J. Numer. Methods Fluids, 27, 139–157, 1998.

[61] Ding, Y. & Kawahara, M. Three-dimensional linear stability analysis of incompressible viscous flows using
the finite element method. Int. J. Numer. Methods Fluids, 31, 451–479, 1999.

[62] Domaradzki, J. A. & Adams, N. A. Direct modelling of subgrid scales of turbulence in large eddy
simulations. J. of Turbulence, 3 (24), 2002.

[63] Domaradzki, J. A. & Loh, K. C. The subgrid-scale estimation model in the physical space representation.
Phys. Fluids, 11, 2330–2342, 1999.

[64] Donea, J. Arbitrary Lagrangian-Eulerian finite element methods, pages 474–516. T.B. Belytschko and
T.J.R. Hugues Eds., Computational Methods for Transient Analysis. North Holland, 1983.

[65] Donea, J., Huerta, A., Ponthot, J.-P. & Rodriguez-Ferran, A. Arbitrary Lagrangian-Eulerian Methods,
volume 1: Fundamentals, E. Stein, R./ de Borst & T. J.R. Hugues of Encyclopedia of Computational
Mechanics, Chapter 14. Wiley, 2004.
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